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Preface

The purpose of the National Computer Conferences is to provide an at-
mosphere wherein designers, suppliers, users, managers, educators, and
representatives of Government and Society at large can meet and interact. Dis-
cussions of new technical developments, as well as National and International
issues and challenges facing the Information Processing Community, have been
encouraged.

This year’s discussions and developments are contained, for the most part, in
this Volume 44 of the 1975 National Computer Conference.

The 75 NCC represents essentially all of the major computer-related
Professional Societies. This year the Data Processing Management Association
has become a sponsor. They join our other sponsors: The IEEE Computer So-
ciety, The Association for Computing Machinery, The Society for Computer
Simulation and AFIPS. In addition, there are eleven other AFIPS Constituent
Professional Societies which share an active role in helping to plan the National
Computer Conference. The Institute of Internal Auditors has joined this group
this year.

Along with the Technical Program, which is described in the Foreword, there
are a number of other activities at NCC this year. They include four major
invited addresses, a special “Pioneer Day Program,” plus an Art Show, a Laser
Show, a High School Computer Science Fair and Science Film Theater. There
are approximately 250 companies and organizations participating in this year’s
Exhibition. These activities and exhibits, including all technical program
sessions, will be held within the Anaheim Convention facility. Arrangements
have also been made for a special “Day at Disneyland” during the Conference.

Volunteers, for a Conference of this magnitude, number in the hundreds. For
the most part, they are members of the NCC Sponsoring Societies and the other
AFIPS Constituent Societies. To these Societies and their participating
members my heartiest thanks. To the NCC Board and the NCC Committee my
thanks for your confidence and support. To all the members of the Technical
Program Organization who contributed to the Sessions and made these Proceed-
ings possible, thank you. And finally, to the AFIPS Headquarters Staff and all
members of the *75 Conference Steering Committee, thank you for your dedica-
tion, time and effort. We did it!






Technical Program Chairman:
Stephen W. Miller

Stanford Research Institute
Menlo Park, California

Foreword

Those who shaped the program

The Technical Program Committee for 1975 was made up of active par-
ticipants from the AFIPS sponsoring societies. This permitted representation
from people with backgrounds in hardware, software, applications and social
interaction. Each of the non-sponsoring constituent societies was requested,
through their President and also their NCC Board Member, to appoint an ac-
tive liaison to the Technical Program Committee. The sponsors and non-
sponsoring constituent societies that assisted in the planning are listed in the
back of this volume. All societies, sponsoring and non-sponsoring constituents,
were then requested to make their session contributions within the National
Computer Conference Program structure.

How the program is structured

The Program is structured into three major categories; Science and
Technology, Methods and Applications, and Interaction with Society. Within
each of these categories a number of technical areas were selected for special
treatment. The Workshops and regional conferences from the Special Interest
Groups and Technical Committees of sponsoring societies and conferences
conducted by other constituent societies were used as an initial screening in the
selection of topic areas which appeared of special importance to bring before a
national forum with this diverse audience.

Each technical area was headed by a Director. These Directors were selected
for their competence in the area, their demonstrated ability to organize a group
of sessions articulating the major challenges and accomplishments of their area,
and to provide broad representation of the major computer companies and
universities. Most subject areas are developed as a “day” of four sessions in the
same room. Many such days start with a tutorial session, continue with sessions
of submitted papers, and terminate with a panel discussion led by leaders in the
field. Hence, the order of presentation is important and that order within each
area is preserved in the publication of this Proceedings.



Each paper selected, and published here, was judged on its individual merit
by several of the referees whose names are listed at the end of the book. In some
cases good papers were rejected because they did not fit this program. In a few
cases a paper was accepted against the recommendations of the referees because
it was a good statement of an important problem which formed the basis of the
panel discussion. One paper included herein is nearly three times the nominal
maximum length. We made an exception in this case since all reviews of this
paper indicated that it was of exceptional quality and constituted ‘“the defini-
tive work” in its subject. The unanimous recommendation was that it should
neither be shortened nor broken up into multiple papers.

While the program planners gave careful consideration to submitted papers,
lack of volunteered papers did not restrict the planning. Several sessions consist
entirely of invited papers, some sessions are rounded out by invited papers
which complement submitted papers, and some sessions use one paper as a
basis for developing a topic. When appropriate, the session may consist largely
of visual presentations which do not lend themselves to publication.

Records of this conference: Proceedings, cassettes and monograms

This Proceedings constitutes the primary permanent record of the 1975 Na-
tional Computer Conference. Information transfer at the Conference takes
place not only through the papers recorded in this Proceedings, but also from
panel sessions and in spontaneous interchanges following the presentation of
papers. To capture a more complete record than is possible in the pre-published
Proceedings, all sessions which have the consent of their participants are being
recorded and tape cassettes will be made available for sale during and sub-
sequent to the Conference. These cassette recordings supplement the published
Proceedings in documenting the Conference.

A few select sessions will be transcribed, edited and published as separate
AFIPS Monograms.

In another departure from precedent, the table of contents was expanded to
include the names of all speakers and panelists and their topics, even though no
text of their presentations appears in the Proceedings. In this way it serves as a
pointer to the existence of the additional program material, as well as the table
of contents of the Proceedings.

Of course, nothing substitutes for attendance at the Conference and active
participation in the discussions. However, we believe that the combination of
this Proceedings, the cassette recordings of the discussions, and the AFIPS
Monograms constitute an excellent record of the Conference for those unable to
attend, and an aid for the memory for those who do attend.

We hope that participation in this Conference has been both useful and en-
joyable, and we express our thanks to the hundreds of participants who made it
possible.
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Microprocessors

The term “microprocessor’” as used today in the industry literature, has two
possible meanings:

1. An LSI processor on a single chip.
2. A microprogrammable processor.

It is unfortunate from the literary standpoint that we use a word with two
meanings; however, it is perfectly acceptable as a title for the series of sessions
entitled “MICROPROCESSORS” at NCC 75 because both subjects are dealt
with in these sessions.

LSI single chip processors are now becoming, very quickly, a mature design
component from the standpoints of cost, availability, and performance. Micro-
programming techniques have been around for a number of years as they were
the prime innovation in third generation computers. The combination of the two
makes a very powerful team which is undoubtedly the leading direction for the
future of the industry. It is expected to cause the next major evolution, not just
in the computer industry but in the total electronics industry much like the
transistor did a couple of decades ago. The sessions are organized in a manner
that presents both the hardware and software aspects of the state of the art.

The first session consists of three papers intended to address some of the fun-
damental topics of LSI microprocessors in a tutorial fashion utilizing state of
the art components as examples. The first paper entitled “Microprocessor Ra-
tionale” examines some of the basic philosophies and design trade-offs and in-
troduces the Signetics PIP microprocessor. The second paper presents the in-
dustry’s first 16-bit LSI single chip microprocessor (National Semiconductor’s
PACE) from a user’s viewpoint and explores applications that would benefit
from such a product. The third paper addresses the important issues of I/0 and
data transfer techniques using Motorola’s M6800 as an example.

The second session which is entitled “Microprocessors at Work” provides
both an overview and specific examples of microprocessor applications in data
communications, process control, numerical control, instrumentation and in-
telligent terminals.
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The third session which is entitled “Bipolar Microprocessors” is intended to
provide a forum for wider publicity and awareness of the state of the art
developments in the area of bipolar LSI microprocessors. These devices are cur-
rently in the process of emerging and there is a large degree of interest in them
due to their inherent high speed which is about one order of magnitude higher
than the currently available MOS devices. Their prime applications will be in
the implementation of high performance systems. Intel, Monolithic Memories,
and others will present their cases in that session.

The fourth session is entitled “Microprogramming and Microcomputer
Programming.” This session treats the important considerations of the develop-
ment and maintenance of software for microprocessor. Individual papers in
this session include “An Emulation System for User Microprogramming,”
“Testing and Sequencing in Microprogrammed Computers,” “Optimization
Techniques for Horizontal Microprograms,” and “Engineering and Maintaining

* Microcomputer Software.”



The microprocessor rationale

by BRUCE THREEWITT

Signetics Corporation
Sunnyvale, California

THE MICROPROCESSOR RATIONALE

Classically, since the beginning of the computer era, logic
system designs have been implemented with one of two
entirely separate approaches. Economie factors determined
whether hardwired logic or a computer would be used to
perform the required operations. In many cases, the computer
approach was far too costly.

Until recently, hardwired logic systems were constructed
using large numbers of small-scale or medium-scale integrated
circuits (SSI and MSI, respectively). Figure 1 includes
examples of functions typically found in these two levels of
integration. In general, the hardwired logic system could be
modelled as a “black box” that takes inputs (variables/data)
and performs some defined logic function on them, producing
outputs (results) that are functions of the inputs and of time
(see Figure 2). These outputs drive displays or other output
devices that apply the results to doing work.

Meanwhile, the computer industry builds black boxes that
accept inputs and perform some defined logic function to
produce outputs that are functions of the inputs and of time
(Figure 3a). The difference in these approaches lies in the
contents of the respective black boxes. Computer systems
have a certain minimum configuration as shown in Figure 3b.
Until now, this configuration consisted of components and
software that were too expensive to use in the simpler high
volume logic system applications. As mini-computers tend
downward in size and cost, more logic applications can be
served; but, the cost/performance trade-offs of mini’s still
preclude their use in general hardwired logic replacement
market.

As the need for less expensive, more versatile logic system
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Figure 1—Trends in integration

design techniques continued to apply pressure to the digital
electronic industry, a third system design alternative was
evolving for the following reasons. First, logic designers were
frequently going toward large-scale integrated circuits (LSI)
to implement their particular system designs. Typically, a
logic designer would take his logic and timing diagrams to an
integrated circuit (IC) supplier and ask him to shrink that
design onto one or a few MOS/LSI circuits (see Figure 4). He
did this because he believed that the MOS/LSI technology
offered a high-density, low power approach to digital circuits.
Unfortunately, this assumption is not totally valid. It is true
that the MOS/LSI technology yields small transistors. How-
ever, the MOS interconnection approach is significantly less
dense than cells or devices. Random logic is characteristically
dominated by complex interconnect with relatively few active
devices (transistors). Thus, random logic designs cannot
utilize the MOS technology efficiently. MOS/LSI does make
very dense memories (patterned logic) where interconnects
are minimized.

Secondly, the cost of producing custom MOS/LST circuits
is prohibitive in the long run both for the user and the IC
manufacturer (Figure 5). This curve assumes that for
random logic, increased complexity (integration level) results
in increased specialization. When a logic system, which is
specific to a given special purpose application, is integrated,
the resulting IC’s are also specific. Thus, the volume per
product type decreases with increased integration. The few
exceptions to this rule are single-application random logic
devices such as caleulator and watch circuits that generate
sufficient volume to justify their existence. Also, the IC
supplier must supply many different types of custom circuits
in order to adequately serve the custom logic market, since
any two given applications would probably not utilize the
same custom circuits. This proliferation of circuit types
greatly increases overhead costs for support engineering for
testing and circuit design. Therefore, customm MOS/LSI, in
general, is not economically feasible for the IC manufacturer
or the systems manufacturer.

Thirdly, the appearance of the N-Channel silicon-gate
MOS technology in recent times provides a vehicle for
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building highly dense, low power, moderately fast, TTL-com-
patible LSI circuits. The resulting cost improvements are
passed on to the system designer.

"For these reasons, and since the IC supplier would like to
exhaustively service the logic marketplace, a third alternative
for random logic system designs has evolved. That alternative
is a special case of random logic called programmed logic.
Programmed logic has the characteristics outlined in Table I.
Now, instead of wiring random logic together to perform a
given function, the designer uses a general purpose logic
block to perform logic aceording to the instructions contained
in a program. Thus, the logic system designer will combine
hardware and software techniques to achieve a system that
was formerly all hardware. The resulting design is far more
flexible since the features of the system can be a function of
software (the program). When market conditions require an
updated or even totally different system, in most cases only
a new program need be written. The resulting improvement
in system design turn-around time will significantly improve
the flexibility of a system supplier in serving his market. If
errors are made in the initial system design, corrections do
not usually require a complete system redesign. Now,
a custom system can be constructed with general purpose
hardware by using a specialized program. The resulting
savings in component costs alone, using readily available
standard cireuits, would justify this approach.

This programmed logic block can be constructed out of a
new type of component called a microprocessor. More
accurately, this component type is a micro-sized processor
since it need not be micro-programmed. Perhaps a more
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Figure 4—Logic replacement with MOS/LSI circuits
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appropriate name would be an Integrated Processor (IP).
A general purpose processor is a logic device that can literally
perform any computable function. From another point of
view, a processor is a device that utilizes memory cells (used
to store inputs and instructions) to perform logic functions.

Since breakthroughs in the various circuit technologies
have generally resulted in increased density, the micropro-
cessor allows the system designer to most efficiently utilize
the state-of-the-art IC technology. Memories are widely and
inexpensively available in many configurations, access modes,
and cost-performance ranges.

On closer examination, the IP is an evolutionary extension
of computer techniques for solving logic problems. Figure 3
shows a generalized block diagram of a minimum computer
configuration. The IP is a miniaturized version of the Central
Processing Unit (CPU) block. Thus, an IP is only part of a
micro-sized computer. One must add memory and I/0O
(input/output) devices to construct a micro-sized computer.

Even though programmed logic uses computer techniques,
the largest market for IP’s is not in computer replacement.
Rather, it is in hardwired logic replacement. Thus, in a few
years, the huge Transistor-Transistor Logic (TTL) market
will be largely serviced by IP’s and memories instead. The IC
industry is excited about integrated processors because, in
replacing TTL, semi-conductor memory sales will increase
because memories will be used in applications that have never
before used them. Also, the IC supplier can now better service,
in an economically feasible fashion, the market previously
handled by custom LSI.

As integration levels increase, one is increasingly hard

TABLE I—Random Logic vs Programmed Logic

RANDOM PROGRAMMED

Special Purpose Components
Low Volume

Dedicated Hardware
Moderate Speed

Difficult to Modify

Difficult to Expand

General Purpose Components
High Volume

Dedicated Software

Slower Speed

Easily Modified

Easily Expanded
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pressed to distinguish between a component and a system. In
the past, IC manufacturers have built components. With the
introduction of the microprocessor comes the need to treat a
component as though it were a system, which in effect it is.
Therefore, the IC house will have to supply far more support
than is usually required for a component. This support
commitment is a significant factor in the successful manu-
facture of integrated processors. Those suppliers who support
their product only at the component level will require a great
deal of assistance from the intermediary system consultant
companies that are beginning to appear on the scene. Without
such assistance, a component-level support effort is doomed
to failure in the general integrated processor market.

However, at the other end of the spectrum, the component
supplier becomes an end-user system supplier who competes
with his former customers. The component manufacturer who
wishes to properly support his integrated processor while not
competing with his customers must seek an intermediate
support commitment. This level might include:

o components—CPU’s, memories, and interface
¢ software—assemblers, simulators, utility programs
« board-level and system-level prototyping aids
o training aids—seminars, workshops, user’s libraries

To avoid the specialization quandry discussed earlier, the
IP suppliers are usually introducing general purpose inte-
grated processors first. The devices have features which allow
them to handle the wide range of applications indicated in
Figure 6. The price paid for flexibility is usually speed. Thus,
where higher speed is needed and increased specialization is
economically justified, special purpose processors will be
built.

One measure of merit of an integrated processor is its ease
of use. Ease of use applies to three categories: hardware,
software, and support. Ultimately, ease of use translates into
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Figure 6—Microprocessor applications

TABLE II—2650 Features

Single Chip

Fixed Instruction Set
Parallel 8 Bit

40 Pin Dip

N-Channel 12 Si Gate
32K Byte Range
Address, Data Busses
75 Instructions

1, 2, 3 Byte Instructions
Instruction Times 10us

Single +5 Volt Supply
TTL/IO

Static Logic

Single Phase Clock

TTL Level Clock

Eight Address Modes

Vectored Interrupt

7 General Purpose Registers
Return Address Stack On Chip
Program Status Word

TABLE IV—Interface Signal Summary

PINS TYPE SIGNAL
2 Power +5V, Ground
1 Input Clock
1 Input Sense
1 Input Pause
1 Input Reset
1 Input Address Enable
1 Input Data Bus Enable
1 Input Interrupt Request
1 Input Operation Acknowledge
8 I/0 Data Bus
13 Qutput Address
1 Output Address—Data/Control
1 Output Address—XLong/Short
1 Output Memory/I-O
1 Output Read/Write
1 Output Operation Request
1 Output Write Pulse
1 Output Interrupt Acknowledge
1 Output - Run/Wait
1 Output Flag

TABLE V—SIGNETICS 2650—Manufacturer Supplied Chips

LSI PRODUCTS

DESCRIPTION

2650
2602
2604
2606
2608
8T31
825123
825129
825131
828115

LOGIC FAMILIES

8T00
7400, 8200
82300
74LS00
4000

NMOS 8-bit, Static Microprocessor
NMOS 1024x1 Static RAM
NMOS 4096x1 Dynamic RAM
NMOS 256x4 Static RAM

NMOS 1024x8 Static ROM

STTL 8-bit Bidirectional Port
STTL 32x8 Tristate PROM

STTL 265x4 Tristate PROM
STTL 512x4 Tristate PROM
STTL 512x8 Tristate PROM

Interface SSI/MSI/LSI
TTL SSI/MSI/Memory
STTL Memory

Low Power STTL SSTMSI
CMOS SSI/MSI
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TABLE III—Instruction Set Summary

Length
Load/Store Instructions (bytes)
LODZ T Load Register Zero 1
LODI,r v Load Immediate 2
LODR,r (Ma Load Relative 2
LODA,r (Ma(,X) Load Absolute 3
STRZ r Store Register Zero 1
STRR,r (Ma Store Relative 2
STRA,r (*a(,X) Store Absolute 3
Arithmetic Instructions
ADDZ r Add to Register Zero 1
ADDI,r v Add Immediate 2
ADDR,r (Ma Add Relative 2
ADDA,r (Ma(,X) Add Absolute 3
SUBZ r Subtract from Register Zero 1
SUBIL,r v Subtract Immediate 2
SUBR,r (Ma ‘Subtract Relative 2
SUBA,r (Ma(,X) Subtract Absolute 3
Logical Instructions
ANDZ r And to Register Zero 1
ANDI,r v And Immediate 2
ANDR,r (Ma And Relative 2
ANDA,r (Ma(,X) And Absolute 3
IORZ r Inclusive Or to Register Zero 1
IORI,r v Inclusive Or Immediate 2
IORR,r (Ma Inclusive Or Relative 2
IORA,r (Ma(,X) Inclusive Or Absolute 3
EORZ r Exclusive Or to Register Zero 1
EORI,r v Exclusive Or Immediate 2
EORR,r (*)a Exclusive Or Relative 2
EORA,r (Ma(,X) Exclusive Or Absolute 3
Comparison Instructions
COMZ T Compare to Register Zero 1
COMI,r v Compare Immediate 2
COMR,r (*)a Compare Relative 2
COMA,r (Ma(,X) Compare Absolute 3
Rotate Instructions
RRR,r Rotate Register Right 1
RRL,r Rotate Register Left 1

Explanation of Symbols

( )—indicates option
r—register expression
v—rvalue expression
*—indirect indicator
a—address expression
x—index register expression

X-—index register expression with optional auto-increment

or auto-decrement

Length
Branch Instructions (bytes)
BCTR,v (Ma Branch On Cond. True Rel. 2
BCFR,v (Ma Branch On Cond. False Rel. 2
BCTA,v (Ma Branch On Cond. True Abso. 3
BCFA,v (*a Branch On Cond. False Abso. 3
BRNR,r (*)a Branch On Reg. Non-Zero Rel. 2
BRNA,r (%a Branch On Reg. Non-Zero Abso. 3
BIRR,r (*a Branch On Incre. Reg. Rel. 2
BIRA,r- (%a Branch On Incre. Reg. Abso. 3
BDRR,r (Ma Branch On Decre. Reg. Rel. 2
BXA *a,x Branch Index. Abso., Uncond. 3
ZBRR (*a Zero Branch Rel., Uncond. 2
BDRA,r (Ma Branch On Decre. Reg. Abso. 3
Subroutine Branch/Return Instructions
BSTR,v (Ma Br. Subrou. Cond. True, Rel. 2
BSFR,v (Ma Br. Subrou. Cond. False, Rel. 2
BSTA,v (Ma Br. Subrou. Cond. True, Abso. 3
BSFA,v (%a Br. Subrou. Cond. False, Abso. 3
BSNR,r (*a Br. Subrou. Non-Zero Reg. Rel. 2
BSNA,r (Ma Br. Subrou. Non-Zero Reg. Abso. 3
BSXA Ma,x Br. Subrou., Indexed, Uncond. 3
RETC,v Ret. From Subrou., Cond. 1
RETE,v Ret. Sub. and Enab. Intr., Cond. 1
ZBSR *)a Zero Br. To Sub. Rel., Uncond. 2
Program Status Instructions
LPSU Load Program Status, Upper 1
LPSL Load Program Status, Lower 1
SPSU Store Program Status, Upper 1
SPSL Store Program Status, Lower 1
CPSU v Clear Pro. Stat., Upper, Mask. 2
CPSL v Clear Pro. Stat., Lower, Mask. 2
PPSU v Preset Pro. Sta., Upper, Mask. 2
PPSL v Preset Pro. Sta., Lower, Mask. 2
TPSU v Test Pro. Status, Upper, Mask. 2
TPSL v Test Pro. Status, Lower, Mask. 2
Input/Output Instructions
WRTD,r Write Data 1
REDD,r Read Data 1
WRTC,r Write Control 1
REDC,r Read Control 1
WRTE,r v Write Extended 2
REDE,r v Read Extended 2
Miscellaneous Instructions
HALT Halt, Enter Wait State 1
DAR,r Decimal Adjust Register 1
TMI,r v Test Under Mask Immediate 2
NOP No Operation 1
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development and system economy factors. Since system cost
will largely depend on interface and memory costs rather than
IP cost, IP’s that have powerful instruction sets and minimize
the interface circuitry will significantly reduce the system
cost. In addition to reducing the price of the memory, IP’s
with good coding efficiency will improve throughput
performance.

The general purpose CPU’s being offered on the market
today generally have several features in common:

« single chip construction

o fixed instruction sets

o eight-bit parallel data

« MOS/LSI technology

o 40-pin dual in-line packaging

Beyond these features, however, each supplier differs in his
approach to the requirements of the introduction to the 2650.
The following discussion briefly describes the 2650 micro-
processor manufactured by Signetics Corporation. The 2650
is a complete general purpose integrated processor on one
monolithic integrated circuit. Table II summarizes the

features of the 2650. System objectives achieved by the 2650
include:

(1) Minimizing the amount of memory needed to perform
a given function.

(2) Minimizing the amount of interface logic required to
implement an IP-based system.

(3) Providing an easily learned instruction set that is
based on already-existing computer architectures.

Table III contains a summary of the instruction set with
addressing modes which significantly reduce the size of the
memory needed to perform a given function. Table IV lists
the interface signals available. These signals reduce the
amount of external interface circuitry needed to operate the
processor. All inputs and outputs of the 2650 are TTL
compatible. A list of support circuits offered by Signetics is
shown in Table V.

In summary, the 2650 offers those features needed for
economical utilization of a general purpose IP in the logic
replacement marketplace. The evolution of the integrated
processor has combined the IC technology with existing
system concepts to offer an attractive alternative for logic
system design. '






Keeping pace with a single-chip

16-bit microprocessor

by ALAN J. WEISSBERGER

National Semiconductor Corporation
Santa Clara, California

INTRODUCTION

The emphasis in contemporary microprocessor develop-
ment has been on 8-bit word lengths. Unfortunately, for
many applications, the 8bit microprocessor cannot pro-
vide the required accuracy, throughput, programming
ease, or flexibility. The multichip 16-bit processor has
been cost effective in many of these applications, but has
provided unused flexibility or speed (at extra cost) in
others. National Semiconductor has developed a single-
chip 16-bit microprocessor, the Processing and Control
Element (PACE), to provide the benefits of a 16-bit CPU
with greater simplicity than the multi-chip design. The
benefits accrue from integrating the functions of not only
the multi-chip CPU, but also most of the functions that
were previously implemented with TTL devices.

In addition, a group of compatible microcomputer chips
has been developed to augment the basic processor. A com-
plete microcomputer system, with 1024 words (16,384 bits)
of read-only program storage, clocks, buffers and one 16-bit
or two 8-bit peripherals is shown in Figure 1. Table I lists
features and benefits of this microprocessor.

ARCHITECTURE

The PACE microprocessor, shown in Figure 2, provides
16-bit parallel data-processing capability in a 40-pin
package. Functionally, the processor can be segmented
into six blocks: Data Storage, ALU, Status, Control, Inter-
rupts, Input, and Output.!

Four accumulators, two temporary registers, a program
counter, and a 10-word Last-In/First-Out Stack (LIFO)
provide ample storage for data manipulation, address
formation, and arithmetic computations. Two of the accu-
mulators (ACO, AC1l) are principal working registers,
while the two others (AC2, AC3) may be used as index
registers or auxiliary working registers. The LIFO stack is
used primarily to save the program counter during sub-
routine execution or interrupt servicing. It can also be
used to store status information or data. External
read/write memory may be used as a stack extension by
provision of stack-full and stack-empty interrupts, allow-
ing implementation of a simple stack-service routine.

Arithmetic Logic Unit (ALU) operations include AND,
OR, XOR, complement, shift left, shift right, mask byte,
and sign extend. Both binary and 4-digit BCD addition ca-
pability are provided, thus eliminating the program
storage and execution time required to perform BCD to bi-
nary conversion. A unique feature of the PACE ALU is
the ability to operate on either 8- or 16-bit data, as
specified by the programmer through the use of a status
flag. This feature allows character-oriented and other 8-bit
applications to be implemented and executed using an 8-
bit peripheral data bus and read-write memory, while ad-
dress formation and instruction storage are implemented
in the more-effective 16-bit data length.

All status and control bits for PACE are provided in a
single Status flag register, whose contents may be loaded
from or to any accumulator or the stack. This allows con-
venient testing, masking and storage of status. In addition,
a number of status bits may be tested directly by the con-
ditional branch instruction, and any bit may be indi-
vidually set or reset. The byte flag is used to specify an 8-
bit data length for data processing instructions, while
arithmetic operations for address formation remain at the
16-bit data length. In the 8-bit data mode, modifications of
the carry, overflow, and link flags are based on the 8 least
significant data bits only. Four flags (bits 11-14) that may
be assigned functions by the programmer are provided.
These flags drive output pins and may be used to directly
control system functions or as software status flags.

Six levels of prioritized vector interrupts are available.
This allows automatic identification of an interrupting
device’s level by trapping to a dedicated location in an
interrupt pointer table. The pointer specifies the starting
address of the interrupt service routine for that particular
level. All devices on a given level can be enabled or

disabled as a group, independent of other interrupt levels.

This permits a fast responding peripheral device on a high
level to interrupt a slower peripheral device on a lower
level. An individual interrupt enable is provided in the
status register for each level (IE1 to IE5), and a master
interrupt enable (IEN) is provided for all five lower
priority levels as a group. The level-zero interrupt is an ex-
ception to this procedure. It is the highest priority inter-
rupt in the system and cannot be locked out by the
master interrupt enable. This interrupt level is typically
used by the control panel, which can then interrupt the
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system can be built with PACE, a clock driver and input and output
buffers. The control program is stored in a one-chip ROM

application program without affecting system status. It
could also be used as an indication of a catastrophic condi-
tion such as a power failure. In this case the processor
would save its internal registers in a non-volatile or battery
supplied memory and halt execution in an orderly fashion.

The minimal package count required to implement a
microprocessor system using PACE and its support chips
may be important in some applications independent of the
associated lower cost. Hand-held or portable equipment
may have physical constraints that can only be met by a
processor component family of parts. Low power dissipa-
tion may also be important in some applications, and the
use of a MOS microprocessor with CMOS or lower power
TTL support chips may be required.

Some applications that might benefit from the small
size, weight, and power requirement of the PACE
microcomputer system include remote sensing systems,
weather-monitoring stations, and natural-gas pipelines. In
each case, a minimum PACE microcomputer system
could be installed at an unmanned site. Information could
be sensed, collected, and processed locally before being
sent to a central computer or recorded on a cassette. Local
control and preprocessing reduces data transmission costs
because only tested and verified data is sent.* These
unmanned microprocessor-based systems could also run
calibration and diagnostic tests of the remote instrumenta-
tion to determine whether or not it is functioning properly.

The ability to operate on either 8- or 16-bit data can be
a great advantage in terminals and communication
processors. Eight-bit characters can be extracted and
processed in the 8-bit mode of operation without packing
and unpacking overhead software. Line monitoring, statis-
tical tabulations and error control may be implemented
using 16 bits. The PACE CPU can be conveniently in-
terfaced to a byte-oriented peripheral (CRT) and to equip-
ment that has a data length exceeding 8 bits (card reader).

Command outputs and external status inputs are imple-
mented very efficiently using the PACE CPU. The flag
outputs can be utilized for control functions, such as start
reader, rewind, and others in a tape controller. Similarly,
the user jump conditions can be used to sense system
status conditions, such as end of tape or inter-record gap.
A flag and jump condition can be used together as a serial
1/0 port, eliminating the hardware required to interface to
the data bus and to decode the device address. Several
flags and jump condition inputs can be used to provide a
keyboard scanning function, modem control, or character
synchronization in a smart terminal.

The PACE interrupt system can save considerable
hardware and software in applications having several
interrupts. The on-chip priority logic and vectored branch
to the interrupt routine save logic required external to
other microprocessors to resolve priority and jam an ad-
dress vector onto the data bus, or the program storage and
execution time required for the alternative scheme of
sequentially polling the interrupt status of all devices.
Interrupts are essential in applications where alarm condi-
tions or transient conditions must be serviced im-
mediately, such as automobile, process or machine tool
control, or plant monitoring. They are useful in many
other systems to eliminate the program overhead required
to scan asynchronous system inputs, such as a controller
for multiple terminals or an intersection traffic-light con-
troller.

The ability to add BCD data eliminates execution time
and program storage overhead required to convert BCD to
binary data. This is useful in BCD-oriented applications,
such as display controllers, electronic cash registers, bill-
ing systems, accounting machines, navigation aids, and in-
dustrial controllers and test systems.

The compatibility of PACE with the microprogram-
mable IMP-16 is beneficial in applications where the
IMP-16 could serve as a host processor with the PACE be-
ing used as a lower-level processor, such as an automated
assembly line. Applications where a microprocessor con-
trolled product is available in several models may use the
IMP-16 for the more-sophisticated models and the PACE
for the less demanding tasks, allowing common software
and peripheral interfaces.

Data transfers between PACE and external memories or
peripheral devices take place over the 16 data lines (D00-
D15); are synchronized by 4 control signals (NADS, IDS,
0ODS, and EXTEND); and use common instructions. This

TABLE I—PACE Features

® 16-bit instruction word Addressing flexibility, speed

® 8- or 16-bit data word Wide application

® 45 instructions Efficient programming

® Common memory and peripheral addressing Powerful 1/0 instructions

® Shares instructions with National’s IMP-16 Allows software compatibility

® 4 general purpose accumulators Reduces memory data transfers

® 10-word stack Interrupt processing/data storage

® 6 vectored priority interrupt levels Simplifies interrupt service and hardware
® Programmer accessible status register May be preserved, tested, or modified
® Typical 10usec instruction execution High speed

® Can utilize DM8531 1k-by-16 ROM Single memory package

® Single-phase true and complement clock ini external
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CONST: .WORD X'FFFF
START: LI R1,0

; CONSTANT FOR DOUBLE PREC. ADD
; CLEAR RESULT REGISTER

LI R3, 16 ; LOOP COUNT TO AC3
CAl RO, 0 ; COMPLEMENT MULTIPLIER

LOOP: RADD R1, R1 ; SHIFT RESULT LEFT INTO CARRY
RADC RO,RO ; SHIFT CARRY INTO MULTIPLIER

; AND MULTIPLIER INTO CARRY

BOC CARRY, TEST ; TEST FOR ADD
RADD R2, R1 ; ADD MULTIPLICAND TO RESULT
SUBB RO, CONST ; ADD CARRY TO H.0. RESULT

TEST: AISZ R3, -1 ; DECREMENT LOOP COUNT
JMP LOOP -; REPEAT LOOP
Figure 3—Multiply routine

unified bus architecture is in contrast with many other
microprocessor or minicomputers that have one instruc-
tion type (I/0 class) for communication with peripheral
devices and another instruction type (memory-reference
class) for communication with memories. The advantage
of the approach used by PACE is that all memory-
reference instructions are available for communication
with peripherals. For example, the DSZ (Decrement and
Skip if Zero) instruction can be used to decrement and
test a peripheral device register; the SKAZ (Skip if And is
Zero) instruction can be used to test the contents of a
status register; LD (Load) and ST (Store) instructions
may be used for simple data transfers. This technique can
improve throughput and simplify programming.

Data transfer operations are initiated by an address
data strobe (NADS), which gates the address to the
memory or peripheral. An input or output data strobe
(IDS or ODS) follows on the next clock cycle. The appro-
priate strobe is used to gate the data into or out of the
processor. The memory device shown in Figure 1 provides
address latches on the chip. Two 8-bit bidirectional TRI-
STATE data latches may be provided for the peripheral(s).
The EXTEND input allows the I/O cycle time to be
extended by multiples of the clock cycle to adapt to a va-
riety of memory and peripheral devices or for DMA bus in-
terfacing. Further functional details are provided in
References 2 and 3.

Programming

An 8-bit processor must manipulate multiple registers to
form 16-bit addresses, make several memory accesses to
fetch multi-byte instructions or 16-bit data and use double
precision arithmetic routines to obtain accuracy greater
than two decimal places. A 16-bit processor does not suffer
from these limitations so that faster, shorter and simpler
programs may be written. This is clearly evident in min-
icomputers where the 16-bit word length is standard.

The sample program of Figure 3 illustrates the effi-
ciency of PACE in data processing applications. The com-
plete instruction set, divided into eight instruction classes,
is listed in Table II.

The program multiplies the 16-bit value in AC2 (multi-
plicand) by the 16-bit value in AC1 (multiplier) and
provides a 32-bit result in ACO (high order) and AC1 (low
order). Worst case execution time is under one milli-
second.

UNIQUE FEATURES

Many of the features of the PACE microprocessor prove
beneficial for a wide range of applications, while some
provide direct benefits in certain classes of application.
The 16-bit instruction and address word lengths and
multiple accumulator architecture make programming
easier and more efficient. Instructions and operands are
fetched in single memory cycles rather than the multiple
memory references required for byte-oriented data or
instructions. This enhances system throughput and
improves program execution times. Program storage re-
quirements and development cost reductions sometimes
allow more hardware functions to be implemented in
software, reducing system cost and making more of the
system reconfigurable by software modification.

Certain functions implemented on the chip simplify in-
terfacing by minimizing the number of external
components for a microcomputer system.

e Internal Clock generation from the true and comple-
ment clock inputs eliminates the need for a compli-
cated timing generator.

® On-chip output buffers drive sense amplifiers with
TRI STATE capability. This reduces power dissipa-
tion and chip size while improving speed.

® Interrupt control logic on the chip improves interrupt
response time and saves 15-20 TTL packages that
would ordinarily be required for the equivalent func-
tion.

e The jump condition multiplexer, status and control
flag register are internal functions for sensing inputs
and providing outputs directly to the user.

APPLICATION

The ability to efficiently operate on 8 or 16 bit data and
perform binary or BCD arithmetic enables PACE to act as
a controller or data processor in a complex system envi-
ronment. In many cases a minicomputer or multiple dedi-
cated microprocessors could be replaced with substantial
savings in cost and complexity.

To illustrate the flexibility and power of the PACE
microprocessor an application example has been
developed. The Plant Security Monitoring System
(PSMS), shown in Figure 4, acts as a watchdog by moni-
toring and in some instances controlling a plant’s opera-
tion. One PACE CPU acts as a data acquisition/alarm
scanner while another PACE CPU is utilized as a central
control/acknowledgment terminal. The functions moni-
tored are plant power (peak demand, total consumption,
outage) and environmental quality (air contaminants,
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Mnemonic

Meaning

1. Branch Instructions

BOC
JMP
JMP@
JSR
JSR@
RTS
RTI

Branch On Condition

Jump

Jump Indirect

Jump To Subroutine

Jump To Subroutine Indirect
Return from Subroutine
Return from Interrupt

2. Skip Instructions

SKNE
SKG
SKAZ
1SZ
DSz
AISZ

Skip if Not Equal

Skip if Greater

Skip if And is Zero
Increment and Skip if Zero
Decrement and Skip if Zero
Add Immediate, Skip if Zero

3. Memory Data Transfer Instructions

LD
LD@
ST
sT@
LSEX

Load

Load Indirect

Store

Store Indirect

Load With Sign Extended

4. Memory Data Operate Instructions

AND
OR
ADD
SUBB
DECA

And

Or

Add

Subtract with Borrow
Decimal Add

5. Register Data Transfer Instructions

LI
RCPY
RXCH
XCHRS
CFR
CRF
PUSH
PULL
PUSHF
PULLF

Load Immediate

Register Copy

Register Exchange

Exchange Register and Stack
Copy Flags Into Register
Copy Register Into Flags
Push Register Onto Stack
Pull Stack Into Register
Push Fiags Onto Stack

Pull Stack Into Flags

6. Register Data Operate Instructions

RADD
RADC
RAND
RXOR
CAl

Register Add

Register Add With Carry

Register And

Register Exclusive OR
Complement and Add Immediate

7. Shift And Rotate Instructions

SHL
SHR
ROL
ROR

Shift Left
Shift Right
Rotate Left
Rotate Right

8. Miscellaneous Instructions

HALT
SFLG
PFLG

temperature, air flow). Various transducers, thermocou-
ples and sensing devices measure the required analog
variables and provide inputs to an analog multiplexer.
PACE scans these input points at operator selected time
intervals by supplying a point address to the analog
multiplexer and starting the Analog to Digital (A/D) con-

Halt
Set Flag
Pulse Flag

TABLE II—PACE Instruction Summary

Operation Assembler Format

(PC) < (PC) + disp if cc true BOC cc,disp
(PC) < EA JMP disp (xr)
(PC) < (EA) JMP @disp (xr)
(STK) < (PC), (PC) < EA JSR disp (xr)
(STK) < {PC), (PC) + (EA) JSR @disp (xr)
(PC) < (STK) +disp RTS disp

(PC) <« (STK) +disp, IEN =1 RTI disp

If (ACr) # (EA), (PC) < (PC) +1 SKNE r.disp (xr}
If (AC0) > (EA), (PC) < {PC) +1 SKG 0,disp (xr)
If [(ACO) A{EA)] =0, (PC) < (PC) +1 SKAZ 0,disp (xr)
(EA) < (EA)+1,if (EA) =0, (PC) < (PC) +1 1SZ disp {xr)
(EA) < (EA) —1,if (EA) =0, (PC} < (PC) +1 DSz disp {xr)
{ACr) < (ACr) +disp, if (ACr) =0, (PC) < (PC) +1 AISZ r disp
(ACr} < (EA) LD r,disp (xr)
(ACO) < ((EA)) LD 0,@disp (xr)
{EA) < (ACr) ST r,disp {xr)
((EA)) < (ACO) ST 0,@disp {xr)
(ACO) < (EA) bit 7 extended LSEX 0,disp (xr)
(ACO) < (ACO) A (EA) AND 0,disp (xr)
(ACO) < (ACO}V (EA) OR 0,disp (xr}
{ACr) < {ACr) + (EA), OV, CY ADD r,disp (xr)
(ACO0) < (ACO}+~ (EA} +(CY), 0V, CY SUBB 0,disp (xr)
{ACO) < (ACO) +1q (EA) +1q (CY), OV, CY DECA 0,disp (xr}
{ACr) < disp L1 r,disp
(ACdr) < (ACsr) RCPY sr,dr
{ACdr) < (ACsr), (ACsr) < (ACdr) RXCH srdr
(STK) < (ACr), (ACr) < (STK) XCHRS r

(ACr) < (FR) CFR r

(FR) < (ACr) CRF r

(STK) < (ACr) PUSH r

(ACr) < (STK) PULL r

(STK} < (FR) PUSHF

(FR) < (STK) PULLF

{ACdr) < (ACdr) + (ACsr), OV, CY RADD sr,dr
(ACdr) < (ACdr) + (ACst) + (CY), OV, CY RADC srdr
(ACdr) < (ACdr) A (ACsr) RAND sr,dr
(ACdr) < (ACdr) % (ACsr) RXOR sr,dr
(ACr) < ~ {(ACr) +disp CAl r.disp
(ACr) < (ACr) shifted left n places, w/wo link SHL r,n
(ACr) < (ACr) shifted right n places, w/wo link SHR L
(ACr) < (ACr) rotated left n places, w/wo link ROL r,nt
(ACr) + (ACr) rotated right n places, w/wo link ROR rnf

Halt HALT

(FR) g < 1 SFLG fo

(FR) g < 1,(FR) ¢ < 0 PFLG fc

verter.

Instruction Format

01OOI ccl disp ]
000110] xr | disp |
100110

000101

100101
100000J/00] disp
011111

1111 | x| disp
100111

101110

100011

101011

o11110] r ]

1100 r xd disp
1701000

1101 r

101100

101111

701010 x| disp ]
701001

1110 r

100100

100010

010100 r ] diso ]
010111 drlsrlnotused4|
011011

000111 r ]| notused |
000001

000010

011000

011001

000011 not used ]
000100

011010 dr[srﬁotuseﬂ
011101

010101

010110

011100 r [ disp |
001010 ] n | o]
001011

001000

001001

000000 not used |
001 1] f 1] notused]
0011 fc |0

When the conversion is complete the data are
read, processed, and checked against alarm limits. Critical
deviations from normal operating conditions are detected
and alarms are sent to the control/acknowledgment ter-
minal. The PACE CPU at the terminal formats and routes
the alarm data to an operators display panel. The operator
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Figure 4—(Application example). PACE as a plant monitor and terminal
controller

on duty observes the detected alarm and takes the
necessary steps to correct the problem. Some alarms can
be detected directly by limit switches, continuity breakage
or by manually pressing a button. Examples include
floods, fire, burglary, or accident alarms. These “crisis”
conditions require immediate attention and would
therefore be implanted as prioritized vector interrupts in
the PACE monitor. Fast response and immediate operator
notification are guaranteed by the sounding of an annun-
ciator horn at the control terminal.

In addition to the above monitoring chores, one or more
simple control functions could be provided. For automatic
light control, shown in the example, a real time clock
generates interrupt signals at fixed preset intervals. The
processor recognizes the time of each interrupt and, if ap-
propriate, dims the lights or turns them on or off. Light
control commands are facilitated through the four user
flags on the chip. This function would conserve energy by
providing efficient allocation of electricity. Temperature
control of the building by regulating heaters and air condi-

tioners is another possible function that might be imple-
mented as a dedicated application.

The operator at the central control terminal can select
various status conditions to be displayed or he can change
alarm limits through a set of BCD thumbwheels. Pushbut-
tons are used as interrupts to get the processors attention.
A tape cassette or printer might be provided for record
keeping or hard copy outputs. The PACE terminal con-
troller works primarily with 8-bit character data for the
supporting peripherals, but it can process 16-bit data from
the thumbwheels or the -monitor controller. This unique
feature (selectable 8 or 16-bit data processing) can be used
to efficiently adapt PACE to the function required.
Auxiliary functions like trend analysis or signal averaging,
could be provided by either PACE microprocessor, de-
pending on the respective data load. Note also that binary
and BCD data (thumbwheels and LED’s) are processed
directly.

CONCLUSION

The PSMS is a solution to a complex problem that is com-
mon to all industries. This application offers PACE as a
system solution to a multitude of specific tasks. These
tasks would ordinarily be done manually, with reduced ef-
ficiency, or electrically, with increased complexity and
cost. The interfacing simplicity, benefits and low cost of
LSI, and the convenience of working with 16-bits promise
to make PACE a universal tool in many existing and new
applications for microprocessors.
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Tools and techniques of microprocessor data

transfer

by GARY SAWYER

Motorola
Phoenix, Arizona

INTRODUCTION

This paper discusses I/O transfer from four different view-
points. The first, “I/O Data Transfer Techniques”, contrasts
the two basic methods of I/0 data movement. Having dis-
cussed the movement of data, “I/O control” focuses in on
how the data movement is governed. “I/O Interface Hard-
ware” takes a closer look at specific hardware that may be
used to interface to the MPU. Finally, “An Example of
I/O Transfer” concludes the discussion showing the soft-
ware and hardware required in an actual transfer.

I/0 DATA TRANSFER TECHNIQUES

The I/0 capability of a microprocessor is a key standard
of measure. As microprocessors mature, more techniques are
becoming available at better throughput speeds. It, there-
fore, becomes useful to put these techniques in perspective
by categorizing how data is shipped through the micro-
processor system. The first, and most commonly used,
technique is to ship data through the microprocessor (MPU)
wherein the MPU acts as a data funnel to the outside world.
The second technique, direct memory access (DMA),
transfers data directly between memory and the outside
world circumventing the MPU. Following is a descrip-
tion of each with a discussion of associated vices and virtues.

The first technique considered moves data through the
system via the MPU under program control. The MPU then
becomes the focus for data movement between the peripheral
and memory. Figure 1 shows, at a block diagram level, where
data is moving during an I/O transfer. It is comprised of
four basic hardware blocks: the MPU, memory, I/O inter-
face, and a peripheral. If, for example, data is to be trans-
ferred from the peripheral to the system memory, the first
link in the chain is the I/0 interface. The characteristics of
this interface are, as expected, a function of (1) the data and
control requirements of the peripheral, and (2) the processor
used in the system. A discussion of I/O interface hardware
is an important topic and is treated in the section ““Interfacing
to the Microprocessor”’. Once data has been shipped to the
interface, the MPU reads the data from the interface device.
The MPU may now complete the I/0 transfer by storing the
data in the desired memory location. If, on the other hand,
data is transferred from memory to peripheral, the sequence
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of events is reversed; the MPU reads the data from memory
and stores data into the I/O interface for transfer to the
peripheral. Data is, therefore, transferred from block to
block under program control.

Microprocessors available today use two general classes
of instructions to move data: One, use of an Input or Qutput
instruction or, two, a memory reference instruction. When,
for example, the MPU is given an Input or Output instruc-
tion, the microprocessor will issue control signals and address
the desired I/0 interface device. The second class of instruc-
tion to access I/O is memory reference. Here the I/0O inter-
face is assigned a memory address and is accessed during any
instruction that specifies the defined I/0 interface.

Direct memory access is the second alternative to I/0
data transfer. The MPU is circumvented and the data moves
directly between memory and peripheral. Figure 2 is a
representation of how data will move through the system
using DMA techniques. Here, the microprocessor is off the
bus and the DMA interface transfers directly to/from
the memory. This requires the DMA interface to (1) over-

" ride the MPU operation causing it to go into an off (high

impedance) state, and (2) generate memory address and
control signals for the desired data transfer.

Comparison of the two techniques is largely a function of
speed and hardware. DMA, for example, will generally
require more hardware due to the additional control tasks.
On the other side of the coin, DMA is consistently the faster
of the two transfers. Here, the data transfer is normally
limited only by the cycle time of the memory. This feature
becomes valuable when the MPU is not fast enough to handle
transfer under program control. When funneling data through
the MPU, the I/O interface is straightforward, but the
transfer rate is now a function of instruction execution time.
In this case the MPU becomes the limiting factor. The choice,
as usual, is in the hands of the designer. He may require a
fast DMA channel at the expense of hardware, or he may
simplify the interface transferring the work load to software.

1/0 CONTROL

A major aspect of I/O data transfer is that of control.
Where is the I/O transfer initiated? How long does it con-
tinue? Which peripheral is to gain access to the system?
These questions are recurring in virtually every micropro-
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Figure 1—I/0 Transfer through the MPU

cessor based system because of the dynamic nature of opera-
tion. The great strength of a microprocessor is the flexibility
of the program. Programs are more than a list of instructions
commanding a fixed sequence of operations. These programs
can be written to adjust to external events, query peripherals
for service or respond to hardware service requests. The
list is unending, therefore, the question of control could be
answered in a word—software. But hardware certainly
has its place in' control of I/0 transfer. Following is a dis-
cussion of hardware/software control options in context
with “MPU funneled” transfer and DMA transfer.
Consider first the control of I/O transfer when data is
transferred through the MPU as shown in Figure 1. Here
the I/0 transfer may be initiated by either software or under
interrupt control. Interrupts may be issued to the micro-
processor from peripherals (either directly or via the I/0
interface) to inform the MPU of a request for service. When
service is granted, the MPU breaks away from the current
program, saves its status, and begins an interrupt service
routine. At this point, the MPU needs to determine the
source of the interrupt (normally multiple interrupts out-
number the interrupt inputs available at the MPU). This
can be done by either hardware or software. Hardware can

be used to prioritize all interrupts into an 8-bit word for the -

MPU to read or software can poll each I/O interface to
determine where the interrupt originated.

Control options are equally flexible for DMA types of
transfer. Here, the software or the DMA peripheral can
initiate an I/0 transfer. The user may choose to specify the
beginning address and length of transfer with software by
loading “control” words into the DMA circuitry. At the
other extreme, hardware may be the dominant force. The
DMA hardware can conceivably initiate the transfer,
generate addresses, define direction of data flow, and length
of the DMA transfer. Here, again, the designer has hardware/
software options to minimize his system while maximizing
the I/0 transfer.

MICROPROCESSOR

LAY

-1

//
.l
[ OFF

MEMORY : DATA BUS ) ,NTIZ',_V“?ACE : > PERIPHERAL

Figure 2—Direct memory access (DMA) I/0 transfer

I/0 INTERFACE HARDWARE

Transfer through the MPU

A common question asked by microprocessor users is how
to interface between the MPU and the outside world. With
regard to I/O transfer through the MPU, semiconductor
houses are already ahead of the game. Companies such as
Motorola, Rockwell and Intel have a host of interface devices
available now with a promise of more. These devices run
the gamut to anticipate the needs of the user. Some do little
more than act as buffering latches. Others are customized to
specific peripheral devices. A trend is developing toward a
more sophisticated general purpose interface device whereby
the interface may be programmed to assume a user defined
personality.

A notable example of programmable interface devices
available today is the MC6820 peripheral interface adapter
(PIA) offered by Motorola. Figure 3 shows the PIA
between the MPU and peripheral world. Notice that 16
data lines and 4 control lines are available to interface to a
variety of peripherals. Each one of the data signals may be
programmed to act as inputs or outputs in any combination.
A user could, therefore, tie a number of input or output
peripheral devices to a single PIA.

A unique feature of the PIA is the programmable control
segment, of the interface. The four control signals may be
used by the designer to inform either the MPU or peripheral
that an I/O transfer is occurring. If, for example, the periph-
eral transfers data to the MPU via a PIA, a pulse shipped
in parallel to the control input will cause the PIA to generate
an interrupt to the MPU. Should the MPU need to output
data to the peripheral, the data may be stored into the PIA
with a memory reference instruction. The PIA will save and
transfer this data from the MPU data bus onto the peripheral
data bus. The PIA can, for example, be programmed to then
generate a control pulse to the peripheral informing the
peripheral of new data. As a result, a data transfer to a
peripheral with an equivalent ‘‘data present” pulse can be
accomplished with a single STORE instruction by addressing
the appropriate PIA.

MPU
VAN
T _— N /0 CONTROL
r— | ¢ (4)
— PIA PERIPI
— = 6= HERAL
—Y 1/0 DATA

JUR I

DATA Jd'CONTROL
ADDRESS

P

Figure 3—MPU parallel I/0 interface
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A closer view of the PTIA will reveal how an interface
device may be ‘“programmed” by the microprocessor. Figure
4 shows six registers internal to the PIA divided into “A”
and “B” sides. Each side of the PIA contains 8 data signals,
2 control signals, and three 8-bit registers. The user may,
therefore, program peripheral data and control signals by
loading words into respective PIA registers.

Peripheral data signals, PAO-PA7, may, for example, be
programmed as inputs or outputs by loading the “A” data
direction register. Each logic “@” of the data direction
register will then define the respective peripheral data signal
to be an input (the converse is true for a logic “1”). Similarly,
the characteristics of the control signals, CA1 and CA2, are
programmable by loading a word into the “A” control
register. The control lines can be used as an input to the PIA
to generate an MPU interrupt on either a rising or falling
edge (if desired, the control input may also be masked off).
As an output, the control signal may be programmed to act
as a strobe or active level when moving data through the
PIA. The same argument follows for the “B” side of the
PIA. Loading data words into the ‘B’ data direction
register characterizes PB@-PB7. Likewise, the “B” control
register defines how CB1 and CB2 shall react.

DMA iransfer

Design of a DMA interface requires close examination of
the MPU in the system. In a typical direct memory access
configuration the MPU and DMA share the system bus for
control of the memory transfer. When the MPU is executing
instructions the DMA circuitry is effectively off the bus.
When the DMA transfer is initiated the MPU must be
switched off the bus as the DMA interface switches on. The
manner in which the MPU is removed from the bus becomes
a major aspect of the DMA transfer.

A representative example of the mechanics of a DMA
transfer is shown in Figure 5 using the Motorola MC6800
MPU. A number of techniques are available to control the
MC6800 during a DMA transfer—here the Halt signal
provides control over the MPU. The characteristics of the
Halt line are such that, when low, the address, data and read/
write signals go into a three-state condition at completion of

pf————
“A" CONTROL oAl
A DATA e CA2
DIRECTION
DATA “A” DATA @ PAO-PA7
REGISTER
ADDRESS : j
“B” CONTROL ol
CONTROL :: ) [ CB2
“B” DATA
DIRECTION
“B” DATA <LI':|]> PRO—P!
REGISTER BO-PB7

Figure 4—PIA registers
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Figure 5—Direct memory access I/0 transfer

the current instruction. When the Halt is recognized and the
MPU in three-state, the MPU will bring the Bus Available
signal high. The Halt and Bus Available signals of the
MC6800 therefore become convenient DMA controls. Refer-
ring to Figure 5, the DMA Request initiates the transfer. De-
pending upon when the request is made with respect to the
current instruction, the MPU will respond with a DMA
Acknowledge signal within 2-14 usec. When the Acknowledge
is seen, the DMA interface is then free to take over the bus.
At this time, the DMA circuitry has complete control over
the memory transfer until the DMA Request returns to a
high state. This requires the DMA circuitry to formulate
desired addresses, to tie into the data bus, and generate the
necessary control (R/W). When the DMA transfer is
completed the interfaze switches off the bus and DMA

Request returns to an inactive high state. With Halt inactive

the MPU will then switch back onto the bus and continue
program execution.
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Figure 6—Interfacing to a keyboard and display
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AN EXAMPLE OF I/O TRANSFER

Operation of an I/O transfer is best demonstrated by
example. Consider the system seen in Figure 6 showing the
Motorola PIA interfaced to a keyboard and display. The
“A” side of the PIA is tied to the keyboard representing
inputs to the MPU. Conversely, the “B” side will be used to
output data to a 16 character display. The keyboard inter-
face is comprised of (1) eight data lines tied directly to PIA
lines PAO-PA7, and (2) a keyboard strobe to CA1l to inform
the MPU of new input data. The display interface uses
PB0-PB7 to transfer both data and control functions
(backspace and clear). The control lines are configured into
a handshake mode with CB2 generating a ‘“data present”
signal when new data is displayed. CB1 then acknowledges
with “data taken’” to complete the handshake loop.

The MPU/PIA interface of Figure 6 shows data, address,
and interrupt signals. An important point to mention is that
the PIA is assigned a memory area by virtue of the address
lines into the device. The chip select inputs (CS0, CS1, and
CS2) are used to enable the PIA and the register select
inputs (RSO, RS1) specify registers within the PIA. The
MPU may, therefore, access the PIA registers with the
following addresses:

Address (HEX) PIA Register

8000 “A” data direction (A’ control regis-
ter bit 2=0)
“A” data (“A” control regis-
ter bit 2=1)
8001 “A” Control
8002 “B” data direction (B’ control regis-
ter bit 2=0)
“B” data (“B” control regis-
ter bit 2=1)
8003 “B” control

Having established the general scenario, the discussion
continues with programming examples of the PIA initializa-
tion, keyboard input and display output using the Motorola
M6800 instruction set.

Initralization

As mentioned previously, the PIA is entirely program-
mable. The interface seen in Figure 6 requires the following
definition of PIA signals:

(1) PAO-PA7 are inputs.

(2) The PIA is to generate an interrupt to the MPU on
the rising edge (0—1) of the CAl input.

(3) CA2is unused.

(4) PBO-PB7 are outputs.

(56) The PIA is to generate an interrupt to the MPU on a
falling edge (1—0) of the CB1 input.

(6) When data is written into PTA (from MPU) to the
display, a CB2 strobe occurs.

Programming the PIA interface becomes a series of LOAD
and STORE instructions. LOAD brings the desired data
pattern into the MPU and STORE ships the word to the
addressed PIA registers. The initialization program of the
PIA then becomes the following:

Program* Comments
COM $8002** Complement  location 8002—defines
PB0-PB7 as outputs

LDAA FHOTHH* Load accumulator A with a value of C7

STAA $8001 Store accumulator A in location 8001—
defines CA1 and CA2 characteristics

LDAA #$ED Load accumulator B with a value of ED

STAA  $8003 Store accumulator B in location 8003—

defines CB1 and CB2 characteristics

* All registers are cleared at power-on reset.
** § denotes hexadecimal.
**% & denotes immediate addressing in which the subse-
quent character is data instead of address.

Input data transfer

Having initialized the PIA, data is moved from the
peripheral to the memory by a sequence of LOAD and
STORE instructions. But, the movement of data is only half
the story, control of the transfer must also be considered. In
the example of Figure 6, the system is assumed to be under
interrupt control. When an interrupt occurs the MPU jumps
to a defined area of memory to begin the interrupt service
program. The service program must first determine the origin
of the interrupt by polling the PIAs. The PIA has bit posi-
tions reserved in the control registers (CRA7, CRA6, CRB7,
CRB6) that the MPU may read to ascertain the source of the
interrupt. In our example, if the keyboard ‘strobes” the
PIA, an interrupt is sent to the MPU and bit 7 is set high
in the “A’ control register (CRA7). Likewise, a ‘“‘data taken”
interrupt from the display will set bit 7 of the “B” control
register (CRB7). The “polling” routine therefore becomes:

LDAA $8001 Load contents of ““A” control register.
BMI KEYBRD If CRA7=1, go to keyboard routine.
LDAA $8003 Load contents of ‘B’ control register.
BMI DISPLY  If CRB7=1, go to display routine.

The “polling” sequence of the interrupt service program
is nothing more than a read of the control register followed
by a conditional branch. If the interrupt bits are set the
program branches to the appropriate peripheral routine.
If the condition is not met, the “polling” routine: continues
inspection of PIAs. Should additional peripherals be added
to the system the software adjusts simply by continuing the
poll. Also note the interrupt priority is built into the software
by the polling sequence. The order in which the peripherals
are polled implicitly defines the priority.

As another alternative, software can poll all peripherals,
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evaluate the peripherals requesting service, then branch to
the desired routine. In this manner the MPU acquires full
visibility of outstanding service requests. Based upon the
combination of requests the program can then decide which
service routine to enter. The important point to remember
is the flexibility of I/O transfer under software control.

Having determined the source of the interrupt, the
program branches to the desired peripheral routine. If,
for example, the keyboard service routine is entered the MPU
performs an input data transfer. A single data transfer to
memory may be accomplished in two instructions:

LDAA $8000 Load keyboard data.
STAA $0100 Save in memory location 0100.

When the MPU reads the PIA data, the PIA will auto-
matically reset the corresponding control bits (i.e., bits
CRAY7 and CRAG are cleared when reading “A” data), and
clear the interrupt to the MPU. The interrupt service routine
is then completed with a return from interrupt (RTI)
instruction. The cycle is complete: the interrupt was acknowl-
edged, PIAs polled for service, selected peripheral serviced,
interrupt conditions reset, and the MPU returned to its
operating program.

Output data transfer

Data may be transferred from memory to I/0 under con-
trol similar to data input. Transfer may be initiated by the
software or hardware. In this case, the program initiates the
data transfer and the display responds with a ‘“data taken”
pulse to signify when another character may be sent. The
actual data transfer can be done in two instructions:

LDAA $0100 Load data from memory location 0100.
STAA $3002 Store data into location 8002.

The STAA instruction will load new data into the PIA
“B” data register. The PIA will then transfer the data
and a ‘“‘data present’” pulse to the display.

Block transfer

The I/0 transfer demonstrated in the example shows only
a single data transfer to give the reader a feel for data move-
ment under program control. To transfer multiple words
or large blocks of data between the peripheral and memory,
the program requires more management, but the technique
remains the same. The programming ease and speed of I/0
data transfer becomes largely a function of the MPU under
use. MPU features such as available addressing modes and
instruction set become important tools for efficient transfer.

As an example of -multiple data transfer, the Motorola
MC6800 coupled with the PIA can perform an input operation

under full program control as shown below:

Time
RDLOOP LDAA $8001 " Read PIA control 4usec
Register
BPL RDLOOP Branch to RDLOOP  4usec
if Bit 7 is plus (0)
LDAA $8000 Read PIA data 4pusec

STAA OFFSET,X Store data at address 6usec

defined by [index

reg + offset ]
DEX Decrement index 4usec
register
Branch to RDLOOP  4usec
if not equal to zero

Total 26usec

BNE RDLOOP

The first two instructions loop until a request for transfer
is received from the peripheral. The request is made to the
control input, CAl of the PIA which then sets CRA7 of the
control registers. The LDAA/BPL instructions monitor the
control register inspecting the most significant bit (CRAT).
The program remains in this two instruction RDLOOP
until CRAY is set to a logic 1. When set, the program breaks
out of the loop to begin the data transfer. The MPU reads
the data from the peripheral at PIA address 8000 hex. When
the data is read into the MPU, the PIA automatically
resets the CRA7 bit to zero. The data is then stored into
memory using the MC6800 indexed addressing mode. Here the
OFFSET (byte 2 of the instruction) is added to a 16-bit
index register internal to the MPU. The resulting 16-bit
word is used to address the destination of the data. The next
instruction, DEX, decrements the index register in prepara-
tion for the next I/0 transfer. The BNE instruction condi-
tionally branches back to the RDLOOP until the index
register is decremented to zero. Once back in the RDLOOP
the program eycles waiting for another peripheral service
request. When the request is made, CRA7 is set and the
program enters the next byte into memory. The cycle is
continued until the result of the DEX instrumentation is
zero. When the index register is decremented to zero the
transfer is complete and the routine is exited.

This multiple word transfer through the MPU is a good
contrast to the interrupt controlled transfer shown in the
keyboard example. Here the interrupts are disabled and the
program polls the peripheral for service via the PIA. Notice
that the peripheral need not be synchronous with the program
due to the RDLOOP. The program can complete the full
cycle in 26usec. If the peripheral is not prepared for another
transfer the program will simply cycle in RDLOOP until a
peripheral request is made. Also, note that the length of
transfer and location of data storage are varied by presetting
the index register prior to entry into the routine. The resulting
1/0 transfer can move a block of data from a peripheral into
contiguous memory locations at up to a 38.5K byte rate.
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SUMMARY

In microprocessor based systems today, data movement is
commonly an important aspect of system operation. As new
applications evolve, users will be evaluating microprocessors
with a critical eye toward I/O transfer. The number of
instructions is less important than the nature of the instruc-

tion and usable addressing modes. How quick can the MPU
respond to a peripheral interrupt and how is the interrupt
managed? What is available from the vendor in the way of
interface devices? The list of questions extends in proportion
to the needs of the user. As semiconductor houses continue
to move into the second and third generation microprocessors,
the answers will be easier and faster.
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MICROPROCESSORS—NO LONGER A NOVELTY

Since the 1971 introduction of the first commercial micro-
processor by INTEL, almost every major semiconductor
manufacturer has introduced or has under development a
“microprocessor” type of device. Microprocessors will be
available in most of the existing and future high volume
technologies, including PMOS, NMOS, CMOS, Bipolar
and I2ZL. Microprocessor chips range from 2 or 4 bit slices
for Bipolar devices, through 4, 8 and even 16 bit MOS
microprocessors on single chips.

Considerable debate is still raging regarding the subtle
distinctions between calculator chips, microprocessors,
and multi-LSI chip minicomputers. Suffice it to say, that
whichever of these three classes of devices one is contem-
plating using in a given application, many of the major
design tradeoffs and system advantages (programmability,
flexibility, maintenance, and cost) apply equally well.
Microprocessors are no longer a novelty, and the list of
products that employ these devices is growing longer every
day. It has become almost impossible to pick up a trade
journal without coming across several new developments
relating to microprocessors. For these reasons, it was felt
appropriate to organize a session dedicated not to
hypothetical applications and paper designs, but to real
world systems that are currently being implemented.
Several articlest?* have recently explored the vigorously
developing microprocessor applications areas.

OVERVIEW OF FORMAL PAPERS

The first paper of this session, entitled “The Synergistic
Combination of an Oscilloscope and a Microprocessor,” by
Walter A. Fischer of the Hewlett-Packard Company, ex-
plores the use of microprocessors in instrumentation ap-
plications. The HP1722A oscilloscope is not the first com-
mercial instrument to utilize a microprocessor, but it
represents a major advance to an instrument that has
traditionally been the engineer’s right hand, and whose
basic operation has not changed in many years. As such it
typifies what will undoubtedly be a new instrumentation
design philosophy.

The second paper of the session entitled ‘“Development
of a Portable Computer for Industrial Microcomputer
Systems,” by Dr. Leroy H. Anderson of the Warner and
Swasey Company, covers potential applications of micro-
processors in numerical and process control, and defines a
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unique English-like process control language (PCL), along
with a portable PCL compiler highly suited to process con-
trol applications. The development of the PCL language
may point to a novel approach to microprocessor software
development in which the use of high level languages tai-
lored to specific applications will greatly simplify the
development of specific system designs.

The sessions’ third paper, “Microprocessors in CRT
Terminals,” by John Whiting and Sandy Newman of
Beehive Medical Electronics, covers the broad area of
microprocessor applications to CRT terminals. Tradeoffs
regarding both the use and choice of microprocessors are
discussed. An excellent perspective of what micro-
processors can and cannot do in a CRT environment is
presented. The trials and tribulations associated with
program development and debugging are discussed openly
and candidly, and several useful debugging tools are
detailed.

The final formal paper of the session, entitled “Design-
ing an Application Oriented Terminal,” by J. P. Kohli of
the NCR Corporation,* describes the Honeywell 7340
bank teller terminal. The 7340 is a microprocessor-based
application oriented terminal for the banking industry,
and as such, illustrates a typical terminal application
where local intelligence facilitates the processing of
transactions. Many of the decisions relating to real time
processing, customer programming and system architec-
ture are succinctly described.

MICROPROCESSOR-BASED DATA
COMMUNICATIONS SYSTEMS

The one major microprocessor application area that has
not been adequately covered by the four formal presenta-
tions, is that of data communications. Considerable
development work is ongoing in the use of microprocessors
in narrowband store-and-forward communications
systems*® in intelligent repeaters associated with digital
communications links, and in various switching and moni-
toring applications where the power and cost of minicom-
puters is not warranted.

Prior to the panel discussion, Dale Walls, of Collins
Radio, will present a brief overview of this burgeoning
area of microprocessor applications.

* Mr. Kohli was with Honeywell Information Systems, Inc. at the time
this paper was written.
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RECENT DEVELOPMENTS

The trade journals abound with examples of recent
microprocessor-based systems. From assembly line torque
monitoring in Detroit (Intel 8080), to the intelligent os-
cilloscope (HP1722A), to traffic light control (Intel 8008),
to a large number of microprocessor-based data terminals
(T1742, HP2640A, Beehive Medical Electronics, etc.), and
finally to arcade/restaurant TV games, microprocessors
are increasingly becoming a part of our daily lives.

The next step beyond a microprocessor-based system is
one employing several processors. Several such products
already exist. Financial Data Sciences, Inc. Model 108
teller terminal consists of three MCS-4 cpu’s. One cpu con-
trols the printer, another controls the keyboard and
performs all the required calculations, and another
provides stand-alone processing should the communica-
tions link to the main cpu fail. Another example is the OP-
1 CRT terminal from Ontel. It sports an Intel 8008 as the
central processor and uses two other (TTL MSI)
processors to control the I/0 and keyboard/display opera-
tions. These multi-microprocessor systems are but a
preview of what will surely come.

FUTURE APPLICATIONS

As microprocessors evolve, and price/performance
improves, many new applications areas will emerge. The
upper end of the microprocessor performance spectrum
will be used to implement many systems currently
employing minis, and may also be used in the develop-
ment of programmable high performance peripheral inter-
faces. The use of medium range microprocessors will ac-
celerate in the various industrial applications areas
typified by the applications presented in this session.
Potentially, the real dollar growth in applications will oc-
cur in the consumer® and automotive areas,” where the
lower end of the microprocessor performance spectrum

should prove more than adequate to satisfy the require-
ments of the bulk of the systems envisioned.

The consumer and automotive computer markets are
extremely price sensitive and do not require excessively
high performance. Thus, in order to be successful in this
area it is incumbent on the semiconductor manufacturers
to introduce new microprocessor products which achieve a
given performance level, but do so at minimum system
cost. Price performance must be improved, but this should
be achieved by lowering cost for a given performance level,
rather than by increasing performance for a given price
level!

Finally, before closing, the following observation should
be made. Even though the microprocessor is the key to the
development of many new low cost intelligent systems, it
is the development of compatible low cost peripherals
(e.g., floppy discs) and LSI merories (static 1K RAM’s
are approaching 0.4 cents/bit and dynamic 4K RAM’s are
approaching 0.3 cents/bit at the chip level) that is making
this system revolution possible. Recent developments such
as the modem-on-a-chip (Motorola MC6860), point to the
availability of a large variety of standard LSI micro-
processor interface, which can only help to accelerate this
revolution.
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The synergistic combination of an oscilloscope

and a microprocessor

by WALTER A. FISCHER

Heuwlett-Packard Company
Colorado Springs, Colorado

INTRODUCTION
Oscilloscopes— What they are and what they do

An oscilloscope presents a graphical display of am-
plitude vs. time. The amplitude is usually voltage. It
allows the electrical designer to see what is occurring in a
circuit. The CRT display was originally a qualitative one
and provided the designer with an idea of what was occur-
ring. Through improvements in vertical amplifier design,
sweep linearity, and CRT performance, a calibrated grat-
icule was added to the CRT face and quantitative
measurements could be made. These improvements
continued and resulted in measurement accuracies in the
2 percent to 3 percent category, with some timing
measurements reaching the 1 percent area. These accu-
racies represent the state-of-the-art performance with
traditional techniques. A new set of techniques was. be-
coming an obvious need in order to make major improve-
ments in the measurement capabilities of oscilloscopes.

Where major improvements in measurements are needed

The two main categories where improvements are
needed are measurement accuracy and ease of use.

Measurement accuracy

Oscilloscopes measure voltage and time related func-
tions; such as, peak-to-peak voltage, percent overshoot,
periods, propagation delay, etc. Timing measurement ac-
curacy is the area where most customers have requested
improvements. Specifically, the area of propagation delay.
The reason is that a major part of electrical design tasks
today are oriented to digital designs. One of the most im-
portant requirements for proper digital circuit perfor-
mance is that information arrive at the various nodes in
the system at a precise time. Even if the amplitude is in
error, or contains overshoot, as long as the signal is timed
properly at the logic threshold level, a good signal will be
recorded. If, the threshold level arrives at the wrong time,
this can cause major failures in system performance. It is
necessary to measure precisely, the relative time delays of
signals arriving at a point through different paths. Pulse
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width, period, transition times, and clock rate must also
be measured.

The oscilloscope is still the best form of instrumentation
to measure instantaneous voltages. It is also used to
measure dc voltages as well as percent overshoots, and
logic threshold levels. These measurements can now be
made with oscilloscopes but not with any amount of ease
and are subject to considerable human error. Such things
as counting graticule lines and multiplying by the
sensitivity of the CRT take time and are subject to human
€error.

Ease of use

One of the features of an oscilloscope is its versatility in
making a large variety of measurements. This versatility
has always required a large number of front-panel con-
trols. This is its biggest problem. Most of these controls
are manual, not only in function but also in their ability to
allow the operator to make measurements, therefore it re-
quires a great deal of thought on the part of the operator
just to use the scope. It is possible on most oscilloscopes
through a combination of controls to achieve completely
useless modes. Even more of a problem is the fact that
gross measurement errors can occur when the oscilloscope
is in any of the “uncal’ modes. )

These are just a few areas where major improvements in
ease of use can be made.

A SOLUTION TO THE MEASUREMENT
ACCURACY AND EASE-OF-USE PROBLEM

The newly introduced HP Model 1722A is a synergistic
combination of an oscilloscope and a microprocessor and
makes major contributions in measurement accuracy and
ease of use. It is basically a 275 MHz high-performance os-
cilloscope with up to 1 nanosecond per cm resolution in
the time base.

The major contribution is timing measurement ac-
curacy. Two things contribute to this, they are dual-delay
sweep* and microprocessor control.

Dual-delay sweep is a technique that allows the operator

* Patent applied for.
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Figure 1—A comparison of the accuracy of time interval measurements

of the HP Model 1722A and a conventional oscilloscope (a) Error curves

for time intervals from 1 ns to 500 ns for (1) Conventional scope using

differential delay techniques; (2) 1722A specification. Curves derived

from optimum main time base settings for this measurement range. (b)

Error curves for time intervals in terms of main time base divisions (100
ns/div to 20 ms/ div)

to see, simultaneously, both the start and stop peints of
the time interval being measured whether it be period,
pulse width, propagation delay, etc. This automatically
eliminates the CRT as well as vertical or horizontal am-
plifier drift (or both) as sources of error.

The microprocessor adds an order of magnitude (more
accuracy) to the standard oscilloscope by providing
greater resolution and readability than had previously
been possible. Specifically, better than 1 percent measure-
ments can be made on time intervals as small as 30 nano-
seconds or 4 percent of full scale. Figure 1 shows a com-
parison of accuracy in graphical form of the Model 1722A
and a high-quality standard oscilloscope of equivalent
bandwidth.

The microprocessor also presents direct digital readout
of all measurements. Table I lists the measurement set of
the Model 1722A.

The gross measurement errors and useless modes pre-
viously referred to are remedied by the microprocessor.
The Model 1722A monitors various front-panel controls
and, when necessary, prevents incorrect measurements
from being made. For example, when making a timing
measurement, if the sweep is set to the “uncal” mode, the
microprocessor senses this and sets the LED readout to
(.0) and eliminates the stop marker of the dual-delayed

sweep markers. In the vertical section, when the vernier is
placed in the “uncal” mode, the instrument automatically
goes into the percentage measuring mode.

These are just a few of the advantages of using a micro-
processor in instrumentation.

WHY A MICROPROCESSOR INSTEAD OF
COMBINATIONAL LOGIC?

There is no clear-cut choice. There are some advantages
and disadvantages to each of these approaches. Combina-
tional logic, because it is traditional, is often chosen when
another approach should be considered. When many func-
tions are required a large number of components are

TABLE I—HP Model 1722A Measurement Set
I. Time Interval
A. Period

B. Transition times

C. Propagation delay

II. 1/Time
A. Clock rate

B. Data rate

lll. DC volts
A. Average voltage

B. Direct difference voltage

IV. Instantaneous volts
A. Peak-to-peak

B. Threshold voltage
V. Percent readout
A. Percent overshoot
B. Percent transition times

C. Identifying 50% points on pulses
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necessary. This can lead to power and heat problems. The
major advantages of combinational logic for small systems
are knowledge and availability of components. Most
electrical designers feel comfortable with this approach be-
cause they have used it traditionally. If only a few func-
tions are required, combinational logic can be the best
choice.

The microprocessor approach, however, can make many
functions available using fewer components. This usually
results in higher reliability and lower power consumption.
The major advantage of the microprocessor approach is its
ability to perform mathematical operations. Many of the
algorithms used by the Model 1722A require the use of
mathematics (refer to the section on algorithms). Its major
drawback is non-familiarity. The average electrical
designer has little or no experience in programming at the
assembly level and therefore tends to avoid it. In the past,
it has been difficult to justify the training costs in light of
the profit motivation of industry. This situation seems to
be improving, however, as it becomes obvious that micro-
processor based control systems can be inexpensive, re-
liable, and add measurement capability never before
available.

At this point, a case history might prove interesting.

The curve in Figure 2 gives an indication of the decision
to be made. With combinational logic, the cost increases in
a somewhat linear fashion, depending on the number and
complexity of the functions desired. With the micro-
processor, there is a minimum amount of hardware
necessary even if only one function is performed. As the
number of functions increase, the cost increases at a rate
far less than that of combinational logic. The steps indi-
cate when a new block of memory needs to be added. This
is because memory cannot be bought one word at a time
but must be bought in blocks; e.g., 256 X 8 bits. An
interesting area on these curves is the intersection. It is
here that the microprocessor approach becomes obviously
less costly than the combinational logic approach.

In the case of the HP Model 1722A, this occurred in the
display function. One of the requirements for this instru-
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Figure 2—A comparison of the costs involved between combinational
logic and u processor based systems
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Figure 3—Block diagram of the HP Model 1722A u processor based
control system

ment was that the LED display present answers in a very
special form of scientific notation; namely that the ex-
ponent could take on only values which were multiples of
the number three. The time interval always can be read
directly in s (0), ms (—3), us(—6) or ns (—9). This is
shown in Figure 4 and Table II. The cost of doing this
with- combinational logic was high—therefore, the micro-
processor approach was considered and found to reduce
cost and package count, with far less power required. The
choice of which approach to use must be made carefully.
You may be surprised at the small number of functions it
takes to justify a microprocessor-based system.

BLOCK DIAGRAM OF THE MICROPROCESSOR-
BASED SYSTEM USED IN THE HP MODEL
1722A

The technique employed in the Model 1722A was to use
the microprocessor LSI circuits from the HP-35 calculator
with a unique set of ROM’s programmed to perform the
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TABLE II—Time Base Encoder Program Listing
ROM

ROM ROM Subroutine

Address Code Address Labels Program Statement
L1006: o1 011 . LSCA4 LOAD CONSTANT 1
L1007: .1 -1 1 ->L1042 GOTOLSO03

Lt010: L1011 . LSCA5 LOAD CONSTANT 2
L1011: .1 1. 1 ->L1042 GOTOLSO03

L1012: A R . 1 1 ->L1041 LSCA6 GOTOLS02

L1013: 1. 11 . LSCA7 LOAD CONSTANT 1
L1014: .1 .11 .. LSCAS LOAD CONSTANT 2
L1015: .1 01 L 1 ->L1050 GOTOLSO05

L1016: 101011 . LSCA9 LOAD CONSTANTS5
L1017: N 1 ->L1050 GOTOLS05

L1020: 111 L LSCBO LOAD CONSTANT 1
L1021: .1 .11 1 ->L1046 GOTOLS08

L1022: .1 .1 . 1 ->11044 LSCB1 GOTOLS06

L1023: A I 1 ->L1045 LSCB2 GO TOLS07
L1024: 1 1011 .. LRNG1 LOAD CONSTANT9
L1025: ... .. 1 ->L1000 GOTOLRTNO
L1026: .11 11 - LRNG2 LOAD CONSTANT6
L1027: .. .. 1 ->L1000 GO TOLRTNO
L1030: .11 011 .. LRNG3 LOAD CONSTANT3
L1031: 1 - =>L1000 GOTOLRTNO
L1032: . .. 1 ->L1000 LRNG4 GO TOLRTNO
L1033: 1 .11 . LKBD1 8->P

L1034: e e NO OPERATION ‘
L1035: .11 001 KEYS ->ROMADDRESS
L1041: .1 o101 .o LS02 LOAD CONSTANTS
L1042: I R ->11062 LS03 JSBLDP4

L1043: 1010 01 1 ->L1051 LS04 GOTOLKBD2
L1044: .11 1 . LS06 LOAD CONSTANT 2
L1045: A B | 11 .. LS07 LOAD CONSTANTS
L1046: A I I I R | ->L1056 LS08 JSB LDP2

L1047: .1 .1 .1 1 ->L1051 GO TOLKBD2
L1050: .11 A | ->L1060 LS05 JSBLDP3

L1051: . .1 .11 . LKBD2 1->P

L1052: 1 .. . ROMADDRESS ->BUFFER
L1053: .11 01 KEYS ->ROMADDRESS
L1056: 1. 1. A B B LDP2 10->P

L1057: o110 01111 ->L1063 GOTOLDPO
L1060: 1.11 11 L LDP3 11->P

L1061: .11 .11 1 ~->L1063 GOTOLDPO
L1062: 11, A I B LDP4 12->P

L1063: .1 .11 LDPO LOAD CONSTANT2
L1064: 11 RETURN

functions needed to accomplish the measurements listed
in Table 1. With this in mind let us discuss the block dia-
gram of Figure 3.

The primary function of the processor (Arithmetic &
Register and Control & Timing) is to continuously scan
the appropriate front-panel controls and output the proper
signals to both the LED display and to the oscilloscope cir-

cuits. The front-panel controls, therefore, are essentially a
keyboard similar to the keyboard of the HP-35 and as
such their outputs are encoded by the input interface to
present particular memory addresses to C & T. Programs
are stored at these addresses and perform the appropriate
functions, such as, increment, decrement, output to the
display, compute a time, etc.
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The BCD output of A & R is directed to the I/0 control
where two things occur. First, if data are being output, it
converts the data from serial to parallel data and transfers
them to buffer storage. Second, if the front panel controls
are to be scanned, it decodes the outputs from the Processor
and enables the appropriate sections of the front panel;
such as, vertical range, timebase range, etc.

The Buffer Storage and DAC receive data from the I/0
control and provide temporary data storage and conver-
sion to analog levels for the Analog Amplifier assembly.

The Analog Amplifier performs two functions. First, it
supplies the dual-delayed sweep comparators with the
proper dc levels. Second, it accepts the dc level from the
vertical channel, processes this level and provides two
pieces of information for the processor through the Input
Interface. The two pieces are the polarity of the dc level
and whether the level is greater or less than some
reference. If it is greater, the processor increases the
reference until it is within 1LSB of the unknown.
Conversely, if it is less, the processor decreases the
reference until it is within 1LSB of the unknown. In both
cases, it displays the reference level that is now equal to
the unknown.

SERIAL MICROPROCESSOR FOR OSCILLOSCOPE
USE

There are many microprocessors available on the

market; why then, choose the serial microprocessor? One .
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Figure 5—Data output algorithm for A T mode of 1722A

reason was the fact that the HP-35 microprocessor was
available as a high volume, fully documented micro-
processor. Below are additional reasons for this choice.

Display functions

This was one of the major cost justifications for using a
microprocessor. In the HP-35 serial microprocessor the
complete decoder system, compatible with the basic
instruction set, is resident in the LSI arithmetic and
register circuit. A set of bi-polar cathode/anode drivers are
available, and sign and decimal location are also part of
this chip set.

Keyboard scanning

The keyboard scanning circuits are resident in the LSI
and with one keyboard enable, 40 keycode inputs are
possible. Since some of the internal status bits are
available to the software programs, several keyboards can
be overlayed with this approach. In the HP Model 1722A,
for example, there are a total of six keyboards. The
conversion of keycodes to ROM address is done within the
control and timing circuit. Figures 4 and 5 and Tables 11
and III show that the program branches on an externally
generated address; e.g., in Figure 4 at 1.1035.
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ROM
Address

L0002:
L0003:
L0004:
L0005:
L0006:
L0007:
L0010:
L0011:

L0013:

L0024:
L0025:

L0125:
L0126:

LO130:
L0131
L0132:
L0133:
L0134:

L0160:
Lo161:
Lo162:
Lo163:

L0174:
LO175:
LO176:
L0177
L0200:
L0201:
L0202:
L0232:
L0204:
L0205:
1.0206:
L0207:
L0210:
L0211:
Lo212:
L0213:
L0263:
L0264:
L0265:
L0266:

L0372:

L1303:
L1304:
L1305:
L1306:
L1307:
L1310:
L1311:
L1312:
L1313:
L1314:
L1315:
L1316:
L1317:
L1320:

L1373:

-

- -

- d d d b

-k b b

[ S

- b b d e
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1111
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TABLE IIT1—Program Listing of Data Output Algorithm for 1722A

ROM
Code
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"ROM
Subroutine
Address

->L0176
-> L0201

-> L0211
-> L0204

->L130

-> L0132

> 10125
> 10174

-> L0210

-> L0210

-> L0210

-> L0263
-> L0160

-> L0160
-> 10372

-> L1373

-> L1313
-> L1317

-> L1317
-> L1317

-> L1317

-> 11303

Labels

LFST1
LMED1
LZRO1
LSLO1

LINCP

LDECP

LOK

LKBD4

LINCt

LINC3
LINC4

LAEC

LKBD6

LFSTM
LFSTN

LMEDM
LMED2

LSL02

LSLO3:
LMODZ

LMODO

LMODA

LMOD1

LMOD4

LMIN

LMOD2
LMAX

LTB3

Program Statement

GO TO LFSTM
GO TO LMEDM
1->89

GO TO LMODZ
4->P

GO TO LSL02
1->83

GO TO LINC1

GO TO LINC3

JSB LKBD4
GO TO LKBD6

ENCODE INCR/DECR CONTR.
IA KEYCODE

0->84
RETURN
1->83
1->84
RETURN

0->C[xX
A+ C > C[X]

A EXCHANGE C[WP]
RETURN

ENCODE MARKER RATE
IA KEYCODE
1->89
6->P
GO TO LSLO3
1->89
5->P
GO TO LSL03
IF S9#1
THEN GO TO LSL03
1->810
0->89
LOAD CONSTANT 1
7->P
IFS1#1
THEN GO TO
JSB LAEC
DOWN ROTATE
JSB LAEC
GO TO LMODA

LMODO

SELECT ROM 1

0->8 C[X]
IFS4#1

THEN GO TO
A — C -> C[WP]
IF NO CARRY GO TO LTB3
0 -> C[WP]
IF NO CARRY GO TO LTB3
GO TO LTB3
A+ C -> C[WP]
IF NO CARRY GO TO LTB3
0 -> C[WP]
0 — ¢c — 1
8->P
DATA OUTPUT

LMOD2

> CIWP]

GO TO LMOD1
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The connection requirements are minimal with this chip
set since only 13 lines are required for all 40 keycode
inputs.

Large word length

This is one of the key features to the serial micro-
processor. The word length is 56 bits (14 digits) and one
instruction can work on the whole word or a variety of
parts of the word; e.g., exponent only. Therefore, a large
number of control functions as well as data can be output
to the oscilloscope in only one word time, thus resulting in
an efficient transfer of control and data.

BCD arithmetic

This advantage may not be obvious immediately.
However, in an application where decimal information is
the desired output, it means that software manipulation is
very efficient because no code conversions are necessary.
In the Model 1722A, the DAC, described in the block dia-
gram discussion, is a BCD DAC. Therefore when the
manipulation of data is complete, it can be transferred
directly. The increment/decrement algorithm
demonstrates this in Figure 5 and Table I11. Here, the ap-
propriate digit is incremented by 1 and outputted directly
with no further code conversions necessary.

Serial interface

In any system that has limitations on space and weight,
as in instrumentation, any reduction in parts count and/or
cabling is a significant advantage. The serial micro-
processor provides an interface that requires few bus lines
with the ability to provide simple remote storage with shift
registers. The serial I/0O also reduces the hardware re-
quirement.

No RAM required

The serial nature of the chip set allowed shift registers
to be designed into the arithmetic and register circuit.
These are used to store intermediate calculations. In other
microprocessors, RAM is required for this function. Again,
the volume and number of interconnections are minimized
with use of this microprocessor.

Large ROM space available

This is an important feature. In an oscilloscope, there
are many controls on the front panel as well as many
possible measurement modes as we discussed earlier.
Since many of them are interrelated, using one front-panel
control may have implications to others. The availability
of large ROM space allows programs to be written that
take these interrelationships into account.

Instruction set

This is probably the most important consideration.
There is no advantage in having a higher-speed parallel
microprocessor as a controller if the basic instruction set is
limited, and only minor manipulation of data can be
performed. This implies that many word-times would be
required to perform the more complicated functions.

Even though the HP-35 chip set is serial and has a word-
time of 280 us, the instruction set is so powerful that one
instruction can change the entire nature of the next word.
In many cases, less time is required to perform basic func-
tions with the HP-35 microprocessor than with competi-
tive parallel processors. For example, a six-digit add re-
quires one ROM state and takes 280 us. Other price com-
petitive microprocessors require anywhere from 5 to 20
ROM states and can take as long as 800 us.

This instruction set includes a very complete group of
branching instructions which "allows subroutines to be
easily written.

Software and editing

As in any processor-based system, the need to write and
edit software easily is important. The HP-35 micro-
processor compilers are written in such a way that single
step and dynamic debugging are possible.

ALGORITHMS USED IN. THE MODEL 1722A

This section describes in considerable detail three of the
algorithms used in the Model 1722A. These three were
picked to demonstrate the power of the instruction set, the
mathematics, the time base encoding scheme and the ef-
ficiency of the data transfer algorithm. They also
demonstrate the overall efficiency of the use of ROM
states.

Time base encoding

The requirement here is to encode nine time base set-
tings and four exponent values into ROM addresses. This
is easily accomplished since the keyboard scanning tech-
nique implemented in the C & T chip accepts a keycode
entry and uses it as the next address on the IA line (see
Figure 3).

Specifically, when the Model 1722A program reaches
the point where the time base setting needs to be inter-
rogated, an instruction is generated on IS (Figure 3) that is
decoded by the I/0 control. The 1/0 control then enables
that part of the keyboard that is monitoring the time base
switch setting. The input interface (Figure 3) generates a
keycode from which the C & T generates the next address.
The detailed algorithm is shown in Figure 4 and Table I1.

The important point here is that only 33 ROM states are
needed to encode the 9 time base settings and 10 are
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TABLE IV—Program Listing of Math and Display Algorithm, for the Time Interval Mode of the 1722A

ROM
Address

L0160:
Lo161:
LO162:
L0163:

L0267:
Lo270:

L0273:
L0274:
L0275

L0276:
L0277:
L0300:
L0301:
L0302:
L0303:
L0304:
L0305:
L0306:
L0307:
LO310:

L0321:
L0322:
L0323:
L0324:
L0325:
L0326:
L0327:
L0330:
L0331:
L0332:
L0333:
L0334:
L0335:
L0336:
L0337:
L0340:
L0341:
L0342:
L0343:
L0344:
L0345:

L0373:

L1325:

L1326:
L1327:
L1330:
L1331:
L1332:
L1333:
L1334:
L133s:
L1336:
L1337:
L1340:

L1372
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ROM Labels Program Statement
Subroutine

Address

LAEC 1 0->C[X]
A+C->CIX]
AEXCHANGE C[WP]
RETURN

LSLO04 : IFS10#1

->L0273 THENGO TOLSCA0

LSCA0 : 8->P
0->C[WP]
JSBLAEC
0->CI[P]
LSCA2 : 0->CIX]
A+C->A[WP]
CEXCHANGEM
C—1->C[P]
IFCIP1=0
THEN GO TOLSCA3
CEXCHANGE M
GOTOLSCA2
LSCA3 : IFS1#1
THENGOTOLTB4

->L160 LSCA1

->10307
->L0277

->L0325

LNEXP :  SHIFTRIGHT C[X]
0->C[XS]
0—C—1->C[XS]
RETURN

LTB4 : 0->CIS]

IFS2#
THEN GO TOLTBS

->L0374 GOTOLINV3

->L0321 LTBS :  JSBLNEXP
LDISP : 8>P

AEXCHANGE C[S]
AEXCHANGE C[X]
0->CI[S]
0->C[WP]
DISPLAY OFF
BEXCHANGE C[W]
SHIFT LEFT A[M]
SHIFT LEFT A[M]
SHIFTLEFT A{M]
SHIFTLEFT A[M]
LDSP2 : DISPLAY TOGGLE

->L0331

-> L0267 GOTOLSLO4

DOWNROTATE
DOWN ROTATE
DOWNROTATE
NO OPERATION
7->P
0->C[xX]
A+C->CIX]
AEXCHANGE C[WP]
C->A[WP]
LMODS5 . IFC[P]=0

THEN GO TO LMOD6

GOTOLSCAO

->L1341
=>L1372

-> 10373 LSCAO SELECT ROMC
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Figure 6—Mathematics and display output algorithm for the time
interval mode of the 1722A

needed to encode the time base exponent values. This
results in extremely efficient use of ROM states.

These 43 ROM states have encoded and stored the mul-
tipliers, the position of the decimal point, and the ex-
ponent value, in approximately 5 ms.

Data output algorithm

The requirement here is that the increment/decrement
control be encoded, the appropriate corrections be made to
the data, and the data outputed to the DAC (see Figure 3).

Two pieces of information need to be encoded. They are
(1) should the data be increased or decreased, and (2) at
what rate? The first is done starting at address L0125, the
second at L0174. Once this is accomplished the appro-
priate mathematics takes place at address L1306 or L1313
and the new value outputed at L1320. See Figure 5 and
Table III.

Thus, the entire encoding, mathematical manipulation,
and data output is accomplished with 58 ROM states in
approximately 10 ms.

Time internal display algorithm

This algorithm takes the new AT value computed in
Figure 5 and performs the appropriate mathematical scal-
ing determined from the scaling algorithm in Figure 4.
This scaled value is then shifted into the display. See
Figure 6 and Table I'V. ;

The most important thing here is that 5-digit multiplica-
tion (L0277) takes place with 8 ROM states in less than 12
ms.

OTHER CURRENT MICROPROCESSOR
APPLICATIONS IN INSTRUMENTATION

There are many examples of ROM-based control
systems in instrumentation today (see references). Some
of them, such as, the HP Model 1722A! oscilloscope, HP
Model 3380A! Integrator, and the Tektronix DPQ’, use
microprocessor chip-sets found more commonly in hand
held calculators, point-of-sale terminals, etc. The remain-
ing instruments, such as, the HP Model 3490A* voltmeter
and the HP Model 3330A% synthesizer, as well as many
more, use dedicated, ROM-based microcontrollers
designed with off the shelf logic. In either case, the trend
toward ROM-based controllers in instrumentation is
definite.

CONCLUSION

It is becoming obvious in almost all forms of electrical
design that the microprocessor can be an invaluable asset,
as it allows “smart” circuits to be developed. The HP
Model 1722A is one example of this. The microprocessor
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will provide the basis for many exciting designs in the fu-
ture. We at Hewlett-Packard are dedicated to solving cus-
tomer measurement needs and the microprocessor will
play a large role in this.
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Development of a portable compiler for
industrial microcomputer systems

by LEROY H. ANDERSON

The Warner & Swasey Company
Cleveland, Ohio

WHAT ARE INDUSTRIAL MICROCOMPUTER
SYSTEMS?

The development of the chip microprocessor in 1971 has
enabled a revolution in the use of stored-program logic and
data handling (the microcomputer) in industrial control
applications not heretofore seriously considered.

According to a report on the Industrial Microcomputer
Market,” published by the New York firm of Frost and
Sullivan, “Microcomputers promise to be the fractional
horsepower motor of the computer world. The market for
them in industrial applications will explode from 7.9
million dollars in 1973 to 140 million in 1977 and 880
million by 1983.” The Industrial Microcomputer System
represents the next stage of development to the
designer/user of industrial control equipment.

Microprocessors are general purpose digital circuits
which can be programmed (with the addition of memory)
for a particular users’ requirements. Thus a microcom-
puter based system can more easily be changed or
updated than an equivalent hardwired logic system as well
as being able to perform arithmetic, logic and communica-
tion functions.

The Industrial Microcomputer System is capable of
many of the same arithmetic, control and computational
functions as a minicomputer, but at a fraction of the cost.
The major differences between a microcomputer and a
minicomputer based dedicated industrial control system
are the cost, and the small physical size, the lower power
drain and slower operating speed of the microcomputer. In
addition, the mini may have a greater memory expansion
capability.

However, in many dedicated industrial control applica-
tions the memory expansion capabilities and speed of the
minicomputer are not necessary. Note that the microcom-
puter is by no means slow. As a matter of fact, the slowest
microcomputer system usually can execute about 90 thou-
sand instructions per second.

We, at Comstar, have been actively involved since 1971
in producing Industrial Microcomputer Systems. A typical
industrial microcomputer system (shown in Figure 1) can
be divided into five basic parts. They are: (1) the micro-
processor and its associated memory, (2) the interface
modules which connect the microcomputer system to
external devices such as limit switches, push buttons or

33

motor starters, (3) the equipment to program the
microcomputer, (4) a program analyzer (shown in Figure
2) which is used to analyze and diagnose the operation of
the microcomputer based system, and (5) a system tester
(shown in Figure 3) which allows the user to check the
microprocessor memory and interface modules to see if
they are functioning properly.

To examine the characteristics of an industrial

‘microcomputer system, let us start with the heart of that

system—the Central Processor Unit (CPU) and its
associated memories. The CPU performs all control and
data processing functions.

Auxiliary to the CPU are the memories—usually both
Random Access Memory (RAM) and Programmable
Read-Only Memory (PROM). The PROM Memory is
used to store the operating microcomputer programs or al-
gorithms. The best type is erasable and electrically non-
volatile. That is, it doesn’t lose data if power is down.

Random Access Memory is used as a buffer storage to
store data (such as intermediate variables used or printed
during the process) which can be used in a volatile envi-
ronment and stored in a volatile type memory. Random
Access Memory may include I/0 lines which may be used
to drive input/output devices such as Light-Emitting-
Diode displays.

Also available is Read/Only type Memory (ROM)
which must be mask programmed and cannot be changed
or altered, and Electrically Alterable Read/Only Memory
(EAROM) which can be written and read back electrically
and is electrically non-volatile.

The basic CPU plus the memories are then tied to some
type of electrical interconnection (bus) system which con-
nects the CPU to the memories and interface modules,
allowing the input/output of information and/or control of
peripheral equipment. Figure 4 illustrates a simple con-
figuration.

Interface modules for an industrial microcomputer
system can be broken down into the following categories;
(1) digital modules, for digital communication with
external devices using signals of 15 volts or less; (2) power
switching modules, for driving power signals of up to 120
volts AC; (3) analog modules, which include analog-to-
digital and digital-to-analog converters; (4) communication
modules; both parallel and synchronous or asynchronous
modules for serial communications, and (5) special
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Figure 1—Typical industrial microcomputer system

modules, including pulse data modules, time-of-day clock,:

real time clock and watchdog timer, etc., all typically used
in an industrial environment.

Peripheral equipment used with industrial microcom-
puter systems must be rugged, low in cost and very simple
so it can have long life operation. The simplest types are
‘push button and L.E.D. indicators. The next level of com-
plexity is keyboards and alpha-numeric displays, usually
gas plasma. At an additional level of complexity you start
getting into small alpha-numeric printers and then into
more sophisticated equipment such as floppy disc, mag-
netic tape cassette or even IBM compatible magnetic tape
systems to store information for later data processing.

In the next few years there will probably be a whole new

array of low cost peripheral equipment for industrial
microcomputer systems because the processing sec-
tion—CPU and memory—are becoming so cost effective
that the user is being forced to analyze where he can ob-
tain peripherals to match the performance and cost of the
electronics.

Thus, to install industrial microcomputer systems you
have to have a full range of memories, interface modules
and peripheral equipment for the application. With this
type of equipment, microcomputers can be used in the in-
dustrial computer control area, controlling test and
assembly machines. They can be used in remote monitor-
ing control for pollution monitoring, public utility control
systems, waste water and monitoring systems. Simple ma-
chine tool control systems are now using microprocessors
and, as the microcomputer becomes more powerful,
probably all machine tool control systems will be
microcomputer based. Many industrial data entry systems
are based on microcomputers which preprocess the data
and forward it to a central computer for sophisticated
management information systems.

In addition, this same microcomputer system can be
used for intersection traffic control, local traffic congestion
control and traffic monitoring.

Also, modern material handling systems are using dis-
tributed microcomputers to control conveyors, packaging
and palletizing equipment, as well as stacker cranes.
Pallet moving equipment such as robot cars are used to
completely automate product movement in a modern
warehouse. Thus, the industrial microcomputers will be
used for almost every control system where you need flexi-
bility and future interconnect capability to large computer
systems. In many cases, microcomputers now can even be
cost effective against standard relay systems.

Figure 5 illustrates a microcomputer based industrial
control system.

Figure 2—Comstar system 4 program analyzer

Figure 3—Comstar system 4 System Tester
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A PROCESS CONTROL LANGUAGE (PCL)

Once an industrial control problem has been defined
and a microcomputer system has been chosen to solve it,
the programming becomes the next most serious problem.
We at Comstar developed a Process Control Language
(PCL) as an efficient method of programming industrial
microcomputer systems. PCL closely resembles beginning
FORTRAN in simplicity and is modeled after relay logic
and common arithmetic and logic commands. This lan-
guage allows a control program to be created in English,
entered into a portable Process Control Compiler via a
simple functional keyboard, and be converted into ma-
chine language which is stored in the Programmable
Read/Only Memory (PROM) by the Compiler. PCL has
reduced software costs by 50 percent or more.

PCL offers maximum capacity and flexibility for the
professional programmer, but the non-programmer finds it
easy to use and understand. PCL allows a Process
Engineer to easily relay his program by way of the English
language into the compiler and to create control al-
gorithms stored in non-volatile PROM memory. This is an
application oriented language and the unexperienced
process engineer is able to quickly learn how to use it be-
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Figure 4—Simple Comstar microcomputer configuration

Figure 5—Microcomputer-based industrial control system

cause it’s conversational and relates directly to relay lad-
der charts and ladder diagrams and has Boolean algebra
logic functions. The language also has bit memory and
BCD character memory handling capability and it can
store data changes on the inputs and outputs in Random
Access Memory.

Freed from repetitious subroutine programming and
confusing terminology, the Process Engineer can
concentrate on using a repertoire of problem-oriented
instructions that are designed specifically for the control
project.

The PCL language provides uncommon flexibility. If a
more efficient machine or system operating procedure is
discovered, the engineer can readily change the control
statements of his system to utilize the new development. If
it’s determined that certain types of system-operation in-
formation are needed, that data can often be retrieved
through program modification. Adept programming can
even allow the engineer to locate and, in some instances,
by-pass malfunctions. And the entire control package can
be made compatible with the user’s present equipment
and, if necessary, communicate with larger systems such
as IBM’s 360 series.

The simplest version of the Process Control Compiler
can program a microcomputer with the following ca-
pacities:

Contact Closure Inputs 128 Contacts

Logic Power Inputs 128 Lines
Logic or Power Outputs 128 Lines
BCD Data Input 144 Digits
BCD Data Output 32 Digits

Bit Memory 192 Bits

Data Memory 256 Characters

Program Memory is expandable to 4096 8-bit words in
256 word increments, using up to 16 256 X8 bit PROM
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chips. Data memory is expandable to 2560 4-bit words in
80 word increments, using up to 32 RAM memory chips.

Key-per-function instructions of the compiler
The Process Control Language offers the programming
funetions listed below and explained in detail in the ap-

pendix. Each is entered into the compiler via a single key.

1.0 Formatting

1.1 IF Causes execution of a statement if the
value called upon by the operand is
true.

1.2 AND  Logical AND of two operands.

1.3 OR Logical OR of two operands.

1.4 THEN Logical transfer of an equation result.

1.5 NOT  Causes operand to be checked for
logical off.
1.6 END Indicates the end of a statement.

1.7 EOC (End of Compile)
Flag to the compiler indicating end of compila-
tion and return to entry and verification mode.

2.0 Status Testing
2.1 Memory XX
Pointer to least significant digit of four BCD
digit register.
2.2 MEM-BIT XX
Pointer to flag bit in bit memory.

3.0 Input
. 3.1 INLXX
Points to logical input line numbered XX.
3.2 IBCD XX NN
Input of BCD data into memory addresses XX
to NN, inclusive.

4.0 Output

41 OUTXX
Points to logical output line numbered XX.

4.2 OFF-OUT XX
Sets logical output line XX off.

4.3 OBCD XX NN
Output of BCD data from memory addresses
XX to NN, inclusive.

5.0 Data

5.1 ADD SS 00 DD
Add operands from 4-BCD-digit memory
registers SS and 0O, store result in memory
register DD.

5.2 SUBSS 00DD
Subtract 4-BCD-digit number in memory
register 00 from the number in register SS and
store result in memory register DD.

5.3 Compare: EQ, GT, LT
Logical output if two operands are equal (EQ),

the first is greater than (GT), or less than (LT)
the second.

54 MOVE XXX YYY
Move the contents of address XXX (1 BCD
digit) to YYY.

5.5 LOAD XXD
Load the value of D into BCD Memory location
XX.

5.6 CLEAR XX
Used to set a logical Memory bit to a zero.

5.7 SET XX
Used to set a logical Memory bit to a one.

6.0 Branching
6.1 GO TO XXX
Transfer control to statement XXX.
6.2 CALL XXX
Transfer control to XXX (the address of a sub-
routine) and save the address of the next oper-
and.

7.0 MACRO Instructions—Macro Instructions use the
call instructions and pass parameters through
memory.

7.1 Timing (0.1 Sec-999.9 Sec).

7.2 Counting (9999 per counter)—Tests multiple
groups of up to 16 INL lines designated as
counter inputs.

7.3 Analog Input—Inputs one of up to 128 channels
of 8 or 4 digit BCD.

7.4 Analog Output—Outputs 3 or 4 digit BCD data
onto one of eight channels.

7.5 Pulse Accumulation—Allows the PCL program
to Reset, Restart, or Read the Pulse Accumula-
tor or Frequency Monitor Module.

7.6 Time of Day Clock—Allows the PCL program
to Read or Set the Time of Day Clock.

7.7 Quadrature Encoder Input—Allows the PCL
program to read the Quadrature Encoder Input
module for use in positioning systems.

In a later section, we will go through a typical applica-
tion where a Process Engineer uses this type of language to
program his industrial microcomputer system.

THE PORTABLE PROCESS CONTROL COMPILER

The process control compiler shown in Figure 6 is a
small portable unit designed for programming the
Comstar 4 Industrial Microcomputer System. The
programming can be accomplished with high reliability
even in field conditions. The PCL instructions are keyed
in via the compiler keyboard, then converted into machine
language and loaded into the PROM chip by the compiler.
The input functions are displayed directly on a 32
character alpha-numeric plasma display, ensuring the user
of a correct input. All keyed-in commands are stored in a
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buffer which can be verified with a key command. Up to
256 bytes of data or instructions can be entered. Data are
compiled and can be dumped into a clean erased PROM
chip. As an option, EIA or TTY outputs are available so
the program can be printed out for future reference. A
compiler can also edit, erase or program PROMS in ma-
chine language.

Future versions of this device will have expanded input
and output capabilities and an external dual magnetic
tape cassette terminal system to provide program storage
and editing capability in the high level language without
going to machine language. The system then functions al-
most like a remote terminal of a large time sharing
system; but it is completely portable, demands no outside
telephone connections and has proven to be extremely re-
liable as a portable programming device.

TYPICAL APPROACH TO USING PCL

The Process Engineer is the cornerstone to the use of
PCL, of course, His first step is a detailed listing of all ma-
chine operations and their relationship to input and
output devices in the system to be controlled or monitored.
Operations must be divided into their basic individual
steps.

Input and Output lines to all appropriate equipment in
the control system are then assigned. A photocell sensor
may require only one data line; whereas, a motor may re-
quire one for “motor forward” and another for “motor
reverse.” Counting and timing operations are then listed,
and counters and timers are assigned.

The engineer then begins to write equations defining
and controlling the operation of the system. Logic equa-
tions must be assigned to each operation listed in the first
step. These equations are then grouped in a logical rela-

Figure 6—Comstar system 4 process control compiler

tionship and then entered into the compiler via the key-
board.

Sometimes it is helpful to the Process Engineer to use
ladder diagrams as a tool when first learning PCL. For
example, suppose he wishes to control a light with a
switch. When the switch is up the light is on and when the
switch is down the light is off. The ladder diagram would
be:

Switch Light
02
o | o ‘ _64\ .
| ~
The program would be:
Equations:

100 1F INL 02 THEN OUT 04 END
10E 1F INL 02 NOT THEN OUT-OFF 04 END
11D GOTO 100 END

11F EOC
Comments:

Statement No. Equation

100 IF SWITCH 02 IS UP THEN
LIGHT 04 IS ON

10D IF SWITCH 02 IS DOWN THEN
LIGHT 04 IS OFF

11D CONTINUE CHECKING SWITCH

11F END OF COMPILE

Consider another example where the problem is to turn on
light 00 if either INL 02 or INL 03 is up. Turn on light 01
if both INL 02 and INL 03 are up.

Ladder Diagram:

INL 02
— :L
| INL 03 @
i
e
1 H
I [
. (1)
\_
Equations:
010 IF INL 02 OR INL 03 THEN OUT
00 END
024 TF INL 02 AND INL 03 THEN OUT
01 END

038 IF INL 02 NOT AND INL 03 NOT
THEN OUT-OFF 00 END

Because we were designing the programming system for
intelligent, but, in most cases completely inexperienced
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personnel, we wanted to make it as fail-safe as possible. In
doing so, we developed the Compiler, the Analyzer, and a
self-teaching Educator to provide a system of checks and
balances that permits attentive persons of virtually any
background to turn out accurate, functional programs
after literally a few hours of instruction.

SUMMARY AND FUTURE

The development of a portable high level language com-
piler to be used with an industrial microcomputer system
represents a major breakthrough in allowing Process
Engineers to implement well designed control systems
quickly and economically. The use of separate units to
program, analyze and test the microcomputer system
allows low cost, uncomplicated design of the actual con-
troller. Because one compiler, analyzer and tester can be
used to support many microcomputer controllers, they can
be designed to be rugged, reliable and easy to use, without
making the use of microcomputer control systems cost pro-
hibitive.

The development of all successful computer systems is
hinged on having well developed, easy to use software such
as Fortran for scientific processing and Cobol for modern
business processing. The Process Control Language that
Comstar Microcomputers developed was based on
Comstar’s experience in installing almost a thousand
microcomputer systems. The system was successfully

developed by relating with Process Engineers in industry -

to determine what the real processing engineering needs
were and what problems the engineer had to solve to suc-
cessfully implement industrial microcomputers. Process
Control Language and the Portable Compiler are some of
the tools Comstar provides to help the Process Engineer
solve those problems.

APPENDIX
Key-per-function instructions of the compiler

1.0 Formatting Instructions

1.1 IF Operand 1
Causes execution of a statement if the value
called upon by operand one is true. Operand 1
may be MEM-BIT XX, Memory XX or INL
XX where XX is a 2 digit hexadecimal number.

1.2 AND Operand 1
The result of the previous operand and the
value called by Operand 1 are logically ANDed
together. Operand 1 may be INL XX or MEM-

- BIT XX where XX is a 2 digit hexadecimal

number.

1.3 OR Operand 1
The value called upon by Operand 1 is logically
ORed with the value of the previous operand.
Operand 1 may be INL XX or MEM-BIT where
XX is a 2 digit hexadecimal number.

2.0

3.0

4.0

1.4

1.5

1.6

1.7

THEN

The THEN Operand allows the logical transfer
of an equation result. For example, in the equa-
tion, 010 IF INL 02 AND INL OE THEN OUT
01 END, output line 01 would be set on if INL
02 and INL OE are both true. If the equation
were false, control would transfer to the next
operand after END.

NOT

The NOT pseudo-mnemonic may be appended
to INL XX to form INL XX NOT or to MEM-
BIT XX to form MEM-BIT XX NOT. The op-
erand is checked for logically off when NOT is
appended.

END

The END instruction must be the last operand
of any IF statement, the last operand of any
program, and must precede a statement number
with the exception of the first statement
number.

EOC

The End of Compile (EOC) instruction is a flag
to the Compiler to indicate the end of the
program segment stored in RAM memory.
When the Compiler encounters an EOC it stops
compiling and returns to the entry and verifica-
tion mode.

Status Testing

2.1 MEMory XX
MEMory XX points to the least significant digit
of a register that is four BCD digits in length.
XX is a 2 digit hexadecimal number in the
range OO-FF.

2.2 MEM-BIT XX
MEM-BIT XX points to a flag bit in bit
memory, number XX. XX is a 2 digit
hexadecimal number in the range OO-BF.

Input

3.1 INLXX
INL XX points to a logical input line numbered
XX (INL 30=input line 30).

3.2 IBCD XX NN
IBCD XX NN is used for inputting BCD data,
for example, from thumbwheel switches. XX is
the starting number and NN is the ending
number where the difference between them can-
not be greater than F.

Output

41 OUTXX

4.2

4.3

OUT XX points to a logical output line
numbered XX (OUT 3E=output line number
3E).

OFF-OUT XX Same as OUT except the output
line is set OFF.

OBCD XX NN

OBCD XX NN outputs BCD numbers. Rules of
usage are the same as IBCD.
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5.0 Data

6.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

ADD SS 00 DD

ADD 00 to SS (BCD ADD) and store the
results in DD. The operands point to memory
registers which are 4 BCD digits in length. SS,
00, and DD are 2 hexadecimal digits in length.

SUB SS 00 DD

Subtract OO0 from SS and store the results in
DD (BCD SUBtract). The operands point to
memory registers which are 4 BCD digits in
length. SS, 00, and DD are 2 hexadecimal
digits in length. '

Compare EQ, GT, LT

Compare is used in the following manner: 010
IF MEMORY 02 EQ MEMORY 03 THEN
OUT OA END Memory 02 is compared against
Memory 03 for equality. Memory 02 and
Memory 03 are 4 BCD digits in length. LT
and GT are used in the same manner except a
LT (less than) or GT (greater than) condition is

. checked for.

MOVE XXX YYY

The contents of memory location XXX are
moved to YYY. The contents of XXX and YYY
are 1 BCD digit in length, XXX and YYY are
3 hexadecimal digits in length.

LOAD XXD

The contents of BCD memory location XX is
set to the value of D. XX is 2 hexadecimal
digits in length and D may be any value from O
to F.

CLEAR

The CLEAR operand is used for clearing Bit-
Memory. It sets logical MEM-BIT XX to a
zero (logical off).

SET XX

The SET operand is used for setting Bit-
Memory. It will set logical MEM-BIT XX to a
one (logical on).

Branching

6.1

6.2

GO TO XXX

Control is transferred to XXX, where XXX is a
statement number 3 digits in length.

CALL XXX

Control is transferred to XXX address to a sub-
routine and the address of the next operand is
saved. When the subroutine has completed
execution, control must be transferred by a GO
TO 7Cl. This will provide the necessary linkage
for returning to the operand in sequence after
the CALL XXX. If the Call is to a machine lan-
guage subroutine then all that is necessary is a
BBL instruction in the machine language sub-
routine.

7.0 MACRO Instructions
Macro Instructions use the CALL instructions and

pass parameters through memory. These parameters
are placed in memory by the PCL Program. Each
routine will have dedicated locations in memory for
its parameters.

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Timing MACRO

The standard time base for the system will be a
100 millisecond square wave generated by a
Real Time Clock and Control Module. This
MACRO will set a MEM-BIT which is tested
from the PCL Program and is also returned for
testing with the IF instruction.

Counting MACRO

Groups of up to 16 INL lines (Range 00-7F) can
be designated as counter inputs. For each
counter input there will be assigned two Mem-
Bits, one for system use and one to be tested by
the PCL Program. INL lines that are
designated as counter inputs can still be tested
using the IF statement. Multiple groups of 16
can be assigned up to the limit of 128 total accu-
mulations.

Analog Input MACRO

The Analog Input MACRO instruction will
input one of up to 128 analog points of either 3
or 4 BCD digits of precision. These analog
inputs will be stored in BCD Scratch Memory
for access by the PCL Program.

Analog Output MACRO

The Analog Output MACRO instruction will
output from BCD Scratch Memory onto one of
eight (expandable with special software to 128
channels) channels in either 3 or 4 BCD digits
of precision.

Pulse Accumulator or Frequency Monitor
MACRO

This MACRO will allow the PCL Program to
Reset, Restart, or Read the Pulse Accumulator
or Frequency Monitor (PAFM) Module. Each
of these modules contains two channels of
PAFM. The data from the PAFM module
would be stored in the BCD Scratch Memory.
Multiple modules can be used up to a total of 5
channels at this time and up to 16 channels as a
future option.

Time of Day Clock MACRO

This MACRO will allow the PCL Program to
Set the Clock or Read the Clock. Data to be Set
will be in Scratch Memory. Data read will be
stored in Scratch Memory. The time of day
clock module is capable of keeping time in
either Centelis or Syderial time. System time
displays are available using the OBCD com-
mand and 6 digit display.

Quadrature Encoder Input MACRO

This MACRO allows the PCL Program to read
the Quadrature Encoder Input module for use
in positioning systems. The BCD data is stored
in the BCD Scratch Memory.
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Microprocessors in CRT terminals

by JOHN WHITING and SANDY NEWMAN

Beehive Medical Electronics
Salt Lake City, Utah

INTRODUCTION

The recent introduction of integrated circuit micro-
processors has produced a new variety of CRT ter-
minal—the firmware terminal. The firmware terminal in-
corporates a microprocessor to control data flow, using a
control program supplied by the terminal manufacturer in
Read-Only-Memory. Priced only slightly above hardwired
editing terminals, it can perform far more complex func-
tions, assisting both the operator and the computer system
into which it is connected. It is priced well below the user-
programmable terminal which requires magnetic storage
for program and a much higher level of sophistication
from both the sales force and users.

WHAT IS A CRT TERMINAL?

The CRT computer terminal is one of a variety of
devices used to communicate with computers. It is distin-
guished by using a television screen (CRT) for presenting
computer data to the human operator, rather than using
an electric typewriter, loudspeaker, flashing billboard or
other device. Messages appear on the screen as several
lines of words, much as they would appear on a typewrit-
ten sheet of paper; a common format is 25 lines of 80
characters each, including spaces. Punctuation marks,
numerals, and other symbols may appear as well as upper
-and usually lower case characters.

The operator inputs data through a keyboard much like
a typewriter keyboard. Keyboard data may go directly to
the computer, but more commonly is temporarily stored in
the memory used for the display. Thus the message
entered from the keyboard appears on the CRT screen
just as it would if it were being typed on paper by a
typewriter, but with several advantages. For one, changes
can be made by simply backing up the cursor, which
marks the point at which data is entered, to the point to be
corrected, entering the correct data in place of the incorrect
in the display memory, and then moving the cursor back
to wherever data entry left off. For another, if the change
requires inserting or deleting characters or words, the ter-
minal can shift characters following the change either
right or left to make additional room or close up space as
necessary, even though this may involve moving entire
words from one line to another. Then, since the message is
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stored as digital codes in the display memory, it can be
transmitted to the computer on command without the
need for converting printed characters with an optical
reader.

The fundamental elements of a CRT terminal are
shown in Figure 1. Data comes into the terminal either
from the keyboard or from the serial port. The serial port
sends and receives data to a computer mainframe as a
serial stream of digital bits, at rates up to 1200 characters
per second. (If the mainframe is located very far away, a
device called a data set translates the digital data into au-
dible tones to be sent over telephone lines to a second data
set which translates the tones back into digital data.) The
control logic reads/writes display memory data at the lo-
cation defined by the cursor control. The cursor advances
as characters are written and can also be moved about by
control codes from either the keyboard or the computer.
Separate character generation circuitry is used to directly
access memory data and translate it into dot patterns to
drive the CRT. The circuitry must rewrite the characters
on the CRT 50 to 60 times a second to maintain a flicker-
free display, so high-speed circuits are used for this func-
tion. Relatively slow-speed circuits can be used for the
control logic which performs a far wider variety of func-
tions, some of which may be very complex, depending on
the application.

WHAT A MICROPROCESSOR CAN DO

A microprocessor with its associated program memory
and interface circuits can be used very effectively in place
of hardwired control logic to pass data between the key-
board, serial port, and display memory. In this position, it
can intercept and interpret codes as they are received,
storing characters in memory and executing control func-
tions as necessary. It can also manipulate data in the dis-
play memory and format messages to send to the
mainframe. Not only does this make feasible the execution
of much more complex functions than possible with
hardwired logic, it reduces the cost and time required to
modify terminal functions for special applications. Since
the hardware is unchanged by such program modifica-
tions, extensive retesting of the terminal design is not re-
quired, reliability and serviceability are unaffected, and
all terminals of a given hardware type can be manufac-
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tured on the same production line with the specialized
program installed only after initial testing is completed.
Thus, small quantity special orders can enjoy many of the
mass production advantages of a standard product and yet
have many specialized functional characteristics.

For example, a keyboard whose keys are coded to be
teletypewriter compatible can be made typewriter com-
patible by changing a few keycap legends and translating
the codes received from those keys with the micro-
processor. Function keys can similarly be moved around
on the keyboard by moving the corresponding addresses in
the firmware table used to locate the function routine.
Functional modifications are also straightforward. For
example, a call to the Cursor Down subroutine can be
inserted in the Carriage Return routine to make the
Return key do both a Return and Line Feed, and the Skip-
Cursor Right key sequence may be changed to move the
cursor right by 20 positions instead of 16 by simply chang-
ing a numerical constant in the program.

The ability of the microprocessor to give specialized in-
terpretation to both functional controls and displayable
graphics originating from the keyboard also applies to
codes sent from the central processor. Thus, the special
codes which cause portions of the display to blink or to
display black characters on a white background rather
than white on black for emphasis may be transmitted over
the communication lines as a two-code sequence but stored
in the display memory as a single code. Code sequences
may also be used for control functions and setting cursor
positions, margins or tab locations, with the micro-
processor translating numeric data between binary and
decimal or other code formats.

In multi-drop polling networks the microprocessor can
carry on interactive exchanges with the central processor.
These can be very simple exchanges or quite complex, ac-
cording to the requirements of the system. For example, a
start-of-header code, an identifying address code, and a
single status or command code may form the entire

message, or the format can be expanded with preceding
codes for word synchronization, multiple address and
status codes, terminating codes and error check codes. The
terminal might transmit only on operator command, or
the central processor may be able to interrogate the ter-
minal to find out whether the terminal is on-line or off-
line, dumping data to a slave printer, actively entering in-
formation from keyboard, waiting to send data or waiting
for a reply. Since the terminal program has complete con-
trol over message format, many different systems can all
use the same terminal hardware.

The microprocessor can also control some of the com-
munication signal lines directly; and when the interface is
designed appropriately, it can be programmed to
cooperate with other terminals in a serial string (daisy-
chain) to a single data set or computer port for increased
efficiency and reduced cost. As a general rule, the micro-
processor should have as much control as possible over
data flow and logic signals but timing controls such as
Clear-to-Send delays are best handled by hardware which
can be adjusted as necessary at each installation.

One of the most complex functions performed by the
better hardwired terminals is the Delete Line, where a
counter is employed to delete all 80 characters on a line of
text; a microprocessor can use an internal register for the
same purpose. Besides repetitive functions, such data-de-
pendent functions as Delete Sentence can be performed,
with the microprocessor deleting all characters between
any two sentence delimiters. A variety of algorithms may
be used to maintain word integrity and adjust column
widths, giving special treatment to hyphens and other
formatting codes. The microprocessor can search through
the display memory data to locate all instances of
whatever word the operator wants to find for correction or
verification. In an accounting application, a column or row
of numbers could be summed by even simple micro-
processors, but more difficult calculations may be better
handled by either the mainframe or a $20 pocket calcula-
tor. Other special functions use the microprocessor’s ac-
cess to the mainframe as well as to the display memory to
take advantage of a centralized data base.

Terminal functions to be performed on command from
the mainframe should generally be executable in one or
two milliseconds at most, corresponding to the time re-
quired to transmit data codes over fast serial communica-
tion lines. Fortunately, the data manipulations which take
long times for the terminal microprocessor to execute can
be performed within the mainframe before the text is
transmitted.

RAM VERSUS SHIFT REGISTER

The role of the cursor control circuitry depends on
whether random-access memory (RAM) or shift register
memory is used for the display memory. To write a
character into a RAM memory simply requires addressing
the matrix point and writing the code directly from the
data bus, a natural task for a microprocessor. But to erase
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the entire memory with this direct approach requires
sequentially addressing approximately 2000 memory loca-
tions and writing spaces in them, a very time consuming
task for a microprocessor. Shift register memory is like a
garden hose full of marbles; for each character stored at
the input end of the memory, one character is pushed out
at the output. When each character output is put back
into the input, a memory is formed with sequential access
to memory characters. To change a character, the new
character must be put in the data stream in place of the
former character at just the right point in the memory
cycle, so the cursor circuitry must hold the new character
when it is autput from the data bus, and identify the right
point in time to break it into the shift register data stream.
But to erase the shift register memory, it is only necessary
to stuff space characters into the input for one full cycle of
the memory. Other tasks involving sequential access of
-many memory locations are insertion and deletion of
characters in text, skipping over protected fields, tabula-
tion by field, paragraph, or other text block and search for
Start-of-Message characters. The abundance of such func-
tions is a consequence of the sequential nature of the data
displayed on the CRT, itself derived from the sequential
nature of human thought. Thus shift registers are often
used for display memories despite the awkwardness of
writing single characters in them.

Both random and sequential access to the display
memory is possible with RAM memory supported by spe-
cialized hardware for handling those sequential addressing
functions which must be executed rapidly and with
minimal microprocessor support. How much specialized
hardware is required depends on what functions the
terminal must perform faster than the microprocessor can
do them. Such hardware can sequentially access currently
available RAMs nearly as fast as popular shift registers,
but adds to the cost and complexity of the terminal.
Another alternative is the use of RAM memory, organized
as many small record blocks linked by address characters.
While this uses some memory locations for the linking and
complicates display generation, it may be the most power-
ful and versatile scheme for an adequate microprocessor.
With the low cost RAMs and better microprocessors
recently made available, we expect to see changes from the
traditional use of shift registers in terminals.

CHOICE OF A MICROPROCESSOR

The speed required of a microprocessor to be used in a
CRT terminal depends largely upon the interface between
it and the display memory, and the demands of the ap-
plication. Conventional measures of processor speed, such
as time to add two numbers, are not particularly meaning-
ful here, as long as the microprocessor can identify and
respond to approximately 1200 codes per second, which
even the primitive 8008-1 microprocessor from Intel can
do (just barely). With a shift register memory, throughput
is usually limited by the time required to read characters
as the cursor is moved through memory. With a RAM

memory the limitation is in sequential access tasks, such
as selectively erasing flagged data, unless either hardware
support is given to perform all required sequential ad-
dressing tasks, or the terminal specification can be written
around the microprocessor’s limitations. (Since firmware
CRT terminals are usually sold as improvements over
hardwired, shift register memory CRT terminals, fast
execution of sequential tasks is generally assumed by
salesmen and customers alike.) Given adequate hardware
support, almost any modern microprocessor is fast
enough; without hardware support, look for microcoded
instructions to repeatedly read-swap-write and index in ap-
proximately one microsecond.

CRT terminals are very price-competitive, and the cost
of Read-Only-Memory for program storage invariably
exceeds the cost of the microprocessor itself, with
Programmable ROMs costing many times more. Since
memory cost is included in sales price, the instruction set
should be optimized for minimum memory utilization.
The Exclusive-OR instructions of the 8008-1 are very nice
for computing check characters and the even-odd parity
flag is used in the most speed-critical routines. Other fea-
tures which we have found useful are the logical and
arithmetic operations with the following 8-bit byte, and
especially the compare-immediate instruction. Since al-
most all routines executed in a CRT terminal application
are simple and short, conditional branch and subroutine
call instructions find heavy usage and relative addressing
is most convenient. Subroutine nesting goes four or five
levels deep at most and a LIFO stack for the program
counter is very helpful.

Interrupts are not needed as long as the terminal is do-
ing just one task at a time, as is often the case; however, in
polling systems where both the operator and the central
processor are sending data simultaneously, a reasonable
interrupt handling capability is almost essential. This re-
quirement also arises if the terminal is to both send and
receive data simultaneously, or is to pass data from the
central processor to a slave printer while continuing
normal keyboard service. Thus the terminal application as
well as the hardware design affect the choice of a micro-
processor from among the many available.

WRITING TERMINAL CONTROL PROGRAMS

The need for specialized hardware to debug programs
and program PROMs confines the writing of programs to a
few specialists at the factory and sophisticated OEM cus-
tomers. Consequently, machine language is used and
description of the hardware-software interface is largely
word-of-mouth between the hardware designers and the
programmers, which makes it even more difficult for out-
siders to do their own programming.

The first step in modifying a program is understanding
what is required and how the terminal is to be used. Then
the routines which are affected by the change must be
identified which presumes knowledge of the methods and
structure of the program. Register usage in particular
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Figure 2—8008 microprocessor control panel

must be understood, since temporary data cannot be
stored in PROM memory and scratchpad space is limited.
Familiarity with the hardware devices to be used in execu-
tion of the function is presumed, including worst case tim-
ing for access to hardware indicators following a change of
state. Following coding of the change, it must be debugged
and some means of testing it provided, usually at the cus-
tomer’s site. Finally, the change must be documented so
that it can be duplicated or modified in the future.

DYNAMIC DEBUG

The problem of dynamic debugging is complicated by
the fact that the microprocessor has no independent status
indicators other than the display of the terminal being
debugged. Three solutions to this problem are: replace the
microprocessor chip directly in the printed circuit board
with a black box version of the microprocessor incorporat-
ing a control panel; simulate the microprocessor on a mini-
computer; or write a program debug to be resident in
memory alongside the terminal controlling program.

Microprocessor control panel

Figure 2 shows the control panel of a black box used in
place of an Intel 8008 microprocessor. It plugs into the
microprocessor socket through an umbilical cord and
contains an 8008 chip interfaced with latches and timing
circuits to permit either single stepping of instructions or
normal execution to a breakpoint address. LED’s indicate
address and bus data as well as machine cycle type and
status flags. The breakpoint address is specified by toggle
switches, as is a data byte which may be substituted for
bus data. This substitution capability is very useful in
debugging hardware with repeated execution of an instruc-
tion, as well as in correcting instructions or modifying data
while single stepping through a program. The main
drawbacks of the black box approach are that substitu-
tions must be inserted by hand each time the program en-

counters the bad byte, and only one breakpoint can be set
at a time. The advantages are the real-time execution,
straightforward single-stepping, economy, portability and
universality of application in any 8008 system.

Simulator

Execution of a microprocessor instruction set can be
easily simulated within a minicomputer by interpreting
each program step and imitating its execution. However,
input and output instructions which control a terminal’s
internal devices can best be simulated by passing these
instructions to a terminal programmed to recognize the
command, cause it to be executed and reply with an ac-
knowledgment which includes data from input instruc-
tions. This combines the power of minicomputer simula-
tion and normal control of keyboard, display, and other
internal devices, except for the serial transmitter and
receiver. The disadvantage of this approach is the slow
simulation speed of I/O instructions, since five serial
codes must be passed for every 1/0 instruction executed.

The console display of a simulator for a Super Bee ter-
minal using the Intel 8008 microprocessor is represented
in Figure 3. It shows a program halted at location 650
prior to executing a 117 (INPUT device 7) as indicated by

PC DATA RCVR
00650 117 127

CZsP A B C D E H L
1000 000 120 063 000 003 003 122

BREAKPOINTS

00060 03153 01120 10005

RTN STACK

00047 01000 01123 00421 02351 01403 00000

Loc. Memory
00641 007 -TRACE BUFFER-
00642 316 00644
00643 007 00044
00644 006 00031
00645 002 00047
00646 111 00047
00647 330 00657
*00650* *117* 00644
00651 273 00044
00652 140 00031
00653 262 00047
00654 001 00047
00655 024 00657
00656 030 00644
00657 043 00044
00031
00047
00047

Figure 3—Microprocessor simulator display
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the Data field. The condition flags set by the last
arithmetic operation are all low (not zero, no sign and odd
parity) except for the carry indicator, which is high. The
contents of each register, A, B, C, D, E, H, and L are as
shown on line 4. Four breakpoints have been set at 060,
3153, 1120 and 10005, which halt execution and cause the
console display to be regenerated if they are encountered
during execution. The RTN stack is a last in first out
(LIFO) stack of return addresses. The contents of memory
from 641 to 657 are displayed. The trace buffer records
the branches of a program. Given is an example of
repeated execution of a short service loop. The last jump
was to location 644 (top of the stack) and originated from
location 044. The program arrived at 044 by sequential
execution from 031. The program jumped from location
047 to 031 and arrived at 047 by returning from 657. The
top of RTN stack indicates that the next return will also
be to location 047, repeating the sequence as seen below in
the trace buffer.

Each of the items on the console display may be
modified from the console keyboard at any point in the
execution of the program. Additional keyboard functions
available by single key depressions at the console are
Single Step, Program Run, Examine Contents at PC,
Modify Contents at PC, Read Paper Tape, Examine Trace
Buffer, and Punch Paper Tape. A control “T” from the
console may be used to halt program execution. The Carry
switch on the minicomputer control panel causes
characters from the console keyboard to be interpreted as
serial inputs to the terminal as if from a mainframe and
are shown in the RCVR field of Figure 3.

This system eliminates the nuisance of erasing and
reprogramming PROMs for program development, since
the program stored in the minicomputer memory can be
easily modified from the console. Overlay techniques can
be used to modify blocks of programs, which is particu-
larly useful in changing routines and polling protocols
when isolated as stand-alone items. The addition of pe-
ripheral memory allows a program to be assembled, exe-
cuted, modified, debugged and punched into PROM
programming format without leaving the control console.
Of course, this is not a portable system and the long execu-
tion time of I/0 instructions (about 400 times normal)

restricts testing of functions whose speed and efficiency
depend on multiple display memory operations. However,
the slow execution enhances visualization of complex or
extended display functions.

Resident debug

If memory space is available in the terminal, a resident
debug program may be written which can either single
step or run the terminal control program to breakpoints.
This debug program must share the CRT display with the
terminal program, either by allocating a portion of the
screen to the debug program or by swapping terminal data
in and out of auxiliary RAM memory to make room for
the debug display. When the same RAM is used for
storage of the terminal program, substitutions can be
quickly and easily made and breakpoints may be inserted
to return program control to the debug program; but
means must then be provided to load the terminal
program into the RAM from the assembly system.
Register contents, memory contents, program counter,
breakpoints, return stack and status flags can be
displayed and modified if the necessary Push and Pop
instructions are available (as on the Intel 8080, but not the
8008). Care should be taken to avoid placing breakpoints
or starting execution in the middle of the multi-byte
instructions. Such a debugging system has the advantages
of executing a self-contained program at real-time speeds
with normal access to I/0 devices, albeit in a modified ter-
minal.

SUMMARY

We expect to see accelerated growth in the utilization of
firmware CRT terminals as users become more familiar
with their advantages and capabilities. By taking ad-
vantage of terminal capabilities in systems design and
assigning to the terminal those tasks which it can best
perform, system throughput can be maximized, while
operator-related functions can enjoy the flattery of dedi-
cated processing.






Designing an application oriented terminal

by J. P. KOHLI

NCR Corporation
Dayton, Ohio

INTRODUCTION

Application oriented Terminals have been around for
quite some time and traditionally they have been hard
wired. The approach, however, has been changing recently
due to the availability of low cost RAM memory and
microprocessors. The main reason for the trend is that al-
though the hard wired Terminals cost less, they do not
provide or have the flexibility a customer is provided with
a programmable Terminal. However, the cost of program-
ming becomes an important consideration and will vary
depending upon what data is available with the Terminal
to aid the programmer. In designing the Banking Ter-
minal, Honeywell used a combination of the traditional
hard wired implementation approach and the complete
programmability approach. Honeywell also provided for a
COBOL type “FITAL” (Financial Terminal Application
Language) user level language for the customer, to aid
programming the transaction sequences which allowed the
customer to reduce programming cost. The limited
programmability approach reduces the amount of
programming, while it does not sacrifice flexibility
available to the customer to tailor the Terminal transac-
tions to suit his requirements.

This paper presents the Honeywell design approach by
describing:

Bank Teller Terminal 7340 and its features.
Operation of the Terminal.

Firmware/ RAM Architecture of the Terminal.

. Real Time Processing Considerations in the
Firmware Design.

Customer Programming in RAM.

Programming Aid to the Customer (FITAL Lan-
guage).

7. Conclusions—Advantages and disadvantages of using
the Honeywell approach versus hard wired or com-
pletely programmable terminal design approach.

a2

o o

TERMINAL DESCRIPTION

Bank Teller Terminal (BT'T 7340) is a data entry device
designed to be located in a teller window to record and
control transactions in a banking environment. The Ter-
minal logs transactions and prints on a passbook and a
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journal through real time communications to a computer,
thus aiding the teller in accepting and processing transac-
tions. The transaction sequence is customer program-
mable and is loaded in the Terminal memory through the
communication line via the host processing facility. The
Terminal has on-line/off-line diagnostic modes. It is a self-
contained unit and does not require a separate controller.
Some of the salient features are described below and
shown in Figure 1.

(a) Keyboard—Used to enter transactions from the
Terminal. Includes alpha, numeric, and program-
mable functional key capabilities.

(b) Printer—160 column printer is used for printing the

Journal (audit trail of transactions), passbook, and

customer receipt.

Status Lights—Ten indicator lights that indicate the

status of the Terminal and the communication line

at any given time.

(d) Mode Switch—Used to control the Terminal mode

(On-line, Off-line, or Diagnostic mode).

Tutorial Lights—Up to 28 programmable indicator

lights that can be interlaced with the transaction se-

quence providing tutorial lead-through to the teller
and/or providing a pictorial history of keyboard ac-
tion while entering a transaction.

(f) Dynamic Data Display—A 32 character alpha/nu-

meric display allows display of keyboard entry and

editing and provides up to eight 32 character lines
for forms fill-out or Inquiry display via communica-
tion messages.

Booking Keys—Provide for teller identification

when booking the Terminal.

(c)

(e)

(g)

TERMINAL OPERATION

During power turn on a sequence of hardware reliability
checks are performed automatically. If the checks pass,
the Terminal is ready to accept the user program tables
via communications with the central processor or a back
up Load Cassette Unit. Once the tables parameters are
loaded, the table processor in the Terminal ROM memory
processes the tables. Each table contains information for
illuminating tutorial lights, performing specific terminal
functions and address of the next table to be processed.
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Figure 1—Bank teller terminal—7340

There are twenty-four different types of tables available to

the user. To aid the user, a COBOL type language

“FITAL” is available for programming the various ter-
minal functions.

TERMINAL FIRMWARE/RAM ARCHITECTURE

The heart of the Terminal is the Basic Logic Unit
(BLU), a Honeywell developed microprocessor which has
been used in a number of other Honeywell Terminals.
Figure 2 shows the overall architecture of the Terminal.
The hard wired programming in ROM (firmware), the cus-
tomer programming of loadable list processing type tables
in RAM, the standard interrupt and Input/QOutput inter-

COMMUNICA-
TIONS TO/
FROM CENTRA
PROCESSOR/
DATA CAPTURE
CASSETTE

b

READ ONLY

- INPUT, DEVICE
?%QI;Y PROCESSTNG SUtBUA ORI ENTEp—#| TERMINAL
FIRMWARE (BLU) INTERFACH ELECT-
AND IN- |¢—RONICS |q |

RRUPT
fEagrt [ oor)

READ WRITE
MEMORY
(RAM)

Figure 2—Firmware/RAM architecture of the terminal—BTT 7340

1. Communications control procedure for interface with the
Host Processor.

2. Loader and processor for the RAM tables.

3. Various Terminal Input/Output functions:; i.e., open passbook
door, print passbook, buffering keyboard inputs, interface
Data Display, etc.

4. Reliability checks and test & diagnostics for the Terminal.

5. Add routine to perform various adding, subtracting functions.

6. Reset capability for the Terminal.

7. Auto inéertion of decimal point and right justified pri.nting

of amount fields.

Figure 3—Functions programmed in ROM

face of the microprocessor, through the Device Oriented
Electronics (DOE), help drive the Terminal. The logic to
process the customer tables and specific processes unique
to the Terminal are in the ROM; the customer program-
mable parameter tables are loaded in RAM. In addition to
the tables, subroutines may be written in BLU machine
language to achieve functions beyond those provided by
the tables. For the microprocessor, ROM, and RAM are
interchangeable and, therefore, the question becomes one
of which functions of the Terminal should be in ROM and
which functions should be stored in RAM. Obviously
programming the Terminal functions in ROM is cheaper
but not flexible; whereas providing them through user
parameter tables is more expensive but allows the user
control of the transaction sequences per his needs.
Therefore, the major consideration in deciding between
ROM and RAM was that the customer should be able to
program the Terminal per his requirements with a
minimum of programming. Subsequently, all the Ter-

1. Transaction Sequences and Responses

2. Functioning of Tutorial Lights during Transactions

3. Formats for Journal, Passbook, Receipt and Validation
Printing

4., Ability to Override Terminal Messages from the CPU

5. Ability to use Mode Switch, Function and Booking Keys
in a desired way

6. Ability to use Customized Account Number Verifying Routine
(check digit)

7. Ability to Load and Call Special Routines

8. Interpretation of Function Keys

9. Specifying Fields as Alpha/Numeric or Numeric Only

10. Checking of Acceptable Field Length

Figure 4—Functions available in RAM through programmable tables
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minal features that are fixed and unique to the Terminal
(For Example: Opening the passbook door, moving the
carriage, causing the print head to operate, communicat-
ing with the processor, test and diagnostics for Terminal,
etc.) are programmed in ROM. However, controlling the
sequence of steps within a transaction, formats of printing
on passbook and Journal, selected illumination of tutorial
lamps and interpretation of function key codes, etc., are
considered programmable and are stored in RAM by the
user program. These programmable functions are pro-
vided to the customer by list processing type program
tables. There is a table processor in ROM that processes
these RAM tables after the customer has loaded them into
the Terminal’s memory. The customer programs these
tables per his banking environment using “FITAL” lan-
guage and associated compiler and then loads them into
the Terminal’s memory through the use of a loader (also
programmed in ROM). Figure 3 shows the various Ter-
minal functions programmed in ROM. Figure 4 lists the
Terminal functions available to the customer through the
use of the program tables.

REAL TIME PROCESSING CONSIDERATIONS IN
THE FIRMWARE DESIGN

The Terminal is designed to communicate with the host
processor during transaction processing in real time. In ad-
dition, while communicating with the host processor, key-
board data may be entered and the printer may be acti-
vated. Since these functions involve simultaneity of opera-
tions for the Terminal, a mini-operating system in
firmware was designed to handle these independent
parallel Terminal operations. The design includes a
central executive which processes five subexecutives in par-
titional segments as shown in Figure 5. The choice of five
subexecutives and the amount of partitional segments to

COMMUNICA-
TION
SUBEXECUTIVE

(1)

APPLICATION
SUBEXECUTIVE

(5)
KEYBOARD
SUBEXECUTIVE
(2)
PRINTER
SUBEXECUTIVE
(4)

TIME OUT
SUBEXECUTIVE

(3)

Figure 5—Firmware executives
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SET TERMINAL IDLE
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/ ) IF DESIRED.

7

TRANSMIT MESSAGE TO CP

NOTE: PROCEED COULD HAVE OCCURRED FOR
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V2 A PROCEED MSG.
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PRINT ALPHA/ GOTOX
NUMERIC FIELD.

. CP RESPONSE
“PROCEED" OR
“OVERRIDE"

OVERRIDE

A

PROCESS
MESSAGE

FORMS [ NOT FORMS

[woror | [woror |

Figure 6—Transaction Flow Chart Example

be executed each time, was dictated by parallelism in
operations and the speed of operations; e.g., communica-
tion line can communicate up to 4800 baud synchronous,
printer can print characters at the rate of 20
characters/second, the keyboard data can be entered at 10
characters/second.

Functions that different subexecutives perform-are as
follows:

1. Communication Executive
Performs the loader function for loading customer
programmed tables in RAM and provides for communi-
cation to and from the host processor.

2. Keyboard Executive
Performs keyboard functions of receiving and storing
keyboard data to be processed by the application
executive.

3. Time Out Executive
This executive continuously checks for the expiration of
various time outs that may be set by printer or applica-
tion executives. It signals the completion of the time
out to the other executives.

4. Printer Executive
Performs all the printer functions of printing on the
Journal and the passbook. '

5. Application Executive
Performs the rest of the execution for the Terminal
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which includes:

(a) Processing the customer program tables in RAM.

(b) Performing various terminal activities such as
passbook control functions, processing data
received from communication and keyboard execu-
tives, providing data to the printer executive, dis-
playing terminal status, etc.

(¢) Test and diagnostics for the Terminal.

(d) Power on initialization and reliability checks on
the Terminal.

The central executive keeps the Terminal performing a
number of activities in parallel by executing each of the
above described programs in partitional segments.

CUSTOMER PROGRAMMING IN RAM

The customer programs the transaction sequences, tu-
torial lights, Journal and passbook printing formats, etc.,
through the use of program tables. In addition, a number

of loadable BLU executive routines provided by
Honeywell can also be loaded and called by the tables.
These routines can be written for the user thus providing
special function capability; e.g., a check digit routine on
account number field may use the user’s algorithm to vali-
date the account number in a transaction. Sinceithe func-
tioning of the Terminal components has been programmed
in firmware, the user is left with the programming that de-
termines sequence and formats of transactions per his re-
quirements. This helps reduce customer programming ef-
fort considerably, while not sacrificing flexibility.

PROGRAMMING AID TO THE CUSTOMER
(FITAL LANGUAGE)

In order to make user’s programming and debugging ef-
fort still easier, Honeywell provides him with a COBOL
based higher level application oriented language called
“FITAL” and an associated “FITAL” compiler. “FITAL”
compiler is written in Cobol and runs on Honeywell 2000
and 600 Series. The language is COBOL “like” such as the

° PAGE [1]1%
SEQUENCE NUMUER POVRCE LISTINGeeecemeeIDENTIFICATION DIVISION BEGINNING ADDRESS  @TT CODING
[
000010 IDENTAFICATION DIVISION,
000020 . PROGRAM WRITTEN BY GEOs» KLINE
[ ] 000030 . DATE: JULY 23, 1973
000049 PBOGRAM=1D, A,
000050 .
® 000060 .
000070 .
000080 ENVIRPNMENT DIVIS]ON,
[ ]
° PAGE, 0002
SEQUENCE NUMBER YOURCE LISYINGeuoeoaen-oENVIRONMENT DIVISION BEGINNING ADDRESS  BYT CODING
o 000083 .
000090 THRMINAL SECTION,
® 000095 TYPE 4S 4,
000100 MEMORY-S]ZE IS 2,
000110 KEYBOAND=TYPE IS 2,
P 000120 .
000130 TUTQR{AL SECTJON,
000140 ASSIGN=TO ACNT, THE~ACCOUNT=-NUMBER-TUTORIAL=-LIGHY ¢,
PY 000190 ASS{GYN=TO ENDL THE<-END=QF ~TRANSACTION=TUTORIAL=-LIGHT 2,
000160 .
000170 .
000180 .
L4 000190 DATA QIVISION,
° PAOE 0003
SEOUENCE NUNUER BOURCE LI8TINGeconamecelATA DIVISION BECINNING ADDRESS  BTT CODING
®
000200 CONSTANT SECTION,
000210 A§SIGY-T0 THREE ANeASCIJeVALUE-QF~NEX 33,
) 000220 ASSIGN=TO PLUSKEY AN~ASCII-VALUEQF-NEX 20,
000230 AFSIGNTO ENDKEY AN#ASCIleVALUE-UF=NEX 3D,
000240 DWSCRIPTOR SECTION,
P 000245 WNFEEQ, PRINT<DISPLAY,
000250 LINEFEED,
googgo .
co0270
b 000289 L4
000290 .
° 000300 PROCEDURE DIVISION,

Figure 7—Sample program listing for FITAL
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] ®
® PAGE 0004 o
SEQUENCE NUNBER ¥ LISTING DIVISION BESINNING ADDRESS  BTT CODING
[ L ]
000303
° 000340 DECLARATIVES, °
000320 TELLER=A GO TO BOOKA,
000330 TELLER=U GO TO GOIDLE,
° 000340 YELLER=C GO 7O GOIDLE,
000350 TELLER«D GO TO GOIDLE, o
000360 TELLER=S GO TO GOIOLE,
000370 TELLEReF GO TO GOIDLE,
[ ] 000380 CPUSOVERRIDE GO TO CPNSG, [ ]
000390 END=DYCLARATIVES,
QooOcooloc
® 0000¢ [ ]
"pocooooo
GO10LE
[ 80IDLE )
GolULE
Golgks
Goldy
o . BOOKA o
00040 CPHSG
00400
L 000410 s0xAy °
000420 !va-nls!uv.
Ehal At LT PEL T T g =
b 0204 L4
00030
ave
L4 000430 LINEFEED. 000 °
000440 PRINT AN-A<[NePOSITION 8,
000430 CHARACTERTO-BE~PRINTED=1S-AN. 4,
L J 000460 INSQRT CHARACTER THREE, [ ]
ooxi-
0211
L] 0141 ®
0000
4000¢
[ ) B ®
0211
oooo.n-u.
hd ;;oao.nno L
000470 TUTQRIAL-LIGHT ON ACNTL,
p215eccace
* L [ ]
ozua o .
00eecese
L4 ngoo..a-po [ ]
000480 Euvu-vm.o.
000490 oise
[ J 000300 rn@r Ai-ﬁuvnen IN-PRINT=POSITION 39, (]
[ J [}
[ ] [
] ]

Figure 7—Sample program listing for FITAL (Continued)
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SEQUENCE NUNBER

000380
000520
000330
000540
000350

000560
000370
000580
000390

000600
000610

000620
000630

000640

FOURCE LISTINGme-vane-~PROCEQURR DIVISION

TERNINATOR-1S PLUSKEY,

CHARACTER=TYPE ALPMAMERIC,

MAE[MUM NUMBER«OF+DIGITS-ENTERED~IS 20,
FILD«TYPE=]S ACCOUNT=NUMBER,
TUTOR]IAL®L IGHT ON ENDL,

WAIT FOR END KEY OR LET TELLER VOID YRANSACTION,
SEQUENCE,
IFEKEY=1S ENDKEY, SEND,

SGND,  TRANSHIT,

RRCY, I|F PROCEED*OVERRIDE GO TO JFFLN CPMSG.

BFF=LINE PROCESSING FIRST LINE FEED JOURNAL
OLFLNY PROCESS LNFEED,

FIBLD<PRINT,

PAGE 0005
BEBINNING ADDRESS  BTT CODING

0402008000
0210
3000}
000
0000
SEND

022%

0p00scsases

0pQ0esssesn
0Q04esasas
OFFLN
CpMSG

[ S
022E
0000essses
0000esnses
0p12essess

0235ens0ee
0pQ0ennene

Figure 7—Sample program listing for FITAL (Continued)
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® ®
PAGE Q006
° SEQUENCE NUNBER LisTING 3 pIvisiON BEGINNING ADDRESS  BTT CODING L
[ ] 0000c0eces ®
L ] [
0000ceasas
00Q0esases
° 000630 - ACEOUNT.NUMBER IN-PRINT-POSITION 30, °
009680 001PLE, RETURN=IDLE,
00140cnese
o eqscesncss o
® 0238000 ®
[ ) [ ]
° 000670 PROCESS CPY MESSAGE, °
000680 CPHSOY [F FORNSaNOT<FORNS 0 TO RECY, OOIDLE,
cocemeaennenes
° 0238 evevee °
0000neases
001Cecsece
) G010LE L]
RECY
000890 stoe,
' Ll LT T T L B 2L L 2 .
0243
0000ssssss
) 0p00sccsas ®
® [ ]
[ ] [ ]
® [
[ ] ®
[ ] [ ]
[ ] [ ]
L J [ ]
[ ] [
® ®

Figure 7—Sample program listing for FITAL (Continued)
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FUNCTION HARD WIRED APPROACH

S

COMPLETELY PROGRAMMABLE
TERMINAL APPROACH

BANK TELLER TERMINAL
7340 APPROACH

1. Flexibility in Not Available

Customer Programming

2. Customer Programming None
Effort
3. Systems Effort in None

Programming

4. Modification of
Terminal Design

Very Expensive

5. Loading the Terminal
at Power On Time

Not Required

Fast - No overhead
of programming exists

6. Speed of Execution

Available

Whole Terminal is to be
programmed.

Required in most cases,

Can be programmed.

Complete program has to
be loaded in the
memory.

Relatively slow as all
the functions have to
be programmed in
software.

Limited availability

Programming kept to a
minimum.

None with the avail-
ability of FITAL,

Can be programmed
using loadable
executable routines.

Due to the firmware,
the amount of program
to be loaded is much
shorter than that for
the programmable
Terminal.

Not as fast as hard
wired, but fast enough
to maintain Terminal-
Computer interface and
Operator-Terminal
interface without error
or delay.

Figure 8—Advantages and disadvantages of Honeywell approach versus hard wired/completely programmable approach

example shown below:

FITAL program example

Consider a simple program to accept a transaction from
Teller A only, print A to identify teller, insert an ASCII 3
into message to Central Processor (CP), accept an
alpha/numeric field of data from the operation, wait for
END OF TRANSACTION key from the operator, and
then if:

® Off-Line—Print the field, then set Terminal idle
® On-Line—Send message to CP, receive and process
response from CP, then set Terminal idle.

Operator transaction key stroke entry

@  (Alpha/Numeric Field)

Journal Printing Layout: -
(Printed at entry time from operator input)
A (Alpha/Numeric Field)
Position 1 Position 15
(Printed in response to a PROCEED command received
from the CP via the communication line)
(Alpha/Numeric Field)
Linefeed Position 10
A transaction flow chart for the example above is shown
in Figure 6. The program listing appears in Figure 7.

CONCLUSIONS

The Honeywell approach has provided a good compromise
between a hard wired Terminal and a completely
programmable Terminal. This has helped Honeywell
provide a cost competitive Terminal with sufficient flexi-
bility for the customer to tailor the Terminal to his needs.
The rationale used in the design has been that the cus-
tomer programming requirements should be kept to a
minimum, restricted only to job oriented functions, while
not sacrificing the flexibility to the customer. This was ac-
complished by fixing all real time and mechanism control
functions in ROM while allowing user program control of
all transaction related functions.

Figure 8 summarizes some of the advantages and disad-
vantages of the Honeywell approach in comparison with
the hard wired or the completely programmable terminal
approach. Honeywell feels that the savings in program-
ming cost to the user and savings in hardware memory
cost are sufficient to justify the minimal limitations in cus-
tomer programmability.
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Designing central processors with bipolar
microcomputer components

by MARCIAN E. HOFF, JR.

Intel Corporation
Santa Clara, California

Most first and second generation MOS microcomputer

products used single-chip fixed-control central processors
or used specialized mask-programmed ROM’s which made
user microprocessing very cumbersome. Today, a third
generation of microcomputer products using bipolar
technology has appeared. These new components may be
used to build controllers and computer central processing
units (CPU’s) in which the control structure is micro-
programmed. By permitting microprograms in standard
programmable ROM’s, the bipolar microcomputer
components offer much greater convenience for user
microprogramming.

One such family of bipolar microcomputer components
is the Intel 3000 series, a set of components realized with
Schottky TTL technology. The two mest important cir-
cuits in this family are the 3001 microprogram control
unit (MCU) and the 3002 central processing element
(CPE). The MCU determines the sequence of execution of
micro-instructions from the control memory, and provides
carry logic. The CPE represents a two-bit wide slice
through the arithmetic, logic, register and data bus por-
tions of a computer central processing unit. Several CPE’s
may be wired together to produce a central processing unit
with arbitrary data bus width. For example, to produce a
16-bit wide data path, eight CPE’s would be used.

Other members of the family include the 3003 fast carry
chip, the 3212 input/output register chip, and the 3214
interrupt control chip. The control memory portion of a
central processor or controller built with this family may be
realized with standard field-programmable ROM’s, mask-
programmable ROM’s or read/write memory (RAM’s).

MICROPROGRAMMED CONTROL

The central processing unit of a general purpose com-
puter contains: an arithmetic portion and a control por-
tion. The basic operation of the control portion, passing
through a sequence of states which select the next instruc-
tion from memory, and then execute a series of subopera-
tions based on the instruction fetched, may be imple-
mented via random logic or by the use of a table in a con-
trol memory. The latter technique is referred to as micro-
programmed control.

The functions of the control portion of a micropro-
grammed-control central processing unit are very similar
to the functions of a central processing unit. The terms
“micro” and “macro” are used to distinguish the opera-
tions of the control unit from those of the realized central
processor. The central processor, under the direction of
micro-instructions read from its control memory, fetches
macro-instructions from main memory. Each macro-
instruction is then executed as a series of micro-instruc-
tions. The main memory contains a macroprogram, while
the central processor is defined by the microprogram
contained in the control memory.

Thus, within a microprogrammed machine, there are at
least two levels of control and two levels of programming
to be considered. The designer of the central processor is
usually concerned with the definition of the macro-instruc-
tion set and its realization as a microprogram. The final
user of the central processing unit seldom needs to be
aware that the CPU was realized using microprogram-
ming. A description of the macro-instruction set is usually

~ sufficient for his purposes.

55

The microprogrammed approach is useful for bipolar
microcomputers because complex macro-instruction sets
can be realized as sequences of relatively primitive micro-
instructions. The logic of the final macromachine remains
relatively simple, with most of the complexity being
represented by the contents of the control memory.

When using the Intel bipolar microcomputer family, the
3001 MCU implements most of the functions of a micro-
program control unit. When used with the 3002 CPE slice,
the basic micro-instruction functions are established, al-
though additional logical elements drawn from standard
TTL families may be added which will alter or enhance
the micro-instruction set.

DESIGNING CENTRAL PROCESSING UNITS

The steps in the development of a microprograrnmed
central processor design are:

1. Selection of the macro-instruction set
2. Hardware design
3. Writing and checkout of the microprograms
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Figure 1—3002 CPE block diagram

The most efficient designs will result from considering
all three steps together to insure that the macro-instruc-
tion set formats are compatible with the microcomputer
family members, and that operation-code formats result in
the simplest microprogram flow.

The macro-instruction set may be register or stack
oriented, and may be original or a copy of another ma-
chine. In general, lower cost and higher performance will
result when an original macro-instruction set is developed
to use the microcomputer family features most effectively.
In most cases the three special purpose registers and a few
of the general purpose CPE registers must be reserved for
microprogram ‘‘bookkeeping” operations. As a result,
when realizing macro-instruction sets which use a large
number of registers, an external register file will have to
be added. If more than eight bits of operation code are
used in a macro-instruction, the interpretation of the
macro-instruction becomes more complex. In some cases,
additional logic may have to be added to a basic hardware
design.

HARDWARE DESIGN

A typical CPU built using the Intel bipolar microcom-
puter set will consist of an array of CPE chips, one MCU,
and a control memory. The array of CPE chips realizes
the arithmetic and logical functions and registers of the
CPU, while the combination of MCU and control memory
realizes the control portion.

The CPE array realizes ten general purpose (R0-R9)
and three special purpose registers (MAR, AC, and T),
each with a width equal to the array width (i.e., 16 bits
wide for eight CPE slices). The array can be wired for rip-
ple carry operation or may use the 3003 look-ahead carry
generation.

The CPE array has six buses for communication with
external circuitry. (Figure 1 shows a block diagram of the
CPE slice.) Four of the buses are used primarily to com-
municate with memory and I/0 devices while those

remaining, the function control bus and the control
memory data bus, enable the control portion of the
processor to drive the CPE array. The seven-bit wide func-
tion control bus is driven by outputs from the control
memory to force the CPE array to execute the desired
operation. The control memory data bus (also referred to
as the K-bus) allows the control memory to supply
constants and masks to the arithmetic array.

In effect, the K-bus increases the effective number of
microfunctions executable by the CPE array. For
example, data loaded into the CPE array from memory
may be masked by the K-bus. In other operations, involv-
ing the AC and a general purpose register, the K-bus can
mask off the AC register. Thus if the K-bus is all zeros, the
AC does not contribute to the result. The K-bus may also
be added to any register.

Although the K-bus is potentially the same width as the
other data buses, the number of masks and constants used
in a typical CPU is usually small enough that fewer bits
are needed. Often several K-bus inputs can be connected
together and driven by a single control memory output
line.

The actual microfunctions implemented by the CPE are
listed in Table I. The microfunction standard mnemonics
for both K-bus equal to all zeros and K-bus equal to all
ones are also shown in Table I. For other values on the K-
bus, the mnemonic for an all-one K-bus is used.

The microprogram control unit establishes the micro-
instruction execution sequence as a function of three data
sources: a seven-bit wide field in the control memory,
carry logic within the MCU which communicates with the
carry circuits of the CPE array, and macro-instruction
operation codes. Figure 2 shows a block diagram of the
MCU chip. To permit the microprogram control unit to
determine the operation code portion of the macro-instruc-
tion being executed, an eight-bit wide path is provided
from the memory data bus to the microprogram control
unit chip. This path allows the microprogram control unit
to examine eight bits of the operation code portion of the
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Figure 2—3001 MCU block diagram
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TABLE I--3002 CPE Microfunctions

Function Bus Logic Function Mnemonic Mnemonic
f6f5f4f3faf1fo (R-Bus = 1) | (K-Bus = 0)
000XXXX2 R+(ACAK)+CI+R,AC ALR ILR
000101x2 M+(ACAK) +CI+AT AMA ACM
000111x%2 Shift Right AT for K=0 - SRA
001xxxx1 KV R>MAR , RHR+CT->R DSM IMI
001101x2 KVM-+MAR ,M+K+CI->AT LDM MM
001111%x2 (AT VK)+(ATAK)+CI->AT DCA CIA
o10xxxxt (ACAK) -1+CI+R SDR CSR
010101x2 (ACAK) ~14+CI~>AT SDA3 CSA
010111x2 (1AK) -1+CI+AT LDI -
o11xxxxl R+(ACAK)+CI»R ADR INR
011101x2 M+ (ACAK) +CI->AT - -
011111x2 AT+(IAK)+CI-+AT ATA INA
100xxxx1 RA (ACAK) >R ANR CLR
100101x2 MA (ACAK)~»AT ANM cLa3
100111x2 RA(IAK)-AT ANT -
101xxxx1t KAR>R TZR -
101101x2 KAM>AT LTM -
101111x2 KAATSAT TZA _ -
110xxxx1 RV (ACAK)~+R ORR NOP
110101x2 MV (ACAK)>AT , ORM LMF
110111x2 ATV(IAK)-AT ORI -
111xxxxl RO(ACAK)-R XNR CMR
111101x2 MB (ACAK)->AT XNM LCM
111111%2 AT®(IAK)->AT XNI CMA

1. XXXX = 0000 to 1001 to select R
1101 for R = AC.

2. X =0 for AT = AC, X = 1 for AT

SDA and CLA are the same as SDR and SDA respectively, except only
AC or T may be used.

R to R9, 1100 for R =T,

T.
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TABLE II-—-MCU Jump Microfunctions

Mnemonic Description Function Next Row Next Column
A 5 4 3 2 1.0 |8 7 6 5 4 M3 21 0

JCC Jump in current column 0 0 d4dgdydydp d4 d3 dg dj dg m3 m2 m] mQ

JZR Jump to zero row 0 1 0 d3 dz dy dg 0 0 0 0O d3 dp dj dg

JCR Jump to current row 0 1 1 d3 dp dy dg mg m7 mg M5 my d3 dp dj do

JCE Jump in column/enable 1 1 1 0 d2d1 do mg my dp di dg m3 mp ml mQ

JFL Jump/test F-latch 1 0 0 d3dpdj dg] mg d3 dp d1 dg m3 0 1 f

JCF Jump/test C-flag 1 0 1 0 d2dy do mg m7 d2 d1 do m3 0 1 ¢

JZF Jump/test Z-flag 1 0 1 1 dg d3 do mg m7 d2 di dg m3 0 1 z

JPR Jump/test PR-latches 1 1 0 0 dgdj dp mg my d2 d1 do P3 P2 P1 PO

JLL Jump/test left PR bits 1 1 0 1 dpdi dg mg m7 d2 di do 0 1 p3p2

JRL Jump/test right PR bits 1 1 1 1 1 dg dy mg my 1 di dg 1 1 p1 PO

JPX Jump/test PX-bus 1 1 1 1 0 dy dg mg m7 mg dj dg X7 X6 X5 X4

Symbol Meaning

dy Data on address control line n

mp Data in microprogram address register bit n

Pn Data in PR-latch bit n

Xp Data on PX-bus line n (active LOW)

f, ¢c, 2z Contents of F-latch, C-flag, or Z-flag, respectively

macrolevel instruction at the same time that the instruc-
tion is passed to the arithmetic array.

Because only eight bits of operation code information
can be passed directly to the MCU, the set is best adapted
to instruction sets in which all of the macro-operation code
information is confined to 8 bits. However, other macro-
instruction sets can be realized by saving any remaining
bits of the operation code in the CPE array or in an
external register. The saved bits are tested later by routing
them to the MCU, either through the 8 line macro-instruc-
tion port or via the carry logic associated with the MCU-
CPE combination.

The MCU characteristics provide a jump operation,
either conditioned or unconditioned, in every micro-
instruction. Each of the jump operations has a restricted
range of destinations, so that the placement of the micro-
instruction in the control memory determines which of the
other micro-instructions may precede or follow it.

The nature of the different jumps provided by the MCU
is made most visible by viewing the microprogram
memory as if the words were organized as 16 columns by
32 rows. (The MCU directly supports 512 words of control
memory, although larger or smaller control memories may
be used.) The unconditional jumps provide for vertical
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TABLE III—MCU Carry Logic Functions

Type Mnemonic Description FC1 | FCy

SCZ Set C-flag and Z-flag to f 0 0
Flag STZ Set Z-flag to f 0 1
Input

STC Set C-flag to f 1 0

HCZ Hold C-flag and Z-flag 1 1
Type Mnemonic Description FC3 | FCy

FFO Force FO to O 0 0
Flag FFC Force FO to C-flag 0 1
Output

FFZ Force FO to Z-flag 1 0

FF1 Force FO to 1 1 1

movement in a column, horizontal movement within a
row, or a jump to any location in the first row, known as
row zero. All of these jumps are achieved by appropriate
mapping of microfunction control bits and previous micro-
program address bits into the next microprogram address
state. Table II lists both the unconditional and conditional
jumps provided by the MCU. Note that the JPX opera-
tion tests four bits of the PX-bus (macro-operation input
bus) while loading the remaining four bits into the PR-
latch within the MCU chip. The JPR, JRL and JLL mi-
crofunctions test the contents of the PR-latch without al-
tering them, while the JCE microfunction executes an un-
conditional jump while enabling three of the four stored
bits to output pins on the MCU, where the signals may be
used to override CPE register selection signals from the
control memory.

The JFL, JCF and JZF microfunctions test the input
carry signal or one of two flip-flops within the MCU which
are associated with the array logic of the MCU. Either or
both of these flip-flops (designated the C and Z flags) may
be set to the carry input signal and the carry output signal
may be set to logic 0, logic 1 or to the logical value loaded
into C or Z. Table III lists the flag control functions. The
symbol f represents the carry input signal, temporarily
held in the F latch of the MCU for testing.

A “pipelined” mode of operation may be implemented
by placing a register of D flip-flops between the control
memory outputs and the circuitry controlled by those
outputs. This register causes the execution of each micro-
instruction to overlap the fetching of the next micro-
instruction. The seven control lines which issue micro-
instruction sequence information to the MCU are not

routed through D register when the pipelined mode is
used.

Figure 3 shows a block diagram illustrating the organi-
zation of a central processing unit using the set. The block
diagram shows the basic modules of a pipelined CPU: the
CPE array, the MCU, the control or microprogram
memory, and the pipeline register. Four of the data busses
associated with the CPE array are shown: (1) The address
bus to memory; (2) The data bus to memory; (3) The data
bus from memory, with its path for operation code data to
the MCU; (4) The constant bus from the pipeline register.

CONTROL TO MEMORY ADDRESS .DATA BUSTO

MEMORY, 1/0 BUS MEMORY
:J_) CLCRCCLEERCT ELLEOTEOL
(1808 NOT SHOWN)
. PIPELINE -BUS NOT SHOWN;
PF:?]‘E:‘I:M REGISTER cLock -RO
MEMORY — ‘ ) |m‘TuTs o :n
ADDRESS IN

CLOCK

OPCODE BITS MCU
DATA IN FROM MEMORY

Figure 3—Pipelined central processing unit block diagram



60 National Computer Conference, 1975

In addition, the carry logic bus from the pipeline register
to the MCU and the micro-instruction sequence logic from
the control memory to the MCU are shown. Signals from
additional control fields to such external logic as memory
and I/0 control are shown as an output bus from the
pipeline register, although some such signals may come
directly from the control memory.

THE WRITING OF THE MICROPROGRAMS

Once the macro-instruction set has been chosen, and the
hardware design established, the designer must proceed to
write the microprograms for the system. To simplify the
writing of these microprograms, a standardized micro-
assembly language will be used, in which symbolic
representations of the various control functions are used.
The standard mnemonics of CPE and MCU microfunc-
tions have been included in Tables I, IT and II1.

Programs written in the micro-assembly language have
two main parts—a declaration part in which various as-
pects of the control word, etc. are defined and a specifica-
tion part in which the contents of each word are symboli-
cally declared. Provision is made for comment statements
throughout the program so that the programmer may
explain the functions being performed. v

The main body of the program, the specification part,
defines the sequences of states to be executed, and the
operations which take place for each state. The main ef-
fort in writing a microprogram will be extended in
developing this section.

Each statement of the specification part of the program
defines the action (and location) of one micro-instruction,
i.e., one work of control memory. The statement will
declare, either directly or by default, the contents of each
control field for the specified micro-instruction. Further-
more, the statement will include assignment information
designating the address in control memory where the state-
ment is located.

A specification statement consists of one or more labels
followed by a series of control field specifications. A colon
after an entry indicates that it is a label. The contents of
the control fields are indicated symbolically, using either
standard symbols or user-defined symbols, or by an equa-
tion of the type

FNM=101B

where FNM is a name associated with the field. The entry
101B implies the binary value 101.

Each symbol is associated with only one field, so that
the various symbols can be uniquely interpreted by the
assembler. A number of symbols are predefined for the
assembler, and are not to be used except as provided for
the MCU and CPE functions, and a number of directives
to the assembler.

The current versions of the micro-assembler do not do
this placement. However, the placement procedure, which
is something similar in complexity to wiring a printed cir-
cuit board, is easily done after the microprogram is writ-

ten. A flow chart showing the desired micro-program se-
quences is used to determine where clusters of conditional
jumps are located. The most complex clusters are placed
first, then simpler clusters, and finally the unconditional
sequences.

To realize a central processing unit, the microprogram
must not only supervise the fetching of macro-instructions
and implement the appropriate sequences for their in-
terpretation and execution, but must also provide for such
additional functions as initialization and interrupt han-
dling. Initialization, done when power is first applied to
the central processor, is achieved by executing a series of
micro-instructions which clear and initialize various ma-
chine registers. The “load” pin of the MCU can be used to
input a starting address from the PX-bus to the micro-
program address register. If the PX-bus is held high when
power is first applied and the load input is activated, the
MCU will start in control memory address zero.

Interrupts are usually accepted after completion of a
micro-instruction, just before fetching the next macro-
instruction. To provide interrupt handling, a sequence of
interrupt service micro-instructions would be executed
rather than fetch the next macro-instruction. Upon com-
pletion of the interrupt service, which usually involves at
least saving the macro-program counter and loading a new
value, the fetch sequence is entered, which results in fetch-
ing the first instruction of the interrupt service macro-
program. The MCU provides for interrupt if the first
instruction of the macro-instruction fetch sequence is
located in control memory address 15 (i.e., in row zero,
column 15). The last micro-instruction of each macro-
instruction execution sequence then contains the mi-
crofunction JZR to row zero, column 15. When this mi-
crofunction is executed, the MCU produces an interrupt
strobe signal which may be used by external interrupt
logic to disable the MCU row address to the control
memory. An alternate row address can then be forced to
the control memory (usually row 31, all row address leads
high) so that a different micro-instruction than the first
fetch micro-instruction is executed, i.e., the first interrupt
micro-instruction is executed. This first interrupt micro-
instruction should contain a JZR or JCC microfunction as
its first jump. Once in the interrupt sequence, the normal
MCU control is re-enabled, and execution proceeds until a
jump to the macro-instruction fetch sequence is executed.
There are many interrupt handling options available
through microprogram sequences, hardware connections,
and the type of jump used to enter the fetch routine.

Microprograms to realize a given micro-instruction set
will differ for pipelined and non-pipelined machines. The
major differences are associated with those conditional
jumps in the microprogram which test the results of
arithmetic or logical operations of the CPE array. In a
pipelined machine, these results are delayed by one micro-
instruction, so that the conditional jump must be delayed
by at least one micro-instruction.

In some cases, the pipeline will result in wasted states
(NOP’s), but most pipelined microprograms will have very
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few such wasted locations. In most cases, the otherwise
wasted location can be used to set up for the next condi-
tional jump or to do some initial processing for the next
execution sequence.

A typical statement of the specification section of a
microprogram might take the form: '

123: LAB: ILR(R3) FFO STZ JFL(MC TC);

The number 123 followed by a colon tells the assembler
that the micro-instruction is assigned to location 123 in
control memory. (Binary for 123 is 001111011—placing
the word in row 7, column 11 when the control memory is
treated as an array of 32 rows and 16 columns.) The sym-
bolic label LAB (the colon indicates a label) is also
associated with this location. ILR(R3) indicates that the
contents of register 3 are to be conditionally incremented
and copied to the AC register, while FFO forces the carry
input to a logic zero, so that the incremented operation
does not take place. STZ indicates that the Z flip-flop of
the MCU is to be set by the results, so that, as no carry
can result, the Z flip-flop will be set to a logic zero. These
symbols are standard symbols, with ILR associated with
the CPE and FFO and STZ associated with the MCU
carry logic. The JFL tests the carry output line for a con-
ditional jump to either the statement labeled NC or to the
statement labeled TC. It is also a standard symbol. Note
that, if the machine is pipelined, this conditional jump
tests the results of the previous instruction, not of this one.
The semicolon indicates the end of the statement.

In the statement above, no information was provided for
the K-bus. The assembler will provide the appropriate

value associated with the ILR operation, i.e., the K-bus at
all zeros.

The first or declaration part of a microprogram defines
all of the user symbols except the labels, which are defined
in the specification part of the program. The user symbols
may include redefined or renamed combinations of other
symbols, or may attach names to various control fields or
to states within a control field.

The flow diagram for a typical central processor will
follow the form shown in Figure 4.

In general, the best macro-operation sets will be or-
ganized so that the bits tested at the first conditional jump
(the JPX) determine the initial steps in the instruction
processing, for example, the first step will usually involve
address calculation. Thus the best macro-operation sets
will be encoded to allow addressing mode to be tested first,
with the detailed use of the address or data from the ad-
dress left for later testing in the microprogram.

The set has been used to realize a variety of machines
including a stack-architecture 16-bit CPU oriented toward
high-level languages, a 7-register 16-bit CPU which used
base registers to provide full code and data relocatability,
a multi-register 16-bit CPU which used a section of fast
main memory to implement 256 registers, and a disk con-
troller for a removable cartridge flying-head disk. Al-
though the machines constructed so far have all been 16-
bit machines, both 12-bit and 32-bit machines have also
been considered. The typical CPU constructed used an
average of 3-5 micro-instructions per main memory cycle.
With a pipelined machine cycle time of 150nsec, a main
memory of 300nsec access time results in an average of
about one microsecond per memory cycle.
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Monolithic Memories, Inc.
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INTRODUCTION

Implementation of microprocessors in bipolar technologies
promises performance equal to or exceeding that of state-
of-the-art minicomputers when measured in terms of
speed and instruction set power. The design approaches
for bipolar microprocessors are similar to those for MOS
types, with some significant differences in emphasis.

The term ‘“microprocessor”’ was originally applied to
some of the first single chip MOS microprocessors, such as
the Intel 4004 and 8008 units. Shortly after the introduc-
tion of these chips, National Semiconductor introduced
their General Purpose Control Processor (GPCP) chip set,
now known as the IMP-16. The use of the word micro-
processor was then broadened to include sets of chips
which would implement the Central Processing Unit
(CPU) function of a computer. To date, the use of the
term has been further diluted to include almost any com-
bination of less than 20-40 integrated circuits which will
implement the CPU function.

The simple definition of the word “microprocessor”’ is
“very small processor”. This defines a unit which meets a
minimum functional definition of the processing and con-
trol portion of a stored .program computer, and which is
“very small” (i.e., “micro”). The utility of the micro-
processor lies in its small size: a card containing 25 in-
tegrated circuits can do the work of a 300 integrated cir-
cuit minicomputer in many cases. This reduction in size
provides a corresponding reduction in system cost and
power requirements.

MICROPROCESSOR DESIGN CONFIGURATIONS

Microprocessor designs can be grouped into three cate-
gories:

1. Single chip
2. Multiple chip set, custom design chips
3. Multiple chip set, general purpose design chips

The single chip microprocessor is a fixed design, fixed
instruction set processor incorporated onto one integrated
circuit chip. This has the potential advantage of lowest
microprocessor system cost but the disadvantages of a
fixed, lower performance instruction set; low to medium
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speed, and limited word size due to limitations of chip size
and power dissipation. Most current MOS microprocessors
are in this category. No bipolar microprocessors are cur-
rently available in this category due to the high level of in-
tegration required.

Multiple custom chip microprocessors consist of a set of
chips specifically designed to work together to perform the
microprocessor function. The National Semiconductor
IMP-16, etc., microprocessor series is based on such a set
of custom MOS chips. The advantages of this approach
are:

1. Segregation of system functions into chips which are
potentially small and efficient to integrate.

2. A powerful, sophisticated instruction set can be im-
plemented because of the availability of more effec-
tive chip area with multiple chips.

3. Higher speed potential due to higher power dissipa-
tion capability, allowing better speed/power trade-
off.

The disadvantages are:

1. Higher system cost due to the requirement of several
chips. This must be weighed against performance not
available in a single chip approach.

2. Relatively fixed instruction set capability. This is be-
cause instruction decoding can be integrated effi-
ciently only as a fixed decoder for a fixed instruction
set. Also, some secondary items such as carry and
shift controls can be handled efficiently only if their
configuration is fixed. Most bipolar microprocessors
are of the custom chip set configuration. Examples
include the Intel, Raytheon, and Fairchild bipolar
chip sets, as well as the TT I?L set. These chip sets
consist of data flow chips in 2 or 4 bit slices which
are assembled to form 16 bit, etc., machines and one
or more control chips, and in some cases some
external microprograms ROMs.

The third microprocessor design configuration is the
multiple general purpose chip set. In this approach, a
combination of standard data flow slice chips, ROMs, and
some TTL is used to implement the microprocessor func-
tion. The advantages of this approach include those of the
above approach: efficient integration of smaller chips,



64 National Computer Conference, 1975

powerful instruction set potential, and high speed
potential. However, three additional advantages result:

1. Flexibility in system design, allowing the same
hardware components to be used efficiently for a va-
riety of tasks including I/0 controllers, central
processors, and special purpose peripheral
Processors.

2. Lower potential costs by using standard, high volume
components designed for a broad market rather than
custom, lower volume components designed for a
specific market.

3. Higher second source potential, since high volume

"~ general purpose components are more likely to be
second-sourced than custom types.

The disadvantage is that general purpose multi-chip
designs have a higher chip count than custom multi-chip
designs, in some cases. For example, a 16 bit bipolar
microprocessor may have a total of:

1. Five chips in a maximally integrated custom chip set
configuration, consisting of a control chip and four,
four bit data flow slices.

2. Twenty chips in a more modular custom chip set con-
figuration, consisting of eight, two bit data flow chips,
eight microprogram memory chips, and four control
chips.

3. Sixteen chips in a general purpose component design
consisting of four, four bit data flow chips, three
microprogram ROMs, one instruction decode ROM,
and eight TTL chips for control.

MULTIPLE CHIP CONFIGURATION
COMPONENTS

Multiple chip microprocessor designs typically separate
system functions into three chip types:

1. Data flow chips which contain the registers, multi-
plexers, and arithmetic portions of the system.

2. Control chips which provide the instruction fetch and
execution sequencing as well as miscellaneous status
and test functions, such as carry control and shift
gating.

3. Microprogram memory chips (optional, used only in
conjunction with control chips based on micro-
program designs). These are typically standard
ROM/P.ROM chips assembled to form a memory
unit.

The data flow chips are usually designed as 2 or 4 bit
modules which can be assembled into 8, 12, 16, 24, etc., bit
word widths as required. This accommodates a variety of
system word sizes as well as reducing the size of the indi-
vidual chip to allow higher speed and more powerful archi-
tectures. The data flow chips provide the major reduction

in processor chip count. This is because each four bit slice
may replace 15-25 MSI components, such as multiplexers,
register files, and arithmetic logic units. Thus, four data
flow chips are equivalent to 60-100 MSI chips. In the case
of bipolar data flow slices, the comparison with MSI is
fairly direct.

Microprogrammed bipolar microprocessor designs typi-
cally use standard ROM and P.ROM memory chips. This
is because there is a broad line of high performance
bipolar ROMs and P.ROMs on the market, available in
high volume production from a number of sources. This is
significantly different than the case with MOS. The MOS
ROMs on the market are much slower, 2.0 microseconds
versus 50 nanoseconds for bipolar, much more limited in
selection of ROMs and P.ROMs, and are not as stan-
dardized in power supply and interface voltage specifica-
tions as a group when compared to bipolar ROMs and
P.ROMs.

The control section of a multi-chip microprocessor
provides the sequencing logic to fetch, decode, and execute
all processor instructions. This sequencing logic controls
the data flow chips and memory either directly or through
a microprogram memory, depending on the design. The
control section can be one or several chips depending upon
whether a state logic or a microprogrammed design is
used, respectively. These two control design approaches
have quite different implications.

CONTROL FLOW INTEGRATION

A minimum chip count 16 bit multiple custom chip
bipolar microprocessor could be designed using one chip
for control and four, four bit data flow chips. The one con-
trol chip in this case would be of a state logic, “hardwired”
design where the data flow and system control lines are
driven by a complex combination of flip-flops and gates.
This would result in minimum chip size and maximum
speed at the cost of a fixed instruction set. Although effi-
cient, this design would require extensive development
and modelling plus market research to insure that the
chosen instruction set is both saleable over the long term
and capable of being implemented. The basic trade-off is
therefore reduction in total chip count from approximately
20 to 5 at the expense of a long development cycle and a
market restricted to a fixed instruction set.

The other design approach is based on microprogram
design. In this case, the control chip drives the system and
data flow control lines through a microprogram ROM
external to the chip. Although it is possible to design a
single control chip using microprogram techniques, as was
done in the case of the National Semiconductor IMP
series, the existence of high performance, low cost, stan-
dard bipolar ROM chips makes the multiple chip con-
figuration more cost effective.

In a multi-chip, microprogram control design, the con-
trol chip generates a sequence of ROM addresses and
provides some secondary functions including carry con-
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trols and shift gating. The major chip design elements are
an instruction register, a ROM address register/counter,
and ROM next address logic which decodes the contents of
the instruction register and system status indicators to
generate the next ROM state. The key to control chip
design is in the ROM next address decoder.

The designer of a microprogram control chip faces a di-
lemma. The instruction decode logic can be designed along
one of three lines:

1. For a fixed, unique instruction set, which will result
in minimum logic and chip area.

2. For broad general purpose use with a wide variety of
potential instruction sets.

3. For the compromise case: a relatively fixed instruc-
tion set with capability for some expansion and modi-
fication.

The problem is that none of these three approaches works
effectively for different reasons.

If a fixed instruction set is defined, the argument for
custom, random logic control chips as described earlier be-
comes strong. If there is some control over the instruction
set and instruction formats, the design difficulty can be
greatly reduced. This will result in the most efficient
design at the cost of development time.

Alternatively, it is possible to make powerful fixed ma-
chines with simple microprogram control architectures us-
ing standard ROMs. For instance, the microprogram con-
trol logic for a multiple register machine similar to ma-
chines of the Interdata, IBM 360/370, and Modular Com-
puter class can consist of an instruction register, a 256 X8
ROM (one chip), an 8 bit synchronous counter (2-74163s),
and two TTL chips to test system status conditions. When
used in conjunction with a microprogram ROM and 4 bit
slices, such a Monolithic Memories’ 6701s, a 16 bit ma-
chine with 256 possible instructions can be built.

The fixed decode microprogram control chip has the
problem that it does not provide the advantages of either
the custom logic chip design (minimum system part
count) or the standard ROM assembly design (low chip
count, standard components, and the ability to decode a
large instruction set in a flexible fashion). The system
definition provided by the fixed decode microprogram con-
trol chip is therefore that of restricting the design to a
particular instruction set without providing a correspond-
ing improvement in packaging efficiency or instruction
power over what could be obtained with a very few ROM
and T'TL parts.

Designing a microprogram control chip for broad,
general purpose use is also difficult: the decoder design
has no shape. A rather general approach could be imple-
mented by using a large programmable logic array (PLA)
to decode the instruction register and provide inputs to a
ROM address counter/register. Another aspect of the
problem is that good general purpose designs are usually
the result of evolution through a series of specific designs
followed by a consolidation of good features. Since the
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component count for a typical discrete ROM decoder is
typically low, there is a good argument for a standard logic
chip approach to the general purpose control logic as well.

This leaves us with the compromise position: a partially
structured instruction set for a definable control chip with
some generality and modification capability. Since a
microprogram control chip does not appear to offer an ad-
vantage for the fixed instruction set case, nor for the
general case, it is difficult to derive an advantage for the
intermediate, semi-fixed case.

CONTROL FLOW INTEGRATION: BIPOLAR VS.
MOS

One may ask why there is little advantage to a dedicated
microprogram control chip in a multi-chip bipolar micro-
processor configuration. The reason is the existence of
broad lines of high performance, low cost TTL ROMs and
P.ROMs; and the broad line of TTL logic in general.

MOS ROMs and P.ROMs are not available in the same
variety as TTL types and their performance is much
lower. MOS logic level interfaces and power supply re-
quirements have not been as standardized as TTL, and
there is no standard set of universally compatible, general
purpose MOS support logic as there is with TTL. This
makes the design of an MOS multi-chip microprocessor
more difficult. Because of the lack of both high speed
MOS microprogram ROMs with standard logic level inter-
faces and a standard MOS support logic, the control chip
must drive the system control lines directly. Either a state
logic design or a tightly packed microprogram design with
all microprogram ROM on-chip must be used.

With a broad availability of bipolar ROMs, P.ROMs,
and TTL support logic, the necessity and in fact justifica-
tion for a dedicated control chip is greatly reduced. Except
for the case of a one chip controller for a dedicated
instruction set, it would appear that power, cost effective-
ness, and flexibility favor a combination of data flow chips
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with standard ROMs and some TTL for multi-chip bipolar
microprocessors. )

CONTROL FLOW WITH STANDARD
COMPONENTS: AN EXAMPLE

Figure 1 shows a block diagram of a 16 bit bipolar
microprocessor using Monolithic Memories’ 4 bit data
flow chips with ROMs and T'TL logic for the control sec-
tion. For a total of less than 25 chips, one can construct a
16 register machine with interrupt and Direct Memory ac-
cess capability, indexed indirect addressing, hardware
multiply and divide, double precision (32 bit) arithmetic
capability, and stack oriented instructions. Performance
of 900 nanoseconds for a register to register ADD instruc-
tion, 1.2 microseconds for a register load instruction, is
typical.

SUMMARY

This paper has explored the different design configura-
tions for bipolar microprocessors. Three distinct categories
result:

1. The single chip microprocessor which has the lowest
system cost with moderate performance.

2. The multiple chip design with a dedicated instruction
set and dedicated control chip design, which results in
high performance at moderate system chip count and
price.

3. The multiple chip design using general purpose con-
trol and data flow chips which results in high perfor-
mance and a flexible design with somewhat higher
chip count than the custom multi-chip approach of
case 2 but similar system costs due to the use of high
volume, general purpose chips.

The conclusion drawn in the above presentation is that
multiple chip bipolar microprocessor designs should be
either a custom chip set optimized for a particular instruc-
tion set or they should be designed using standard data
flow chips and bipolar ROMs and TTL for the control sec-
tion. This is due to the availability of a broad line of high
performance bipolar ROMs and TTL logic which allows
construction of powerful microprocessor control logic sec-
tions using a few standard chips and therefore greatly
reduces the cost effectiveness of generalized microprogram
control logic chips.
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INTRODUCTION

Evolution of bipolar technology in recent years has enabled
semiconductor manufacturers to increase performance and
packing density to the extent that meaningful standard
functions of LSI complexity can be defined and built.
MACROLOGIC is a powerful approach to accomplish this.

Technologically one of the densest junction isolation
processes available and generous use of so-called non-standard
circuit approaches have been applied. High performance is
obtained because of shallow structures, extensive use of
Schottky clamping, minimizing the nodal voltage swings,
charge injection of switch transistors, etc.

Table I summarizes the features of the technology used.
Avplying this technology as a tool to improve the performance
as well as the cost-effectiveness of digital systems, a set of
standard functional blocks has been defined for applications
in computers, control and communications systems.

FUNCTIONAL DESCRIPTIONS

This paper describes in detail a set of five parts using the
MACROLOGIC approach. The user can select the required
functions to implement his particular architecture. All parts
have the following common features making them archi-
tecturally compatible:

(a) They are optimized for microprogrammed control.

(b) A 4-bit slice implementation is chosen and functions
can be expanded to handle larger word lengths with
few or no extra components.

(¢) The devices are provided with three state outputs
wherever appropriate, so that bus organized systems
are easily realized.

TABLE I—MACROLOGIC Technology Features

Delays of 4 ns per gate

Speed-power product <8 pJ

Complexities of 200-250 gates/chip

Packing density of 50 gates/mm?

TTL compatible inputs/outputs

Standard up-to 24-Pin DIP packages

High drive capability for bus organized systems

® & o o o o o

* Trademark of Fairchild Camera and Instrument Corporation.
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(d) All operations oceur synchronously with a clock.

(e) Any device can be addressed as a source of data by
activating Output Enable (OE) and as a destination
of data by activating the Execute (Ex) input.

Arithmetic logic register stack

The Arithmetic Logic Register Stack (ALRS) is designed
to implement general registers in high performance program-
mable digital systems. As shown in Figure 1, it consists of a
4-bit ALU, 8 word by 4 bit RAM with latched outputs,
instruction decode network, control logic and an output
register. The ALU implements 8 arithmetic and logic
functions where one 4-bit operand is supplied from an
external source (input data bus) and the second 4-bit operand
is supplied internally from one of the 8 RAM words. The
selected operation is performed on the operands and the result
is loaded into the same RAM location and simultaneously
loaded into the output register which is made available
through three-state buffers (output data bus). An active
LOW Output Enable (OE) input controls these buffers. The
instruction bus for the ALRS consists of two fields, A and I;
A, through A, indicate the selected register and I, through
I> specify the desired function to be performed. Thus, the
ALRS provides 8 registers (R, through R;) and 8 different
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Figure 1—ALRS block diagram
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TABLE II—ALRS /-Field Assignment

I, I, I, INSTRUCTION COMMENTS
L L L (Rx) plus Bus plus 1>Rx| Add with carry

L L H (Rx) plus Bus—Rx Add

L H L (R)x* Bus—Rx Logical AND

L H H | Bus—Rx Load Rx

H L L (Rx)—Bus Read Rx

H L H (Rx) 4+ Bus—Rx Logical OR

H H L (Rx) ® Bus—Rx Exclusive OR

H H H | Bus—Rx Load Complement

operations may be performed on any of these registers. The
Iy—1I, inputs are decoded by the instruction decode net-
work to generate the necessary control signals for the ALU.
(Table II lists I-Field code assignments.) The ALU also
generates and transmits to the control logic Carry Out,
Carry Propagate and Carry Generate, Negative status and
Overflow status. The status Zero (Z) is generated and
directly outputted. The control logic operates on these Status
Signals (except Z) as a function of I'1— I and a control MSS
and generates three device outputs W, X and Y. The W
output always represents the Carry Output from a slice.
However, X and Y outputs represent Negative and Overflow
for the most significant slice and represent Carry Propagate
and Carry Generate for the remaining slices of an array.
A high level on the MSS input declares the most significant
slice in an array of ALRS’s. All except the most significant
device, should have a low level (ground) on MSS input.

Execution of an instruction is controlled by the clock when
EX is low. The Instruction Bus and Data Bus arc enabled
when the Clock is high. Results are written into the RAM
when Clock is low and are loaded into the output register on
the low to high Clock transition.

The I, serves a dual purpose; during arithmetic instructions
it is used as the carry input and for non-arithmetic instruc-
tions it serves as an instruction input. This is possible
because only the two arithmetic instructions require a carry.

P-Stack

The P-stack is a 16 word by 4 bit “Push Down-Pop Up”
Program Stack. It is designed to implement Program Counter
(PC) and return address storage facilities in high performance
programmable digital systems or can also be used as a 16-level
general purpose stack. N

It consists of an input multiplexer, a 16 X4 RAM with
latched outputs, an inecrementor, control logic, Stack Pointer
(SP), stack limit monitors and output buffers (See Figure 2).

When the device is initialized, the main PC will be the top
location of the Stack. As new program counter values arc
“pushed” onto the Stack . (Call Operation) ‘all previous
counter values move down one level. The top location of the
Stack will be the current PC. After 15 entries, the original PC
will be at the bottom or last location of the Stack giving a 15
level nesting capability. Information may also be “popped”
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Figure 2—P-Stack block diagram

from the Stack (Return Operation) bringing the most recent
PC to the top of the Stack.

The P-stack executes 4 instructions: Return, Branch, Call
and Fetch as specified by a 2-bit instruction (see Table III).
A 4-bit input bus allows data to be loaded from an external
source into the current PC. A 4-bit Address bus (A-bus)
provides the current PC value as an output; in addition, this
data is also available on a second 4-bit bus (O-bus) to allow
effective address calculations relative to the program counter.
Tterative instruction fetch can be accomplished by optional
increment control of the current program counter via the CI
input. The data inputs of the RAM are derived from the
Data Bus (D-bus) or the incrementor, as seclected by the
input multiplexer.

The address for the RAM is obtained from the Stack
Pointer (SP) which generates an incremented, decrecmented
or unchanged address as a function of the instruction. The
output of the RAM is stored in output latches. The O-bus is
derived from the output latches and cnabled by the active
LOW Output Enable (OE) input. The A-bus is also derived
from the output latches; it is enabled internally during the
Fetch Instruction. Exceution of instructions is controlled by
the Execute (EX) and Clock (CP) inputs.

Operation of the active level LOW Master Reset (MR)
causes the SP to be reset to the main PC (top of the Stack)
and that RAM location is cleared to all zeros. The Stack
Empty (SE) output will go LOW. This operation will

TABLI ITI—P-stack Instructions

I, I INSTRUCTION COMMENTS
L L SP-1-8P Return (Pop)

L. H D-bus—PC Branch

H L SP + 1-8P, D-bus—PC | Call (Push)

H H PC—A-bus, PC + 1—PC | Felch
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override other inputs. In the event that the Stack becomes TABLE IV—DPS Instructions
fully loaded, the Stack Full (SF) output goes LOW. If an
additional Call Operation is performed after SP has reached . . . N
(1111),, SP will increment to (0000),, the contents of that Lol Lo | o | I| Jo | INSTRUCTION COMMENTS
location will be written over, the Stack Empty (SE) will go
LOW and SF will go HIGH (wrap around operation). When LI{L|L|L 1111 —» OUTPUT
the top-most location is selected corresponding to SP= — BYTE MASK
(0000)., as for example, after Master Reset (MR), the Stack LjL )L |L|H,0000—OUTPUT
Empty (SE) output is LOW. An additional Return Operation Llit!lLlu®lL]li110— OUTPUT
under these conditions forces SP= (1111),, causing SE to go —2 CONSTANT
HIGH and SF to go LOW (again wrap around operation). L{L|L|H|H|11l - OUTPUT
L{L|H|{L|L D — OUTPUT | ‘OR’ BYTE
Data path switch
L|L)|]H|L]| H]|O0000— OUTPUT | MASK D-BUS
The Data Path Switch (DPS) is an advanced two port —
multiplexor with two 4-bit input ports (D-bus and K-bus) Ly L HIHL D — OUTPUT | ‘AND’ BYTE
and a 4-bit output port (O-bus). It has a 5-bit instruction bus T T —H_ ? H | 1111 — OUTPUT | MASK D-BUS
(I-bus). The device consists of a data routing network, S N
a control block section and output buffers (See Figure 3). The L!H|L|L]|L|1000— OUTPUT | BYTE SIGN
DPS can perform 32 different instructions as determined by e et e e
the 5 I-lines (see Table 4 for a listing and description). The _L H| L L) H|0000—OUTPUT | MASK
DPS is a completely combinatorial network without registers; L_ 71; T HlL K — OUTPUT | ‘AND’ BYTE
it therefore does not have a clock input. The device always S N
looks at the data bus, so the inputs are always open. Whether L|{H|L|H|H|I11ll - OUTPUT | MASK K-BUS
the result is being used is determined by the Output Enable - ] —
(OE). The DPS not only can selectively gate one of two LIH B L)L D — OUTPUT .
. h —| LOAD BYTE
4-bit ports onto the 4-bit output port, but also perform LiulelLla K — OUTPUT
functions such as shifting and sign extending. Its typical use e
is to close the data path loops around arithmetic logic L{H|{H|H|L |000 — OUTPUT
networks such as Arithmetic Logic Register Stack described +1 CONSTANT
before. LIH|H|H]|H]| 0000 — OUTPUT
It also has many features normally associated with True I; _Ij T T T RI — OUTPUT | K-BUS SIGN
Complement, One/Zero generators. It can generate true - com- & LO
plement outputs of the input ports or the outputs can be — ] — EXTEND
foreed to all ones or all zeros. In addition to all ones and all HILILIL|H K->LO&K~
zeros, it can provide 0001, 1000 and 1110 as constants at the 1 OUTPUT
output. In arrayed operation, these constants can be used for H!L g ng —Lﬁ RI — OUTPUT | D-BUS SIGN
incrementation, byte sign masking and decrementation. & LO
Shift linkages left out (LO), right out (RO), left in (LI) -——|——{—|—|—|———————] EXTEND
and right in (RI) are available as individual inputs and HIL/L | H|H|DI—>LO&D
outputs for complete flexibility in handling expansion and end o - OUTPUT
around shifts. H{L|H|L|L|RI>0,D0— |SHIFT LEFT
Oy, Dy — 02, D-BUS
SHIFT LINKAGES D2 — O3, D3 —
[t S T e
:> H|L{H|L{H]|Rl —0,KO— SHIFT LEFT
D-BUS O, Ky = Oy, K-BUS
DATA OUTPUT 0-BUS K2 - 0; & K3
) ROUTING BUFFERS — LO
K-BUS H{L|H|H|L!LI-0;,D3—> [SHIFT RIGHT
— Oy, D2 — O, D-BUS
DI - 00 &
| T DO — RO
HIL]H|H|H|D3->0;D3—> SHIFT RIGHT
I-BUS ) CONTROL Oy, D2 - 0y, | ARITH D-BUS
D1 — 0, DO
— RO

OE

Figure 3—DPS block diagram

(Continued on next page)
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TABLE IV—DPS Instructions

[CONTINUED]
I, | Is | I, | I, | I, | INSTRUCTION COMMENTS
H|H|L |L|L|LI—>0;4K;— SHIFT RIGHT
0q, K2 — Oy, K-BUS

K, - 0 &

KO — RO
H{ H|L|L|H|K;—0;K;— SHIFT RIGHT

0, K2 - 0y, ARITH K-BUS

K-> 0 &

KO-RO
H|{H|L|H|L|K-O0OUTPUT ‘OR” BYTE MASK
H{H| L | H| H|0000—-OUTPUT | K-BUS
H{H|H|L|L|D-OUTPUT LOAD BYTE
H|H|H|L| H|K-— OUTPUT COMPLEMENT
H|{H| H| H| L | NOT USED
H{H| H| H| H|NOT USED

Data Access Register

The Data Access Register (DAR) is designed to implement
16 instructions (sec Table IV) which are suitable for memory
address arithmetic and manipulation. It consists of a 4-bit
adder, three 4-bit registers (R, R, and R,), an output
register and associated control logic (sce Figure 4). It has two
output ports the A-bus and the O-bus. Both ports are driven
by three state buffers with individual output enables (OE1
and OK2). Carry In (CI) and Carry Out (CO) signals arc
available for expansion. One 4-bit operand for the adder is

co

D@ DI D2 D3
DL e
CI ADDER
10—
11—
12—+
13—
REGISTER ARRAY
CONTROL
l | I {
EX—s OUTPUT
CP—o -+ REGISTER
OUTPUT
OE! DRIVERS Ok2
IR
09 O 02 03

MULTIPLEXOR

OUTPUT
DRIVERS

AG Al A2 A3

Figure 4—DAR block diagram

TABLE V—DAR—Instructions

I, | I, | I, | I, INSTRUCTIONS COMMENTS
L|L}L|L]|Re—A-BUS R, is Updated By
Ro + D-BUS — R, Adding With BUS
L|LJ|L| H|Ro+ D-BUS — A-BUS| Same as Above Except
Re + D-BUS — R, Updated Value is
the Address
L|L|H|L]|Re— A-BUS, Update R, With the
Ry + D-BUS — R, Sum of R¢ and
BUS
Ll L|H| H|Ry+ DBUS—- R, Same as Above Ixcept
Ro + D-BUS — A-BUS| Updated Value is
the Address
LiH|L|L]|Ri— A-BUS Update R: with the
Ro + D-BUS - R, Sum of Re and
BUS
L | H|L| H| Ro+ D-BUS — A-BUS| Same as Above Except
Ro + D-BUS — R, the Updated Value
is the Address
L{H|H|L]|R —A-BUS R, Supplies the
R, + D-BUS — R, Address and then
Update R,
LI H|H| H|R+ D-BUS— R, Update R, and
R: + D-BUS — A-BUS! Updated Value is
the Address
H|L|L|L]|R:— A-BUS Use R, for the
D-BUS — R, Address and Update
R: from the BUS
H|L|L| H| D-BUS— A-BUS Update R from the
D-BUS — R, BUS and Updated
Value is the Address
H| L | H| L ]| Roe— A-BUS Use R, for Address and
D-BUS — R, then Update Ro
from the BUS
H| L | H| H| D-BUS — A-BUS Update Ry from the
D-BUS — R, BUS and Updated
Value is the Address
H|{H| L | L | R:— A-BUS Rs Supplies the
R: + D-BUS — R, Address and then
Update R,
H|{H|L| H|R:~+ D-BUS — R Update R; and the
Ry + D-BUS — A-BUS Updated Value is
the Address
H|'H| H| L | Ri — A-BUS Use R, for Address
D-BUS — R, and Update R; from
the BUS
H{ H| H| H | D-BUS - A-BUS Update R, from the

D-BUS —» R,

BUS and Updated
Value is the Address
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always supplied by the D-bus while the second operand is
obtained from one of the three registers. Independent of the
destination register (R, B1or R2), the result of an operation
is always loaded into the output register from which the O-bus
is derived. The A-bus is derived from two selectable sources;
one of the three registers can supply its unmodified contents
to the A-bus while the same register is being updated, or the
updated result can be gated on the A-bus. In a typical
application, the register utilization in the DAR may be as
follows: R, is the program counter (PC), R: is the stack
pointer (SP) (for memory resident stacks) and R. contains
the operand address. For an instruction fetch, PC can be
gated on the A-bus while it is being incremented (i.e.,
D-bus=1). If the instruction fetched calls for an effective
address for execution, which is displaced from the PC, the
displacement can be added to the PC and loaded into R
during the next microcycle.

R-Stack

The R-stack is a high speed 64-bit Read/Write Random
Access Memory organized as 16 words by 4 bits. When the
R-stack receives a LOW on the Execute (Ex) and Clock (CP)
inputs, the instruction bits I,, I», I; and I, sclect one of
sixteen 4-bit words (see Figure 5). If the instruction bit I,
is at a HIGH level, the contents of the selected word is
non-destructively rcad out and presented to the output
register. On the LOW to HIGH Clock transistion the output
register is loaded with this data.

For a write operation, I, and Ex must be LOW. If this is
the case, then while CP is LOW, data is written into the
sclected location. If the input data change during the period
when CP, Ex and I, are LOW, the contents of the selected

D@ DI D2 D3
IO—[%:)—-E INPUT GATING
EX —
P A
- I 16 X 4
12—
13—  MEMORY CELL
14— ARRAY
_—{ )——+cP OUTPUT REGISTER

——

o9 O 02 03

Figure 5—R-Stack block diagram

L

ACO |
[ acl ] bPs INSTRUCTION
" acz | | REGISTER
ALRS | AC3 | PSTACK
T
TEMP | | )
TEMP2 | DATA FROM
TEMP 3 MEMORY
ADDRESS MEMORY
LATCHES ADDRESS
DATA TO
MEMORY

Figure 6—Data path for a hypothetical 16-bit processor

address will follow the changes (non-ones-catching) provided
the set up time criteria are met. On the LOW to HIGH
transition of the CP, the information again is loaded into the
output register. A three state Output Enable (OE) controls
the output buffers. '

TYPICAL APPLICATIONS

One of the many possible applications for the class of
components presented in this paper is to implement data
paths for emulating existing instruction sets using micro-
programmed control. Emulators using such high-speed,
complex functional blocks are attractive because they offer
improved cost/performance while retaining software com-
patibility with the target machine. For example, consider a
4-accumulator fixed word length 16 bit processor that uses
two’s complement arithmetic. It has a 16-word hardware
stack for sub-routine return address as well as for general
purpose stack use. Figure 6 shows a possible data path for this
architecture. It has a memory reference instruction format as
shown in Figure 7.

The two-bit index field specifics 4 addressing modes: base
page, PC relative, AC2 relative and AC3 relative. For relative
mode addressing, the 8 bit displacement field is treated as a
signed number in two’s complement notation. Figure 8 shows
the micro sequence to implement a macro instruction fetch.

© Experience indicates that macro instructions can be fetehed,

interpreted and executed in a relatively small number of
microcycles allowing sub-microsecond realizations.
One of the simplest microword formats for this kind of

15141312 1119 9 8 7 6 54 3 2 | @
T 1 1T 11 | oy

OoP CODE INDEX DISPLACEMENT

Figure 7—Memory reference instruction format
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READ PC

l

PC—=ADDRESS LATCHES
PC+1—= PC

‘

READ MEMORY

:

MEMORY INSTRUCTION
——
DATA REGISTER

MEMORY DATA TEMP1

—

SIGN EXTENDED

GO TO
IR
DECODE

Figure 8—Micro-sequence flow for instruction fetch

organization is based on the concept of Register Transfer
Modules. There is one source of data and one or more
destinations. During one clock cycle data will move from
source to destination. The data can be operated on (according

to the instruction tables) during such a transfer. Figure 9 is
a possible microword format. The source field can be decoded
to activate Output Enable (OE) inputs of the functions and
the destination field can be decoded to activate the Execute
(Ex) inputs. The function field drives the I lines of the
devices described.

SUMMARY AND OUTLOOK

The functional elements described in this paper are essentially
LSI building blocks for high-performance data path imple-
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mentation, allowing the construction of microprogrammable
processors and controllers with clock rates of up to 10 MHZ.

Of equal importance as the datapath elements are of course
the tools available to implement the control sections of the
processor. For this purpose a series of compatible bipolar
RAM’s, ROM’s and PROM’s have been developed and the
development of a micro-program control unit is well on its
way to completion.

Further elements in the MACROLOGIC family for periph-

eral control applications are either available (e.g., FIFO,
CRC) or in development.
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Architecture of microcontroller system

by MICHAEL LICCARDO

Scientific Micro Systems
Mountain View, California

SYSTEM OVERVIEW
A microcomputer designed for control

The SMS MicroController is a microcomputer designed
for control. It features:

Execution speed

® 300 nanosecond instruction execution time.

e Direct address capability—up to 4096 16-bit words of
program memory.

o Eight 8-bit general purpose registers.

e Simultaneous data transfer and data edit in a single
instruction cycle time.

® n way branch or n entry table lookup in two
instruction cycle times.

e MicroController instructions operate with equal speed
on 1-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, or 8-bit
data formats.

The MicroController instruction set features control
oriented instructions which directly access variable length
input/output and internal data fields. These instructions
provide very high performance for moving and interpret-
ing data. This makes the MicroController ideal in switch-
ing, controlling, and editing applications.

Interface simplicity and expandability

e Direct connection to TTL (3-state) I/0 (Open
Collector outputs are optional).

e /0 expandable to 224 connection points with storage
buffer at each point.

o User defined data flow direction with each group of 8
1/0 points.

External device signals may be accessed with minimal
interface circuitry. The MicroController input/output
system provides a direct register interface to external
devices. Unlike classical minicomputer bus structures,
external devices do not require the logic for providing ad-
dresses to the input/output system. The address of an
external device is determined programmatically within the
MicroController.

75

Direct processing of external data

Data from external devices may be processed (tested,
shifted, added to, etc.) without first moving them to
internal storage. This is because its I/ O system appears to
the MicroController as a set of internal registers. In fact,
the entire concept is to treat data at the I/0 interface no
differently than internal data. This concept extends to the
software which allows variables at the input/output
system to be named and treated in the same way as data
in storage.

Separate program storage and data storage

The storage concept of the MicroController is to
separate program storage from data storage. Program
storage is implemented in read-only memory in recogni-
tion of the fact that programs for control applications are
fixed and dedicated. The benefits of using read-only
memory are that great speeds may be obtained at lower
cost than if read/write memory were used, and that
program instructions reside in a non-volatile medium and
cannot be altered by system power failures. Data storage
for the MicroController is implemented with read/write
memory because data in control and other real time ap-
plications is dynamic and variable.

High density packaging and reliable operation

e The MicroController is implemented completely with
LSI circuits.

e The MicroController CPU consists of a single
integrated circuit.

e Single +5.0 volt power supply operation.

The MicroController is provided packaged on one of
four basic boards. The smallest packaging scheme is the
System 10 which is 6.875 inches by 2.675 inches. This
board can accommodate CPU, 2K words of program
storage, and 32 I/0 points. The largest package, the
System 40, is 6.875 inches by 13.475 inches and accom-
modates a fully expanded system consisting of CPU, 4K
words of program storage, 224 I/0 points and 256 bytes of
read/write data storage.
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Figure 1—Microcontroller system diagram

MicroController functional components

The MicroController is a complete microcomputer
system consisting of:

® A central processing unit called the Interpreter.
Read-only program storage.

Optional read/write data storage called Working
Storage with variable field address of from 1 to 8 bits.
A complete input/output system called the Interface
Vector.

The MicroController System is shown in Figure 1.

Figure 2 illustrates the MicroController architecture.
The MicroController CPU contains an Arithmetic Logic
Unit (ALU), Program Counter, Interface Vector Address
Register (IVL), and Working Storage Address Register
(IVR). Eight 8-bit general purpose registers are provided,
including seven working registers and an Auxiliary register
which performs as a working register and also provides an
implied operand for many instructions. The MicroCon-

troller registers are shown in Figure 2 and are summarized
below:

Control Registers include:

Instruction—A 16-bit register containing the current
instruction.

Program Storage Address (AR)—A 13-bit register
containing the address of the current instruction being
accessed from Program Storage.

- Program Counter (PC)—A 13-bit register containing the

address of the next instruction to be read from Program
Storage.

IV Byte Address (IVL)—An 8-bit register containing the
address of the current byte being accessed from the In-
terface Vector. IVL is under program control.

Working Storage Address (IVR)—An 8-bit register
containing the address of the current byte being ac-
cessed from Working Storage. IVR is under program
control.
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Data Registers Include:

Working Registers (WR)—Seven 8-bit registers for data
storage.

Overflow (OVF)—A 1-bit register that retains the most
significant bit position carry from ALU. Arithmetically
treated as 2°.

Auxiliary (AUX)—An 8-bit register. Source of implied
operand for arithmetic and logical instructions. May be
used as a working register.

A crystal external to the CPU is used to generate the
CPU system clock. The CPU provides eight instructions.

The 16-bit MicroController instructions are stored in
512 to 4096 words of read-only Program Storage. Program
Storage can be implemented with either mask coded
ROMs (Read-Only Memory) or PROMs (Programmable
Read-Only Memory).

The input/output system, called the Interface Vector,
serves as the data path over which information is trans-
ferred into and out of the MicroController. The basic ele-
ments of the Interface Vector are:

® The general purpose 8-bit input/output registers, or
Interface Vector (IV) Bytes, whose tri-state data path
serves as the connection points to the user system.

® The IVL register which contains the address of the IV
Byte currently being accessed.

® Variable field selection which permits 1 to 8-bit field
access of a selected IV Byte in a single instruction.

The Interface Vector eliminates the need for costly in-

terface logic and presents a simple, well-defined intercon-
nection point to the user system.

Working Storage is available as an option that provides
256 bytes of read/write memory for program data or
input/output data buffering. Working Storage consists of:

® 256 8-bit bytes of read/write memory organized as
two pages (banks), Page 0 and Page 1, of 128 bytes
each.

® The Working Storage address register, IVR which
holds the address of the byte currently accessed in
either Page 0 or Page 1, depending on the state of the
Page Select Register.

® The Page Select Register, addressed through IVR, is a
single bit register used to select Page 0 or Page 1 of
Working Storage.

e Variable Field Select which permits 1 to 8-bit field
transfers to or from an addressed Working Storage
byte in a single instruction.

MICROCONTROLLER INSTRUCTION SET

The MicroController has a repertoire of eight instruc-
tions which allow the user to test input status lines, set or
reset output control lines, and perform high-speed
input/output data transfers. All instructions are 16 bits in
length. Each instruction is executed completely in 300 na-
noseconds. ‘

Data is represented as an 8-bit byte; bit positions are
numbered from left to right, with the least significant bit
in position 7.

012345867
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Figure 2—Microcontroller architecture
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Within the Interpreter, all operations are performed on
8-bit bytes. The Interpreter performs 8-bit, unsigned, 2’s
complement arithmetic.

Instruction formats
The general MicroController instruction format is:

Instruction Formats

01234586789 101112131415]

O
| Co:, Operand|s) l

Table I contains a summary of the MicroController
instruction set and description of the operand fields.

All instructions are specified by a 3-bit Operation (Op)
Code field. The operand may consist of the following
fields: Source (S) Field, Destination (D) Field, Rotate (R)
Field, Length (L) Field, Immediate (I) Operand Field,
and (Program Storage) Address (A) Field.

TABLE I—MicroController Instruction Summary

The instructions are divided into five format types
based on the Op Code and the form of the operand(s).

TYPE |

OPERATIONS
Jo12/3as56 7|89 100112131415 MOVE  AND
ADD  XOR
op
| Code S R 0
TYPE I OPERATIONS
01234566 7[89 101112131415 MOVE ADD
o 5 oy 5 AND  XOR
Code
TYPE I OPERATIONS
101 2[34567]89 101112131415 XEC  XMIT
Op NZT
[ Code S !
TYPE IV OPERATIONS
|01 2[3456 789 10p1 12131415 XEC  XMIT
op NZT
| c s L 1
TYPEV OPERATIONS
1012[34567809101112131415] P
op
| &, )

OPERATION| FORMAT RESULT NOTES
MOVE Content of data field addressed by S, L re-
places data in field specitied by D, L.
ADD Sum of AUX and data specified by S, L.re- | ~
EHIH places data in field specified by D, L. i S and DmbothLam re_g's(ev !
L en L specifies a
AND Logical AND of AUX and data specitied by | right rotate of L places ap-
S, L replaces data in field specified by D, L. plleg to the register specified
by S.
Logicat exclusive OR of AUX and data
XOR specified by S, L replaces data in fieild
specified by D, L.
" It S is IV or WS address then
XMIT The literal value | repiaces the data in the | ' iviteq 1o range 00-37.
field specified by S, L. Otherwise | limited to range
. 000-377.
If the data in the field specified by S, L .
o if S specifies an IV or WS
L P <ot struction | address then 1 is timited 1o
NZT sequence. spocfied by S, the range 00 - 37. | is limited
not equal to zero, execute the instruction at  the 000 - 377 .
address determined by using the literal fas | O ' range other
an offset to the Program Counter. g
HHIH Perform the instruction at address- deter- The offset operation is per-
mined by applying the sum of the fteral | ot (VST SRR K B
and the data specified by S, L as an offset of PC to the nearest multiple
XEC to the Program Counter. I that instruction | & 2" 00" %577 o1 256 i
does not ransfer control, the program se- | 000" 4’ o 'adding the
quence will continue from the XEC instruc- oﬁset.
tion location.
IMP The literal value 1 replaces contents of the 1 limited to the range 00000 -
Program Counter. 07777.
Instruction fields

Op code field—3-bit field

The Op Code field is used to specify one of eight Micro-
Controller instructions.

OP CODE
OCTAL VALUE INSTRUCTION RESULT

0 MOVE S,L,.D (S)-D

1 ADD S,LD (S) plus (AUX)-D

2 AND S)L,D, (S)A (AUX)-D

3 XOR S,LD (S) ® (AUX)-D

4 XEC LLSorlI,S Execute instruction at
current PC offset by
I+(S)

5 NZT LL,S or I,S Jump to current PC offset
by Lif (S)#0

6 XMIT ILL<Sorl,S Transmit literal I-S

7 JMP A Jump to program location A

S,D fields—5-bit fields

The S and D fields specify the source and destination of
the operation defined by the Op Code Field. The Auxiliary
Register is the implied source for the instructions ADD,
AND and XOR which require two source fields. That is,
instructions of the form:

ADD XY

imply a third operand, say Z, located in the Auxiliary
Register so that the operation which takes place is actually
X+Z, with the result stored in Y. This powerful capability
means that three variables are referenced in 300 nano-
seconds.
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OCTAL VALUE

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

OCTAL VALUE

20
21
22
23
24
25
26
27

OCTAL VALUE

0s-17, is used to spe_cify one of seven working registers
(R1-R6, R11), Auxiliary Register, Overflow Register, IVL
and I'VR registers.

Auxiliary Register

R1

R2

R3

R4

R5

R6

IVL Register—IV Byte address register—Used as a D field only, or S field in XMIT
instruction.

OVF-Overflow register—Used as an S (source) field only.

R11

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

IVR Register—Working Storage address register—Used as a D field only, or S field in
XMIT instruction.

20,-27, is used to specify the least significant bit of a variable length field within
the IV Byte selected by the address in the IVL register. The length of the field is
determined by L.

Field within selected IV Byte; position of LSB=0
=1
=2
=3
=4
=5
=6
=7
30,-37, is used to specify the least significant bit of a variable length field within

the Working Storage Byte selected by the address in IVR Register. The length of the
field is determined by L.

30 Field within selected W.S. Byte; position of LSB=0
31 » =1
32 =2
33 =3
34 =4
35 =5
36 =6
37 =7
L/R field—3-bit field 3—Field length =3 bits
4—Field length=4 bits
The L/R field performs one of two functions, specifying 5—Field length=5 b@ts
either a field length (L) or a rotation (R). The function it 6—F§eld length=6 bfts
actually does specify for a given instruction depends upon 7—Field length =7 bits
the contents of the S and D fields:
A. When both S and D specify registers, the R field is I field—5/8-bit field
used to specify a right rotation of the data specified by the
S field. (Rotation occurs on the bus and not in the source The I field is used to load a literal value (a binary value
register.) contained in the instruction) into a register, IV or Working
B. When either or both the S and D fields specify and Storage Byte or to specify the low order bits of the
IV or Working Storage Byte, the L field is used to specify Program Counter.
the length of the field (within the byte) accessed, as shown The length of the I field is based on S field:
below:
OCTAL VALUE A. When S specifies a register, the literal I is an 8-bit
0—Field length=8 bits field (Type III format).
1—Field length=1 bit B. When S specifies an IV or Working Storage Byte, the

2—Field length =2 bits literal I is a 5-bit field (Type IV format).
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A field—13-bit field

The A field is a 13-bit Program Storage address field. In
current systems, however, only 12 bits are used, resulting
in storage capacity of 4096 instructions.

Register operations

When a register is specified as the source, and an IV or
Working Storage field as the destination, the least signifi-
cant bits of the operation (MOVE, ADD, AND, XOR)
result are stored. The operation is performed on the entire
8-bit source for a MOVE, or between the 8-bit AUX and
the source register for ADD, AND, XOR operations. The
least significant bits of the result are stored in the IV or
Working Storage field specified in the instruction.

When an IV or Working Storage field of one to eight bits
is specified as the source, and a register as the destination,
the 8-bit result of the operation (MOVE, ADD, AND,
XOR) is stored in the register. The operations ADD, AND,
XOR actually use the IV or Working Storage data field (1-
8 bits) with leading zeros to obtain 8-bit source data for
use with the 8-bit AUX data during the operation.

Because IVL and IVR registers can be specified as desti-
nation fields only, (see description of S, D fields), opera-
tions involving IVl and IVR as sources are not possible.
For example, it is not possible to increment IVR or IVL in
a single instruction, and the contents of IVL or IVR can-
not be transferred to a working register, IV Byte, or Work-
ing Storage location.

The OVF (Overflow) Register only can be used as a
source field; therefore, it cannot be set or reset in a single
instruction.

Instruction descriptions

The following instruction descriptions employ MCMAC
(the MicroController Machine Compiler, described in a
later section) programming notation. This notation varies
somewhat from the instruction descriptions provided
earlier. Thus, for example, explicit L field definition as
shown is not required by MCMAC for machine instruc-
tions; MCMAC creates appropriate variable field ad-
dresses from the information contained in the Data Decla-
ration statements provided by the programmer at the be-
ginning of his program.

The MicroController instruction set is described below
with examples illustrating instruction use.

MOVE §,D or 0123456789101112131415
™
OVE S (R), D [0 0 0] Souce | /R | Destination |

OPERATION: (S)~ (D)

DESCRIPTION: Move data. The contents of S are transferred to D; the c. ntents of S are unaffected. If both S and
D are registers, R specifies a right rotate of the source data during the move. Otherwise, L is
implicit and specifies the length of the source and destination fields. If the MOVE is between an
IV Byte and a Working Storage Byte, an 8-bit field is always moved.

EXAMPLE: Store the least significant 3 bits of register 5 (R5) in bits 4, 5 and 6 of the IV Byte addressed
by IVL register.

MOVE_RS, IV.

0129456789101 12131415

[ooofoot1o1Jor 11 0 1 1 0] Binary Representation

7o ol s | 3 | 217 & | o0ctalRepresentation
e —— T e

L Defines LSB as bit 6
Defines Interface Vector
Defines 3-bit field

Defines register 5

01234567

01100110 R5

XXXX110X Selected IV Byte — After Operation

Note: X's in the IV Byte denote bits unaffected by the MOVE operation.

ADD S, D or 0123456789 101112131415
ADD S (R), D IU 0 II Source I L/R ] Destination

OPERATION: (S} plus (AUX) - D; set OVF if carry from most significant bit occurs.

DESCRIPTION: Unsigned two’s complement addition. The contents of S are added to the contents of the
Auxiliary Register {(which is the implied source). The result is stored in D; OVF is set. If both
S and D are registers, R specifies a right rotate of the source (S) field before the operation.
Otherwise L is implicit and specifies the length of the source and destination fields. $ and
AUX are unaffected unless specified as the destination.

EXAMPLE: Add the contents of R1 {rotated 4 places) to AUX and store the result in R3.

P
o1foooo[1oofooo1 1]
o

0!||4]o§3]

0 Binary Representation

JES—

Octal Representation

R1

]

11100101 Contents of R1 rotated right 4 places

10000t00 AUX
01101001 R3 — After Operation

[ ovF
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AND S, D or
AND S (R), D

OPERATION:

DESCRIPTION:

EXAMPLE:

XOR S, D or
XOR S (R), D

OPERATION:

DESCRIPTION:

EXAMPLE:

0123456789101 12131415
[0 1 0] source | /R | Destination
(S) A (AUX) D

Logical AND. The AND of the source field and the Auxiliary Register is stored into the
destination. If both S and D are registers, R specifies a right rotate of the source (S) field before
the AND operation. Otherwise L is implicit and specifies the length of the source and destination
fields. S and AUX are unaffected unless specified as a destination.

Store the AND of the selected Working Storage Byte and AUX in R4.
The Working Storage Byte field is called WSBCD and is 4 bits long and
located in bits 2, 3, 4 and 5.

AND WSBCD, R4
YN ™S

oofoo100]
4 4

[
[0}

[o1 0]t 1101
[ 2 T3t s

Binary Representation

l Octal Representation

01234567

10010101

00000101

Selected WS Byte

Selected field right justified with leading zeros added.

0000001 1

R4

00000001

0123456789101112131415
01 1] Souce | L/R | Destination |
8} @ (AUX)->D

Exclusive OR. The exclusive OR of the source field and the Auxiliary Register is stored in the
destination. If both S and D are registers; R specifies a right rotate of the source (S) field before
the XOR operation. Otherwise L is implicit and specifies the length of the source and destination
fields. S and AUX are unaffected unless specified as a destination.

Replace the selected IV Byte field with the XOR of that field and AUX. The IV Byte field is
called STATUS and is 5 bits in length and located in bits 3, 4, 5, 6 and 7.

XOR STATUS, STATUS

Binary Representation
Octal Representation

[or o1 iio1fior11]

R EAEREIER

01234567

01110011

00010011

Selected |V Byte — Before Operation
Selected field right justified with leading zeros added

XOR

00001010 AUX

00011001

unaffected

Selected 1V Byte — After Operation

XEC i(S)
OPERATION:

DESCRIPTION:

EXAMPLE:

XMIT |, §

OPERATION:

0123456789 101112131415

10 0] Source | | Field

0123456789101112131415
[0 o] souce [Jtemgh | Field |

Execute instruction at {Address Register} offset by (S) + |

Execute the it at the address by replacing the low order bits of the Address
Register {AR) (which contains the current value of the Program Counter) with the low order bits
of the sum of the literal | and the contents of the source field. If S is a register, the low order 8
bits of AR are replaced; if S is an 1V or Working Storage Byte, the low order 5 bits of AR are
replaced, resulting in an execute range of 256 and 32 respectively. The Program Counter is not
affected unless the instruction executed is a JMP or NZT (whose branch is taken).

Execute a JMP in a table of JMP instructions determined by the value of the selected 1V Byte
field. The table follows immediately after the XEC instruction and the IV field is called INTERPT
and is a 3 bit field located in bits 4, 6 and 6.

XEC *+1 (INTERPT)

Binary Representation

[Toofiortolor1[10100]
[ 4

2T 6 | 3 |2 T 4 | octlRepresentation
0 13 .
[O 000110110011 | Address Register — Before Operation
01234567

Selected 1V Byte

0ooo000011

Selected field right justified with leading zeros added

00010100 | Field
000 K
0000110010111 Address Register — After Operation
unaffected
ADDRESS INSTRUCTION
0000110110011 XEC *+1 (INTERPT)
0000110110100 JMP Al
.
.
.
0000110110111 JMP A3 JMP Table
L]
L]
.
0000110111011 IMP A7

JMP A3 is executed because 1V field INTERPT =3

01234567809101112131415
[ 1 o] source | 1 Field

0123456789101112131415
[11 o] source  [Length | tField |

[

DESCRIPTION: Transmit literal. The literal field | is stored in S. If S is a register, an 8 bit field is transferred;

EXAMPLE:

if Sis an 1V or Working Storage Byte, up to a 5 bit field is transferred.

Store the bit pattern 110 in the selected Working Storage Byte field. The field name is VALUE
and located in bits 3, 4 and'5.

XMIT 6, VALUE

[t1o[i1101Jo11Joo110] Binary Representation

[ s Tl s [ 3o s |

Octal Representation

01234656867

Selected WS Byte — Before Operation

oooo001t10 | Field

11011001

Selected WS Byte — After Operation
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NZTS, | 0123456789101112131415
[ o1 souee | | Field ]

01234567809 101112131415
[701] Souce [tength] IField |

OPERATION:  Non Zero Transfer If (S) # 0, PC offset by | - PC; otherwise PC + 1 > PC.
DESCRIPTION: If the data specified by the S field is non-zero, replace the low order bits of the Program
Counter with |. Otherwise, processing continues with the next instruction in sequence. If

S is a register, the low order 8 bits are replaced; if S is an IV or Working Storage Byte, the low
order 5 bits are replaced, resulting in an NZT range of 256 and 32 respectively.

EXAMPLE: Jump to Program address ALPHA if the selected IV Byte field is non-zero. The field name is
OVERFLO and it is a 1 bit field located in bit 3.

NZT OVERFLO, ALPHA

[foifiooi11oo11010}
r5‘2§3|1|3‘=2 |

Binary Representation

Octal Representation

01234567

XX X1 XXXX Selected IV Byte
OVERFLO

ADDRESS INSTRUCTION

0000110110011 NZT OVERFLO, ALPHA
.

.
.
ALPHA 0000110111010 Instruction
—
offset

012345678011112131415
MPA [11 1] Address Field

OPERATION: A-PC

DESCRIPTION: The literal value A is placed in the Program Counter and processing continues at location A.
A has a range of 0 - 7777g in current systems {0 - 4095).

EXAMPLE: Jump to location ALPHA (0000101110001)

JMP ALPHA

[t11]oooo01011100071] Binary Representation

| 7 0 i 0 i 5 i 6 ; 1 Octal Representation
ADDRESS INSTRUCTION

L]

.

.

0000000011011 JMP ALPHA

.

. -

.
ALPHA 0000101110001 Instruction
[o]oJ oJo[ oJoJoJoTs]1fo[1]1]  Program Counter Before Operation
IOI DI OIOI 1 [0 |1l1 II] OIOIOI 1 l Program Counter After Operation

INPUT/OUTPUT SYSTEM

As seen from previous sections, the Interface Vector is
the MicroController’s input/output system. It provides a
simple interconnection to the user status, control and data
lines.

Addressing data on the interface vector

The Interface Vector is comprised of general purpose
I/0 registers called Interface Vector (IV) Bytes. In the
present MicroController offering, the Interface Vector
may consist of up to 28 IV Bytes.

As seen from Figure 2 the IVL register serves as the ad-
dress register to the IV Bytes. In order for an instruction
access (read or write) an IV Byte, the address of that byte
must first be placed into the IVL register.

Thus, two instructions are required to operate on an In-
terface Vector byte:

XMIT  ADDRESS, IVL
MACHINE INSTRUCTION

Once the IV Byte is selected (addressed) it will remain
selected until the IVL register is loaded with another ad-
dress. From the user’s standpoint, however, all IV Byte
outputs can be read by an external device regardless of
whether they are selected or not.

Although the address range of IVL is 0-377,, only 28 IV
Bytes are available on current system offerings. The ad-
dressing for the 28 IV Bytes is 015 to 34,.

Electrical characteristics of the interface vector

Each IV Byte consists of 8 storage latches which hold
data transferred between the Interpreter and the User
System, 8 tri-state input/output lines and two
input/output control lines, called Byte Input Control
(BIC) and Byte Output Contrel (BOC) (Figure 3). The
control lines functions are summarized in Table II.

READ/WRITE MEMORY

In MicroController applications, data may be stored in
a read/write memory system called Working Storage.

TABLE IT—Functions of the BIC and BOC Lines

CONTROL LINES FUNCTION

BOC (low true) BIC (low true)

H H 8 I/0 lines in high impedance
state—disable

L H 8 I/0 lines in output mode—8 bit
storage latch data available in the
output lines.

X L 8 I/0 lines in input mode—data

can be read by Interpreter.

Table I1I contains a summary of the electrical characteristics of the IV
Byte.



Architecture of Microcontroller System 83

TABLE III—IV BYTE Terminal Electrical Characteristies

Limits

Characteristic Symbol Min Typ Max Units Conditions
“1”” Input Current* Liin 100 uA Vin=55V
0’ Input Current* Tgin —800 uA V4in=0.50 V
“1"* Input Voltage Viia 2 5.3 Volts
“0” Input Voltage Vsin -1 0.8 Volts
Input Clamp Voltage Vein -1 Volts Isin=—3ma
High Output Voltage Viout 2.4 Volts Licut=1ma
Low Output Voltage Viout 0.5 Volts Tsout= —16ma
Output Short Circuit Current L -20 ~200 ma Vsout =0V
Data Input Capacitance Cin 12 pf Vein=0V

* Input current is always present regardless of the state of BIC and BOC.

Working Storage is accessed in much the same manner
as IV Bytes. Figure 2 shows that IVR register is the Work-
ing Storage address register. It should also be noted from
Figure 2 that a Page Select Register determines the page
currently addressed by the IVR register. In order to access
the Page Select Register, IVR must be set to 177,, which is
the address of the Page Select Register. Either a 1 or 0 can
be transferred into bit 7 to select page 1 and page 0 respec-
tively. Once the proper page is selected, IVR can be loaded
with the address of the Working Storage Byte requiring ac-
cess.

IV Byte Select Bus

Interface Vector
1/0 Data Bus

Figure 3.1
1V BYTE PROVIDING DYNAMICALLY DEFINED DATA FLOW

Lines

o=NwAN O~

————>

—

—

l¢——p Tri-state Input/Output
» EEN—— i
—

e

——

|
|

@
o
®
[=]
3]

Im

—

Input/Qutput Control Lines

r——"
! |
H User |
i System |

———

I—
— — P I
aic Boc [—— & |
1 -

5V =
Figure 3.2
IV BYTE WIRED FOR USER OUTPUT ONLY

r==1
|

e
4 |
¢ H System I
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:
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Figure 3—IV byte wired for input only

Because the two 128 byte pages of Working Storage are
selected by the Page Select Register, the address loaded
into IVR to access a byte in either page is identical 200,-
377,. In effect, IVR holds the low order address bits and
Page Select holds the high order address bit.

Operating on data in Working Storage requires two
steps:

a. Selecting the 128 byte page which contains the data.
b. Accessing and operating on the actual data byte(s).

Page selection requires two instructions:

XMIT  177H,IVR Enables Page Select
Register
XMIT PAGE, PSR Selects Page

Thereafter all references to bytes within the selected
page require two instructions:

XMIT ADDRESS, IVR Selects byte
MACHINE INSTRUCTION

When using instructions that involve the transfer of
fields of less than 8 bits between an IV Byte and Working
Storage, the following results should be noted.

EXAMPLE: A MOVE instruction that specifies an IV Byte and Working Storage will have the following result:

MOVE s L D
0012|3456 7|89 10/111213 1415

[olo]o]iJoi o 1 [o]1 Js [1]1 Jo]1]1 ]
o [2! 5 | 3 313 |
B Specified Source Field
1V Byte Field 01234567
[o[+ToJo[+]1o]7] Selected IV Byte
WS Byte Field /
ofoJi[1]tJ1]o]1} Selected WS Byte

Specified Destination Field
ACTION: The specified IV Byte source field is transferred into the specified Working Storage Byte field.
The remainder of the destination byte is filled by the contents of the corresponding bit positions
in the source bytes.
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EXAMPLE:  An ADD, XOR or AND instruction that specifies an IV Byte and Working Storage will have the

following result: nnunnm“n Auxiliary Register
ADD 00001110
AND
XOR

s L ° (el [ [e [T o]

012|34567|89 101112131415
Specified Destination Field

[ "l"l" rli' I1 Iﬂ 1 [0 lll o]y l o IO‘! Corresponding bits of Source Field
f2er3fa T 6 4 21 a4 | Specified Source Field

0123466|7

00001011

ACTION:

Selected WS Byte

The specified source field (right justified with leading zero’s inserted) is added/anded/exclusive
or’ed with the Auxiliary Register and the result placed in the destination field. The remainder of
the destination byte is filled with the corresponding bit positions of the source byte.



EMMY—An emulation system for user

microprogramming*

by M. J. FLYNN and C. NEUHAUSER

Stanford University
Stanford, California

and

ROBERT M. McCLURE

Palyn Associates, Inc.
San Jose, California

INTRODUCTION

A relatively unique emulation laboratory facility is being
developed at Stanford University to support research in
computer architecture and language processing. The center
of this system is a “universal host” computer which is
capable of emulating (or simulating) the behavior of many
other computers.

The facility will serve three purposes. It will allow research-
ers to:

1. access a variety of computera rchitectures—facilitating
inter-architecture comparisons—providing for the pro-
cessing of archival code for obsolete computers;

2. analyze the effectiveness of various computer architec-
tures and compilers through the use of “software
probes’’;

3. develop new “soft” computer architectures which
reflect the artifacts of specific higher level languages—
ultimately each higher level language would have its
own coded machine architecture dynamically loaded
into a host system.

For some time microprogramming techniques have been
used in the design of computer control units. 12 However,
in the past the prinecipal interest has centered around read-
only-memory microprogram systems.

The introduction of very high speed, read-write storage
based on large scale integration (both bipolar and fast MOS
technologies) represented a significant change in the above
environment. Now microprograms—and data—could be
rapidly loaded into the ‘‘control storage’”’ which we term
“microstorage” here. The environment of the Seventies

introduced the possibility that one “host” system could -

serve as an emulator for a wide variety of “image” systems.
This led to the introduction of two new architectural con-

* The general architecture of EMMY was based on a series of studies
conducted at the Johns Hopkins University and was supported, in part,
by the U.S. Atomic Energy Commission under contract AT (11-1 3288).
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cepts: the soft eomputer  architecture; * and dynamic
microprogramming. *

The soft computer architecture—as represented by the
Nanodata QMI ¢ machine and to the Burroughs B1700 7
takes advantage of this fast read-write capability, coupling
it with a number of innovative processor features including:

1. field handling and selection

2. high speed shifting ability

3. extensive bit testing

4. flexible specification of data paths (residual control)

Each of these features can be used effectively in implement-
ing interpretive emulation processes.

A soft architecture is enhanced through a technique known
as ‘“‘dynamic microprogramming’—in which the read-write
micromemory is identified as the primary storage media of the
system as well as the medium which contains the emulator
code. Such architectures are arranged to both execute micro-
instructions and fetch data out of this fast storage media. The
“control storage” then becomes a microstorage which more
closely resembles an explicit Cache than a simple ROM. The
advantage of dynamic microprogramming is that data access
times can be shortened by having the data present in this
high speed storage media, thus resulting in improved system
performance.

EMMY

Emmy is the name given to the processor which forms the
nucleus of our facilities at Stanford. It was designed, with
severe cost constraints, to be an efficient as well as unbiased
host machine. The goal was for a CPU design that could fit
on one large printed circuit board with an inherently high
instruction processing rate. Further, the design would have
to accommodate the flexibility required to emulate a variety
of conventional machines as well as to allow the development
of new, abstract, language oriented machines. As a result,
EMMY is both a soft architecture and dynamically micro-
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I
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L CONDITIONAL CONTROL

ey PRIMARY DATA PATH
——» SECONDARY DATA PATH
——— —# CONTROL PATH

Figure 1-—Structure of host machine

programmable. It is based upon a series of simulated systems
which have been developed by our research group over the
past several years. The EMMY machine is a 32 bit system
which has 4,096 words (32 bit) of fast microstorage (access
time 60 nanoseconds—cycle time less than 200 nanoseconds).
The system is implemented using a very high speed tech-
nology—e.g., the switching technology has an internal
cycle time of 25 nanoseconds. It is highly organized about
LSI both in memory area and in processor implementation,
and typically executes an instruction once every 200 to 400
nanoseconds. A strong influence on the design was the desire
to minimize the amount of logic required to implement it,
since cost and size were considered very critical.

An unusual feature, for a machine of this size, is that there
exists a high degree of parallelism within the individual
instruetions. The host machine contains three separate, yet
interdependent, finite state machines, each receiving control
input from the current microinstruction and each controlling
a resource associated with one class of instructions (Figure 1).
These machines are designed as:

1. T-machine (controls functional resources),
2. A-machine (controls memory resources), and
3. I-machine (controls fetching of the next microinstruc-

tion). ,

Microinstructions in the host machine are formatted so
that, in general, one half of the instruction (the T-control
field or TCF) controls the T-machine and the other half
(the A-control field or ACF) controls the A-machine. The
I-machine may be controlled by either or both halves of
the microinstruction.

Both the T- and A-machines manipulate data residing in
the eight general purpose registers. The A-machine also moves
data between micromemory and the registers and initiates
communications with external memory units on the host
bus. I-machine operation controls the fetching of the next
microinstruction from micromemory. Host machine state
information necessary to control the I-machine is contained
in register 0 of the register file. Since this state register is

directly accessable to the microprogrammer, flexible proce--
dure oriented operations are possible.

Instruction set structure

Microinstructions (Figure 2) are 32 bits in length—the
leftmost 14 bits, the T'CF field, being dedicated to the control
of the T-machine and the remaining 18 bits, the ACF field,
being dedicated to the control of the A- and I-machines.
Note that although there is a high degree of parallelism in
these instructions, the TCF and ACF fields are vertically
encoded independently of each other. The resulting micro-
instruction set is a relatively simple programming medium.

T-machine instructions

T-machine instructions are designed to provide the basic
functional operations that the microprogrammer needs to
emulate the functional and control aspects of a target
machine. Instructions for the T-machine may be divided into
the following classes:

. logical,

. arithmetic,

. shift and rotate,

. extended arithmetic, and
. field insert and extract.

U N =

Instructions in the first four classes have a standard format
which specifies opcode, subopcode, two register operands and
indicates the possible use of immediate data. When immediate
data is specified, the 18 bit field usually used to control the
A-machine is expanded into a 32 bit quantity of immediate
data. The extended arithmetic instructions subopcodes are
designed to give the microprogrammer powerful single cycle
operations with which to build complex target machine
instructions, such as multiply and divide, by repetition.
Field insert and extract instructions are full word instruc-
tions which the microprogrammer may use to isolate and

3 18,17 [
L TCF 1 ACF I
T

LOGICAL { T“‘EIOIoféJo%e oPI lopzl A—MACHINE INSTRUCTION ] SHORT T-MACHINE
T

ARITHMETIC INSTRUCTION
e [ 1 oaece [0P 1 IMMEDIATE DATA
loPcone

SHIFT/ ROTATE
EXTENDED
)
[ROTATE
INSERT/EXTRACT |TYPE lAMDUeroN Jorz | mmeoiaTE MasK DaTa |
+

LONG T— MACHINE
INSTRUCTION

LOAD DIRECT -
STORE DIRECT | [sHoRT T-mackine st |Tree[ort | ApDRESS |
LOAD IMMEDIATE T

} A -MACHINE INSTRUCTION

L
“,fggff,",‘,‘(’,',:?g} [snort Tmacrine inst[rveefort Jopa Jopage [oerTa]
STACK T

:
-CONDITION TEST
CONDITIONAL TEST MASK Tvps]““‘c"'“z INSTRUCT 10N —I
T
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BRANCH [SHORT T-mackine st frvee| SONDIION, }Sgglorrsn‘l
+

Figure 2—Structure of host machine instruction set
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move fields of a data word residing in the registers. The insert
instruction, for example, takes a word from one register,
rotates it by a specified amount (0-31 bit positions) and
places the result in a designated register under masking
specified by the ACF field. This instruction is useful in
breaking down target machine instructions and in matching
host machine resources to target machine requirements
when their word lengths differ.

A-machine instructions

A-machine instructions are used by the microprogrammer
to access micromemory, manipulate address pointers, and
communicate with external devices on the host bus system.
A-machine instructions fall into the following classes:

. move registers directly to and from micromemory,
. load a register with immediate data,

aceess memory resources indirectly,

. manipulate pointers, and

. maintain stacks in micromemory

CU s W N

Access to external memory is designed so that once the
operation is initiated the instruction address counter may
continue to advance while awaiting the completion of the
operation. This is an important source of parallelism in the
emulation of instruction and data fetch in many target
machines. A-machine stack operations allow the micro-
programmer to access and maintain stacks in micromemory.
Pointer manipulation instructions involve register increment-
ing, decrementing, addition, and conditional branching on
results. Stack and pointer operations are particularly useful
for operand indexing and sequencing of interpretive sub-
routines.

I-machine instructions

Fetching of the next microinstruction is controlled by the
I-machine. Microinstructions are fetched sequentialy from
micromemory unless the I-machine is specifically directed to
fetch from a different location. Since the machine state, which
includes the microinstruction address, is eontained in one of
the general purpose registers, the programmer may change
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Figure 3—Layout of host machine state register

the usual sequence by using the current microinstruction to
modify the state register.

Within the state register is an eight bit condition code field
representing various aspects of the previous T-machine
operation (Figure 3). Instructions are provided to allow the
microprogrammer to test these condition codes and control
the operation of the A-and I-machines. These instructions are
classified as:

1. conditional,
2. branching, and
3. looping

A conditional instruction is one in which the TCF field of the
microinstruction specifies the testing of the condition codes
and controls the subsequent execution of the A-machine. If
the indicated condition is found to hold then the instruction
for the A-machine, as specified in the ACF field, is executed,
otherwise it is skipped. Using this facility the microprogram-
mer is able to specify conditional jumps, stacking operations,
memory accesses and so forth.

A branch instruction may be specified in the A-machine
control field (ACF) and allows the programmer to test the
condition codes and perform a-short relative jump from the
current location based on the results. This instruction is used
to provide control of the I-machine concurrently with T-
machine operation.

Pointer modification instructions, which control the A-
machine, may also provide looping capability. The results of
each pointer modification operation may be tested for
one of the common arithmetic conditions (e.g., less than
zero), and the results of the test may cause a short relative
jump. This instruction allows the microprogrammer to
control repetitive operations such as normalize and multiply.
In fact, the emulation of a target machine multiply instruc-
tion requires only one microinstruction since the extended
arithmetic instruction “multiply step” and the looping in-
struction may be combined.

DATA FLOW DESCRIPTION

The general purpose register file (Figure 3) consists of
seven 32 bit working registers and one status register. The
status register (reg. 0) contains status and machine state
information including the micromemory address pointer. The
seven working registers are all full accumulators. There are
two registers designated Register A and Register B at the
input to the T-machine. These are temporary holding and
shifting registers between the register file and the Arith-
metic Logic Unit (ALU) in the T-machine. The ALU always
accepts one operand from register A, and may accept the
second operand from register B, the immediate field from
the microinstruction, micromemory, or an outside resource.
A multiplexer switch that gates the appropriate second oper-
and to the ALU is also termed the “expansion unit” in that
it can gate partial word operands left or right justified with
zero or one fill in the remaining bits.

The ALU result is gated back to the appropriate (desig-
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nated in the microinstruction) register in the register file.
For arithmetic and logical operations a second cycle then
gates the condition code into the correct field in register 0.

The Micro-Instruction Register holds the current micro-
instruction being executed. As noted earlier, each instruction
is divided into two parts: T-control field (TCF) and the A-
control field (ACF). The TCF controls data transformation
resources and the ACF controls auxiliary operations such as
loads, branches, and I/0O operations. For some instructions
the ACF may not be executed due to the result of the TCF
execution satisfying a given condition. Immediate fields from
Micro-Instruction Register may be gated to either the ALU
or micromemory.

The micromemory address counter is located in the right-
most 12 bits of register 0.

All registers save those in the register file are transparent
to the microprogrammer, although he should obtain a some-
what qualitative understanding of EMMY’s architecture
and its hardware operation.

REGISTER 0 (STATE REGISTER)

Register 0 contains 4 main fields. They are the Condition
Code, Indicator Code, Machine State, and the Micromemory
Address Counter.

The CCODE is set by arithmetic, logical and various
internal operations. The CCODE comprises bits 31 through
24 of register 0. Bits 31.through 25 make the arithmetic
condition code and are set only by arithmetic and logical
operations. The significance of each bit is listed in Figure 3.

Bit 24 is set when micromemory is busy. The micro-
programmer must test this bit to determine completion of
memory cycle.

The indicator code, ICODE, (bits 23 through 16) is for
programmer access only. Various TCF instructions may
access this field for the purpose of setting flags or any other
purpose the programmer deems reasonable (or unreasonable
if he so desires). Thus the CCODE code is set by the machine
while the ICODE is set by the programmer. However, both
are testable by the branch and hoth are saved on an interrupt.

The Machine State is depicted by bits 15 through 12. The
functions are indicated on Figure 3.

The Micromemory Address Counter, MAC, (bits 11
through 0) points to the next instruction to be fetched in the
MIR from micromemory. After the MIR is loaded, the
MAC is incremented, and the instruction execution begins.

ADDRESSING SCHEME

Certain devices within the EMMY and all external devices
have an address assigned to them. All are connected to a
common address and data bus. When an address is gated onto
the address bus, each device looks to see if it is the device
being selected. The following table lists all the internal
device addresses. All other addresses are either unused or the
address of an external device.

Address Device

FF0000-FFOFFF Micromemory

FF1000-FF1007  Register file

FE0000 Address display register

FE0001 Data display register

FE0002 Data/Address switch register

FEO0003 Push button register

000000-03FFFF  Main memory addresses
INTERRUPTS

When the interrupt system is enabled and an interrupt is
received, Register 0 is saved at a micromemory location
(with the Micromemory Address Counter field incremented
by (1) corresponding to the type of interrupt. Register 0
is then reloaded from an associated location and execution
resumes. By reloading register zero, the programmer can
(obviously) change all the information contained in register
zero, that-is, the condition and indicator codes, the machine
state, and the Micromemory Address Counter.

A (partial) table of defined micromemory interrupt loca-
tions is listed below. Register zero is saved at the odd location
(the listed address plus one) and is reloaded from the even
location (the listed address).

Location Interrupt Type
44 Console interrupt
46 Main memory interrupt
48 Console interrupt
4A Block Transfer interrupt
4C Bus time-out interrupt
PERFORMANCE

Microinstructions which reference other registers are
executed in the 200-250 ns range with the exception of long
shifts which require an extra 25 ns per bit shifted after 2 bits,
extract-insert, which require long shifts, and a few of the
extended instructions. Referencing micromemory requires an
additional 200 ns. Referencing the external bus requires a
varying amount of time depending on the unit referenced
and the function performed. Memory activity specifically
is conducted asynchronously, and the CPU need not wait for
a memory read or write. Memory completion testing may be
either explicit or implicit. A single statement of performance
is difficult to make. A few examples might be most infor-
mative:

Example Timings of Emulated Instructions

Multiply—32 X 32=64 bit* 7.2 us
. (2’s complement)
Divide—64/32 =64 bit* 8.4 us
(correct sign, 2’s comp. rem.)
Binary to Decimal—20b to 7d* 5.0 us

(unsigned)
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Decimal to Binary—11d to 32b* 9.2 us
(signed 2’s comp., 360 style dec.)
MVC—360, 32 bytes non-aligned 12.8 us

(assumes 1.0us main memory for
both instructions and data)
AR—360 RR add 7.4 us
(assumes 1.0us memory for
instructions, regs. in micromemory)

IMPLEMENTATION

The natural choice of TTL was initially selected. It became
apparent very early, however, that to meet the performance
objective of an average of 200ns per microinstruction, it
would be necessary to both use a large percentage of Schottky

"TTL and also provide two adder paths with attendant inter-
locking difficulties.

Since we have had extensive experience with high-speed
current-mode logic, we took a second look at the cost and
advantages of using MECL-10K logic. We found that the
logic problems were simpler and the performance target could
more easily be met. The additional care required in me-
chanical and electrical design did not prove to be a serious
problem.

The resulting design requires a minimum number of logic
design tricks. It is a straightforward synchronous design with
a 25 ns clock. The T operations, A operations, and I oper-
ations are viewed as three cooperating finite state machines.
Each of these three machines is implemented as a 16 state
machine (although not all states are currently used in any
of them). By implementing these three functions as indepen-
dent, automata, simultaneous use of CPU resources is

* not including main memory access and instruction in-
terpretation

achieved with minimum difficulty. The bus control logic
is independent of all of these and serves to further maximize
overlap.

Physically, the CPU is on a single PC card of approxi-
mately 127 X15"”. The micromemory and console logic each
have a PC card.

CONCLUSIONS

EMMY is a low-cost, soft machine developed using high
speed technology. This system has uniform 32 bit instructions
and data paths.

The instruction format exhibits threefold parallelism:
transformational specification, auxiliary (move and pointer
handling) and an implied next instruction fetch. This
parallelism together with fast native performance (200-
400 nsec/instruction) produces respectable emulation capa-
bility across a variety of target machines.
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Instruction sequencing in microprogrammed

computers

by LOUISE H. JONES*
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Newark, Delaware

INTRODUCTION

The purposes of this paper are to review the microinstruc-
tion sequencing capabilities of several microprogrammed
computers; to determine whether these sequencing ca-
pabilities permit easy implementation of the control
constructs of flowchartable program logic in modular
microcode; and to present a set of microinstruction se-
quencing functions which will support “‘structured’” micro-
programming. Several microprogrammable mini- and
microcomputers which provide the user with the means
for implementing special purpose instruction sets have
been introduced relatively recently.! However, the experi-
ments by Weber? and Balzer® which demonstrated the
possibilities for increasing computation speeds, decreasing
main memory space usage, and easing the task of applica-
tions programming by means of special purpose instruc-
tion sets implemented in microcode were performed some
time ago.

Any trend toward implementing more complex func-
tions in microcode raises the question of whether the
methodology of “structured programming” described by
Dijkstra* and Mills® should be applied to microprogram-
ming in order to manage the complexity of the program-
ming task. This requires stepwise refinement of the func-
tion into subfunctions related by a limited number of con-
trol constructs until the subfunctions can be described
easily in terms of modules of microcode. In order to test
the microprogram, it is necessary that the behavior of the
modules of microcode be defined independently of their
context at the next higher level. In addition, a micro-
programmed implementation of a special purpose instruc-
tion that is based on “context-free”” modules of microcode
will minimize the control memory requirements of the
system by allowing each module of microcode to be called
from several different locations in the microprogram.

The microinstruction sequencing capabilities of micro-
program machines provide the basic mechanism for imple-
menting various forms of program logic. Previous dis-
cussions® of microinstruction sequencing have been pri-
marily concerned with differences in the number of
branching conditions that can be implemented using

* Presently employed by E. I. du Pont de Nemours & Co., Wilmington,
Delaware.
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various sequencing schemes. There has been little or no
discussion of the relations between the sequencing ca-
pabilities of microprogrammable computers and the
microcoded implementation of the control constructs
either of structured programming or of other classes of
program schema.’

TYPES OF INSTRUCTION SEQUENCING IN
MICROPROGRAM PROCESSORS

Various microinstruction sequencing strategies have
been implemented in contemporary microprogram ma-
chines. These strategies range from the explicit generation
of the complete address of the next microinstruction using
an address which is specified in the current microinstruc-
tion and possibly modified by the status of the machine
(e.g., the IBM System/360°) to the implicit calculation of
the next microinstruction address either by incrementing
the contents of a microprogram address register or by
incrementing the contents of an alternate microprogram
address register (e.g., the Burroughs Interpreter®). In addi-
tion, the sequencing capabilities of microprogram ma-
chines depend on the design of the microinstruction. In
vertically microprogrammed machines, each instruction
usually controls a single operation and the address of the
next microinstruction is obtained implicitly by increment-
ing the address of the current microinstruction unless the
current microinstruction affects a conditional or uncondi-
tional BRANCH; in this case the address of the next mi-
croinstruction is generated explicitly from an address field
in the instruction and the status of the machine (e.g., the
Hewlett-Packard 21MX"). In contrast, in horizontally
microprogrammed machines, each microinstruction con-
trols multiple operations including the testing of appro-
priate conditions and microinstruction sequencing. Hori-
zontal microinstructions usually specify, frequently im-
plicitly, both the address of the next microinstruction to
be executed on success and that of the instruction to be
executed on failure of the test (e.g., the Naval Reseagg:h
Laboratory MCU"). Specific examples of microinstruc-
tion sequencing capabilities for several microprogram-
mable machines are given in the next section.
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___E__.

A. BLOCK:
f then g

f

Hay
o7

While p do f p

B. CONDITIONAL:

If p then f, else g

C. ITERATIVE:

Note: f and g may be flow charts consisting of structures
A., B., and C.

Figure 1—Basic control constructs for flowchartable program logic

IMPLEMENTATION OF THE CONTROL
CONSTRUCTS OF STRUCTURED
PROGRAMMING IN MICROCODE

The basic methodology of structured programming re-
quires the stepwise refinement of flowchartable program
logic using the basic sequential (BLOCK), conditional (IF-
THEN-ELSE), and iterative (WHILE-DO) control
constructs shown in Figure 1 where f and g may be single
lines of microcode, straight line sequences of microcode, or
any other structure defined recursively from the struc-
tures in Figure 1. Microcoded implementations of the con-
trol constructs of Figure 1 have been developed for the
special cases where f and g are single microinstructions
and straight line segments of microcode for several
representative microprogram computers having both ex-
plicit and implicit implementations of microprogram se-
quencing functions. These implementations are schematic
in the sense that the control function of the microinstruc-
tion is emphasized and the corresponding data transforma-
tion function is ignored. While the specific form of the
schematic microcode is machine dependent, the following
simple conventions have been used:

1. Register assignments are made from left to right.

2. ADR(f) denotes the control memory address of mi-
croinstruction f; this microinstruction may be
denoted either by its function, f, or a label, ABC.

3. (AMPCR) denotes the contents of register AMPCR.

4. The meaning of the successor commands such as
STEP, JUMP, CALL are machine dependent and
are defined in Tables I, III, IV, VI, or in the case of
the HP-21MX, in the description of the machine.

5. The schematic microinstructions for Machine V are
written as IFETCH ops/EXECUTE ops where the
IFETCH operations have the format (successor,
ALTINSAR stack operations).

The Burroughs interpreter®

The Burroughs Interpreter has two different types of
instructions, Type I and Type II, which differ both in
function and in possible successors. Sequencing is defined
implicitly using two pointers into control memory; these
are called the microprogram count register (MPCR) and
the alternate microprogram count register (AMPCR).
Type I microinstructions contain pointers to horizontal
control words stored in a “nanomemory’’; there are eight
possible successor commands for Type I instructions
which are described in Table I. These include the stan-
dard STEP and SKIP commands, CALL and RETN com-
mands which provide one level of subroutine capability,
and EXEC which provides indirect addressing by allowing
the single microinstruction at the address specified by
(AMPCR)+1 to be executed out of sequence. Each nano-
instruction includes a test field and fields for specifying
successors to the microinstruction for both success and
failure of the test. In contrast, Type II microinstructions
are used to load literals into various registers; the (implicit)
successor command for these microinstructions is always
STEP.

Although the sequencing commands of this machine
permit easy implementation of the basic control constructs
for flowchartable program logic when f and g are single
lines of microcode; implementation of these constructs is
much more difficult when f and g are straight line seg-
ments of microcode (macros) (see Table II). The first dif-
ficulty appears in the implementation of the IF-THEN-
ELSE construct; different return mechanisms are re-
quired for the two macros f and g. This means either that
there must be two copies of each macro in the control
memory of that the set of all macros must be partitioned

TABLE I-—Successor Commands for the Burroughs Interpreter®

Next Alternate

Next Microinstruction Microinstruction
Successor Command (MPCR) (AMPCR)

STEP (MPCR)*+1 **

SKIP (MPCR)+2 ** .
SAVE (MPCR)+1 (MPCR)
CALL (AMPCR)+1 (MPCR)
JuMP (AMPCR)+1 **

RETN (AMPCR)+2 **

WAIT (MPCR) *x

EXEC (AMPCR)+1*** *x

* (MPCR) denotes “contents of microprogram count register.”
** Denotes “no change.”
*k% EXEC causes a single microinstruction to be executed out of
sequence; there is no change in (MPCR).
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TABLE II—Microcoded Implementation of the Basic Control Constructs of
Flowchartable Program Logic

Host Machine:
Structure of f and g:

Burroughs Interpreter
Straight line segments of microcode

Control Construct

Schematic Microcode*

ftheng

Where f:  fi,
fﬂ?
If p then f else g

Where f: £,

‘f.‘ﬂ,,

JumP &m>

STEP ém,

ADR(f)—1=: AMPCR
CALL
ADR@,)—-1=: AMPCR
CALL

STEP and where g : g;, STEP

JUMP

ADR(f,)-1=: AMPCR
If p then CALL else STEP
ADR(g,)=: AMPCR
CALL

STEP and where g : g4, STEP

JUMP

(AMPCR)+2=: AMPCR

JUMP
XXX: ADR(f;)—-1=: AMPCR**

While (~p) do f

Where f: £,

fu

If (~p) then JUMP else STEP

STEP

STEP

ADR(XXX)-1=: AMPCR

JUMP

* ADR (f,) denotes the control memory address of microinstruction f1, XXX is a label

for a microinstruction.

** Much of the difficulty in implementing the WHILE-DO construct in “context-free”
microcode results from the required STEP successor for microinstructions used to

load literals.

into one subset that is called only on success of a test and
a second subset that is called only on failure of a test. In

either case there are difficulties. The second difficulty ap--

pears in the implementation of the WHILE-DO construct;
here a specific return address must be embedded within
the macro f. This means that the macros used in WHILE-
DO constructs cannot be modular; there must be one copy
of f for each WHILE-DO loop involving this function and
the control memory will contain blocks of nearly identical
microcode. It should also be noted that different return
mechanisms must be embedded in f for use in the IF-
THEN-ELSE and WHILE-DO constructs.

The Hewlett-Packard 21MX*

This machine is a vertically controlled microprogram-
mable minicomputer with encoded microinstructions.
Normal microinstruction execution is sequential with
branching capabilities derived from two types of instruc-
tion, CONDITIONAL JUMP and UNCONDITIONAL
JUMP; the address of the microinstruction that is the
target of the jump is specified explicitly in the instruc-

tions. In addition, returns from subroutines can be accom-
plished by means of a particular encoding (“RETN”’) of
the “SPECIAL” field of the COMMON type of instruc-
tion; the implicit target address of the return is contained
in the SAVE register which can be loaded only by the
instruction which specifies an (unconditional) jump to a
subroutine, JSB. The SAVE register is cleared by the
“RETN” microoperation. Microinstruction sequencing is
sequential unless a jump, subroutine jump, or subroutine
return is specified.

Implementations of the control constructs for flow-
chartable program logic, using the sequencing capabilities
of the HP21MX, are given in Table III. It is clear that the
combination of the unconditional subroutine jump mi-
croinstruction (JSB) and the RETN microoperation sup-
port modular implementation of the BLOCK construct
when f and g are straight line segments of microcode.
However, the HP21MX does not have a conditional sub-
routine jump microinstruction and this means that a JMP
instruction giving a specific return address must be added
to f (as an unconditional jump) in order to implement the
WHILE-DO construct. Similarly a JMP instruction speci-
fying a return address must be added to the module of
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TABLE III—Microcoded Implementation of the Basic Control Constructs of Flowchartable
Program Logic

Host Machine:
Structure of f and g:

Control Construct

Hewlett-Packard 21IMX
Straight line segments of microcode

Schematic Microcode*

fthen g JSB**
JSB

Where f: fi
fﬂ9
If p then f else g XXX:

XXX +1:

Where f: h
fa
JMP
While p do f XXX:
Where f: fi
Ja
JMP

ADR(f,)
ADR(,)

and where g: g,

RETN &ms RETN

JMP CNDX p ADR(f)***
JSB ADR(gy)

and where g: g,

ADRXXX+2) &ms RETN

JMP CNDX p ADR(f)***

ADR (XXX)

* ADR(f;) and ADR(XXX) denote the control memory addresses of microinstruction f;
and the microinstruction whose label is XXX, respectively.
** JSB=Jump to subroutine, JMP CNDX=conditional jump, see Reference 10.
*** ADR(f;) and ADR(XXX) must refer to the same 256 word control memory module.

microcode selected on success of the test in the IF-THEN-
ELSE construct. Thus, the microinstruction sequencing
capabilities of the HP21MX, like those of the Burroughs
Interpreter, do not support implementation of the control
constructs of structured programming in modular
microcode.

The Argonne Microprocessor'

The Argonne Microprocessor (AMP) is an experimental
horizontally controlled microprogrammable processor
designed as a tool for research in microcontrol, including
microsequencing, language processing, and processor
design research. The microinstruction sequencing ca-
pabilities include incrementing the microinstruction ad-
dress register (UMAR) by one or by two (unconditionally
or if one of five bus conditions is satisfied), or jumping to a
location specified by the jump address field in the current
microinstruction (unconditionally or if one of five bus con-
ditions is satisfied) or to the microinstruction specified by
incrementing the instruction on the top of the microad-
dress stack. The default successor of the test of a condition
is the microinstruction at (UMAR)+ 1. The sequencing ca-
pabilities of the Argonne Microprocessor are summarized
in Table IV.

Implementations of the control constructs of structured
programming using the sequencing capabilities of the
AMP are given in Table V. The implementation of the
BLOCK construct in modular microcode is straightfor-

ward as in the cases of the Burroughs Interpreter and the
Hewlett-Packard 21MX. Implementation of the WHILE-
DO construct requires that the address of the instruction
before the appropriate jump instruction be stored because
the return address mechanism of the AMP increments the
address on the top of the microaddress stack. Microcoded
implementation of IF-THEN-ELSE requires that a

TABLE IV—Sequencing Capabilities of the Argonne Microprocessor!?

Successor

Command Next Microinstruction (UMAR) Condition
STEP (UMAR)*+1

SKIP (UMAR)+2

SKPCD1 " (B)**<0
SKPCD2 " (B)=0
SKPCD3 " (By9>0
SKPCD4 " By=11...1
SKPCD5 " (B)=0DD
JUMP (JUMP ADDRESS FIELD)***

JMPCD1 " (B)<0
JMPCD2 " (B)=0
JMPCD3 " (B)>0
JMPCD4 " (By=11...1
JMPCD5 " (B)=0DD
RETN (MICRO ADDRESS STACK)+ 1#***

* (UMAR) denotes the contents of the micromemory address register.
** B; denotes Bus 1 or Bus 2 depending on bit 72 of the control word.
**+* JUMP ADDRESS FIELD refers to bits 1-11 of the control word.
***% The return address is pushed onto the uSTACK if bit 71 of the
control word is set. RETN pops this stack.
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TABLE V—Microcoded Implementation of the Basic Control Constructs of
Flowchartable Program Logic

Host Machine:

Argonne Microprocessor

Structure of f and g:  Straight line segments of microcode

Control Construct

Schematic Microcode

ftheng
Where f:  f;
fn9
If p then f else g XXX:
Where f:  fi
fﬂd
While p do f
Where f:  fi
f'ﬂ?

JUMP (to ADR(£)),* PUSH
JUMP (to ADR(g,)), PUSH

and where g: g,

RETN 8m» RETN

JMPCDX** (to ADR(f})),
JUMP (to ADR(g,)), PUSH

and where g: g

JUMP (to 8m» RETN
ADR(XXX)+2)
STEP, PUSH

JMPCDX** (to ADR(f,))

RETN

* The address of microinstruction f; is specified in the Jump Address Field of

the current microinstruction.

** It is assumed that p corresponds to one of the conditions listed in Table IV.
The testable conditions in the AMP are quite limited.

specific return address be embedded in the module of
microcode entered on success of the test p but not in that
entered on failure of p. The requirements for embedded
return addresses in this construct are similar to those of
the Burroughs Interpreter.

The Microprogrammed Univac C/SP Processor*®

A horizontally controlled microprogrammed version of
the Univac C/SP Processor has been described by Red-

TABLE VI—Successor Commands for Machine V

Next Next Alternate
Successor Microinstruction Microinstruction ~ INSAR Stack
Command (INSAR) (ALTINSAR) Operations
True Successors
STEP (INSAR)***+1 * **
SKIP (INSAR)+2 * **
SAVE (INSAR)+1 (INSAR)+1 ok
CALL (ALTINSAR) * Push(INSAR)+1
JUMP (ALTINSAR) * *k
RETN (TOS)y**+** * Pop
WAIT (INSAR) * **
False Successors
STEP (INSAR)+1 ** **
SKIP (INSAR)+2 ** **

* For each true successor, the ALTINSAR stack pointer may be left
unchanged (NOP), incremented (IAP), or decremented (DAP).
** Denotes “no change”.
*¥* (INSAR) denotes the contexts of the microprogram count register.
*+k (TOS) denotes the contents of the top of the INSAR stack.

field.® The microinstruction sequencing capabilities of this
processor were designed to support the interpretation of a
machine instruction set and permit the next microinstruc-
tion address to be the contents of the main memory read
data bus, the current microinstruction address plus one,
the contents of the MARK register, or the address
specified explicitly by a special eight bit field in the cur-
rent microinstruction. Loading of the MARK register is
controlled by the mark bit in the microinstruction; if this
bit is set, the address of the current microinstruction plus
one is loaded into the MARK register. Conditional
branches are accomplished using the T-field. The mi-
croinstruction sequencing capabilities of the Univac C/SP
processor are inadequate for implementation of the IF-
THEN-ELSE structure shown in Figure 1 in context-free
modules of microcode for the same reasons that the mi-
croinstruction sequencing capabilities of the Argonne
Microprocessor are inadequate and will not be discussed
further.

The INTEL 3001 Microprogram Control Unit*

Recently Intel has announced the INTEL 3001 Micro-
program Control Unit which controls the microinstruction
sequencing for the new, high-speed INTEL 3002 micro-
processor. The INTEL 3001 permits explicit addressing of
512 microinstructions; the jump operation field in the cur-
rent microinstruction specifies one of four unconditional
or seven conditional address control functions which use
selected bits of the current machine state (e.g., latch, flags,
and accumulator bits) to compute the address of the next
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TABLE VII—Microcoded Implementation of the Basic Control Constructs of Flowchartable
Program Logic

Host Machine:
Structure of f and g

Machine V

Control Construct

Straight line segments of microcode

Schematic Microcode*

fthen g

(STEP, NOP)YADR(f))**=: ALTINSAR

(CALL, NOP)/ADR(g;) =: ALTINSAR
(CALL, NOP)/____

If p then f else g

(STEP, NOP)YADR(f,)=: ALTINSAR

If p then (CALL, NOP) else (SKIP)/ADR(g,)=:
ALTINSAR

(SKIP, NOP)/___

(CALL, NOP)/___

While p do f

(STEP, NOP)Y/ADR(f,)=: ALTINSAR

XXX: If p then (CALL/NOP) else (SKIP)/ADR(XXX)=: ALTINSAR
(JUMP, NOP)___.

Where f:
(RTN, NOP)f,

(STEP, NOP)/f; and where g:

(STEP, NOP)g,
(RTN, NOP)z,

* In Machine V the microinstruction IFETCH phase includes condition test, successor
choice and ALTINSAR stack operations and is completed before the execution phase.
Microcode is written IFETCH ops/EXECUTE ops with (Successor, ALTINSAR stack ops).

** ADR(f;) denotes control memory address of the microinstruction with execution function f;
Note: These modular implementations result largely from Machine V's capability for
specifying all successors for instructions that load the ALTINSAR.

microinstruction from that of the current microinstruc-
tion. These functions include 16-way jump and test
instruction. It is clear that the microinstruction sequenc-
ing strategy used in the INTEL 3001 does not permit im-
plementation of the control constructs of flowchartable
program logic in modular microcode. Furthermore, the im-
plementation in microcode of a macroinstruction set or of
a specific controller algorithm will be quite difficult, pri-
marily because of the difficult translation from the control
structures commonly used to express algorithmic tasks to
those implemented as the microinstruction sequencing op-
tions of this machine.

MACHINE V, A MICROINSTRUCTION
SEQUENCING SET FOR “STRUCTURED”
MICROPROGRAMMING

None of the five microprogrammed machines described
in the previous section have microinstruction sequencing
functions which permit implementation of the structures
of Figure 1 in “‘context-free’’ modular microcode.
However, it is possible to design a set of microinstruction
sequencing functions which permit implementation of the
structures of Figure 1 in modular microcode not only for f
and g being straight line segments of microcode but also
for the general case that f and g are structures defined re-
cursively from any of the structures in Figure 1. The ma-
chine with these sequencing capabilities is called Machine
V.

The sequencing capabilities of Machine V were designed
to permit implementation of flowchartable program logic

using completely modular subroutines (no embedded
return addresses or “tricky” sequencing instructions such
as “AMPCR+2=:AMPCR”) and a relatively low number
of bits to control microinstruction sequencing. Machine V
has two hardware stacks: the INSAR (INStruction
Address Register) stack, which is used to save return ad-
dresses for subroutine calls, and the ALTINSAR

A. Structure

B. Schematic Microcode (see Table VII for coding conventions)

Address Microinstruction
1. (STEP, NOP)/ADR(£fy) =: ALTINSAR
2. XxXX: If p, then (CALL, IAP) else (SKIP)/ADR (XXX)=: ALTINSAR
3. (JuMP, DAP)/ ______

10. £, (STEP, IAP)/ADR(g)) =: ALTINSAR

£ {11. yyy: If p, then (CALL, IAP) else (SKIP)/ADR(yyy)=: ALTINSAR
12. (JMP, DAP)/ ___
13. (RTN, DAP)/ ___.

Q

{ 20. gy: (STEP, NOP)/ ___
29. (RIN, NOP)/ ___

Note: Both f and g are modular.
Figure 2—Implementation of nested while-do structures in modular
microcode (Machine V)
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(ALTernate INStruction Address Register) stack, which is
used to eliminate repeated loading of identical alternate
addresses. In Machine V fetching of microinstruction :+1
is done in parallel with execution of microinstruction i; the
following sequence of events occurs during the fetch cycle:
(1) fetch microinstruction i+1, (2) specify test condition,
(3) choose successor microinstruction, and (4) perform
ALTINSAR stack operations; it is assumed that the
execution of microinstruction i is completed before the
ALTINSAR stack operations associated with fetching mi-
croinstruction i+1 are performed.

The sequencing functions of Machine V are given in
Table VI. If the test of a condition succeeds, one of seven
successor microinstructions is selected and one of three
ALTINSAR stack operations is performed. Only the
STEP and SKIP successors can be specified for the unsuc-
cessful test and no ALTINSAR stack operation can be
executed. Seven bits of the microinstruction are required
for these sequencing functions: 3 bits for the TRUE suc-
cessors, 2 bits for the ALTINSAR stack operation, 1 bit
for the FALSE successor, and 1 bit to negate the condi-
tion.

Implementations of the control constructs of Figure 1
using the sequencing functions of Machine V are given in
Table VII for the special case where f and g are straight
line segments of microcode. In addition, examples of the
use of the ALTINSAR stack to implement nested
WHILE-DO and IF-THEN-ELSE structures are given in
Figures 2 and 3. Rules governing the use of the

A.

Structure
9

B. Schematic Microcode (see Table VII for coding conventions)

Address Microinstruction
1 (STEP, NOP)/ADR(f;) =: ALTINSAR
2 If p; then (CALL, NOP) else (SKIP)/ADR(g;) =: ALTINSAR
3. (SKIP, NOP)/
4 (CALL, NOP)/

13. (CALL, NOP)/.
14. (RIN, NOP)/

) 20. gp: (STEP, NOP)/gy

g 29. (RTN, NOP)/gp,

30. my : (STEP, NOP)/m]_

m H
39 (RTN, NOP)/mp

10. £y: (STEP, NOP)/ADR(my) =: ALTINSAR
1l. If pp then (CALL, NOP) else (SKIP)/ADR(n;) =: ALTINSAR
£ 12. (RTN, NOP)/.
{ 40. n;: (STEP, NOP)/n;

n b
49 (RTN, NOP)/n,

Note: £, g, m, and n are all modular.
Figure 3—Implementation of nested if-then-else structures in modular
microcode (Machine V)

ALTINSAR stack pointer in modularized subroutines are:
(1) the pointer must be at the same location when entering
and leaving a subroutine, and (2) the ALTINSAR pointer
must be incremented before loading the ALTINSAR
stack. The sequencing capabilities of Machine V permit a
subroutine to be called from several points in the program
and, due to the INSAR and ALTINSAR stacks, permit
the basic structures of flowchartable program logic embed-
ded within each other (to the limits of the stacks) to be im-
plemented in modular microcode. Machine V, unlike the
machines discussed in the previous section, has a
hardware control structure which supports the control
structures which provide a basis for flowchartable
program logic. Thus, it is reasonable to conjecture that
Machine V will be significantly easier to program and that
the cost of implementing algorithms such as floating point
arithmetic and parsing functions® (e.g., table search), in
microcode will be considerably less for Machine V than
for machines such as the Intel 3002, AMP, or Burroughs
Interpreter.

SUMMARY

Current advances in semiconductor technology have led to
microprogrammed and user-microprogrammable
processors having a variety of microinstruction sequencing
capabilities. At the present time, the primary use of micro-
programs is as an alternative to hardwired control se-
quencers in the implementation of the control function in
computers with conventional instruction sets; thus, micro-
programs are used to implement tasks which have a rela-
tively simple logical structure. However, it is likely that in
the future microprograms will be used to support special
purpose architectures with instruction sets chosen to sim-
plify programming of certain classes of algorithms; these
microprograms will be used to implement tasks which
may have a relatively complex logical structure. The suc-
cess of these architectures will depend on their cost-effec-
tiveness; this includes the cost of writing and storing
microcode. Thus, it is important that the microinstruction
sequencing capabilities of the underlying machine organi-
zation support the implementation of the basic constructs
of the appropriate program logic using “context-free” (no
embedded return addresses) modules of microcode.
Review of the microinstruction sequencing capabilities of
several contemporary microprogram machines (the Bur-
roughs Interpreter,’ the Hewlett-Packard 21MX, the
Argonne Microprocessor,'? the Univac C/SP,® and the
Intel 3001'*) has shown that these sequencing capabilities
generally fail to support modular implementation of the
basic constructs of flowchartable program logic. This
failure is inherent in the explicit sequencing strategies im-
plemented in machines, such as the Intel 3000 series, in
which the address of the next microinstruction is obtained
explicitly from the address of the current microinstruction
modified by the state of the machine. However, this
failure can be overcome in machines in which the address
of the next microinstruction is specified implicitly by
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designing an appropriate set of sequencing functions. One
such set of microinstruction sequencing functions (Ma-
chine V) designed to simplify microprogramming by per-
mitting a completely modular implementation of the basic
control constructs of flowchartable program logic has been
described.
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Microcomputer software design—A checkpoint

by GARY A. KILDALL

Naval Postgraduate School
Monterey, California

INTRODUCTION

The general availability of low cost microcomputers has

revolutionized digital design and digital applications. Us-
ing LSI chip technology, microcomputers are no more
than scaled-down central processing units with minicom-
puter capability, and are treated as component computers
at the heart of a digital design. Thus, microcomputers find
wide application in both dedicated and general purpose
roles, ranging from simple controllers through smart ter-
minals and test instruments to small business data
processing systems.

In each application, hardware and software modules are
intermixed to minimize unit cost. As a result, the overall
quality of a microcomputer-based product is directly de-
termined by the quality of its hardware and software
components. Similar to its hardware counterparts, the
product’s programmed subsystems must be well specified
and engineered for long term reliability. In fact, well-
engineered software has never been as important:
packaged systems are often produced in the hundreds or
thousands, where each program is permanently stored in
unalterable ROM (Read-Only-Memory). Unreliable pro-
grams have far-reaching effects, while ill-specified
software hinders product adaptability.

A particular high level language has emerged as an aid
to the microcomputer software engineer which forecasts
some industry standardization. This paper briefly reviews

current design aids, with particular emphasis on ap-

plicability of high level languages in the microcomputer
environment. A particular project case study is presented
which exemplifies current design methodology, followed
by projected trends in microcomputer software aids.

BEYOND THE DATA SHEET

In essence, a microcomputer is simply another in-
tegrated circuit chip set, with somewhat more than
average capability. In fact, many design engineers
consider a microcomputer CPU as simply a ROM-driven
LSI chip which, with proper arrangement of 1’s and 0’s in
the external ROM, can be tailored to act like a custom
chip. The design engineer breadboards a circuit including
the microcomputer, fills the ROM’s with binary codes
which drive the chip, and proceeds to debug with logic
probe and scope. Although costly in development and
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maintenance time, this approach is quite popular since no
external support is required beyond the chip’s data sheet.

At the opposite end of the applications spectrum, the
microcomputer is considered just another processor which,
independent of physical characteristics, provides a key to
product update and new marketing areas. Often from a
minicomputer background, customers are unwilling to
return to primitive programming tools and meager design
support.

As a result of demands from a broad customer base,
many of today’s semiconductor houses find themselves in
the software business. A recent survey cross-references ten
microcomputer manufacturers by the software design aids
which they support.! Of these manufacturers:

all ten support a cross-assembler,

four offer resident assemblers,

three provide a resident editor,

eight support relocatable or absolute loaders,
five provide primitive debugging facilities,
six offer cross-simulators, and

two support a high level language.

The cross products all require a larger host computer for
actual execution. That is, cross-assemblers are usually
written in ANSI standard FORTRAN to allow some
measure of machine independence. The customer either
purchases the program directly from the manufacturer, or
contracts with a timesharing service which supports the
manufacturer’s software.

Resident software systems, on the other hand, execute
using microcomputer developmental hardware. Most
manufacturers offer a built-up microcomputer prototyping
system as a hardware developmental aid, including CPU,
memory, I/0 access, and front panel control. In this con-
figuration, the microcomputer has minicomputer charac-
teristics, and thus can support its own software systems,
including assemblers, paper tape editors, loaders, and
debuggers. Although some of these resident software tools
are quite comprehensive, current manufacturer’s offer-
ings are hindered by limited I/O facilities. As a result,
resident - software tools are less convenient than cross
systems, but are generally less expensive to support.

Although similar in capability to a minicomputer,
developmental systems generally incorporate features pe-
culiar to microcomputer systems development. National’s
IMP-16P prototyping machine, for example, contains spe-
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Figure 1—Rockwell’s PPS-4 microcomputer development system

cial circuitry for loading reprogrammable ROM’s, while
Rockwell’s “assemulator,” shown in Figure 1, contains a
built-in assembler and CPU emulator for programming
and debugging their PPS-4 microcomputer. Thus, the
manufacturer’s developmental systems are generally inap-
propriate as end-user products.

Cross simulators are also used on larger host computers
to programmatically simulate actions of the microcom-
puter. The primary problem, however, is that extensive
program testing and simulation of real-time external
events, such as signals input from a device controller, is
tedious and expensive. Thus, cross simulators are princi-
pally used to step-through subroutines and program
modules independent of the electronic environment. A
simulator is extremely useful, however, when exact execu-
tion time must be determined for time-critical program
segments.

Two major manufacturers of microcomputer chip sets
are currently supporting a particular subset of PL/I as a
base language for their products. Intel’s language, called
PL/M, has been available since mid-1973 through a cross-
compiler, while National’s product, called PL/M+, will
be available in mid-1975 as an integral part of their
resident developmental system. Intel’s PL/M provides a
base language for their 8-bit processors, and National’s
PL/M+ is designed for the IMP-16 and PACE microcom-
puters. The two languages are basically compatible, thus
allowing transportation of customer software between
these two manufacturers.

SYSTEMS LANGUAGES

As interest grows in PL/M-like languages for microcom-
puter systems development, one immediately questions
the suitability of high-level languages in such an environ-
ment. First, does a language such as PL/M support
necessary low-level control functions which occur in
microcomputer systems, or does the designer “lose con-
trol” of his machine? Second, how memory-efficient can a
translator for such a language be? The cost of high-
quantity electronics products is largely determined by
component count, and high-level language translators are
notorious for their inefficient code sequences, resulting in

excessive memory requirements in the final product.
Thus, the discussion focuses on experiences with Intel’s
product as a benchmark for this class of languages.

First, a few general comments on PL/M itself. The lan-
guage is modest in structure and scope: basic operators are
tied closely to the capabilities of 8- and 16-bit processors,
augmented by structures for writing assignments, simple
expressions, conditional statements, looping control, and
subroutine mechanisms. The result is a language which
simplifies the expression of microcomputer systems, while
allowing access to all machine functions, without becom-
ing completely dependent upon a particular CPU organi-
zation. The language has facilities which are reflected
within the capability of the microcomputer, and, simi-
larly, each machine function is reflected in some high-level
statement. Architecture-oriented languages of this sort,
often referred to as systems languages, are traditionally
used to implement the lowest level system functions to
avoid the rigidities of assembly language coding. In the
larger computer environment, systems languages are often
used to implement operating systems, language processors,
utilities, and some applications software. Thus, they are
themselves self-supporting, generally requiring little exist-
ing system support. As illustrated in the examples which
follow, this close relationship between the language and
the machine architecture holds also for PL/M.

The Appendix contains a sample PL/M program which
indicates the basic facilities of the language. This
particular language has global characteristics of the “PL-
family,” but derives its basic structure from the
microcomputer problem environment, as described
above.?

As a final comment, one notices that after decades of ad
hoc programming, there is finally an emerging body of
theory and practice concerning software engineering®*®¢
which is gaining industrial acceptance. Languages such as
PL/M, which provide clear representation of control
flows, are important tools in support of structured
programming techniques. When combined with
professional project management and programming
practices, the result is usually well-specified, reliable, and
efficient software systems.”®*?

A CASE STUDY

Given the current level of support, how does one ap-
proach a microcomputer project which involves a total
system design? Non-trivial projects are generally evolu-
tionary in nature, where each phase of development and
testing is a controlled experiment. In the case of software
generation, the designer starts with cross systems for
initial program development and testing, gradually mov-
ing to resident developmental systems, and then to a
breadboarded prototype. Since system malfunctions can
occur at any level, from low voltage power supplies
through marginal IC’s to programming blunders, this evo-
lutionary approach isolates the range of errors at each



Microcomputer Software Design 101

stage. A particular microcomputer project is outlined
below which demonstrates this approach.

A dedicated computer system was recently constructed
at the Naval Postgraduate School to be used by Navy
divers while working underwater for extended periods.
The device monitors the dive time and depth, and
produces a continuous read-out of the “safe ascent depth.”
The safe ascent depth is the depth to which the diver can
ascend from his current depth without contracting the
“bends.” As the diver descends, his blood takes on
nitrogen, and as he ascends, the nitrogen is given off. De-
pending upon the length of time he has worked at various
depths on a particular dive, he can rise only to the safe
ascent depth before nitrogen gases form in the blood.
Thus, the computer keeps the diver informed of this
depth. The diving computer has four principal functions
to perform: :

compute partial pressures of nitrogen for several con-
trolling tissues,

monitor external parameters such as elapsed time and
current dive depth,

drive simple displays with the current and safe ascent
depths, and

control the sequencing of external monitoring, comput-
ing, and display.

The final prototype was developed in two man-months,
with approximately three weeks devoted to software
development, and the remainder in hardware design and
debugging.

With the overall analysis of the dive problem complete,
a BASIC program was written which computed test
values. The computations involved 32-bit signed integer
values with fixed precision. Since the 8 bit processors
support only simple operations on 8-bit quantities,
subroutines were written in PL/M to provide necessary
functions. Each subroutine was compiled using the PL/M
cross-compiler on the school’s IBM S/360, and the ma-
chine code was read-in by another program, called
INTERP/8, which simulates 8008 CPU actions. Using the
break point and display commands of the simulator, the
numeric subroutine package was checked-out, using only
the S/360, with no physical microcomputer hardware.

The numeric subroutines were augmented by additional
PL/M coding which evaluated standard formulae
(essentially the same as those of the BASIC program) for
determining the partial pressures of nitrogen for a
particular depth. Again, these subroutines were checked-
out under simulation by inserting test values in simulated
memory, running a single computation, and displaying the
values resulting from the simulation. A control and se-
quencing program was then written which simulated a
complete dive by looping through a predetermined dive
profile of times and depths. Using the simulation, several
complete dive profiles were run, and the intermediate and
final results were compared with the BASIC program. Ex-
tensive testing was infeasible, however, since a simulated

fifteen minute dive to a depth of 130 feet required over
thirty minutes of S/360 CPU time.

Transition to real microcomputer hardware thus be-
came necessary to complete the testing. From this point
on, the program was compiled using the cross PL/M com-
piler on the S/360, but executed in real time using a
developmental system. A paper tape was produced from
the S/360 compilation containing the 8008 machine code
which was then loaded through the Teletype reader into
the memory of the developmental system, and executed.

In order to properly check-out the central algorithms,
another set of subroutines was written in PL/M which
provided basic communication between the program and
Teletype, allowing the program to read commands, write
test results, and read and print 32-bit fixed point numbers.
These subroutines formed a software test bed which would
eventually be discarded. Each test involved a dive profile
with various times and depths preset from the Teletype
console. The program would run the dive profile and print
the safe ascent depth at crucial points in the test. The
computations executed in five times real time (a 30
minute dive was completed in six minutes of 8008 time),
and thus it was possible to verify results by comparing
with both the BASIC program and standard Navy diving
tables. After check-out, the central algorithms were
separated from the test environment, and set aside for the
final prototype.

At this point, it was determined that there were several
disadvantages in using the 8008 for the final prototype,
including factors such as power consumption and com-
pactness. Thus, the design was altered to incorporate the
newer 8080 microcomputer. Because of its increased
speed, the 8080 could be ‘“‘shut-down” for longer periods
between each computation, resulting in significant power
savings (partial pressures were updated every two seconds,
and could be computed in 50 milliseconds). The PL/M
language is upward compatible along this processor line,
and thus the program was recompiled using the 8080 ver-
sion of PL/M.

The prototype was constructed and debugged, and, upon
completion, I/0 drivers were coded in PL/M, placed into
erasable ROM in the prototype, and independently
tested. The 1/0 drivers were then combined with the core
computation and control algorithms. The total program
was compiled on the S/360, placed into ROM in the pro-
totype and checked-out. As shown in Figure 2, the com-
pleted prototype is contained on a single 7X9 wirewrap
board with space for 2K bytes of erasable ROM (the
program currently uses 1.2K), and 1024 bytes of random
access memory.

ADDITIONAL APPLICATIONS

The case study given above serves to illustrate current
methods used to develop dedicated microcomputer
software. In addition, the application involves both bit-
level and simple numeric processing, which are both han-
dled well in this particular high level language. To
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Figure 2—Navy SCUBA diving computer, using the Intel microcomputer

illustrate the range of applicability of PL/M, however, ad-
ditional projects from more traditional computer areas are
considered.

There is current industry-wide interest in incorporating
today’s low-cost peripherals with microcomputer devices
to build inexpensive general purpose processors for
resident microcomputer development and end-user ap-
plications. One such computer system, shown in Figure 3,
includes a floppy disk operating system, which imple-
ments a named file structure with dynamic disk allocation
on multiple disks, sequential or random access, and
optimal disk arrangement strategies. When combined with
the system’s loaders, language processors, editors, and
debuggers, the resulting facility rivals that of most time-
sharing services for microcomputer program development.
All software modules are written in PL/M including basic
file management subroutines (3K), transient console com-
mand handler (2K), and various utility programs. An in-
definite number of programs and subsystems can be sup-
ported since they reside on disk, and are loaded into

memory on demand. Clearly, this particular application of

a microcomputer heavily overlaps traditional general-pur-
pose minicomputer areas.

A number of language processors have been imple-
mented in PL/M, including a translator for the BASIC
language as an aid in developing microcomputer programs
which make heavy use of floating point operations. The
BASIC translator operates under the disk system
described above, and produces code which is executed in-
terpretively by a special run-time subroutine package.
More importantly, any translated program can optionally
be loaded into ROM with the run-time subroutines, and
placed into a circuit with a microcomputer which executes
the program repetitively at the push of a button.

The translator for BASIC was itself written in PL/M
(5K), and demonstrates its use as an implementation lan-
guage. That is, PL/M has only simple operations, and
thus is relatively easy to implement for any microcom-

puter. Given that PL/M exists, further special-purpose
programs, such as the BASIC translator can be coded
easily. As a result, all system software can be transported
between different architectures if the base language can be
transported. It is reassuring to know, for example, that the
disk system software, BASIC translator, and BASIC pro-
grams will execute on Intel’s 8008 and 8080 machines, as
well as National’s IMP-16 and PACE microcomputers
with little modification.

SUITABILITY OF PL/M

These examples indicate the suitability of one high-level
language in microcomputer systems design. Based upon
this implementation, the most straightforward applica-
tions were those which the basic machine could already
perform, including bit-level I/O control and character
manipulation found in word-processing, operating systems,
and language processors. In these cases, the algorithms
were easy to express, and simple to debug and maintain.
The operating system application, however, contains
heavier use of table subscripting and run-time address
computations. Although these functions were easy to
express in PL/M, the underlying computations are more
complicated for Intel’s 8-bit machines. General floating
point applications were by far the most complicated to
code and debug in PL/M and, in general, resulted in a se-
quence of unintelligible mainline calls on these numeric
subroutines.

The question of memory-efficiency is also a part of the
suitability discussion. Again, the bit-level and character
processing functions result in short code sequences which
are quite competitive with good assembly language
programming. The 16-bit address computations found in
operating system work cause excessive program length un-
less the programmer uses techniques, such as localizing
computations to common subroutines, which minimize
this overhead. The general floating point application took
an inordinate amount of program storage, due principally
to the lack of basic machine facilities to perform these
functions. One should consider implementing basic
arithmetic functions of this sort in PL/M-compatible

Figure 3—A disk-based microcomputer development system
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assembly language where the side-effects of the machine
can be more easily exploited. In any case, measured
overhead for PL/M 1is in the range 10 percent to 35
percent when compared with assembly language coding,
based upon experienced programmers and the current
PL/M compiler.? ‘

One can conclude, however, that the most suitable prob-
lems for expression in PL/M are precisely those problems
which are most appropriate for the 8-bit processors. That
is, the low-level functions are all present in PL/M, and the
high-level functions are not. Further, the low-level func-
tions are exactly the ones which are most memory-effi-
cient.

FUTURE TRENDS

Microcomputer development practices seem to change
on a monthly basis as manufacturer support increases,
and- hardware component costs decrease. Although any
projections are questionable in light of this advancing
technology, several trends are evident. First, the use of in-
convenient and expensive cross development tools will be
short-lived. Although the cost for cross assembly and cross
compilation is comparable, either approach can rapidly
consume project funds. Inexpensive disk-based resident
developmental machines are becoming commercially
available which, although still somewhat primitive, can be
purchased for the price of the timesharing services
necessary for even a moderate project. National’s PL/ M+,
for example, will be available in mid-1975 as an integral
part of their floppy disk-based development system, while
numerous independent companies are providing add-on
equipment for Intel, Rockwell, and other manufacturers.
Due to the developmental nature of these systems,
resident language processors will soon be augmented by
comprehensive debuggers which provide high level
reference through symbolic names and statement context.

Current interest in PL/M as a base language indicates
that high level language standards are possible to some
degree in the 8-bit processor category. Although there are
obvious customer benefits in training, documentation,
benchmarking, program portability, and machine inde-
pendence, standardization also benefits the manufacturer.
The present similarity between Intel’s PL/M and Na-
tional’s PL/M + allows the companies to ‘“second source”
one another at the language compatibility level. Thus able
to share customer bases, their products can compete on a
meaningful level: questions of suitability are settled by
benchmarked performance and cost, not simply on the
cycle time of the CPU. The role of the microcomputer has
expanded since the initial introduction of PL/M, however,
and thus the language must evolve to suit these applica-
tions. Nearly all major manufacturers have investigated
the implementation of a PL/M-like language for their
processors, and one can only guess whether these factors
will lead to a unified base language, or simply a maze of
confused dialects.
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APPENDIX

The listing given in Figure 4 is an example of an 8080
PL/M program which executes on an Intel developmental
system. The purpose of the program is to test a procedure
which keeps track of the elapsed time since system start-
up. After each minute of elapsed time, the program prints:

hh HRS mm MINS

at the teletype, where hh and mm are decimal values for
the hours and minutes of elapsed time.

The following run-time environment is assumed. A
Teletype is connected to the 8080 CPU through a UART
(Universal Asynchronous Receiver-Transmitter). In addi-
tion, an external interrupt is generated every Y%oth of a
second, and is used for the basic program timing.

The program consists of a number of procedures
followed by calls on these procedures. The mainline
procedures are listed below along with their function in
the program:

PRINTCHAR print the single ASCII character in
CHAR

CRLF send a carriage-return and line-feed
PRINTBCD  print two decimal digits
PRINT print a sequence of characters

One “interrupt procedure,” called TIMEKEEPER, is de-
fined with the attribute INTERRUPT 2. This interrupt
attribute results in control transfer to TIMEKEEPER
whenever interrupts are enabled and the external inter-
rupt occurs.

The first PL/M statemerit 'which is executed follows the
TIMEKEEPER procedure. The four variables FRACS,
SECS, MINS, and HRS are zeroed. The first variable,
FRACS, is a byte variable ‘which tallies the number of
oths of a second which have elapsed during a one second
interval. The remaining variables each hold a pair of BCD
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00001 1 /* THE FOLLOWING 8080 PL/M PROGRAM COMPUTES AND DISPLAYS THE
00002 1 ELAPSED TIME SINCE SYSTEM START-UP. THE ELAPSED TIME IS
00003 1 PRINTED AT THE TELETYPE CONSOLE EVERY MINUTE #/
00004 1
00005 1 DECLARE
00006 1 /* LITERAL SUBSTITUTIONS IN THE PROGRAM */
00007 1 TRUE LITERALLY '1°',
00008 1 FALSE LITERALLY '0°,
00009 1 FOREVER LITERALLY 'WHILE TRUE',
00010 1
00011 1 /* TELETYPE CONSTANTS FOR UART #/
00012 1 TTO LITERALLY '0', /+ DATA TO TTY IS OUTPUT(0) =/
330%3 % TTS LITERALLY '1', /+ STATUS PORT IS INPUT(1) */
014
00015 1 /* SPECIAL CHARACTERS (NON GRAPHIC) */
00016 1 BEL LITERALLY '7', /* RING TELETYPE BELL #/
00017 1 CR LITERALLY '15Q", /% CARRIAGE RETURN (15 OCTAL) */
00018 1 LF LITERALLY 'OAH'; /# LINE FEED (A HEXADECIMAL) #*/
00019 1
00020 1 /* TELETYPE OUTPUT SUBROUTINES */
00021 1
00022 1  PRINTCHAR: PROCEDURE(CHAR);
00023 2 DECLARE CHAR BYTE;
00024 2 /* PRINT THE 8-BIT ASCI| CHARACTER IN 'CHAR' AT THE
00025 2 TELETYPE CONSOLE */
00026 2
00027 2 DO WHILE ROR(INPUT(TTS),2);
00028 2 /* WAIT FOR UART TRANSMIT READY #/
00029 2 END;
00030 2
00031 2 OUTPUT(TTO) = NOT CHAR;
00032 2 END PRINTCHAR;
00033 1
00034 1 CRLF: PROCEDURE;
00035 2 /*+ SEND A CARRIAGE-RETURN FOLLOWED BY A LINE-FEED #/
00036 2 CALL PRINTCHAR(CR); CALL PRINTCHAR(LF);
00037 2 END CRLF;
00038 1
00039 1  PRINTBCD: PROCEDURE(B);
00040 2 /* PRINT THE BCD-PAIR HELD IN THE 8-BIT VARIABLE 'B' #*/
00041 2 DECLARE B BYTE;
00042 2 CALL PRINTCHAR(SHR(B,4) + '0');
00043 2 CALL PRINTCHAR((B AN OFH) + '0');
00044 2 END PRINTBCD;
00045 1 -
00046 1  PRINT: PROCEDURECA);
00047 2 /* WRITE CHARACTERS TO THE TELETYPE STARTING AT ADDRESS 'A’
00048 2 IN MEMORY UNTIL THE FIRST '$' CHARACTER IS ENCOUNTERED #/
00049 2 DECLARE A ADDRESS,
00050 2 (MESSAGE BASED A) BYTE;
00051 2
00052 2 DO WHILE MESSAGE <> '$';
00053 2 CALL PRINTCHAR(MESSAGE);
00054 3 A=A+ 1;
00055 3 END;
00056 2
00057 2 END PRINT;
00058 1
00059 1 /* END OF TELETYPE OUTPUT SUBROUTINES #*/
00060 1
1

00061 /* FRACS HOLDS THE NUMBER OF 1/60THS OF A SECOND WHICH
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00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
0009k
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106

00107
00108

00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
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HAVE ELAPSED IN THE LAST PARTIAL SECOND, WHILE
SECS, MINS, AND HRS HOLD THE ELAPSED TIME COUNTS =/

DECLARE (FRACS, SECS, MINS, HRS) BYTE;

TIMEKEEPER: PROCEDURE INTERRUPT 2;
/* THE TIMEKEEPER PROCEDURE IS CALLED THROUGH AN EXTERNAL
INTERRUPT (RST 2) EVERY 1/60TH OF A SECOND, THE PROCEDURE
UPDATES THE VALUES OF HRS, MINS, AND SECS SO THAT THE TOTAL
ELAPSED TIME SINCE SYSTEM START-UP IS MAINTAINED IN
BCD-PAIR FORM =/

IF (FRACS := FRACS + 1) >= 60H THEN /% ONE FULL SECOND */

DO;
FRACS = 0;
IF (SECS := DEC(SECS + 1)) = 60H THEN /% ONE MINUTE =/
DO;
SECS = OOH;
IF (MINS := DEC(MINS + 1)) = 60H THEN /* HOUR =/
DO;
MINS = 0;

1F (HRS := DEC(HRS + 1)) = 24H THEN
/* ONE DAY ELAPSED =*/ HRS = 0;
END;
END;
END;
END TIMEKEEPER;

/* SET COUNTERS TO ZERO #*/
FRACS, SECS, MINS, HRS = 0;

/* START COUNTING TIME =*/
ENABLE;

/* WRITE INITIAL MESSAGE */

CALL CRLF; CALL CRLF;

CALL PRINT(,'+#* ELAPSED TIME COUNTER #*»$');
CALL CRLF;

/* WRITE ELAPSED TlME EVERY MINUTE =*/
DO FOREVER; /* OR UNTIL RESET, WHICHEVER COMES FIRST #/
IF SECS = 00H THEN
DO; /* PRINT ELAPSED HOURS AND MINUTES =/
CALL CRLF;

CALL PRINTCHAR(BEL); /+ RING TTY.B *
CALL PRINTBCD(HRS); CALL PRINTI 'HSbks é');

CALL PRINTBCD(MINS); CALL PRINT(.'MINS$');
CALL PRINTCHAR(BEL);
CALL CRLF; '

/* NOTE THAT 'SECS' MUST HAVE CHANGED WHEN THE MESSAGE
WAS SENT (ASSUMING 10 CPS TRANSMISSION RATE) */
END;
END;
EOF

NO PROGRAM ERRORS

Figure 4—A sample PL/M program for the 8080 microcomputer
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numbers. The ENABLE statement turns on the 8080
interrupt system.

At this point, the program execution must be considered
in two parts: the mainline code which continues past the
ENABLE statement, and the interrupt code which is exe-
cuted each time an interrupt is generated. If the interrupt
system had not been enabled, the mainline code within the
DO FOREVER block would execute indefinitely, and,
since the value of SECS remains at zero, the message

00 HRS 00 MINS

would print continuously.

Given that the interrupt system has been enabled, the
interrupt which occurs 60 times each second causes the
mainline code to stop at each interrupt. The TIME-

KEEPER procedure immediately receives control, with
the interrupt system automatically disabled and the ma-
chine state saved. Upon completion of the interrupt
processing, control returns back to the interrupted main-
line code to the point of interruption with the machine
state restored, and interrupts enabled. As a result, the
values of SECS, MINS, and HRS are continuously incre-
mented as the mainline program executes. Thus, the
program output will appear as follows:

00 HRS 01 MINS
00 HRS 02 MINS
00 HRS 03 MINS

and so-forth, with one minute intervals between each line
of output.
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Computer communications networks

Advances in computer and communication technologies are profoundly af-
fecting the nature, structure, and operation of computer-communications net-
works. The joint exploitation of these technologies while promising seemingly
unlimited operational possibilities, generates an almost endless parade of issues
for the designer, supplier, user, and regulator of such networks. This series of
four sessions reports on the results of recent research on various technical issues
in the area of computer-communications networks.

An introductory session has been organized to prepare the novice for the later
more technical sessions and to inform the expert of current status. This session
is followed by three state-of-the-art sessions on substantive research activities af-
fecting current and future operational systems.

A session on advances in packet switching includes papers on system design
considerations and issues, speech transmission in packet networks, and control
schemes for multi-access broadcast packet channels. A session on the future im-
pact of packet radio addresses issues in the design of packet radio networks, the
technology of packet radio and personal terminals. Finally, a session on ad-
vanced data communications in computer-communications networks will be in-
cluded.
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Computer communications—How we got

where we are

by IVAN T. FRISCH and HOWARD FRANK

Network Analysis Corporation
Glen Cove, New York

HENRY FORD WAS WRONG

Of course, Henry Ford was wrong. History is not bunk. It
just tends to look like bunk in the short range. Legiti-
mately, historians must allow some time for the confusion
of events to die away. They can then evolve theories about
fading memories of the events. In his short story, ‘“The
Ugly Little Boy,” Isaac Asimov' has a reporter say the
following about a machine which recovers people from the
past and makes them live in the present. “You can only
reach out so far; that seems sensible; things get dimmer
the further you go; it takes more energy. But then, you can
only reach out so near.” It is the same with history.

Accordingly, some of the giants of history still have only
little to say about the computer revolution. Arnold
Toynbee, who has provided the greatest conceptual unifi-
cation of world history in this century, is still involved in
the purely negative aspects of the revolution. His chapter
on computerization? is called “Mechanization, Regimenta-
tion and Boredom’’; this brings to mind some advice for
fourteenth century magicians, “If you want to be a suc-
cessful prophet, prophecy evil.””® Daniel Boorstin, winner
of the Bancroft Prize, the Parkman Prize and the Pulitzer
Prize for his penetrating series of books, ‘“The Ameri-
cans,” is most fascinated by the gadgetizing of Americans:
“When automation became widespread and electronic
computers became almost as common as the adding ma-
chine, there were new cataclysms in the jobs of Americans
and in their ways of thinking. By 1967, only a half-century
after the first commercially successful billing machine, the
annual American production of cash registers and comput-
ing machines totaled more than $4.5 billion. When precise
and up-to-date information was available about the quan-
tities of everything, businessmen and consumers could not
help thinking quantitatively.”*

The facts are right, but the impact is trivialized. This
nearsightedness, being fairly general among historians, we
therefore seek for the general history and impact of com-
puter-communications elsewhere. We must search among
the participants, namely ourselves, and among other com-
mentators, who will be broadly classified as journalists.
One must be wary of Marshall McLuhan’s generalizations.
After all, in their book, “War and Peace in the Global
Village,” McLuhan and Quentin Fiore attribute the age of
chivalry to the invention of the stirrup.® Granted that Mc-
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Luhan is not a master of understatement, one can still
find truth in his estimation, in the same book: “The com-
puter is by all odds the most extraordinary of all
technological clothing ever devised by man, since it is the
extension of our central nervous system. Beside it, the
wheel is a mere hula-hoop.” One of the best journalist his-
torians is James Martin. After all, he published a book in
1971 called, “Future Developments in Telecommunica-
tions,” and much of this book intended as almost science
fiction for the year 1980 is a good history of the years
1971-1974.

SEPARATING THE USER FROM HIS
COMPUTERS

In 1939 Aikin and a team of IBM engineers at Harvard
began the work that resulted in 1944 in the Mark I, the
first automatic electromechanical digital computer. The
first completely electronic computer was designed by
Eckert and Mauchly at the University of Pennsylvania,
for the Ballistic Research Laboratory at Aberdeen. The
ENIAC (Electronic Numerical Integrator and Calculator)
became operational in 1946. The history of computing in
the 30 years since Mark I is a monumental one, which will
require some new giants of history. For the present, we
will try to simply indicate some of the trends and
milestones, in the more limited area of computer-com-
munications, or computer networking or, in simpler terms,
the process of separating the user from his computer. We
will subdivide this process into two categories—terminal
oriented networks and the area with the shorter history,
but greater technical promise, computer to computer net-
works.

EVOLUTION OF TERMINAL ORIENTED
NETWORKS

The first computer network consisted of a computer
with several cables attaching input devices. A majority of
the networks in the world are still of this fashion. Very
shortly, the need arose to do more than just communicate
with a computer 100 feet away. Thus, remote terminals
were added to the network. The networks were first
extended to cover all of the buildings within an industrial
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Figure 1—Evolution of terminal oriented networks

complex on leased or specially constructed lines. The ca-
pability to dial into the main frame computer was then ad-
ded and the networking era began in earnest.

As networks grew, their costs also grew, often quite
rapidly. For example, as more and more demands were
made on the system, the cost of the communications be-
came a very significant fraction of the cost of the overall
network. Originally, the computer represented the ma-
jority of the total system cost. But, as the network
expanded, communications often exceeded 50 percent of
the overall system cost. Therefore, efforts began to reduce
this aspect of the overall cost. Innovations like multidrop
lines, which allowed a number of different terminals to
share a common line, were introduced to take advantage
of all possible economies of scale. You might be able to
lease a very low bandwidth line for, let’s say, a thousand
or fifteen hundred dollars per month. On the other hand,
you could probably increase the capacity of the line by a
factor of ten or more at a cost increase of only a factor of
two. This provided sufficient capacity to allow sharing of
the line by several terminals. But, to do this, control
mechanisms for selecting different terminals on the line
and for protecting data had to be invented and techniques
for contention resolution and queueing were required.

The next major difficulty encountered in building com-
puter networks were the changes to the main frame
software which were found to be exceptionally difficult
and costly. Thus, to reduce the time and cost of system

development, devices called “front ends” were introduced.
These allowed the communication functions of the com-
puter network to be separated, by and large, from the
processing function of the computer. Front end use grew
very rapidly, beginning in the late 1960’s and was assisted
by the introduction of low cost minicomputers. Today,
front ends play an important role in network communica-
tions.

Next, the interesting observation was made that there
was a cable between the front end and the computer. Since
large networks always tend to get larger, the cable became
longer, with communication equipment required between
the front end and the computer. As the front end increased
its distance from the main frame, its name changed to that
of “concentrator.” In modern networks, concentrators
may be thousands of miles from the computer. Their main
function is to reduce communication cost by more effec-
tive communication line utilization. The next development
was quite natural; another front end was added to the
computer side of the network to complete the isolation of
the computer from its network elements.

In Figure 1, we have a typical structure of a terminal
oriented network.® This particular network is called the
NASDAQ System. “NASDAQ” stands for the National
Association of Securities Dealers Automated Quotations
System. This network was built in 1970 and became
operational in 1971. Its function is to collect quotation in-
formation about the Over-the-Counter Securities market.
Users distributed throughout the country receive
responses to their input in five or six seconds. Responses
contain information about the prices at which dealers are
willing to sell or buy securities, and the exact bid and ask
prices of each market maker who deals in a particular se-
curity. There are on the order of 1,700 terminals in this
system at a thousand different locations in about 400 dif-
ferent cities. The system has reduced the problem of get-
ting the information about Over-the-Counter stocks from
one of making ten phone calls to the input of a single net-
work message. During active trading days, the NASDAQ
System has handled more than one million messages a
day.

Automated Quotations
O1C Dealers, Market Makers Wire Services
1,000 Offices, 1,700 Terminals
1,000,000 Transactions Per Day
Quotations, Updates, News, Volume, Indices
5 Second Response, 50% of Time, 7 second, 95%
Maximum 3-6 Hours Downtime Per Year

Figure 2—Simplified network diagram for the NASDAQ system
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MILESTONE TERMINAL ORIENTED NETWORKS

There are almost as many terminal oriented systems at
present as there are computers, since almost every com-
puter has terminals attached to it. And almost all these
systems fit somewhere into the evolutionary pattern we
have described. However, only a small number of these
networks set milestones in either timing, structure, func-
tion or size. Those that have been major benchmarks fall
into two general categories: special purpose net-
works—intended to serve a specific function for a selected
set of users—and time sharing services—intended as a
general utility for any user.

- Special purpose networks
Military

Among special purpose networks the military has been
one of the leading users and pioneers. Indeed, much of the
technology developed for military purposes has been
transferred and adapted for commercial use. The prime
examples are point of sale systems, of which banking and
airline reservation systems are pioneering areas. Other
users such as educational institutions have also added
major improvements necessitated by their particular re-
quirements. Certainly a milestone in military systems and
in computer communications development, in general, is
the SAGE (Semiautomatic Ground Environment) system.
Lest we forget in how many different ways this system was
a pioneering effort I will quote Ruth Davis:

“The first use of an automated display which permitted
the user to exercise control over the information presented
(and also to enter requests and information based on what
was presented to him) occurred in the SAGE system. The
significance of the introduction into this system of the
light gun as a pointing device under the control of the dis-
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play operator cannot be overemphasized. It was probably
the one most important event which made possible the
man-computer interaction deemed so essential at the
present time. It occurred in 1952 utilizing the Whirlwind
computer.””

But let us look at the computer communications
aspects. The purpose of the system was air defense for the
U.S. The results were benchmark efforts in computers,
communications and computer communications.

The Air Defense System Engineering Committee
(ADSEC), a group formed by the Scientific Advisory
Board at the request of the Air Force, evaluated the status
of overall air defense in the 1950’s. They recommended
initial feasibility tests utilizing digital radar inputs to a
central computer. This. was to be accomplished by cou-
pling the data-processing capabilities of the Digital Com-
puter Laboratory to the radar data-transmission tech-
niques of the Cambridge Research Center. Favorable
results led to Project Charles and the establishment of
Lincoln Laboratory in 1951 with a charter to work toward
a computer-based air defense system. Project Charles
activities led to recommendations for a prototype test
facility known as the Cape Cod System, which was es-
tablished in 1952.

The New York Air Defense Sector became the first
operational site in 1958. By 1963, SAGE Direction Center
and Combat Centers had been installed at all continental
stations. The system was designed in 1955 with IBM
AN/F SQ-7 prototype computers, with SDC software at
the central facilities. Each computer contained 58,000
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Figure 5—Dartmouth time sharing system interconnections between
remote and local communications computers (1968)

vacuum tubes, consuming 1,500 KWatts of power and oc-
cupying an entire building floor.! Radars and information
sources feed information to the centers and the centers
send information to interceptors and other weapons. Real
time processing required key developments by many com-
panies, small computer (not mini computers) front-end
processors, specification of 1600 baud data lines with bet-
ter conditioning than voice grade lines, and redundant
diverse routed paths for reliability.

Banking

The development of commercial systems such as bank-
ing could be done on a smaller scale and hence had less
auspicious milestones. Certainly, the first of any system
must be a milestone. The first banking milestone therefore
sounds almost like an entry from the Guiness book of
records. Telefile is described by Sackman’ as the first
online banking system in the world, linking the transac-
tions of each of the three participating banks and their af-
filiated branches into a central data-processing system.
This system grew out of automation feasibility studies
initiated by the Howard Savings Insitution of Newark,
New Jersey in 1953. By 1956, system requirements were
specified, two other banks cooperated in the venture, and
the Teleregister Corporation was awarded the contract for
developing and implementing the data-processing system.

The three main system requirements were as follows:

1. Online data processing at the teller window—
for example, direct communication between the teller
and the central computer for deposits and with-
drawals.

2. High system reliability and accuracy commensurate
with rigorous banking standards.

3. Uninterrupted continuity in banking service
throughout the transition .period from the initial
manual system to the successor semi-automated
system.

The system is a long way in scope from present broad
purposed vast networks such as that of the Barclay Bank
or that being considered by the Federal Reserve Board.

Airlines

One of the earliest large scale users of point of sale type
systems have been the airlines. As Janet Taplin® has com-
mented ‘“American Airlines has been uniquely successful
in its use of computers. Its SABRE I was the first on-line
reservation system and represented a major breakthrough
in terms of real-time computer usage”. A joint research ef-
fort by IBM and American Airlines in the early 50’s
culminated in the SABRE system in the early 60’s. The
system consists of a central computer site with 2000 na-
tionwide terminals multidropped to the central site.*

Education

One of the earliest and most ambitious educational net-
works is the Dartmouth Time Sharing System (DTSS)
first placed in operation in 1964.

“It was . . . decided that exposure to computing and free
availability of computing should become a standard part
of the liberal arts educations at Dartmouth, an under-
graduate college where only 25 percent of the students
elect majors in the sciences and engineering.

... Against this background, it was recognized that the
user-computer interface had to be simplified and har-

"monized with the educational environment if liberal arts

students were to ingest a reasonable dose of sensible
knowledge about computing. Two important consequences
of this recognition were the decisions to bring the com-
puter to the student via remote individual terminals
(teletypes) and to devise an extremely simple user inter-
face.”"*

The system evolved through several stages of hardware
and software systems as well as communications. The use
of DTSS by schools outside Dartmouth developed spo-
radically until given a major impetus in 1967-1968 by NSF
Grants. The configuration in 1968 is shown in Figure 5.

Time-sharing networks

The emergence of time-sharing systems as general pur-
pose on line computing facilities is a development pri-
marily of the 1960’s. Some of the early experimental work
took place at Project MAC at MIT; SDC under the aegis
of ARPA; and RAND. By the mid 1960’s practically all
computer manufacturers were marketing or developing

. some form of time-sharing facilities. A number of organi-

zations now run commercially available time shared
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services. Among them are United Computing Services,
Inc., Utility Network of America and so on.

The most significant networks are unusual in function,
size and complexity.

The largest time sharing network is that run by General
Electric.’**® It has local data lines in some 25 cities in the
U.S., nine cities in Canada, Mexico City, San Juan and
via COMSAT, London, Manchester, Brussels, Am-
sterdam and Paris. The system evolved from GE’s
experience with the Dartmouth Time Sharing System and
in 1965 used the operating system developed at Dart-
mouth.

The most sophisticated time-sharing networks currently
in operation is TYMNET owned by Tymshare, Inc.»* )
The network employs 80 communications processors all Figure 7—Tymnet
over the U.S. accessing 26 host computers. The network
configuration consists of a backbone of multiple rings,
rather than a star, with other nodes connected in stars or
straight runs. If one path to a computer is saturated or
down, the network automatically switches to an alternate
path. The network goes far beyond the concept of indi-

vidual real time terminal users and services entire organi-
zations such as major accounting firms and the National
Library of Medicine.

COMPUTER TO COMPUTER NETWORKS

Parallel to the development of terminal oriented (2)
systems, efforts were under way to allow computers to
directly communicate with other computers in real time. \

The first step was, of course, to place two identical com-
puters in the same building and to connect a cable \
between them. (Many of the computers being built today

can be regarded as sophisticated computer networks in
themselves.) To assist in this difficult task, devices very
much like front ends were developed to handle the com-

(b)

LEGEND
A SUPERCENTER

O NETWORK DISTRI-
BUTION POINT

AREA SERVED BY
NETWORK

—= SATELLITE
=—=—UNDERSEA CABLE

(c)

Figure 6—General Electric international network Figure 8—Evolution of computer-to-computer networks
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(c)

Figure 9—Geographical expansion of the ARPA network

munications functions and other chores needed. Naturally,
the communication lines became longer, necessitating
communication hardware at the ends of the line.

A result of this approach is star-like networks with a
store and forward central switch. The most significant net-
work in this category is the AUTODIN System.'®
AUTODIN was built and -is maintained and managed by
Western Union for the U.S. Government.

An extension of this type work is the ring computer net-
work in which a front end type device (often called a net-
work interface processor) connects the network lines and
the computers. Data for a computer is addressed to that
computer and sequentially sent, link by link, in a circular
fashion. At each step around the circuit, the data is inter-
rogated by the interface processor and when it finally
reaches the interface processor connected to the destina-
tion computer, it is removed from the ring. Naturally, if a
network like this is not planned very well, data may
eventually circulate forever. Thus, control devices to
remove data which is “too old” from the network must be
placed in the network. In addition, as such a network
grows, its reliability can become very low because all ele-
ments along the ring must operate for the network to
operate. Therefore, additional lines for redundancy and
more flexible routing techniques must be added for effec-
tive operation.

December 1970

{b)

August 1972

(@)

A more ambitious type of system, called AR-
PANET,®'" was also developing during the last five
years. The concept of this system was to provide high
flexibility by allowing any kind of interconnections, and
adaptive routing of information. In late 1969, the first four
elements were installed on the West Coast. The network
grew to about a 25 node system in 1971, to about a 40 node
system in 1973, and is today about a 50 node system. This
network is one of the first major applications of the new
technology called “packet switching” in which data is
broken up into blocks that are separately addressed and
then allowed to make their way independently through the
network from origin to destination. This type of network
must handle the problem of controlling flows using a “dis-
tributed” control scheme.

The ARPANET significantly differs from the
centralized system approach. In a centralized system such
as NASDAQ, nearly all the controls reside in the central
computer. If it cannot handle the flow, the computer will

slow down the concentrators and do whatever else is
" necessary to prevent additional calls from being sent. In a

distributed network, very sophisticated techniques of flow
control and routing adaption in case of a line or node
failure had to be developed. Packet switching is now
viewed as a major addition to the technology of computer
networking, and has already been applied to radio com-
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Figure 10—Geographical expansion of the ARPA network (continued)

munications.”® A number of other networks are now being
built or designed that are based on the packet switching
technology of the ARPANET and the future of the field
appears quite bright.

PROPHECY

Clearly an important part of the computer communica-
tions revolution has been the proposal and development of

(® COMPUTERIZED SWITCHING CENTERS ~
OENVER ANO WASKINGTON, DL.
B CONCENTRATOR/AIR ROUTE
TRARFIC CONTAOL CENTERS

®  SUBKCRINEN OROPS
—ee— VOICE GRADE LINE

network of 500 locations

an incredible array of digital services. This includes new
technical offerings and tariff structures by the common
carriers dominated by AT&T* and Western Union.”* A
further development of crucial interest to the computer in-
dustry is the growth of the specialized common carriers
including MCI, DATRAN and a large number of regional
carriers such as Western Tele-Communications. The pic-
ture is further enhanced by the addition of value added
networks and satellite communication. These topics have
only been alluded to here since they are the subject of
another paper in this session.?

Our mandate for this talk does not include
prophecy—for evil or for good. But after all the only
reason for knowing ‘“How we got there”, is so we can
extrapolate to “Where we are going.” Some things are
certain. As Fano says “The ‘Marriage’ of computers and
communication has been celebrated and consummated.
By now the honeymoon is over and the two partners are
beginning to face the realities of their interdependence.”?

Looking into the very near future networks are planned
that tend to combine the distributed network control con-
cepts of ARPANET for computer to computer communica-
tions with the centralized NASDAQ-like approach for ter-
minal to computer and terminal to terminal communica-
tions. These networks are an extension of the multidrop
centralized net where now the terminal processor replaces
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the computer and the backbone communications is then
through a packet oriented net like ARPANET. An example
of this type of net is shown in Figure 11. This particular
example is a sample design for a planned FAA Air Traffic
Control Network. This network has 21 air traffic control
computers at appropriate locations. It has a backbone com-
munication network which is a simple loop like network.
Emanating from the nodes of this network is an extensive
terminal communications network which is itself a collec-
tion of networks.

The growth of computer communication networks has
clearly left the linear part of its presumed exponential
growth. In-house systems or inter-corporation facilities
abound not only on paper but in actual implementation.
In addition many more facilities are on the horizon. For
example:

® In Canada, the Datapac Network is a nationwide,
packet switched, shared, data network which has
been designed to become the basic Canadian network
for data communications. By 1976 there will be four
network nodes: Toronto, Montreal, Ottawa and Cal-
gary. These four nodes, or networks switching centers,
will initially serve the entire country. By 1980, at
least fourteen Canadian cities will have network
nodes. After 1980, the network will continue to
expand to meet Canada’s data requirements.

® Also in Canada plans are being developed for
CANUNET, Canadian Universites Computer Net-
work, a packet switched network sponsored by the
Ministry of Communications to link some 20
universities.?

® An international effort is planned by the Organization
for Economic Cooperation and Development. The
result is to be a European data communication net-
work between certain universities and research
centers. This network, which will work on the “packet
switching” principle, is reminiscent of the ARPA net-
work. Secondary networks can be connected to nodal
centers. Nodal centers will exist in Italy, France,
Switzerland, the United Kingdom, and within the
OECD administration. Norway, Sweden, Portugal and
Yugoslavia have also joined the project.?

Beyond extrapolation we indeed enter the realm of
prophecy. We can only list a few achievements we all know
are here or on immediate horizon, make an obvious
observation, and relate a personal experience.

First the list. The following developments are here:

Minicomputers

Programmable calculators

Hand calculators

Microprocessors

Hand held radio transmitters

Cable TV system for data transmission

Second, the obvious observation. Even without looking

into the far future of hand held minicomputers on a chip
or optical fibers it is clear that computer networks will
soon look nothing like they look now. Mobile users with
hand held terminals dialing into vast networks of mini-
computers and maxicomputers, with little difference
between front ends and processors, is clearly possible.

Finally, a personal experience; as usual, one of us (L.F.)
did his Christmas shopping on Christmas eve. He was at
the counter at Macy’s trying all the calculators, using one
calculator to calculate the cost per feature on all the other
calculators at the latest bargain price of overstocked
Japanese calculators with Italian names. A woman stand-
ing next to him, silent for many minutes, finally got up the
courage to ask the salesman what memory was used for on a
calculator. He tried to explain several times and failed. Fi-
nally, he showed her how it was used to store an inter-
mediate answer. A glow of discovery appeared on her face.
For the first time after years of propaganda, advertising
and intimidation about computer memory banks she
understood what memory was. A new American became
intimate with the computer. This element of citizen accep-
tance of the computer when combined with the technical
elements make a new revolution both inevitable and un-
predictable.

Many others are, of course, actively speculating on the
effect of the computer communications revolution on so-
ciety. Some of this speculation is didactic. Says Peter
Goldmark,”* “What I propose is that the advances of
telecommunications technology—satellites, cable TV,
broadband circuits and similar devices—make it possible
to attract future generations into the smaller towns of
America beyond the commuting dependency range of the
big city and suburbs and thus cut down on the excessive
use of power.” Some of the speculation is more rumina-
tive. Says Paul Baran,”® ‘“The key man in the new power
elite will be the one who can best program a computer,
that is, the person who makes the best use of the available
information and the computer’s skills in formulating a
problem. In a world where knowledge is power, and where
communications mean access to power, he who can most
effectively utilize this access will be in the driver’s seat.
Some persons (primarily computer programmers) claim
that the richest man in the world in the year 2000 will be a
computer programmer. This may sound outlandish, but
few really good programmers laugh when they consider
this assertion.”

But the best appraisal is by Steward Brand,? humanist
author of ‘“The Whole Earth Catalog”. In his essay,
“Fanatic Life and Symbolic Death Among the Computer
Bums,” he sums it all up, “Ready or not, computers are
coming to the people”.
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Computer communication networks—The

parts make up the whole

by WUSHOW CHOU

Network Analysis Corporation
Glen Cove, New York

INTRODUCTION

A computer network, in the broad sense, is any system
composed of one or more computers and terminals, com-
munication transmission facilities, and specialized or
general purpose hardware to facilitate the flow of data
between terminals and/or processors. Its parts consist of
communication devices, the host processors, the trans-
mission lines and a set of rules, implemented in either
hardware or software, to insure the orderly flow of traffic
in the network.

The characteristics of the components of a computer
network depend on the environment in which theory is
implemented. Thus, in this paper, we first discuss com-
puter network architecture and currently available al-
ternatives of communication devices, transmission
facilities, and the required rules and protocols which make
up the network.

NETWORK ARCHITECTURE AND NETWORK
STRATEGIES

Introduction

In this section, computer communication networks will
be classified according to their topological structures and
network architecture. A network architecture has at least
two levels: the global level of overall networking strategy
and the local level of terminal access. In a simple network,
terminal access lines constitute the whole network. Thus,
there is no difference in the two levels. In more compli-
cated networks, there are communication processors and
devices in addition to host computers and terminals. Some
or all of the terminals communicate with host computers
by first accessing the communication processors (CPs). It
is even possible that there are no terminals at all, thus the
main characteristics of the overall network may not be the
same as that of the terminal access structure.

In the following, the overall metworking strategies will be
classified as centralized, ring-switched, and store-and-for-
ward (S/F) message or packet switched. The terminal ac-
cess will be classified as star structured, multidropped,
and ring-structured.
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Global network architecture

A centralized data communication network

In a simple case, a centralized network may just consist
of a computer with a small number of terminals connect-
ing directly to it to form a star structure. Figures 1 and 2
show two more complicated networks structures. A well-
known example for the centralized structure is the NA-
SDAQ, which is an over the counter stock automatic
quotation system.! (Its topologieal is shown in Figure 1.)

Figure 3 represents a general communication path
between a terminal and a host computer. The path has the
following sequence: terminal to terminal control unit, to
multiplexer, to concentrator, to a front-end processor, to a
CP, or a central computer. (Multiplexers and concentra-
tors will be discussed later. For the moment, they may be
viewed simply as communications cost saving devices that
allow several low speed lines sharing one higher speed line.
Multiplexers are usually hardware devices and concentra-
tors are minicomputers.) Not every network or communi-
cation path contains terminal control units, multiplexer
and/or concentrators.

Centralized network usually has the following typical
characteristics:

1. Its computing facilities (i.e., computers) and switch-
ing facilities (i.e, if it is a message switching system)
are centrally located at one site. However, this state-
ment needs qualifications. In performing the func-
tion to allow several low speed lines sharing one
high speed line, concentrators do carry out a simple
switching function by passing messages between the
central computer and the terminals. This switching
function which is a necessary consequence of utiliz-
ing concentrators is not considered as a real switching
function in the above statement. Furthermore, mini-
computers used as concentrators and terminal con-
trol units are quite underutilized. In some networks,
they have been used for limited local processing,
local data base access, and/or local switching. These
approaches have been termed by some people as
“distributed processing” or “distributed data base”,
even though the basic network architecture is still
centralized.
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Figure 1—An example of a centralized communication network

2. It has a tree-like appearance. This is quite evident

from Figures 2 and 3. However, there are cases in
which terminals controlled by the same control unit
form a ring or loop-type network. A notable example
is IBM’s 3600 system.’

. There is only one unique communication path

between a terminal and its central computer.
(However, there are dial-up lines for backup when
dedicated lines fail. Also, there may be parallel lines
between two points, such as the central computer and
a concentrator for the purpose of higher line
throughput and better reliability. In this case, a
message may be sorted through any of the parallel
lines.)

. It is a terminal oriented system. Traffic flow is

between a large number of terminals and their host
computers. There is little or no traffic between com-
puters.

Ring-switched computer network?**¢

In a ring-switched network a ring or loop-type network is
formed by a set of CPs. Terminals and computers desiring
communications are connected to the CPs in a ring or
loop. An example is shown in Figure 4. The main function
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Figure 2——Another example of a centralized network
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Figure 3—A “general” communication path between a terminal and a
computer

of the CPs (Box B in Figure 4) is to interface the terminals
and computers with the ring. They will be appropriately
called Ring Interface Processor (RIP) in this paper. More
than one terminal and/or computer may be connected to a
usually co-located RIP. A RIP bridges its input and output
lines with a shift register. RIP switches information from
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Direction
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Figure 4—A ring network
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input to output by shifting incoming signals from trans-
mission lines through its shift register. The channel ca-
pacity of the ring is multiplexed into a series of time slots.
(To illustrate, assume the channel capacity is 10 Kbps and
it is divided into 10 slots. Each slot will then consist of
1000 bits. Bits belonging to the same slot do not have to be
continuous. Without loss of generality, for easy under-
standing, we can assume they are.) The time slots flow
though the ring from RIP to RIP, or from station to sta-
tion, in the same direction (either clockwise or counter-
clockwise). When a terminal or computer has a message to
send, the message is first stored in the RIP. It is then sub-
divided into blocks or packets that fit into slots. A header
is attached to each packet to indicate the origination and
destination. The RIP then checks the shift register and
waits for an empty slot. When an empty slot is detected,
and available for the RIP to use, the packet is shifted onto
the ring to occupy the slot. The RIP also has the responsi-
bility to detect the occupied slots that are addressed to it.
Sometimes a minicomputer is included in the ring to
perform supervisory functions. A ring-switched network
may consist of several rings. Two neighboring rings are in-
terconnected by a switching processor. It transfers from
one ring to another by comparing a part of the address in-
cluded in the packets’ header with a wired-in address.

Following are typical characteristics of ring-switched
networks:

Inexpensive communication hardware

Easy to design

Low start-up cost

High line throughput

Low network reliability

Higher line costs

More suitable for interconnecting terminals and com-

puters in the same building complex than for a trans-

continental network

8. Except for terminal access network almost all such
networks are experimental

9. Quite often, T1 technology is used for the trans-

mission lines.

Nooe e

Store-and-forward networks

In a message switched, store-and-forward communica-
tion network, several geographically distributed processors
are linked together with dedicated lines to form a back-
bone network which is also called the communication
subnet. This backbone network acts as a common user
service to terminals and computers. Terminals and com-
puters requiring communications must first obtain access
at a store-and-forward communication processor. Messages
are then sent through the network by the CPs, which in
this capacity, are also called switches.

Classical message switching network

Messages are sent in their entirety along a prede
termined path from sender to receiver. At each inter-

mediate CP or switch along the path, the message is first
stored on an on-line mass storage device or on an off-line
storage device (when too long to be feasibly stored within
core), and then forwarded to the next CP on the path
when an appropriate circuit is available. Compared with
packet-switches approach to be described below, the
conventional message switching approach has the follow-
ing disadvantages: very expensive switch costs, long
message delays, less efficiency in utilizing network
resources and less flexibility in adjusting to traffic condi-
tions.

Packet switching S/F computer network?

The basic conceptual difference between message-
switching and packet-switching is that in a packet-switch-
ing network, a message is subdivided into frames or
packets before it is transmitted and is reassembled when it
is received. The basic advantage is that the packets can be
stored in the main core, instead of in mass storage devices,
thus reducing substantially both the delay time and the
switch cost. .

While the packet-switching concept was being
developed, many advanced network control concepts were
also developed and new technology utilized. Some of them
can be conceptually applied to message switching also.
However, people have exclusively associated these new con-
cepts with the packet-switching.

Many of the packet-switching network’s desirable
characteristics result from the use of adaptive routing,
where the path through the network between any two
points is not chosen in advance, but is a dynamic function
of conditions in the network at any time. With its ability
to reallocate its resources as needed, the network over-
comes adverse effects of temporary congestion and failed
links or switches.

Each switch in the network functions as a “local” net-
work manager, deriving its management information from
the network. To send a message, the computer precedes
the text of its message with an address and delivers it to its
local CP; this minicomputer dynamically determines the
best route, provides error control, and notifies the sender
of its receipt. 4

When a message is ready for transmission, the originat-
ing CP divides the message into a set of one or more
packets, each with appropriate header information. Each
packet makes its way independently through the network
to the destination CP, where the packets are reassembled
into the original message and then transferred to the desti-
nation. ~

A packet-switching S/F computer network provides eco-
nomical, fast response, and reliable services to its users.
However, it is advantageous over other approaches only
if there is a large volume of traffic among widespread
users.

Terminal access network structures
Star-structure

A Star structure consists of a set of point-to-point con-
nections. Every local access line connects only one ter-
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minal to a terminal control unit port, a multiplexer port,a
concentrator port, or a computer port. This local access
line may be either of the following three connection types:

® Dedicated connection.—Leased line, private trans-
mission line, or hard-wired connection.

® Dial-up connection.—Terminals dial to a multiplexer,
concentrator, or computer only if and when there is a
need.

® Radio connection.?

For the dedicated line connections, each terminal has a
fully dedicated port. In the cases of dial-up and radio con-
nection, a set of terminals must share and contend for a
smaller number of ports. '

Multidrop (or multipoint) line

In this structure several terminals may share one dedi-
cated line (usually leased). A multidrop line has a tree-like
appearance. The structure in Figure 2 is composed mainly
of multidrop lines. Terminals access the port either by
contention or under the control of a computer.

Ring structure

A terminal control unit and terminals are connected in a
ring in the same fashion as described earlier. IBM’s 3600
system is such an example?

COMMUNICATIONS DEVICES
Communication devices used in centralized network®
Multiplexer'®!

We will use “facility” to refer to the part of the
telephone plant described in terms of its properties as a
transmission medium, and “channel” to refer to a func-
tional communications path. A channel is described by its
capacity, i.e., the maximum rate at which information can
be acceptably transferred over it. The capacity of the
channel, or maximum data rate acceptable, depends on a
variety of factors, including the bandwidth of the facility
and the hardware characteristics of the modems. The use
of one facility to form several separate channels is called
multiplexing. A device which combines multiple facilities,
each used for one or more distinct channels, into one
facility, formed into the same distinct channels, is called a
multiplexer. A device performing the reverse process, i.e.,
transforming one facility, formed into several channels,
into multiple facilities, each with one or more of the chan-
nels, is called a demultiplexer. Many current hardware
devices perform multiplexing in one direction, and de-
multiplexing in the other direction. Such a device is
usually simply called a multiplexer. '

The channel is the functional communications path,
whereas the facility is part of the hardware used to form a

channel. A multiplexer does not alter the channel struc-
ture of the network, and thus is functionally transparent.
However, the physical facilities from which channels are
formed determine a large part of network costs. Multiplex-
ing offers a way to achieve significant economies in
facilities use. To understand these economies, it is helpful
to examine the two fundamental approaches to imple-
menting multiplexing.

One approach is to divide the bandwidth of the facility
into several separate segments, and allow each segment to
serve a separate channel. This is referred to as frequency
division multiplexing (FDM). The second approach is to
establish a high speed data stream over the facility and
assign periodic time slots or bits positions of the data
stream to separate channels. This is referred to as time di-
vision multiplexing (TDM). There are several variations
on the implementation of these approaches.

Concentrator'®'%3

The word “concentration” appears to have a very broad
meaning in data communications. We will discuss only
one narrow interpretation of concentration.

Consider a device having several facilities connected to
its input, and only one facility connected to its output. At
this point the device may be a multiplexer. However, it is
distinguished by the following characteristic: the single
facility on the output side carries one channel, the ca-
pacity of which is less than the sum of all the capacities on
its input side. Such a device providing effective communi-
catons is called a concentrator. A multiplexer is
transparent to the channel structure of a network; a
concentrator obviously is not.

The percent of time a channel is used is called its
utilization. Many terminals generate data for transmission
at an average rate which is much less than the capacity of
the channel; resulting in channels with low utilization. A
concentrator achieves economic advantage by replacing
several low utilization channels with one highly utilized
channel. A prerequisite for a concentrator is that its
output channel capacity be greater than the sum of the
average data rates of the terminals on its input. It is at
this point perhaps helpful to examine the difference
between a multiplexer and a concentrator in more detail.

To each time slot. of each channel on the input of a
TDM, a time slot is assigned in the high capacity channel
on its output. This effectively divides the high capacity
output channel into several separate subchannels, each
associated with a particular channel on the input. It does
not matter whether or not a time slot is being used to
transfer information. A concentrator has more time slots
arriving on its input side than leaving on its output side.
Each time slot carrying information must be assigned a
time slot on the output side. Thus a concentrator must be
able to identify which time slots are in fact transferring in-
formation. Furthermore, it must be able to assign output
time slots to this information in such a manner as to be
understood by whatever device is on the other end of
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the output channel. Although the average number of time
slots carrying information on the input will be less than
the number available on the output, the random nature of
terminal use may result in the number of slots carrying in-
formation arriving over a brief interval being greater than
the number of slots available on the output. Hence, the
concentrator must also have the ability to buffer the arriv-
ing information as it waits for available slots. The require-
ments of intelligence and storage for a concentrator in-
variably lead to its implementation with a minicomputer.
The actual operation of concentrators varies considerably,
but is usually much more sophisticated than the simple
bit packing noted above. By performing such local opera-
tions as polling, error checking, line control, etc., and
transferring information to the computer with efficient
high speed transmission techniques, the concentrator can
achieve an apparent output channel utilization in excess of
100 percent.

The minicomputer implementation of a concentrator
implies a fundamental component cost of approximately
$10,000. Compared to a $1000 cost of a multiplexer, such
a figure requires large economies to be achieved for cost ef-
fectiveness. Concentrators can typically handle 64 chan-
nels, (provided reasonable traffic characteristics).
However, hardware required in addition to the minicom-
puter to achieve this capability raises the cost to ap-
proximately $20,000, or $500/month rental (excluding
maintenance). (Dollar values are for the purpose of illustra-
tion only.)

Front end processors

The central computer and terminals use the data com-
munications network to interchange information. The
general facility of a computer for transferring information
between it and the outside world is its input/output (I/0)
channel. Particular devices are connected with a hardware
interface. In the case of a communications line, the
modem terminating the line must be interfaced with the
CPU. The overhead required for a large CPU to interact
with many communications lines at a modem level is far
too great to be economically attractive. Thus a sophisti-
cated interface is used to handie the modem interaction,
and only useful information is transferred through the I/0
channel to the CPU. In the early history of such inter-
faces, hardwired logic devices called Line Termination
Units (LTU) were used. More recently, it has become very
attractive to use minicomputers to accomplish this task.
Such minicomputers are called Front End Processors
(FEP).

The software capabilities of minicomputers results in a
very broad range of sophistication in their use as FEPs.

Other devices

Modem**

A voice-grade line may be roughly characterized as hav-
ing usable bandwidth extending from 300 Hz to 3400 Hz.

Full duplex lines can transfer information simultaneously
in both directions, while half duplex lines can transfer in-
formation in only one direction at a time. Both computers
and terminals supply and accept information in the form
of a digital baseband signal. The function of the modem
(modulator-demodulator), is to interface the digital base-
band requirement to the analogue bandpass requirement.

Modem sharing unit

A modem sharing unit (MUS), or multiple access coup-
ler, is a device for connecting several (typically up to six)
terminals to a single modem. The terminals are usually
restricted to be in the same location (within 50 feet of the
MSU).

Port sharing unit

A port sharing unit (PSU) is a device for connecting
several (typically up to six) modems to a single computer
port (or conecentrator, or multiplexer). The PSU
broadcasts data from the port to all the modems, and de-
livers data to the port from the first modem to generate an
appropriate response.

Biplexers

A biplexer is a device which uses two voice grade lines to
effectively achieve a single high speed channel (up to 19.2
kbps). Such a device must be able to compensate for the
possible differential delays of the two separate facilities.
Typically, acceptable operation can be achieved with the
two lines diversely routed with differential delays up to
Y% second.

The cost effectiveness of a biplexer is principally
derived from the current tariff structure for high speed
lines versus voice grade lines.

Communication devices for packet switching S/F
networks

There are three major communication functions that
CPs in a S/F packet-switching network must perform: in-
terfacing host computers with the backbone network, in-
terfacing terminals with the backbone network, and
managing the packets flowing through the backbone net-
work. It is not necessary to have three distinctive types of
CPs to handle these three functions. It is possible to have
one type of CP perform more than one of the functions.
On the other hand, a host computer or a remote concentra-
tor may perform part of the interfacing functions also.

Interfacing host computers with the
communication subnet.

This function includes the following tasks:

1. Breaking a long outgoing message into message
blocks so that the size or length of the message
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11.

12.

blocks are within the limit allowed by the network’s
protocols. (In the ARPANET, it is about 8000 bits
and is simply called as a message rather message
block)

. Formatting and code-converting the message blocks
into a standard format acceptable to the network

. Attaching a header with addresing and control in-

formation to each message block. (In ARPANET,
this header is called a “leader’)

. Attaching a trailer with error checking information

to each message block

. Storing the unacknowledged messages and/or
message blocks for possible retransmission

. Reassembling receiving message blocks into
messages

. Breaking long outgoing message blocks into packets

or frames so that the maximum length of the
packets is within the limit acceptable to the net-
work. (In APANET, it is 1008 bits)

. Attaching a header to each packet
. Attaching a trailer to each packet

. Storing the unacknowledged packets for possible
retransmission '

Reassembling receiving packets into message
blocks.

Controlling the input rate to avoid congestion.

This interfacing function can be carried out in two
possible ways:

1.

Tasks 1 through 6 are carried out in host computers
by attaching to host computers with appropriate
hardware interface and software interface. Tasks 7
through 12 are carried out as part of communication
subnet switches’ responsibilities. (This approach has
been adopted by ARPANET. Host computers are
linked directly to Interface Message Processors,
IMPs, the name for the switching nodes in the AR-
PANET, with host computers performing the first 6
tasks and IMPs performing the last six tasks.*>*)

. All the tasks are lumped into one CP. (If so, some of

the tasks can be merged, to reduce the total number
of distinct tasks.) In this case, there will be an addi-
tional processor between a switching node and its
host computer and when the switching node receives
a packet, it will not know whether the packet is from
a host computer or a neighboring switching node.

Interfacing terminals to the communication

subnet.

The following are some of the tasks belonging to this
function:

1.

Recognizing functional applications of the messages,
such as file transfer, interactive, RJE, etc., such that
appropriate protocols can be applied.

o

S

7.

Breaking long messages (RJE, graphic terminals,
etc.) into packets.

Code-conversion for a variety of different terminals.
Formatting the packets.

Attaching the headers and trailers.

. Storing unacknowledged message or packets for

possible retransmission.
Reassembling receiving packets.

This function can also be achieved with two approaches:

1.

Group this function with the traffic managing func-
tion, (i.e., make it part of the switching node’s re-
sponsibilities). (In ARPANET, the CP performing
both functions is called a Terminal IMP, or TIP.*¢)

. Make a distinct CP, specially designed to handle all

tasks. This CP will stand between switching nodes
and terminals. In this fashion, when a switching node
receives a packet, it may not know whether the
packet is from a terminal or a neighboring switching
node. The CP in this case may act like a front-end to
the switching node, a host computer, or a concentra-
tor. (In ARPANET, there is a minihost to interface
RJE terminals and IMPs, there is a special com-
munication processor called ELF to interface a va-
riety of terminals with the IMPs. ELF is a PDP-11
based system.)

Managing packets in the network

This is the most important function in an S/F packet
switching network. Among the tasks that can be classified
into this function are:

1.

w N

PN

Routing input packets to appropriate output lines ac-
cording to packet destination, traffic condition and
routing tables.

Periodically updating routing-tables.

Detecting network element failures and network dis-
connection.

Controlling input rates to avoid traffic congestion.
Recovering from failure.

Acknowledging packet receipt.

Controlling errors

Statistics collection

There are four possible ways to perform this function:

1.

2.

Combining this function with part of the host com-
puter interfacing function (e.g., ARPANET’s IMP).
Combining this function with the terminal interfac-
ing function (e.g., ARPANET’s TIP).

Combining this function, the terminal interface func-
tion, and part of the host interface function into one
machine (e.g., the High Speed IMP (HSIMP) also
called the pluribus IMP, currently being developed
for ARPA by Bolt Beranek and Newman, Inc.")
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4. Performing no other functions but managing the
packet flow.

Communication device for ring-switched networkd*:*®

There are three major communication functions in a
ring-switched network: ring interfacing, ring control, and
switching between a ring and the rest of the network. De-
pending on design philosophy, the control function may be
distributed among RIPs and switches.

Ring-interface .

A RIP basically consists of a shift register, buffers and
an associative store which can be written into by the at-
tached computers or terminals. A RIP can be a minicom-
puter, microprocessor, or hard-wired device. Among the
tasks to be performed are:

® Breaking messages into packets

® Detecting a usable empty slot for sending packets.
(An empty slot may not be usable. In a central con-
trol system, the assignment of empty slots to users is
the responsibility of a central controller)

Shifting packets onto the ring

Detecting arriving packets

Shifting arrived packets into buffers.

Error control

Erasing delivered packets from ring slots, if this func-
tion is not performed by the ring-controller.

Ring-control

Major tasks performed by a CP designated as the ring
controller are:

® Maintaining synchronization of the ring

e Preventing the build up of traffic in the ring because
of undeliverable packets. (If a packet tries to pass
through the controller a second time, it is either
destroyed, creating an empty slot or sent back to its
destination)

e Empty slot assignment upon demand. (This is
performed only in a centrally-controlled system in
which a RIP cannot shift a packet into an empty slot

* without permission from the controller.)

Switching function

Packets destined for a station outside a particular ring
have addresses indicating this and are picked off by a
switching node in exactly the same way that intra-ring
traffic is picked off by the RIPs. This traffic is buffered
and shifted onto the next ring in the same way that local
traffic is shifted onto a ring by the RIPs.

TRANSMISSION FACILITIES

Transmission signaling

There are two ways in which digital signals are sent
down a transmission line. They may be sent as they are,
without modulation, or they may be superimposed upon,
or “modulate” a higher frequency which “carriers” them.
Without modification, signals cannot be sent long dis-
tance because of distortion on the line. If the data sig-
nals are to be carried by a high frequency, they may
either be sent in analog or digital form.

1. Basehand transmission
The transmission of signals at their original fre-
quency and shape is called ‘“basehand” signaling.
Basehand signals may be sent over open wire pairs of
a few miles in length at speeds up to 300 bps. The
speed could be increased significantly if coaxial ca-
bles rather than open wires are used, or if regenera-
tive repeaters are inserted at approximately one
thousand foot intervals in the line.

2. Analog transmission
Almost every data and computer communication net-
work relies on the telephone plant’s facilities for
transmission. Today’s telephone facilities have been
designed for voice transmission and almost all of
them use analog transmission with frequency divi-
sion multiplexing, requiring analog modulation for
carrying and transmitting data signals. A voice grade
channel has a bandwidth of 4K Hertz (cycles per
second). With proper modulation techniques, up to
4.8 Kbps can be derived from a dial-up line and with
proper line conditioning, up to 9.6 Kbps can cur-
rently be derived from a voice grade leased line. It is
possible that even higher rates will be achieved in the
future. Data rates commonly derived from a voice
channel are 300 bps, 600 bps, 1200 bps, 1800 bps,
2000 bps, 2400 bps, 3600 bps, 4800 bps, 7200 bps and
9600 bps. For speeds higher than this, broadband
channels are necessary. At present, modulation of 6
voice band channel yields 19.2 Kbps, modulation of
12 voice band channels yields 40.8 or 50 Kbps, and
modulation 60 voice band channel yields 23.4 Kbps.

3. Digital Transmission (or pulse transmission)
With digital transmission (in contrast to analog), a
train of high rate pulses is used to ‘“‘carry” informa-
tion (digital information as well as voice), instead of
a sinusoidal, or analog carrier. A commonly used
technique is called Pulse Code Modulation (PCM).
In the Bell System, this carrier system is called T1
carrier. It has a total rate of 1.544 Mbps and is
multiplexed to several lower rate channels. Using the
T1 system, a voice grade channel is equivalent to 56
Kbps (in contrast to 9.6 Kbps in the analog system),
and, is thus much more economical for digital in-
formation transmission. Transmission offerings are
discussed in detail by Gerla in another paper in these
proceedings.?
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Terminal access lines and trunk lines
Terminal access lines

With the exception of RJE and graphics terminals, ter-
minal speeds are rarely higher than 2400 bps. Speeds of
RJE and graphics terminals, are usually no greater than
4800 bps. Thus a terminal access connection is usually a
subvoice line, voice grade line with medium speed modem,
dial-up connection, or 2.4/4.8 Kbps DDS line. Exceptions
are for terminals using radio wave links and using the ring
switching technology.

Trunk lines

Trunk lines are the lines on the higher speed side of
"multiplexers and concentrators, the lines connecting CPs,
or the lines connecting host computers to the CPs.

1. Centralized network
The speed of lines merging from a multiplexer or a
concentrator is usually 2.4, 3.6, 4.8, 7.2, or 9.6 Kbps.
Thus, voice grade or DDS line can be used. Occa-
sionally, higher speed lines, 19.2 Kbps or 50 Kbps

are also used between concentrators and host com-

puters.

2. Ring-switched networks
T1 carriers with their capacity of 1.544 Mbps are
often used, even though other types of services and
speeds can also be used.

3. S/F networks ‘
Trunk line speeds range upwards from 9.6 Kbps. For
example, in ARPANET, most inter-IMP/TIP lines
have a speed of 50 Kbps, with a few 230.4 Kbps
lines. The line speed between a host computer and its
IMP or TIP is usually 100 Kbps. Thus, most suitable
lines to be used for S/F networks backbone trunks
are broadhand lines, Telepaks and DDS 56 Kbps
lines.

TRAFFIC MANAGEMENT AND SOFTWARE
Introduction

In any communication system, and in particular, a com-
puter communication system, it is essential to have a set
of well designed basic control procedures to insure effi-
cient, correct and smooth transfer of information in the
system. The main purpose of these control procedures are:

. To make the system convenient to use

. To prevent loss of data

. To detect message duplications

. For efficient and orderly use of resources (lines, com-
munication processors, etc.)

. For error detection and correction

. To detect system element failures
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7. For recovery from system failure
8. To prevent and recover from traffic deadlocks
9. To prevent congestion

In a centralized system, these procedures are relatively
simple. On the other hand for packet switched S/F
systems, they are very complex and must be carefully
designed. In general, they can be partitioned into four
catogories.

1. Communication Protocols

2. Flow control strategies

3. Routing strategies

4. On-line monitoring and control

A communication protocol is a set of rules established to
manage the information exchange between two communi-
cation entities. (For example between a pair of communi-
cation processors.) The protocol provides standard
representations to allow the communicating entities to
understand one another and to cooperate with one
another. The goal of such rules, is to insure that the in-
formation exchange is made in an orderly fashion. A flow
control strategy is a set of rules that governs the accep-
tance of traffic data into the system, or into a communica-
tion processor. The design objective for such rules is to
optimize the trade-off between traffic congestion protec-
tion and system performance during normal traffic condi-
tions. A routing procedure manages output queues in the
communication processors. It decides when and where a
message should be transmitted. The design objective of
such procedures is to minimize the message delay and
optimize the throughput according to traffic conditions.
Strictly speaking, flow control and routing are a subset of
the communication protocols. However, because of the
unique functions and importance of flow control and rout-
ing, they will be treated separately in this paper. An on-
line monitoring and control function monitors system
malfunctions and performance, and generates diagnostic
information. This function provides the means to report
system changes and malfunctions so that correct measures
can be taken when needed.

Protocols

In a terminal oriented centralized system, there are in
general two levels of protocols: (1) the line control
procedure that administers the physical transmission me-
dium and, possibly, detects and corrects errors; (2) the
protocol that manages the information flow between a ter-
minal and a concentrator or a host computer. In a packet
switched system there are three additional possible levels of
protocol between the two. The protocols are further com-
plicated by the requirements that there are in general a
variety of communication functions to be performed
among diverse terminals and computer operating systems.

Protocols can be classified into the following five levels.
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Not every computer network has all of them:2!:22

e Line control procedures.

This is the lowest level of all of the protocols. Such a
protocol administers the physical transmission me-
dium and, possibly, automatically detects and corrects
errors (such as by retransmission). ANSI’s ADCCP,
IBM’s BSC and SDLC,* and ISO’s HDLC all belong
to this level.

® Between a pair of communication processors (such as
IMPs). This protocol provides for reliable communi-
cation among communication processors and handles
transmission error detection and correction, flow con-
trol, and routing.

e Between a communication processor and a host com-
puter, or between a communication processor and a
terminal, With this protocol, a host computer (or ter-
minal) has operating rules that permit it to send
messages to specified host computers (or terminals)
and to be informed of the disposition of those
messages. In particular, it constrains host computers
(or terminals) to make good use of available com-
munications capacity without denying such
availability to other users.

e Between a pair of host computers. This set of rules
allows host computers to maintain communications
between processes (user jobs) running on remote com-
puters. One process requiring communications with
another on some remote computer system makes
requests on its local supervisor to act in its behalf in
establishing and maintaining these communications
under this protocol.

e Between a pair of user processes (e.g., a terminal and
a time-sharing operating system). This is the highest
level of protocol, the user level. It provides user
processes (modules in time sharing computer systems,
modules in multiprogramming systems, terminals)
with a general set of primitives to isolate them from
many of the details of operating systems and com-
munications. At this user level, the protocols are
interface function oriented and join an open-ended
collection of modules. Examples are remote job entry
protocol, file transfer protocol, etc.

Flow control

Flow control procedures regulate the input amount and
rate a communication processor can accept in order to
prevent or minimize the occurrence of traffic congestion
and deadlocks. In a centralized system or a ring-switched
system, the flow control procedure is very simple. For the
former, the concentrator or host computer stops polling
terminals if no appropriate buffers are available for an
input. For the latter, no message or only a few messages
can get on to the ring, if the ring is fully or highly utilized.

For S/F systems, flow control procedure must be very
sophisticated and is still an ongoing topic for research.

Many flow control strategies have been proposed. Some
have been implemented. Although they are different, they
basically achieve the control by allowing an input message
only if a buffer has been reserved for it, and/or by limit-
ing input to communications processors if the number of
occupied buffers reaches a specified lower limit.2-2

Routing

The routing problem is a centralized network or in a
ring switched network is elementary. This is usually one
unique path from origination to destination. In the
centralized network, a message originating from a terminal
is routed to a concentrator (if there is one) over the only
line between the two, then to the host computer. (Some-
times there are parallel lines between a concentrator and a
host computer. The choice is then the first non-busy line
for routing.) In the ring network, a message placed on the
ring circulates in a specified direction until it reaches its
destination if both origin and destination are on the same
ring. Otherwise, it circulates on ring to a switching node,
where it is switched to a different ring and then circulates
on the new ring in a similar fashion.

For the S/F computer network, the routing problem is
more complicated. The existing and proposed routing
strategies can be characterized as follows.

Deterministic vs adaptive

® In a deterministic routing strategy, packets between a
same pair of communication processors are always
routed through a same path, unless there is network
element failure.

e With an adaptive (or dynamic) routing strategy, mes-
sages flowing between a pair of processors are not
necessarily routed through a same path. The chosen
path usually has certain desirable characteristics,
such as least delay or maximum available capacity
and varies according to traffic conditions.

Centralized control vs distributed control

® Centralized control: Determination of host routes is
performed at one computer.

® Distributed control: Best routes are determined at
each communication processor.

Single path vs multiple paths

® Single path: There is only a single path that can carry
traffic between a same pair of communication proc-
€sSors.

® Multiple paths: At any time traffic may flow through
more than one distinct path between the same pair of
communication processors.
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On-line monitoring

This function is sometimes termed an on-line control
function and is not necessarily less complex in a
centralized network then in a S/F computer network.
Generally speaking, this function incorporates the follow-
ing elements:

® Monitoring and reporting malfunctions in the com-

munication network, terminals, controllers, data base,
etc.

® Performance monitoring and interpretation for

response time and traffic activities.

® Generating diagnostic responses for input transac-

tions that could not get a normal response.

CONCLUSION

Based on a broad definition for the computer network,
three basic types of computer networks are defined and
characterized. Centralized, ring-switched, and store-and-
forward switched. For each type, the parts that make up a
computer network are given. The parts are: communica-
tion devices, transmission facilities and traffic manage-
ment.” Communication devices carry out the responsi-
bilities of switching, network control, interfacing, and/or
saving communications costs. Transmission facilities inter-
connect communication devices, terminals and computers.
Depending on applications, their speed ranges from under
100bps to over 1.5Mbps. Traffic management is a set of
rules that ensure the smooth and orderly exchange of in-
formation among elements of a computer network. Its
main functions are protocol, routing, flow control and
monitoring. In short, this paper has explained “what a
computer network is and what it consists of.”
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Moving bits by air, land and sea—Carriers,

vans and packets

by MARIO GERLA and JOHN ECKL

Network Analysis Corporation
Glen Cove, New York

INTRODUCTION

In the past, the data network designer was confronted with
only a few choices relative to communications service
alternatives and line tariffs. Basically, he had to choose
between dial-up or private line from terminal to computer
and, in the case of private line, between narrowband or voice
grade. After this preliminary choice was made, the network
was optimized based on a well defined line cost structure.

Recently, the need for high bandwidth and high quality
computer to computer communications, and the emergence
of new communications services both from conventional
common carriers and from specialized carriers has created new
requirements and new line alternatives for the data network
user, thus adding a new, important dimension to network
design. Line economy, service quality, network growth
flexibility and value added services are among the considera-
tions that should guide the user in the selection between such
alternatives.

In this paper, we attempt to identify the impact of the new
offerings on the optimal network strategy, in a typical data
communications environment. The important aspects of the
various alternatives.are briefly outlined and compared, and
some technical details on the operation of the new value
added networks are presented. General guidelines for the
selection of the best alternative are provided, and are
illustrated in two applications.

NETWORK STRATEGIES

In selecting the optimal strategy for a data network
configuration we must consider a variety of elements such as:
number and location of terminals and host computers;
terminal speed; traffic pattern (single or multiple hosts);
traffic volume; type of data transmitted (interactive, file
transfer, computer to computer ete.) ; terminal connect time
and frequency of usage; reliability requirements ete.

In some cases the best strategy might be that of connecting
the terminals to the host computer via dial-up; in other cases
a high speed, distributed network is required to inter-
connect computers and terminal concentration sites (e.g.,
ARPANET). It is clear that the new carrier services will
have a different impact on the two above mentioned limiting
cases. More generally, each carrier service has a different
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impact on different types of data communications users,
network strategies and requirement profiles. Therefore, a
rigorous cost-performance comparison of the various offerings
would imply the analysis case by case of an extremely large
number of possible situations, and is certainly beyond the
scope of the present paper. Instead, we focus here on a
typical network structure and evaluate the impact of the new
offerings on its cost and performance.

The most general configuration of a modern, medium-sized,
nationwide, terminal oriented data network is represented
by a two-level hierarchical structure.

The lower level corresponds to several local distribution
subnetworks which connect geographically distributed termi-
nals to regional collection  cénters' (which could be TDMX
devices, concentrators, packet switching processors, satellite
ground stations etc.). A variety of techniques can be used for
connecting terminals to regional centers, such as: dial-up,
time or frequency division multiplexing and polling.

The higher level network is the backbone network which
connects the regional centers to the host (or hosts) and, if
required, between each other. We can identify two types of
backbone configurations: the-tree-like structure (star, mini-
mum spanning tree, or an intermediate solution) generally
used when there is only one host; and the distributed,
2-connected packet or message switched structure, which is
desirable when there are several hosts in different locations,
or when two disjoint paths to the host are required for
reliability. Backbone links are generally implemented with
synchronous channels of voice grade bandwidth or higher.

The above network model includes the two limiting cases
of a nationwide computer to computer network (in which
case the network reduces to the high speed backbone com-
ponent) and of a local, single host, terminal oriented network
(in which case the network reduces to the local distribution
subnet).

The emphasis of the new offerings is to provide a very
competitive (cost-wise) and specialized (quality-wise) serv-
ice on long distance routes between a selected number of
cities, with only a limited capability of extending such service
outside the urban areas. Therefore, the user can achieve
considerable savings in backbone trunk cost if the regional
centers are properly selected and, in the limit, can even
consider to replace a private backbone network with the
shared network facilities of value added vendors such as PCI
and Telenet. However, he should be aware of the fact that
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line cost saving, quality improvement and flexibility gained
in the backbone network must be traded off, in general, with
a cost increase and performance degradation in the local
distributions, especially if a substantial number of his
terminals require interconnection via high cost and low
quality conventional communication services.

CONVENTIONAL AND SPECIALIZED CARRIERS

In the following we briefly review the properties of
conventional carrier (AT&T, Western Union), specialized
carrier (MCI, Southern Pacific Communications, U.S. Trans-
mission Systems, Western Telecommunications, Datran) and
satellite carrier (American Satellite, RCA, Western Union)
offerings; and relate such properties to the line cost economies
obtainable during network design.

Switched services

The use of dial up over the public switched network is
cost-effective both in the local distribution subnetwork
{primarily as a local access techrique for terminals of
unfrequent use) and in the backbone network (primarily as
a back up in case of failure of the leased facilities).

Dial up is presently offered by the common carriers over
half duplex, non-conditioned voice grade facilities. The
quality is acceptable for low speed connections, but is often
not adequate for backbone communications. In fact, full
duplex operations require two half duplex lines, and data
speed cannot exceed 4.8 Kb/s.

A new type of truly digital switched service (Data Dial)
will be soon offered by Datran, and probably AT&T and
other specialized carriers will follow the example. The major
features of this service are: digital channel (no modems);
connection established in less than 1 second; large selection
of channel speeds (up to 19.2 Kb/s) at different costs and
with 1 second incremental charges; low error rate; low
blocking. .

The introduction of the digital dial up might have a
substantial impact on distributed network strategies. In
particular, it could efficiently complement, if not replace, the
packet switching strategy to accommodate bursty, high speed
distributed requirements in a network with several computers
and high speed peripherals that can communicate with each
other.

Dedicated line offerings

The majority of data communications services available
today are based on analog facilities originally developed for
voice communications. The most popular voice grade dedi-
cated service is offered by AT&T under the Hi-Lo Tariff, and
can accommodate up to 9.6. Kb/s with line conditioning and
appropriate modems. The Hi-Lo rate structure is a location
dependent structure, in the sense that it applies different
mileage and service termination charges depending on the
locations of the stations at both ends of the line. More

precisely, there are 370 locations, classified as high density
locations and corresponding to high volume communications
areas, while the remaining locations are designated as low
density. The basic elements of the tariff are reported below:

High point-high point:

High point-low point or low
point-low point:

Short haul (<25 miles):

.85 $/Mile X Mo.
2.50 $/Mile X Mo.

3.00 $/Mile X Mo.

Monthly channel terminal charges are $35 for Hi and $15
for Low; station terminal charges are $25 for both Hi
and Low.

A low to low connection can be implemented either directly
(in which case the low to low direct distance charge applies),
or via two intermediate high density points (in which case
different tariffs apply to different segments). For a typical
data network with geographically distributed terminals, the
effect of the Hi-Lo structure (as opposed to a uniform
structure) is that of reducing backbone cost, at the expense
of higher distribution costs, especially if most of the terminals
are in areas with low degree of industrialization.’

For data rates higher than 9.6 Kb/s, AT&T offers the
Series 8000 service for speeds of 19.6 and 48 Kb/s, and the
Series 5000 service (Telpak) for speeds up to 230 Kb/s. Both
offerings are based on analog channels, which can be sub-
divided into lower speed, voice grade channels.

In addition: to the analog facilities, AT&T plans to offer in
the near future the Dataphone Digital Service (DDS), a
truly digital service, with synchronous transmission at speeds
of 2.4, 4.8, 9.6 and 56 Kb/s. Main features of the system are:
end to end digital transmission (no modems required) ; high
circuit availability (99.9 percent); and mileage charges
considerably lower than the analog channels of equivalent
bandwidth. The basic elements of the proposed DDS Tariff
are reported below.

Channels Between Digital Cities

For Transmission Rate Per
Speed of : Fixed Charge Airline Mile
2.4 Xbps $ 20.00/mo $ .40/mo. X mile
4.8 Kbps 40.00 .60
9.6 Kbps 60.00 .90

56  XKbps 125.00 4.00

Digital Access Lines In Digital City Serving Areas

Type I (X 5 miles from Telco office)

For Transmission Non-Recurring

Speed of: Monthly Charge Charge
2.4 Kbps $ 65.00/mo $100.00
4.8 Kbps 85.00 100.00
9.6 Kbps 110.00 100.00

56 Kbps 200.00 150.00
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Type II (> 5 miles from Telco office)

For Trans-
mission Rate Per Non-Recurring
Speed of : Fixed Charge Airline Mile Charge
2.4 Kbps $ 90.00/mo $ .60/mo X mile $100.00
4.8 Kbps 110.00 .90 100.00
9.6 Kbps 130.00 1.30 100.00
56 Kbps 250.00 6.00 150.00
Data Service Units
For Transmission Non-Recurring
Speed of : Monthly Charge Charge
2.4 Kbps $15.00/mo $25.00
4.8 Kbps 15.00 25.00
9.6 Kbps 15.00 25.00
56 Kbps 20.00 25.00

DDS will be initially offered between 5 cities, and will be
extended to include 96 cities in 1976. Since terminals outside
the DDS cities require expensive analog interconnections, it is
likely that the benefits of the DDS service will be felt much
earlier in the backbone network, rather than in the local
distributions.

Western Union, the other large common carrier, parallels
AT&T in most of the analog offerings. In addition, Western
Union offers to the data users a unique service known as Data
Comm. The service is available in some 60 cities and is in-
tended for users with a mixed set of low speed data require-
ments between two or three Data Comm cities. The low
speed lines are time division multiplexed and demultiplexed

by Western Union in the Data Comm offices. The trans- .

mission between cities is 6ver voice grade lines.

Specialized carriers have the general connotation of
offering analog and/or digital services of high quality, at low
rate, between a limited number of cities, typically in high
industrialization areas. The main features of some of the
specialized carriers are described below.

MCI Telecommunications Corporation serves more than
20 cities stretching from New York to Washington, D.C.,
west to Chicago and south to Dallas and Houston. Data
speeds range from 300 bps to 56 Kb/s, including an interesting
19.2 Kb/s offering. The rates are similar to the corresponding
AT&T high density and bulk discount rates.

Southern Pacific Communication (SPC) offers nationwide
data communications services from teletype up to 100 Kb/s
speeds at very competitive rates. For example, the monthly
cost for a voice grade New York to Los Angeles connection is
$1,144, i.e., less than half the equivalent AT&T high density
charge. These special rates apply between cities connected by
SPC leased satellite channels. For other cities, the rates are
still 10 to 20 percent less than the equivalent AT&T high
density rates.

U.S. Transmission System, Inc. (USTS), one of the latest
specialized carriers to receive FCC authorization, plans to
establish a 1500 mile backbone microwave network from
Houston to New York, with data speed offerings ranging
from teletype to 960 Kb/s. A very diversified gamut of

service offerings (part time usage; metered service; store and
forward message switching; facsmile etc.) is being planned.

Western Telecommunication Inc. offers data services up to
50 Kb/s between four major western cities (Los Angeles,
San Diego, Phoenix and Tucson), at rates somewhat lower
than the AT&T equivalent. An agreement has recently been
reached between Amersat, MCI and Western TCI, to extend
the specialized service nationwide.

While the above mentioned carriers provide analog chan-
nels for data transmission, Datran is offering a truly digital
service to compete with the DDS of AT&T. The service is
available between about 10 major cities in the mid-west, and
will be extended to the east and west coasts through an
interconnect agreement with Southern Pacific Communiea-
tions. Data speeds are 2.4, 4.8, 9.6 and 56 Kb/s. Ultra high
speeds of 1.344 and 2.688 Mb/s will be available on a
point-to-point basis. Datran rates are parallel to the DDS
rates. Circuit availability better than 99.95 percent is
promised, on a money back guarantee basis.

On the domestic satellite scene, several carriers are offering
analog and digital channels with bandwidth up to 230 Kb/s
(and even larger) between major U.S. cities, at extremely
competitive rates. The basic rates offered by Western Union
(excluding local loops) are shown below. Identical rates are
offered by the other satellite carriers.

Base Super
Group Group
Single (12 (60
Service Route Channel Channels)  Channels)
New York-Los Angeles
New York-San Francisco
Atlanta-Los Angeles
Atlanta-San Francisco $1,000 $10,800 $48,000

Washington-Los Angeles
Washington-San Francisco

Chicago-Los Angeles

Chicago-San Francisco

Dallas-New York

Dallas-Washington 750 8,100 36,000
Dallas-Los Angeles

Dallas-San Francisco

Chicago-Dallas
Chicago-New York
Chicago-Washington
Atlanta-New York 500 5,400 24,000
Atlanta-Dallas
Atlanta-Chicago
Atlanta-Washington

(monthly rates)

If not in the rates, the domestic satellite carriers differ from
each other in number and location of ground stations; local
distribution arrangements, large bandwidth offerings, channel
quality and specialized digital services. The characteristics of
the major satellite carriers are illustrated below.

American Satellite Corporation (Amersat) has stations in
New York, Los Angeles and Dallas, with terrestrial connec-
tions to San Francisco, Chicago and Washington, D.C.
Nationwide distribution is obtained through interconnect
agreements with several specialized carriers. In addition,
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Amersat is considering the possibility of providing direct
satellite connection to the customers, bypassing the AT&T
local loop, with the application of advanced satellite
technologies.

RCA Satcom offers service between Alaska, New York and
San Francisco, with stations in Washington, D.C. and
Los Angeles to be added in the near future, and 6 more
stations to be added by 1976.

Western Union satellite service is provided between 7
major cities, directly or via the Western Union microwave
network. Extensions to other cities are available at terrestrial
private line rates. An interesting aspect of the Western Union
service is the possibility of leasing an entire transponder
(36 MHZ) for a rate ranging from 100 K$ to 180K$ per
month, excluding ground stations. The customer can use his
own ground stations, if he desires.

In summary, the new offerings both from AT&T and from
specialized and satellite carriers provide a data service of
better quality, higher reliability, greater flexibility and lower
cost between a limited number of highly industrialized areas.
However, these benefits are often lost when the end points
of the connection are not within the urban areas covered by
the service, since in those cases expensive, relatively unreliable
and lower quality local loops must be used for the inter-
connection. Typically the adoption of a new data offering
will lead to considerable dollar savings, better quality and
higher flexibility in the backbone network, at the expense of a
cost increase in the local distributions. Thereforg, the match
between the geographical distribution of user requirements
and carrier stations plays a fundamental role in the selection
of the appropriate data service.

Besides conventional and specialized carriers, the user will
have yet another alternative to consider, namely the data
service provided by the value added carriers. Since the
common connotation of such carriers is the adoption of the
relatively new packet-switching technique, a brief description
of such technique is provided in the next section.

HOW PACKET-SWITCHING MOVES DATA

Packet-switching technology is a spinoff from the develop-
ment of ARPANET, a distributed network which inter-
connects more than 40 research installations of the Advanced
Research Projects Agency (ARPA). Operational since the
summer of 1971, the network was developed with more than
$10 million of government funds to explore networkt ech-
nology and gave researchers at ARPA-sponsored centers the
facility to share each other’s programs, services and data
bases. ’

For ARPANET, researchers developed the distributed
packet-switching concept to achieve lower costs, higher
speeds, greater reliability and greater flexibility than had
been realized before in data networks. Virtually error-free
communications are possible from almost any known terminal
type to any of a variety of computers, as well as between
computers. The advantages of distributed packet-switching
both for terminal-to-computer and computer-to-computer

communications make the system one of the most significant
recent contributions to the field of data communications.
Packet-switched networks use leased lines as transmission
links and minicomputers for store-and-forward message
switching and network control. Many of the network’s
desirable characteristics result from the use of adaptive
routing, where the path through the network between any
two points is not chosen in advance but is a dynamic function
of conditions in the network at any time. With its ability to
reallocate its resources as needed, the network overcomes
adverse effects of temporary congestion and failed links or
switches. Packet-switched networks utilize a powerful error-
control scheme, and an undetected error can be expected to
occur only once every few years. Message delivery to the

~ addressee is confirmed with an acknowledgment message

returned to the sender.

Each switch in the network functions as a “local” network
manager, deriving its management information from the
network. This function is implemented through a Network
Control Center (NCC) which appears to the network as
another data processing computer facility. The NCC auto-
matically collects comprehensive status reports from all
switches and provides for extremely effective ‘‘global”’ net-
work management.

A typical example of packet-switched network configura-
tion is offered by ARPANET. In the network, each user
computer is called a host. User terminals and host computers
are connected to the network through two types of mini-
computers: an Interface Message Processor (IMP), which
interfaces one or more host computers with the network; and
a Terminal Interface Message Processor (TIP), which
performs the functions of an IMP and also interconnects the
network directly with up to 63 user terminals or consoles.
Serving as a simple host, a TIP converts the characteristics of
diverse types of terminals to a network standard. IMP’s
provide the standard interface for each host computer, and
perform all communications functions.

In ARPANET, the IMP’s and TIP’s are connected by
leased communication lines and may use a wide range of
communication channel data rates up to 230 kbps. Each IMP
handles its communications tasks completely independently
of the host computers, and the network operates under a
distributed control scheme, where each IMP and TIP makes
its own decisions as to control of communications with its
host and routing of meéssage traffic through the networks. To
send a message to another host, the computer precedes the
text of its message with an address and delivers it to its local
IMP; this mini computer dynamically determines the best
route provides error control, and notifies the sender of its
receipt. TIP’s perform the same function for terminals.

When a message is ready for transmission, the originating
IMP or TIP divides the message into a set of one or more
packets, each with appropriate header information. Each
packet makes its way independently through the network to
the destination IMP or TIP, where the packets are
reassembled into the original message and then transferred to
the destination host or terminal. Since parts of a message
may take different paths through the network, unauthorized
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access to a transmission link allows only partial interception
of the messages, so that packet-switching networks provide
enhanced security. Also, in a packet-switched network whose
facilities are distributed across the United States, the cost of
sending data between two distant points is approximately the
same as the cost of sending data between two relatively close
points.

Essentially, packet-switching is a.specialized form of
store-and-forward message switching. However, it differs
significantly from both conventional message-switching and
the circuit-switching techniques employed in the public
telephone network.

In a circuit-switched network, the entire transmission path
between sender and receiver is chosen in advance, and for the
period of the call, network resources are allocated to the
exclusive use of the conversation, whether or not there is any
conversation or data being sent. In a conventional message-
switching network, data messages are sent along a predeter-
mined path from sender to receiver; however, messages can
be temporarily stored at intermediate relay points. This
storage capability means that network circuits are not
allocated in advance, but as they become available. By
delaying the delivery of a message from sender to receiver,
message-switching effectively spreads peak demand for service
over time and thus more efficiently utilizes network facilities.

VALUE ADDED NETWORKS (VAN'’s)

Value added networks are communication service com-
panies which lease transmission facilities from common or
specialized carriers and resell communication services not
available from the original carrier. One of the features com-
monly offered is packet-switching, with service comparable to
that in the ARPANET. FCC approval has been granted to
GRAPHNET, Packet Communications, Inc., and Telenet.
The introduction of VAN’s services may be quite rapid since
they do not undertake the construction of new transmission
lines.

Figure 1—Proposed Telenet configuration

Cost: 93 (K$/mo)
Thruput: 447 Kbs

Delay: .200 sec. 50 KBS

Figure 2—Nationwide computer network

Typical value added services deriving from the packet-
switched implementation are: automatic terminal speed
recognition and conversion; code translation; powerful error
detection and ecorrection; high network availability; easy
access to distributed resources.

Network charge consists of two components:

1. The charge for the usage of dedicated or dial-up ports
at the packet<switching centers; and

2. The charge for the volume of data transmitted
(typically independent of distance travelled).

In addition to VAN charges, the user must pay for the
lines (dedicated or dial-up) from terminals to VAN service
centers. If there is no good match between user locations and
VAN locations, the local access charge might actually exceed
the direet VAN charge, as shown in an application at the end
of this paper.

PCI was the first VAN to obtain FCC authorization in
November 1973. The initial PCI network will connect 18
major US cities via terrestrial, wideband lines. Future plans
call for the extension of the service to 40 cities.

Telenet also plans an 18-city network, which will use
terrestrial as well as satellite links. The proposed configura-
tion is shown in Figure 1. The tariff filed by Telenet is
reported below:

$ 1.25/Kilopacket

$ 50/mo (up to 9.6Kb/s)
$100/mo (50Kb/s)
0-1800bps $1.00/hr.
2400bps $2.00/hr.
4800bps $3.5/hr.

Packet charge
Dedicated port charge:

Dial-in port charge

It is anticipated that value added services will have a
profound impact on network design strategy, especially for
the small and medium data communications user. In fact,
such users might find it advantageous to replace the tradi-
tional private backbone network with the shared use of a



134 National Computer Conference, 1975

T —— —

97.7 K$/md
Thruput: 603 Kbs
Delay: .350 sec.

=== WL KS
—— — %, KbS
— 50KbS

Figure 3—Satellite upgraded configuration

VAN, for better quality, flexibility growth capability and,
possibly, lower cost.

SELECTING THE BEST ALTERNATIVE

The new services offer potential benefits that are extremely
attractive, and certainly must be considered by the cost-
conscious communications user. It must be remembered,
however, that the effective use of such services often places
new constraints on overall network design. A fundamental
restriction is represented by the fact that the services are
generally available only in a limited number of urban areas,
so that the user with geographically sparse requirements
often loses the cost and quality benefits when interconnecting
terminals outside the cities in which the service is available.

Therefore, it is i‘mperative that users explore the largest
possible number of alternatives. But, in performing this
evaluation, they must identify and accurately analyze all
network cost components (backbone, local distribution,

112.9

(K$/mo)
Thruput: 635 Kbs
Delay: .200 sec.

Cost:

Figure 4—Terrestrial upgraded configuration without satellite

communication hardware and software, etc.) and, if neces-
sary, reoptimize network topology and strategy for each
alternative. Furthermore, the comparison eannot be limited
to cost and performance criteria relative to the present
communications needs, but must be extended to consider
also growth capability and flexibility in meeting future
requirements.

Two examples of evaluation of different service alternatives
for network design are reported here. The first example is
relative to the expansion of-a large computer network using
terrestrial or satellite links. The second example compares
in-house backbone implementation versus rental of VAN
services for a medium-sized, terminal oriented network.

Under contract with the Advanced Research Project
Agency, we recently evaluated the cost-effectiveness of using
satellite services in order to upgrade the capacity of
ARPANET, the large nationwide computer network whose
continental links are now implemented exclusively with
wideband terrestrial channels.t? The satellite alternative
consisted of a satellite channel of 1.5 MHz bandwidth made
available at the vendor ground stations at a yearly rate of
$100,000. This charge does not include the cost of local
loops.?

The study was carried out by optimally upgrading network
capacity to meet a 50 percent increase in traffic, using either
the terrestrial or the satellite alternative. The results,
illustrated in Figures 2, 3, and 4, show that the satellite
alternative is more cost-effective, and leads to total cost
savings on the order of 10 percent. It might be noticed that
a major reoptimization of the terrestrial network was neces-
sary, in order to take full advantage of the low cost satellite
bandwidth.

The advantages of the satellite solution are not limited to
cost savings. In fact, the satellite channel offers more
flexibility in adjusting to changes in traffic requirements
(this property is inherent in the satellite multiple access
channel) and better growth capability (the user can provide
his own ground stations and lease more satellite bandwidth,
with formidable volume discounts).

In another example, we compare two alternative design
strategies—private backbone network and Telenet—for the
implementation of a medium-sized network with a few

TABLE I—In-House and Telenet Costs

IN-HOUSE ALTERNATIVE

Total Network Cost $42,000/mo.
TELENET ALTERNATIVE
Data Transmission Charge $ 1,300/mo.
Port Charge 2,600
Local Access Cost from Terminals to Telenet sites 21,500
Cost of Direct Terminal to Host Connections 800
TOTAL NETWORK COST $26,200/mo.
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hundred terminals sparsely distributed across the nation and
the host computer located on the East Coast.

In the in-house network case, TDMX devices are stra-
tegically located across the nation, and are connected to the
host via private trunks. Terminals are connected to the
nearest TDMX (or to the host) via dedicated or dial-up
line, depending on connect time and frequency of usage.

In the Telenet alternative, terminals are connected to the
nearest packet-switching station, or to the host (when more
economical).

The results of the evaluation are reported in Table I.
Private and dial-up line charges were computed according to
the current AT&T tariffs; Telenet charges were determined
according to the tariffs shown earlier. The results indicate
that the Telenet solution is much more cost-effective than
the in-house solution. Furthermore, the use of Telenet offers
better terminal growth capability, and better flexibility to
changes in traffic pattern and, possibly, to distributed host
and data base implementations.

CONCLUSIONS

The future will see a rapid growth of conventional and
specialized data communications offerings, with tariffs subject
to frequent changes, mainly because of the competition
between carriers and the development of new techniques.

The cost conscious user must be prepared to react to this
dynamic communications market. In particular, he must be
prepared to explore a large number of alternatives during the
network implementation phase, and must be ready to
reconfigure his network more often than before, in order to
take advantage of rapidly changing cost and quality of
service.

The evaluation of different alternatives must be very
accurate and comprehensive, to identify and appraise all
network cost components (communications hardware and
software, local distribution lines, backbone trunks, etc.).
Sophisticated network design and evaluation tools become

an absolute necessity, especially for networks of considerable
size.*

The selection of the best alternative is not based uniquely
on cost. In fact, in a competitive environment, it is likely
that the same channel bandwidth between the same points
will be offered at similar cost by all carriers. However, one
carrier may differ from another for channel type and quality,
availability of service, number of cities served (or planned
for service), provision for interconnection with other carriers,
ete. In evaluating VAN’s, for example, type and quality of
the value added service, rather than the mere data trans-
mission cost might be the overriding consideration.

Finally, the user, in making his decision, must carefully
analyze his present and future communications requirements,
and for each alternative, determine not only the cost of
satisfying his present needs, but also the growth capability
and flexibility in meeting future needs.
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Speech transmission in packet-switched store-

and-forward networks*

by JAMES W. FORGIE

M.I.T. Lincoln Laboratory
Lexington, Massachusetts

INTRODUCTION

The past few years have seen a widespread and growing
application of packet-switched store-and-forward networks
for data communication between geographically separated
computer installations.»? Such networks can provide con-
nections between facilities with the many desirable
properties of dedicated communication lines but at
reduced costs which result from the time-sharing of the
actual lines among many customers. Barring the failure of
local terminal equipment, such a network provides con-
nections among its customers which implicitly exist
regardless of the load being placed on the network.
However, the network characteristics seen by an indi-
vidual customer will vary with overall network traffic,
since the network will tend to. deliver messages less
frequently and with increased delay (possibly beyond the
point of usefulness) as load increases. This property of
packet-switched networks—guaranteed connections with
variable throughput and delay—is just the reverse of that
exhibited by circuit-switched networks such as the
telephone system. When circuit-switched systems are
heavily loaded, delay may be experienced in making a
connection, but once it is established, its throughput and
delay will not vary with other system activity.

Interest in transmitting speech in packet-switched net-
works grows out of the value of the guaranteed connection
offered by such a network. The-advantage of a guaranteed

connection is obvious in many governmental and com-

mercial situations, and such connections are often realized
today by dedicating leased circuits to this function. If
speech communication could be handled effectively with
packet-switching techniques, then some economies could
be expected by combining speech with data traffic and us-
ing the same network to provide both services.

Other benefits could be expected from handling speech
in digital form as would be required to be compatible with
the data in a combined network. Digital transmission is
inherently insensitive to noise, crosstalk, and distortion.
Encoding to insure privacy and security is greatly sim-
plified. By treating speech as data and introducing it into
computers on the network, a number of interesting new

* This work was sponsored by the Advanced Research Projects Agency of
the Department of Defense.

137

possibilities are opened up for supporting conferencing
and handling spoken messages on a non-real-time basis.

The purpose of this paper is to discuss the technical
problems which must be overcome if satisfactory speech
communication is to be achieved in a packet-switched net-
work. The paper is semi-tutorial in nature and attempts to
provide some background for those who may be unfa-
miliar with the nature of the speech communication
process and/or the characteristics of packet-switched net-
works. In addition to a statement of the problem, the
paper concludes with some requirements which the author
feels must be met by networks if they are to support
speech communication.

CHARACTERISTICS OF THE SPEECH DATA
STREAM

In order to transmit a speech signal through a packet-
switched store-and-forward network, it is necessary to
convert it to an appropriate digital form. Many techniques
are available to achieve this transformation, and they vary
greatly in data rate, hardware complexity, and quality of
the output speech. If high-fidelity reproduction of the
speech waveform were to be required, and conventional
analog-to-digital conversion techniques were used, the
resulting PCM (pulse code mudulation) representation of
the signal would require the communication system to
handle a data rate of about 250,000 bps (bits per second).
If “telephone” quality speech were adequate, and the
same techniques were used, only about 50,000 bps of ca-
pacity would be needed. PCM techniques imply high re-
quired data rates, low complexity and cost, and good
quality.

Since high data rates mean high eommunication cost,
much effort has been directed to the exploration of
schemes to handle speech satisfactorily at lower data
rates. In the years since Dudley’s invention of the vo-
coder,® activity in the speech bandwidth compression area
has followed a somewhat cyclical pattern. At the moment
research in the area is relatively intense, spurred by recent
theoretical advances, the availability of high-speed
processors capable of simulating vocoders in real time,
and the continuing downward trend in component costs
for digital hardware. Space limitations preclude even a
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cursory review of the techniques presently being investi- .

gated. The interested reader can find in References 4
through 8 both overviews*® and more detailed discussions
of particular techniques. References 5 and 6 also include
recordings -which allow subjective evaluation of the
processed speech.

Broadly speaking, two approaches to bandwidth
compression have been pursued, each with many varia-
tions. The first might be called a waveform coding ap-
proach. Here an attempt is made to reconstruct a good
replica of the original speech waveform by taking ad-
vantage of the fact that successive samples of the input
signal are not independent of each other, as would be
allowed by the PCM representation, and that con-
sequently fewer bits are needed to represent the range of
possibilities for the successor to a known sample. The cur-
rent state of the waveform-coding art offers devices of
modest cost and complexity which can produce good
quality speech at data rates of 16,000 to 24,000 bps.

The second, or vocoder approach, abandons the concept
of re-creating the original waveform. Instead, the input is
analyzed in terms of a model of the speech process. The
results of the analysis are transmitted to the receiver
where a speech-like signal is synthesized. Ideally, the
synthesized signal will sound very much like the original
speech.

Vocoders have been available for some time which
operate in the range of 2400 to 9600 bps, and experimental
vocoders have been demonstrated at 1200 bps. While in-
telligibility tests suggest that vocoders operating toward
the lower end of the range should be adequate for speech
communication, they have not been widely used. The
market for such vocoders has been small because of high
cost and the somewhat unnatural quality of the output
speech. The adequacy of the speech quality from vocoders
has often depended on the characteristics of the talker’s
voice so that a particular vocoder may seem quite satisfac-
tory for some voices and very bad for others. A substantial
fraction of current research effort is being directed toward
the exploration of linear prediction techniques®” which
promise to give improved quality and talker independence
in the 2000 to 4000 bps range.

Since most speech transmission has involved circuits of
constant bandwidth, it has become the custom to think of
a speech signal as requiring a constant data rate equal to
the peak rate. However, for the. purposes of packet-
switched communications it is useful to consider a speech
signal as a variable-rate bit stream. Obviously, no bits at
all need to be transmitted when the talker is silent, either
pausing to think or to wait for the other party in a con-
versation to finish talking. The statistics of this on-off
aspect of the speech data stream have been investigated®
‘and used to advantage in the TASI* system to at least
double the number of conversations which a group of
speech channels can handle. Unfortunately, while the

* TASI", an abbreviation for Time Assigned Speech Interpolation, is a
high-speed transmission and switching system used in some long-distance
telephone systems to interpolate additional talkers into the idle channel
time present in telephone conversations.

most frequently occurring “talkspurts” have durations of
less than half a second, many go on for 10 seconds or
more, and the statistics are such that the communication
system designer cannot take much advantage of the
potential saving in channel capacity unless the system ca-
pacity is large enough to handle 20 to 50 simultaneous con-
versations.'®

Further reductions in average data rate are possible by
taking advantage of the fact that during certain speech
sounds the character of the sound changes much more
slowly than its maximum rate.! In order to make use of
this type of variable data rate, buffering is required at
both ends of the transmission link. Since buffering is al-
ready required to cope with the variable bandwidth of a
packet-switched network, it would appear desirable to
take advantage of this fact by using a variable-rate vocod-
ing technique. Since work on such techniques is still at an
early research stage and cost/benefit ratios are not yet
available, it is premature to assume that such devices will
prove to have practical advantages. It is likely, however,
that speech transmission in a network will take advantage
of the on-off aspects of the speech signal.

In comparing waveform-coding devices with vocoders, it
appears safe to assume that a vocoder will be more expen-
sive than a waveform-coder giving comparable speech
quality. A vocoder is also likely to be more sensitive to er-
rors in the data stream. On the other hand, both the com-
munication costs and the delay introduced into conversa-
tions will be greater for the waveform-coder with its ex-
pected factor of five to ten higher data rate. The choice of
the technique to be used in a particular situation will
depend on overall costs, delay characteristics of the net-
work, and subjective quality judgments. Present knowl-
edge does not suggest an obvious choice for general use
in packet-switched networks.It is therefore reasonable
to expect that both high (16,000-24,000 bps) and low
(2000-4000 bps) rate devices will find application in such
nets.

CHARACTERISTICS OF PACKET-SWITCHED
NETWORKS

In a packet-switched communication network, cus-
tomers are provided with ports which accept and emit
data streams made up of entities called messages and
associated identifiers. The identifiers must contain enough
information to specify the destination to which the
message is to be sent, and they may contain additional in-
formation such as requests for special handling by the net-
work. A message given to the net is not generally
forwarded immediately. It must wait until an opportunity
arises to transmit it along a shared wire line, radio chan-
nel, satellite link, or whatever to another node in the net.
There it is likely to wait again for an opportunity for
transmission to yet another node. Eventually it will arrive
at a node which can deliver it to its intended destination.
The number of nodes through which a message will pass
cannot be less than some minimum determined by the to-
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pology of the net, but it may be larger if the network
makes use of alternate routing to avoid trouble at some
node or communication channels which are congested or
have failed.

In order to provide reliable, error-free communication in
the presence of errors in the communication links, the net-
work will add extra bits to a message to allow error detec-
tion or correction. To avoid propagating errors in the net,
the network control algorithm is likely to require that a
node receive an entire message and check its integrity
before starting to send it to the next node on its route. As a
result the message will experience some inherent delay in
traversing the net, independent of the availability of com-
munication channel capacity and other traffic in the neét
which may cause further delay. The minimum network
transit time may be written

Toin= Z"z;i (L/Ci+P;+8S,+R,,))

where n is the number of nodes through which the message
would pass on a best route through the net,
L is the length of the message (in bits) within the

net (i.e., L includes overhead bits for desti-

nation codes, error detection, line synchro-
nization, etc.),

C; is the channel capacity (in bits per second) of the
eommunication link between node; and
node,, ;,

P; is the propagation time for the communication
link between node; and node,, ,,

S; is the processing time associated with trans-
mission at node;,

and R; is the processing time associated with reception

at node;.

The actual total transit time experienced by a message
will be longer than Ty, by the time spent waiting at the
nodes due to other traffic and the time required to transfer
the message between the network ports and the source and
destination customers. Additional delay may be in-
troduced by a need to retransmit the message because of
communication link errors or buffer overflow problems at
one or more nodes.

Since messages can follow each other through the net
unless prohibited by network control algorithms, the
minimum time to deliver k equal Iength messages is not
kT min but

Tmin+(k_1) iirllﬁ)fl (L/Ct+s;)~

This expression denotes the time for the first message to
cross the net plus the time for the succeeding k—1
messages to pass through the node for which the sum of
transmission handling time and link transmission time is
maximum.'? Since this expression is generally less than
kT win, it is desirable for a customer who wants fast de-
livery to break long messages into sequences of shorter
messages. For example, let us assume an equal channel ca-
pacity of 1 Mbps for all links, a route involving 10 nodes,
an overhead of 200 bits per message, handling time of 0.5
msec per node, and an end-to-end propagation time of 20
msec. Under these conditions, a 20,000 bit message would

require a minimum of 227 msec to traverse the net, but a
sequence of 20 messages each 1000 bits long could get
through the net in only 69.2 msec. This advantage of short
messages is even greater when the transfer time between
the network and the source and destination customers is
taken into account.

The relative advantage of shorter messages holds in the
presence of other traffic, but since in that case the network
is interleaving messages from many streams, maximum
benefit can be obtained only if all messages are kept short.
This goal can be accomplished by limiting the maximum
length of messages which the network will accept or by us-
ing packetization techniques. In the latter case, the net-
work arbitrarily chops long messages into packets of
length no greater than the desired maximum. Packets are
then handled within the net as independent messages each
with its own destination code, error checking, etc. On ar-
rival at the destination node, the packets are reassembled
into messages before being delivered to the destination
customer. Actually, the entities sent from node to node are
called “packets” by the designers of packet-switched net-
works whether the entities are messages of limited size or
pieces of longer messages, hence the name “packet-switch-
ing”. The choice of an optimum maximum packet length
depends on many network design parameters, and its dis-
cussion is beyond the scope of this paper. It is important
to note, however, that since delay is a critical parameter in
voice communication, it is likely that a network will have
to enforce a low limit on message lengths or make use of
packetization with a short maximum packet, if it is to
handle speech satisfactorily.

SPEECH IN PACKET-SWITCHED NETWORKS

Barring catastrophic failure or gross overloading, the
only aspect of store-and-forward networks which poses a
problem for speech communication is the delay which
they introduce into the speech data stream. While it is
true that under overload conditions the average
throughput of a network may fall below the required data
rate for speech transmission, a speech receiver can wait
for enough data to accumulate before beginning to re-
constitute the output speech to avoid destroying the intelli-
gibility of the speech. The delays which would result in
such a situation could be very long and might prevent
normal conversational use of the network, but communica-
tion would still be possible. Such overload conditions
would hopefully be rare in a network designed and sized to
serve a community of speech customers. However, packet-
switched store-and-forward networks can be expected to
introduce delays into the speech data stream which could
cause problems even under normal conditions.

Although delay has no effect on the intelligibility or
naturalness of a speech signal, when it is introduced into a
conversational situation, it becomes readily detectable and
can have disruptive effects on the conversation. With the
anticipated use of stationary satellites for speech com-
munication, experiments'** were undertaken to evaluate
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the effects of delays of the order of 0.6 seconds which
would be expected in the round-trip time to such satellites.

The results showed that the effects of delays of this -

amount or more were largely of a psychological nature.
Telephone conversations normally involve frequent
interaction between the participants even though one
person may be doing most of the talking for an extended
period. When the reinforcing feedback of an expected
“yes”, “really?”, or whatever is delayed, the talker gets
the feeling that the other party is not paying proper atten-
tion, and he tends to become irritated. Similarly, when the
other party tries to interrupt the speaker, he becomes an-
noyed because the speaker appears to be ignoring his at-
tempt to interrupt.

The nature of the problem posed by delay is such that
one would expect people to adjust their behavior to cope
with it, and experiments'®'® have shown that such adjust-
ment does occur. Speech patterns change, with the most
noticeable effect being a tendency to cling to the role of
talker for longer periods. These results assume that any
delayed echo of the speaker’s voice has been eliminated.
Such a delayed echo would result from any crosstalk
(electrical or acoustical) between the signal being received
at the far end of the communication system and the signal
being transmitted from there. Crosstalk of this kind occurs
in the ordinary 2-wire local telephone system, and it is
dealt with in long distance telephony by the use of special
echo-suppressor circuits. A delayed echo is very disturb-
ing, and it can seriously interfere with a person’s ability to
speak coherently and intelligibly. It is important to avoid
such echoes in a packet-switched speech system, but to do
$0 poses no consequential problems.

The variability of the delay in a store-and-forward net-
work also poses problems for speech communication. For
example, the transmitter may chop the input speech into
chunks of equal length and give the corresponding
messages to the net at equal time intervals. When they ar-
rive at the receiver, the time between messages is no longer
likely to be uniform but will generally exhibit considerable
variation, and the receiver must take appropriate action to
compensate for this jitter. Depending on the network con-
trol algorithms, the messages may even arrive in a dif-
ferent order than the one in which they were sent. In that
case a sequence number or some equivalent information
will have to be added to the messages to allow the receiver
to reproduce the speech in the proper sequence.

When the receiver is reconstituting the speech from the
message stream, and a message has been abnormally de-
layed in the net, a point may be reached where all the
available messages have been used up. If this point cor-
responds to a pause in the input speech, all will be well.
Otherwise a gap or “glitch” will be introduced into the
output speech. The glitch may be left as a silent gap, or if
a vocoder is being used to synthesize the output speech,
the last vocoder frame may be repeated to fill the glitch.
This latter procedure has the effect of stretching the
speech and could be a good technique for handling short
glitches. Long glitches are likely to be best left as silent
gaps. Unfortunately, it will often be the case that the

receiver will not have any information about the expected
duration of the glitch. Only in the situation where
messages are delivered out of order and a successor to a
late or missing message has been received will an upper
bound on the glitch duration be available. In any event,
the occurrence of glitches will tend to increase the dura-
tion of output talkspurts in relation to the corresponding
inputs. This effect requires the receiver to make cor-
responding adjustments in the length of the pauses
between talkspurts to avoid a situation where the output
gets farther and farther behind the input.

Unlike delay, which has a primarily psychological effect
on a conversation, glitches can effect the intelligibility of
the output speech. Experiments to assess the subjective ef-
fects of the sort of glitches to be expected with packet-
switched speech and the various schemes for dealing with
them have not yet been carried out. It seems reasonable to
expect that the glitch rate will have to be kept low for
satisfactory speech communication in a packet-switched
system. Observations with the TASI system, which can
produce similar glitches (but only at the start of a
talkspurt), show that a glitch rate of 0.5 per cent is readily
detectable, and two percent is disturbing to the continuity
of a conversation.

In order to keep the glitch probability low, the receiver
will have to introduce some additional delay in the speech
stream to smooth the jitter in message arrival times. The
magnitude of the smoothing delay required to achieve a
glitch probability less than some given value will depend
on the dispersion of network transit times. This dispersion
is caused by contention for resources among the messages
being handled by the net. Network control algorithms
have some influence on this dispersion, and if speech is to
be handled satisfactorily, they should be designed both to
minimize the mean dispersion and to limit the extremes.
Of course, the true extremes, caused by transmission link
or node failures, cannot be controlled, but these should not
occur frequently enough to be troublesome. Similarly, the
speech receiver should be designed to keep the smoothing
delay as short as conditions allow by adjusting it period-
ically on the basis of the observed dispersion of message
arrival times in its data stream.

Since the speech data stream has predictable properties
and stringent delay requirements, it is likely that a net-
work designed to handle speech as well as data would give
different service to the two kinds of traffic. To minimize
delay, speech messages would be given priority on the
communication links. In order to handle the resulting
preemption of data traffic without requiring retrans-
mission, it would be necessary to reserve appropriate buf-
fer space at the nodes. Fortunately, the size of such buffer
space is determined by the relatively predictable speech
traffic. To provide the speech receiver with the maximum
available information, speech messages would be delivered
as they arrive at the destination node without regard to the
order in which they were transmitted. If the receiver
chooses to operate in a mode in which it proceeds without
waiting for abnormally delayed messages, it would be ap-
propriate for the network to discard stale messages
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without wasting further effort on attempts to deliver them.
This mode of behavior should be under customer control
since there may be a need to record the speech for later
use, in which case the delayed messages could be im-
portant.

While there is no need for the confirmation of the suc-
cessful delivery of individual messages in a speech stream,
it would be desirable for the network to send appropriate
messages to the transmitter in the event that failure to
make a timely delivery has occurred. Such failures could
occur because of momentary or prolonged overload condi-
tions or because of communication link or node failures.
The transmitter could indicate the fact that trouble had
been detected to the talker who could then take appro-
priate action.

CONCLUSIONS AND OBSERVATIONS

The principal effect noticed by users of a packet-switched
voice communication system would be the delay in-
troduced into their conversations. While such delays are
readily detected by people accustomed to communication
systems without appreciable delay, experience has shown
that people can adapt to delays of the order of 0.5 to 1.0
second without great difficulty. Packet-switched networks
can be designed and implemented using current
technology which can keep delays within that range. Such
networks would make use of appropriate combinations of
communication link bandwidths and network topologies,
and they would keep message lengths short within the net
either by setting limits on allowable message lengths or
adopting packetization techniques. Care would have to be
taken in the design of the network control algorithms to
minimize average delay and to control the dispersion of
delays seen by speech messages.

This paper has not addressed the many economic issues
involved in evaluating the prospects for packet-switched
networks capable of giving satisfactory service for both
speech and data. These issues will play an important role
in deciding whether such networks are actually built in the
future. Without going into a detailed analysis of costs it is
hazardous to predict whether a network designed to have
delay characteristics suitable for voice use would have
higher or lower per unit message costs than one designed
solely for data applications. It is clear that using more and
higher capacity communication links to achieve better
delay characteristics would result in higher overall system
costs. Similarly, the extra processing power required at the
network nodes would add to overall costs. On the other
hand, the traffic handling capacity of the faster net would
be larger, and non-linear communication tariffs and
processor costs might well result in lower per unit costs.

The potential advantage posed by low data rate speech
coding devices over high rate ones can be used in a net-
work to achieve higher total capacity, lower average delay,
or some combination of the two. Economic considerations
favor using any such advantage to increase capacity and
thus reduce the cost per conversation. The same argu-

ments would allow average delay to rise toward the upper
end of the acceptable range.

This paper has been concerned with evaluating the pros-
pects for achieving satisfactory voice communication in
packet-switched networks. While attention has been
focused on networks using pure packet-switching tech-
niques, it is not the intent of the paper to argue that such
networks are the only kind to be considered for handling
mixed voice and data traffic. Other schemes have been
proposed for handling such traffic in a digital communica-
tion system by combining line-switching and packet-
switching techniques.'” Straightforward use of line switch-
ing for voice traffic would avoid the delay problems dis-
cussed in this paper, but it would also lose the benefits of
the guaranteed connection property inherent in packet
switching. However, it may well be possible to design a
mixed system which could retain the advantages of both
techniques.
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INTRODUCTION

Domestic satellites are emerging as an exciting alternative
to satisfying the communications requirements of data users,
providing both flexibility and economy. Two attributes of
satellites are especially advantageous for the transmission of
data in large geographically distributed computer networks.
They are (i) the availability of wide transmission band-
widths over long distances and (ii) the multi-access broad-
cast capability inherent in radio communications which per-
mits transmission to, and reception from, all points in a
satellite connected network. These considerations also apply
(on a smaller geographical scale) to the use of ground radio
channels in a terminal access computer-communication net-
work exemplified by the ALOHA System at the University
of Hawaii.!

The random access scheme of the ALOHA System has
inspired a number of packet switching techniques which
permit the sharing of a high-speed multi-access broadcast
channel by a large population of channel users.?—® Such
packet switched radio systems (both satellite and ground
radio) have a number of advantages over conventional wire
communication techniques for computer communications,
such as: the elimination of complex topological design and
routing problems in large networks, the possibility of mobile
users, the cost reduction over long distances and the in-
creased flexibility for system reconfiguration and upgrading.
Another attractive feature is that in these systems each user
is merely represented by an ID number. Thus, the number
of active users is bounded only by the channel capacity and
there is no limitation to the number of inactive (but poten-
tially active) users beyond that of a finite address space.
Moreover, measurement studies have shown that interactive
computer data traffic tends to be bursty.? A single high-speed
radio channel permits the total demand of a large population
of bursty users to be statistically averaged at the channel.
Furthermore, each user transmits data at the full wideband

* This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense under Contract No.
DAHC-15-73-C-0368.
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data rate of the radio channel. Such efficient sharing and
wideband transmission are in general not possible in a geo-
graphically distributed computer-communication network
using wire communications.

Of interest in this paper is the slotted ALOHA random
access scheme.?*7:10-13 A glotted ALOHA channel multi-
accessed by a large number of users has been shown to exhibit
unstable behavior, i.e., the system may drift into an unde-
sirable saturation state with a virtually zero probability of
transmission success as a result of repeated user con-
flicts.4+7.10-12.14 Tp this paper, a model is first presented for a
slotted ALOHA channel supporting input from a large popu-
lation of bursty users; the data rate of each channel user is
assumed to be much less than the channel transmission rate.
The underlying concepts of channel stability are then intro-
duced. A dynamie channel control model is next presented
and four dynamic channel control algorithms are given. The
performance of these algorithms are tested through simula-
tion and compared to analytie results previously obtained.”
We conclude that these algorithms are capable of preventing
the occurrence of channel saturation under temporary chan-
nel overload conditions and at the same time achieving a
level of channel performance close to the theoretical optimum.

The slotted ALOHA model here is similar to one previ-
ously studied by Metcalfe through a steady-state analysis.10:*¢
He has also recognized the need for control of the channel
and proposed a method for controlling the transmission
probability of “ready’ packets.

Other multi-access broadcast packet switching schemes
have been proposed to take advantage of special system and
traffic characteristics. A reservation scheme studied by
Roberts® employs a slotted ALOHA subchannel for broad-
casting block transfer reservation requests. Reservation-
ALOHA? and carrier sense multi-access® are both interesting
variants of the random access scheme. These systems seem
to exhibit unstable behavior similar to that of slotted
ALOHA and may be dynamically controlled by algorithms
similar to those presented in this paper. Consider, for in-
stance, the ALOHA System at the University of Hawaii
which uses two 24 KBPS radio channels and which has been
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Figure 1—Slotted ALOHA random access

estimated to be able to support up to 500 interactive users.!+
We feel that this figure is unrealistic for an uncontrolled
system, but may be achieved given some appropriate dy-
namic channel control.

THE RANDOM ACCESS CHANNEL MODEL

Consider a radio communication system such as a packet
switching satellite system®7 or the ALOHA System.! In
each case, there is a broadcast channel for point-to-multipoint
communication and a multi-access channel shared by a large
number of users. Since the broadcast channel is used by a
single transmitter, no transmission conflict will arise. All
nodes covered by the radio broadeast can receive on the
same single frequency, picking out packet transmissions ad-
dressed to themselves and discarding packets addressed to
others. The problem we are faced with is how to resolve
conflicts which arise when “simultaneous” demands are
placed upon the multi-access channel. If two or more packet
transmissions overlap in time at the multi-accessed radio
receiver (of the satellite transponder or the central com-
puter), it is assumed that none is received correctly. This
event will be referred to as a channel collision. The channel
may be slotted by requiring all channel users to synchronize
the leading edges of their packet transmissions at the multi-
accessed radio receiver.*~7 The duration of a channel time
slot is set equal to a packet transmission time. In the slotted
ALOHA random access scheme, all users transmit newly
generated packets into channel time slots independently. In
the event of a channel collision, each collided packet is re-
transmitted independently after a retransmission delay of
RD slots. The above scheme is illustrated in Figure 1 for the
case of a channel random-accessed by four users. (In a
ground radio system, RD corresponds to the positive ac-
knowledgment time-out interval.)

Consider a satellite multi-access broadcast system. Let R
be the number of time slots in a round-trip satellite channel
propagation time which is assumed to be the same for all
earth stations. Thus, R time slots after transmitting a packet,
a user will either hear that he was successful or know that he
had a channel collision. (We have ignored the possibility of
random noise errors assuming that the channel has a low

error rate.) The retransmission delay RD for a collided
packet must be greater than R. Randomization of RD is
necessary to minimize the probability of repeated channel
collisions for the same packets. Randomization schemes
which have been considered include: (1) the uniform retrans-
mission randomization scheme? in which the probability
distribution of RD is given by

0 i<R
Prob [RD=i]={1/K R+1<i<R+K 1)
0 i>R+K

and (2) the geometric retransmission randomization
scheme®: 71— jn which the probability distribution of RD is
given by
0 i<R
Prob [RD=i]= (2)
p(l—p)—®* i>R

The uniform retransmission randomization scheme is
adopted in Reference 4. In that reference, R is taken to be
12 and each time slot is 22.5 milliseconds long, giving 44.4
slots/second. These figures are computed from the assump-
tions of a 50 KBPS satellite voice channel, 1125 bits/packet
and a roundtrip channel propagation time of 0.27 second for
all channel users. These same numerical constants are
adopted in this paper. However, to study the problems of
stability and dynamie channel control, it is necessary to
consider a simplified Markovian model in which R=0 and
the geometric retransmission randomization scheme is as-
sumed, such that RD has a memoryless geometric distri-
bution.”-1-% Simulation results have shown that the slotted
ALOHA channel performance (in terms of average through-
put and delay) is dependent primarily upon the average
retransmission delay RD and quite insensitive to the exact
probability distributions considered.” In order to use the
analytic results of the Markovian model to predict the
throughput-delay performance of a real slotted ALOHA
channel with nonzero R, it is necessary to use a value of p in
the Markovian model which matches the value of RD. For
example, to approximate the slotted ALOHA channel with
uniform retransmission randomization and for which RD=
R+ (K+1)/2, we must let

1
TR+ (K+1)/2

such that RD is the same in both cases. Numerical results
in this paper will always be expressed in terms of X (rather
than p) through use of Equation (3).

Let us now introduce the Markovian model,” 113 in which -
we consider a slotted ALOHA channel with a user population
consisting of M users. Each such user can be in one of two
states: dlocked or thinking.®* In the thinking state, a user
generates (and transmits) a new packet in a time slot with
probability ¢. A packet which had a channel collision and is
waiting for retransmission is said to be backlogged. The
retransmission delay RD of each backlogged packet is as-
sumed to be geometrically distributed, i.e., each backlogged
packet retransmits in the current time slot with probability
p. Assuming bursty users, we must have p>>¢. From the

P (3)
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time a user generates a packet until that packet is success-
fully received, the user is blocked in the sense that he cannot
generate (or accept from his input source) a new packet for
transmission.

Let Nt be a random variable (called the channel backlog)
representing the total number of backlogged packets at time
t. The “channel input” rate at time ¢ is St= (M —N*)s. We
shall assume M and ¢ to be time-invariant unless stated
otherwise. In this case, N*is a Markov process (chain) with
stationary transition probabilities and serves as the state
description for the system. The discrete stale space consists
of the set of integers {0, 1,2, ..., M}.

CHANNEL STABILITY

In this section, we give a brief description of the stability
behavior of an uncontrolled slotted ALOHA system studied
earlier.”10-12.14 Consider the trajectory of (N? St) in the
two-dimensional (n, 8) plane. Assuming that M and o are
constant, (N¢, St) is constrained to lie on the straight line
S=(M—n)o called the channel load line. Corresponding to
a fixed value* of K, there is an equilibrium contour in the
(n, 8) plane defined as the locus of points for which the
channel input rate S is exactly equal to the expected channel
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* Or equivalently a fixed value of p under Equation (3).
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Figure 3—Stable and unstable channels

throughput (defined to be the probability of a successful
packet transmission) Sous(n, 8) in a time slot. A family of
such contours is illustrated in Figure 2. Let us focus upon an
equilibrium contour corresponding to K =K, in Figure 3. In
the shaded region enclosed by the equilibrium contour,
Sous(n, S) is greater than S; elsewhere, S exceeds Sout(n, S).
Arrows on the channel load lines point in the direction of
“drift”” of the channel backlog size N*t. Three channel load
lines are also shown in Figure 3 corresponding to channel
user population sizes M, M’ and M’’, and an average user
think time of 1/¢ slots.

A channel load line may intersect the equilibrium contour
one or more times, and we refer to these as equilibrium
points which we denote by (7., S.). An equilibrium point
on a load line is said to be a stable equilibrium point if it
acts as a “sink” with respect to the drift of N¢; an equi-
librium point is said to be an wunstable equilibrium point if it
acts as a “source.” A stable equilibrium point is said to be
the channel operating point if n, <My ax as shown in Figure 3;
it is said to be the channel saturation point if n.>nmax. (We
shall use (n,, S,) instead of (n,, S.) to distinguish the chan-
nel operating point from other equilibrium points.) A chan-
nel load line is defined to be stable if it has exactly one stable
equilibrium point; otherwise it is defined to be wunstable.
Thus, the load lines 1 and 3 in Figure 3 are stable by defini-
tion; the load line 2 is unstable.
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INPUT PARAMETERS => => =>
INPUT RATE = 0,350 - -
PROPAGATION DELAY = 12
K = 15

AVERAGE VALUES IN

200 TIME SLOTY PERIODS

THROUGHPUT

TIME PERIGD TRAFFIC PACKET FRACTIGN AVERAGE

RATE- S RATE- G DELAY- D EMPTY BACKLOG
1 - 200 04330 0e510 17924 04595 3.1
201 - 400 06370 0.605 304892 0530 Sed
401 - 600 0360 0860 324764 _0e425 9.5
601 = 800 0. 340 9.840 TEIVTAT T 0.435 " T 1De5
801 - 1000 0+315 1415 58.889 0e 250 21.5
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1201 - 1400 04325 0e 455 37.215 D610 3eC
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Figure 4—An unstable channel drifting into saturation

If M is finite, a stationary probability distribution always
exists for Nt. In a stable channel, the equilibrium point
(ne Se) gives (approximately) the steady-state throughput-
delay performance of the channel over an infinite time hori-
zon. On the other hand, an unstable channel exhibits ‘bi-
stable’’ behavior; the throughput-delay performance given
by the channel operating point is achievable only for a finite
time period before the channel drifts toward the channel
saturation point. When this happens, the channel perform-
ance degrades rapidly as the channel throughput rate de-
creases and the average packet delay increases. In this state,
the communication channel can be regarded as having failed.
(In a practical system, external control should be applied
at this point to restore proper channel operation.) In Figure
4, we have shown a simulation of the above behavior. In
this example, M is assumed to be so large that the channel
input is Poisson distributed at a constant rate S=0.35.

The channel load line labelled 3 in Figure 3 has a channel
saturation point as its only stable equilibrium point. It is
overloaded in the sense that M" is too big for the given o
and K. From now on, a stable channel load line will always
refer to 1 instead of 3.

Given a channel load line, suppose Kops is the optimum K
which minimizes n, and maximizes S, at the channel operat-
ing point. For this value of K, the channel may be unstable

¢;, in which case the optimum channel performance given by

- (mo, 8,) is achievable only for a finite time period. In Refer-

ences 7, 11 and 12, the average “up’ time of an unstable
channel has been quantified as a stability measure of the
channel. To render the channel stable, two obvious solutions
are available: (1) use a larger value for K (see Figure 2),
and (2) reduce the user population size M. The first solution
gives rise to a smaller S, and a larger n,; the corresponding
average packet delay may then be too large to be acceptable.
In the second solution, a small M implies that S,<<Snax (see
Figure 3) since ¢<<1 under the assumption of bursty users.
This results in a waste of channel capacity.

The third solution is the use of dynamic channel control
which constitutes the subject matter of the balance of this

paper.

THE DYNAMIC CHANNEL CONTROL MODEL

To prevent the disastrous consequences of channe] satura-
tion, various dynamic control measures may be taken. In
this section, we describe the dynamic channel control model
studied in References 7 and 13, and outline some of the re-
sults obtained there under the assumption of perfect channel
state tnformation, ie., each channel user_knows the exact
value of the channel backlog Ntat time £. In the next section,
we shall consider practical control schemes which estimate
the channel state and apply the theoretical optimal control
policies using this estimate.
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Consider the finite-state Markovian decision model ob-
tained by injecting the following two classes of control ac-
tions into our earlier model for N¢:

(i) each packet arrival is accepted for transmission with
probability B8 and rejected with probability 1—6
where 0<3<1 and 8¢ {ﬁlr B2 ..., Bm}éal’

(ii) each backlogged packet is retransmitted with prob-
ability ¥ where 0<y<1 and v€ {v1, vs, . . . , 12} 280,

@AGX@: is said to be the control action space. Three
special cases have been studied extensively in References 7
and 13, namely,

(1) The Input Control Procedure (ICP) with @= {0, 1} X
{po},

(2) The Retransmission Control Procedure (RCP) with
a= {I}X {pw pc}y and

(3) The Input-Retransmission Control Procedure (IRCP)
with @= {0, 1} X {p., p.}.

In these control procedures, p, corresponds to some K, which
optimizes the channel operating point of the given channel
load line; p. corresponds to some K, which is sufficiently
large to render the given channel load line stable.

A control policy f is defined to be any rule for choosing
control actions in @. The action «!, at time ¢ given by the
policy f, specifies both the state transition probabilities and
some predefined expected state transition cost for the ith
time slot. Thus f determines both the evolution in time of
Ntand the sequence of costs it incurs. Given a cost structure
(denoted by &), the cost rate g;(f) of Nt under a control
policy f is defined to be the steady-state average cost per
unit time incurred by N

An important subclass of all policies is the class of sta-
tionary policies. A stationary policy is defined to be one which
chooses an action at time ¢ depending only upon the state of
the process at that time. From well-known results in Markov
decision theory, we know that (1) if f is a stationary policy,
¢:(f) is independent of the initial state of the process N'¢, and
(2) a stationary policy f* exists, which minimizes gs(f) over
the class of all policies. Thus in our search for an optimal
control strategy, we can limit our attention to the class of
stationary policies only.

As the process Nt evolves from one time slot to the next,
various expected state transition costs may be incurred, such
as

(1) the expected channel throughput in the ¢th time slot,
(2) the (deélay) cost of holding backlogged packets, and
(3) the‘expected (delay) cost of rejecting packet arrivals.

Type 1 costs take on negative values since we want to maxi-
mize the channel throughput rate. Type 2 costs are chosen
such that each backlogged packet incurs 1 unit of delay per
time slot. In the references, the expected cost in units of
delay per packet arrival rejected (type 3 costs) is assumed
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Figure 5—Channel performance versus ICP control limit for M =200

to be equal to an average user think time. This assumption
is needed for our Markovian model formulation and may be
justified in a terminal access communications environment
as follows. A person sitting at a terminal generates a new
packet with an average think time of 1/¢ whenever his
previous packet has been successfully transmitted. If, at the
time of a packet arrival, the channel is in the reject state,
this packet is lost in the sense that it is not transmitted over
the channel immediately. In a practical situation, the user
may be informed of the event and must enter some com-
mand character to “resend” the packet. Hence, the cost in

terms of delay is probably in the order of an average think

time (=1/0).

Let g.(f) denote the cost rate of Nt given by policy f and
type 1 costs, and gq(f) denote the cost rate of Nt given by
policy f and types 2 and 3 costs. The channel performance
measures, namely, the steady-state channel throughput rate
Sout and the expected packet delay D can then be calculated
in terms of g.(f) and ga(f).

In the references, it is shown that for the given model an
optimal stationary control policy maximizes S, and mini-
mizes D simultaneously. An efficient computational algo-
rithm (POLITE) based upon Howard’s policy-iteration
method® is given for calculating the optimal policy. Given a
channel load line and a dynamic control procedure (@), this
algorithm usually arrives at the optimal control policy and
the optimum values of S.ut and D in very few iterations.
Furthermore, numerical results indicate that each optimal
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control policy f for the control procedures ICP and RCP has
the following structure:

a, 0<i<7
f@)= (4)
G A<i<M

where a, corresponds to ‘‘accept’” in ICP and “p,” in RCP;
a, eorresponds to “reject’”’ in ICP and “p.” in RCP. On the
other hand, an optimal control policy f for IRCP has the
following structure:

(accept, po) 0<1<
f(#) =< (accept, p.) <i<A, (5)
(rejeet, pe) M<i<M

We shall refer to 7, #; and 7 as control limits and the control
policies in Equations (4) and (5) as control limst policies.

In Figure 5, we have shown the performance measures,
Sous and D, for two channel load lines specified by M =200
and the channel operating point (n,, S,)=(4,0.32) and
(7,0.36), over a range of ICP control limit policies. Observe
that the same control limit minimizes D and maximizes Sous
at the same time as predicted by the theory. Note the amaz-
ing flatness of Sous and D near the optimum point for the
channel load line with S,=0.32. The consequence is that
even if a nonoptimal control policy is used (due, for example,
to not knowing the exact current backlog size such as in
most practical systems), it is still possible to achieve a
throughput-delay performance close to the optimum.

In Figure 5, we have also shown simulation results for
throughput and delay. In these simulations, channel control

policies are applied assuming that the exact channel backlog
size Nt is known to all channel users. However, contrary to
the Markovian model, each collided packet is assumed to
suffer the more realistic fixed delay B and its retransmission
is randomized uniformly over the next K slots. The excellent
agreement between the simulation and analytic results pre-
sented here demonstrates the accuracy of the approximation.

In Figure 6, we show optimum throughput-delay tradeoffs
at fixed values of o for ICP. (1/s is the average think time of
a channel user.) In this case, increasing Sou¢ corresponds to
increasing M, that is, admitting more channel users. We see
that the channel performance improves as the packet gener-
ation probability ¢ increases, since this implies that for the
same Sous, the number of channel users M is smaller. In the
latter case, the channel is “less unstable.”’7:11:12

PRACTICAL CONTROL SCHEMES

In a practical system, the channel users often have no
means of communication among themselves other than the
multi-access broadecast channel itself. Each channel user
must individually estimate the channel state by observing
the outcome in each channel slot. Moreover, whatever chan-
net state information available to the channel users is at
least one round-trip propagation delay (R) old and may in-
troduce additional errors in the users’ estimates if R is large
(such as in a satellite channel). Thus, the control action ap-
plied based upon an estimate of the channel state may not
necessarily be the optimal one at that time, which then will
lead to some degradation in channel performance.

Below we first give a heuristic scheme for estimating the
channel state assuming that the channel history (i.e., empty
slots, successful transmissions or collisions) is available to all
channel users. The optimal ICP, RCP and IRCP control
policies will be applied based upon the above estimate. A
heuristic control procedure is next proposed which circum-
vents the state estimation problem. These control procedures
are then examined through simulation and compared with
the optimum throughput-delay results in the previous seetion.
The ability of these control procedures to handle time-
varying inputs (with pulses) is also examined.

Channel control-estimation (CONTEST) algorithms

The channel traffic in a time slot is defined to be the number
of packet transmissions (both new and previously collided
packets) by all users in that time slot. Our heuristic pro-
cedure for estimating the channel state is based upon the
observation that the channel traffic in a time slot is approxi-
mately Poisson distributed. (See Chapter 4 and Appendix A
of Reference 7.) Below we present algorithms which imple-
ment channel control procedures studied in the previous
sections using estimates of the channel state. These channel
CONTrol-ESTimation algorithms will be referred to as
CONTEST algorithms.

Here we give a procedure for implementing RCP. Suppose
7 is the RCP control limit such that the channel users switch
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 their retransmission K value from K, to K, when the channel
backlog size exceeds # and from K. to K, as soon as the
channel backlog size drops below #. We define

Go=ﬁpo+ (M'—'ﬁ')a (6)
and

@, and G, represent the average channel traffic rates given
that the channel backlog size is # packets with K equal to
K, and K, respectively. Assuming that the channel traffic is
approximately Poisson distributed, we define the following
critical values (corresponding to the probability of zero
channel traffic in a time slot),

j‘ o= et (8)
and

Jomet 9)
Since K.>K, we must have

Fo<te

Suppose each channel user keeps track of the channel
“history (one round-trip propagation delay ago) within a
window frame of W slots. Let f¢ be the measured fraction of
empty slots in the W slots within the history window for the
tth time slot. f* will closely approximate the probability of
zero channel traffic in the tth time slot provided that the
channel traffic probability distribution does not change ap-
preciably in (W-R) time slots, that W>>1 and the Poisson
traffic assumption holds. We give the following algorithm to
be adopted by each channel user. d* denotes the control de-
cision at time ¢.

Algorithm 1 (RCP-CONTEST)—This algorithm . gener-
ates the decision d* = K,, K. at each time point based
upon the channel state estimate f* and the RCP control
limit #. Start at step (1) or step (4).

M) te—t+1

dt = K,
(2) If f*<f., go to (4)
(3) Go to (1)
(4) te—t+1

dt=K,
(5) If f*>F., go to (1)
(6) Go to (4)

Next we consider a similar implementation for ICP. We
define

Go=rp+ (M—~4)a (10)

G.=np (11)

Jo=ete (12)
and

Fr=et (13)
Since @,>@,, we must have

Je<]-

TABLE I—Throughput-delay Results of a Controlled Channel
(M =200, S,=0.32)

CONTROL SCHEME Sout D
ICP (POLITE) 0.31778 29.857
RCP (POLITE) 0.31817 29.085
IRCP(POLITE) 0.31817 29.085
ICP (Simulation) 0.315 33.427
RCP (Simulation) 0.318 28.824
ICP-CONTEST W = 20 0.314 40.893
ICP-CONTEST W = 40 0.315 30.514
ICP-CONTEST W = 60 0.317 32.355
ICP-CONTEST W = 80 0.318 35.809
RCP-CONTEST W = 20 0.315 33.052
RCP-CONTEST W = 40 0.322 33.335
RCP-CONTEST W = 60 0.319 32.138
RCP-CONTEST W = 80 0.317 32.501

{K] =10 0.316 33.720
Heuristic RCP )
K, = 60 m>2 0.315 34.554
K] =10
0.310 35.425
Heuristic RCP K2 = 60
0.316 34.635
Km =120 m3

Algorithm 2 (ICP-CONTEST)—This algorithm gener-
ates the decision d¢=accept, reject at time ¢, based upon the
channel state estimate f* and ICP control limit 7. Start at
step (1) or step (4).

(1) te—t+1
dt=accept
(2) If f*<fa go to (4)
(3) Goto (1)
(4) t—t+1
t=reject
(5) Hft>F. go to (1)
(6) Go to (4)

Finally, to implement IRCP, we assume that the control
policy is of the form given in Equation (5) such that it is
uniquely specified by the control limits 7; and A.. We define
7. and J. by using #, in Equations (6)-(9), f.. and f.. by
using 7 and p. in Equations (10)-(13) and 7., by using #,
and p, in Equations (10) and (12). Since p,>p.>¢ and
#2> 71, we have f.,<J, and fo.<7..

Algorithm 38 (IRCP-CONTEST)—This algorithm gener-
ates the decision d‘= (accept, K,), (accept, K,), (reject, K.)
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TABLE II-—-Throughput—delay Results of a Controlled Channel
(M =400, S,=0.32)

CONTROL SCHEME Sout D
ICP (POLITE) 0.31807 33.096
RCP (POLITE) ' 0.31844 31.608
IRCP (POLITE} 0.31844 31.608
ICP (Simulation) 0.315 31.427
RCP (Simulation) 0.317 31.023
1CP-CONTEST W = 20 0.315 43.262
ICP-CONTEST W = 40 0.314 34.723
1CP-CONTEST W = 60 0.312 53.240
ICP-CONTEST W = 80 0.316 39.112
RCP-CONTEST W = 20 0.313 41.087
RCP-CONTEST W = 40 0.319 43.379
RCP-CONTEST W = 60 0.318 38.821
RCP-CONTEST W = 80 0.317 40.068
RCP-CONTEST W = 100 0.314 35.689
RCP-CONTEST M = 120 0.319 47.149
K, =10 0.316 45.150
Heuristic RCP {
Ky = 150 m2 0.316 44.750
Ky =10
Heuristic RCP {Kz = 100 0.312 42.040
K = 200 m3 0.311 43.136

at time ¢ based upon the channel state estimate f* and IRCP
control policy (7, 7). Start at step (1), (4), or (7).

(1) te—t+1
dt= (accept, K,)
(2) T F<fuo g0 to (7)
otherwise, if ft<7J, go to (4)
(3) goto (1)
(4) te—t+1
dt=(accept, K,)
(5) If f*>F. go to (1)
otherwise, if ¢ <7, go to (7)
(6) go to (4)
(7) t—t+1
dt=(reject, K,)
(8) I ft>%.. go to (4)
(9) goto (7)

The size W of the channel history window kept by each
channel user is very important for successful channel state
estimation. If W is too large, we may lose information on the

dynamic behavior of the channel such- that the necessary -

actions are taken too late. If W is too small, we may get
large errors in approximating the probability of zero channel
traffic by the fraction of empty slots in the history window.
A .good initial estimate is that W should be bigger than R
and of the same order of magnitude. Below we compare

simulation results on channel performance for different values
of W.

Another retransmission control procedure

In this section we de¢scribe a simple heuristic control pro-
cedure which has the property that when the channel traffic
increases the retransmission delays of backlogged packets
will also increase. Hence, it will be referred to as the heuristic
retransmission control procedure (Heuristic RCP). The ad-
vantage of such a control procedure is that it is simple and
can be implemented easily without any need for monitoring
the channel history and estimating the channel state.

Algorithm 4 (Heuristic RCP)—For a backlogged packet
with m previous channel collisions, the uniform retransmis-
sion randomization* interval is taken to be K=K, where
K is a monotone nondecreasing function in m. i

When the channel traffic increases, the probability of
channel collision increases. As a result, the “effective’” value
of K increases. If K, is a steep enough function of m, we see
that channel saturation will be prevented. An effective value
of K can be defined only with respect to a specific perform-
ance measure (e.g., average packet delay). To illustrate the
effect of the function K., we derive below the average value of
K as a function of ¢ (the probability of successful trans-
mission) for two cases. Let

r;=Prob [a packet retransmits ¢ times before
success

=(1—¢)% i>1
Case 1l K,=K:form>2and K,>K;

K =average value of K

13 Bt
~1o, g (1—q) Q(i + Kz)
1
=Kz+(i_nqq (Ky—Ky) (14)

which is equal to K; at ¢=1 and increases to K, as q de-
creases to zero; In is the natural logarithm function.

Case 2 Kn=mK m>1

X (1+1) (15)

* Note that the same control scheme can be extended to geometric
retransmission randomization by letting p = p. where p, is a monotone
nonincreasing function in m.
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INPUT PARAMETERS:
NUMBER OF TERMINALS M = 400 , PROPAGATION DELAY R = 12
FOR THE TIME PERIOD 1-1000, INPUT RATE Mo = 0.3232
FOR THE TIME PERIOD 1001-1200, INPUT RATE Mo = 1.0
FOR THE TIME PERIOD 1201-6000, INPUT RATE Mg = 0.3232
RETRANSMISSION CONTROL LIMIT = 23, INPUT CONTROL LIMIT = 116

150 , WINDOW SIZE W = 60

Ko=10

» K=

AVERAGE VALUES IN 200 TIME SLOT PERIODS:

- -LIME PERICD e -—JIRAFFIC = PACKFT ———AMERAGE . DACKETS ..
RATE~ S RATE- G DELAY- D EMOTY BACKLOG REJECTED
1 - 200 04290 0.625 30.29 0558 S5e5 0
.20y = 400 03295 0,700 34,06 NS08 H a9 2 _—
401 - 600 0285 04450 23.67 0635 28 0
601 - 800 04295 0625 31.76 0565 Se9 0
801 ~ 1000 00325 0.850 42,57 0455 Fe3 0
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Figure 7—S8imulation run for IRCP-CONTEST subject to a channel input pulse

which is equal to K at ¢=1 and increases to infinity as q de-
creases to zero.

The above results indicate that the average value of K
behaves in the desired manner, namely, K increases as ¢ de-
creases due to an increasing channel traffic. Below we examine
the CONTEST algorithms and Heuristic RCP through
simulations.

Simulation results

We summarize in Tables I-II, throughput-delay results
for channel load lines specified by

(1) M =200, (n, S,)= (4, 0.32)
(2) M =400, (n., S,)=(4,0.32)

In both cases, we assume K,=10 and K.=60. Included in
these tables are (a) optimum POLITE results for ICP, RCP
and IRCP, (b) simulation results for ICP and RCP using
optimal control policies and under the assumption of perfect
channel state information, (c¢) simulation results for the
CONTEST algorithm using ICP and RCP optimal control
policies, and (d) simulation results for Heuristic RCP. The

duration of each simulation run was taken to be 30,000 time
slots. IRCP was not tested by simulation since the optimal
value of 7, is in all cases so large that within the simulation
duration, the channel state Nt (almost surely) will not ex-
ceed it; the control procedure becomes effectively RCP speci-
fied by #;. :

The ICP-CONTEST algorithm was tested with channel
history window sizes of 20, 40, 60, and 80 time slots. We see
from Tables I and II that W =40 appears to give the best
throughput-delay results. Note that for R=12 and K =10,
W =40 is approximately twice R+ K.

The RCP-CONTEST algorithm was also tested with
various values of W. In this case, K takes on two values, K,
and K.. There is no clear-cut optimal W. It appears that
W =60 is a good choice. :

There is no significant degradation in channel performance
(from the theoretical optimum) given by the CONTEST
algorithms and Heuristic RCP. The CONTEST algorithms,
however, seem to have an edge over Heuristic RCP. The ex-
cellent performance of the CONTEST algorithms can be
attributed to the flatness of Sout and D near the optimum as
a function of the control limit (see Figure 5). We found that
this flatness property is less pronounced for channel load
lines with large values of S, or M, such as S,=0.36 or
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INPUT PARAMETERS:

NUMBER OF TERMINALS M = 400 , PROPAGATION DELAY R = 12
FOR THE TIME PERIOD 1-1000, INPUT RATE Mo = 0.3232

FOR THE TIME PERIOD 1001-1200, INPUT RATE Mo = 1.0
FOR THE TIME PERIOD 1201-6000, INPUT RATE Mo = 0.3232
K, = 10 K =150 (m 2 2)
1 m
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Figure 8—Simulation run for heuristic RCP subject to a channel input pulse

M =400. This explains the more significant degradation in
channel performance given by the CONTEST algorithms
shown in Table IT for M =400 than in Table I for M =200.

In Figure 4, it was shown that in an uncontrolled slotted
ALOHA channel, a channel input rate of 0.35 packet/slot
was enough to cripple the channel indefinitely. In Figures 7
and 8, we show by simulation that under severe pulse over-
load circumstances both the IRCP-CONTEST algorithm and
Heuristic RCP prevented the channel from going into satura-
tion. In these simulations, the normal channel load line was
given by M =400 and (n,, S,)=(4, 0.32) both before and
after the pulse. During a period of 200 slots (namely, the
time period 1000-1200 in the figures), the packet generation
probability ¢ was increased such that Mo=1.0 packet/slot.
Observe that both algorithms handled the sudden influx of
new packets with ease. In both cases, the channel through-
put, instead of vanishing to zero as in an uncontrolled chan-
nel, maintained at a high rate and within less than 3000
slots, the channel returned to almost normal operation.

Further discusstons of results

In a real system, the channel input source will typically
vary slowly with time; for example, the number of users
fluctuates during the day. We must emphasize the fact that
the control policies considered have been optimized to con-
trol statistical channel fluctuations under the assumption of a
stationary channel input. Although we have shown that they
can temporarily handle very high channel input rates, addi-
tional control mechanisms should be designed into the system
to make sure that channel overload conditions do not prevail
for any long period of time (e.g., by limiting the maximum
number of users who can “‘sign-on”” and become active chan-
nel users).

The control action space of IRCP includes both control
action spaces of ICP and RCP as subsets. Thus IRCP must
give a channel performance at least as good as ICP and RCP.
Next, comparing IRCP-CONTEST and Heuristic RCP, we
see that the latter is easier to implement. However, under a



Dynamic Control Schemes 153

normal load (say 8,<0.32), IRCP-CONTEST is superior to
Heuristic RCP. This is because Heuristic RCP introduces
longer delays to collided packets even when these packets
are merely unlucky in light, channel traffic. On the other
hand, with IRCP, control actions are not exerted until the
channel traffic exceeds certain “dangerous” levels.

CONCLUSIONS

Packet switched satellite and ground radio systems have
been proposed as new alternatives for computer communica-
tions. A multi-access broadcast packet switching technique
that has attracted considerable interest is the slotted ALOHA
random access scheme. A slotted ALOHA channel multi-
accessed by a large population of users has been shown to
exhibit unstable behavior. Dynamic control schemes are
necessary to prevent the occurrence of channel saturation in
unstable channels. The dynamic channel control problem has
been studied using a finite-state Markovian decision model
in References 7 and 13 under the assumption of perfect chan-
nel state information.

In this paper we have studied dynamic channel control
algorithms (CONTEST algorithms) which implement the
theoretical control policies by using a heuristic scheme to
estimate the instantaneous channel state. A heuristic retrans-
mission control algorithm has also been studied which cir-
cumvents the state estimation problem. Simulation results
indicate that these control algorithms are capable of achiev-
ing a channel throughput-delay performance close to the
theoretical optimum, as well as capable of preventing chan-
nel saturation under temporary overload conditions.

The problem of unstable behavior is very real in random
access systems (e.g., ALOHA, slotted ALOHA, reservation-
ALOHA, carrier sense multi-access, etc.). To guarantee an
acceptable level of channel performance for such systems,
some form of dynamie channel control is a must. The prob-
abilistic model and dynamic channel control schemes intro-
duced herein for a slotted ALOHA channel can probably be
extended to solve stability and dynamic control problems of
other random access systems.
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Operating system design considerations for
the packet-switching environment*

by DAVID L. RETZ

Speech Communications Research Laboratory, Inc.
Santa Barbara, California

INTRODUCTION

One of the striking developments in computing and com-
munication technology during the past decade is reflected
in the evolution of packet-switching computer net-
works.1%® Packet-switching communication techniques
allow dynamic allocation of a set of communication
resources {circuits) so that they may be flexibly shared
among a number of autonomous processors. Implementa-
tion of such packet-switching networks has required many
design decisions, such as the choice of network topology,
routing strategies, and the establishment of conventions,
or protocols, for information interchange between network
resources.

This paper is concerned with the design requirements of
Host operating systems: those systems whose primary
business is the management of computing resources rather
than communication resources. Low-level communication
tasks such as routing fall outside the realm of the Host
responsibilities discussed here and are performed by
means of a sub-network of small computers dedicated to
the task of packet-switching. In the ARPANET these com-

puters are called Interface Message Processors, or IMPS,

and use packet-switching techniques to communicate via
50-kilobit common carrier circuits. Each IMP provides. up
to four high-speed synchronous serial ports to which Hosts
connect using special-purpose Host-IMP interfaces.*
Packet-switching network environments place special re-
quirements on the design of the connected Host operating
systems. Attachment to the ARPANET, for example, has
required a number of additions or modificatiens to exist-
ing operating systems. There are certain structural fea-
tures which must be incorporated in system design in
order to facilitate effective use of distributed computing
resources. We begin by examining a few of these features.

IMPLICATIONS ON HOST SYSTEM
ARCHITECTURE
Sharing of distributed resources is made possible by the
cooperation of distributed processes. The notion of process

* This work was supported by the Advanced Research Projects Agency,
Department of Defense, through Contract Number N00014-73-C-0221,
administered by the Office of Naval Research.
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has been widely used in operating system structures®® in
order to provide a modular representation of autonomous,
event-driven computational tasks. Specification and im-
plementation of protocols—well-defined conventions by
which processes communicate—has allowed resource shar-
ing to occur in a non-homogeneous environment. A process
might utilize a remote resource such as a disk file, for
example, by transmitting a prescribed command to a re-
mote process which interprets and carries out the
hypothetical command: “read the tenth record of disk file
XYZ and transmit back its contents.”

A layered structure of protocols has evolved to make
possible network-wide sharing of ARPANET resources.
The Host-Host protocol rests at the foundation of this
structure, providing a mechanism by which processes in
the network may communicate.” A number of higher level
protocols make use of Host-Host protocol to perform func-
tion-oriented tasks® For example, the Telnet protocol
provides terminal access to remote interactive systems on
the network, and the File Transfer Protocol allows files to
be copied from one site to another.

The standard ARPANET Host-Host protocol creates
inter-process communication (IPC) channels, or “connec-
tions,” at the request of Host processes, through an ex-
change of special control messages between the Host
operating systems. In general, this facility has been pro-
vided by the implementation of a set of procedures, collec-
tively referred to as a Network Control Program, or NCP,
which provides primitives for creation, control of data
flow, and destruction of connections. An excellent survey
of techniques used to implement the NCPs of various AR-
PANET Host systems has been given by Postel.®

Two major inferences regarding the desirable charac-
teristics of Host operating system structure may be drawn
from the ARPANET’s evolution. First, the real-time
event-driven nature of Host-IMP and Host-Host interac-
tion requires some form of multiprogramming (i.e.,
multiple-process) capability in the Hosts. A Host system
which supports terminal access to a network, for example,
might utilize a process for each terminal. Each of these
processes waits until a network message is received for ter-
minal display or until a key-code is received for trans-
mission to a remote system.

A second significant structural requirement of Host
operating systems is a mechanism for communication
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between processes residing within a given Host (“local”
processes) and processes residing in other Hosts on the
network (“remote” processes). This inter-process com-
munication (IPC) facility is achieved by the transmission
of messages between Hosts according to an agreed-upon
protocol. Implementation of network-wide IPC
mechanisms (such as those embodied by the ARPANET
Host-Host protocol) is greatly facilitated by the presence
of internal mechanisms for IPC within each Host system.*®
Systems which lack these capabilities force the NCP to ac-
cept this responsibility; this is usually a fairly major im-
plementation task when processes reside in different
protected regions or address spaces.

Another important decision that must be made relates
to the way in which the NCP is included in an operating
system. The NCP may be embedded in the Host’s file
system, allowing network “‘connections” to be created and
data transfers to occur in the same fashion that files are
opened and read/written. This greatly facilitates the im-
plementation of higher level protocols (e.g., file transfer)
because it enables the standard file system primitives to
be used for data transfer on network connections. Such an
approach is practical when network protocol software is
included as an integral part of the development of an
operating system or when significant modification to an
existing operating system may be tolerated. A disad-
vantage is that the file system must be modified when
changes occur to low-level Host-Host protocols.

To simplify implementation and maintenance, it is de-
sirable that an NCP run within a normal “user” job under
the system. If system-wide IPC facilities are non-existent,
this technique is feasible only when: (1) it is possible for
the user job to usurp control on certain system calls which
are issued by other user jobs, or (2) the scope of interac-
tion with network resources is limited to a set of processes
within a job, rather than globally available to all jobs. The
first case makes assumptions about the protection struc-
ture which exists in the system, and is usually impractical
when jobs occupy mutually exclusive protected memory
spaces. The second case is feasible when the Host’s sole
function in the network is the management of resources
which are allocated to the NCP ““user” job; this technique
might be used, for example, to provide access to a large
data base. In both of the above cases it is necessary that
the NCP implement an inter-process communication
mechanism.

When a robust IPC facility is provided by an existing
Host system it is possible to allow processes within the
Host to communicate on a network-wide basis with
minimal system modification. In this case, an NCP may
exist as a user job, making use of the operating system’s
IPC facility to accept commands from the Host’s
processes (such as requests to open connections) and to
handle the data transfer between local and remote
processes..

Designers of Host operating systems for packet-switch-
ing networks must be sure that the chosen architecture
provides sufficient flexibility. This is exemplified by the
evolution of an ARPANET standard Host-Host protocol as

well as special-purpose protocols for inter-network com-
munication and packetized speech transmission. In some
systems additional flexibility has been obtained by system
calls which allow processes to intercept certain arriving
messages and to transmit network messages directly,
rather than forcing all network communication to occur by
means of a standard Host-Host protocol.

HOST IPC MECHANISMS

Techniques for inter-process communication and
synchronization in multiprogramming systems have
received a good deal of attention.®'* There tend to be two
strategies for implementing IPC systems. The first of
these, like the telephone system, has required the es-
tablishment of a connection, or logical data path, before
data may be transmitted between processes. In the dis-
tributed environment this strategy entails the utilization of
special-purpose control messages which establish a name
and control the data flow for the connection. The second
approach has shunned the notion of prolonged connec-
tions, and performs the transfer of messages between
processes whenever they mutually agree to communicate
(e.g., process A requests to receive from process B while
process B requests to send to process A). Control informa-
tion (such as acknowledgment of messages received) is ef-
fectively embedded in each message exchanged between
the Hosts. Walden has proposed such a connection-free
mechanism*? for inter-process communication within a
packet-switching network. Metcalfe has also discussed the
possibility of connection-free protocols.”® In fact, it is be-
coming clear that the distinction should not actually be
between connection-based protocols vs. connection-free
protocols. The proper distinction to make is between pro-
tocols based on transmission of a single indefinitely long
bit stream (starting when a connection is opened and end-
ing when a connection is closed) vs. a stream of discrete
messages (which may still require some connection-like
control information). The message-based strategy is less
sensitive to transmission errors which might occur in the
communication subnetwork; the combination of control
and data information within each transmitted message, for
example, reduces the possibility of inconsistencies arising
from the loss of a message. In addition, the message-based
scheme requires minimal explicit connection setup, in
some cases eliminating it entirely. Such an approach is be-
ing investigated in the design of Host-Host protocol tech-
niques for interconnected packet-switching networks.*

There are various means by which IPC techniques have
been implemented in operating systems. Some systems
make use of a shared area of storage to pass messages
between processes, utilizing the system’s process synchro-
nization techniques to announce the existence and ac-
knowledgment of these messages. In other. cases there
exist special system calls (e.g., SEND, RECEIVE) which
transfer data from a specified sender’s buffer address to a
matching receiver’s buffer address. Akkoyunlu, Bernstein,
and Schantz®® have proposed a system (SBS) which sup-
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ports inter-process communication and file I/0 activities
in a unified fashion. This approach has the distinct ad-
vantage of allowing processes to access data files stored
within a remote system in the same way they would if the
files were stored locally.

A similar IPC mechanism has been implemented in the
ELF system' by means of the I/0 primitives provided by

the operating system. This technique enables the NCP to.

be included in the system as a user job, and all communi-
cation with the ARPANET occurs via this IPC structure.
IPC occurs by means of a set of rendezvous-points, or
ports, which appear identical to I/0 devices except for dif-
ferences in name. Processes may agree to communicate on
a predesignated port, or may use a pair of such ports to ex-
change port numbers.

The ELF operating system provides a multiprogram-
ming environment which allows creation and destruction
of processes. Each process is named by means of a
process-ID, owns an associated linked list structure called
an event queue, and may be in one of two states: ready or
blocked.

Processes synchronize by means of short (24-bit)
messages which signal the occurrence of events. This is im-
plemented by means of the following system primitives:

(1) SIGNAL (process-ID, event message)
(2) WAIT.

The SIGNAL primitive adds an event message to the
event queue of process-ID; the SIGNALled process is
placed in the ready state. The WAIT primitive tests the
event queue of the active process, and places the process
in the blocked state if the event queue is null; otherwise
WAIT removes the first event message from the event
queue and returns to the caller with the event message and
the signalling process-ID. WAIT thus blocks the active
process until an event message is placed on its event
queue.

A process transmits data to another process by means of
the primitive:

WRITE (port, mode, addr, count, event message),

in which port is the port name, mode denotes a stream or
record-oriented transfer, addr is the address of data to be
transmitted, count is the number of bytes for transfer, and
event is an event message which the process wishes to
receive (from WAIT) when the message has been sent. In
record mode transfers the process is signalled when one or
more bytes are taken by a receiver; in stream mode
transfers the process is signalled when all bytes of the
message are taken.

A process receives messages from another process by
means of the primitive:

READ (port, mode, addr, count, event message).

All arguments are identical to those of the WRITE primi-
tive. In record mode the receiving process is signalled

when one or more bytes are placed in its input buffer; in
stream mode the receiver is signalled only when all of the
requested bytes have been placed in its input buffer. This
allows a receiving process to reserve a large input buffer
and wake-up when any data has been placed in its buffer
(as is the case for a process awaiting input from the net-
work and destined to be displayed on the user’s terminal).
Processes issuing WRITE or READ requests cause entries
to be placed on a queue for the specified port; entries are
removed from the queue when matching WRITEs and
READs occur, and the appropriate transfer conditions
(i.e., record or stream) are satisfied.

An additional primitive is provided to aid processes
(e.g., and NCP) in gauging their allocation of buffer
storage.

STAT (port)

returns the number of bytes which are queued to be writ-
ten or read on the specified port. Special consideration is
given when the requested count is specified as 0. In this
case the WRITEing or READing process is signalled if
there is a matching request on the specified port; the state
of the port is unaffected in this case, and the process may
then issue a normal WRITE or READ to transfer the
pending data. This enables a process to wait for a match-
ing request without locking up an input buffer for an un-
known period of time.

OTHER HOST FACILITIES

Thus far we have dealt primarily with facilities for
inter-process communication among Hosts in a distributed
network. The capability of the Host as a viable network
resource, however, depends heavily on services available
in the Host operating system. In many cases this involves
more than an implementation of protocols, and requires
significant augmentation of Host facilities. Hosts provid-
ing interactive services, for example, must allow network
access to occur in a fashion which is compatible with local
terminal I/0. Many time-shared operating systems utilize
a dedicated “logger” process which awaits the activation
of previously dormant terminals. A mechanism is required
to enable notification of the logger process when a network
port becomes assigned on behalf of a user at a remote ter-
minal. In a system which treats files and network connec-
tions uniformly this may be achieved by means of a
system primitive which assigns a pair of files (i.e., the net-
work connections) as controlling input and output data
streams for the logger.

Batch-oriented service Hosts require the ability to re-
direct input and output files to network ports. This task is
facilitated in systems which support remote job entry,
allowing the set of network ports to be associated with a
pseudo remote job entry terminal.

Host operating systems supporting file transfer must
supply a flexible set of primitives for the allocation, updat-
ing, deletion, and directory maintenance of the file system.
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Figure 1—Typical user front-end system

In addition, a means of user authentication is usually re-
quired to provide an access control and accounting
mechanism for the Host’s resources.

FRONT-END SYSTEMS

In a number of cases it has been desirable to minimize
the changes to a Host operating system when adding a pre-
existing Host to the network. In other cases, it has been de-
sirable for reasons of reliability, flexibility, or increased
Host system performance, to clearly separate the network
functions from the Host. These two cases have frequently
been handled by the addition of a front-end system as an
interface between the network and the Host. Front-end
Hosts are usually implemented by means of small com-
puters utilizing operating systems which support network
protocols as well as various terminal and peripheral
handlers.

The most common application of front-end systems in
the ARPANET results from the need for user terminal
and peripheral access to network computing resources.
The TIP,” ANTS,® and ELF* systems are examples of
such user front-ends, shown in Figure 1. In the above
systems, for example, users at terminals may LOGIN at
the front-end and use the Telnet protocol to connect to
various server sites on the network. Data may be trans-
ferred to or from attached peripheral devices (line printers,
magnetic tape units, disk drives) by means of a file transfer
protocol.

A second type of front-end system facilitates the attach-

ment of a computing resource (server Host) to a network.
This approach aims to relieve the server Host of network

communication tasks, such as those required to support
Host-Host protocols, and is desirable when software modi-
fications to an existing Host system are prohibited. '
The structural requirements of the operating system in
the server front-end are similar to those in the user front-
end. (In fact, systems may serve both as a user and as a
server front-end.) Figure 2 illustrates the means of inter-
connection of server and server front-end. Processes in the
server front-end respond to (user) requests from the net-
work, and provide access to the server via a number of
server/front-end ports (hard-wired connections). For
example, a front-end system might be connected to a
number of terminal interface ports belonging to a server
system which supports interactive terminal access. When
a network message which requests connection to the server
is received by the front-end, a process is created in the
front-end; this process then allocates an unused
server/front-end port and initiates requests for (full-du-
plex) data transfer between the remote network process
and the server front-end port. This approach allows the

SERVER
| | SERVER /
e FRONT-END
| | PORT(S)
| |
SERVER

FRONT-END

PACKET- SWITCHED
PORT
— NETWORK ——

Figure 2—Server front-end system
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server to be accessed from the network with no change to
server software; however, it lacks generality, and server
capabilities are limited to those functions associated with
terminals. The server front-end model also applies to
batch-oriented systems, in which case the style of connec-
tion between the server and the server front-end might re-
semble a set of card readers or printers.

When software additions are feasible in the server, a
server/front-end protocol may be utilized to permit com-
munication over a single hard-wired connection. As in the
case of NCP implementations described earlier, however,
general access to network resources by processes within
the server requires some form of server IPC capability.

Interestingly, in some cases, functions may be
performed by a large Host on behalf of a small front-end.
For example, the means of providing control of access to a
network requires access to a data base of user names,
passwords, account numbers, and so forth. This may be
accomplished by allowing the front-end system to si-
multaneously request connection (broadcast) to a number
of “server” Hosts, accepting the first successful comple-
tion of a connection, and then requesting the attached
server to perform the user authentication task; such a
cooperative technique is in use between the TIP and
TENEX RSEXEC" systems on the ARPANET. This type
of interaction between Host systems is an example of au-
tomated resource sharing.

AUTOMATED RESOURCE SHARING

Host operating systems in the network environment
may be structured to allow automatic utilization of
resources in other Hosts. This subject has generated
considerable interest because there is need for distributed
data bases and load sharing in the network environment.
As the size of network user communities expands, it be-
comes increasingly important to automate the allocation of
processing and storage resources. to allow their widespread
and efficient use, while reducing problems faced by unso-
phisticated users. The realization of these techniques in-
volves a diversion from the traditional image of
centralized operating system structures; it involves the
management of resources which are distributed, as op-
posed to centralized, by means of the coordination of dis-
tributed processes. This coordination requires within each
centralized system a well-defined protocol and a flexible
set of facilities to enable the processes to reliably carry out
the management of network-wide resources.

Facilities provided by such a distributed operating
system make possible common file naming schemes which
are global to the network, thereby freeing a user of the
responsibility of remembering a particular file’s location.
In addition, a network-wide user (directory) naming
convention may be established. Tools for user-user com-
munication, such as mail facilities, direct terminal inter-
communication, and conferencing are needed on a net-
work-wide basis. These capabilities will become increas-
ingly desirable as the number of widely-dispersed service

systems and users requiring access to shared data bases
increases. Techniques are required for automatic archiv-
ing of network data bases; similarly, there is need for auto-
matic retrieval of files (or portions thereof) upon
reference, in much the same way as information flows
between levels of storage in current centralized hierar-
chical storage systems. Of course, solutions to these prob-
lems raise a number of complex data management, ac-
counting and security issues. ’

Development of the TENEX RSEXEC® System has
been a step in this direction, providing users with a unified
network file directory structure and terminal-terminal
communication capabilities. The associated RSEXEC pro-
tocol allows the involvement of a number of TENEX sites,
and allows other non-TENEX systems to participate. The
success of this effort has been made possible in part by the
characteristics of the TENEX operating system, which
provides a tree-structured process and virtual memory ca-
pability.?

The development of distributed operating system struc-
tures requires a number of support facilities within each
centralized system. A “‘system within a system’ approach
is desirable in which the resource-sharing processes utilize
system primitives available in the parent operating system
and create sub-processes which carry out remotely
requested tasks. The creator processes intercept system
calls issued by the sub-processes, providing them with a
different virtual programming environment from that pro-
vided by the parent operating system. For example, a sub-
process may access files in a network-wide directory struc-
ture by means of what it thinks are standard system calls.

Load-sharing techniques are aimed at an allocation of
resources which provides distribution of load or assign-
ment of processing tasks to the most appropriate server
sites. For example, it is possible to allow tasks to be
cooperatively carried out (simultaneously) by a number of
servers; a protocol is being designed and implemented
which allows processes to call procedures which execute on
differing machines.?* Basic problems are encountered in
attempts at dynamic distribution of load: programs may
depend on locally available data bases or on hardware or
software peculiarities of a particular system.? These prob-
lems may be relieved by establishing a “standard” set of
programs (e.g. editors, text-formatting programs, com-
pilers) and conventions which guarantee compatibility
with the virtual programming environment provided by
the resource-sharing processes. The practicality of
performing this type of load sharing, however, hinges on
the existence of methods of accessing remotely distributed
data.

SUMMARY

This paper has discussed structural characteristics which
are required in Host operating systems for a packet-
switching network; the need for flexible mechanisms for
inter-process communication in the network Host (along
with an example of an IPC mechanism for an ARPANET
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Host System); the function and structure of “front-end”
Host systems as network user and server interfaces; and fi-
nally, the need for development of automated techniques
for managing resources in the distributed environment.
These techniques will eventually provide capabilities for
widespread access to shared data bases and new services
for user-user communication. Their development requires
well-structured centralized operating systems which serve
as building blocks in the framework of a network-wide dis-
tributed operating system.
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INTRODUCTION

The goals of this paper are to identify several of the key
design choices that must be made in specifying a packet-
switching network and to provide some insight in each
area. Through our involvement in the design, evolution,
and operation of the ARPA Network over the last five
years (and our consulting in the design of several other
networks), we have learned to appreciate both the op-
portunities and the hazards of this new technical domain.

The last year or so has seen a sudden increase in the
number of packet-switching networks under consideration
worldwide. It is natural that these networks try to improve
on the example of the ARPA Network, and therefore that
they contain many features different from those of the
ARPA Network. We recognize that networks must be
designed differently to meet different requirements;
nevertheless, we think that it is easy to overlook important
aspects of performance, reliability, or cost. It is vital that
these issues be adequately understood in the development
of very large practical networks—common user systems
for hundreds or thousands of Hosts—since the penalties
for error are correspondingly great.

Some brief definitions are needed to isolate the kind of
computer network under consideration here:

Nodes. The nodes of the network are real-time com-
puters, with limited storage and processing resources,
which perform the basic packet-switching functions.

Hosts. The Hosts of the network are the computers,
connected to nodes, which are the providers and users of
the network services.

Lines. The lines of the network are some type of com-
munications circuit of relatively high bandwidth and
reasonably low error rate.

Connectivity. We assume a general, distributed to-
pology in which each node can have multiple paths to
other nodes, but not necessarily to all other nodes. Simple
networks such as stars or rings are degenerate cases of the
general topology we consider.

Message. The unit of data exchanged between source
Host and destination Host.

Packet. The unit of data exchanged between adjacent
nodes.

* This work was supported under Advanced Research Projects Agency
Contracts DAHC15-69-C-0179 and F08606-73-C-0027.
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Acknowledgment. A piece of control information
returned to a source to indicate successful receipt of a
packet or message. A packet acknowledgment may be
returned from an adjacent node to indicate successful
receipt of a packet; a message acknowledgment may be
returned from the destination to the source to indicate suc-
cessful receipt of a message.

Store and Forward Subnetwork. The node stores a copy
of a packet when it receives one, forwards it to an adjacent
node, and discards its copy only on receipt of an ac-
knowledgment from the adjacent node, a total storage in-
terval of much less than a second.

Packet Switching. The nodes forward packets from
many sources to many destinations along the same line,
multiplexing the use of the line at a high rate.

Routing Algorithm. The procedure which the nodes use
to determine which of the several possible paths through
the network will be taken by a packet.

Node-Node Transmission Procedures. The set of
procedures governing the flow of packets between adjacent
nodes.

Source-Destination Transmission Procedures. The set
of procedures governing the flow of messages between
source node and destination node.

Host-Node Transmission Procedures. The set of
procedures governing the flow of information between a
Host and the node to which that Host is directly con-
nected.

Host-Host Transmission Procedures. The set of
procedures governing the flow of information between the
source Host and the destination Host.

Within the class of network under consideration, there
are already several operational networks and many net-
work designs. The ARPA Network® is made up of over
fifty node computers called IMPs and over seventy Hosts.
The Cyclades Network? is a French network consisting of
about six nodes and about two Hosts per node. The Societe
Internationale de Telecommunication Aeronautique
(SITA) Network® connects centers in eight or so cities
mostly in Europe. The European Informatics Network
(EIN),* also known as Cost-11, is currently in a design
stage and will be a network interconnecting about six com-
puters in several Common Market countries. Some other
packet-switching network designs include: Autodin IIj
NPL,® PCI,” RCP,? and Telenet.”
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Some of the more obvious differences among these net-
works can be cited briefly. The ARPA Network splits
messages into packets up to 1000 bits long; the other net-
works have 2000-bit packets and no multipacket messages.
Hosts connect to a single node in the ARPA Network and
SITA; multiple connections are possible in Cyclades and
EIN. Dynamic routing is used in the ARPA Network and
EIN; a different adaptive method is used in SITA; fixed
routing is presently used in Cyclades. The ARPA Network
delivers messages to the destination Host in the same se-
quence as it accepts them from the source Host; Cyclades
does not; in EIN it is optional. Clearly, many of the design
choices made in these networks are in conflict with each
other. The resolution of these conflicts is essential if
balanced, high-performance networks are to be planned
and built, particularly since many future designs will be
intended for larger, less experimental, and more complex
networks.

FUNDAMENTAL ISSUES

In this section we define what we believe are funda-
mental properties and requirements of packet-switching
networks and what we believe are the fundamental criteria
for measuring network performance.

Network properties and requirements

We begin by giving the properties central to packet-
switching network design. The key assumption here is that
the packet processing algorithms (acknowledg-
ment/retransmission strategies used to control trans-
mission over noisy circuits, routing, etc.) result in a virtual
network path between the Hosts with the following charac-
teristics:

a. Finite, fluctuating delay—A result of the basic line
bandwidth, speed of light delays, queueing in the
nodes, line errors, etc.

b. Finite, fluctuating bandwidth—A result of network
overhead, line errors, use of the network by many
sources, etc. : :

c. Finite packet error rate (duplicate or lost
packets)—A result of the acknowledgment system in
any store-and-forward discipline (this is a different
use of the term “error rate” than in traditional tele-
phony). Duplicate packets are caused when a node
goes down after receiving a packet and forwarding it
without having sent the acknowledgment. The pre-
vious node then generates a duplicate with its
retransmission of the packet. Packets are lost when a
node goes down after receiving a packet and ac-
knowledging it before the successful transmission of
the packet to the next node. An attempt to prevent
lost and duplicate packets must fail as there is a
tradeoff between minimizing duplicate packets and
minimizing lost packets. If .the nodes avoid duplica-
tion of packets whenever possible, more packets are

lost. Conversely, if the nodes retransmit whenever
packets may be lost, more packets are duplicated.

d. Disordering of packets—A property of the ac-
knowledgment and routing algorithms.

These four properties describe what we term the store-and-
forward subnetwork.

There are also two basic problems to be solved by the
source and destination* in the virtual path described
above:

e. Finite storage—A property of the nodes.
f. Differing source and destination bandwidths—
Largely a property of the Hosts.

A slightly different treatment of this subject can be
found in Reference 9.

The fundamental requirements for packet-switching net-
works are dictated by the six properties enumerated
above. These requirements include:

a. Buffering—Buffering is required because it is
generally necessary to send multiple data units on a com-
munications path before receiving an acknowledgment.
Because of the finite delay of the network, it may be de-
sirable to have buffering for multiple packets in flight
between source and destination in order to increase
throughput. That is, a system without adequate buffering
may have unacceptably low throughput due to long delays
waiting for acknowledgment between transmissions.

b. Pipelining—The finite bandwidth of the network
may necessitate the pipelining of each message flowing
through the network by breaking it up into packets in
order to decrease delay. The bandwidth of the circuits
may be low enough so that forwarding the entire message
at each node in the path results in excessive delay. By
breaking the message into packets, the nodes are able to
forward the first packet of the message through the net-
work ahead of the later ones. For a message of P packets
and a path of H hops, the delay is proportional to P
H-1 instead of P * H, where the proportionality constant
is the packet length divided by the transmission rate.**

c. Error Control—The node-to-node packet processing
algorithm must exercise error control, with an acknowledg-
ment system in order to deal with the finite packet error
rate of the circuits. It must also detect when a circuit be-
comes unusable, and when to begin to use it again. In the
source-to-destination message processing algorithm, the
destination may need to exercise some controls to detect
missing and duplicated messages or portions of messages,
which would appear as incorrect data to the end user.
Further, acknowledgments of message delivery or non-de-
livery may be useful, possibly to trigger retransmission.
This mechanism in turn requires error control and
retransmission itself, since the delivery reports can be lost

* The question of whether the source and destination nodes or the source
and destination Hosts should solve these problems is addressed in a later
section.

** See page 90 of Reference 9 for a derivation and more exact result.
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or duplicated. The usual technique is to assign some
unique number to identify each data unit and to time out
unanswered units. The error correction mechanism is in-
voked infrequently, as it is needed only to recover from
node or line failures.

d. Sequencing—Since packet sequences can be received
out of order, the destination must use a sequence number
technique of some form to deliver messages in correct
order, and packets in order within messages, despite any
scrambling effect that may take place while several
messages are in transit. The sequencing mechanism is
frequently invoked since it is needed to recover from line
errors.

e. Storage allocation—The fact that storage in the nodes
is finite means that both the packet processing and
message processing algorithms must exercise control over
its use. The storage may be allocated at either the sender
or the receiver.

f. Flow Control—The different source and destination
data rates may necessitate implicit or explicit flow control
rules to prevent the network from becoming congested
when the destination is slower than the source. These rules
can be tied to the sequencing mechanism, with no more
messages (packets) accepted after a certain number, or
tied to the storage allocation technique, with no more
messages (packets) accepted until a certain amount of
storage is free, or the rules can be independent of these
features. , o

In satisfying the above six requirements, the algorithm
often exercises contention resolution rules to allocate
resources among several users. The twin problems of any
such facility are:

o fairness—resources should be used by all users fairly;
® deadlock prevention—resources must be allocated so
as to avoid deadlocks.

We have also come to believe that it is essential to have
a reset mechanism to unlock “impossible” deadlocks and
other conditions that may result from hardware or
software failures.

Network performance goals

Packet-switching communications systems have two
fundamental goals in the processing of data—low delay
and high throughput. Each message should be handled
with a minimum of waiting time, and the total flow of data
should be as large as possible. The difference between low
delay and high throughput is important. What the network
user wants is the completion of his data transmission in
the shortest possible time. The time between transmission
of the first bit and delivery of the first bit is a function of
network delay, while the time between delivery of the first
bit and delivery of the last bit is a function of network
throughput. For interactive users with short messages, low
delay is more important, since there are few bits per
message. For the transfer of long data files, high
throughput is more important.

There is a fundamental tradeoff between low delay and
high throughput, as is readily apparent in considering
some of the mechanisms used to accomplish each goal. For
low delay, a small packet size is necessary to cut trans-
mission time, to improve the pipelining characteristics,
and to shorten queueing latency at each node; further-
more, short queues are desirable. For high throughput, a
large packet size is necessary to decrease the circuit
overhead in bits per second and the processing overhead
per bit. That is, long packets increase the effective circuit
bandwidth and nodal processing bandwidth. Also, long
queues may be necessary to provide sufficient buffering
for full circuit utilization. Therefore, the network may
need to employ separate mechanisms if it is to provide low
delay for some users and high throughput for others.

To these two goals one must add two other equally im-
portant goals, which apply to message processing and to
the operation of the network as a whole. First, the network
should be cost-effective. Individual message service should
have a reasonable cost as measured in terms of utilization
of network resources; further, the network facilities, pri-
marily the node computers and the circuits, should be
utilized in a cost-effective way. Secondly, the network
should be reliable. Messages accepted by the network
should be delivered to the destination with a high
probability of success. And the network as a whole should
be a robust computer communications service, fault-
tolerant, and able to function in the face of node or circuit
failures.

In summary, we believe that delay, throughput, relia-
bility, and cost are the four criteria upon which packet-
switching network designs should be evaluated and com-
pared. Further, it is the combined performance in all four
areas which counts. For instance, poor delay and
throughput characteristics may 