
AFIPS
CONFERENCE
PROCEEDINGS

1975
NATIONAL
COMPUTER

CONFERENCE

May 19-22, 1975
Anaheim, California

The ideas and opinions expressed herein are solely those of the authors and are
not necessarily representative of or endorsed by the 1975 National Computer
Conference or the American Federation of Information Processing Societies,
Inc.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS

210 Summit Avenue
Montvale, New Jersey 07645

© 1975 by the American Federation of Information Processing Societies, Inc.,
Montvale, New Jersey 07645. All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

Composition of this volume was produced by Maryland Composition on a 32K
Nova Computer (with two disks) which drive an 18 font VIP Photo Typesetter.

PART I

SCIENCE AND TECHNOLOGY

CONTENTS

MICROPROCESSORS

Overview .. .

Theodore A. Laliotis

MICROPROCESSOR BASICS

Chairman: Rob Walker

The microprocessor rationale .. .

Bruce Threewitt

Keeping pace with a single-chip 16-bit microprocessor

Alan Weissberger

Tools and techniques of microprocessor data transfer

Gary Sawyer

MICROPROCESSORS AT WORK

Chairman: Paul M. Russo

Microprocessors at work-Session Overview

Paul M. Russo

The synergistic combination of an oscilloscope and a microprocessor

Walter A. Fischer

1

3

9

15

21

23

Development of a portable compiler for industrial microcomputer systems. 33

Leroy H. Anderson

Microprocessors in CRT terminals

John Whiting, Sandy Newman

41

Designing an application oriented terminal. 47

J. P. Kohli

Panelist: Dale Walls

BIPOLAR MICROPROCESSORS

Chairman: Theodore A. Laliotis

Designing central processors with bipolar microcomputer components. 55

Marcian E. Hoff, Jr.

Bipolar microprocessor design configurations .. .

David C. Wyland

MACROLOGIC-Versatile functional blocks for high performance digital systems

Krishna Rallapalli, Peter Verhofstadt

The architecture of the SMS microcontroller-A bipolar microcomputer design for control

Michael Liccardo

MICROPROGRAMMING AND MICROCOMPUTER PROGRAMMING

Chairman: Harut Barsamian

EMMY -An emulation system for user microprogramming :

Michael J. Flynn, C. Neuhauser, Robert M. McClure

Instruction sequencing in microprogrammed computers

Louise H. Jones

Microcomputer software design-A Checkpoint .. .

Gary H. Kildall

Panelists: Wayne T. Wilner, Fritz H. Clapp, Stanley Habib

COMPUTER COMMUNICATIONS NETWORKS

63

67

75

85

91

99

Overview . 107

Robert F. Daly

COMPUTER COMMUNICATIONS-WHO, WHAT, WHEN, WHERE AND WHY?

Chairman: Howard Frank

Computer communications-How we got where we are

I van T. Frisch, Howard Frank

Computer Communication networks-The parts make up the whole

Wushow Chou

109

119

Moving bits by air, land, and sea-Carriers, vans and packets , '" 129

Mario Gerla, John Eckl

ADVANCES IN PACKET-SWITCHING

Chairman: David C. Walden

Speech transmission in packet-switched store-and-forward networks. 137

James W. Forgie

Dynamic control schemes for a packet switched multi-access broadcast channel.. 143

Simon S. Lam, Leonard Kleinrock

Operating system design considerations for the packet-switching environment . 155

David L. Retz

Issues in packet switching network design. 161

William R. Crowther, Frank E. Heart, Alex A. McKenzie, John M. McQuillan, David C. Walden

ADVANCES IN PACKET RADIO COMMUNICATION

Chairman: Harry L. Van Trees

The organization of computer resources into a packet radio network. 177

Robert E. Kahn

Random access techniques for data transmission over packet-switched radio channels

Leonard Kleinrock, Fouad Tobagi

ALOHA packet broadcasting-A retrospect

R. Binder, N. Abramson, F. F. Kuo, A. Okinaka, D. Wax

PACKET RADIO-FUTURE IMPACT

Chairman: Robert E. Kahn

187

203

Packet radio system-Network considerations. 217

Howard Frank, Israel Gitman, Richard van Sly ke

Technological considerations for packet radio networks . 233

Stanley C. Fralick, James C. Garrett

Functions and structure of a packet radio station

J. Burchfiel, R. Tomlinson, M. Beeler

245

Digital terminals for packet broadcasting .. 253

Stanley C. Fralick, David H. Brandin, Franklin Kuo, Christopher Harrison

SOFTWARE

Overview .. 263

Glyn H. Jones

PROGRAMMING AS AN ACT OF COMMUNICATION

Chairman: Robert Barton

Panelists: Anatol Holt, Charles Seitz, Robert Merrell, Lee Harrison III, William Huggins

SOFTWARE-PORTABILITY AND RELIABILITY·

Chairman: David B. Wortman

An Anglo-French study of software portability (Presentation only)

P. J. Brown

On the principle of unique definition

P. D. Greim, Jr.

265

PDL-A tool for software design '" 271

Stephen H. Caine, E. Kent Gordon

PROGRAMMING-ART, SCIENCE OR ENGINEERING?

Chairman: Brian W. Kernighan

Structured programming and structured design as art forms (Abstract of presentation) 0 0 0 0 . 0 0 . 277

Edward Y ourdon

Modularization around a suitable abstraction (Abstract of presentation) 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . 0 . 0 0 0 0 0 0 0 0 0 0 0 0 279

Stephen No Zilles

Minicompilers, preprocessors and other tools (Abstract of presentation)

Po Jo Plauger

On being one's own programming self (Abstract of presentation)

Peter Jo Denning

ISSUES IN PROGRAMMING LANGUAGE DESIGN

Chairman: Anthony 1. Wasserman

281

283

Data types and program correctness (Position paper) 000000000 0 0 0 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 . 0 285

Barbara Ho Liskov

Extensibility in programming language design (Position paper) 00 0000000 .. 0 0 0 0 0 0 0 0 0 0 0 0 . 00000 o. 0 .. 0 0 .00 287

Thomas Ao Standish

Structured languages (Position paper)

Leon Presser

Structured control in programming languages (Position paper)

Charles T. Zahn, J r 0

291

293

Issues in programming language design-An overview (Position paper) 00.000000.000000000. 0 0 0 0 0 0 . 0 0 0 0 0 297

Anthony I 0 Wasserman

COBOL '74-ITS IMPACT ON SOFTWARE ENGINEERING

Chairman: Paul Oliver

An overview of the 1974 COBOL standard 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 . 0 0 0 301

Mo Mo Cook, Wo Holmes, Po Hoyt, Ao Johnson, G. Baird, Po Oliver

COBOL '74-Contributions to structured programming 0 0.000000. 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0.0000.0000 .. 00. 0 0 309

Paul Oliver

Program debugging using COBOL '74000000000.0000000000.0000.0.0000.0000000000000000 0 0 0.0 :. 0 0 0 000 313

George No Baird

Panelists: Grace M. Hopper, Jitze Couperus

SOFTWARE ENGINEERING

Chairman: Thomas E. Bell

Better manpower utilization using automatic restructuring 00 0 000 0 0 0 0 0 0 0 0000. 0 0 0 0 0 0 0 000 00.000 0 0 0 0 0 0 000 319

Guy de Balbine

Toward improved review of software designs

Peter Freeman

329

Understanding software through empirical reliability analysis. 335

Thomas Thayer

Panelists: James Burrows, Raymond Rubey, Charles Vick

OPERATING SYSTEMS THEORY

Chairman: R. Stockton Gaines

Dynamic dispatching in job class scheduled systems

Jon C. Strauss

JSYS Traps-A TENEX mechanism for encapsulation of user processors

Robert H. Thomas

343

351

Operating system penetration . 361

Richard R. Linde

PROGRAM VERIFICATION IN 1980

Chairman: Ralph L. London

A synthesizer of inductive assertions. 369

Steven M. German, Ben Wegbreit

Panelists: Ralph L. London, Bernard Elspas, Donald T. Good, Ben Wegbreit

DATA BASE MANAGEMENT

Overview 377

Edgar F. Codd

TUTORIAL AND PANEL DISCUSSION ON RELATIONAL DATA BASE MANAGEMENT

Chairman: Edgar F. Codd

A tutorial on relational data base management (Presentation only)

C. J. Date

Panelists: Jay Goldman, Dale Jordon, Dennis J. McLeod, Michael Stonebraker, Dionysios
Tsichritzis, Morton M. Astrahan, M. Garth Notley

DATA BASE MACHINES

Chairman: Michael M. Hammer

RAP-An associative processor for data base management. 379

E. A. Ozkarahan, S. A. Schuster, K. C. Smith

The datacomputer-A network data utility. 389

Thomas Marill, Dale Stern

RELATIONAL DATA BASE IMPLEMENTATIONS

Chairman: David M. Dahm

RISS-A generalized minicomputer relational data base management system ... , 397

Dennis J. McLeod, Monte J. Meldman

A multi-level relational system. 403

J. Mylopoulos, S. Schuster, D. Tsichritzis

INGRES-A relational data base system .. 409

G. H. Held, M. R. Stonebraker, E. Wong

RELATIONAL DATA BASE TECHNOLOGY

Chairman: Dennis W. Fife

Evaluating inter-entry retrieval expressions in a relational data base management system

James B. Rothnie, Jr.

Views, authorization, and locking in a relational data base system

D. D. Chamberlin, J. N. Gray, I. L. Traiger

QUERY LANGUAGES AND COMPARATIVE EVALUATION

Chairman: Ben Shneiderman

417

425

Query by example . 431

Moshe M. Zloof

A psychological study of query by example .. " " 439

John C. Thomas, John D. Gould

Human factors evaluation of two data base query languages-Square and Sequel '" 447

Phyllis Reisner, Raymond F. Boyce, Donald D. Chamberlin

PERFORMANCE EVALUATION, DATA COMPRESSION AND SEARCH

Chairman: E. E. Lindstrom

A classification of (compression methods and their usefulness in a large data processing center. 453

Doron Gottlieb, Steven A. Hagerth, Phillipe G. H. Lehot, Henry S. Rabinowitz

A simulation model for data base system performance evaluation , , " 459

Fumio Nakamura, Ikuzo Yoshida, Hidefumi Kondo

Weight-balanced trees

J. L. Baer

DISTRIBUTED DATA BASES AND APPLICATIONS

. Chairman: E. I. Lowenthal

467

Optimizing distributed data bases-A framework for research " 473

K. Dan Levin, Howard Lee Morgan

Structured organization of clinical data bases. 479

Gio Wiederhold, James F. Fries, Stephen Weyl

Integrated data bases for municipal decision-making. 487

Patrick E. Mantey, Eric D. Carlson

STORAGE TECHNOLOGY

Overview ... 495

Glen Bacon

ENHANCING STORAGE RELIABILITY BY SOPHISTICATED CODING SCHEMES

Chairman: Jack Moshman

Algebraic codes for improving the reliability of tape storage . 497

Elwyn R. Berlekamp

The role of automatic error correction in large scale data processing (Presentation only)

Walter E. Simonson

Hardware implementation of algebraic codes for improving the reliability of mass storage (Presentation only)

Larry Patin

Panelists: S. W. Golomb, R. W. Hamming

THE MASS STORAGE IMPACT

Chairman: John R. Morrison

Requirements of a mass storage system (Presentation only)

W. F. Morgan

Bridging the memory access gap

Dennis E. Speliotis

A mass storage facility (Presentation only)

G. F. Puffett, D. L. Boyd

501

IBM 3850/ Mass storage system . 509

Clayton T. Johnson

Panelists: D. L. Boyd, W. F. Morgan, C. T. Johnson, E. Carr

ADVANCES IN NOVEL STORAGE TECHNOLOGIES

Chairman: John C. Davis

Charge-coupled devices for memory applications. 515

Gilbert F. Amelio

Bubble domain memory systems . 523

JohnE. Ypma

Superconducting memories employing Josephson devices

W. Anacker

529

Holographic memories-Fantasy or reality? 535

A. K. Gillis, R. H. Nelson, G. E. Hoffman

BEAMOS-A new electronic digital memory.... 541

W. C. Hughes, C. Q. Lemmond, H. G. Parks, G. W. Ellis, G. E. Possin, R. H. WIlson

SYSTEM IMPLICATIONS OF ADVANCING STORAGE TECHNOLOGY

Chairman: J. H. Saltzer

Panelists: George C. Feth, Craig I. Fields, W. C. Lynch, Thomas L. Marill, Jurgen Witte

INTERACTION OF TECHNOLOGY AND SYSTEM ARCHITECTURE

Overview 549

Ugo O. Gagliardi

IMPACT OF NEW TECHNOLOGIES ON COMPUTER SYSTEMS ARCHITECTURE

Chairman: Gerald Estrin

The impact of new technology on data management architecture (Presentation only)

Ugo O. Gagliardi

The impact of new technology on PMS architecture (Presentation only)

Gerald Estrin

NEW ADVANCES IN PROCESSOR-MEMORY-SWITCH ARCHITECTURES

Chairman: Stuart E. Madnick

Pluribus-A reliable multiprocessor. 551

S. M. Ornstein, William R. Crowther, M. F. Kraley, R. D. Bressler, A. Michel, Frank E. Heart

Design considerations for a heterogeneous tightly-coupled multiprocessor system

Kenichiro Noguchi, Isao Ohnishi, Hiroshi Morita

Microprocessor-based multiprocessor ring structured network (Abstract of presentation)

Hoo-min D. Toong

DATA AND MEMORY MANAGEMENT ARCHITECTURES

Chairman: Jeffery P. Buzen

Trends in data base management-1975

Charles W. Bachman

A data sorting system using a high speed bus

P. M. Thompson, Z. H. Glanz

561

567

569

577

INFOPLEX - Hierarchical decomposition of a large information management system using a
microprocessor complex. 581

Stuart E. Madnick

PANEL DISCUSSION ON TECHNOLOGY AND SYSTEM ARCHITECTURE

Chairman: Richard P. Case

Panelists: Stuart Madnick, Jeffery Buzen, Rex Rice, Gerry Estrin

INTERACTIVE GRAPHICS

Overview 587

Donald C. Lincicome

GRAPHIC MODELS OF PHYSICAL SYSTEMS

Chairman: Charles M. Eastman

A polyhedron representation for computer vision. 589

Bruce G. Baumgart

Aspects of modelling in compuer aided geometric design

Richard F. Reisenfeld

597

A database for designing large physical systems .. 603

C. M. Eastman, J. Lividini, Douglas Stoker

ECONOMICS OF COMPUTER GRAPHICS SYSTEMS

Chairman: Ira W. Cotton

Economic principles for interactive graphic applications. 613

S. H. Chasen

Panelists: Robert M. Dunn, Thurber J. Moffett, Thomas J. Johnson

FUTURE PROSPECTS IN DATA PROCESSING

Overview. 621

Earl C. Joseph

FUTURE PROSPECTS IN DATA PROCESSING-I

Chairman: Earl C. Joseph

Where is technology taking us in data processing systems?

Bernard J. Greenblott, Mu Ye Hsiao

The economic implications of microprocessors on future computer technology and systems

James C. Nelson

623

629

Innovations in the operation of future computers. 633

Frederic G. Withington

FUTURE PROSPECTS IN DATA PROCESSING-II

Chairman: Orrin E. Taulbee

U set orientation in networking . 637

Orrin E. Taulbee, Siegfried Treu, Jiri Nehnevajsa

Panelists: Carver A. Meade, Jiri Nehnevajsa

FUTURE PROSPECTS IN DATA PROCESSING-III

Chairman: Siegfried Treu

Panelists: Frederic G. Withington, David J. Farber, Orrin E. Taulbee, Thomas N. Pyke, Jr.

OTHER SCIENTIFIC AND TECHNICAL ASPECTS

WORKLOAD CHARACTERIZATION

Chairman: Kenneth W. Kolence

A deterministic analytic model of a multi programmed interactive system . 645

Samuel T. Chanson, Domenico Ferrari

Panelists: Donald C. Harder, Philip J. Kiviat, Philip C. Howard, Robert W. Callan,
Kenneth W. Kolence

PSYCHOLOGICAL RESEARCH ON THE USE OF COMPUTER LANGUAGES

Chairman: James H. Carlisle

, Experimental testing in programming languages, stylistic considerations and design techniques

Ben Shneiderman

653

Naive programmer problems with specification of transfer of control. 657

Lance A. Miller

Computer programming fundamentals for non-computer scientists . 665

Daniel Freedman, Thomas Plum

Discussant: Ruven Brooks

PART II

METHODS AND APPLICATIONS

USERS' VIEWPOINT ON EDP

Overview . 671

Bruce Wrigley, .Edward J. Palmer

OPTIMIZING THE COMPUTER INSTALLATION

Chairman: Leo J. Cohen

Panelists: Robert J. Garabedian, Cal Bower

ISSUES AND ANSWERS-DATA SECURITY AND PERSONAL PRIVACY

Chairman: James A. Case

Panelists: Willis Ware, Douglas Metz, William Fenwick

MANAGING THE NEW PROGRAMMING TECHNOLOGIES

Chairman: Don Moehrke

SELECTION TECHNIQUES FOR PACKAGED DATA MANAGEMENT SYSTEMS

Chairman: Harold Uhrbach

Panelists: David Goodman, Charles Testa, William Otto

MANAGEMENT AND COMPUTERS

Overview . 673

John J. Donovan

A MANAGERIAL PERSPECTIVE OF THE EVOLUTION AND FUTURE OF DATA
PROCESSING-A DATA PROCESSING EXECUTIVE VIEW

Chairman: John F. Rockart

Panelists: Robert B. Anderson, Barry D. Rowe, Phillips Whidden

A MANAGERIAL PERSPECTIVE OF THE EVOLUTION AND FUTURE OF DATA
PROCESSING-A USER EXECUTIVE VIEW

Chairman: John F. Rockart

Panelists: W. J. Evans, Horace L. Kephart, William Madden, Peter E. Viemeister

MANAGEMENT ISSUES IN COMPUTERS

Chairman: John J. Donovan

Practical guidelines for EDP long-range planning. 675

John V. Soden, George M. Crandell, Jr.

An application of a generalized management system to energy policy and decision makings-The user's view 681

John J. Donovan, Louis M. Gutentag, Stuart E. Madnick, Grant N. Smith

Cost benefit evaluation of interactive transaction processing systems. 687

George A. Holt, Henry C. Stern

DESIGN AND IMPLEMENTATION OF DISTRIBUTED SYSTEMS

Chairman: David J. Farber

A note on recoverability of modular systems. 695

Philip M. Merlin, David J. Farber

An integrated approach to network protocols

Louis Pouzin

Interaction monitors in a distributed system .. .

Rajiv Malhotra

MEDICAL AND HEALTH CARE COMPUTING

701

709

Overview 715

Vaughn Alexander

WHAT WENT WRONG WITH MEDICAL INFORMATION SYSTEMS-AN OPTIMISTIC OUTLOOK

Chairman: Jan F. Brandejs

Information processing needs and practices of clinical investigators-Survey results

Norman A. PaHey, Gabriel F. Groner

717

The Canadian Medical Association information base-A beginning of operational systems in Canada. 725

Jan F. Brandejs

Panelists: Robert G. Wilson, H. K. Litherland, Galen P. Robbins

COMPUTER APPLICATIONS IN AMBULATORY CARE

Chairman: Carlos Vall bona

A comparative evaluation of automated medical history systems , " , ,. 733

Ephraim, R. McLean, Stephanie V. Foote

The clinical data base-What and why? (Presentation only)

Robert Reid

A protocol for evaluating computer systems for application in a physician's office

Daniel Butcher, Robert E. Mahan, Steven G. Jenks, Curtis P. McNeeley

739

Clinical information system (CIS) for ambulatory care. 749

Clement McDonald, Bharat Bhargava, David Jervis

An on-line centralized computer-coupled automated laboratory information system using touch-tone
card dialer telephone and audio-response technology for test order entry and result retrieval. 757

Arthur E. Rappoport, William D. Gennaro, Robert Berquist

MEDICAL INFORMATION SYSTEMS

Chairman: G. Octo Barnett

MUMPS-A general purpose data management system (Presentation only)

Jack Bowie

Automation of the medication ordering system (Presentation only)

Daniel E. Souder

Integrity and efficiency considerations in a shared tree-structured data base (Presentation only)

John MacCrisken

Commercial support of medical information systems (Presentation only)

Neil Pappalardo

FUTURE DIRECTIONS IN MEDICAL COMPUTING

Chairman: Marsden S. Blois, Jr.

Architecture for a graduate level educational program in the area of computer systems in medicine 765

Laurens V. Ackerman, Daniel K. Harris

Panelists: Jan F. Brandejs, Carlos Vallbona, G. Octo Barnett, Laurens V. Ackerman

BANKING-TODAY'S CHALLENGES

Overview . 769

William P. Stritzler

ELECTRONIC FUNDS TRANSFER SYSTEMS (EFTS)-WHAT'S IN IT FOR YOU?

Chairman: B. Ray Traweek

Panelists: Barry D. Wessler, James F. DeRose, B. Ray Traweek

IMPLICATIONS AND APPLICATIONS OF COMMUNICATIONS BASED SYSTEMS
TECHNOLOGY ON BANKING OPERATIONS

Chairman: Larry Dorf

Remote devices in banking offices (Presentation only)

David Harris

Data base in banking operations (Presentation only)

Leo J. Cohen

Networks and money transfer operations (Presentation only)

Robert M. Wainwright

BANKING'S BACK OFFICE PAPER PROBLEMS AND APPROACHES TO SOLUTIONS

Chairman: Watson M. McKee, Jr.

Panelists: Roy F. Bonner, Don Lewis, Leonard J. Nunley

DATA BASE TECHNOLOGY IN THE BANKING INDUSTRY

Chairman: Bernard Plagman

Panelists: Gene Altshuler, Joseph Judenberg

INNOVATIVE APPLICATIONS OF COMPUTER SCIENCE

Overview 771

Bertram Raphael

INNOVATIVE APPLICATIONS OF COMPUTER SCIENCE IN MEDICINE

Chairman: G. Anthony Gorry

Abstracts of presentations .. 773

Panelists: Harry Pople, Saul Amarel, Bruce Buchanan, David West

INNOVATIVE APPLICATIONS OF COMPUTER SCIENCE IN EDUCATION

Chairman: Alan Kay

An "intelligent" on-line assistant and tutor: NLS-SCHOLAR 775

Mario C. Grignetti, Catherine Housmann, Laura Gould

Panelists: John Seely Brown, Seymour Papert, Tom Dwyer, Kent Wilson, Adele Goldberg

INNOVATIVE APPLICATIONS OF COMPUTER SCIENCE IN AUTOMATION

Chairman: Richard L. Paul

Panelists: Eugene Merchant, James L. Nevins, Charles A. Rosen, Robert H. Anderson,
Thomas O. Binford, Anthony W. Connole

KNOWLEDGE-BASED EXPERT SYSTEMS

Chairman: Norton R. Greenfeld

Panelists: Robert M. Balzer, Richard E. Fikes, Edward A. Feigenbaum, W. Gerry Howe,
William A. Martin

USER REQUIREMENTS

Overview .. 783

Richard G. Mills

DEVELOPER AND USER VIEW OF USER REQUIREMENTS

Chairman: Richard G. Mills

Why things are so bad for the computer-naive user. 785

William C. Mann

Functional approach to turnkey system procurement .. 789

Wayne Churchman

TECHNOLOGY TRANSFER-A SMOULDERING NATIONAL ISSUE

Chairman: Richard G. Mills

Panelists: Lewis M. Branscomb, William F. Miller, George R. White, Chalmer G. Kirkbride,
Richard G. Mills

COMPUTER AIDED MANUFACTURING

Chairman: Tony C. Woo

The future of CAM systems

M. Eugene Merchant

OTHER APPLICATIONS

793

Parts representation in CAD/CAM , 801

Ikuo Oyake

Two application programs which link design and manufacture

Henry Merryweather

Automatic program synthesis-From CAD to CAM

Robert T. Chien, Tony C. Woo

Automatic visual inspection

Wesley E. Snyder

NEW APPLICATIONS IN PRINTING AND PUBLISHING

Chairman: Joseph J. Guiteras

805

813

819

Automatic full-page formatting of technical primary journals. 825

Stanley E. Bammel

Panelists: Charles Ying, Donald Roland, Jerome Lee

COMPUTER SYSTEM SIMULATION AND PERFORMANCE EVALUATION

Chairman: Hans Kaspar

A simple technique for controlled on-line system stimulation

Thomas E. Bell, Jo Ann Lockett

A heuristic approach to computer systems performance improvement, I-A fast performance

831

prediction tool ,... 839

Stephen R. Kimbleton

Computer design verification via software simulation. 847

R. E. Karnes, W. A. Carter

Panelists: Richard Muntz, Stewart Schlesinger, Donald S. Miller, James C. Maloney

DATA BASES IN THE HUMANITIES

Chairman: J amesJ oyce

Panelists: John R. Allen, Theodore F. Brunner, Robert J. Dilligan, Hank Epstein, Joseph Raben,
Benjamin Suchoss, Alice F. Worsley

ADVANCES IN COMPUTER TECHNOLOGY THROUGH AEROSPACE REQUIREMENTS

Chairman: Richard H. Thayer

Synchronous microcomputer system for on-board missile guidance and control. 853

Frank J. Langley, Joseph J. Cooney

A new fourth generation of hybrid computer systems

Robert M. Howe, Aldric Saucier

861

Design and application of electronically programmable LSI arrays. 867

Daniel Hampel, R. L. Barron, D. Cleveland

Software reliability-A method that works . 877

R. H. Thayer, E. S. Hinton

PART III

INTERACTION WITH SOCIETY

EDUCATION-CURRICULA-TRAINING

Overview . 887

Gopal K. Kapur

DATA PROCESSING EDUCATION-A VIEW FROM EDUCATION-A REACTION FROM
INDUSTRY

Chairman: Thomas J. Cashman, Gary B. Shelly

Business data processing education at the community college (Presentation only)

Thomas J. Cashman

Realignment of objectives in information system degree programs

J. Daniel Couger

Computer science education (Presentation only)

Edward L. Glaser

Panelists: Gary B. Shelly, Dennis Fletcher, Norman M. Goodkin, Robert R. Brown

GRADUATE AND UNDERGRADUATE PROGRAMS IN COMPUTER SCIENCE

Chairman: Barry L. Bateman

Undergraduate programs in computer science (Abstract of presentation)

Norman Sondak

889

893

Graduate education in computer science and its relationship to industry (Abstract of presentation) 895

Marshall C. Yovits

The role of continuing education in computer science (Abstract of presentation)

W al ter J. Karpl us

897

The role of computer science minors in undergraduate and graduate curriculums (Abstract of presentation) 901

Gerald N. Pitts, Barry L. Bateman

COMPUTER EDUCATION FOR A COMPUTERIZED AGE

Chairman: Julius A. Archibald, Jr.

Computer science education for majors of other disciplines. 903

Julius A. Archibald, Jr.

Data base education for students of management

R. Clay Sprowls

907

Computers in architectural education. 913

Jens G. Pohl

Panelists: Fred A. Gluckson, William R. Hays, Marvin Lubert, Benjamin F. Courtright

USE OF COMPUTERS IN INSTRUCTION

Chairman: Sylvia Charp

Panelists: Sylvia Charp, James E. Candlin, Max Jerman, Robert Scanlon, Gopal Kapur

MAKING COMPUTERS SAFER

Overview . 927

Donn B. Parker

MAKING COMPUTERS SAFER THROUGH TECHNOLOGY

Chairman: EldredNelson

Secure computer operation with virtual machine partitioning. 929

Clar k Weissman

The cost of computer privacy 935

Jerome Lobel

Insuring individual's privacy from statistical data base users. 941

Mohammed Inam ul Haq

Panelist: Gerald Popek

MAKING COMPUTERS SAFER THROUGH LICENSING, CERTIFICATION, OR PROFESSIONAL
RESPONSIBILITY

Chairman: Oliver R. Smoot

Panelists: Kenniston W. Lord, Jr., Mary Ann Chapman, Fred H. Harris

MAKING COMPUTERS SAFER THROUGH GOOD PRACTICES

Chairman: Bruce Gilchrist

Panelists: To be announced

MAKING COMPUTERS SAFER THROUGH AUDITING

Chairman: William E. Perry

Computers, security, and the audit function ... 947

Norman R. Nielsen

Panelists: Keagle Davis, James Forshay, Arnold Schneidman, Frederick B. Palmer,
Naomi Lee Bloom

LEGAL ASPECTS OF COMPUTER MANAGEMENT

Overview . 955

Susan H. Nycum

LEGAL RESPONSIBILITIES IN BUYING, USING AND SELLING DATA PROCESSING

Chairman: Robert P. Bigelow

Contracting for computers (Presentation only)

Richard L. Bernacchi

Contracting with the government (Presentation only)

Terry Miller

Legal protection of proprietary rights (Presentation only)

Robert P. Bigelow

N on-contractual responsibilities (Presentation only)

Susan H. Nycum

ANTITRUST AND REGULATORY ASPECTS

Chairman: F. Sherwood Lewis

Antitrust activities in data processing (Presentation only)

J. Thomas Franklin

Regulatory and antitrust actions in telecommunications affecting data processing (Presentation only)

F. Sherwood Lewis

LEGAL AID FOR EDP MANAGERS-COMPUTER RELATED TAX, RECORDKEEPING,
INSURANCE AND LABOR QUESTIONS

Chairman: Roy N. Freed (Presentation only)

FUTURE TRENDS IN THE LAW OF COMPUTERS

Chairman: Susan H. Nycum

Panelists: Roy N. Freed, Robert P. Bigelow, F. Sherwood Lewis

INTERNATIONAL DIALOGUE

Overview . 957

Vinton Cerf

STATUS REPORT ON PUBLIC PACKET-SWITCHING

Chairman: Vinton Cerf

Panelists: David Horton, Lawrence Roberts, Lee Talbert, Roy Bright, Remi Despres

INTERNATIONAL DATA COMMUNICATION POLICY

Chairman: Alex Curran

Panelists: M. Clayton Andrews, Paul Meunch, Louis Pouzin, Peter Kirstein, Dieter Kimbel

THE IMPACT OF COMPUTER INTERFACE STANDARDS

Chairman: Thomas J. Alshuk

Determination and analysis of a standard interface model derived from a medium speed line printer

Gary E. Jones

Panelists: Don Lilly, Dale W. Zobrist, Norman Ream

INTERFACE AND SOFTWARE STANDARDS-JAPANESE AND EUROPEAN VIEWPOINTS

Chairman: Sami de Picciotto

Panelists: Thomas Crawford, Bruno Lussato, Mamoru Mitsugi

959

OTHER SOCIETAL ASPECTS

GOVERNMENT FUNDING IN COMPUTER SCIENCE

Chairman: Kent K. Curtis

Advanced Research Projects Agency programs (Presentation only)

J. C. R. Licklider

National Institutes of Health programs (Presentation only)

William Baker

National Science Foundation programs (Presentation only)

Kent K. Curtis

Panelists: Richard L. Shuey, Keith Uncapher, Robert W. Ritchie

NATIONAL CENTERS FOR SCIENTIFIC COMPUTING

Chairman: G. Stuart Patterson, Jr.

The Institute for Advanced Computation (Presentation only)

Allan Birholtz

The National CTR Computer Center (Presentation only)

John Kileen

The National Center for Computation in Chemistry (Presentation only)

Peter Lykos

AFIPS PROGRAMS

Chairman: Paul W. Berthiaume

Guidelines to AFIPS support (Presentation only)

Paul W. Berthiaume

Programmers and system analysts job description projects (Presentation only)

Donn B. Parker

System review manual on security (Presentation only)

John Gosden

History of computing project (Presentation only)

William F. Luebbert

Washington activities study committee project (Presentation only)

Keith Uncapher

AFIPS privacy project (Presentation only)

Willis H. Ware

INFORMATION PROCESSING-ITS IMPACT UPON SOCIETY THROUGH LIBRARY SYSTEMS

Chairman: Susan Crowe

nfais/FID world inventory of abstracts and indexing services

Toni Carbo Bearman

SALINET (Satellite Library Information Network) (Presentation only)

Ruth Katz

Interactive systems-Potential for library networks (Presentation only)

Carlos Cuadro

COMPUTING APPLIED TO SOCIETAL PROBLEMS

Chairman: Donald L. Thomsen, Jr.

The interaction betweeh cultural and biological evolution (Abstract of presentation)

Marcus W. Feldman

Computer applications to ocean disposal research and engineering (Abstract of presentation)

Robert C. Y. Koh

Programs for allocation of fire companies (Abstract of presentation)

Jan. M. Chaiken

963

969

969

969

Preface

General Chairman:
Donal A. Meier
Consultant

The purpose of the National Computer Conferences is to provide an at­
mosphere wherein designers, suppliers, users, managers, educators, and
representatives of Government and Society at large can meet and interact. Dis­
cussions of new technical developments, as well as National and International
issues and challenges facing the Information Processing Community, have been
encouraged.

This year's discussions and developments are contained, for the most part, in
this Volume 44 of the 1975 National Computer Conference.

The '75 NCC represents essentially all of the major computer-related
Professional Societies. This year the Data Processing Management Association
has become a sponsor. They join our other sponsors: The IEEE Computer So­
ciety, The Association for Computing Machinery, The Society for Computer
Simulation and AFIPS. In addition, there are eleven other AFIPS Constituent
Professional Societies which share an active role in helping to plan the National
Computer Conference. The Institute of Internal Auditors has joined this group
this year.

Along with the Technical Program, which is described in the Foreword, there
are a number of other activities at NCC this year. They include four major
invited addresses, a special "Pioneer Day Program," plus an Art Show, a Laser
Show, a High School Computer Science Fair and Science Film Theater. There
are approximately 250 companies and organizations participating in this year's
Exhibition. These activities and exhibits, including all technical program
sessions, will be held within the Anaheim Convention facility. Arrangements
have also been made for a special "Day at Disneyland" during the Conference.

Volunteers, for a Conference of this magnitude, number in the hundreds. For
the most part, they are members of the NCC Sponsoring Societies and the other
AFIPS Constituent Societies. To these Societies and their participating
members my heartiest thanks. To the NCC Board and the NCC Committee my
thanks for your confidence and support. To all the members of the Technical
Program Organization who contributed to the Sessions and made these Proceed­
ings possible, thank you. And finally, to the AFIPS Headquarters Staff and all
members of the '75 Conference Steering Committee, thank you for your dedica­
tion, time and effort. We did it!

Foreword

Those who shaped the program

Technical Program Chairman:
Stephen W. Miller
Stanford Research Institute
Menlo Park, California

The Technical Program Committee for 1975 was made up of active par­
ticipants from the AFIPS sponsoring societies. This permitted representation
from people with backgrounds in hardware, software, applications and social
interaction. Each of the non-sponsoring constituent societies was requested,
through their President and also their NCC Board Member, to appoint an ac­
tive liaison to the Technical Program Committee. The sponsors and non­
sponsoring constituent societies that assisted in the planning are listed in the
back of this volume. All societies, sponsoring and non-sponsoring constituents,
were then requested to make their session contributions within the National
Computer Conference Program structure.

How the program is structured

The Program is structured into three major categories; Science and
Technology, Methods and Applications, and Interaction with Society. Within
each of these categories a number of technical areas were selected for special
treatment. The Workshops and regional conferences from the Special Interest
Groups and Technical Committees of sponsoring societies and conferences
conducted by other constituent societies were used as an initial screening in the
selection of topic areas which appeared of special importance to bring before a
national forum with this diverse audience.

Each technical area was headed by a Director. These Directors were selected
for their competence in the area, their demonstrated ability to organize a group
of sessions articulating the major challenges and accomplishments of their area,
and to provide broad representation of the major computer companies and
universities. Most subject areas are developed as a "day" of four sessions in the
same room. Many such days start with a tutorial session, continue with sessions
of submitted papers, and terminate with a panel discussion led by leaders in the
field. Hence, the order of presentation is important and that order within each
area is preserved in the publication of this Proceedings.

Each paper selected, and published here, was judged on its individual merit
by several of the referees whose names are listed at the end of the book. In some
cases good papers were rejected because they did not fit this program. In a few
cases a paper was accepted against the recommendations of the referees because
it was a good statement of an important problem which formed the basis of the
panel discussion. One paper included herein is nearly three times the nominal
maximum length. We made an exception in this case since all reviews of this
paper indicated that it was of exceptional quality and constituted "the defini­
tive work" in its subject. The unanimous recommendation was that it should
neither be shortened nor broken up into multiple papers.

While the program planners gave careful consideration to submitted papers,
lack of volunteered papers did not restrict the planning. Several sessions consist
entirely of invited papers, some sessions are rounded out by invited papers
which complement submitted papers, and some sessions use one paper as a
basis for developing a topic. When appropriate, the session may consist largely
of visual presentations which do not lend themselves to publication.

Records of this conference: Proceedings, cassettes and monograms

This Proceedings constitutes the primary permanent record of the 1975 Na­
tional Computer Conference. Information transfer at the Conference takes
place not only through the papers recorded in this Proceedings, but also from
panel sessions and in spontaneous interchanges following the presentation of
papers. To capture a more complete record than is possible in the pre-published
Proceedings, all sessions which have the consent of their participants are being
recorded and tape cassettes will be made available for sale during and sub­
sequent to the Conference. These cassette recordings supplement the published
Proceedings in documenting the Conference.

A few select sessions will be transcribed, edited and published as separate
AFIPS Monograms.

In another departure from precedent, the table of contents was expanded to
include the names of all speakers and panelists and their topics, even though no
text of their presentations appears in the Proceedings. In this way it serves as a
pointer to the existence of the additional program material, as well as the table
of contents of the Proceedings.

Of course, n'othing substitutes for attendance at the Conference and active
participation in the discussions. However, we believe that the combination of
this Proceedings, the cassette recordings of the discussions, and the AFIPS
Monograms constitute an excellent record of the Conference for those unable to
attend, and an aid for the memory for those who do attend.

We hope that participation in this Conference has been both useful and en­
joyable, and we express our thanks to the hundreds of participants who made it
possible.

PART I

SCIENCE AND TECHNOLOGY

Microprocessors

Area Director:
Theodore A. Laliotis
Fairchild Systems Technology
San Jose, California

The term "microprocessor" as used today in the industry literature, has two
possible meanings:

1. An LSI processor on a single chip.
2. A microprogrammable processor.

It is unfortunate from the literary standpoint that we use a word with two
meanings; however, it is perfectly acceptable as a title for the series of sessions
entitled "MICROPROCESSORS" at NCC 75 because both subjects are dealt
with in these sessions.

LSI single chip processors are now becoming, very quickly, a mature design
component from the standpoints of cost, availability, and performance. Micro­
programming techniques have been around for a number of years as they were
the prime innovation in third generation computers. The combination of the two
makes a very powerful team which is undoubtedly the leading direction for the
future of the industry. It is expected to cause the next major evolution, not just
in the computer industry but in the total electronics industry much like the
transistor did a couple of decades ago. The sessions are organized in a manner
that presents both the hardware and software aspects of the state of the art.

The first session consists of three papers intended to address some of the fun­
damental topics of LSI microprocessors in a tutorial fashion utilizing state of
the art components as examples. The first paper entitled "Microprocessor Ra­
tionale" examines some of the basic philosophies and design trade-offs and in­
troduces the Signetics PIP microprocessor. The second paper presents the in­
dustry's first 16-bit LSI single chip microprocessor (National Semiconductor's
PACE) from a user's viewpoint and explores applications that would benefit
from such a product. The third paper addresses the important issues of 1/0 and
data transfer techniques using Motorola's M6800 as an example.

The second session which is entitled "Microprocessors at Work" provides
both an overview and specific examples of microprocessor applications in data
communications, process control, numerical control, instrumentation and in­
telligent terminals.

1

2 National Computer Conference, 1975

The third session which is entitled "Bipolar Microprocessors" is intended to
provide a forum for wider publicity and awareness of the state of the art
developments in the area of bipolar LSI microprocessors. These devices are cur­
rently in the process of emerging and there is a large degree of interest in them
due to their inherent high speed which is about one order of magnitude higher
than the currently available MOS devices. Their prime applications will be in
the implementation of high performance systems. Intel, Monolithic Memories.,
and others will present their cases in that session.

The fourth session is entitled "Microprogramming and Microcomputer
Programming." This session treats the important considerations of the develop­
ment and maintenance of software for microprocessor. Individual papers in
this session include "An Emulation System for User Microprogramming,"
"Testing and Sequencing in Microprogrammed Computers," "Optimization
Techniques for Horizontal Microprograms," and "Engineering and Maintaining
Microcomputer Software."

The microprocessor rationale

by BRUCE THREEWITT
Signetics Corporation
Sunnyvale, California

THE MICROPROCESSOR RATIONALE

Classically, since the beginning of the computer era, logic
system designs have been implemented with one of two
entirely separate approaches. Economic factors determined
whether hardwired logic or a computer would be used to
perform the required operations. In many cases, the computer
approach was far too costly.

Until recently, hardwired logic systems were constructed
using large numbers of small-scale or medium-scale integrated
circuits (SSI and MSI, respectively). Figure 1 includes
examples of functions typically found in these two levels of
integration. In general, the hardwired logic system could be
modelled as a "black box" that takes inputs (variables/data)
and performs some defined logic function on them, producing
outputs (results) that are functions of the inputs and of time
(see Figure 2). These outputs drive displays or other output
devices that apply the results to doing work.

Meanwhile, the computer industry builds black boxes that
accept inputs and perform some defined logic function to
produce outputs that are functions of the inputs and of time
(Figure 3a). The difference in these approaches lies in the
contents of the respective black boxes. Computer systems
have a certain minimum configuration as shown in Figure 3b.
Until now, this configuration consisted of components and
software that were too expensive to use in the simpler high
volume logic system applications. As mini-computers tend
downward in size and cost, more logic applications can be
served; but, the cost/performance trade-offs of mini's still
preclude their use in general hardwired logic replacement
market.

As the need for less expensive, more versatile logic system

DISCRETE SSI MSI LSI

~
~ I COUNTERS I CPU

g:::Qo-o

i ~
1 I REGISTERS I
I o---t>o---o

Figure I-Trends in integration

3

design techniques continued to apply pressure to the digital
electronic industry, a third system design alternative was
evolving for the following reasons. First, logic designers were
frequently going toward large-scale integrated circuits (LSI)
to implement their particular system designs. Typically, a
logic designer would take his logic and timing diagrams to an
integrated circuit (IC) supplier and ask him to shrink that
design onto one or a few MOS/LSI circuits (see Figure 4). He
did this because he believed that the MOS/LSI technology
offered a high-density, low power approach to digital circuits.
Unfortunately, this assumption is not totally valid. It is true
that the MOS/LSI technology yields small transistors. How­
ever, the MOS interconnection approach is significantly less
dense than cells or devices. Random logic is characteristically
dominated by complex interconnect with relatively few active
devices (transistors). Thus, random logic designs cannot
utilize the MOS technology efficiently. MOS/LSI does make
very dense memories (patterned logic) where interconnects
are minimized.

Secondly, the cost of producing custom MOS/LSI circuits
is prohibitive in the long run both for the user and the IC
manufacturer (Figure 5). This curve assumes that for
random logic, increased complexity (integration level) results
in increased specialization. When a logic system, which is
specific to a given special purpose application, is integrated,
the resulting Ie's are also specific. Thus, the volume per
product type decreases with increased integration. The few
exceptions to this rule are single-application random logic
devices such as calculator and watch circuits that generate
sufficient volume to justify their existence. Also, the IC
supplier must supply many different types of custom circuits
in order to adequately serve the custom logic market, since
any two given applications would probably not utilize the
same custom circuits. This proliferation of circuit types
greatly increases overhead costs for support engineering for
testing and circuit design. Therefore, custom MOS/LSI, in
general, is not economically feasible for the Ie manufacturer
or the systems manufacturer.

Thirdly, the appearance of the N-Channel silicon..,gate
MOS technology in recent times provides a vehicle for

OUTPUTS = f (INPUTS)
(RESULTS)

Figure 2-Logic system implementation I

4 National Computer Conference, 1975

OUTPUTS = f (INPUTS)
(RESULTS)

Figure 3-Logic system implementation II

building highly dense, low power, moderately fast, TTL-com­
patible LSI circuits. The resulting cost improvements are
passed on to the system designer.

-For these reasons, and since the IC supplier would like to
exhaustively service the logic marketplace, a third alternative
for random logic system designs has evolved. That alternative
is a special case of random logic called programmed logic.
Programmed logic has the characteristics outlined in Table I.
N ow, instead of wiring random logic together to perform a
given function, the designer uses a general purpose logic
block to perform logic according to the instructions contained
in a program. Thus, the logic system designer will combine
hardware and software techniques to achieve a system that
was formerly all hardware. The resulting design is far more
flexible since the features of the system can be a function of
software (the program). When market conditions require an
updated or even totally different system, in most cases only
a new program need be written. The resulting improvement
in system design turn-around time will significantly improve
the flexibility of a system supplier in serving his market. If
errors are made in the initial system design, corrections do
not usually require a complete system redesign. Now,
a custom system can be constructed with general purpose
hardware by using a specialized program. The resulting
savings in component costs alone, using readily available
standard circuits, would justify this approach.

This programmed logic block can be constructed out of a
new type of component called a microprocessor. More
accurately, this component type is a micro-sized processor
since it need not be micro-programmed. Perhaps a more

INPUTS

~
LOGIC

SYSTEM:
SSI/MSIIN
1'2 LOGIC

INPUTS

r-ll-l
I ~ t "ER5~1 r::l r:J1

INTECRRT'~: LJ L:J :
-----.-.r----.... L - {} _ J

OUTPUTS OUTPUTS
Figure 4-Logic replacement with MOS/LSI circuits

COMPLEX'TV -

Figure 5-Custom random logic feasibility factors

appropriate name would be an Integrated Processor (IP).
A general purpose processor is a logic device that can literally
perform any computable function. From another point of
view, a processor is a device that utilizes memory cells (used
to store inputs and instructions) to perform logic functions.

Since breakthroughs in the various circuit technologies
have generally resulted in increased density, the micropro­
cessor allows the system designer to most efficiently utilize
the state-of-the-art IC technology. Memories are widely and
inexpensively available in many configurations, access modes,
and cost-performance ranges.

On closer examination, the IP is an evolutionary extension
of computer techniques for solving logic problems. Figure 3
shows a generalized block diagram of a minimum computer
configuration. The IP is a miniaturized version of the Central
Processing Unit (CPU) block. Thus, an IP is only part of a
micro-sized computer. One must add memory and I/O
(input/output) devices to construct a micro-sized computer.

Even though programmed logic uses computer techniques,
the largest market for IP's is not in computer replacement.
Rather, it is in hardwired logic replacement. Thus, in a few
years, the huge Transistor-Transistor Logic (TTL) market
will be largely serviced by IP's and memories instead. The IC
industry is excited about integrated processors because, in
replacing TTL, semi-conductor memory sales will increase
because memories will be used in applications that have never
before used them. Also, the IC supplier can now better service,
in an economically feasible fashion, the market previously
handled by custom LSI.

As integration levels increase, one is increasingly hard

TABLE I-Random Logic vs Programmed Logic

RANDOM

Special Purpose Components
Low Volume
Dedicated Ha.dware
Moderate Speed
Difficult to Modify
Difficult to Expand

PROGRAMMED

General Purpose Components
High Volume
Dedicated Software
Slower Speed
Easily Modified
Easily Expanded

pressed to distinguish between a component and a system. In
the past, IC manufacturers have built components. With the
introduction of the microprocessor comes the need to treat a
component as though it were a system, which in effect it is.
Therefore, the IC house will have to supply far more support
than is usually required for a component. This support
commitment is a significant factor in the successful manu­
facture of integrated processors. Those suppliers who support
their product only at the component level will require a great
deal of assistance from the intermediary system consultant
companies that are beginning to appear on the scene. Without
such assistance, a component-level support effort is doomed
to failure in the general integrated processor market.

However, at the other end of the spectrum, the component
supplier becomes an end-user system supplier who competes
with his former customers. The component manufacturer who
wishes to properly support his integrated processor while not
competing with his customers must seek an intermediate
support commitment. This level might include:

• components-CPU's, memories, and interface
• software-assemblers, simulators, utility programs
• board-level and system-level prototyping aids
• training aids-seminars, workshops, user's libraries

To avoid the specialization quandry discussed earlier, the
IP suppliers are usually introducing general purpose inte­
grated processors first. The devices have features which allow
them to handle the wide range of applicatjons indicated in
Figure 6. The price paid for flexibility is usually speed. Thus,
where higher speed is needed and increased specialization is
economically justified, special purpose processors will be
built.

One measure of merit of an integrated processor is its ease
of use. Ease of use applies to three categories: hardware,
software, and support. Ultimately, ease of use translates into

WORD
V- PROCESSING Y::J

8{O /"- -" ~~~
er~-9 ~\,~
I
\

BOOLEAN'
FUNCTIONS

J
/CONTROL
FUNCTIONS

Figure 6-Microprocessor applications

The Microprocessor Rationale 5

TABLE II-2650 Features

Single Chip
Fixed Instruction Set
Parallel 8 Bit
40 Pin Dip
N-Channel12 Si Gate
32K Byte Range
Address, Data Busses
75 Instructions
1, 2, 3 Byte Instructions
Instruction Times lOus

Single +5 Volt Supply
TTL/IO
Static Logic
Single Phase Clock
TTL Level Clock
Eight Address Modes
Vectored Interrupt
7 General Purpose Registers
Return Address Stack On Chip
Program Status Word

TABLE IV-Interface Signal Summary

PINS

2

8
13
1

TYPE

Power
Input
Input
Input
Input
Input
Input
Input
Input
I/O
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output

SIGNAL

+5V, Ground
Clock
Sense
Pause
Reset
Address Enable
Data Bus Enable
Interrupt Request
Operation Acknowledge
Data Bus
Address
Address-Data/Control
Address-Long/Short
Memory/I-O
Read/Write
Operation Request
Write Pulse
Interrupt Acknowledge
Run/Wait
Flag

TABLE V-SIGNETICS 26;,)0-Manufacturer Supplied Chips

LSI PRODUCTS

26fiO
2602
2604
2606
2608
8T31
82S123
82S129
82S131
82S115

LOGIC FAMILIES

8TOO
7400, 8200
82S00
74LSOO
4000

DESCRIPTION

NMOS 8-bit Static Microprocessor
NMOS 1024xl Static RAM
NMOS 4096xl Dynamic RAM
NMOS 256x4 Static RAM
NMOS 1024x8 Static ROM
STTL 8-bit Bidirectional Port
STTL 32x8 Tristate PROM
STTL 26.')x4 Tristate PROM
STTL i512x4 Tristate PROM
STTL 512x8 Tristate PROM

Interface SSI/MSI/LSI
TTL SSI/MSI/Memory
STTL Memory
Low Power STTL SSIMSI
CMOS SSI/MSI

6 National Computer Conference, 1975

TABLE III-Instruction Set Summary

Load/Store Instructions

LODZ r Load Register Zero
LODI,r v Load Immediate
LODR,r (*)a Load Relative
LODA,r (*)a(, X) Load Absolute
STRZ r Store Register Zero
STRR,r (*)a Store Relative
STRA,r (*)a(,X) Store Absolute

Arithmetic Instructions

ADDZ r Add to Register Zero
ADDI,r v Add Immediate
ADDR,r (*)a Add Relative
ADDA,r (*)a(,X) Add Absolute
SUBZ r Subtract from Register Zero
SUBI,r v Subtract Immediate
SUBR,r (*)a 'Subtract Relative
SUBA,r (*)a(,X) Subtract Absolute

Logical Instructions

ANDZ r And to Register Zero
ANDI,r v And Immediate
ANDR,r (*)a And Relative
ANDA,r (*)a(,X) And Absolute
10RZ Inclusive Or to Register Zero
10RI,r v Inclusive Or Immediate
10RR,r (*)a Inclusive Or Relative
10RA,r (*)a(,X) Inclusive Or Absolute
EORZ Exclusive Or to Register Zero
EORI,r v Exclusive Or Immediate
EORR,r (*)a Exclusive Or Relative
EORA,r (*)a(,X) Exclusive Or Absolute

Comparison Instructions

COMZ Compare to Register Zero
COMI,r v Compare Immediate
COMR,r (*)a Compare Relative
COMA,r (*)a(,X) Compare Absolute

Rotate Instructions

RRR,r
RRL,r

Rotate Register Right
Rotate Register Left

Explanation of Symbols

()-indicates option
r-register expression
v-value expression
*-indirect indicator
a-address. expression
x-index register expression

Length
(bytes)

1
2
2
3
1
2
3

2
2
3

2
2
3

2
2
3

2
2
3
1
2
2
3

2
2
3

X-index register expression with optional auto-increment
or auto-decrement

Branch Instructions

BCTR,v (*)a Branch On Condo True ReI.
BCFR,v (*)a Branch On Condo False ReI.
BCTA,v (*)a Branch On Condo True Abso.
BCFA,v (*)a Branch On Condo False Abso.
BRNR,r (*)a Branch On Reg. Non-Zero ReI.
BRNA,r (*)a Branch On Reg. Non-Zero Abso.
BIRR,r (*)a Branch On Incre. Reg. ReI.
BIRA,r. (*)a Branch On Incre. Reg. Abso.
BDRR,r (*)a Branch On Deere. Reg. ReI.
BXA (*)a,x Branch Index. Abso., Uneond.
ZBRR (*)a Zero Branch ReI., Uncond.
BDRA,r (*)a Branch On Deere. Reg. Abso.

Subroutine Branch/Return Instructions

BSTR,v (*)a Br. Subrou. Condo True, ReI.
BSFR,v (*)a Br. Subrou. Condo False, ReI.
BSTA,v (*)a Br. Subrou. Condo True, Abso.
BSFA,v (*)a Br. Subrou. Condo False, Abso.
BSNR,r (*)a Br. Subrou. Non-Zero Reg. ReI.
BSNA,r (*)a Br. Subrou. Non-Zero Reg. Abso.
BSXA (*)a,x Br. Subrou., Indexed, Uncond.
RETC,v Ret. From Subrou., Cond.
RETE,v Ret. Sub. and Enab. Intr., Cond.
ZBSR (*)a Zero Br. To Sub. ReI., Uncond.

Program Status Instructions

LPSU Load Program Status, Upper
LPSL Load Program Status, Lower
SPSU Store Program Status, Upper
SPSL Store Program Status, Lower
CPSU v Clear Pro. Stat., Upper, Mask.
CPSL v Clear Pro. Stat., Lower, Mask.
PPSU v Preset Pro. Sta., Upper, Mask.
PPSL v Preset Pro. Sta., Lower, Mask.
TPSU v Test Pro. Status, Upper, Mask.
TPSL v Test Pro. Status, Lower, Mask.

Input/Output Instructions

WRTD,r Write Data
REDD,r Read Data
WRTC,r Write Control
REDC,r Read Control
WRTE,r v Write Extended
REDE,r v Read Extended

Miscellaneous Instructions

HALT Halt, Enter Wait State
DAR,r Decimal Adjust Register
TMI,r v Test Under Mask Immediate
NOP No Operation

Length
(bytes)

2
2
3
3
2
3
2
3
2
3
2
3

2
2
3
3
2
3
3
1
1
2

2
2
2
2
2
2

1
2
2

2
1

development and system economy factors. Since system cost
will largely depend on interface and memory costs rather than
IP cost, IP's that have powerful instruction sets and minimize
the interface circuitry will significantly reduce the system
cost. In addition to reducing the price of the memory, IP's
with good coding efficiency will improve throughput
performance.

The general purpose CPU's being offered on the market
today generally have several features in common:

• single chip construction
• fixed instruction sets
• eight-bit parallel data
• MOS/LSI technology
• 40-pin dual in-line packaging

Beyond these features, however, each supplier differs in his
approach to the requirements of the introduction to the 2650.

The following discussion briefly describes the 2650 micro­
processor manufactured by Signetics Corporation. The 2650
is a complete general purpose integrated processor on one
monolithic integrated circuit. Table II summarizes the

The Microprocessor Rationale 7

features of the 2650. System objectives achieved by the 2650
include:

(1) Minimizing the amount of memory needed to perform
a given function.

(2) Minimizing the amount of interface logic required to
implement an IP-based system.

(3) Providing an easily learned instruction set that is
based -on already-existing computer architectures.

Table III contains a summary of the instruction set with
addressing modes which significantly reduce the size of the
memory needed to perform a given function. Table IV lists
the interface signals available. These signals reduce the
amount of external interface circuitry needed to operate the
processor. All inputs and outputs of the 2650 are TTL
compatible. A list of support circuits offered by Signetics is
shown in Table V.

In summary, the 2650 offers those features needed for
economical utilization of a general purpose IP in the logic
replacement marketplace. The evolution of the integrated
processor has combined the Ie technology with existing
system concepts to offer an attractive alternative for logic
system design.

Keeping pace with a single-chip
I6-bit microprocessor

by ALAN J. WEISSBERGER
National Semiconductor Corporation
Santa Clara, California

INTRODUCTION

The emphasis in contemporary microprocessor develop­
ment has been on 8-bit word lengths. Unfortunately, for
many applications, the 8-bit microprocessor cannot pro­
vide the required accuracy, throughput, programming
ease, or flexibility. The ntultichip 16-bit processor has
been cost effective in many of these applications, but has
provided unused flexibility or speed (at extra cost) in
others. National Semiconductor has developed a single­
chip 16-bit microprocessor, the Processing and Control
Element (PACE), to provide the benefits of a 16-bit CPU
with greater simplicity than the multi-chip design. The
benefits accrue from integrating the functions of not only
the multi-chip CPU, but also most of the functions that
were previously implemented with TTL devices.

In addition, a group of compatible microcomputer chips
has been developed to augment the basic processor. A com­
plete microcomputer system, with 1024 words (16,384 bits)
of read-only program storage, clocks, buffers and one 16-bit
or two 8-bit peripherals is shown in Figure 1. Table I lists
features and benefits of this microprocessor.

ARCHITECTURE

The PACE microprocessor, shown in Figure 2, provides
16-bit parallel data-processing capability in a 40-pin
package. Functionally, the processor can be segmented
into six blocks: Data Storage, ALU, Status, Control, Inter­
rupts, Input, and Output.!

Four accumulators, two temporary registers, a program
counter, and a 10-word Last-In/First-Out Stack (LIFO)
provide ample storage for data manipulation, address
formation, and arithmetic computations. Two of the accu­
mulators (ACO, AC1) are principal working registers,
while the two others (AC2, AC3) may be used as index
registers or auxiliary working registers. The LIFO stack is
used primarily to save the program counter during sub­
routine execution or interrupt servicing. It can also be
used to store status information or data. External
read/write memory may be used as a stack extension by
provision of stack-full and stack-empty interrupts, allow­
ing implementation of a simple stack-service routine.

9

Arithmetic Logic Unit (ALU) operations include AND,
OR, XOR, complement, shift left, shift right, mask byte,
and sign extend. Both binary and 4-digit BCD addition ca­
pability are provided, thus eliminating the program
storage and execution time required to perform BCD to bi­
nary conversion. A unique feature of the PACE ALU is
the ability to operate on either 8- or 16-bit data, as
specified by the programmer through the use of a status
flag. This feature allows character-oriented and other 8-bit
applications to be implemented and executed using an 8-
bit peripheral data bus and read-write memory, while ad­
dress formation and instruction storage are implemented
in the more-effective 16-bit data length.

All status and control bits for PACE are provided in a
single Status flag register, whose contents may be loaded
from or to any accumulator or the stack. This allows con­
venient testing, masking and storage of status. In addition,
a number of status bits may be tested directly by the con­
ditional branch instruction, and any bit may be indi­
vidually set or reset. The byte flag is used to specify an 8-
bit data length for data processing instructions, while
arithmetic operations for address formation remain at the
16-bit data length. In the 8-bit data mode, modifications of
the carry, overflow, and link flags are based on the 8 least
significant data bits only. Four flags (bits 11-14) that may
be assigned functions by the programmer are provided.
These flags drive output pins and may be used to directly
control system functions or as software status flags.

Six levels of prioritized vector interrupts are available.
This allows automatic identification of an interrupting
device's level by trapping to a dedicated location in an
interrupt pointer table. The pointer specifies the starting
address of the interrupt service routine for that particular
level. All devices on a given level can be enabled or
disabled as a group, independent of other interrupt levels.
This permits a fast responding peripheral device on a high
level to interrupt a slower peripheral device on a lower
level. An individual interrupt enable is provided in the
status register for each level (IE1 to IE5), and a master
interrupt enable (lEN) is provided for all five lower
priority levels as a group. The level-zero interrupt is an ex­
ception to this procedure. It is the highest priority inter­
rupt in the system and cannot be locked out by the
master interrupt enable. This interrupt level is typically
used by the control panel, which can then interrupt the

10 National Computer Conference, 1975

........ ----1 PERIPHERAL
DEVICES

Figure I-PACE system with IkX16 ROM-A complete data processing
system can be built with PACE, a clock driver and input and output

buffers. The control program is stored in a one-chip ROM

application program without affecting system status. It
could also be used as an indication of a catastrophic condi­
tion such as a power failure. In this case the processor
would save its internal registers in a non-volatjle or battery
supplied memory and halt execution in an orderly fashion.

The minimal package count required to implement a
microprocessor system using PACE and its support chips
may be important in some applications independent of the
associated lower cost. Hand-held or portable equipment
may have physical constraints that can only be met by a
processor component family of parts. Low power dissipa­
tion may also be important in some applications, and the
use of a MOS microprocessor with CMOS or lower power
TTL support chips may be required.

Some applications that might benefit from the small
size, weight, and power requirement of the PACE
microcomputer system include remote sensing systems,
weather-monitoring stations, and natural-gas pipelines. In
each case, a minimum PACE microcomputer system
could be installed at an unmanned site. Information could
be sensed, collected, and processed locally before being
sent to a central computer or recorded on a cassette. Local
control and preprocessing reduces data transmission costs
because only tested and verified data is sent.4 These
unmanned microprocessor-based systems could also run
calibration and diagnostic tests of the remote instrumenta­
tion to determine whether or not it is functioning properly.

The ability to operate on either 8- or 16-bit data can be
a great advantage in terminals and communication
processors. Eight-bit characters can be extracted and
processed in the 8-bit mode of operation without packing
and unpacking overhead software. Line monitoring, statis­
tical tabulations and error control may be implemented
using 16 bits. The PACE CPU can be conveniently in­
terfaced to a byte-oriented peripheral (CRT) and to equip­
ment that has a data length exceeding 8 bits (card reader).

Command outputs and external status inputs are imple­
mented very efficiently using the PACE CPU. The flag
outputs can be utilized for control functions, such as start
reader, rewind, and others in a tape controller. Similarly,
the user jump conditions can be used to sense system
status conditions, such as end of tape or inter-record gap.
A flag and jump condition can be used together as a serial
I/O port, eliminating the hardware required to interface to
the data bus and to decode the device address. Several
flags and jump condition inputs can be used to provide a
keyboard scanning function, modem control, or character
synchronization in a smart terminal.

The PACE interrupt system can save considerable
hardware and software in applications having several
interrupts. The on-chip priority logic and vectored branch
to the interrupt routine save logic required external to
other microprocessors to resolve priority and jam an ad­
dress vector onto the data bus, or the program storage and
execution time required for the alternative scheme of
sequentially polling the interrupt status of all devices.
Interrupts are essential in applications where alarm condi­
tions or transient conditions must be serviced im­
mediately, such as automobile, process or machine tool
control, or plant monitoring. They are useful in many
other systems to eliminate the program overhead required
to scan asynchronous system inputs, such as a controller
for multiple terminals or an intersection traffic-light con­
troller.

The ability to add BCD data eliminates execution time
and program storage overhead required to convert BCD to
binary data. This is useful in BCD-oriented applications,
such as display controllers, electronic cash registers, bill­
ing systems, accounting machines, navigation aids, and in­
dustrial controllers and test systems.

The compatibility of PACE with the microprogram­
mabIe IMP-16 is beneficial in applications where the
IMP-16 could serve as a host processor with the PACE be­
ing used as a lower-level processor, such as an automated
assembly line. Applications where a microprocessor con­
trolled product is available in several models may use the
IMP-16 for the more-sophisticated models and the PACE
for the less demanding tasks, allowing common software
and peripheral interfaces.

Data transfers between PACE and external memories or
peripheral devices take place over the 16 data lines (DOO­
DI5); are synchronized by 4 control signals (NADS, IDS,
ODS, and EXTEND); and use common instructions. This

TABLE I-PACE Features
• l6-bit instruction word

• 8- or l6-bit data word

• 45 instructions

• Common memory and peripheral addressing

• Shares instructions with National's IMP-16

• 4 general purpose accumulators

• 10-word stack

• 6 vectored priority interrupt levels

• Programmer accessible status register

• Typical 10psec instruction execution

• Can utilize DM8531 lk-by-16 ROM

• Single-phase true and complement clock

Addressing flexibility, speed

Wide application

Efficient programming

Powerful I/O instructions

Allows software compatibility

Reduces memory data transfers

Interrupt processing/data storage

Simplifies interrupt service and hardware

May be preserved, tested, or modified

High speed

Single memory package

Minimum external components

{

Vss(+5V) m>-
POWER Vee (+8V) Ii!>--

VGG (-12V) ~

3

4

5

6

CONTIN 7

8

9

10

JC13

JC14

JC15

NADS

IDS

ODS

EXTEND

BPS

NINIT

NHAlT

ClK

~ NClK

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015

JUMP
CONDITION

MULTI-
PlEXER

INSTRUCTION
REGISTER

MICROPROGRAM
A.oDRESS

GENERATION

MICROPROGRAM
ADDRESS
REGISTER

MICROPROGRAM
STORAGE

CONTROL
lOGIC

CLOCK
GENERATION

STATUS AND CONTROL FLAG REGISTER

RESULT
BUS

TEMP REG 1

TEMP REG 2

PROGRAM COUNTER

ACO

AC1

AC2

AC3

TEN WORD
LIFO STACK

NIR5 NIR4 NIR3 NJR2
Figure 2-PACE detailed block diagram

11

~

OPERAND
BUS

12 National Computer Conference, 1975

CONST: . WORD X'FFFF ; CONSTANT FOR OOUBLE PREC. ADD

START: LI Rl,O
R3,16
RO,O

; CLEAR RESULT REGISTER
; LOOP COUNT TO AC3 LI

CAl ; COMPLEMENT MULTIPLIER

LOOP: RADD Rl, Rl ; SHIFT RESULT LEFT INTO CARRY

TEST:

RADC RO,RO ; SHIFT CARRY INTO MULTIPLIER
; AND MULTIPLIER INTO CARRY

BOC CARRY, TEST; TEST FOR ADD
RADD R2, Rl ; ADD MULTIPLICAND TO RESULT
SUBB RO, CONST ; ADD CARRY TO H.O. RESULT

AISZ R3, -1
JMP LOOP

; DECREMENT LOOP COUNT
; REPEAT LOOP

Figure 3-Multiply routine

u~ified bus architecture is in contrast with many other
mIcroprocessor or minicomputers that have one instruc­
tion. type (I/O class) for communication with peripheral
devIces and another instruction type (memory-reference
class) for communication with memories. The advantage
of the approach used by PACE is that all memory­
reference instructions are available for communication
with peripherals. For example, the DSZ (Decrement and
Skip if Zero) instruction can be used to decrement and
test a peripheral device register; the SKAZ (Skip if And is
Zero) instruction can be used to test the contents of a
status register; LD (Load) and ST (Store) instructions
~ay be used for simple data transfers. This technique can
Improve throughput and simplify programming.

Data transfer operations are initiated by an address
data strobe (NADS), which gates the address to the
memory or peripheral. An input or output data strobe
(Il?S or ODS). follows on the pext clock cycle. The appro­
prIate strobe IS used to gate the data into or out of the
processor. The memory device shown in Figure 1 provides
address latches on the chip. Two 8-bit bidirectional TRI­
STATE d~ta latches may be provided for the peripheral(s).
The EXTEND input allows the I/O cycle time to be
extended by multiples of the clock cycle to adapt to a va­
riety of memory and peripheral devices or for DMA bus in­
terfacing. Further functional details are provided in
References 2 and 3.

Programming

An 8-bit processor must manipulate multiple registers to
form 16-bit addresses, make several memory accesses to
fetch multi-byte instructions or 16-bit data and use double
precision arithmetic routines to obtain accuracy greater
than two decimal places. A 16-bit processor does not suffer
from these limitations so that faster, shorter and simpler
programs may be written. This is clearly evident in min­
icomputers where the 16-bit word length is standard.

The sample program of Figure 3 illustrates the effi­
ciency of PACE in data processing applications. The com­
plete instruction set, divided into eight instruction classes
is listed in Table II. '

!he program multiplies the 16-bit value in AC2 (multi­
phcand) by the 16-bit value in AC1 (multiplier) and
provides a 32-bit result in ACO (high order) and AC1 (low
order) . Worst case execution time is under one milli­
second.

UNIQUE FEATURES

Many of the features of the PACE microprocessor prove
beneficial for a wide range of applications, while some
provide direct benefits in certain classes of application.
The 16-bit instruction and address word lengths and
multiple accumulator architecture make programming
easier a~d more efficicent. Instructions and operands are
fetched In single memory cycles rather than the multiple
memory references required for byte-oriented data or
instructions. This enhances system throughput and
im?roves program execution times. Program storage re­
qUIrements and development cost reductions sometimes
allow more hardware functions to be implemented in
software, reducing system cost and making more of the
system reconfigurable by software modification.

Certain functions implemented on the chip simplify in­
terfacing by minimizing the number of external
components for a microcomputer system.

• Internal Clock generation from the true and comple­
ment clock inputs eliminates the need for a compli­
cated timing generator.

• On-chip output buffers drive sense amplifiers with
TRI STATE capability. This reduces power dissipa­
tion and chip size while improving speed.

• Interrupt control logic on the chip improves interrupt
response time and saves 15-20 TTL packages that
would ordinarily be required for the equivalent func­
tion.

• The jump condition multiplexer, status and control
flag register are internal functions for sensing inputs
and providing outputs directly to the user.

APPLICATION

The ability to efficiently operate on 8 or 16 bit data and
perform binary or BCD arithmetic enables PACE to act as
a controller or data processor in a complex system envi­
ronment. In many cases a minicomputer or multiple dedi­
cated microprocessors could be replaced with substantial
savings in cost and complexity.

To illustrate the flexibility and power of the PACE
microprocessor an application example has been
developed. The Plant Security Monitoring System
(PSMS), shown in Figure 4, acts as a watchdog by moni­
t?ring and in some instances controlling a plant's opera­
tion. One PACE CPU acts as a data acquisition/ alarm
scanner while another PACE CPU is utilized as a central
control/acknowledgment terminal. The functions moni­
tored are plant power (peak demand, total consumption,
outage) and environmental quality (air contaminants,

Keeping Pace with a Single-Chip 16-Bit Microprocessor 13

TABLE II-PACE Instruction Summary

Mnemonic Meaning Operation Assembler Format Instruction Format

1. Branch Instructions

BOC Branch On Condition (PC) <-- (PC) + disp if cc true BOC cC,disp o 1 a 01 cc 1 disp I
JMP Jump (PC) ~ EA JMP disp (xr) o a a 1 1 a xr I disp I
JMP@ Jump Indirect (PC) ~ (EA) JMP @disp (xr) 1 a a 1 1 a
JSR Jump To Subroutine (STK) ~ (PC), (PC) ~ EA JSR disp (xr) o a a 1 a 1
JSR@ Jump To Subroutine Indirect (STK) ~ (PC), (PC) ~ (EA) JSR @disp (xr) 1 0 a 1 a 1
RTS Return from Subroutine (PC) ~ (STK) + disp RTS disp 100000 o a I disp I
RTI Return from Interrupt (PC) ~ (STK) + disp, lEN = 1 RTI disp o 1 1 1 1 1

2. Skip Instructions

SKNE Skip if Not Equal If (ACr) =1= (EA), (PC) ~ (PC) + 1 SKNE r,disp (xr) 1 11 1 r xr 1 disp 1
SKG Skip if Greater If (ACO) > (EA), (PC) ~ (PC) + 1 SKG O,disp .(xr) 1 o a 1 1 1
SKAZ Skip if And is Zero If [(ACO) A (EA)] = 0, (PC) ~ (PC) + 1 SKAZ O,disp (xr) 1 o 1 1 1 a
ISZ Increment and Skip if Zero (EA) ~ (EA) + 1, if (EA) = 0, (PC) +- (PC) + 1 ISZ disp (xr) 1 a a a 1 1
DSZ Decrement and Skip if Zero (EA) +- (EA) - 1, if (EA) = 0, (PC) ~ (PC) + 1 DSZ disp (xr) 1 a 1 0 1 1
AISZ Add Immediate, Skip if Zero (ACr) ~ (ACr) + disp, if (ACr) = 0, (PC) ~ (PC) + 1 AISZ r,disp a 1 1 1 1 a r I

3. Memory Data Transfer Instructions

LD Load (ACr) ~ (EA) LD r,disp (xr) 1 1 0 0 r xr 1 disp I
LD@ Load Indirect (ACO) ~ ((EA» LD O,@disp (xr) 1 o 1 a 0 0
ST Store (EA) ~ (ACr) ST r,disp (xr) 1 1 0 1 r
ST@ Store Indirect ((EA» ~ (ACO) ST O,@disp (xr) 1 0 1 1 o a
LSEX Load With Sign Extended (ACO) ~ (EA) bit 7 extended LSEX O,disp (xr) 1 o 1 1 11

4. Memory Data Operate Instructions

AND And (ACO) ~ (ACO) A (EA) AND O,disp (xr) 1 a 1 o 1 a xr I disp I
OR Or (ACO) ~ (ACO) V (EA) OR O,disp (xr) 1 0 1 a 0 1
ADD Add (ACr) ~ (ACr) + (EA), OV, CY ADD r,disp (xr) 1 1 1 0 r

SUBB Subtract with Borrow (ACO) ~ (ACO) + ~ (EA) + (CY), OV, CY SUBB O,disp (xr) 1 o a 1 0 a
DECA Decimal Add (ACO) ~ (ACO) +10 (EA) +10 (CY), OV, CY DECA O,disp (xr) 1 o a a 1 0

5. Register Data Transfer Instructions

LI Load Immediate (ACr) ~ disp LI r,disp 0 1 a 1 a a r I disp I
RCPY Register Copy (ACdr) ~ (ACsr) RCPY sr,dr a 1 a 1 1 1 dr I sr I not used I
RXCH Register Exchange (ACdr) ~ (ACsr), (ACsr) ~ (ACdr) RXCH sr,dr

XCHRS Exchange Register and Stack (STK) ~ (ACr), (ACr) ~ (STK) XCHRS
0 1 1 a 1 1
a a a 1 1 1 r 1 not used I

CFR Copy Flags Into Register (ACr) ~ (FR) CFR o 0 0 0 0 1

CRF Copy Register Into Flags (FR) ~ (ACr) CRF 000010

PUSH Push Register Onto Stack (STK) ~ (ACr) PUSH a 1 1 a 0 a
PULL Pull Stack Into Register (ACr) ~ (STK) PULL a 1 1 a 0 1

PUSHF Push Flags Onto Stack (STK) +- (FR) PUSHF a a a a 1 1 not used I
PULLF Pull Stack Into Flags (FR) +- (STK) PULLF 000100

6. Register Data Operate Instructions

RADD Register Add (ACdr) ~'(ACdr) + (ACsr), OV, CY RADD sr,dr a 1 1 a 1 a dr I sr I not used I
RADC Register Add With Carry (ACdr) ~ (ACdr) + (ACsr) + (CY), OV, CY RADC sr,dr a 1 1 1 0 1
RAND Register And (ACdr) ~ (ACdr) A (ACsr) RAND sr,dr 0 1 a 1 o 1
RXOR Register Exclusive OR (ACdr) ~ (ACdr) ><:f (ACsr) RXOR sr,dr a 1 a 1 1 a
CAl Complement and Add Immediate (ACr) ~ ~ (ACr) + disp CAl r,disp 0 1 11 o a r I disp I

7. Shift And Rotate Instructions

SHL Shift Left (ACr) ~ (ACr) shifted left n places, w/wo link SHL r,n,Q a a 1 a 1 a r 1 n 1 e I
SHR Shift Right (ACr) ~ (ACr) shifted right n places, w/wo link SHR r,n,Q o 0 1 a 1 1

ROL Rotate Left (ACr) (ACr) rotated left n places, w/wo link ROL r,n,Q a a 1 a a 0

ROR Rotate Right (ACr) <- (ACr) rotated right n places, w/wo link ROR r,n,Q a 0 1 o a 1

8. Miscellaneous Instructions

HALT Halt Halt HALT

SFLG Set Flag (FR) fc ~ 1 SFLG fc

PFLG Pulse Flag (FR) fc <-- 1, (FR) fc ~ a PFLG fc

temperature, air flow). Various transducers, thermocou­
ples and sensing devices measure the required analog
variables and provide inputs to an analog multiplexer.
PACE scans these input points at operator selected time
intervals by supplying a point address to the analog
multiplexer and starting the Analog to Digital (A/D) con-

verter. When the conversion is complete the data are
read, processed, and checked against alarm limits. Critical
deviations from normal operating conditions are detected
and alarms are sent to the control/ acknowledgment ter­
minal. The PACE CPU at the terminal formats and routes
the alarm data,to an operators display panel. The operator

14 National Computer Conference, 1975

ANALOG ~I ANALOG
INPUTS ---L...-.L.._MU_X ---I

• AIR COMPOSITION
• TEMPERATURE
• POWER
• PRESSURE

• ETC.

16 OATA BITS TO OR FROM
PACE MONITOR

REAL TIME
CLOCK

PACE
MICROPROCESSOR

VECTOREO
INTERRUPTS

~mJ
ALARMS

16 OATA BITS
TO OR FROM
PACE TERMINAL
CONTROllER

Figure 4-(Application example). PACE as a plant monitor and terminal
controller

on duty observes the detected alarm and takes the
necessary steps to correct the problem. Some alarms can
be detected directly by limit switches, continuity breakage
or by manually pressing a button. Examples include
floods, fire, burglary, or accident alarms. These "crisis"
conditions require immediate attention and would
therefore be implanted as prioritized vector interrupts in
the PACE monitor. Fast response and immediate operator
notification are guaranteed by the sounding of an annun­
ciator horn at the control terminal.

In addition to the above monitoring chores, one or more
simple control functions could be provided. For automatic
light control, shown in the example, a real time clock
generates interrupt signals at fixed preset intervals. The
processor recognizes the time of each interrupt and, if ap­
propriate, dims the lights or turns them on or off. Light
control commands are facilitated through the four user
flags on the chip. This function would conserve energy by
providing efficient allocation of electricity. Temperature
control of the building by regulating heaters and air condi-

tioners is another possible function that might be imple­
mented as a dedicated application.

The operator at the central control terminal can select
various status conditions to be displayed or he can change
alarm limits through a set of BCD thumbwheels. Pushbut­
tons are used as interrupts to get the processors attention.
A tape cassette or printer might be provided for record
keeping or hard copy outputs. The PACE terminal con­
troller works primarily with 8-bit character data for the
supporting peripherals, but it can process 16-bit data from
the thumbwheels or the monitor controller. This unique
feature (selectable 8 or 16-bit data processing) can be used
to efficiently adapt PACE to the function required.
Auxiliary functions like trend analysis or signal averaging,
could be provided by either PACE microprocessor, de­
pending on the respective data load. Note also that binary
and BCD data (thumbwheels and LED's) are processed
directly.

CONCLUSION

The PSMS is a solution to a complex problem that is com­
mon to all industries. This application offers PACE as a
system solution to a multitude of specific tasks. These
tasks would ordinarily be done manually, with reduced ef­
ficiency, or electrically, with increased complexity and
cost. The interfacing simplicity, benefits and low cost of
LSI, and the convenience of working with 16-bits promise
to make PACE a universal tool in many existing and new
applications for microprocessors.

ACKNOWLEDGMENTS

The author would like to thank George Reyling and Gary
Miller for their valuable contributions in preparation of
this paper.

REFERENCES

1. Reyling, George F., "Single Chip Microprocessor Employs Minicom-
puter Word Length," Electronics, December 26, 1974, pp. 87-93.

2. PACE Data Sheet, IPC-16Aj500D, National Semiconductor Corp.
3. PACE Users Manual, National Semiconductor Corp.
4. Weissberger, Alan J., "Microprocessor as Intelligent Remote Con­

trollers," WESCON 74, Session 23.

Tools and techniques of microprocessor data
transfer

by GARY SAWYER
Motorola
Phoenix, Arizona

INTRODUCTION

This paper discusses I/O transfer from four different view­
points. The first, "I/O Data Transfer Techniques", contrasts
the two basic methods of I/O data movement. Having dis­
cussed the movement of data, "I/O control" focuses in on
how the data movement is governed. "I/O Interface Hard­
ware" takes a closer look at specific hardware that may be
used to interface to the MPU. Finally, "An Example of
I/O Transfer" concludes the discussion showing the soft­
ware and hardware required in an actual transfer.

I/O DATA TRANSFER TECHNIQUES

The I/O capability of a microprocessor is a key standard
of measure. As microprocessors mature, more techniques are
becoming available at better throughput speeds. It, there­
fore, becomes useful to put these techniques in perspective
by categorizing how data is shipped through the micro­
processor system. The first, and most commonly used,
technique is to ship data through the microprocessor (MPU)
wherein the MPU acts as a data funnel to the outside world.
The second technique, direct memory access (DMA) ,
transfers data directly between memory and the outside
world circumventing the MPU. Following is a descrip­
tion of each with a discussion of associated vices and virtues.

The first technique considered· moves data through the
system via the MPU under program control. The MPU then
becomes the focus for data movement between the peripheral
and memory. Figure 1 shows, at a block diagram level, where
data is moving during an I/O transfer. It is comprised of
four basic hardware blocks: the MPU, memory, I/O inter­
face, and a peripheral. If, for example, data is to be trans­
ferred from the peripheral to the system memory, the first
link in the chain is the I/O interface. The characteristics of
this interface are, as expected, a function of (1) the data and
control requirements of the peripheral, and (2) the processor
used in the system. A discussion of I/O interface hardware
is an important topic and is treated in the section "Interfacing
to the Microprocessor". Once data has been shipped to the
interface, the MPU reads the data from the interface device.
The MPU may now complete the I/O transfer by storing· the
data in the desired memory location. If, on the other hand,
data is transferred from memory to peripheral, the sequence

15

of events is reversed; the MPU reads the data from memory
and stores data into the I/O interface for transfer to the
peripheral. Data is, therefore, transferred from block to
block under program control.

Microprocessors available today use two general classes
of instructions to move data: One, use of an Input or Output
instruction or, two, a memory reference instruction. When,
for example, the MPU is given an Input or Output instruc­
tion, the microprocessor will issue control signals and address
the desired I/O interface device. The second class of instruc­
tion to access I/O is memory reference. Here the I/O inter­
face is assigned a memory address and is accessed during any
instruction that specifies the defined I/O interface.

Direct memory access is the second alternative to I/O
data transfer. The MPU is circumvented and the data moves
directly between memory and peripheral. Figure 2 is a
representation of how data will move through the system
using DMA techniques. Here, the microprocessor is off the
bus and the DMA interface transfers directly to/from
the memory. This requires the DMA interface to (1) over­
ride the MPU operation causing it to go into an off (high
impedance) state, and (2) generate memory address and
control signals for the desired data transfer.

Comparison of the two techniques is largely a function of
speed and hardware. DMA, for example, will generally
require more hardware due to the additional control tasks.
On the other side of the coin, DMA is consistently the faster
of the two transfers. Here, the data transfer is normally
limited only by the cycle time of the memory. This feature
becomes valuable when the MPU is not fast enough to handle
transfer under program control. When funneling data through,
the MPU, the I/O interface is straightforward, but the
transfer rate is now a function of instruction execution time.
In this case the MPU becomes the limiting factor. The choice,
as usual, is in the hands of the designer. He may require a
fast DMA channel at the expense of hardware, or he may
simplify the interface transferring the work load to software.

I/O CONTROL

A major aspect of I/O data transfer is that of control.
Where is the I/O transfer initiated? How long does it con­
tinue? Which peripheral is to gain access to the system?
These questions are recurring in virtually every micropro-

16 National Computer Conference, 1975

PERIPHERAL

Figure I-I/O Transfer through the MPU

cessor based system because of the dynamic nature of opera­
tion. The great strength of a microprocessor is the flexibility
of the program. Programs are more than a list of instructions
commanding a fixed sequence of operations. These programs
can be written to adjust to external events, query peripherals
for service or respond to hardware service requests. The
list is unending, therefore, the question of control could be
answered in a word-software. But hardware certainly
has its place in' control of I/O transfer. Following is a dis­
cussion of hardware/software control options in context
with "MPU funneled" transfer and DMA transfer.

Consider first the control of I/O transfer when data is
transferred through the MPU as shown in Figure 1. Herp
the I/O transfer may be initiated by either software or under
interrupt control. Interrupts may be issued to the micro­
?rocessor fro~ peripherals (either directly or via the I/O
mterface) to mform the MPU of a request for service. When
service is granted, the MPU breaks away from the current
program, saves its status, and begins an interrupt service
routine. At this point, the MPU needs to determine the
source of the interrupt (normally multiple interrupts out­
number the interrupt inputs available at the MPU). This
can be done by either hardware or software. Hardware can
be used to prioritize all interrupts i~to an 8-bit word for the
MPU to read or software can poll each I/O interface to
determine where the interrupt originated.

Control options are equally flexible for DMA types of
transfer. Here, the software or the DMA peripheral can
initiate an I/O transfer. The user may choose to specify the
beginning address and length of transfer with software by
loading "control" words into the DMA circuitry. At the
other extreme, hardware may be the dominant force. The
DMA hardware can conceivably initiate the transfer,
generate addresses, define direction of data flow, and length
of the DMA transfer. Here, again, the designer has hardware/
software options to minimize his system while maximizing
the I/O transfer.

" ,
l r

I IOFF

",MOeY i,A DA~AI,us ",I DMA ~ f'\J------....,vI1 ~NTERFACE ~ PERIPHERAL

Figure 2-Direct memory access (DMA) I/O transfer

I/O INTERFACE HARDWARE

Transfer through the MPU

A common question asked by microprocessor users is how
to interface between the MPU and the outside world. With
regard to I/O transfer through the MPU, semiconductor
houses are already ahead of the game. Companies such as
Motorola, Rockwell and Intel have a host of interface devices
available now with a promise of more. These devices run
the gamut to anticipate the needs of the user. Some do little
more than act as buffering latches. Others are customized to
specific peripheral devices. A trend is developing toward a
more sophisticated general purpose interface device whereby
the interface may be programmed to assume a user defined
personality.

A notable example of programmable interface devices
available today is the MC6820 peripheral interface adapter
(PIA) offered by Motorola. Figure 3 shows the PIA
between the MPU and peripheral world. Notice that 16
data lines and 4 control lines are available to interface to a
variety of peripherals. Each one of the data signals may be
programmed to act as inputs or outputs in any combination.
A user could, therefore, tie a number of input or output
peripheral devices to a single PIA.

A unique feature of the PIA is the programmable control
segment of the interface. The four control signals may be
used by the designer to inform either the MPU or peripheral
that an I/O transfer is occurring. If, for example, the periph­
~ral transfers data to the MPU via a PIA, a pulse shipped
m parallel to the control input will cause the PIA to generate
an interrupt to the MPU. Should the MPU need to output
data to the peripheral, the data may be stored into the PIA
with a memory reference instruction. The PIA will save and
transfer this data from the MPU data bus onto the peripheral
data bus. The PIA can, for example, be programmed to then
generate a control pulse to the peripheral informing the
peripheral of new data. As a result, a data transfer to a
peripheral with an equivalent "data present" pulse can be
accomplished with a single STORE instruction by addressing
the appropriate PIA.

MPU

PIA

~====~----ll/O CONTROL
(4)~
(16)~ PERIPHERAL

I/O DATA

DATA CONTROL

ADDRESS

Figure 3-MPU parallel I/O interface

Tools and Techniques of Microprocessor Data Transfer 17

A closer view of the PIA will reveal how an interface
device may be "programmed" by the microprocessor. Figure
4 shows six registers internal to the PIA divided into "A"
and "B" sides. Each side of the PIA contains 8 data signals,
2 control signals, and three 8-bit registers. The user may,
therefore, program peripheral data and control signals by
loading words into respective PIA registers.

Peripheral data signals, PAO-PA7, may, for example, be
programmed as inputs or outputs by loading the "A" data
direction register. Each logic "P" of the data direction
register will then define the respective peripheral data signal
to be an input (the converse is true for a logic "1"). Similarly,
the characteristics of the control signals, CAl and CA2, are
programmable by loading a word into the "A" control
register. The control lines can be used as an input to the PIA
to generate an MPU interrupt on either a rising or falling
edge (if desired, the control input may also be masked off).
As an output, the control signal may be programmed to act
as a strobe or active level when moving data through the
PIA. The same argument follows for the "B" side of the
PIA. Loading data words into the "B" data direction
register characterizes PBp-PB7. Likewise, the "B" control
register defines how CBl and CB2 shall react.

DMA transfer

Design of a DMA interface requires close examination of
the MPU in the system. In a typical direct memory access
configuration the MPU and DMA share the system bus for
control of the memory transfer. When the MPU is executing
instructions the DMA circuitry is effectively off the bus.
When the DMA transfer is initiated the MPU must be
switched off the bus as the DMA interface switches on. The
manner in which the MPU is removed from the bus becomes
a major aspect of the DMA transfer.

A representative example of the mechanics of a DMA
transfer is shown in Figure 5 using the Motorola MC6800
MPU. A number of techniques are available to control the
MC6800 during a DMA transfer-here the Halt signal
provides control over the MPU. The characteristics of the
Halt line are such that, when low, the address, data and read/
write signals go into a three-state condition at completion of

DATA

ADDRESS -----''''I

CONTROL ___ ..,}I

"A" CONTROL

"A" DATA
DIRECTION

"A" DATA
REGISTER

"B" CONTROL

"B" DATA
DIRECTION
"B" DATA
REGISTER

Figure 4-PIA registers

PAO-PA7

ADDRESS

BUS AVAILABLE

DMA INTERFACE

THREE-STATE BUFFERS

DATA DMA ACKNOWLEDGE

DMA REQUEST

READ/WRITE

Figure 5-Direct memory access I/O transfer

the current instruction. When the Halt is recognized and the
MPU in three-state, the MPU will bring the Bus Available
signal high. The Halt and Bus Available signals of the
MC6800 therefore become convenient DMA controls. Refer­
ring to Figure 5, the DMA Request initiates the transfer. De­
pending upon when the request is made with respect to the
current instruction, the MPU will respond with a DMA
Acknowledge signal within 2-14 JLsec. When the Acknowledge
is seen, the DMA interface is then free to take over the bus.
At this time, the DMA circuitry has complete control over
the memory transfer until the DMA Request returns to a
high state. This requires the D]\1A circuitry to formulate
desired addresses, to tie into the data bus, and generate the
necessary control (RjW). When the DMA transfer is
completed the interfa~e switches off the bus and DMA
Request returns to an inactive high state. With Halt inactive
the MPU will then switch back onto the bus and continue
program execution.

PIA

PAO-PA7 DATA
BITS 0-7

CA1 STROBE

CSO
KEYBOARD

TO CS1

MPU CS2

RSl

RSO DATA PBO-PB5
BITS 0-5

IROA PBG BACKSPACE
IROB PB7 CLEAR

CBl DATA TAKEN

CB2 DATA PRESENT

DISPLAY

Figure 6-Interfacing to a keyboard and display

18 National Computer Conference, 1975

AN EXAMPLE OF I/O TRANSFER

Operation of an I/O transfer is best demonstrated by
example. Consider the system seen in Figure 6 showing the
Motorola PIA interfaced to a keyboard and display. The
"A" side of the PIA is tied to the keyboard representing
inputs to the MPU. Conversely, the "B" side will be used to
output data to a 16 character display. The keyboard inter­
face is comprised of (1) eight data lines tied directly to PIA
lines PAO-PA7, and (2) a keyboard strobe to CAl to inform
the MPU of new input data. The display interface uses
PBO-PB7 to transfer both data and control functions
(backspace and clear). The control lines are configured into
a handshake mode with CB2 generating a "data present"
signal when new data is displayed. CB1 then acknowledges
with "data taken" to complete the handshake loop.

The MPU /PIA interface of Figure 6 shows data, address,
and interrupt signals. An important point to mention is that
the PIA is assigned a memory area by virtue of the address
lines into the device. The chip select inputs (CSO, CS1, and
CS2) are used to enable the PIA and the register select
inputs eRSO, RS1) specify registers within the PIA. The
MPU may, therefore, access the PIA registers with the
following addresses:

Address (HEX)
8000

8001
8002

8003

PIA Register
"A" data direction ("A" control regis­

ter bit 2=0)
"A" data ("A" control regis­

ter bit 2= 1)
"A" Control
"B" data direction ("B" control regis­

ter bit 2=0)
"B" data ("B" control regis-

ter bit 2= 1)
"B" control

Having established the general scenario, the discussion
continues with programming examples of the PIA initializa­
tion, keyboard input and display output using the Motorola
M6800 instruction set.

Initialization

As mentioned previously, the PIA is entirely program­
mable. The interface seen in Figure 6 requires the following
definition of PIA signals:

(1) PAO-PA7 are inputs.
(2) The PIA is to generate an interrupt to the MPU on

the rising edge (0~1) of the CAl input.
(3) CA2 is unused.
(4) PBO-PB7 are outputs.
(5) The PIA is to generate an interrupt to the l\1PU on a

falling edge (1~) of the CB1 input.
(6) When data is written into PIA (from MPU) to the

display, a CB2 strobe occurs.

Programming the PIA interface becomes a series of LOAD
and STORE instructions. LOAD brings the desired data
pattern into the MPU and STORE ships the word to the
addressed PIA registers. The initialization program of the
PIA then becomes the following:

Program*
COM $8002**

LDAA #$C7***
STAA $8001

LDAA #$ED
STAA $8003

Comments
Complement location 8002-defines
PBO-PB7 as outputs
Load accumulator A with a value of C7
Store accumulator A in location 8001-
defines CAl and CA2 characteristics
Load accumulator B with a value of ED
Store accumulator B in location 8003-
defines CB1 and CB2 characteristics

* All registers are cleared at power-on reset.
** $ denotes hexadecimal.

*** # denotes immediate addressing in which the subse­
quent character is data instead of address.

Input data transfer

Having initialized the PIA, data is moved from the
peripheral to the memory by a sequence of LOAD and
STORE instructions. But, the movement of data is only half
the story, control of the transfer must also be considered. In
the example of Figure 6, the system is assumed to be under
interrupt control. When an interrupt occurs the MPU jumps
to a defined area of memory to begin the interrupt service
program. The service program must first determine the origin
of the interrupt by polling the PIAs. The PIA has bit posi­
tions reserved in the control registers (CRA7, CRA6, CRB7,
CRB6) that the MPU may read to ascertain the source of the
interrupt. In our example, if the keyboard "strobes" the
PIA, an interrupt is sent to the MPU and bit 7 is set high
in the "A" control register (CRA7). Likewise, a "data taken"
interrupt from the display will set bit 7 of the "B" control
register (CRB7). The "polling" routine therefore becomes:

LDAA $8001
BMI KEYBRD
LDAA $8003
BMI DISPLY

Load contents of "A" control register.
If CRA7 = 1, go to keyboard routine.
Load contents of "B" control register.
If CRB7 = 1, go to display routine.

The "polling" sequence of the interrupt service program
is nothing more than a read of the control register followed
by a conditional branch. If the interrupt bits are set the
program branches to the appropriate peripheral routine.
If the condition is not met, the "polling" routine- continues
inspection of PIAs. Should additional peripherals be added
to the system the software adjusts simply by continuing the
poll. Also note the interrupt priority is built into the software
by the polling sequence. The order in which the peripherals
are polled implicitly defines the priority.

As another alternative, software can poll all peripherals,

Tools and Techniques of Microprocessor Data Transfer 19

evaluate the peripherals requesting service, then branch to
the desired routine. In this manner the MPU acquires full
visibility of outstanding service requests. Based upon the
combination of requests the program can then decide which
service routine to enter. The important point to remember
is the flexibility of I/O transfer under software control.

Having determined the source of the interrupt, the
program branches to the desired peripheral routine. If,
for example, the keyboard service routine is entered the MPU
performs an input data transfer. A single data transfer to
memory may be accomplished in two instructions:

LDAA $8000 Load keyboard data.
STAA $0100 Save in memory location 0100.

When the MPU reads the PIA data, the PIA will auto­
matically reset the corresponding control bits (i.e., bits
CRA7 and CRA6 are cleared when reading "A" data), and
clear the interrupt to the MPU. The interrupt service routine
is then completed with a return from interrupt CRTI)
instruction. The cycle is complete: the interrupt was acknowl­
edged, PI As polled for service, selected peripheral serviced,
interrupt conditions reset, and the MPU returned to its
operating program.

Output data transfer

Data may be transferred from memory to I/O under con­
trol similar to data input. Transfer may be initiated by the
software or hardware. In this case, the program initiates the
data transfer and the display responds with a "data taken"
pulse to signify when another character may be sent. The
actual data transfer can be done in two instructions:

LDAA $0100 Load data from memory location 0100.
STAA $8002 Store data into location 8002.

The STAA instruction will load new data into the PIA
"B" data register. The PIA will then transfer the data
and a "data present" pulse to the display.

Block transfer

The I/O transfer demonstrated in the example shows only
a single data transfer to give the reader a feel for data move­
ment under program control. To transfer multiple words
or large blocks of data between the peripheral and memory,
the program requires more management, but the technique
remains the same. The programming ease and speed of I/O
data transfer becomes largely a function of the MPU under
use. MPU features such as available addressing modes and
instruction set become important tools for efficient transfer.

As an example of· multiple data transfer, the Motorola
MC6800 coupled with the PIA can perform an input operation

under full program control as shown below:

RDLOOp' LDAA $8001 Read PIA control
Register

BPL RDLOOP Branch to RDLOOP
if Bit 7 is plus (0)

LDAA $8000 Read PIA data
STAA OFFSET,X Store data at address

defined by [index
reg + offset]

DEX Decrement index
register

BNE RDLOOP Branch to RDLOOP
if not equal to zero

Total

Time

The first two instructions loop until a request for transfer
is received from the peripheral. The request is made to the
control input, CAl, of the PIA which then sets CRA7 of the
control registers. The LDAA/BPL instructions monitor the
control register inspecting the most significant bit (CRA7).
The program remains in this two instruction RDLOOP
until CRA7 is set to a logic 1. When set, the program breaks
out of the loop to begin the data transfer. The MPUreads
the data from the peripheral at PIA address 8000 hex. When
the data is read into the MPU, the PIA automatically
resets the CRA7 bit to zero. The data is then stored into
memory using the MC6800 indexed addressing mode. Here the
OFFSET (byte 2 of the instruction) is added to a 16-bit
index register internal to the MPU. The resulting 16-bit
word is used to address the destination of the data. The next
instruction, DEX, decrements the index register in prepara­
tion for the next I/O transfer. The BNE instruction condi­
tionally branches back to the RDLOOP until the index
register is decremented to zero. Once back in the RDLOOP
the program cycles waiting for another peripheral service
request. When the request is made, CRA 7 is set and the
program enters the next byte into memory. The cycle is
continued until the result of the DEX instrumentation is
zero. When the index register is decremented to zero the
transfer is complete and the routine is exited.

This multiple word transfer through the MPU is a good
contrast to the interrupt controlled transfer shown in the
keyboard example. Here the interrupts are disabled and the
program polls the peripheral for service via the PIA. Notice
that the peripheral need not be synchronous with the program
due to the RDLOOP. The program can. complete the full
cycle in 26J.Lsec. If the peripheral is not prepared for another
transfer the program will simply cycle in RDLOOP until a
peripheral request is made. Also, note that the length of
transfer and location of data storage are varied by presetting
the index register prior to entry into the routine. The resulting
I/O transfer can move a block of data from a peripheral into
contiguous memory locations at up to a 38.5K byte rate.

20 National Computer Conference, 1975

SUMMARY

In microprocessor based systems today, data movement is
commonly an important aspect of system operation. As new
applications evolve, users will be evaluating microprocessors
with a critical eye toward I/O transfer. The number of
instructions is less important than the nature of the instruc-

tion and usable addressing modes. How quick can the MPU
respond to a peripheral interrupt and how is the interrupt
managed? What is available from the vendor in the way of
interface devices? The list of questions extends in proportion
to the needs of the user. As semiconductor houses continue
to move into the second and third generation microprocessors,
the answers will be easier and faster.

Microprocessors at work-Session overview

CHAIRMAN-PAUL M. RUSSO
RCA Laboratories

MICROPROCESSORS-NO LONGER A NOVELTY

Since the 1971 introduction of the first commercial micro­
processor by INTEL, almost every major semiconductor
manufacturer has introduced or has under development a
"microprocessor" type of device. Microprocessors will be
available in most of the existing and future high volume
technologies, including PMOS, NMOS, CMOS, Bipolar
and PL. Microprocessor chips range from 2 or 4 bit slices
for Bipolar devices, through 4, 8 and even 16 bit MOS
microprocessors on single chips.

Considerable debate is still raging regarding the subtle
distinctions between calculator chips, microprocessors,
and multi-LSI chip minicomputers. Suffice it to say, that
whichever of these three classes of devices one is contem­
plating using in a given application, many of the major
design tradeoffs and system advantages (programmability,
flexibility, maintenance, and cost) apply equally well.
Microprocessors are no longer a novelty, and the list of
products that employ these devices is growing longer every
day. It has become almost impossible to pick up a trade
journal without coming across several new developments
relating to microprocessors. For these reasons, it was felt
appropriate to organize a session dedicated not to
hypothetical applications and paper designs, but to real
world systems that are currently being implemented.
Several articles1

,2,3 have recently explored the vigorously
developing microprocessor applications areas.

OVERVIEW OF FORMAL PAPERS

The first paper of this session, entitled "The Synergistic
Combination of an Oscilloscope and a Microprocessor," by
Walter A. Fischer of the Hewlett-Packard Company, ex­
plores the use of microprocessors in instrumentation ap­
plications. The HP1722A oscilloscope is not the first com­
mercial instrument to utilize a microprocessor, but it
represents a major advance to an instrument that has
traditionally been the engineer's right hand, and whose
basic operation has not changed in many years. As such it
typifies what will undoubtedly be a new instrumentation
design philosophy.

The second paper of the session entitled "Development
of a Portable Computer for Industrial Microcomputer
Systems," by Dr. Leroy H. Anderson of the Warner and
Swasey Company, covers potential applications of micro­
processors in numerical and process control, and defines a

21

unique English-like process control language (PCL), along
with a portable PCL compiler highly suited to process con­
trol applications. The development of the PCL language
may point to a novel approach to microprocessor software
development in which the use of high level languages tai­
lored to specific applications will greatly simplify the
development of specific system designs.

The sessions' third paper, "Microprocessors in CRT
Terminals," by John Whiting and Sandy Newman of
Beehive Medical Electronics, covers the broad area of
microprocessor applications to CRT terminals. Tradeoffs
regarding both the use and choice of microprocessors are
discussed. An excellent perspective of what micro­
processors can and cannot do in a CRT environment is
presented. The trials and tribulations associated with
program development and debugging are discussed openly
and candidly, and several useful debugging tools are
detailed.

The final formal paper of the session, entitled "Design­
ing an Application Oriented Terminal," by J. P. Kohli of
the NCR Corporation, * describes the Honeywell 7340
bank teller terminal. The 7340 is a microprocessor-based
application oriented terminal for the banking industry,
and as such, illustrates a typical terminal application
where local intelligence facilitates the processing of
transactions. Many of the decisions relating to real time
processing, customer programming and system architec­
ture are succinctly described.

MICROPROCESSOR-BASED DATA
COMMUNICATIONS SYSTEMS

The one major microprocessor application area that has
not been adequately covered by the four formal presenta­
tions, is that of data communications. Considerable
development work is ongoing in the use of microprocessors
in narrowband store-and-forward communications
systems4

,5 in intelligent repeaters associated with digital
communications links, and in various switching and moni­
toring applications where the power and cost of minicom­
puters is not warranted.

Prior to the panel discussion, Dale Walls, of Collins
Radio, will present a brief overview of this burgeoning
area of microprocessor applications.

* Mr. Kohli was with Honeywell Information Systems, Inc. at the time
this paper was written.

22 National Computer Conference, 1975

RECENT DEVELOPMENTS

The trade journals abound with examples of recent
microprocessor-based systems. From assembly line torque
monitoring in Detroit (Intel 8080), to the intelligent os­
cilloscope (HP1722A), to traffic light control (Intel 8008),
to a large number of microprocessor-based data terminals
(T1742, HP2640A, Beehive Medical Electronics, etc.), and
finally to arcade/ restaurant TV games, microprocessors
are increasingly becoming a part of our daily lives.

The next step beyond a microprocessor-based system is
one employing several processors. Several such products
already exist. Financial Data Sciences, Inc. Model 108
teller terminal consists of three MCS-4 cpu's. One cpu con­
trols the printer, another controls the keyboard and
performs all the required calculations, and another
provides stand-alone processing should the communica­
tions link to the main cpu fail. Another example is the OP-
1 CRT terminal from Ontel. It sports an Intel 8008 as the
central processor and uses two other (TTL MSI)
processors to control the I/O and keyboard/ display opera­
tions. These multi-microprocessor systems are but a
preview of what will surely come.

FUTURE APPLICATIONS

As microprocessors evolve, and price/performance
improves, many new applications areas will emerge. The
upper end of the microprocessor performance spectrum
will be used to implement many systems currently
employing minis, and may also be used in the develop­
ment of programmable high performance peripheral inter­
faces. The use of medium range microprocessors will ac­
celerate in the various industrial applications areas
typified by the applications presented in this session.
Potentially, the real dollar growth in applications will oc­
cur in the consumers and automotive areas,7 where the
lower end of the microprocessor performance spectrum

should prove more than adequate to satisfy the require­
ments of the bulk of the systems envisioned.

The consumer and automotive computer markets are
e~remely price sensitive and do not require excessively
hIgh performance. Thus, in order to be successful in this
area it is incumbent on the semiconductor manufacturers
to introduce new microprocessor products which achieve a
given performance level, but do so at minimum system
cost. Price performance must be improved, but this should
be achieved by lowering cost for a given performance level,
rather than by increasing performance for a given price
level!

Finally, before closing, the following observation should
be made. Even though the microprocessor is the key to the
?evelopment of many new low cost intelligent systems, it
IS the development of compatible low cost peripherals
(e.g., floppy discs) and LSI memories (static 1K RAM's
are approaching 0.4 cents/bit and dynamic 4K RAM's are
approaching 0.3 cents/bit at the chip level) that is making
this system revolution possible. Recent developments such
as the modem-on-a-chip (Motorola MC6860), point to the
availability of a large variety of standard LSI micro­
processor interface, which can only help to accelerate this
revolution.

REFERENCES

1. "Special Report: Microprocessor Applications," Electronics, Vol. 47,
No. 14, July 11, 1974, pp. 81-108.

2. "Special Issue on Microprocessor Applications," IEEE Computer,
Vol. 7, No.8, August 1974, pp. 19-53.

3. "Microprocessor Applications," Spectrum, September 1974, pp. 59-
67.

4. Russo, P. M. and M. D. Lippman, "A Microprocessor Implementa­
tion of a Dedicated Store-and-Forward Data Communications
System," AFIPS Conference Proceedings, Volume 43, May 1974.

5. Russo, P. M. and M. D. Lippman, "Case History: Store and For­
ward," IEEE Spectrum, September 1974, pp. 60-67.

6. Weisbecker, J. A., "A Practical, Low Cost, Home/School Micro­
processor System," IEEE Computer, August 1974, pp. 20-31.

7. Temple, R. H. and S. S. Devlin, "The Use of Microprocessors as Au­
tomobile On-Board Controllers," IEEE Computer, August 1974.

The synergistic combination of an oscilloscope
and a microprocessor

by WALTER A. FISCHER
Hel'}lett-Packard Company
Colorado Springs, Colorado

INTRODUCTION

Osciiloscopes- What they are and what they do

An oscilloscope presents a graphical display of am­
plitude vs. time. The amplitude is usually voltage. It
allows the electrical designer to see what is occurring in a
circuit. The CRT display was originally a qualitative one
and provided the designer with an idea of what was occur­
ring. Through improvements in vertical amplifier design,
sweep linearity, and CRT performance, a calibrated grat­
icule was added to the CRT face and quantitative
measurements could be made. These improvements
continued and resulted in measurement accuracies in the
2 percent to 3 percent category, with some timing
measurements reaching the 1 percent area. These accu­
racies represent the state-of-the-art performance with
traditional techniques. A new set of techniques was, be­
coming an obvious need in order to make major improve­
ments in the measurement capabilities of oscilloscopes.

Where major improvements in measurements are needed

The two main categories where improvements are
needed are measurement accuracy and ease of use.

Measurement accuracy

Oscilloscopes measure voltage and time related func­
tions; such as, peak-to-peak voltage, percent overshoot,
periods, propagation delay, etc. Timing measurement ac­
curacy is the area where most customers have requested
improvements. Specifically, the area of propagation delay.
The reason is that a major part of electrical design tasks
today are oriented to digital designs. One of the most im­
portant requirements for proper digital circuit perfor­
mance is that information arrive at the various nodes in
the system at a precise time. Even if the amplitude is in
error, or contains overshoot, as long as the signal is timed
properly at the logic threshold level, a good signal will be
recorded. If, the threshold level arrives at the wrong time,
this can cause major failures in system performance. It is
necessary to measure precisely, the relative time delays of
signals arriving at a point through different paths. Pulse

23

width, period, transition times, and clock rate must also
be measured.

The oscilloscope is still the best form of instrumentation
to measure instantaneous voltages. It is also used to
measure dc voltages as well as percent overshoots, and
logic threshold levels. These measurements can now be
made with oscilloscopes but not with any amount of ease
and are subject to considerable human error. Such things
as counting graticule lines and multiplying by the
sensitivity of the CRT take time and are subject to human
error.

Ease of use

One of the features of an oscilloscope is its versatility in
making a large variety of measurements. This versatility
has always required a large number of front-panel ~on­
troIs. This is its biggest problem. Most of these controls
are manual, not only in function but also in their ability to
allow the operator to make measurements, therefore it re­
quires a great deal of thought on the part of the operator
just to use the scope. It is possible on most oscilloscopes
through a combination of controls to achieve completely
useless modes. Even more of a problem is the fact that
gross measurement errors can occur when the oscilloscope
is in any of the "uncal" modes.

These are just a few areas where major improvements in
ease of use can be made.

A SOLUTION TO THE MEASUREMENT
ACCURACY AND EASE-OF-USE PROBLEM

The newly introduced HP Model 1722A is a synergistic
combination of an oscilloscope and a microprocessor and
makes major contributions in measurement accuracy and
ease of use. It is basically a 275 MHz high-performance os­
cilloscope with up to 1 nanosecond per cm resolution in
the time base.

The major contribution is timing measurement ac­
curacy. Two things contribute to this, they are dual-delay
sweep* and microprocessor control.

Dual-delay sweep is a technique that allows the operator

* Patent applied for.

24 National Computer Conference, 1975

.. o w

a

:r': .. '
.. :: ...

:1\ .:: :::[1::<]\':1"> ': 1 ::':.

3.0 \. '. · .•.•.. 1.· ~:.~-l: .. ; -:.I-::H-++·_:-+--+-++++-+-hoR-4"'I
.. .~:J\I. ... : .. ,'

~ 2.0 '\. , . : ::::::\:

W ""':':".::::~'I;, '.: .. 1:::

::--'.:,. ;:.:.::::~~:·.·.:,·.2 .. ~.·.· . 'I:' ''!'Io :: :::!:::~::::: N" .. ~ .. ::::: . ii
1.0 ~. ~;: :.. ...~ :.: .. r::.;o;;~ ;;;;';';~ T1?"~ ::;:::~;;;;,:: :

o ::"~:i;;: .:::~.:::j;::::~~~~::jf~ ::;; :":';;:: ':<: Wi

b 0.1 1 10

Time Interval in Div
Figure I-A comparison of the accuracy of time interval measurements
of the HP Model 1722A and a conventional oscilloscope (a) Error curves
for time intervals from 1 ns to 500 ns for (1) Conventional scope using
differential delay techniques; (2) 1722A specification. Curves derived
from optimum main time base settings for this measurement range. (b)
Error curves for time intervals in terms of main time base divisions (100

nsf div to 20 ms/ div)

to see, simultaneously, both the start and stop points of
the time interval being measured whether it be period,
pulse width, propagation delay, etc. This automatically
eliminates the CRT as well as vertical or horizontal am­
plifier drift (or both) as sources of error.

The microprocessor adds an order of magnitude (more
accuracy) to the standard oscilloscope by providing
greater resolution and readability than had previously
been possible. Specifically, better than 1 percent measure­
ments can be made on time intervals as small as 30 nano­
seconds or 4 percent of full scale. Figure 1 shows a com­
parison of accuracy in graphical form of the Model 1722A
and a high-quality standard oscilloscope of equivalent
bandwidth.

The microprocessor also presents direct digital readout
of all measurements. Table I lists the measurement set of
the Model 1722A.

The gross measurement errors and useless modes pre­
viously referred to are remedied by the microprocessor.
The Model 1722A monitors various front-panel controls
and, when necessary, prevents incorrect measurements
from being made. For example, when making a timing
measurement, if the sweep is set to the "uncal" mode, the
microprocessor senses this and sets the LED readout to
(.0) and eliminates the stop marker of the dual-delayed

sweep markers. In the vertical section, when the vernier is
placed in the "uncal" mode, the instrument automatically
goes into the percentage measuring mode .

These are just a few of the advantages of using a micro­
processor in instrumentation.

WHY A MICROPROCESSOR INSTEAD OF
COMBINATIONAL LOGIC?

There is no clear-cut choice. There are some advantages
and disadvantages to each of these approaches. Combina­
tional logic, because it is traditional, is often chosen when
another approach should be considered. When many func­
tions are required a large number of companents are

TABLE I-HP Model 1722A Measurement Set

I. Time Interval

A. Period

B. Transition times

C. Propagation delay

II. 1/Time
A. Clock rate

B. Data rate

III. DC volts

A. Average voltage

B. Direct difference voltage

IV. Instantaneous volts

A. Peak-to-peak

B. Threshold voltage

V. Percent readout
A. Percent overshoot

B. Percent transition times

C. Identifying 500/0 points on pulses

The Synergistic Combination of an Oscilloscope and a Microprocessor 25

necessary. This can lead to power and heat problems. The
major advantages of corn binational logic for small systems
are knowledge and availability of components. Most
electrical designers feel comfortable with this approach be­
cause they have used it traditionally. If only a few func­
tions are required, combinational logic can be the best
choice.

The microprocessor approach, however, can make many
functions available using fewer components. This usually
results in higher reliability and lower power consumption.
The major advantage of the microprocessor approach is its
ability to perform mathematical operations. Many of the
algorithms used by the Model 1722A require the use of
mathematics (refer to the section on algorithms). Its major
drawback is non-familiarity. The average electrical
designer has little or no experience in programming at the
assembly level and therefore tends to avoid it. In the past,
it has been difficult to justify the training costs in light of
the profit motivation of industry. This situation seems to
be improving, however, as it becomes obvious that micro­
processor based control systems can be inexpensive, re­
liable, and add measurement capability never before
available.

At this point, a case history might prove interesting.
The curve in Figure 2 gives an indication of the decision

to be made. With combinational logic, the cost increases in
a somewhat linear fashion, depending on the number and
complexity of the functions desired. With the micro­
processor, there is a minimum amount of hardware
necessary even if only one function is performed. As the
number of functions increase, the cost increases at a rate
far less than that of combinational logic. The steps indi­
cate when a new block of memory needs to be added. This
is because memory cannot be bought one word at a time
but must be bought in blocks; e.g., 256 X 8 bits. An
interesting area on these curves is the intersection. It is
here that the microprocessor approach becomes obviously
less costly than the combinational logic approach.

In the case of the HP Model 1722A, this occurred in the
display function. One of the requirements for this instru-

Cost
$

Number of Functions

Figure 2-A comparison of the costs involved between combinational
logic and IL processor based systems

'" til :::I :::I
ID ID

!P $-

Figure 3-Block diagram of the HP Model 1722A IL processor based
control system

ment was that the LED display present answers in a very
special form of scientific notation; namely that the ex­
ponent could take on only values which were multiples of
the number three. The time interval always can be read
directly in s (0), ms (- 3), JLs(- 6) or; ns (- 9). This is
shown in Figure 4 and Table II. The cost of doing this
with combinational logic was high-therefore, the micro­
processor approach was considered and found to reduce
cost and package count, with far less power required. The
choice of which approach to use must be made carefully.
You may be surprised at the small number of functions it
takes to justify a microprocessor-based system.

BLOCK DIAGRAM OF THE MICROPROCESSOR­
BASED SYSTEM USED IN THE HP MODEL
1722A

The technique employed in the Model 1722A was to use
the microprocessor LSI circuits from the HP-35 calculator
with a unique set of ROM's programmed to perform the

26 National Computer Conference, 1975

TABLE II -Time Base Encoder Program Listing

ROM
ROM ROM Subroutine
Address Code Address Labels Program Statement

L1006: 1 1 1 LSCA4 LOAD CONSTANT 1
L1007: 1 1 1 1 ->L1042 GOTOLS03
L 1010: 1 1 1 LSCA5 LOAD CONSTANT 2
L 1011: 1 1 1 1 ->L 1042 GOTOLS03
L1012: 1 1 1 1 ->L1041 LSCA6 GOTOLS02
L1013: 1 1 1 LSCA7 LOAD CONSTANT 1
L1014: 1 1 1 LSCA8 LOAD CONSTANT 2
L1015: 1 1 1 1 ->L1050 GOTOLS05
L 1016: 1 1 1 1 LSCA9 LOAD CONSTANT 5
L 1017: 1 1 1 1 ->L1050 GOTOLS05
L1020: 1 1 1 LSCBO LOAD CONSTANT 1
L 1021: 1 1 1 1 1 ->L1046 GOTOLS08
L1022: 1 1 1 1 ->L1044 LSCB1 GOTOLS06
L1023: 1 1 1 1 1 ->L 1045 LSCB2 GOTOLS07
L1024: 1 1 1 1 LRNG1 LOAD CONSTANT 9
L1025: 1 1 ->L1000 GOTOLRTNO
L 1026: 1 1 1 1 LRNG2 LOAD CONSTANT 6
L1027: 1 1 ->L 1000 GOTOLRTNO
L1030: 1 1 1 1 LRNG3 LOAD CONSTANT 3
L1031: 1 1 ->L 1000 GOTOLRTNO
L1032: 1 1 ->L1000 LRNG4 GOTOLRTNO
L1033: 1 1 1 LKBD1 8->P
L1034: NO OPERATION
L1035: 1 1 1 KEYS -> ROM ADDRESS

L 1041: 1 1 1 1 LS02 LOAD CONSTANT 5
L1042: 1 1 1 1 ->L1062 LS03 JSBLDP4
L1043: . 1 1 • 1 1 1 ->L1051 LS04 GOTOLKBD2
L1044: 1 1 1 LS06 LOAD CONSTANT 2
L1045: 1 1 1 1 LS07 LOAD CONSTANT 5
L1046: 1 1 1 1 1 ->L1056 LS08 JSBLDP2
L1047: 1 1 1 1 1 ->L1051 GOTOLKBD2
L1050: 1 1 1 ->L 1060 LS05 JSBLDP3
L 1051: 1 1 1 LKBD2 1->P
L1052: 1 ROM ADDRESS -> BUFFER
L1053: 1 1 1 KEYS -> ROM ADDRESS

L1056: 1 1 1 1 LDP2 10->P
L1057: 1 1 1 1 1 1 ->L1063 GOTOLDPO
L1060: 1 1 1 1 1 LDP3 11->P
L 1061: 1 1 1 1 1 1 ->L1063 GOTOLDPO
L1062: 1 1 1 1 LDP4 12->P
L1063: 1 1 1 LDPO LOAD CONSTANT 2
L1064: 1 1 RETURN

functions needed to accomplish the measurements listed cuits. The front-panel controls, therefore, are essentially a
in Table I. With this in mind let us discuss the block dia- keyboard similar to the keyboard of the HP-35 and as
gram of Figure 3. such their outputs are encoded by the input interface to

The primary function of the processor (Arithmetic & present particular memory addresses to C & T. Programs
Register and Control & Timing) is to continuously scan are stored at these addresses and perform the appropriate
the appropriate front-panel controls and output the proper functions, such as, increment, decrement, output to the
signals to both the LED display and to the oscilloscope cir- display, compute a time, etc.

The Synergistic Combination of an Oscilloscope and a Microprocessor 27

The BCD output of A & R is directed to the I/O control
where two things occur. First, if data are being output, it
converts the data from serial to parallel data and transfers
them to buffer storage. Second, if the front panel controls
are to be scanned, it decodes the outputs from the Processor
and enables the appropriate sections of the front panel;
such as, vertical range, timebase range, etc.

The Buffer Storage and DAC receive data from the I/O
control and provide temporary data storage and conver­
sion to analog levels for the Analog Amplifier assembly.

The Analog Amplifier performs two functions. First, it
supplies the dual-delayed sweep comparators with the
proper dc levels. Second, it accepts the dc level from the
vertical channel, processes this level and provides two
pieces of information for the processor through the Input
Interface. The two pieces are the polarity of the dc level
and whether the level is greater or less than some
reference. If it is greater, the processor increases the
reference until it is within lLSB of the unknown.
Conversely, if it is less, the processor decreases the
reference until it is within lLSB of the unknown. In both
cases, it displays the reference level that is now equal to
the unknown.

SERIAL MICROPROCESSOR FOR OSCILLOSCOPE
USE

There are many microprocessors available on the
market; why then, choose the serial microprocessor? One

Figure 4-Time base encoder flow diagram

Figure 5-Data output algorithm for L\ T mode of 1722A

reason was the fact that the HP-35 microprocessor was
available as a high volume, fully documented micro­
processor. Below are additional reasons for this choice.

Display functions

This was one of the major cost justifications for using a
microprocessor. In the HP-35 serial microprocessor the
complete decoder system, compatible with the basic
instruction set, is resident in the LSI arithmetic and
register circuit. A set of bi-polar cathode/ anode drivers are
available, and sign and decimal location are also part of
this chip set.

Keyboard scanning

The keyboard scanning circuits are resident in the LSI
and with one keyboard enable, 40 keycode inputs are
possible. Since some of the internal status bits are
available to the software programs, several keyboards can
be overlayed with this approach. In the HP Mode11722A,
for example, there are a total of six keyboards. The
conversion of keycodes to ROM address is done within the
control and timing circuit. Figures 4 and 5 and Tables II
and III show that the program branches on an externally
generated address; e.g., in Figure 4 at LI035.

28 National Computer Conference, 1975

TABLE III-Program Listing of Data Output Algorithm for 1722A

ROM
ROM ROM Subroutine

Address Code Address Labels Program Statement

LOO02: ->L0176 LFST1 GO TO LFSTM
LOO03: -> L0201 LMED1 GO TO LMEDM
LOO04: LZR01 1 -> S9
LOO05: -> L0211 GO TO LMODZ
LOO06: LSL01 4 -> P
LOO07: -> L0204 GO TO LSL02
L0010: LlNCP 1 -> S3
L0011: -> L130 GO TO LlNC1

lO013: 1 1 1 1 -> L0132 LDECP GO TO LlNC3

L0024: _> L0125 LOK JSB LKBD4
L0025: _> L0174 GO TO LKBD6

L0125: 1 1 LKBD4 ENCODE INCR/DECR CONTR.
L0126: IA KEYCODE

L0130: LlNC1 0-> S4
L0131: RETURN
L0132: LlNC3 1 -> S3
L0133: LlNC4 1 -> S4
L0134: RETURN

L0160: LAEC 0-> C[X]
L0161: A + C -> C[X]
L0162: A EXCHANGE C[WP]
L0163: RETURN

L0174: LKBD6 ENCODE MARKER RATE
L0175: IA KEYCODE
L0176: LFSTM 1 -> S9
L0177: LFSTN 6 -> P
L0200: -> L0210 GO TO LSL03
L0201: LMEDM 1 -> S9
L0202: LMED2 5 ->P
L0232: 1 -> L0210 GO TO LSL03
L0204: 1 LSL02 IF S9 # 1
L0205: 1 -> L0210 THEN GO TO LSL03
L0206: 1 1 -> S10
L0207: 1 1 0-> S9
L0210: 1 1 1 LSL03: LOAD CONSTANT 1
L0211: 1 1 1 LMODZ 7 -> P
L0212: 1 IF S1 # 1
L0213: 1 -> L0263 THEN GO TO LMODO
L0263: 1 1 -> L0160 LMODO JSB LAEC
L0264: 1 1 DOWN ROTATE
L0265: 1 1 1 -> L0160 JSB LAEC
L0266: 1 1 1 1 1 1 -> L0372 GO TO LMODA

L0372: -> L1373 LMODA SELECT ROM 1

L1303: LMOD1 0->8 C[X]
L1304: IF S4 # 1
L1305: -> L1313 THEN GO TO LMOD2
L 1306: LMOD4 A - C -> C[WP]
L1307: -> L1317 IF NO CARRY GO TO LTB3
L 1310: 1 1 LMIN 0-> C[WP]
L 1311: -> L1317 IF NO CARRY GO TO LTB3
L 1312: -> L 1317 GO TO LTB3
L 1313: LMOD2 A+ C -> C[WP]
L 1314: -> L 1317 IF NO CARRY GO TO LTB3
L 1315: LMAX 0-> C[WP]
L 1316: 0 - C - 1 -> C[WP]
L 1317: 1 LTB3 8 -> P
L1320: 1 1 DATA OUTPUT

L1373: 1 1 1 1 1 1 -> L1303 GO TO LMOD1

The Synergistic Combination of an Oscilloscope and a Microprocessor 29

The connection requirements are minimal with this chip
set since only 13 lines are required for all 40 keycode
inputs.

Large word length

This is one of the key features to the serial micro­
processor. The word length is 56 bits (14 digits) and one
instruction can work on the whole word or a variety of
parts of the word; e.g., exponent only. Therefore, a large
number of control functions as well as data can be output
to the oscilloscope in only one word time, thus resulting in
an efficient transfer of control and data.

BCD arithmetic

This advantage may not be obvious immediately.
However, in an application where decimal information is
the desired output, it means that software manipulation is
very efficient because no code conversions are necessary.
In the Model 1722A, the DAC, described in the block dia­
gram discussion, is a BCD DAC. Therefore when the
manipulation of data is complete, it can be transferred
directly. The increment/ decrement algorithm
demonstrates this in Figure 5 and Table III. Here, the ap­
propriate digit is incremented by 1 and outputted directly
with no further code conversions necessary.

Serial interface

In any system that has limitations on space and weight,
as in instrumentation, any reduction in parts count and/ or
cabling is a significant advantage. The serial micro­
processor provides an interface that requires few bus lines
with the ability to provide simple remote storage with shift
registers. The serial I/O also reduces the hardware re­
quirement.

No RAM required

The serial nature of the chip set allowed shift registers
to be designed into the arithmetic and register circuit.
These are used to store intermediate calculations. In other
microprocessors, RAM is required for this function. Again,
the volume and number of interconnections are minimized
with use of this microprocessor.

Large ROM space available

This is an important feature. In an oscilloscope, there
are many controls on the front panel as well as many
possible measurement modes as we discussed earlier.
Since many of them are interrelated, using one front-panel
control may have implications to others. The availability
of large ROM space allows programs to be written that
take these interrelationships into account.

Instruction set

This is probably the most important consideration.
There is no advantage in having a higher-speed parallel
microprocessor as a controller if th~ basic instruction set is
limited, and only minor manipulation of data can be
performed. This implies that many word-times would be
required to perform the more complicated functions.

Even though the HP-35 chip set is serial and has a word­
time of 280 J,LS, the instruction set is so powerful that one
instruction can change the entire nature of the next word.
In many cases, less time is required to perform basic func­
tions with the HP-35 microprocessor than with competi­
tive parallel processors. For example, a six-digit add re­
quires one ROM state and takes 280 J,LS. Other price com­
petitive microprocessors require anywhere from 5 to 20
ROM states and can take as long as 800 J,LS.

This instruction set includes a very complete group of
branching instructions which allows subroutines to be
easily written.

Software and editing

As in any processor-based system, the need to write and
edit software easily is important. The HP-35 micro­
processor compilers are written in such a way that single
step and dynamic debugging are possible.

ALGORITHMS USED IN THE MODEL 1722A

This section describes in considerable detail three of the
algorithms used in the Model 1722A. These three were
picked to demonstrate the power of the instruction set, the
mathematics, the time base encoding scheme and the ef­
ficiency of the data transfer algorithm. They also
demonstrate the overall efficiency of the use of ROM
states.

Time base encoding

The requirement here is to encode nine time base set­
tings and four exponent values into ROM addresses. This
is easily accomplished since the keyboard scanning tech­
nique implemented in the C & T chip accepts a keycode
entry and uses it as the next address on the IA line (see
Figure 3).

Specifically, when the Model 1722A program reaches
the point where the time base setting needs to be inter­
rogated, an instruction is generated on IS (Figure 3) that is
decoded by the I/O control. The I/O control then enables
that part of the keyboard that is monitoring the time base
switch setting. The input interface (Figure 3) generates a
keycode from which the C & T generates the next address.
The detailed algorithm is shown in Figure 4 and Table II.

The important point here is that only 33 ROM states are
needed to encode the 9 time base settings and 10 are

30 National Computer Conference, 1975

TABLE IV-Program Listing of Math and Display Algorithm, for the Time Interval Mode of the 1722A

ROM ROM ROM Labels Program Statement
Address Code Subroutine

Address

L0160: LAEC O->C[X]
L0161: A+C->C[X]
L0162: A EXCHANGE C[WP]
L0163: RETURN

L0267: LSL04 IFS10#1
L0270: ->L0273 THEN GO TO LSCAO

L0273: LSCAO 8->P
L0274: 1 1 O->C[WP]
L0275 1 1 ->L160 LSCA1 JSBLAEC
L0276: 1 1 1 O->C[P]
L0277: 1 1 1 LSCA2 O->C[X]
L0300: 1 1 1 A+C->A[WP]
L0301: 1 CEXCHANGEM
L0302: C-1->C[P]
L0303: IFC[P]=O
L0304: 1 ->L0307 THEN GO TO LSCA3
L0305: 1 CEXCHANGEM
L0306: 1 ->L0277 GOTOLSCA2
L0307: LSCA3 IFS1 #1
L0310: ->L0325 THEN GO TO L TB4

L0321: LNEXP SHIFT RIGHT C[X]
L0322: 1 1 O->C[XS]
L0323: 1 1 O-C-1->C[XS]
L0324: 1 RETURN
L0325: 1 1 LTB4 O->C[S]
L0326: 1 1 IFS2#1
L0327: 1 1 ->L0331 THEN GO TO LTB5
L0330: 1 1 ->L0374 GOTOLlNV3
L0331: 1 1 ->L0321 LTB5 JSBLNEXP
L0332: 1 1 LDISP 8->P
L0333: 1 1 1 1 1 1 A EXCHANGE C[S]
L0334: 1 1 1 1 1 1 A EXCHANGE C[X]
L0335: 1 1 1 O->C[S]
L0336: 1 1 O->C[WP]
L0337: DISPLAY OFF
L0340: 1 1 B EXCHANGE C[W]
L0341: 1 1 SHIFT LEFT A[M]
L0342: 1 1 SHIFT LEFT A[M]
L0343: 1 1 SHIFT LEFT A[M]
L0344: 1 1 SHIFT LEFT A[M]
L0345: LDSP2 DISPLAYTOGGLE

L0373: 1 1 1 1 ->L0267 GOTOLSL04

L1325: 1 1 1 1 DOWN ROTATE
L1326: 1 1 1 1 DOWN ROTATE
L1327: 1 1 1 1 DOWN ROTATE
L1330: NO OPERATION
L1331: 1 1 1 7->P
L1332: 1 1 1 1 O->C[X]
L1333: 1 1 1 1 1 A+C->C[X]
L1334: 1 1 1 A EXCHANGE C[WP]
L1335: 1 1 1 C->A[WP]
L1336: 1 1 1 LMOD5 IFC[P]=O
L1337: 1 1 1 ->L1341 THEN GO TO LMOD6
L1340: 1 1 1 ->L 1372 GOTOLSCAO

L1372 - > L0373 LSCAO SELECT ROMO

The Synergistic Combination of an Oscilloscope and a Microprocessor 31

Yes

~--C(P) = 0

Yes

S10 = 1

>0

1/LlT -­
S2 = 1

L1325

Store Last
LlT Value

n=O
A=O

A...- A+LlT

Set Sign of
Exponent to (-)

L0332

Output New
Display

Figure 6-Mathematics and display output algorithm for the time
interval mode of the 1722A

needed to encode the time base exponent values. This
results in extremely efficient use of ROM states.

These 43 ROM states have encoded and stored the mul­
tipliers, the position of the decimal point, and the ex­
ponent value, in approximately 5 ms.

Data output algorithm

The requirement here is that the increment/ decrement
control be encoded, the appropriate corrections be made to
the data, and the data outputed to the DAC (see Figure 3).

Two pieces of information need to be encoded. They are
(1) should the data be increased or decreased, and (2) at
what rate? The first is done starting at address L0125, the
second at L0174. Once this is accomplished the appr~
priate mathematics takes place at address L1306 or L1313
and the new value outputed at L1320. See Figure 5 and
Table III.

Thus, the entire encoding, mathematical manipulation,
and data output is accomplished with 58 ROM states in
approximately 10 ms.

Time internal display algorithm

This algorithm takes the new LlT value computed in
Figure 5 and performs the appropriate mathematical scal­
ing determined from the scaling algorithm in Figure 4.
This scaled value is then shifted into the display. See
Figure 6 and Table IV.

The most important thing here is that 5-digit multiplica­
tion (L0277) takes place with 8 ROM states in less than 12
ms.

OTHER CURRENT MICROPROCESSOR
APPLICATIONS IN INSTRUMENTATION

There are many examples of ROM-based control
systems in instrumentation today (see references). Some
of them, such as, the HP Model 1722A 1 oscilloscope, HP
Model 3380Al Integrator, and the Tektronix DP07, use
microprocessor chip-sets found more commonly in hand
held calculators, point-of-sale terminals, etc. The remain­
ing instruments, such as, the HP Model 3490A 4 voltmeter
and the HP Model 3330A3 synthesizer, -as well as many
more, use dedicated, ROM-based microcontrollers
designed with off the shelf logic. In either case, the trend
toward ROM-based controllers in instrumentation is
definite.

CONCLUSION

It is becoming obvious in almost all forms of electrical
design that the microprocessor can be an invaluable asset,
as it allows "smart" circuits to be developed. The HP
Model 1722A is one example of this. The microprocessor

32 National Computer Conference, 1975

will provide the basis for many exciting designs in the fu­
ture. We at Hewlett-Packard are dedicated to solving cus­
tomer measurement needs and the microprocessor will
playa large role in this.

REFERENCES

1. Fischer, W. and W. Risley, "Improved Accuracy and Convenience in
Oscilloscope Timing and Voltage Measurements," Hewlett-Packard
Journal, December 1974.

2. Whitney, T., France Rode and Chung Tung, "The 'Powerful Pocket-

ful': An Electronic Calculator Challenges the Slide Rule," Hewlett­
Packard Journal, June 1972.

3. Kingsford-Smith, C., "The Incremental Sweep Generator-Point by
Point Accuracy with Swept-Frequency Convenience," Hewlett­
Packard Journal, July 1972.

4. Thompson, L., "A New Five-Digit Multimeter That Can Test Itself,"
Hewlett-Packard Journal, August 1972.

5. Oliver, B. M., "Looking Ahead," IEEE Spectrum, November 1974.
6. Allan, R., "New Measurement Capabilities," IEEE Spectrum,

November 1974.
7. Saba, Mona and Jack Grimes, "Microprocessors: A Component for

all Seasons," 1974 Wescon Professional Program, The Micro­
processor Revolution, Part II.

Development of a portable compiler for
industrial microcomputer systems

by LEROY H. ANDERSON
The Warner & Swasey Company
Cleveland, Ohio

WHAT ARE INDUSTRIAL MICROCOMPUTER
SYSTEMS?

The development of the chip microprocessor in 1971 has
enabled a revolution in the use of stored-program logic and
data handling (the microcomputer) in industrial control
applications not heretofore seriously considered.

According to a report on the Industrial Microcomputer
Market," published by the New York firm of Frost and
Sullivan, "Microcomputers promise to be the fractional
horsepower motor of the computer world. The market for
them in industrial applications will explode from 7.9
million dollars in 1973 to 140 million in 1977 and 880
million by 1983." The Industrial Microcomputer System
represents the next stage of development to the
designer / user of industrial control equipment.

Microprocessors are general purpose digital circuits
which can be programmed (with the addition of memory)
for a particular users' requirements. Thus a microcom­
puter based system can more easily be changed or
updated than an equivalent hardwired logic system as well
as being able to perform arithmetic, logic and communica­
tion functions.

The Industrial Microcomputer System is capable of
many of the same arithmetic, control and computational
functions as a minicomputer, but at a fraction of the cost.
The major differences between a microcomputer and a
minicomputer based dedicated industrial control system
are the cost, and the small physical size, the lower power
drain and slower operating speed of the microcomputer. In
addition, the mini may have a greater memory expansion
capability.

However, in many dedicated industrial control applica­
tions the memory expansion capabilities and speed of the
minicomputer are not necessary. Note that the microcom­
puter is by no means slow. As a matter of fact, the slowest
microcomputer system usually can execute about 90 thou­
sand instructions per second.

We, at Comstar, have been actively involved since 1971
in producing Industrial Microcomputer Systems. A typical
industrial microcomputer system (shown in Figure 1) can
be divided into five basic parts. They are: (1) the micro:.
processor and its associated memory, (2) the interface
modules which connect the microcomputer system to
external devices such as limit switches, push buttons or

33

motor starters, (3) the equipment to program the
microcomputer, (4) a program analyzer (shown in Figure
2) which is used to analyze and diagnose the operation of
the microcomputer based system, and (5) a system tester
(shown in Figure 3) which allows the user to check the
microprocessor memory and interface modules to see if
they are functioning properly.

To examine the characteristics of an industrial
microcomputer system, let us start with the heart of that
system-the Central Processor Unit (CPU) and its
associated memories. The CPU performs all control and
data processing functions.

Auxiliary to the CPU are the memories-usually both
Random Access Memory (RAM) and Programmable
Read-Only Memory (PROM). The PROM Memory is
used to store the operating microcomputer programs or al­
gorithms. The best type is erasable and electrically non­
volatile. That is, it doesn't lose data if power is down.

Random Access Memory is used as a buffer storage to
store data (such as intermediate variables used or printed
during the process) which can be used in a volatile envi­
ronment and stored in a volatile type memory. Random
Access Memory may include I/O lines which may be used
to drive input/output devices such as Light-Emitting­
Diode displays.

Also available is Read/ Only type Memory (ROM)
which must be mask programmed and cannot be changed
or altered, and Electrically Alterable Read/ Only Memory
(EAROM) which can be written and read back electrically
and is electrically non-volatile.

The basic CPU plus the memories are then tied to some
type of electrical interconnection (bus) system which con­
nects the CPU to the memories and interface modules,
allowing the input/ output of information and/ or control of
peripheral equipment. Figure 4 illustrates a simple con­
figuration.

Interface modules for an industrial microcomputer
system can be broken down into the following categories;
(1) digital modules, for digital communication with
external devices using signals of 15 volts or less; (2) power
switching modules, for driving power signals of up to 120
volts AC; (3) analog modules, which include analog-to­
digital and digital-to-analog converters; (4) communication
modules; both parallel and synchronous or asynchronous
modules for serial communications, and (5) special

34 National Computer Conference, 1975

Figure I-Typical industrial microcomputer system

modules, including pulse data modules, time-of-day clock,
real time clock and watchdog timer, etc., all typically used
in an industrial environment.

Peripheral equipment used with industrial microcom­
puter systems must be rugged, low in cost and very simple
so it can have long life operation. The simplest types are
push button and L.E.D. indicators. The next level of com­
plexity is keyboards and alpha-numeric displays, usually
gas plasma. At an additional level of complexity you start
getting into small alpha-numeric printers and then into
more sophisticated equipment such as floppy disc, mag­
netic tape cassette or even IBM compatible magnetic tape
systems to store information for later data processing.

In the next few years there will probably be a whole new

Figure 2-Comstar system 4 program analyzer

array of low cost peripheral equipment for industrial
microcomputer systems because the processing sec­
tion-CPU and memory-are becoming so cost effective
that the user is being forced to analyze where he can ob­
tain peripherals to match the performance and cost of the
electronics.

Thus, to install industrial microcomputer systems you
have to have a full range of memories, interface modules
and peripheral equipment for the application. With this
type of equipment, microcomputers can be used in the in­
dustrial computer control area, controlling test and
assembly machines. They can be used in remote monitor­
ing control for pollution monitoring, public utility control
systems, waste water and monitoring systems. Simple ma­
chine tool control systems are now using microprocessors
and, as the microcomputer becomes more powerful,
probably all machine tool control systems will be
microcomputer based. Many industrial data entry systems
are based on microcomputers which preprocess the data
and forward it to a central computer for sophisticated
management information systems.

In addition, this same microcomputer system can be
used for intersection traffic control, local traffic congestion
control and traffic monitoring.

Also, modern material handling systems are using dis­
tributed microcomputers to control conveyors, packaging
and palletizing equipment, as well as stacker cranes.
Pallet moving equipment such as robot cars are used to
completely automate product movement in a modern
warehouse. Thus, the industrial microcomputers will be
used for almost every control system where you need flexi­
bility and future interconnect capability to large computer
systems. In many cases, microcomputers now can even be
cost effective against standard relay systems.

Figure 5 illustrates a microcomputer based industrial
control system.

Figure 3-Comstar system 4 System Tester

A PROCESS CONTROL LANGUAGE (PCL)

Once an industrial control problem has been defined
and a microcomputer system has been chosen to solve it,
the programming becomes the next most serious problem.
We at Comstar developed a Process Control Language
(PCL) as an efficient method of programming industrial
microcomputer systems. PCL closely resembles beginning
FORTRAN in simplicity and is modeled after relay logic
and common arithmetic and logic commands. This lan­
guage allows a control program to be created in English,
entered into a portable Process Control Compiler via a
simple functional keyboard, and be converted into ma­
chine language which is stored in the Programmable
Read/Only Memory (PROM) by the Compiler. PCL has
reduced software costs by 50 percent or more.

PCL offers maximum capacity and flexibility for the
professional programmer, but the non-programmer finds it
easy to use and understand. PCL allows a Process
Engineer to easily relay his program by way of the English
language into the compiler and to create control al­
gorithms stored in non-volatile PROM memory. This is an
application oriented language and the unexperienced
process engineer is able to quickly learn how to use it be-

TYPICAL

COM STAR SYSTEM 4

CONFIGURATION

I
CPU

9007-1100

PROM I RAM
9007-13-- 9007-12--

en
::::>
!XI

I/O DATA ~ ~-
I/O

PERIPHERAL MODULE e MODULE
-I
0
a:
I-

ANALOG
z

REGULATOR
MODULE

i...- S- 9007-9100
<
I-
<
Cl

POWER
SUPPLY

Figure 4-Simple Comstar microcomputer configuration

Development of a Portable Compiler 35

Oi!'

-~;;;s; "'~ __ ..;a; """ ~=~!iC ____ ",-

Figure 5-Microcomputer-based industrial control system

cause it's conversational and relates directly to relay lad­
der charts and ladder diagrams and has Boolean algebra
logic functions. The language also has bit memory and
BCD character memory handling capability and it can
store data changes on the inputs and outputs in Random
Access Memory.

Freed from repetitious subroutine programming and
confusing terminology, the Process Engineer can
concentrate on using a repertoire of problem-oriented
instructions that are designed specifically for the control
project.

The PCL language provides uncommon flexibility. If a
more efficient machine or system operating procedure is
discovered, the engineer can readily change the control
statements of his system to utilize the new development. If
it's determined that certain types of system-operation in­
formation are needed, that data can often be retrieved
through program modification. Adept programming can
even allow the engineer to locate and, in some instances,
by-pass malfunctions. And the entire control package can
be made compatible with the user's present equipment
and, if necessary, communicate with larger systems such
as IBM's 360 series.

The simplest version of the Process Control Compiler
can program a microcomputer with the following ca­
pacities:

Contact Closure Inputs
Logic Power Inputs
Logic or Power Outputs
BCD Data Input
BCD Data Output
Bit Memory
Data Memory

128 Contacts
128 Lines
128 Lines
144 Digits
32 Digits

192 Bits
256 Characters

Program Memory is expandable to 4096 8-bit words in
256 word increments, using up to 16 256 X 8 bit PROM

36 National Computer Conference, 1975

chips. Data memory is expandable to 2560 4-bit words in
80 word increments, using up to 32 RAM memory chips.

Key-per-function instructions of the compiler

The Process Control Language offers the programming
functions listed below and explained in detail in the ap­
pendix. Each is entered into the compiler via a single key.

1.0 Formatting
1.1 IF Causes execution of a statement if the

value called upon by the operand is
true.

1.2 AND
1.3 OR

Logical AND of two operands.
Logical OR of two operands.

1.4 THEN
1.5 NOT

Logical transfer of an equation result.
Causes operand to be checked for
logical off.

1.6
1.7

END Indicates the end of a statement.
EOC (End of Compile)
Flag to the compiler indicating end of compila­
tion and return to entry and verification mode.

2.0 Status Testing
2.1 Memory XX

Pointer to least significant digit of four BCD
digit register.

2.2 MEM-BIT XX
Pointer to flag bit in bit memory.

3.0 Input
3.1 INLXX

Points to logical input line numbered XX.
3.2 IBCD XX NN

Input of BCD data into memory addresses XX
to NN, inclusive.

4.0 Output
4.1 OUTXX

Points to logical output line numbered XX.
4.2 OFF-OUT XX

Sets logical output line XX off.
4.3 OBCD XX NN

Output of BCD data from memory addresses
XX to NN, inclusive.

5.0 Data
5.1 ADD SS 00 DD

Add operands from 4-BCD-digit memory
registers SS and 00, store result in memory
register D D.

5.2 SUB SS 00 DD
Subtract 4-BCD-digit number in memory
register 00 from the number in register SS and
store result in memory register DD.

5.3 Compare: EQ, GT, LT
Logical output if two operands are equal (EQ),

the first is greater than (GT), or less than (LT)
the second.

5.4 MOVE XXX YYY
Move the contents of address XXX (1 BCD
digit) to YYY.

5.5 LOAD XXD
Load the value of D into BCD Memory location
XX.

5.6 CLEARXX
U sed to set a logical Memory bit to a zero.

5.7 SETXX
U sed to set a logical Memory bit to a one.

6.0 Branching
6.1 GOTOXXX

Transfer control to statement XXX.
6.2 CALL XXX

Transfer control to XXX (the address of a sub­
routine) and save the address of the next oper­
and.

7.0 MACRO Instructions-Macro Instructions use the
call instructions and pass parameters through
memory.
7.1 Timing (0.1 Sec-999.9 Sec).
7.2 Counting (9999 per counter)-Tests multiple

groups of up to 16 INL lines designated as
counter inputs.

7.3 Analog Input-Inputs one of up to 128 channels
of 8 or 4 digit BCD.

7.4 Analog Output-Outputs 3 or 4 digit BCD data
onto one of eight channels.

7.5 Pulse Accumulation-Allows the PCL program
to Reset, Restart, or Read the Pulse Accumula­
tor or Frequency Monitor Module.

7.6 Time of Day Clock-Allows the PCL program
to Read or Set the Time of Day Clock.

7.7 Quadrature Encoder Input-Allows the PCL
program to read the Quadrature Encoder Input
module for use in positioning systems.

In a later section, we will go through a typical applica­
tion where a Process Engineer uses this type of language to
program his industrial microcomputer system.

THE PORTABLE PROCESS CONTROL COMPILER

The process control compiler shown in Figure 6 is a
small portable unit designed for programming the
Comstar 4 Industrial Microcomputer System. The
programming can be accomplished with high reliability
even in field conditions. The PCL instructions are keyed
in via the compiler keyboard, then converted into machine
language and loaded into the PROM chip by the compiler.
The input functions are displayed directly on a 32
character alpha-numeric plasma display, ensuring the user
of a correct input. All keyed-in commands are stored in a

buffer which can be verified with a key command. Up to
256 bytes of data or instructions can be entered. Data are
compiled and can be dumped into a clean erased PROM
chip. As an option, EIA or TTY outputs are available so
the program can be printed out for future reference. A
compiler can also edit, erase or program PROMS in ma­
chine language.

Future versions of this device will have expanded input
and output capabilities and an external dual magnetic
tape cassette terminal system to provide program storage
and editing capability in the high level language without
going to machine language. The system then functions al­
most like a remote terminal of a large time sharing
system; but it is completely portable, demands no outside
telephone connections and has proven to be extremely re­
liable as a portable programming device.

TYPICAL APPROACH TO USING PCL

The Process Engineer is the cornerstone to the use of
peL, of course, His first step is a detailed listing of all ma­
chine operations and their relationship to input and
output devices in the system to be controlled or monitored.
Operations must be divided into their basic individual
steps.

Input and Output lines to all appropriate equipment in
the control system are then assigned. A photocell sensor
may require only one data line; whereas, a motor may re­
quire one for "motor forward" and another for "motor
reverse." Counting and timing operations are then listed,
and counters and timers are assigned.

The engineer then begins to write equations defining
and controlling the operation of the system. Logic equa­
tions must be assigned to each operation listed in the first
step. These equations are then grouped in a logical rela-

Figure 6-Comstar system 4 process control compiler

Development of a Portable Compiler 37

tionship and then entered into the compiler via the key­
board.

Sometimes it is helpful to the Process Engineer to use
ladder diagrams as a tool when first learning PGL. For
example, suppose he wishes to control a light with a
switch. When the switch is up the light is on and when the
switch is down the light is off. The ladder diagram would
be:

The program would be:

Equations:
100 IF INL 02 THEN OUT 04 END
10E IF INL 02 NOT THEN OUT-OFF 04 END
lID GOTO 100 END
11F EOC

Comments:
Statement No. Equation
100 IF SWITCH 02 IS UP THEN

LIGHT 04 IS ON
10D IF SWITCH 02 IS DOWN THEN

LIGHT 04 IS OFF
llD CONTINUE CHECKING SWITCH
llF END OF COMPILE

Consider another example where the problem is to turn on
light 00 if either INL 02 or INL 03 is up. Turn on light 01
if both INL 02 and INL 03 are up.

Ladder Diagram:

INL 02
-L

I
~----------------~

INL 03 1----100 I----~

-L
1------, --_ : ___.-----'
~ -1.L

• ----------10 1 J---~

Equations:
010 IF INL 02 OR INL 03 THEN OUT

00 END
024 IF INL 02 AND INL 03 THEN OUT

01 END
038 IF INL 02 NOT AND INL 03 NOT

THEN OUT-OFF 00 END

Because we were designing the programming system for
intelligent, but, in most cases completely inexperienced

38 National Computer Conference, 1975

personnel, we wanted to make it as fail-safe as possible. In
doing so, we developed the Compiler, the Analyzer, and a
self-teaching Educator to provide a system of checks and
balances that permits attentive persons of virtually any
background to turn out accurate, functional programs
after literally a few hours of instruction.

SUMMARY AND FUTURE

The development of a portable high level language com­
piler to be used with an industrial microcomputer system
represents a major breakthrough in allowing Process
Engineers to implement well designed control systems
quickly and economically. The use of separate units to
program, analyze and test the microcomputer system
allows low cost, uncomplicated design of the actual con­
troller. Because one compiler, analyzer and tester can be
used to support many microcomputer controllers, they can
be designed to be rugged, reliable and easy to use, without
making the use of microcomputer control systems cost pro­
hibitive.

The development of all successful computer systems is
hinged on having well developed, easy to use software such
as Fortran for scientific processing and Cobol for modern
business processing. The Process Control Language that
Comsta.r Microcomputers developed was based on
Comstar's experience in installing almost a thousand
microcomputer systems. The system was successfully
developed by relating with Process Engineers in industry
to determine what the real processing engineering needs
were and what problems the engineer had to solve to suc­
cessfully implement industrial microcomputers. Process
Control Language and the Portable Compiler are some of
the tools Comstar provides to help the Process Engineer
solve those problems.

APPENDIX

Key-per-function instructions of the compiler

1.0 Formatting Instructions
1.1 IF Operand 1

Causes execution of a statement if the value
called upon by operand one is true. Operand 1
may be MEM-BIT XX, Memory XX or INL
XX where XX is a 2 digit hexadecimal number.

1.2 AND Operand 1
The result of the previous operand and the
value called by Operand 1 are logically ANDed
together. Operand 1 may be INL XX or MEM­
BIT XX where XX is a 2 digit hexadecimal
number.

1.3 OR Operand 1
The value called upon by Operand 1 is logically
ORed with the value of the previous operand.
Operand 1 may be INL XX or MEM-BIT where
XX is a 2 digit hexadecimal number.

1.4 THEN
The THEN Operand allows the logical transfer
of an equation result. For example, in the equa­
tion, 010 IF INL 02 AND INL OE THEN OUT
01 END, output line 01 would be set on if INL
02 and INL OE are both true. If the equation
were false, control would transfer to the next
operand after END.

1.5 NOT
The NOT pseudo-mnemonic may be appended
to INL XX to form INL XX NOT or to MEM­
BIT XX to form MEM-BIT XX NOT. The op­
erand is checked for logically off when NOT is
appended.

1.6 END
The END instruction must be the last operand
of any IF statement, the last operand of any
program, and must precede a statement number
with the exception of the first statement
number.

1.7 EOC
The End of Compile (EOe) instruction is a flag
to the Compiler to indicate the end of the
program segment stored in RAM memory.
When the Compiler encounters an EOe it stops
compiling and returns to the entry and verifica­
tion mode.

2.0 Status Testing
2.1 MEMoryXX

MEMory XX points to the least significant digit
of a register that is four BCD digits in length.
XX is a 2 digit hexadecimal number in the
range OO-FF.

2.2 MEM-BIT XX
MEM-BIT XX points to a flag bit in bit
memory, number XX. XX is a 2 digit
hexadecimal number in the range 00-BF .

3.0 Input
3.1 INLXX

INL XX points to a logical input line numbered
XX (INL 30= input line 30).

3.2 IBCD XX NN
IBCD XX NN is used for inputting BeD data,
for example, from thumbwheel switches. XX is
the starting number and NN is the ending
number where the difference between them can­
not be greater than F.

4.0 Output
4.1 OUT XX

OUT XX points to a logical output line
numbered XX (OUT 3E=output line number
3E).

4.2 OFF-OUT XX Same as OUT except the output
line is set OFF.

4.3 OBCD XX NN
OBeD XX NN outputs BCD numbers. Rules of
usage are the same as IBCD.

5.0 Data
5.1 ADD SS 00 DD

ADD 00 to SS (BCD ADD) and store the
results in DD. The operands point to memory
registers which are 4 BCD digits in length. SS,
00, and DD are 2 hexadecimal digits in length.

5.2 SUB SS DO DD
Subtract 00 from SS and store the results in
DD (BCD SUBtract). The operands point to
memory registers which are 4 BCD digits in
length. SS, 00, and DD are 2 hexadecimal
digits in length.

5.3 Compare EQ, GT, LT
Compare is used in the following manner: 010
IF MEMORY 02 EQ MEMORY 03 THEN
OUT OA END Memory 02 is compared against
Memory 03 for equality. Memory 02 and
Memory 03 are 4 BCD digits in length. L T
and GT are used in the same manner except a
LT (less than) or GT (greater than) condition is
checked for.

5.4 MOVE XXX YYY
The contents of memory location XXX are
moved to YYY. The contents of XXX and YYY
are 1 BCD digit in length, XXX and YYY are
3 hexadecimal digits in length.

5.5 LOADXXD
The contents of BCD memory location XX is
set to the value of D. XX is 2 hexadecimal
digits in length and D may be any value from 0
to F.

5.6 CLEAR
The CLEAR operand is used for clearing Bit­
Memory. It sets logical MEM-BIT XX to a
zero (logical off).

5.7 SETXX
The SET operand is used for setting Bit­
Memory. It will set logical MEM-BIT XX to a
one (logical on).

6.0 Branching
6.1 GOTOXXX

Control is transferred to XXX, where XXX is a
statement number 3 digits in length.

6.2 CALLXXX
Control is transferred to XXX address to a sub­
routine and the address of the next operand is
saved. When the subroutine has completed
execution, control must be transferred by a GO
TO 7Cl. This will provide the necessary linkage
for returning to the operand in sequence after
the CALL XXX. If the Call is to a machine lan­
guage subroutine then all that is necessary is a
BBL instruction in the machine language sub­
routine.

7.0 MACRO Instructions
Macro Instructions use the CALL instructions and

Development of a Portable Compiler 39

pass parameters through memory. These parameters
are placed in memory by the PCL Program. Each
routine will have dedicated locations in memory for
its parameters.
7.1 Timing MACRO

The standard time base for the system will be a
100 millisecond square wave generated by a
Real Time Clock and Control Module. This
MACRO will set a MEM-BIT which is tested
from the PCL Program and is also returned for
testing with the IF instruction.

7.2 Counting MACRO
Groups of up to 16 INL lines (Range 00-7F) can
be designated as counter inputs. For each
counter input there will be assigned two Mem­
Bits, one for system use and one to be tested by
the PCL Program. INL lines that are
designated as counter inputs can still be tested
using the IF statement. Multiple groups of 16
can be assigned up to the limit of 128 total accu­
mulations.

7.3 Analog Input MACRO
The Analog Input MACRO instruction will
input one of up to 128 analog points of either 3
or 4 BCD digits of precision. These analog
inputs will be stored in BCD Scratch Memory
for access by the PCL Program.

7.4 Analog Output MACRO
The Analog Output MACRO instruction will
output from BCD Scratch Memory onto one of
eight (expandable with special software to 128
channels) channels in either 3 or 4 BCD digits
of precision.

7.5 Pulse Accumulator or Frequency Monitor
MACRO
This MACRO will allow the PCL Program to
Reset, Restart, or Read the Pulse Accumulator
or Frequency Monitor (PAFM) Module. Each
of these modules contains two channels of
PAFM. The data from the PAFM module
would be stored in the BCD Scratch Memory.
Multiple modules can be used up to a total of 5
channels at this time and up to 16 channels as a
future option.

7.6 Time of Day Clock MACRO
This MACRO will allow the PCL Program to
Set the Clock or Read the Clock. Data to be Set
will be in Scratch Memory. Data read will be
stored in Scratch Memory. The time of day
clock module is capable of keeping time in
either Centelis or Syderial time. System time
displays are available using the OBCD com­
mand and 6 digit display.

7.7 Quadrature Encoder Input MACRO
This MACRO allows the PCL Program to read
the Quadrature Encoder Input module for use
in positioning systems. The BCD data is stored
in the BCD Scratch Memory.

40 National Computer Conference, 1975

BIBLIOGRAPHY

1. Intel Corporation, MCS-4 Microcomputer Set Users Manual, Intel
Publication MCS-042-374, March 1974.

2. Intel Corporation, MCS-8 Microcomputer Set, 8008 8-Bit Parallel
Central Processor Unit Users Manual, Intel Publication MCS-056-
0574,1974.

3. Comstar Microcomputers, The Warner & Swasey Co., Comstar
System 4 Reference Manual, Publication 0973-7020, September,
1973.

4. Comstar Microcomputers, COMSTAR System 4 Process Control
Language Programming Manual, Publication 0574-7060, May 1974.

5. Comstar Microcomputers, COMSTAR System 4 Compiler Hardware
Reference Manual, Publication 1173-7050, November, 1973.

Microprocessors in CRT terminals

by JOHN WHITING and SANDY NEWMAN
Beehive Medical Electronics
Salt Lake City, Utah

INTRODUCTION

The recent introduction of integrated circuit micro­
processors has produced a new variety of CRT ter­
minal-the firmware terminal. The firmware terminal in­
corporates a microprocessor to control data flow, using a
control program supplied by the terminal manufacturer in
Read-Only-Memory. Priced only slightly above hardwired
editing terminals, it can perform far more complex func­
tions, assisting both the operator and the computer system
into which it is connected. It is priced well below the user­
programmable terminal which requires magnetic storage
for program and a much higher level of sophistication
from both the sales force and users.

WHAT IS A CRT TERMINAL?

The CRT computer terminal is one of a variety of
devices used to communicate with computers. It is distin­
guished by using a television screen (CRT) for presenting
computer data to the human operator, rather than using
an electric typewriter, loudspeaker, flashing billboard or
other device. Messages appear on the screen as several
lines of words, much as they would appear on a typewrit­
ten sheet of paper; a common format is 25 lines of 80
characters each, including spaces. Punctuation marks,
numerals, and other symbols may appear as well as upper
'and usually lower case characters.

The operator inputs data through a keyboard much like
a typewriter keyboard. Keyboard data may go directly to
the computer, but more commonly is temporarily stored in
the memory used for the display. Thus the message
entered from the keyboard appears on the CRT screen
just as it would if it were being typed on paper by a
typewriter, but with several advantages. For one, changes
can be made by simply backing up the cursor, which
marks the point at which data is entered, to the point to be
corrected, entering the correct data in place of the incorrect
in the display memory, and then moving the cursor back
to wherever data entry left off. For another, if the change
requires inserting or deleting characters or words, the ter­
minal can shift characters following the change either
right or left to make additional room or close up space as
necessary, even though this may involve moving entire
words from one line to another. Then, since the message is

41

stored as digital codes in the display memory, it can be
transmitted to the computer on command without the
need for converting printed characters with an optical
reader.

The fundamental elements of a CR T terminal are
shown in Figure 1. Data comes into the terminal either
from the keyboard or from the serial port. The serial port
sends and receives data to a computer mainframe as a
serial stream of digital bits, at rates up to 1200 characters
per second. (If the mainframe is located very far away, a
device called a data set translates the digital data into au­
dible tones to be sent over telephone lines to a second data
set which translates the tones back into digital data.) The
control logic reads/writes display memory data at the lo­
cation defined by the cursor control. The cursor advances
as characters are written and'can also be moved about by
control codes from either the keyboard or the computer.
Separate character generation circuitry is used to directly
access memory data and translate it into dot patterns to
drive the CRT. The circuitry must rewrite the characters
on the CRT 50 to 60 times a second to maintain a flicker­
free display, so high-speed circuits are used for this func­
tion. Relatively slow-speed circuits can be used for the
control logic which performs a far wider variety of func­
tions, some of which may be very complex, depending on
the application.

WHAT A MICROPROCESSOR CAN DO

A microprocessor with its associated program memory
and interface circuits can be used very effectively in place
of hardwired control logic to pass data between the key­
board, serial port, and display memory. In this position, it
can intercept and interpret codes as they are received,
storing characters in memory and executing control func­
tions as necessary. It can also manipulate data in the dis­
play memory and format messages to send to the
mainframe. Not only does this make feasible the execution
of much more complex functions than possible with
hardwired logic, it reduces the cost and time required to
modify terminal functions for special applications. Since
the hardware is unchanged by such program modifica­
tions, extensive retesting of the terminal design is not re­
quired, reliability and serviceability are unaffected, and
all terminals of a given hardware type can be manufac-

42 National Computer Conference, 1975

KEYBOARD
SERIAL
PORT

CONTROL LOGIC

(MICROPROCESSOR)

CURSOR
CONTROL

DISPLAY
MEMORY

CHARACTER
GENERATION

Figure I-CRT terminal block diagram

tured on the same production line with the specialized
program installed only after initial testing is completed.
Thus, small quantity special orders can enjoy many of the
mass production advantages of a standard product and yet
have many specialized functional characteristics.

For example, a keyboard whose keys are coded to be
teletypewriter compatible can be made typewriter com­
patible by changing a few keycap legends and translating
the codes received from those keys with the micro­
processor. Function keys can similarly be moved around
on the keyboard by moving the corresponding addresses in
the firmware table used to locate the function routine.
Functional modifications are also straightforward. For
example, a call to the Cursor Down subroutine can be
inserted in the Carriage Return routine to make the
Return key do both a Return and Line Feed, and the Skip­
Cursor Right key sequence may be changed to move the
cursor right by 20 positions instead of 16 by simply chang­
ing a numerical constant in the program.

The ability of the microprocessor to give specialized in­
terpretation to both functional controls and displayable
graphics originating from the keyboard also applies to
codes sent from the central processor. Thus, the special
codes which cause portions of the display to blink or to
display black characters on a white background rather
than white on black for emphasis may be transmitted over
the communication lines as a two-code sequence but stored
in the display memory as a single code. Code sequences
may also be used for control functions and setting cursor
positions, margins or tab locations, with the micro­
processor translating numeric data between binary and
decimal or other code formats.

In multi-drop polling networks the microprocessor can
carryon interactive exchanges with the central processor.
These can be very simple exchanges or quite complex, ac­
cording to the requirements of the system. For example, a
start-of-header code, an identifying address code, and a
single status or command code may form the entire

message, or the format can be expanded with preceding
codes for word synchronization, multiple address and
status codes, terminating codes and error check codes. The
terminal might transmit only on operator command, or
the central processor may be able to interrogate the ter­
minal to find out whether the terminal is on-line or off­
line, dumping data to a slave printer, actively entering in­
formation from keyboard, waiting to send data or waiting
for a reply. Since the terminal program has complete con­
trol over message format, many different systems can all
use the same terminal hardware.

The microprocessor can also control some of the com­
munication signal lines directly; and when the interface is
designed appropriately, it can be programmed to
cooperate with other terminals in a serial string (daisy­
chain) to a single data set or computer port for increased
efficiency and reduced cost. As a general rule, the micro­
processor should have as much control as possible over
data flow and logic signals but timing controls such as
Clear-to-Send delays are best handled by hardware which
can be adjusted as necessary at each installation.

One of the most complex functions performed by the
better hardwired terminals is the Delete Line, where a
counter is employed to delete all 80 characters on a line of
text; a microprocessor can use an internal register for the
same purpose. Besides repetitive functions, such data-de­
pendent functions as Delete Sentence can be performed,
with the microprocessor deleting all characters between
any two sentence delimiters. A variety of algorithms may
be used to maintain word integrity and adjust column
widths, giving special treatment to hyphens and other
formatting codes. The microprocessor can search through
the display memory data to locate all instances of
whatever word the operator wants to find for correction or
verification. In an accounting application, a column or row
of numbers could be summed by even simple micro­
processors, but more difficult calculations may be better
handled by either the mainframe or a $20 pocket calcula­
tor. Other special functions use the microprocessor's ac­
cess to the mainframe as well as to the display memory to
take advantage of a centralized data base.

Terminal functions to be performed on command from
the mainframe should generally be executable in one or
two milliseconds at most, corresponding to the time re­
quired to transmit data codes over fast serial communica­
tion lines. Fortunately, the data manipulations which take
long times for the terminal microprocessor to execute can
be performed within the mainframe before the text is
transmitted.

RAM VERSUS SHIFT REGISTER

The role of the cursor control circuitry depends on
whether random-access memory (RAM) or shift register
memory is used for the display memory. To write a
character into a RAM memory simply requires addressing
the matrix point and writing the code directly from the
data bus, a natural task for a microprocessor. But to erase

the entire memory with this direct approach requires
sequentially addressing approximately 2000 memory loca­
tions and writing spaces in them, a very time consuming
task for a microprocessor. Shift register memory is like a
garden hose full of marbles; for each character stored at
the input end of the memory, one character is pushed out
at the output. When each character output is put back
into the input, a memory is formed with sequential access
to memory characters. To change a character, the new
character must be put in the data stream in place of the
former character at just the right point in the memory
cycle, so the cursor circuitry must hold the new character
when it is output from the data bus, and identify the right
point in time to break it into the shift register data stream.
But to erase the shift register memory, it is only necessary
to stuff space characters into the input for one full cycle of
the memory. Other tasks involving sequential access of
many memory locations are insertion and deletion of
characters in text, skipping over protected fields, tabula­
tion by field, paragraph, or other text block and search for
Start-of-Message characters. The abundance of such func­
tions is a consequence of the sequential nature of the data
displayed on the CRT, itself derived from the sequential
nature of human thought. Thus shift registers are often
used for display memories despite the awkwardness of
writing single characters in them.

Both random and sequential access to the display
memory is possible with RAM memory supported by spe­
cialized hardware for handling those sequential addressing
functions which must be executed rapidly and with
minimal microprocessor support. How much specialized
hardware is required depends on what functions the
terminal must perform faster than the microprocessor can
do them. Such hardware can sequentially access currently
available RAMs nearly as fast as popular shift registers,
but adds to the cost and complexity of the terminal.
Another alternative is the use of RAM memory, organized
as many small record blocks linked by address characters.
While this uses some memory locations for the linking and
complicates display generation, it may be the most power­
ful and versatile scheme for an adequate microprocessor.
With the low cost RAMs and better microprocessors
recently made available, we expect to see changes from the
traditional use of shift registers in terminals.

CHOICE OF A MICROPROCESSOR

The speed required of a microprocessor to be used in a
CR T terminal depends largely upon the interface between
it and the display memory, and the demands of the ap­
plication. Conventional measures of processor speed, such
as time to add two numbers, are not particularly meaning­
ful here, as long as the microprocessor can identify and
respond to approximately 1200 codes per second, which
even the primitive 8008-1 microprocessor from Intel can
do (just barely). With a shift register memory, throughput
is usually limited by the time required to read characters
as the cursor is moved through memory. With a RAM

Microprocessors in CRT Terminals 43

memory the limitation is in sequential access tasks, such
as selectively erasing flagged data, unless either hardware
support is given to perform all required sequential ad­
dressing tasks, or the terminal specification can be written
around the microprocessor's limitations. (Since firmware
CRT terminals are usually sold as improvements over
hardwired, shift register memory CRT terminals, fast
execution of sequential tasks is generally assumed by
salesmen and customers alike.) Given adequate hardware
support, almost any modern microprocessor is fast
enough; without hardware support, look for microcoded
instructions to repeatedly read-swap-write and index in ap­
proximately one microsecond.

CRT terminals are very price-competitive, and the cost
of Read-Only-Memory for program storage invariably
exceeds the cost of the microprocessor itself, with
Programmable ROMs costing many times more. Since
memory cost is included in sales price, the instruction set
should be optimized for minimum memory utilization.
The Exclusive-OR instructions of the 8008-1 are very nice
for computing check characters and the even-odd parity
flag is used in the most speed-critical routines. Other fea­
tures which we have found useful are the logical and
arithmetic operations with the following 8-bit byte, and
especially the compare-immediate instruction. Since al­
most all routines executed in a CRT terminal application
are simple and short, conditional branch and subroutine
call instructions find heavy usage and relative addressing
is most convenient. Subroutine nesting goes four or five
levels deep at most and a LIFO stack for the program
counter is very helpful.

Interrupts are not needed as long as the terminal is do­
ing just one task at a time, as is often the case; however, in
polling systems where both the operator and the central
processor are sending data simultaneously, a reasonable
interrupt handling capability is almost essential. This re­
quirement also arises if the terminal is to both send and
receive data simultaneously, or is to pass data from the
central processor to a slave printer while continuing
normal keyboard service. Thus the terminal application as
well as the hardware design affect the choice of a micro­
processor from among the many available.

WRITING TERMINAL CONTROL PROGRAMS

The need for specialized hardware to debug programs
and program PROMs confines the writing of programs to a
few specialists at the factory and sophisticated OEM cus­
tomers. Consequently, machine language is used and
description of the hardware-software interface is largely
word-of-mouth between the hardware designers and the
programmers, which makes it even more difficult for out­
siders to do their own programming.

The first step in modifying a program is understanding
what is required and how the terminal is to be used. Then
the routines which are affected by the change must be
identified which presumes knowledge of the methods and
structure of the program. Register usage in particular

44 National Computer Conference, 1975

JI

®
GND

(0
+5V

~8
6) 8,M,E.I,

Figure 2-8008 microprocessor control panel

must be understood, since temporary data cannot be
stored in PROM memory and scratchpad space is limited.
Familiarity with the hardware devices to be used in execu­
tion of the function is presumed, including worst case tim­
ing for access to hardware indicators following a change of
state. Following coding of the change, it must be debugged
and some means of testing it provided, usually at the cus­
tomer's site. Finally, the change must be documented so
that it can be duplicated or modified in the future.

DYNAMIC DEBUG

The problem of dynamic debugging is complicated by
the fact that the microprocessor has no independent status
indicators other than the display of the terminal being
debugged. Three solutions to this problem are: replace the
microprocessor chip directly in the printed circuit board
with a black box version of the microprocessor incorporat­
ing a control panel; simulate the microprocessor on a mini­
computer; or write a program debug to be resident in
memory alongside the terminal controlling program.

Microprocessor control panel

Figure 2 shows the control panel of a black box used in
place of an Intel 8008 microprocessor. It plugs into the
microprocessor socket through an umbilical cord and
contains an 8008 chip interfaced with latches and timing
circuits to permit either single stepping of instructions or
normal execution to a breakpoint address. LED's indicate
address and bus data as well as machine cycle type and
status flags. The breakpoint address is specified by toggle
switches, as is a data byte which may be substituted for
bus data. This substitution capability is very useful in
debugging hardware with repeated execution of an instruc­
tion, as well as in correcting instructions or modifying data
while single stepping through a program. The main
drawbacks of the black box approach are that substitu­
tions must be inserted by hand each time the program en-

counters the bad byte, and only one breakpoint can be set
at a time. The advantages are the real-time execution,
straightforward single-stepping, economy, portability and
universality of application in any 8008 system.

Simulator

Execution of a microprocessor instruction set can be
easily simulated within a minicomputer by interpreting
each program step and imitating its execution. However,
input and output instructions which control a terminal's
internal devices can best be simulated by passing these
instructions to a terminal programmed to recognize the
command, cause it to be executed and reply with an ac­
knowledgment which includes data from input instruc­
tions. This combines the power of minicomputer simula­
tion and normal control of keyboard, display, and other
internal devices, except for the serial transmitter and
receiver. The disadvantage of this approach is the slow
simulation speed of I/O instructions, since five serial
codes must be passed for every I/O instruction executed.

The console display of a simulator for a Super Bee ter­
minal using the Intel 8008 microprocessor is represented
in Figure 3. It shows a program halted at location 650
prior to executing a 117 (INPUT device 7) as indicated by

PC DATA
00650 117

RCVR
127

CZSP
1000

ABC D E H L
000 120 063 000 003 003 122

BR EA KPOI NTS
00060 03153 01120 10005
RTN STACK

00047 01000 01123 00421 02351

Loc. Memory

00641 007 - TRACE BUFFER-

00642 316 00644

00643 007 00044

00644 006 00031

00645 002 00047

00646 111 00047

00647 330 00657

00650 *117 * 00644

00651 273 00044

00652 140 00031

00653 262 00047

00654 001 00047

00655 024 00657

00656 030 00644
006~7 043 00044

00031
00047
00047

01403

Figure 3-Microprocessor simulator display

00000

the Data field. The condition flags set by the last
arithmetic operation are all low (not zero, no sign and odd
parity) except for the carry indicator, which is high. The
contents of each register, A, B, C, D, E, H, and L are as
shown on line 4. Four breakpoints have been set at 060,
3153, 1120 and 10005, which halt execution and cause the
console display to be regenerated if they are encountered
during execution. The RTN stack is a last in first out
(LIFO) stack of return addresses. The contents of memory
from 641 to 657 are displayed. The trace buffer records
the branches of a program. Given is an example of
repeated execution of a short service loop. The last jump
was to location 644 (top of the stack) and originated from
location 044. The program arrived at 044 by sequential
execution from 031. The program jumped from location
047 to 031 and arrived at 047 by returning from 657. The
top of RTN stack indicates that the next return will also
be to location 047, repeating the sequence as seen below in
the trace buffer.

Each of the items on the console display may be
modified from the console keyboard at any point in the
execution of the program. Additional keyboard functions
available by single key depressions at the console are
Single Step, Program Run, Examine Contents at PC,
Modify Contents at PC, Read Paper Tape, Examine Trace
Buffer, and Punch Paper Tape. A control "T" from the
cons{)le may be used to halt program execution. The Carry
switch on the minicomputer control panel causes
characters from the console keyboard to be interpreted as
serial inputs to the terminal as if from a mainframe and
are shown in the RCVR field of Figure 3.

This system eliminates the nuisance of erasing and
reprogramming PROMs for program development, since
the program stored in the minicomputer memory can be
easily modified from the console. Overlay techniques can
be used to modify blocks of programs, which is particu­
larly useful in changing routines and polling protocols
when isolated as stand-alone items. The addition of pe­
ripheral memory allows a program to be assembled, exe­
cuted, modified, debugged and punched into PROM
programming format without leaving the control console.
Of course, this is not a portable system and the long execu­
tion time of I/O instructions (about 400 times normal)

Microprocessors in CRT Terminals 45

restricts testing of functions whose speed and efficiency
depend on multiple display memory operations. However,
the slow execution enhances visualization of complex or
extended display functions.

Resident debug

If memory space is available in the terminal, a resident
debug program may be written which can either single
step or run the terminal control program to breakpoints.
This debug program must share the CRT display with the
terminal program, either by allocating a portion of the
screen to the debug program or by swapping terminal data
in and out of auxiliary RAM memory to make room for
the debug display. When the same RAM is used for
storage of the terminal program, substitutions can be
quickly and easily made and breakpoints may be inserted
to return program control to the debug program; but
means must then be provided to load the terminal
program into the RAM from the assembly system.
Register contents, memory contents, program counter,
breakpoints, return stack and status flags can be
displayed and modified if the necessary Push and Pop
instructions are available (as on the Intel 8080, but not the
8008). Care should be taken to avoid placing breakpoints
or starting execution in the middle of the multi-byte
instructions. Such a debugging system has the advantages
of executing a self-contained program at real-time speeds
with normal access to I/O devices, albeit in a modified ter­
minal.

SUMMARY

We expect to see accelerated growth in the utilization of
firmware CRT terminals as users become more familiar
with their advantages and capabilities. By taking ad­
vantage of terminal capabilities in systems design and
assigning to the terminal those tasks which it can best
perform, system throughput can be maximized, while
operator-related functions can enjoy the flattery of dedi­
cated processing.

Designing an application oriented terminal

byJ. P. KOHLI
NCR Corporation
Dayton, Ohio

INTRODUCTION

Application oriented Terminals have been around for
quite some time and traditionally they have been hard
wired. The approach, however, has been changing recently
due to the availability of low cost RAM memory and
microprocessors. The main reason for the trend is that al­
though the hard wired Terminals cost less, they do not
provide or have the flexibility a customer is provided with
a programmable Terminal. However, the cost of program­
ming becomes an important consideration and will vary
depending upon what data is available with the Terminal
to aid the programmer. In designing the Banking Ter­
minal, Honeywell used a combination of the traditional
hard wired implementation approach and the complete
programmability approach. Honeywell also provided for a
COBOL type "FITAL" (Financial Terminal Application
Language) user level language for the customer, to aid
programming the transaction sequences which allowed the
customer to reduce programming cost. The limited
programmability approach reduces the amount of
programming, while it does not sacrifice flexibility
available to the customer to tailor the Terminal transac­
tions to suit his requirements.

This paper presents the Honeywell design approach by
describing:

1. Bank Teller Terminal 7340 and its features.
2. Operation of the Terminal.
3. Firmware/RAM Architecture of the Terminal.
4. Real Time Processing Considerations in the

Firmware Design.
5. Customer Programming in RAM.
6. Programming Aid to the Customer (FITAL Lan­

guage).
7. Conclusions-Advantages and disadvantages of using

the Honeywell approach versus hard wired or com­
pletely programmable terminal design approach.

TERMINAL DESCRIPTION

Bank Teller Terminal (BTT 7340) is a data entry device
designed to be located in a teller window to record and
control transactions in a banking environment. The Ter­
minal logs transactions an<;l prints on a passbook and a

47

journal through real time communications to a computer,
thus aiding the teller in accepting and processing transac­
tions. The transaction sequence is customer program­
mable and is loaded in the Terminal memory through the
communication line via the host processing facility. The
Terminal has on-line/ off-line diagnostic modes. It is a self­
contained unit and does not require a separate controller.
Some of the salient features are described below and
shown in Figure 1.

(a) Keyboard-Used to enter transactions from the
Terminal. Includes alpha, numeric, and program­
mable functional key capabilities.

(b) Printer-160 column printer is used for printing the
Journal (audit trail of transactions), passbook, and
customer receipt.

(c) Status Lights-Ten indicator lights that indicate the
status of the Termini! and the communication line
at any given time.

(d) Mode Switch-Used to control the Terminal mode
(On-line, Off-line, or Diagnostic mode).

(e) Tutorial Lights-Up to 28 programmable indicator
lights that can be interlaced with the transaction se­
quence providing tutorial lead-through to the teller
and/ or providing a pictorial history of keyboard ac­
tion while entering a transaction.

(f) Dynamic Data Display-A 32 character alpha/nu­
meric display allows display of keyboard entry and
editing and provides up to eight 32 character lines
for forms fill-out or Inquiry display via communica­
tion messages.

(g) Booking Keys-Provide for teller identification
when booking the Terminal.

TERMINAL OPERATION

During power tum on a sequence of hardware reliability
checks are performed automatically. If the checks pass,
the Terminal is ready to accept the user program tables
via communications with the central processor or a back
up Load Cassette Unit. Once the tables parameters are
loaded, the table processor in the Terminal ROM memory
processes the tables. Each table contains information for
illuminating tutorial lights, performing specific terminal
functions and address of the next table to be processed.

48 National Computer Conference, 1975

PRINTER
(b)

KEYBOARD
(a)

() - See Description of the Terminal

Figure I-Bank teller terminal-7340

BOOKING
KEYS

(g)

MODEL
SWITCH
(d)

There are twenty-four different types of tables available to
the user. To aid the user, a COBOL type language
"FIT AL" is available for programming the various ter­
minal functions.

TERMINAL FIRMWARE/RAM ARCHITECTURE

The heart of the Terminal is the Basic Logic Unit
(BLU), a Honeywell developed microprocessor which has
been used in a number of other Honeywell Terminals.
Figure 2 shows the overall architecture of the Terminal.
The hard wired programming in ROM (firmware), the cus­
tomer programming of loadkble list processing type tables
in RAM, the standard interrupt and Input/ Output inter-

READ ONLY
MEMORY
(ROM)
FIRMWARE

READ WRITE
MEMORY
(RAM)

COMMUNICA­
TIONS TO/
FROM CENTRA
PROCESSOR/
DATA CAPTUR
CASSETTE

Figure 2-Firmware/RAM architecture of the terminal-BTT 7340

1. Communications control procedure for interface with the

Host Processor.

2. Loader and processor for the RAM tables.

3. various Terminal Input/Output functions; i.e., open passbook

door, print passbook, buffering keyboard inputs, interface

Data Display, etc.

4. Reliability checks and test & diagnostics for the Terminal.

5. Add routine to perform various adding, subtracting functions.

6. Reset capability for the Terminal.

7. Auto insertion of decimal point and right justified printing

of amount fields.

Figure 3-Functions programmed in ROM

face of the microprocessor, through the Device Oriented
Electronics (DOE), help drive the Terminal. The logic to
process the customer tables and specific processes unique
to the Terminal are in the ROM; the customer program­
mable parameter tables are loaded in RAM. In addition to
the tables, subroutines may be written in BLU machine
language to achieve functions beyond those provided by
the tables. For the microprocessor, ROM, and RAM are
interchangeable and, therefore, the question becomes one
of which functions of the Terminal should be in ROM and
which functions should be stored in RAM. Obviously
programming the Terminal functions in ROM is cheaper
but not flexible; whereas providing them through user
parameter tables is more expensive but allows the user
control of the transaction sequences per his needs.
Therefore, the major consideration in deciding between
ROM and RAM was that the customer should be able to
program the Terminal per his requirements with a
minimum of programming. Subsequently, all the Ter-

1. Transaction Sequences and Responses

2. Functioning of Tutorial Lights during Transactions

3. Formats for Journal, Passbook, Receipt and Validation

Printing

4. Ability to Override Terminal Messages from the CPU

5. Ability to use Mode Switch, Function and Booking Keys

in a desired way

6. Ability to use Customized Account Number Verifying Routine

(check digit)

7. Ability to Load and Call Special Routines

8. Interpretation of Function Keys

9. Specifying Fields as Alpha/Numeric or Numeric Only

10. Checking of Acceptable Field Length

Figure 4-Functions available in RAM through programmable tables

minal features that are fixed and unique to the Terminal
(For Example: Opening the passbook door, moving the
carriage, causing the print head to operate, communicat­
ing with the processor, test and diagnostics for Terminal,
etc.) are programmed in ROM. However, controlling the
sequen<lt! of steps within a transaction, formats of printing
on passbook and Jo'urnal, selected illumination of tutorial
lamps and interpretation of function key codes, etc., are
considered programmable and are stored in RAM by the
user program. These programmable functions are pro­
vided to the customer by list processing type program
tables. There is a table processor in ROM that processes
these RAM tables after the customer has loaded them into
the Terminal's memory. The customer programs these
tables per his banking environment using "FITAL" lan­
guage and associated compiler and then loads them into
the Terminal's memory through the use of a loader (also
programmed in ROM). Figure 3 shows the various Ter­
minal functions programmed in ROM. Figure 4 lists the
Terminal functions available to the customer through the
use of the program tables.

REAL TIME PROCESSING CONSIDERATIONS IN
THE FIRMWARE DESIGN

The Terminal is designed to communicate with the host
processor during transaction processing in real time. In ad­
dition, while communicating with the host processor, key­
board data may be entered and the printer may be acti­
vated. Since these functions involve simultaneity of opera­
tions for the Terminal, a mini-operating system in
firmware was designed to handle these independent
parallel Terminal operations. The design includes a
central executive which processes five subexecutives in par­
titional segments as shown in Figure 5. The choice of five
subexecutives and the amount of partitional segments to

APPLICATION
SUBEXEClJfIVE

(5)

PRINTER
SUBEXECUTIVE

(4)

COMMUNICA­
TION
SUBEXECUTIVE

CENTRAL
EXEClJfIVE

TIME OUT
SUBEXECUTIVE

(3)

Figure 5-Firmware executives

KEYBOARD
SUBEXECUTIV

(2)

Designing an Application Oriented Terminal 49

/
/

{

WAITING FOR "END OF TRANS." KEY
ALLOWS OPERATOR TO "VOID" TRANSACTION

/ IF DESIRED.
/

tNOTE: PROCEED COULD HAVE OCCURRED FOR
TERMINAL OFF·LlNE OR CP COULD HAVE SENT

/ A PROCEED MSG.

LINE FEED JOURNAL
)-----.:----.t PRINT ALPHA/

NUMERIC FIELD.

Figure 6-Transaction Flow Chart Example

be executed each time, was dictated by parallelism in
operations and the speed of operations; e.g., communica­
tion line can communicate up to 4800 baud synchronous,
printer can print characters at the rate of 20
characters/ second, the keyboard data can be entered at 10
characters / second.

Functions that different subexecutives perform are as
follows:

1. Communication Executive
Performs the loader function for loading customer
programmed tables in RAM and provides for communi­
cation to and from the host processor.

2. Keyboard Executive
Performs keyboard functions of receiving and storing
keyboard data to be processed by the application
executive.

3. Time Out Executive
This executive continuously checks for the expiration of
various time outs that may be set by printer or applica­
tion executives. It signals the completion of the time
out to the other executives.

4. Printer Executive
Performs all the printer functions of printing on the
Journal and the passbook.

5. Application Executive
Performs the rest of the execution for the Terminal

50 National Computer Conference, 1975

which includes:

(a) Processing the customer program tables in RAM.
(b) Performing various terminal activities such as

passbook control functions, processing data
received from communication and keyboard execu­
tives, providing data to the printer executive, dis­
playing terminal status, etc.

(c) Test and diagnostics for the Terminal.
(d) Power on initialization and reliability checks on

the Terminal.

The central executive keeps the Terminal performing a
number of activities in parallel by executing each of the
above described programs in partitional segments.

CUSTOMER PROGRAMMING IN RAM

The customer programs the transaction sequences, tu­
torial lights, Journal and passbook printing formats, etc.,
through the use of program tables. In addition, a number

• IEOUENCE NUM"EII

•

of loadable BLU executive routines provided by
Honeywell can also be loaded and called by the tables.
These routines can be written for the user thus providing
special function capability; e.g., a check digit routine on
account number field may use the user's algorithm to vali­
date the account number in a transaction. Since~the func­
tioning of the Terminal components has been programmed
in firmware, the user is left with the programming that de­
termines sequence and formats of transactions per his re­
quirements. This helps reduce customer programming ef­
fort considerably, while not sacrificing flexibility.

PROGRAMMING AID TO THE CUSTOMER
(FITAL LANGUAGE)

In order to make user's programming and debugging ef­
fort still easier, Honeywell provides him with a COBOL
based higher level application oriented language called
"FITAL" and an associated "FITAL" compiler. "FIT AL"
compiler is written in Cobol and runs on Honeywell 2000
and 600 Series. The language is COBOL "like" such as the

PAlE 0001

BIIINNING ADDRESS ITT CODING

•
OOOOlD
000020
000030
000040
000050
000060
000070
000080

• •
IDENT.rICATION DIVISION,

PROiAAH WAJTTEN 'Y GEO, MLINE
DATE • .tUI.Y 23, 1973

'BOGAIH-ID, A,

•
•
•
•
•
•
•
•
•
•
•
•
•
•

000085
000090
00009,
000100
000110
000120
000130
000140
0001!l0
000160
000170
000180
000190

SEQUINCE NUMIIER

000200
000210
000220
000230
00OZ40
000245
000250
000260
000270
000280
000190
00031.'0

• · • •

• • •

•

•

· •

EWVIAiNH6NT DIVISION,

MOUAee ~ISTING-·--.·.-.&NVIRONMkNT DIVISION

T~AMI!!AL SECTION,
TIPE is i,
HIHOAf-SIZE IS 2,

KeIBOA~O-TYPi IS 2,

TUTOAfAI. SeCTION,
'SSI~N-TO AeNTL TME-ACCOUNT-NUMBEA-TUTORIAL-~IGHT 1,

AiSIG~-TO ENOL THe-eND.or-TRANSACTION-TUTORIAL-LIGHT 2,

IOURCE LISTING·· ••• ···.DATA DIVISION

CgNST,~T SECTION,
A,SIGU-TO TMAE! AN·ASCII·V'LUE-O'-NEr 33,
A'SIG~-TO PLVSKEY AH-AIcll-VALUE.O,·HEX 21,·
AiSl~~-TO ENDKEY AN.ASCII.~ALUE·O'-HiX 3D,
D~SCA.PTQR SECTION,
L~'~Eg, PA1~T-DISPLAY,

LI"lEfEED,

PHoceuvRE DIVISION,

Figure 7 -Sample program listing for FIT AL

PAGE 0002 ...
BElINNING ADD"ess an COD.ING

.IOINNING ADDMESS In CODING

Designing an Application Orie:nted Terminal 51

• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

SEOUINCI NUMIIU

00030'
000310
000320
000330
000340
OOOUO
000360
000310
OOOSlo
000390

000400
000410
000420

0004~0
000440
0004'0
000460

000470

0004eO
000490
000'00

0004

,OU"CI 10 ISf INC--•• _ •••• PAOCIiDuU DIY Is I ON BESINNINC aDDRESS IITT CODllliG

DICI,'I!AT I vl!S ,
TEI.t.EA.a GO TO IIOOIC"
Tl:I,I.EAeil GO TO GO IDLE.
TfLIoEA-C GO TO GO I OLE,
TELI.EA-D GO TO GOIDL!!,
TfLI.,ER.S GO TO GO IDLE,
T~LLEA-r GO TO GOIDLE,
CPUeOV&RA I Or. GO TO CPMsa·,

EI10-0IiCI;4R,TlYU,

"OIC',
PAI~T-OISPL'Y.

LINEFEED.
PRI8T ''''-'-IN.POSITION 1,
CIfA~'Cn"'TO-BE.PAINTED-IS·'N '.
11I511AT CHAII'eTER THAEE,

TilT'" UI.-I, IGw' ON 'CNTL.

U'I"·'II!I,O.

~~~;~':S-ENTEAED 1"'·PRINT-POlntO,. ",. 

Figure 7-Sample program listing for FITAL (Continued) 

020' 

0000 ••••• • 
0000 ••• ••• 
0000 ••• ••• 
COIOL.E 
GOIOL.E 
GOIUL.1i 
GOIDLE 
GOIUL.E 
1l00KA 
CPHSQ 

0000 ••• ••• 
0000 ••• ••• 

001 2 •••••• 
0211 ••• ••• 
0141 ••• ••• 
0000 ••• ••• 
'000 ••• ••• .-.----.-.-... -.---.-

0211 
0000 ••• ••• 
0000 ••• ••• 330'······ 
021~h' ••• ' .-.----.-.-.. -_ ......... 

0215 
8000 •••• •• 
0000 ••• ••• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



52 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

National Computer Conference, 1975 

SEOUENCE NUMBEII 

000'10 
000'20 
000'30 
000540 
000"0 

OOOUO 
000"0 
000"0 
000"0 

000600 
000'10 

000610 
ooono 

000640 

'DUlle! I.IIT1NG ••••••••• PIIOCI!VUIII DIVIIION 

TtR"IN'rOR-IS PI.UIKE¥. 
CHA!!ACn~.TY"E ALPHAMERIC. 
"'.1 HUI1 NUI1BEA-O"-D I G ITS-ENTEIIED-IS 20, 
r I Iil.D. TYPE· I S ACCOUNT-NUMBER. 
TUl OR I'L.L I GHT ON ENOL, 

IIAIT 'OR INIl KEY OR LET TEl.LEII VOID TRANSACTION. 
seOVENeE, 
".KEY·U ENOKEY, SEND, 

StNII. TIIANSMIT, 

RICY, I' PROCEED-OVERRIDE GO TO )"L.N CPMSG. 

"'-IIINI! PROCESSING ,11I5T L.INE 'EED ,JOUIINAI. 
Of'I.N, PROCESS L.N,EED. 

PAle OOOt 

BElINNltiG ADDRESS In CODING 

0016 •••••• 
0210 •••••• 
210r •••••• 
1401 ••• ••• 
0000 ••• ••• 
'140 ••• ••• .... -----.-.----~-.-

DUD 
4000 ••• ••• 
0000 ••• ••• 

0402 •••••• 
0210 •••• •• 
30001 ••• ••• 
0000 ••• ••• 
0000 ••• ••• 
SEND ..... --..... ------.-

0225 
0000· •• ••• 
0000 ••• ••• 
001'······ 

022 9 •••••• • -.-.• _____ ._ .... _ .. -11-
0229 

0000 ••• ••• 
0000 ••• ••• 
000 4 •••••• 
OF"f'Llil 
CPI1SG 

022E 
0000.·.··· 
0000.·.··· 
0012 •••••• 

023~······ 
0000 ••• ••• 

Figure 7-Sample program listing for FITAL (Continued) 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

000"0 
OOOUO 

000.70 
OOOUO 

000"0 

• 

Designing an Application Oriented Terminal 53 

'OUltGi .. U'IN •••••• ···.~"OCI:DU"E OIVIIION 'IUNNI"I ADDIIESS ITT COOINO 

AC50UNT .NUPl8£1I IN·''' INT.I'OIP ION :SO. 
.0 I IILI:, IInUIlN-IDLE, 

'IIOCISS CI'U MESSAIE, 
C,,,,$O. I' ,Oll",$-"OT-'O"",I .0 TO ItECV. OOID .... 

Figure 7-Sample program listing for FITAL (Continued) 

0000··.··· 
2000.·.··· 

0235 
0000······ 
0000· .... • 

001 4 ...... .......... 
0211:· .. ••• 
1200 ... ••• 
G2l tJ •••••• 

0239 
0000.·.··. 

023E 

02 43 

0000 ... ••• 
002U ... ••• 

0000 ... ••• 
0000 ... ••• 
001 C •••••• 
GO IDLE 
RECY 

0000 ••• ••• 
0000.·.··· 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



54 National Computer Conference, 1975 

FUNCTION 

1. 

2. 

3. 

4. 

5. 

6. 

Flexibility in 
Customer Programming 

Customer Programming 
Effort 

Systems Effort in 
Prograrraning 

Modification of 
Terminal Design 

Loading the Terminal 
at Power On Time 

Speed of Execution 

HARD WIRED APPROACH 

Not Available 

None 

None 

Very Expensive 

Not Required 

Fast -No overhead 
of prograrraning exists 

COMPLETELY PROGRAMMABLE 
TERMINAL APPROACH 

Available 

Whole Terminal is to be 
programmed. 

Required in most cases. 

Can be programmed. 

.complete program has to 
be loaded in the 
memory. 

Relatively slow as all 
the functions have to 
be programmed in 
software. 

BANK TELLER TERMINAL 
7340 APPROACH 

Limited availability 

Programming kept to a 
minimum. 

None with the avail­
ability of FI~AL. 

Can be programmed 
using loadable 
executable routines. 

Due to the firmware, 
the amount of program 
to be loaded is much 
shorter than that for 
the programmable 
Terminal. 

Not as fast as hard 
wired, but fast enough 
to maintain Terminal­
Computer interface and 
Operator-Terminal 
interface without error 
or delay. 

Figure 8-Advantages and disadvantages of Honeywell approach versus hard wired/ completely programmable approach 

example shown below: 

FITAL program example 

Consider a simple program to accept a transaction from 
Teller A only, print A to identify teller, insert an ASCII 3 
into message to Central Processor (CP), accept an 
alpha/ numeric field of data from the operation, wait for 
END OF TRANSACTION key from the operator, and 
then if: 

• Off-Line-Print the field, then set Terminal idle 
• On-Line-Send message to CP, receive and process 

response from CP, then set Terminal idle. 

Operator transaction key stroke entry 

(Alpha/Numeric Field) 

Journal Printing Layout: 
(Printed at entry time from operator input) 

A (Alpha/Numeric Field) 
Position 1 Position 15 
(Printed in response to a PROCEED command received 
from the CP via the communication line) 

(Alpha/Numeric Field) 
Linefeed Position 10 

A transaction flow chart for the example above is shown 
in Figure 6. The program listing appears in Figure 7. 

CONCLUSIONS 

The Honeywell approach has provided a good compromise 
between a hard wired Terminal and a completely 
programmable Terminal. This has helped Honeywell 
provide a cost competitive Terminal with sufficient flexi­
bility for the customer to tailor the Terminal to his needs. 
The rationale used in the design has been that the cus­
tomer programming requirements should be kept to a 
minimum, restricted only to job oriented functions, while 
not sacrificing the flexibility to the customer. This was ac­
complished by fixing all real time and mechanism control 
functions in ROM while allowing user program control of 
all transaction related functions. 

Figure 8 summarizes some of the advantages and disad­
vantages of the Honeywell approach in comparison with 
the hard wired or the completely programmable terminal 
approach. Honeywell feels that the savings in program­
ming cost to the user and savings in hardware memory 
cost are sufficient to justify the minimal limitations in cus­
tomer programmability. 

ACKNOWLEDGMENT 

The author wishes to acknowledge H. K. Barger, R. L. Bi­
bles, M. Gilbert, G. H. Kline, A. F. Maggio, and G. B. 
Voelker for their valuable suggestions on the paper and 
Honeywell Information Systems for granting permission 
for presenting the paper. 



Designing central processors with bipolar 
microcomputer components 

by MARC IAN E. HOFF, JR. 
Intel Corporation 
Santa Clara, California 

Most first and second generation MOS microcomputer 
products used single-chip fixed-control central processors­
or used specialized mask-programmed ROM's which made 
user microprocessing very cumbersome. Today, a third 
generation of microcomputer products using bipolar 
technology has appeared. These new components may be 
used to build controllers and computer central processing 
units (CPU's) in which the control structure is micro­
programmed. By permitting microprograms in standard 
programmable ROM's, the bipolar microcomputer 
components offer much greater convenience for user 
microprogramming. 

One such family of bipolar microcomputer components 
is the Intel 3000 series, a set of components realized with 
Schottky TTL technology. The two most important cir­
cuits in this family are the 3001 microprogram control 
unit (MCU) and the 3002 central processing element 
(CPE). The MCU determines the sequence of execution of 
micro-instructions from the control memory, and provides 
carry logic. The CPE represents a two-bit wide slice 
through the arithmetic, logic, register and data bus por­
tions of a computer central processing unit. Several CPE's 
may be wired together to produce a central processing unit 
with arbitrary data bus width. For example, to produce a 
16-bit wide data path, eight CPE's would be used. 

Other members of the family include the 3003 fast carry 
chip, the 3212 input/ output register chip, and the 3214 
interrupt control chip. The control memory portion of a 
central processor or controller built with this family may be 
realized with standard field-programmable ROM's, mask­
programmable ROM's or read/write memory (RAM's). 

MICROPROGRAMMED CONTROL 

The central processing unit of a general purpose com­
puter contains: an arithmetic portion and a control por­
tion. The basic operation of the control portion, passing 
through a sequence of states which select the next instruc­
tion from memory, and then execute a series of subopera­
tions based on the instruction fetched, may be imple­
mented via random logic or by the use of a table in a con­
trol memory. The latter technique is referred to as micro­
programmed control. 

55 

The functions of the control portion of a micropro­
grammed-control central processing unit are very similar 
to the functions of a central processing unit. The terms 
"micro" and "macro" are used to distinguish the opera­
tions of the control unit from those of the realized central 
processor. The central processor, under the direction of 
micro-instructions read from its control memory, fetches 
macro-instructions from main memory. Each macro­
instruction is then executed as a series of micro-instruc­
tions. The main memory contains a macroprogram, while 
the central processor is defined by the microprogram 
contained in the control memory. 

Thus, within a microprogrammed machine, there are at 
least two levels of control and two levels of programming 
to be considered. The designer of the central processor is 
usually concerned with the· definition of the macro-instruc­
tion set and its realization as a microprogram. The final 
user of the central processing unit seldom needs to be 
aware that the CPU was realized using microprogram­
ming. A description of the macro-instruction set is usually 
sufficient for his purposes. 

The microprogrammed approach is useful for bipolar 
microcomputers because complex macro-instruction sets 
can be realized as sequences of relatively primitive micro­
instructions. The logic of the final macro machine remains 
relatively simple, with most of the complexity being 
represented by the contents of the control memory. 

When using the Intel bipolar microcomputer family, the 
3001 MCU implements most of the functions of a micro­
program control unit. When used with the 3002 CPE slice, 
the basic micro-instruction functions are established, al­
though additional logical elements drawn from standard 
TIL families may be added which will alter or enhance 
the micro-instruction set. 

DESIGNING CENTRAL PROCESSING UNITS 

The steps in the development of a microprogrammed 
central processor design are: 

1. Selection of the macro-instruction set 
2. Hardware design 
3. Writing and checkout of the microprograms 



56 National Computer Conference, 1975 

ENABLE ADDRESS EA 

LOOK AHEAD 

MAIN MEMORY 
ADDRESS 
A, AO 

DATA OUT 
0, 00 

I<------p-EO ENABLE DATA 

CARRY DUTPUTS ~ 1==========1 A'mH;~~~',~;~U"'C~=tj::tt:=t:CI CARRY IN 
CAR~lF~~J C,3 -<l RO RIGHT OUT 

MICRO-FUNCTION 
BUS 

MEMORY 
DATA 

IN 

EXT MASK 
DEVICE IN 

IN 

Figure 1-3002 CPE block diagram 

The most efficient designs will result from considering 
all three steps together to insure that the macro-instruc­
tion set formats are compatible with the microcomputer 
family members, and that operation-code formats result in 
the simplest microprogram flow. 

The macro-instruction set may be register or stack 
oriented, and may be original or a copy of another ma­
chine. In general, lower cost and higher performance will 
result when an original macro-instruction set is developed 
to use the microcomputer family features most effectively. 
In most cases the three special purpose registers and a few 
of the general purpose CPE registers must be reserved for 
microprogram "bookkeeping" operations. As a result, 
when realizing macro-instruction sets which use a large 
number of registers, an external register file will have to 
be added. If more than eight bits of operation code are 
used in a macro-instruction, the interpretation of the 
macro-instruction becomes more complex. In some cases, 
additional logic may have to be added to a basic hardware 
design. 

HARDWARE DESIGN 

A typical CPU built using the Intel bipolar microcom­
puter set will consist of an array of CPE chips, one MCU, 
and a control memory. The array of CPE chips realizes 
the arithmetic and logical functions and registers of the 
CPU, while the combination of MCU and control memory 
realizes the control portion. 

The CPE array realizes ten general purpose (RO-R9) 
and three special purpose registers (MAR, AC, and T), 
each with a width equal to the array width (i.e., 16 bits 
wide for eight CPE slices). The array can be wired for rip­
ple carry operation or may use the 3003 look-ahead carry 
generation. 

The CPE array has six buses for communication with 
external circuitry. (Figure 1 shows a block diagram of the 
CPE slice.) Four of the buses are used primarily to com­
municate with memory and I/O devices while those 

remammg, the function control bus and the control 
memory data bus, enable the control portion of the 
processor to drive the CPE array. The seven-bit wide func­
tion control bus is driven by outputs from the control 
memory to force the CPE array to execute the desired 
operation. The control memory data bus (also referred to 
as the K-bus) allows the control memory to supply 
constants and masks to the arithmetic array. 

In effect, the K-bus increases the effective number of 
microfunctions executable by the CPE array. For 
example, data loaded into the CPE array from memory 
may be masked by the K-bus. In other operations, involv­
ing the AC and a general purpose register, the K-bus can 
mask off the AC register. Thus if the K-bus is all zeros, the 
AC does not contribute to the result. The K-bus may also 
be added to any register. 

Although the K-bus is potentially the same width as the 
other data buses, the number of masks and constants used 
in a typical CPU is usually small enough that fewer bits 
are needed. Often several K-bus inputs can be connected 
together and driven by a single control memory output 
line. 

The actual microfunctions implemented by the CPE are 
listed in Table I. The micro function standard mnemonics 
for both K-bus equal to all zeros and K-bus equal to all 
ones are also shown in Table I. For other values on the K­
bus, the mnemonic for an all-one K-bus is used. 

The microprogram control unit establishes the micro­
instruction execution sequence as a function of three data 
sources: a seven-bit wide field in the control memory, 
carry logic within the MCV which communicates with the 
carry circuits of the CPE array, and macro-instruction 
operation codes. Figure 2 shows a block diagram of the 
MCU chip. To permit the microprogram control unit to 
determine the operation code portion of the macro-instruc­
tion being executed, an eight-bit wide path is provided 
from the memory data bus to the microprogram control 
unit chip. This path allows the microprogram control unit 
to examine eight bits of the operation code portion of the 

INTERI1UPf 

~~~~~i 

ENABLE
ROW

ADDRESS

AC5~~
NEXT -+-

ADDRESS AC3 -+---~
FUNCTIDN

FLAG
LOGIC

CONTROL

flAG flAG PRIMARY
OUTPUT LOGIC INSTRUCTION

CONTROL BUS

SECONDARY
INSTRUCTION

BUS

Figure 2-3001 MCV block diagram

PR2 PROGRAM
PRl LATCH
PRO OUTPUTS

Designing Central Processors with Bipolar Microcomputer Components 57

TABLE 1--3002 CPE Microfunctions

Function Bus Logic Function Mnemonic Mnemonic

f6fSf4f3f2f1fO (K-Bus = 1) (K-Bus

000XXXX2 R+(ACAK)+CI+R,AC ALR ILR

000101X2 M+(ACAK)+CI+AT AMA ACM

000111X2 Shift Right AT for K=O - SRA

001XXXXI KV R+MAR, R+K+CI +R DSM LMI

001101X2 KVM~,M+K+CI+AT LDM LMM

001111X2 (AT VK)+(ATAK)+CI+AT DCA CIA

010XXXX1 (ACAK)-l+CI+R SDR CSR

010101X2 (ACAK)-l+CI+AT SDA3 CSA

010111X2 (!AK)-l+CI+AT LDI -

o 11XXXX1 R+(ACAK)+CI+R ADR INR

011101X2 M+ (ACAK) +CI+AT - -
011111X2 AT+(IAK)+CI+AT AlA INA

100XXXX1 RA.(ACA.K)+R ANR CLR

100101X2 MA(ACAK)+AT ANM CLA3

100111X2 RA(IAK)+AT ANI -

101XXXXI I KAR+R TZR -
101101X2 I KAM+AT LTM -
101111X2 KAAT+AT TZA -

110XXXX1 RV(ACAK)+R ORR NOP

110101X2 MV(ACAK)+AT ORM LMF

110111X2 ATV(IAK)+AT j ORI -

111XXXXI R$(ACAK)+R XNR CMR

111101X2 Me(ACAK)+AT XNM LCM

111111X2 AT'tT(IAK)+AT XNI CMA

1. XXXX = 0000 to 1001 to select R = R0 to R9, 1100 for R = T,
1101 for R = AC.

2. X = 0 for AT = AC, X = 1 for AT = T.

= 0)

3. SDA and CLA are the same as SDR and SDA respectively, except only
AC or T may be used.

I
I
I

58 National Computer Conference, 1975

TABLE II-MeV Jump Microfunctions

Mnemonic Description Function Next Row Next Column

AC6 5 4 3 2 1 0 MAs 7 6 5 4 MA3 2 1 0

JCC Jump in current column 0 0 d4 d3 d2 dl dO d4 d3 d2 dl dO m3 m2 ml mo

JZR Jump to zero row 0 1 0 d3 d2 dl dO 0 0 0 0 0 d3 d2 dl dO

JCR Jump to current row 0 1 1 d3 d2 dl dO 1118 m7 m6 ms m4 d3 d2 dl dO

JCE Jump in column/enable 1 1 1 0 d2 dl dO 1118 m7 d2 dl dO m3 m2 ml roo

JFL Jump/test F-latch 1 0 0 d3 d2 dl dO mS d3 d2 dl dO m3 0 1 f

JCF Jump/test C-flag 1 0 1 0 d2 dl dO 1118 m7 d2 dl dO m3 0 1 c

JZF Jump/test Z-flag 1 0 1 1 d2 dl dO Ill8 m7 d2 dl dO m3 0 1 z

JPR Jump/test PR-latches 1 1 0 0 d2 dl dO 1118 m7 d2 dl dO P3 P2 PI PO

JLL Jump/test left PR bits I 1 0 I d2 dl dO 1118 m7 d2 dl dO 0 1 P3 P2·

JRL Jump/test right PR bits I 1 I 1 I dl dO ms m7 1 dl dO I I PI PO

JPX Jump/test PX-bus 1 I 1 1 0 dl dO IDS m7 m6 dl dO x7 x6 xS x4

Symbol Meaning

Data on address control line n

Data in microprogram address register bit n

Pn Data in PR-latch bit n

Data on PX-bus line n (active LOW)

f, c, z Contents of F-latch, C-flag, or Z-flag, respectively

macrolevel instruction at the same time that the instruc­
tion is passed to the arithmetic array.

Because only eight bits of operation code information
can be passed directly to the MCV, the set is best adapted
to instruction sets in which all of the macro-operation code
information is confined to 8 bits. However, other macro­
instruction sets can be realized by saving any remaining
bits of the operation code in the CPE array or in an
external register. The saved bits are tested later by routing
them to the MCV, either through the 8 line macro-instruc­
tion port or via the carry logic associated with the MCV­
CPE combination.

The MCV characteristics provide a jump operation,
either conditioned or unconditioned, in every micro­
instruction. Each of the ju~p operations has a restricted
range of destinations, so that the placement of the micro­
instruction in the control memory determines which of the
other micro-instructions may precede or follow it.

The nature of the different jumps provided by the MCV
is made most visible by viewing the microprogram
memory as if the words were organized as 16 columns by
32 rows. (The MCV directly supports 512 words of control
memory, although larger or smaller control memories may
be used.) The unconditional jumps provide for vertical

Designing Central Processors with Bipolar Microcomputer Components 59

TABLE III-MCU Carry Logic Functions

Type Mnemonic Description FCl FCO

SCZ Set C-flag and Z-flag to f 0 0

Flag STZ Set Z-flag to f 0 1
Input

STC Set C-flag to f 1 0

HCZ Hold C-flag and Z-flag 1 1

Type Mnemonic Description FC3 FC2

FFO Force

Flag FFC Force
Output

FFZ Force

FFl Force

movement in a column, horizontal movement within a
row, or a jump to any location in the first row, known as
row zero. All of these jumps are achieved by appropriate
mapping of micro function control bits and previous micro­
program address bits into the next microprogram address
state. Table II lists both the unconditional and conditional
jumps provided by the MCU. Note that the JPX opera­
tion tests four bits of the PX-bus (macro-operation input
bus) while loading the remaining four bits into the PR­
latch within the MCU chip. The JPR, JRL and JLL mi­
crofunctions test the contents of the PR-Iatch without al­
tering them, while the J CE microfunction executes an un­
conditional jump while enabling three of the four stored
bits to output pins on the MCU, where the signals may be
used to override CPE register selection signals from the
control memory.

The JFL, JCF and JZF microfunctions test the input
carry signal or one of two flip-flops within the MCU which
are associated with the array logic of the MCU. Either or
both of these flip-flops (designated the C and Z flags) may
be set to the carry input signal and the carry output signal
may be set to logic 0, logic 1 or to the logical value loaded
into C or Z. Table III lists the flag control functions. The
symbol f represents the carry input signal, temporarily
held in the F latch of the M CU for testing.

A "pipelined" mode of operation may be implemented
by placing a register of D flip-flops between ·the control
memory outputs and the circuitry controlled by those
outputs. This register causes the execution of each micro­
instruction to overlap the fetching of the next micro­
instruction. The seven control lines which issue micro­
instruction sequence information to the MCU are not

FO

FO

FO

FO

to 0 0 0

to C-flag 0 1

to Z-flag 1 0

to 1 1 1

routed through D register when the pipelined mode is
used.

Figure 3 shows a block diagram illustrating the organi­
zation of a central processing unit using the set. The block
diagram shows the basic modules of a pipelined CPU: the
CPE array, the MCU, the control or microprogram
memory, and the pipeline register. Four of the data busses
associated with the CPE array are shown: (1) The address
bus to memory; (2) The data bus to memory; (3) The data
bus from memory, with its path for operation code data to
the MCU; (4) The constant bus from the pipeline register.

LOCK

CONTROL TO MEMORY AOORESS ,OATA BUS TO
MEMORY,I/O BUS MEMORY

~~ 11111111111111111111111111111111
~
I~
I

CP ARRAY

MICRO- f=::= PIPELINE (I-BUS NOT SHOWN)

PROGRAM == REGISTER
~tOCK :::::::::::::

~r-~I
K

MEMORY ~ INPUTS

~

tlt ===-=== =-
ADDRESS IN =

~~ MACD-8

MCU ~~
CLOCK

FO
X0 X7 Fe" 3 FI

II m 1111

OP-CODE BITS MCU
OATA IN FROM MEMORY

Figure 3-Pipelined central processing unit block diagram

CO "]

60 National Computer Conference, 1975

In addition, the carry logic bus from the pipeline register
to the MCU and the micro-instruction sequence logic from
the control memory to the M CU are shown. Signals from
additional control fields to such external logic as memory
and I/O control are shown as an output bus from the
pipeline register, although some such signals may come
directly from the control memory.

THE WRITING OF THE MICROPROGRAMS

Once the macro-instruction set has been chosen, and the
hardware design established, the designer must proceed to
write the microprograms for the system. To simplify the
writing of these microprograms, a standardized micro­
assembly language will be used, in which symbolic
representations of the various control functions are used.
The standard mnemonics of CPE and MCU microfunc­
tions have been included in Tables I, II and III.

Programs written in the micro-assembly language have
two main parts-a declaration part in which various as­
pects of the control word, etc. are defined and a specifica­
tion part in which the contents of each word are symboli­
cally declared. Provision is made for comment statements
throughout the program so that the programmer may
explain the functions being performed.

The main body of the program, the specification part,
defines the sequences of states to be executed, and the
operations which take place for each state. The main ef­
fort in writing a microprogram will be extended in
developing this section.

Each statement of the specification part of the program
defines the action (and location) of one micro-instruction,
i.e., one work of control memory. The statement will
declare, either directly or by default, the contents of each
control field for the specified micro-instruction. Further­
more, the statement will include assignment information
designating the address in control memory where the state­
ment is located.

A specification statement consists of one or more labels
followed by a series of control field specifications. A colon
after an entry indicates that it is a label. The contents of
the control fields are indicated symbolically, using either
standard symbols or user-defined symbols, or by an equa­
tion of the type

FNM=101B

where FNM is a name associated with the field. The entry
101B implies the binary value 10l.

Each symbol is associated with only one field, so that
the various symbols can be uniquely interpreted by the
assembler. A number of symbols are predefined for the
assembler, and are not to be used except as provided for
the MCU and CPE functions, and a number of directives
to the assembler.

The current versions of the micro-assembler do not do
this placement. However, the placement procedure, which
is something similar in complexity to wiring a printed cir­
cuit board, is easily done after the microprogram is writ-

ten. A flow chart showing the desired micro-program se­
quences is used to determine where clusters of conditional
jumps are located. The most complex clusters are placed
first, then simpler clusters, and finally the unconditional
sequences.

To realize a central processing unit, the microprogram
must not only supervise the fetching of macro-instructions
and implement the appropriate sequences for their in­
terpretation and execution, but must also provide for such
additional functions as initialization and interrupt han­
dling. Initialization, done when power is first applied to
the central processor, is achieved by executing a series of
micro-instructions which clear and initialize various ma­
chine registers. The "load" pin of the MCU can be used to
input a starting address from the PX-bus to the micro­
program address register. If the PX-bus is held high when
power is first applied and the load input is activated, the
MCU will start in control memory address zero.

Interrupts are usually accepted after completion of a
micro-instruction, just before fetching the next macro­
instruction. To provide interrupt handling, a sequence of
interrupt service micro-instructions would be executed
rather than fetch the next macro-instruction. Upon com­
pletion of the interrupt service, which usually involves at
least saving the macro-program counter and loading a new
value, the fetch sequence is entered, which results in fetch­
ing the first instruction of the interrupt service macro­
program. The MCU provides for interrupt if the first
instruction of the macro-instruction fetch sequence is
located in control memory address 15 (i.e., in row zero,
column 15). The last micro-instruction of each macro­
instruction execution sequence then contains the mi­
crofunction JZR to row zero, column 15. When this mi­
crofunction is executed, the MCU produces an interrupt
strobe signal which may be used by external interrupt
logic to disable the MCU row address to the control
memory. An alternate row address can then be forced to
the control memory (usually row 31, all row address leads
high) so that a different micro-instruction than the first
fetch micro-instruction is executed, i.e., the first interrupt
micro-instruction is executed. This first interrupt micro­
instruction should contain a JZR or JCC microfunction as
its first jump. Once in the interrupt sequence, the normal
MCU control is re-enabled, and execution proceeds until a
jump to the macro-instruction fetch sequence is executed.
There are many interrupt handling options available
through microprogram sequences, hardware connections,
and the type of jump used to enter the fetch routine.

Microprograms to realize a given micro-instruction set
will differ for pipelined and non-pipelined machines. The
major differences are associated with those conditional
jumps in the microprogram which test the results of
arithmetic or logical operations of the CPE array. In a
pipelined machine, these results are delayed by one micro­
instruction, so that the conditional jump must be delayed
by at least one micro-instruction.

In some cases, the pipeline will result in wasted states
(NOP's), but most pipelined microprograms will have very

NO

Designing Central Processors with Bipolar Microcomputer Components 61

INITIALIZE-LOC 0

INITIALIZATION

PROCEDURE

FETCH MACRO-

I NSTRUCT ION

~------------~----~-----r-----------T--------------

EXECUTE - GROUP 1

MACRO INSTRUCTIONS

EXECUTE

SUB GROUP

EXECUTE

SUB-SUB GROUP

JLL, JRL

.... r-.---------------------......I ~ - -

I NTERRUPT ENTRY - LOC 511

INTERRUPT

SERVICE ROUTINE

Figure 4-Basic central processing unit microprogram flow chart

62 National Computer Conference, 1975

few such wasted locations. In most cases, the otherwise
wasted location can be used to set up for the next condi­
tional jump or to do some initial processing for the next
execution sequence.

A typical statement of the specification section of a
microprogram might take the form:

123: LAB: ILR(R3) FFO STZ JFL(MC TC);

The number 123 followed by a colon tells the assembler
that the micro-instruction is assigned to location 123 in
control memory. (Binary for 123 is OOl1l1Ol1-placing
the word in row 7, column 11 when the control memory is
treated as an array of 32 rows and 16 columns.) The sym­
bolic label LAB (the colon indicates a label) is also
associated with this location. ILR(R3) indicates that the
contents of register 3 are to be conditionally incremented
and copied to the AC register, while FFO forces the carry
input to a logic zero, so that the incremented operation
does not take place. STZ indicates that the Z flip-flop of
the MCU is to be set by the results, so that, as no carry
can result, the Z flip-flop will be set to a logic zero. These
symbols are standard symbols, with ILR associated with
the CPE and FFO and STZ associated with the MCU
carry logic. The JFL tests the carry output line for a con­
ditional jump to either the statement labeled NC or to the
statement labeled TC. It is also a standard symbol. Note
that, if the machine is pipelined, this conditional jump
tests the results of the previous instruction, not of this one.
The semicolon indicates the end of the statement.

In the statement above, no information was provided for
the K-bus. The assembler will provide the appropriate

value associated with the ILR operation, i.e., the K-bus at
all zeros.

The first or declaration part of a microprogram defines
all of the user symbols except the labels, which are defined
in the specification part of the program. The user symbols
may include redefined or renamed combinations of other
symbols, or may attach names to various control fields or
to states within a control field.

The flow diagram for a typical central processor will
follow the form shown in Figure 4.

In general, the best macro-operation sets will be or­
ganized so that the bits tested at the first conditional jump
(the JPX) determine the initial steps in the instruction
processing, for example, the first step will usually involve
address calculation. Thus the best macro-operation sets
will be encoded to allow addressing mode to be tested first,
with the detailed use of the address or data from the ad­
dress left for later testing in the microprogram.

The set has been used to realize a variety of machines
including a stack-architecture 16-bit CPU oriented toward
high-level languages, a 7-register 16-bit CPU which used
base registers to provide full code and data relocatability,
a multi-register 16-bit CPU which used a section of fast
main memory to implement 256 registers, and a disk. con­
troller for a removable cartridge flying-head disk. Al­
though the machines constructed so far have all been 16-
bit machines, both 12-bit and 32-bit machines have also
been considered. The typical CPU constructed used an
average of 3-5 micro-instructions per main memory cycle.
With a pipelined machine cycle time of 150nsec, a main
memory of 300nsec access time results in an average of
about one microsecond per memory cycle.

Bipolar microprocessor design configurations

by DAVID C. WYLAND
Monolithic Memories, Inc.
Sunnyvale, California

INTRODUCTION

Implementation of microprocessors in bipolar technologies
promises performance equal to or exceeding that of state­
of-the-art minicomputers when measured in terms of
speed and instruction set power. The design approaches
for bipolar microprocessors are similar to those for MOS
types, with some significant differences in emphasis.

The term "microprocessor" was originally applied to
some of the first single chip MOS microprocessors, such as
the Intel 4004 and 8008 units. Shortly after the introduc­
tion of these chips, National Semiconductor introduced
their Gen,eral Purpose Control Processor (GPCP) chip set,
now known as the IMP-16. The use of the word micro­
processor was then broadened to include sets of chips
which would implement the Central Processing Unit
(CPU) function of a computer. To date, the use of the
term has been further diluted to include almost any com­
bination of less than 20-40 integrated circuits which will
implement the CPU function.

The simple definition of the word "microprocessor" is
"very small processor". This defines a unit which meets a
minimum functional definition of the processing and con­
trol portion of a stored .program computer, and which is
"very small" (i.e., "micro"). The utility of the micro­
processor lies in its small size: a card containing 25 in­
tegrated circuits can do the work of a 300 integrated cir­
cuit minicomputer in many cases. This reduction in size
provides a corresponding reduction in system cost and
power requirements.

MICROPROCESSOR DESIGN CONFIGURATIONS

Microprocessor designs can be grouped into three cate­
gories:

1. Single chip
2. Multiple chip set, custom design chips
3. Multiple chip set, general purpose design chips

The single chip microprocessor is a fixed design, fixed
instruction set processor incorporated onto one integrated
circuit chip. This has the potential advantage of lowest
microprocessor system cost but the disadvantages of a
fixed, lower performance instruction set; low to medium

63

speed, and limited word size due to limitations of chip size
and power dissipation. Most current MOS microprocessors
are in this category. No bipolar microprocessors are cur­
rently available in this category due to the high level of in­
tegration required.

Multiple custom chip microprocessors consist of a set of
chips specifically designed to work together to perform the
microprocessor function. The National Semiconductor
IMP-16, etc., microprocessor series is based on such a set
of custom MOS chips. The advantages of this approach
are:

1. Segregation of system functions into chips which are
potentially small and efficient to integrate.

2. A powerful, sophisticated instruction set can be im­
plemented because of the availability of more effec­
tive chip area with multiple chips.

3. Higher speed potential due to higher power dissipa­
tion capability, allowing better speed/power trade­
off.

The disadvantages are:

1. Higher system cost due to the requirement of several
chips. This must be weighed against performance not
available in a single chip approach.

2. Relatively fixed instruction set capability. This is be­
cause instruction decoding can be integrated effi­
ciently only as a fixed decoder for a fixed instruction
set. Also, some secondary items such as carry and
shift controls can be handled efficiently only if their
configuration is fixed. Most bipolar microprocessors
are of the custom chip set configuration. Examples
include the Intel, Raytheon, and Fairchild bipolar
chip sets, as well as the TI PL set. These chip sets
consist of data flow chips in 2 or 4 bit slices which
are assembled to form 16 bit, etc., machines and one
or more control chips, and in some cases some
external microprograms ROMs.

The third microprocessor design configuration is the
multiple general purpose chip set. In this approach, a
combination of standard data flow slice chips, ROMs, and
some TTL is used to implement the microprocessor func­
tion. The advantages of this approach include those of the
above approach: efficient integration of smaller chips,

64 National Computer Conference, 1975

powerful instruction set potential, and high speed
potential. However, three additional advantages result:

1. Flexibility in system design, allowing the same
hardware components to be used efficiently for a va­
riety of tasks including 110 controllers, central
processors, and special purpose peripheral
processors.

2. Lower potential costs by using standard, high volume
components designed for a broad market rather than
custom, lower volume components designed for a
specific market.

3. Higher second source potential, since high volume
general purpose components are more likely to be
second-sourced than custom types.

The disadvantage is that general purpose multi-chip
designs have a higher chip count than custom multi-chip
designs, in some cases. For example, a 16 bit bipolar
microprocessor may have a total of:

1. Five chips in a maximally integrated custom chip set
configuration, consisting of a control chip and four,
four bit data flow slices.

2. Twenty chips in a more modular custom chip set con­
figuration, consisting of eight, two bit data flow chips,
eight microprogram memory chips, and four control
chips.

3. Sixteen chips in a general purpose component design
consisting of four, four bit data flow chips, three
microprogram ROMs, one instruction decode ROM,
and eight TTL chips for control.

MULTIPLE CHIP CONFIGURATION
COMPONENTS

Multiple chip microprocessor designs typically separate
system functions into three chip types:

1. Data flow chips which contain the registers, multi­
plexers, and arithmetic portions of the system.

2. Control chips which provide the instruction fetch and
execution sequencing as well as miscellaneous status
and test functions, such as carry control and shift
gating.

3. Microprogram memory chips (optional, used only in
conjunction with control chips based on micro­
program designs). These are typically standard
ROM/P.ROM chips assembled to form a memory
unit.

The data flow chips are usually designed as 2 or 4 bit
modules which can be assembled into 8, 12, 16, 24, etc., bit
word widths as required. This accommodates a variety of
system word sizes as well as reducing the size of the indi­
vidual chip to allow higher speed and more powerful archi­
tectures. The data flow chips provide the major reduction

in processor chip count. This is because each four bit slice
may replace 15-25 MSI components, such as multiplexers,
register files, and arithmetic logic units. Thus, four data
flow chips are equivalent to 60-100 MSI chips. In the case
of bipolar data flow slices, the comparison with MSI is
fairly direct.

Microprogrammed bipolar microprocessor designs typi­
cally use standard ROM and P .ROM memory chips. This
is because there is a broad line of high performance
bipolar ROMs and P.ROMs on the market, available in
high volume production from a number of sources. This is
significantly different than the case with MOS. The MOS
ROMs on the market are much slower, 2.0 microseconds
versus 50 nanoseconds for bipolar, much more limited in
selection of ROMs and P.ROMs, and are not as stan­
dardized in power supply and interface voltage specifica­
tions as a group when compared to bipolar ROMs and
P.ROMs.

The control section of a multi-chip microprocessor
provides the sequencing logic to fetch, decode, and execute
all processor instructions. This sequencing logic controls
the data flow chips and memory either directly or through
a microprogram memory, depending on the design. The
control section can be one or several chips depending upon
whether a state logic or a microprogrammed design is
used, respectively. These two control design approaches
have quite different implications.

CONTROL FLOW INTEGRATION

A minimum chip count 16 bit multiple custom chip
bipolar microprocessor could be designed using one chip
for control and four, four bit data flow chips. The one con­
trol chip in this case would be of a state logic, "hardwired"
design where the data flow and system control lines are
driven by a complex combination of flip-flops and gates.
This would result in minimum chip size and maximum
speed at the cost of a fixed instruction set. Although effi­
cient, this desi'gn would require extensive development
and modelling plus market research to insure that the
chosen instruction set is both saleable over the long term
and capable of being implemented. The basic trade-off is
therefore reduction in total chip count from approximately
20 to 5 at the expense of a long development cycle and a
market restricted to a fixed instruction set.

The other design approach is based on microprogram
design. In this case, the control chip drives the system and
data flow control lines through a microprogram ROM
external to the chip. Although it is possible to design a
single control chip using microprogram techniques, as was
done in the case of the National Semiconductor IMP
series, the existence of high performance, low cost, stan­
dard bipolar ROM chips makes the multiple chip con­
figuration more cost effective.

In a multi-chip, microprogram control design, the con­
trol chip generates a sequence of ROM addresses and
provides some secondary functions including carry con-

troIs and shift gating. The major chip design elements are
an instruction register, a ROM address register/counter,
and ROM next address logic which decodes the contents of
the instruction register and system status indicators to
generate the next ROM state. The key to control chip
design is in the ROM next address decoder.

The designer of a microprogram control chip faces a di­
lemma. The instruction decode logic can be designed along
one of three lines:

1. For a fixed, unique instruction set, which will result
in minimum logic and chip area.

2. For broad general purpose use with a wide variety of
potential instruction sets.

3. For the compromise case: a relatively fixed instruc­
tion set with capability for some expansion and modi­
fication.

The problem is that none of these three approaches works
effectively for different reasons.

If a fixed instruction set is defined, the argument for
custom, random logic control chips as described earlier be­
comes strong. If there is some control over the instruction
set and instruction formats, the design difficulty can be
greatly reduced. This will result in the most efficient
design at the cost of development time.

Alternatively, it is possible to make powerful fixed ma­
chines with simple microprogram control architectures us­
ing standard ROMs. For instance, the microprogram con­
trol logic for a multiple register machine similar to ma­
chines of the Interdata, IBM 360/370, and Modular Com­
puter class can consist of an instruction register, a 256 X 8
ROM (one chip), an 8 bit synchronous counter (2-74163s),
and two TTL chips to test system status conditions. When
used in conjunction with a microprogram ROM and 4 bit
slices, such a Monolithic Memories' 6701s, a 16 bit ma­
chine with 256 possible instructions can be built.

The fixed decode microprogram control chip has the
problem that it does not provide the advantages of either
the custom logic chip design (minimum system part
count) or the standard ROM assembly design (low chip
count, standard components, and the ability to decode a
large instruction set in a flexible fashion). The system
definition provided by the fixed decode microprogram con­
trol chip is therefore that of restricting the design to a
particular instruction set without providing a correspond­
ing improvement in packaging efficiency or instruction
power over what could be obtained with a very few ROM
and TTL parts.

Designing a microprogram control chip for broad,
general purpose use is also difficult: the decoder design
has no shape. A rather general approach could be imple­
mented by using a large programmable logic array (PLA)
to decode the instruction register and provide inputs to a
ROM address counter/register. Another aspect of the
problem is that good general purpose designs are usually
the result of evolution through a series of specific designs
followed by a consolidation of good features. Since the

Bipolar Microprocessor Design Configurations 65

TO

MEMORY

AND

I/O

MEMORY
CONTROLS

MM6701

4 BIT

DATA FLOW CIRCUITS

(READ, WRITE, LOAD MAR)

Figure I-CPU block diagram

component count for a typical discrete ROM decoder is
typically low, there is a good argument for a standard logic
chip approach to the general purpose control logic as well.

This leaves us with the compromise position: a partially
structured instruction set for a definable control chip with
some generality and modification capability. Since a
microprogram control chip does not appear to offer an ad­
vantage for the fixed instruction set case, nor for the
general case, it is difficult to derive an advantage for the
intermediate, semi-fixed case.

CONTROL FLOW INTEGRATION: BIPOLAR VS.
MOS

One may ask why there is little advantage to a dedicated
microprogram control chip in a multi-chip bipolar micro­
processor configuration. The reason is the existence of
broad lines of high performance, low cost TTL ROMs and
P .ROMs; and the broad line of TTL logic in general.

MOS ROMs and P.ROMs are not available in the same
variety as TTL types and their performance is much
lower. MOS logic level interfaces and power supply re­
quirements have not been as standardized as TTL, and
there is no standard set of universally compatible, general
purpose MOS support logic as there is with TTL. This
makes the design of an MOS multi-chip microprocessor
more difficult. Because of the lack of both high speed
MOS microprogram ROMs with standard logic level inter­
faces and a standard MOS support logic, the control chip
must drive the system control lines directly. Either a state
logic design or a tightly packed microprogram design with
all microprogram ROM on-chip must be used.

With a broad availability of bipolar ROMs, P .ROMs,
and TTL support logic, the necessity and in fact justifica­
tion for a dedicated control chip is greatly reduced. Except
for the case of a one chip controller for a dedicated
instruction set, it would appear that power, cost effective­
ness, and flexibility favor a combination of data flow chips

66 National Computer Conference, 1975

with standard ROMs and some TTL for multi-chip bipolar
microprocessors.

CONTROL FLOW WITH STANDARD
COMPONENTS: AN EXAMPLE

Figure 1 shows a block diagram of a 16 bit bipolar
microprocessor using Monolithic Memories' 4 bit data
flow chips with ROMs and TTL logic for the control sec­
tion. For a total of less than 25 chips, one can construct a
16 register machine with interrupt and Direct Memory ac­
cess capability, indexed indirect addressing, hardware
multiply and divide, double precision (32 bit) arithmetic
capability, and stack oriented instructions. Performance
of 900 nanoseconds for a register to register ADD instruc­
tion, 1.2 microseconds for a register load instruction, is
typical.

SUMMARY

This paper has explored the different design configura­
tions for bipolar microprocessors. Three distinct categories
result:

1. The single chip microprocessor which has the lowest
system cost with moderate performance.

2. The multiple chip design with a dedicated instruction
set and dedicated control chip design, which results in
high performance at moderate system chip count and
price.

3. The multiple chip design using general purpose con­
trol and data flow chips which results in high perfor­
mance and a flexible design with somewhat higher
chip count than the custom multi-chip approach of
case 2 but similar system costs due to the use of high
volume, general purpose chips.

The conclusion drawn in the above presentation is that
multiple chip bipolar microprocessor designs should be
either a custom chip set optimized for a particular instruc­
tion set or they should be designed using standard data
flow chips and bipolar ROMs and TTL for the control sec­
tion. This is du,e to the availability of a broad line of high
perfOJ'mance bipolar ROMs and TTL logic which allows
construction of powerful microprocessor control logic sec­
tions using a few standard chips and therefore greatly
reduces the cost effectiveness of generalized microprogram
control logic chips.

MACROLOGIC*-Versatile functional blocks
for high performance digital systems

by KRISHNA RALLAPALLI and PETER VERHOFSTADT
Fairchild Camera and Instrument Corporation
Mountain View, California

INTRODUCTION

Evolution of bipolar technology in recent years has enabled
semiconductor manufacturers to increase performance and
packing density to the extent that meaningful standard
functions of LSI complexity can be defined and built.
MACROLOGIC is a powerful approach to accomplish this.

Technologically one of the densest junction isolation
processes available and generous use of so-called non-standard
circuit approaches have been applied. High performance is
obtained because of shallow structures, extensive use of
Schottky clamping, minimizing the nodal voltage swings,
charge injection of switch transistors, etc.

Table I summarizes the features of the technology used.
Applying this technology as a tool to improve the performance
as well as the cost-effectiveness of digital systems, a set of
standard functional blocks has been defined for applications
in computers, control and communications systems.

FUNCTIONAL DESCRIPTIONS

This paper describes in detail a set of five parts using the
MACRO LOGIC approach. The user can select the required
functions to implement his particular architecture. All parts
have the following common features making them archi­
tecturally compatible:

(a) They are optimized for microprogrammed control.
(b) A 4-bit slice implementation is chosen and functions

can be expanded to handle larger word lengths with
few or no extra components.

(c) The devices are provided with three state outputs
wherever appropriate, so that bus organized systems
are easily realized.

TABLE I-MACROLOGIC Technology Features

• Delays of 4 ns per gate
• Speed-power product <8 pJ
• Complexities of 200-250 gates/chip
• Packing density of 50 gates/mm2

• TTL compatible inputs/outputs
• Standard up-to 24-Pin DIP packages
• High drive capability for bus organized systems

* Trademark of Fairchild Camera and Instrument Corporation.

67

(d) All operations occur synchronously with a clock.
(e) Any device can be addressed as a source of data by

activating Output Enable (OE) and as a destination
of data by activating the Execute (Ex) input.

A rithmetic logic register stack

The Arithmetic Logic Register Stack (ALRS) is designed
to implement general registers in high performance program­
mable digital systems. As shown in Figure 1, it consists of a
4-bit ALU, 8 word by 4 bit RAM with latched outputs,
instruction decode network, control logic and an output
register. The ALU implements 8 arithmetic and logic
functions where one 4-bit operand is supplied from an
external source (input data bus) and the second 4-bit operand
is supplied internally from one of the 8 RAM words. The
selected operation is performed on the operands and the result
is loaded into the same RAM location and simultaneously
loaded into the output register which is made available
through three-state buffers (output data bus). An active
LOW Output Enable (OE) input controls these buffers. The
instruction bus for the ALRS consists of two fields, A and I;
Ao through A2 indicate the selected register and 10 , through
12 specify the desired function to be performed. Thus, the
ALRS provides 8 registers (Ro through R7) and 8 different

.. 55----

:==~==~======~ ______ J
AI---------------------~
A2--------------------------~ CP EX

Figure l-ALRS block diagram

QE

03

02

01

OS

68 National Computer Conference, 1975

TABLE II-ALHS I-Field Assignment

[2 II [0 INSTHUCTION COMMENTS

L L L (Hx) plus Bus plus l~Rx Add with carry
L L H (Rx) plus Bus~Hx Add
L H L (R)x* Bus---?Hx Logical AND
L H H Bus~Hx Load Hx
H L L (Hx)~Bus Head Rx
H L H (Rx) + Bus~Hx Logical OR
H H L (Rx) E9 Bus~Hx Exclusive OR
H

I

H H Bus~Rx Load Complement

operations may be performed on any of these registers. The
10 - 12 inputs are decoded by the instruction decode net­
work to generate the necessary control signals for the ALD.
(Table II lists I-Field code assignments.) The ALD also
generates and transmits to the control logic Carry Out,
Carry Propagate and Carry Generate, Negative status and
Overflow status. The status Zero (Z) is generated and
directly outputted. The control logic operates on these Status
Signals (except Z) as a function of 10 - 12 and a control MSS
and generates three device outputs W, X and Y. The W
output al\vays represents the Carry Output from a slice.
However, X and Y outputs represent K egative and Overflow
for the most significant slice and represent Carry Propagate
and Carry Generate for the remaining slices of an array.
A high level on the MSS input declares the most significant
slice in an array of ALRS's. All except the most significant
device, should have a lo\', level (ground) on MSS input.

Execution of an instruction is controlled by the clock when
EX is low. The Instruction Bus and Data Bus are enabled
when the Clock is high. Results are written into the RAM
'when Clock is low and are loaded into the output register on
the low to high Clock transition.

The 10 serves a dual purpose; during arithmetic instructions
it is used as the carry input and for non-arithmetic instruc­
tions it serves as an instruction input. This is possible
because only the two arithmetic instructions require a carry.

P-Stack

The P-stack is a 16 \vord by 4 bit "Pmlh Down-Pop Up"
Program Stack. It is designed to implement Program Counter
(PC) and return address storage facilities in high performance
programmable digital systems or can also be used as a 1 H-Ievel
general purpose stack. .

It consists of an input multiplexer, a 16X4 RAM with
latched outputs, an incrementor, control logic, Stack Pointer
(SP), stack limit monitors and output buffers (See Figure 2) .

When the device is initialized, the main PC will be the top
location of the Stack. As new program counter values are
"pushed" onto the Staek (Call Operation) all previous
counter values move down one level. The top location of the
Stack will be the current PC. After 15 entries, the original PC
will be at the bottom or last location of the Stack giving a 1.5
level nesting capability. Information may also be "popped"

DATA BUS .-------,
CI------,

SEl£CT

co
I I

EX

CP

MR

STACK LtJIIT MONITOR

OE--------r~--~

SF SE 021 0102 03 AeAI A2A3

Figure 2-P-Stack block diagram

from the Stack (Return Operation) bringing the most recent
PC to the top of the Stack.

The P-stack executes 4 instructions: Return, Branch, Call
and Fetch as specified by a 2-bit instruction (see Table III).
A 4-bit input bus allows data to be loaded from an external
source into the current PC. A 4-bit Address bus (A-bus)
provides the current PC value as an output; in addition, this
data is also available on a second 4-bit bus (O-bus) to allow
effective address calculations relative to the program counter.
Iterative instruction fetch can be accomplished by optional
increment control of the current program counter via the CI
input. The data inputs of the RAM are derived from the
Data Bus (D-bus) or the incrementor, as selected by the
input multiplexer.

The address for the RAM is obtained from the Stack
Pointer (SP) which generates an incremented, decremented
or unchanged address as a function of the instruction. The
output of the RAM is stored in output latches. The O-bus is
derived from the output latches and enabled by the active
LOW Output Enable (OE) input. The A-bus is also derived
from the output latches; it is enabled internally during the
Fetch Instruction. Execution of instructions is controlled by
the Execute (EX) and Clock (CP) inputs.

Operation of the active level LOW Master R('s('t (MR)
eamlCS the SP to be reset to the main PC (top of th(~ Stack)
and that RAM location is cleared to all zeros. The Stack
Empty (SE) output will go LOW. ThiH operatioll will

TABLI'; III-P-Kt.ack Imit·),lIct·ioIlK

J 0 INRTRUCTION COMMENT~

L L RP-l~RP Return (Pop)
L II])-bnK~PC Branch
H L HP + l~HP, J)-bw.';~PC Call (PuKh)
H H PC~A-buK, PC + l~PC Feteh

override other inputs. In the event that the Stack becomes
fully loaded, the Stack Full (SF) output goes LOW. If an
additional Call Operation is performed after SP has reached
(1111)2, SP will increment to (0000)2, the contents of that
location will be written over, the Stack Empty (SE) will go
LOW and SF will go HIGH (wrap around operation). When
the top-most location is selected corresponding to SP =

(0000) 2, as for example, after Master Reset (MR), the Stack
Empty (SE) output is LOW. An additional Return Operation
under these conditions forces SP = (1111) 2, causing SE to go
HIGH and SF to go LOW (again wrap around operation).

Data path switch

The Data Path Switch (DPS) is an advanced two port
multiplexor ·with t\yO 4-bit input ports (D-bus and K-bus)
and a 4-bit output port (O-bus). It has a 5-bit instruction bus
(I-bus). The device consists of a data routing network,
a control block section and output buffers (See Figure 3). The
DPS can perform 32 different instructions as determined by
the 5 I-lines (see Table 4 for a listing and description). The
DPS is a completely combinatorial network without registers;
it therefore does not have a clock input. The device ahyays
looks at the data bus, so the inputs are always open. Whether
the result is being used is determined by the Output Enable
(OE). The DPS not only can selectively gate one of two
4-bit ports onto the 4-bit output port, but also perform
functions such as shifting and sign extending. Its typical use
is to close the data path loops around arithmetic logic
networks such as Arithmetic Logic Register Stack described
before.

It also has many features normally associated with True
Complement, One/Zero generators. It can generate true com­
plement outputs of the input ports or the outputs can be
forced to all ones or all zeros. In addition to all ones and all
zeros, it can provide 0001, 1000 and 1110 as constants at the
output. In arrayed operation, these constants can be used for
increnwntation, byt.t, sign masking and decrementation.

Shift linkages left out (LO), right out (RO), ldt in (LI)
and right in (HI) are available as individual inputs and
outputs for complL'tL' fiL'xibility in handling expansion and end
around shifts.

D-BUS

K-BUS

I - BUS

SHIFT LINKAGES

OUTPUT
BUFFERS

OE----------------------------~

Figure :3-D PS block diagram

a-BUS

14

--

L
--

L
-

L
--

L
-

L
-

L
-

L
-

L
-

L
--

L
--

L
-

L
--

1.
-

L
--

L
-

L
--

H

--

H

--

H

--

H

-

H

--

H

II

II

Ia 12

- -

L L
- -

L L
-- -

L L
-- -

L L
-- -

L H
-- -

L H
- -

L H
- -

L H
-- --

H L
- -

H L
-- -

H L
-- -

H L
- -

H H
- -

H H
-- -

H H
-- -

H H
-- -

L L

- -
1. L

-- -

L L

-- -

L 1.

- -

L H

-- ---

L H

I
-- --

L II

----- --_ .. _-

L II

MACROLOGIC 69

TABLE IV-DPS Instructions

11 10 I~STHUCTIO~ CO:\L\IE~TS

- - -------

L L 1111 -> OUTPUT
BYTE :\IASK

L H 0000 -> OUTPUT
-- -

H L 1110 -> OUTPUT
----- -2 CO~STA~T

H H 1111 -> OUTPUT

L L D -> OUTPUT 'OH' BYTE
-

L H 0000 -> OUTPUT :\IASK D-BL'S
-

H L D -> OUTPUT 'A~D' BYTE
-

H H 1111 -> OUTPUT ::\IASK D-BL'S
- -

L L 1000 -> OUTPUT BYTE SIG~
-

L H 0000 -> OUTPUT :\IASK
-

H L K -> OUTPUT 'A~D' BYTE
- -

H H 1111 -> OUTPUT ::\IA8K K-Bn:::
-

1. L D -> OUTPUT
- LOAD BYTE

L H K -> OUTPUT
-

H L 0001 -> OUTPlJT
- - +1 CO~8TAXT

H H 0000 -> OUTPUT
-

L L HI -> O"CTPUT K-BVS 8IGX
& 1.0

- -------- EXTEXD
L H K3 -> 1.0 & K->

OUTPUT
-- --

H L HI -+ OUTPUT D-BUS SIGX
& LO

-- -- -------- EXTE~D

H H D3 -+ LO & D-+
OUTPUT

- -- --------
L 1. HI -+ 00, DO -+ SHIFT LEFT

0], D] -> O2, D-BUS
])2 -> 0 0• 1X~ -+
LO

-- -- ----------------
L H HI -+ 00, KO-+ SHIFT LEFT

0], Kl --> 02, K-BUS
K2 -> O. & K:~
-+ LO

------ -- -----------~--

II L 1,1 -+ 0., I):~ -+ SHIFT HIGHT
O2, D2 -> 0], D-BUS
DI -> 00 &
DO -> no

--- ---
H II });~ -+ OR, D;~ -> SHIFT mcmT

O2, D2 -+ O\, AHITH D-BUS
DI -> 00,])0
-> no

(Continued on next page)

70 National Computer Conference, 1975

TABLE IV-DPS Instructions
[CONTINUEDl

COMMENTS

------------·--·-----1------·---

H H L L L LI -+ Oa, Ka -+

02, K2 -+ 0 1,

KI ~ 0 0, &
KO -+ HO

SHIFT HIGHT
K-BUS

H H L L II Ka -+ Oa, Ka ->

Oz, K2 -> 0 1,

KI --+ 0 0 &
KO-tRO

H H L H L K -+ OUTPUT

HHIFT HIGHT
AIUTH K-BUS

'OR' BYTE MASK

H II L II II 0000 ~ OUTPUT K-BUS

H II H L L D -+ OUTPUT LOAD BYTB~

II II H L H K -+ OUTPUT COMPLEMENT

H H HilL NOT URED

II H H If II NOT USED

Data A ccess Register

The Data AccPf;s Register (DAR) is designed to implement
16 instructiolls (see Table IV) which are suitable for memory
addr('ss arithnwtic and manipulation. It consists of a 4- bit
addpr, tllf{~e 4-bit regiHters (Ro, HI and R2), an output
l"(·giHf.<>r and ass()(~iatpd eOlltrollogie (see Figure 4). It has two
output porti'i til<' A-bus and the O-bui'i. Both portH ar(~ driv(~11
by tlm'e :4atp buffprs with individual output enables ()E 1
and ()li~2). Carry In (Cl) and Carry Out (CO) signali'i are
availubh' for ('xpansion. One 4-bit operand for the adder is

CI

l-to If)
I I
12
13

-to

:-to

l-to

EX
CP

--0

'-

CONTROL

~
OEI

Of'OI 0203

1111 lfi=l
.I

ADDER L CO I J
-

i REGISTER ARRAY I
'---.....

OUTPUT I { MULTIPLEXOR I REGISTER

! 1 1 ! 1 ! !
OUTPUT I OE2 OUTPUT I DRIVERS DRIVERS

~ ~ ~ + ~ ~ ~ .
00 01 0203 A0 AI A2 A3

Figure 4-DAR block diagram

TABLE V-DAR-Instructions

INSTRUCTIONS COMMENTS

---- ---- --_·_------1-----------

L L L L no ~ A-BUS,
no + D-BUS -+ Ro

no is Updated By
Adding With BUS

------ ---1------------1---------

L L L H Ho + D-BUS -+ A-BUS Same as Above Except
no + D-BUS -+ Ro Updated Value is

the Address
-------- ----------- ---------

L L H L Ro -+ A-BUS,
no + D-BUS -+ R\

Update HI With t.he
Sum of no and
BUS

-- --------------- ------------

L L H H Ro + D-BUS -+ RI
no + D-BUS -+ A-BUS

L H L L Ro -+ A-BUS
Ro + D-BUS -+ Rz

Same as Above Except
Updated Value iH
the Address

Update H2 with the
Sum of Ho and
BUS

-- ----------------- -----------
L H L H Ro + D-BUS -+ A-BUS Same aH Above Exeept

Ho + D-BUS -+ Hz the Updated Value
iH the AddreHH

L H H L RI -+ A-BUH
HI + D-BUS -+ RI

L II H H RI + D-BUH -~ HI
HI + lJ-BUS -> A-BUS

H L L L Hz -> A-BUS
D-BUH -+ Hz

II L L II I)-BUH -+ A-HUH
D-BUH -+ Hz

II L II L Ho -+ A-BUH
D-BUH --> Ho

H L II II D-BUH -> A-BUH
])-BUH -> H"

II H L L H2 --> A-BUS
H2 + D-BUS -> H2

II II L H J{2 + D-IHJS -> Hz
J{2 + D-BUS --> A-BUS

----~ ~---- -----.--~-- .. - -

H II II L HI --> A-BUS
D-BUS -. HI

II JI II If D-BUS -+ A-BUS
D-BUS -~ HI

RI SupplieH the
AddreHH and then
Update H.I

Update HI and
Updated Value is
the AddresH

UHe Hz for the
AddreHH and Update
R2 from t.he BUS

Update Hz from t.he
BUS and Updated
Value iH the AddreHH

UHe H 0 for AddreHs and
then Update Ho
from the BUS

Update Ho from the
BUS and Updated
Value iH the Address

H2 HupplieH t.he
Address and t.hen
Update Hz

Update H2 alld the
Updated Value is
the Address

--_ .. __ _ _ .. _---

Use HI for Address
alld Update HI from
the BUS

Update HI frolll t.he
BUS alld U pdat.ed
Vallie is the Address

always supplied by the D-bus while the second operand is
obtained from one of the three registers. Independent of the
destination register (Ro, Rl or R 2), the result of an operation
is always loaded into the output register from which the O-bus
is derived. The A-bus is derived from two selectable sources;
one of the three registers can supply its unmodified contents
to the A-bus while the same register is being updated, or the
updated result can be gated on the A-bus. In a typical
application, the register utilization in the DAR may be as
follows: Ro is the program counter (PC), Rl is the stack
pointer (SP) (for memory resident stacks) and R2 contains
the operand address. For an instruction fetch, PC can be
gated on the A-bus while it is being incremented (i.e.,
D-bus = 1). If the instruction fetched calls for an effective
address for execution, which is displaced from the PC, the
displacement can be added to the PC and loaded into R2
during the next microcycle.

R-Stack

The R-stack is a high speed 64-bit Read/Write Random
Access Memory organized as 16 words by 4 bits. When the
R-stack receives a LOW on the Execute (Ex) and Clock (CP)
inputs, the instruction bits 11, 12, la and 14 select one of
sixteen 4-bit words (see Figure 5). If the instruction bit 10
is at a HIGH level, the contents of the selected word is
non-destructively read out and presented to the output
register. On the LOW to HIGH Clock transistion the output
register is loaded with this data.

For a write operation, 10 and Ex must be LOW. If this is
the case, then while CP is LOW, data is written into the
seleeted location. If the input data change during the period
when CP, Ex and 10 are LOW, the contents of the selected

IO--~~

EX

CP

D0 01

OE ---<I ~---~

00 01

02 03

GATING

02 03
Figure .~-R-Stack block diagram

MACRO LOGIC 71

ALRS

MEMORY

Figure 6-Data path for a hypothetical 16-bit processor

address will follmv the changes (non-ones-catching) provided
the set up time criteria are met. On the LOW to HIGH
transition of the CP, the information again is loaded into the
output register. A three state Output Enable (OE) controls
the output buffers.

TYPICAL APPLICATIONS

One of the many possible applications for the class of
components presented in this paper is to implement data
paths for emulating existing instruction sets using micro­
programmed control. Emulators using such high-speed,
complex functional blocks are attractive because they offer
improved cost/performance while retaining software com­
patibility with the target machine. For example, consider a
4-accumulator fixed word length 16 bit processor that uses
two's complement arithmetic. It has a 16-word hardware
stack for sub-routine return address as well as for general
purpose staek use. Figure () shows a possible data path for this
arehitecture. It has a memory reference instruction format as
shown in Figure 7.

The two-hit ind(~x field speeifies 4 addressing modes: base
page, PC relative, AC2 relative and AC3 relative. For relative
mode addressing, the 8 bit displacement field is treated as a
signed numher in two's eomplement notation. Figure 8 shows
the miero sequenee to implement a maero instruetion feteh.
Experience indieates that maero instructions ean he fetehed,
interpreted and executed in a relatively small number of
mieroeyel(~s allowing sub-mieroseeond realizations.

One of the simplest micro word formats for this kind of

15 14 13 12 II 10 9 8 7 6 5 4 3 2 0

OP CODE IIN~EXI DISPLACEMENT

Figure 7-Memory reference im;truction format

72 National Computer Conference, 1975

READ PC

PC~ADDRESS LATCHES

READ MEMORY

MEMORY

DATA

INSTRUCTION
•

MEMORY DATA

SIGN EXTENDED

REGISTER

TEMP!

Figure 8-Micro-sequence flow for instruction fetch

organization is based on the concept of Register Transfer
Modules. There is one source of data and one or more
destinations. During one clock cycle data will move from
source to destination. The data can be operated on (according

to the instruction tables) during such a transfer. Figure 9 is
a possible microword format. The source field can be decoded
to activate Output Enable (OE) inputs of the functions and
the destination field can be decoded to activate the Execute
(Ex) inputs. The function field drives the I lines of the
devices described.

SUMMARY AND OUTLOOK

The functional elements described in this paper are essentially
LSI building blocks for high-performance data path imple-

N

It)

z
o
~
o z
~ ..J
"- 0

CIS

t­
)(
LLI
Z

a::
t­
Z
o
o

(J)
a.
o

a::
LLI o
o o
LLI o

Figure 9-Microword format

a::
LLI
o
o
~
o

mentation, allowing the construction of microprogrammable
processors and controllers with clock rates of up to 10 MHZ.

Of equal importance as the data path elements are of course
the tools available to implement the control sections of the
processor. For this purpose a series of compatible bipolar
RAM's, ROM's and PROM's have been developed and the
development of a micro-program control unit is well on its
way to completion.

Further elements in the MACRO LOGIC family for periph-

MACROLOGIC 73

eral control applications are either available (e.g., FIFO,
CRC) or in development.

ACKNOWLEDGMENTS

The authors would like to express their appreciation for the
continuous support for their work from Dr. T. A. Longo,
Vice President and Group General Manager of Fairchild
Camera and Instrument Corporation as well as for the superb
performance of the development groups involved in the effort.

Architecture of microcontroller system

by MICHAEL LICCARDO
Scientific Micro Systems
Mountain View, California

SYSTEM OVERVIEW

A microcomputer designed for control

The SMS MicroController is a microcomputer designed
for control. It features:

Execution speed

• 300 nanosecond instruction execution time.
• Direct address capability-up to 4096 16-bit words of

program memory.
• Eight 8-bit general purpose registers.
• Simultaneo~s data transfer and data edit in a single

instruction cycle time.
• n way branch or n entry table lookup in two

instruction cycle times.
• MicroController instructions operate with equal speed

on 1-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, or 8-bit
data formats.

The MicroController instruction set features control
oriented instructions which directly access variable length
input/ output and internal data fields. These instructions
provide very high performance for moving and interpret­
ing data. This makes the MicroController ideal in switch­
ing, controlling, and editing applications.

Interface simplicity and expandability

• Direct connection to TTL (3-state) I/O (Open
Collector outputs are optional).

• I/O expandable to 224 connection points with storage
buffer at each point.

• User defined data flow direction with each group of 8
I/O points.

External device signals may be accessed with minimal
interface circuitry. The MicroController input/ output
system provides· a direct register interface to external
devices. Unlike classical minicomputer bus structures,
external devices do not require the logic for providing ad­
dresses to the input/output system. The address of an
external device is determined programmatically within the
MicroController.

75

Direct processing of external data

Data from external devices may be processed (tested,
shifted, added to, etc.) without first moving them to
internal storage. This is because its I/O system appears to
the MicroContr~ller as a set of internal registers. In fact,
the entire concept is to treat data at the I/O interface no
differently than internal data. This concept extends to the
software which allows variables at the input/ output
system to be named and treated in the same way as data
in storage.

Separate program storage and data storage

The storage concept of the MicroController is to
separate program storage from data storage. Program
storage is implemented in read-only memory in recogni­
tion of the fact that programs for control applications are
fixed and dedicated. The benefits of using read-only
memory are that great speeds may be obtained at lower
cost than if read/write memory were used, and that
program instructions reside in a non-volatile medium and
cannot be altered by system power failures. Data storage
for the MicroController is implemented with read/ write
memory because data in control and other real time ap­
plications is dynamic and variable.

High density packaging and reliable operation

• The MicroController is implemented completely with
LSI circuits.

• The MicroController CPU consists of a single
integrated circuit.

• Single +5.0 volt power supply operation.

The MicroController is provided packaged on one of
four basic boards. The smallest packaging scheme is the
System 10 which is 6.875 inches by 2.675 inches. This
board can accommodate CPU, 2K words of program
storage, and 32 I/O points. The largest package, the
System 40, is 6.875 inches by 13.475 inches and accom­
modates a fully expanded system consisting of CPU, 4K
words of program storage, 224 I/O points and 256 bytes of
read/write data storage.

76 National Computer Conference, 1975

INTERFACE VECTOR (IV)

• 8-BIT GENERAL PURPOSE
INPUT/OUTPUT REGISTERS (IV BYTES)

...
'"

~ ~ In ,.. W
~
III

..,
~ N -c 1

USER INTERCONNECTION

--.--TRI-STATE,INPUT/OUTPUT
DATA LINES

IV BYTE ADDRESS BUS

f •
} --+--.-- INPUT/OUTPUT

CONTROL LINES

, .
.

...
'" ~ - N In

....... W
~ INTERFACE VECTOR III

..,
110 DATA BUS ~ N -c

f t

INSTRUCTION ... INTERPRETER (CPUI
ADDRESS BUS '"

~~
• ARITHMETIC/LOGIC UNIT - - In

• PROGRAM COUNTER ~
• ROMOR PROM

• EIGHT 8-BIT REGISTERS
..,

III
• MAX STORAGE- WORKING STORAGE DATA BUS ~ N

409616-81T 16-BIT INSTRUCTION BUS • WORKING STORAGE -ADDRESS REGISTER (lVRI
WORDS c

• INTERFACE VECTOR
ADDRESS REGISTER (lVLI WORKING STORAGE t t

ADDRESS BUS

,
~

I PAGE SELECT I
I

WORKING STORAGE

I
• 256 BYTES OF

READIWRITE MEMORY ,

PAGE 0
I

PAGE 1

128 BYTES I 128 BYTES

I
I

Figure I-Microcontroller system diagram

MicroController functional components

The MicroController is a complete microcomputer
system consisting of:

• A central processing unit called the Interpreter.
• Read-only program storage.
• Optional read/write data storage called Working

Storage with variable field address of from 1 to 8 bits.
• A complete input/ output system called the Interface

Vector.

The MicroController System is shown in Figure 1.
Figure 2 illustrates the MicroController architecture.

The MicroController CPU contains an Arithmetic Logic
Unit (ALU), Program Counter, Interface Vector Address
Register (IVL), and Working Storage Address Register
(IVR). Eight 8-bit general purpose registers are provided,
including seven working registers and an Auxiliary register
which performs as a working register and also provides an
implied operand for many instructions. The MicroCon-

troller registers are shown in Figure 2 and are summarized
below:

Control Registers include:

Instruction-A 16-bit register containing the current
instruction.
Program Storage Address (AR)-A 13-bit register
containing the address of the current instruction being
accessed from Program Storage.
Program Counter (PC)-A 13-bit register containing the
address of the next instruction to be read from Program
Storage.
IV Byte Address (IVL)-An 8-bit register containing the
address of the current byte being accessed from the In­
terface Vector. IVL is under program control.
Working Storage Address (IVR)-An 8-bit register
containing the address of the current byte being ac­
cessed from Working Storage. IVR is under program
control.

Data Registers Include:

Working Registers (WR)-Seven 8-bit registers for data
storage.
Overflow (OVF)-A I-bit register that retains the most
significant bit position carry from AL U. Arithmetically
treated as 2° .
Auxiliary (AUX)-An 8-bit register. Source of implied
operand for arithmetic and logical instructions. May be
used as a working register.

A crystal external to the CPU is used to generate the
CPU system clock. The CPU provides eight instructions.

The 16-bit MicroController instructions are stored in
512 to 4096 words of read-only Program Storage. Program
Storage can be implemented with either mask coded
ROMs (Read-Only Memory) or PROMs (Programmable
Read-Only Memory).

The input/output system, called the Interface Vector,
serves as the data path over which information is trans­
ferred into and out of the MicroController. The basic ele­
ments of the Interface Vector are:

• The general purpose 8-bit input/output registers, or
Interface Vector (IV) Bytes, whose tri-state data path
serves as the connection points to the user system.

• The IVL register which contains the address of the IV
Byte currently being accessed.

• Variable field selection which permits 1 to 8-bit field
access of a selected IV Byte in a single instruction.

The Interface Vector eliminates the need for costly in-

READ-ONLY

PROGRAM

STORAGE

ALU RESULT BUS

Architecture of Microcontroller System 77

terface logic and presents a simple, well-defined intercon­
nection point to the user system.

Working Storage is available as an option that provides
256 bytes of read/write memory for program data or
input/output data buffering. Working Storage consists of:

• 256 8-bit bytes of read/write memory organized as
two pages (banks), Page 0 and Page 1, of 128 bytes
each.

• The Working Storage address register, IVR which
holds the address of the byte currently accessed in
either Page 0 or Page 1, depending on the state of the
Page Select Register.

• The Page Select Register, addressed through IVR, is a
single bit register used to select Page 0 or Page 1 of
Working Storage.

• Variable Field Select which permits 1 to 8-bit field
transfers to or from an addressed Working Storage
byte in a single instruction.

MICROCONTROLLER INSTRUCTION SET

The MicroController has a repertoire of eight instruc­
tions which allow the user to test input status lines, set or
reset output control lines, and perform high-speed
input/ output data .transfers. All instructions are 16 bits in
length. Each instruction is executed completely in 300 na­
noseconds.

Data is represented as an 8-bit byte; bit positions are
numbered from left to right, with the least significant bit
in position 7.

01234567

I I I I I I II I
MSB LSB

II:
0 ten
~a:
w~ u<
~Cl
ffig
~

GENERAL
~

PURPOSE
WORKING w ~ INTERFACE

REGISTERS u
~lI:lIlffi VECTOR BYTE

N

Rl ~~~!a
ADDRESS

~ (8)

R2 (8) ~~~~ IX!

-I ~
R3 (8) ~

R4 (8)

R5 (8)

R6 (8)

Rll (8)

(ROMIPROM)

512TO

4096 WORDS INTERFACE VECTOR INPUT DATA WORKING STORAGE
I

WORKING STORAGE DATA

VARIABLE FIELD ADDRESS

Figure 2-Microcontroller architecture

WORKING
STORAGE
ADDRESS

256 BYTES
I

OF R/W MEMORY

PAGE 0 II PAGE 1
(128 (128

BYTES) I BYTES)

78 National Computer Conference, 1975

Within the Interpreter, all operations are performed on
8-bit bytes. The Interpreter performs 8-bit, unsigned, 2's
complement arithmetic.

Instruction formats

The general MicroController instruction format is:

Instruction Formats

Table I contains a summary of the MicroController
instruction set and description of the operand fields.

All instructions are specified by a 3-bit Operation (Op)
Code field. The operand may consist of the following
fields: Source (S) Field, Destination (D) Field, Rotate (R)
Field, Length (L) Field, Immediate (I) Operand Field,
and (Program Storage) Address (A) Field.

The instructions are divided into five format types
based on the Op Code and the form of the operand(s).

TYPE I

TYPE II

TYPE III

TYPE IV

TYPE V

OPERATIONS

MOVE AND

ADD XOR

OPERATIONS

MOVE ADD

AND XOR

OPERATIONS

XEC XMIT

NZT

OPERATIONS

XEC XMIT

NZT

OPERATIONS

JMP

TABLE I-Micro Controller InstnlCtion Summary

OPERATION FORMAT RESULT NOTES

MOVE
Content of data field addressed by S, L re-
places data in field specified by 0, L.

I ADD
Sum of AUX and data specified by S, L re-

m places data in field specified by 0, L If SandO both are register
addresses then L specifies a

AND
Logical AND of AUX and data specified by right rotate of L places ap-
S, L replaces data in field specified by 0, L. plied to the register specified

byS.

Logical exclusive OR of AUX and data
XOR specified by S, L replaces data in field

specified by 0, L.

The literal value I replaces the data in the
If S is IV or WS address then

XMIT I limited to range 00-37.
field specified by S, L. Otherwise I limited to range . 000-3n .

m If the data in the field specified by S, L
If S specifies an IV or WS equals zero, petform the next instruction in
address then I is limited to

NZT sequence. If the data specified by S, L is
the range 00 - 37. I is limited not equal to zero, execute the instruction at

address determined by using the literal I as to the range 000 - 3n other-

an offset to the Program Counter.
wise. m Perform the instruction at address' deter- The offset operation is per-

mined by applying the sum of the literal I formed by reducing the value

XEC
and the data specified by S, L as an offset of PC to the nearest multiple
to the Program Counter. If that insIruction of32(HI :00-37) or 256 (HI
does not transfer controt, the program sa- : 000 - 3n) and adding the
quence w~1 continue from the XEC instruc- offset.
lion location.

JMP EGJ nie literal value I replaces contents of the I limited to the range 00000 -
Program Counter. onn.

Instruction fields

Op code field-3-bit field

The Op Code field is used to specify one of eight Micro­
Controller instructions.

OP CODE
OCTAL VALUE INSTRUCTION RESULT

0 MOVE S,L,D (S)--->D
1 ADD S,L,D (S) plus (AUX)--->D
2 AND S,L,D, (S)A (AUX)--->D
3 XOR S,L,D (S) Ef) (AUX)--->D
4 XEC I,L,S or I,S Execute instruction at

current PC offset by
I+(S)

5 NZT I,L,S or I,S Jump to curren~ PC offset
by I if (S)+O

6 XMIT I,L,S or I,S Transmit literal I--->S
7 JMP A Jump to program location A

S,D fields-5-bit fields

The Sand D fields specify the source and destination of
the operation defined by the Op Code Field. The Auxiliary
Register is the implied source for the instructions ADD,
AND and XOR which require two source fields. That is,
instructions of the form:

ADDX,Y

imply a third operand, say Z, located in the Auxiliary
Register so that the operation which takes place is actually
X + Z, with the result stored in Y. This powerful capability
means that three variables are referenced in 300 nano­
seconds.

OCTAL VALUE

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

OCTAL VALUE

20
21
22
23
24
25
26
27

OCTAL VALUE

30
31
32
33
34
35
36
37

L/R field-3-bit field

Architecture of Microcontroller System 79

08-178 is used to specify one of seven working registers
(RI-R6, R11), Auxiliary Register, Overflow Register, IVL
and IVR registers.

Auxiliary Register
Rl
R2
R3
R4
R5
R6
IVL Register-IV Byte address register-Used as aD field only, or S field in XMIT

instruction.
OVF-Overflow register-Used as an S (source) field only.
R11
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
IVR Register-Working Storage address register-Used as a D field only, or S field in

XMIT instruction.

208- 278 is used to specify the least significant bit of a variable length field within
the IV Byte selected by the address in the IVL register. The length of the field is
determined by L.

Field within selected IV Byte; position of LSB=O
=1
=2
=3
=4
=5
=6
=7

308-378 is used to specify the least significant bit of a variable length field within
the Working Storage Byte selected by the address in IVR Register. The length of the
field is determined by L.

Field within selected W.S. Byte; position of LSB=O
=1
=2
=3
=4
=5
=6
=7

The L/R field performs one of two functions, specifying
either a field length (L) or a rotation (R). The function it
actually does specify for a given instruction depends upon
the contents of the Sand D fields:

3-Field length = 3 bits
4-Field length = 4 bits
5-Field length = 5 bits
6-Field length =6 bits
7 - Field length = 7 bits

A. When both Sand D specify registers, the R field is
used to specify a right rotation of the data specified by the
S field. (Rotation occurs on the bus and not in the source
register.)

B. When either or both the Sand D fields specify and
IV or Working Storage Byte, the L field is used to specify
the length of the field (within the byte) accessed, as shown
below:

OCTAL VALUE
0-Field length = 8 bits
1-Field length = 1 bit
2-Field length = 2 bits

I field-5/8-bit field

The I field is used to load a literal value (a binary value
contained in the instruction) into a register, IV or Working
Storage Byte or to specify the low order bits of the
Program Counter.

The length of the I field is based on S field:

A. When S specifies a register, the literal I is an 8-bit
field (Type III format).

B. When S specifies an IV or Working Storage Byte, the
literal I is a 5-bit field (Type IV format).

80 National Computer Conference, 1975

A field-13-bit field

The A field is a 13-bit Program Storage address field. In
current systems, however, only 12 bits are used, resulting
in storage capacity of 4096 instructions.

Register operations

When a register is specified as the source, and an IV or
Working Storage field as the destination, the least signifi­
cant bits of the operation (MOVE, ADD, AND, XOR)
result are stored. The operation is performed on the entire
8-bit source for a MOVE, or between the 8-bit AUX and
the source register for ADD, AND, XOR operations. The
least significant bits of the result are stored in the IV or
Working Storage field specified in the instruction.

When an IV or Working Storage field of one to eight bits
is specified as the source, and a register as the destination,
the 8-bit result of the operation (MOVE, ADD, AND,
XOR) is stored in the register. The operations ADD, AND,
XOR actually use the IV or Working Storage data field (1-
8 bits) with leading zeros to obtain 8-bit source data for
use with the 8-bit AUX data during the operation.

Because IVL and IVR registers can be specified as desti­
nation fields only, (see description of S, D fields), opera­
tions involving IVI and IVR as sources are not possible.
For example, it is not possible to increment IVR or IVL in
a single instruction, and the contents of IVL or IVR can­
not be transferred to a working register, IV Byte, or Work­
ing Storage location.

The OVF (Overflow) Register only can be used as a
source field; therefore, it cannot be set or reset in a single
instruction.

Instruction descriptions

The following instruction descriptions employ MCMAC
(the MicroController Machjne Compiler, described in a
later section) programming notation. This notation varies
somewhat from the instruction descriptions provided
earlier. Thus, for example, explicit L field definition as
shown is not required by MCMAC for machine instruc­
tions; MCMAC creates appropriate variable field ad­
dresses from the information contained in the Data Decla­
ration statements provided by the programmer at the be­
ginning of his program.

The MicroController instruction set is described below
with examples illustrating instruction use.

MOVE S,D or
MOVES (R), 0

o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15

I 0 0 0 I Source I L/R I Destination I
OPERATION: (S} (D)

DESCRIPTION: Move data. The contents of S are transferred to 0; the c'. ntents of S are unaffected. If both Sand
Dare registen;, R specifies a right rotate of the source data during the move. Otherwise, L is
implicit and specifies the length of the source and destination fields. If the MOVE is between an
IV Byte and a Working Storage Byte, an B·bit field is always moved.

EXAMPLE: Store the least significant 3 bits of register 5 (R5) in bits 4, 5 and 6 of the IV Byte addressed
by IVL register.

____ M~5, I

o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15

I 0 0 0 I 0 0 ,1 0 1 I 0 1 111 0 1 1 0 I Binary Representation
o 0: 6 3 2 I 6 Octal Representation --------------- ----L-- Defines LSB as bit 6

L...-____ Defines Interface Vector
L-______ Defines 3·bit field

'-----------Defines register 5

01234567

I 0 1 1 0 0 1 1 0 I R5

III
1 X X X XII 0 X I Selected IV Byte - After Operation

Note: X's in the IV Byte denote bits unaffected by the MOVE operation.

ADDS, Dar 01234567 B 9101112131415

ADD S (R), 0 1 0 0 1 I Source I L/R I Destination I

OPERATION: (S) plus (AUX} 0; set OVF if carry from most significant bit occurs.

DESCRIPTION: Unsigned two's complement addition. The contents of 5 are added to the contents of the
Auxiliary Register (which is the implied source). The result is stored in D; OVF is set. If both
5 and 0 are registen;, R specifies a right rotate of the source (S) field before the operation.
Otherwise L is implicit and specifies the length of the source and destination fields. 5 and
AUX are unaffected unless specified as the destination.

EXAMPLE: Add the contents of R 1 (rotated 4 places) to AUX and store the result in R3.

1 0 1 0 1 1 1 1 0 I
1110~1

1100001001

101101001/

Rl

Binary Representation

Octal Representation

Contents of R 1 rotated right 4 places

AUX

R3 - After Operation

OVF

AND S, Dor
AND S(R), D

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I a 1 a I Source I L/R I Destination I
OPERATION: (S) /\ (AUX)'" D

DESCRIPTION: Logical AND. The AND of the source field and the Auxiliary Register is store'd into the
destination. If both Sand D are registers, R specifies a right rotate of the source (S) field before
the AND operation. Otherwise L is implicit and specifies the length of the source and destination
fields. Sand AUX are unaffected unless specified as a destination.

EXAMPLE:

XOR S, Dor
XOR S (R), D

Store the AND of the selected Working Storage Byte and AUX in R4.
The Working Storage Byte field is called WSBCD and is 4 bits long and
located in bits 2, 3, 4 and 5.

01234567

1100,\\~ Selected WS Byte

Binary Representation

Dctal Representation

00000101 Selected field right justified with leading zeros added.

AND

AUX

R4

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I a 1 1 I Source I L/R I Destination

OPERATION: (S) 0 (AUX) -> D

DESCRIPTION: Exclusive OR. The exclusive OR of the source field and the Auxiliary Register is stored in the
destination. If both Sand 0 are registers; A specifies a right rotate of the source (S) field before
the XOR operation. Otherwise L is implicit and specifies the length of the source and destination
fields. Sand AUX are unaffected unless specified as a destination.

EXAMPLE: Replace the selected IV Byte field with the XOR of that field and AUX. The IV Byte field is
called STATUS and is 5 bits in length and located in bits 3, 4, 5, 6 and 7.

XOR STATUS,

01234567

STATUS

Binary Representation

Dctal Representation

I a 1 1 1 a a 1 1 I Selected IV Byte - Before Operation

HHJ
a a a 1 a a 1 1 Selected field right justified with leading zeros added

XOR

I a 0 a a 1 0 1 0 I AUX

00011001

! 1111
I 0 1 1 1 1 a a 1 I Selected IV Byte - After Operation

unaffected

Architecture of Microcontroller System 81

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 0 a I Source I Field

a 1 234 56 7 89 10 1112131415

XEC I(S) I 1 a 0 I Source I Length I I Field

OPERATION: Execute instruction at (Address Register) offset by (S) + I.

DESCRIPTION: Execute the instruction at the address determined by replacing the low order bits of the Address
Register (AR) (which contains the current value of the Program Counter) with the low order bits
of the sum of the literal I and the contents of the source field. If S is a register, the low order 8
bits of AR are replaced; if S is an IV or Working Storage Byte, the low order 5 bits of AR are
replaced. resulting in an execute range of 256 and 32 respectively. The Program Counter is not
affected unless the instruction executed is a JMP or NZT (whose branch is taken).

EXAMPLE:

XMIT I,S

Execute a JMP in a table of JMP instructions determined by the value of the selected IV Byte
field. The table follows immediately after the XEC instruction and the IV field is called INTERPT
and is a 3 bit field located in bits 4, 5 and 6.

XEC *+1 (lNTERPT)

a 13

Binary Representation

Dctal Representation

I a a a a 1 1 a 1 1 a a 1 1 I Address Register - Before Operation

01234567

I a 1 a 1 a 1 1 a I Selected IV Byte

\\\
00000011 Selected field right justified with leading zeros added

Address Register - After Operation

0000110110011
0000110110100

0000110110111

0000110111011

unaffected

INSTRUCTION

XEC *+1 (INTERPT)
JMP Al

JMP A3

JMP A7

JMP A3 is executed because IV field INTERPT = 3

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 1 0 I Source I Field

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 1 0 I Source I Length I I Field

} ,.",.,

OPERATION: 1-> S

DESCRIPTION: Transmit literal. The literal field I is stored in S. If S is a register, an 8 bit field is transferred;
if S is an IV or Working Storage Byte, up to a 5 bit field is transferred.

EXAMPLE: Store the bit pattern 110 in the selected Working Storage Byte field. The field name is VALUE
and located in bits 3, 4 and 5.

01234567

Binary Representation

Octal Representation

I 1 1 a a 1 0 0 1 I Selected WS Byte - Before Operation

a a a a 0 1 1 a I Field

//I
1 1 a 1 1 a a 1 I Selected WS Byte - After Operation

82 National Computer Conference, 1975

NZTS, I o 1 2 3 4 5 6 7 8 9 1011 121314 15

I 1 0 1 I Source I I Field

o 1 2 3 4 5 6 7 8 9 1011 1213 14 15

I 1 0 1 I Source I Length I I Field I

OPERATION: Non Zero Transfer If (S) "0, PC offset by I PC; otherwise PC + 1 PC.

DESCRIPTION: If the data specified by the S field is non-zero, replace the low order bits of the Program
Counter with I. Otherwise, processing continues with the next instruction in sequence. If

EXAMPLE:

S is a register, the low order 8 bits are replaced; if S is an IV or Working Storage Byte, the low
order 5 bits are replaced, resulting in an NZT range of 256 and 32 respectively.

Jump to Program address ALPHA if the selected IV Byte field is non-zero. The field name is
OVER FLO and it is a 1 bit field located in bit 3.

NZT OVERFLO,

01234567

IXXX1Xxxxi
I

ADDRESS

0000110110011 . .
ALPHA 00001101 ~

offset

ALPHA

Selected I V Byte

OVERFLO

Binary Representation

Octal Representation

INSTRUCTION

NZT OVERFLO, ALPHA

Instruction

o 1 2 3 4 5 6 7 8 9 10 11 121314 15

JMP A I 1 1 1 / Address Field

OPERATION: A"" PC

DESCRIPTION: The literal value A is placed in the Program Counter and processing continues at location A.
A has a range of 0 - 77778 in current systems (0 - 4095).

EXAMPLE: Jump to location ALPHA (0000101110001)

JMPALPHA

1110000101110001

7 o! 0 ! 5 ! 6 ! 1

ADDRESS

0000000011011 . .
ALPHA 0000101110001

Binary Representation

Octal Representation

INSTRUCTION

JMPALPHA

Instruction

lola I al al al a I al a 111110/111 I Program Counter Before Operation

lal al a I allla 111 till al al 011 I Program Counter After Operation

INPUT/OUTPUT SYSTEM

As seen from previous sections, the Interface Vector is
the MicroController's input/ output system. It provides a
simple interconnection to the user status, control and data
lines.

Addressing data on the interface vector

The Interface Vector is comprised of general purpose
I/O registers called Interface Vector (IV) Bytes. In the
present MicroController offering, the Interface Vector
may consist of up to 28 IV Bytes.

As seen from Figure 2 the IVL register serves as the ad­
dress register to the IV Bytes. In order for an instruction
access (read or write) an IV Byte, the address of that byte
must first be placed into the IVL register.

Thus, two instructions are required to operate on an In­
terface Vector byte:

XMIT ADDRESS, IVL
MACHINE INSTRUCTION

Once the IV Byte is selected (addressed) it will remain
selected until the IVL register is loaded with another ad­
dress. From the user's standpoint, however, all IV Byte
outputs can be read by an external device regardless of
whether they are selected or not.

Although the address range of IVL is 0-3778 , only 28 IV
Bytes are available on current system offerings. The ad­
dressing for the 28 IV Bytes is 018 to 348,

Electrical characteristics of the interface vector

Each IV Byte consists of 8 storage latches which hold
data transferred between the Interpreter and the User
System, 8 tri-state input/ output lines and two
input/ output control lines, called Byte Input Control
(BIC) and Byte Output Control (BOC) (Figure 3). The
control lines functions are summarized in Table II.

READ/WRITE MEMORY

In MicroController applications, data may be stored in
a read/write memory system called Working Storage.

TABLE II-Functions of the BIC and BOC Lines

CONTROL LINES

BOC (low true) BIC (low true)

H H

L H

x L

FUNCTION

8 I/O lines in high impedance
state-disable
8 I/O lines in output mode-8 bit
storage latch data available in the
output lines.
8 I/O lines in input mode-data
can be read by Interpreter.

Table III contains a summary of the electrical characteristics of the IV
Byte.

Architecture of Microcontr-oller System 83

TABLE III-IV BYTE Terminal Electrical Characteristics

Characteristic

"I" Input Current*
"0" Input Current*
"I" Input Voltage
"0" Input Voltage
Input Clamp Voltage
High Output Voltage
Low Output Voltage
Output Short Circuit Current
Data Input Capacitance

Symbol

I 1in
Iq,in
Vlin
Vq,in
Vein
V10ut
Vq,out
Iso
C in

Min

2
-1

2.4

-20

* Input current is always present regardless of the state of BIC and BOC.

Working Storage is accessed in much the same manner
as IV Bytes. Figure 2 shows that IVR register is the Work­
ing Storage address register. It should also be noted from
Figure 2 that a Page Select Register determines the page
currently addressed by the IVR register. In order to access
the Page Select Register, IVR must be set to 1778 , which is
the address of the Page Select Register. Either a 1 or 0 can
be transferred into bit 7 to select page 1 and page 0 respec­
tively. Once the proper page is selected, IVR can be loaded
with the address of the Working Storage Byte requiring ac­
cess.

\
IV Byte Select Bus

Interface Vector ~
I/O Data Bus vi

SiC

I

7
6
5
4
3
2
1

BOc°
I

Figure 3.1

-r)

Tri-state Input/Output
Lines

} Input/Output Control Lines

IV BYTE PROVIDING DYNAMICALLY DEFINED DATA FLOW

+5V

Figure 3.2

r---'
J----+I I

User 1
System 1

1
I

L __ J

IV BYTE WIRED FOR USER OUTPUT ONLY

+5V

r--l
14-----41 1

User I
System I

I
I L __ ...J

Figure 3-IV byte wired for inI.JUt only

Limits

Typ Max Units Conditions

100 uA Vlin=5.5 V
-800 uA Vq,in=0.50 V

5.0 Volts
0.8 Volts

-1 Volts Iq,in= -oma
Volts I 1out =lma

0.0 Volts Iq,out= -16ma
-200 ma Vq,out=OV

12 pf Vq,in=OV

Because the two 128 byte pages of Working Storage are
selected by the Page Select Register, the address loaded
into IVR to access a byte in either page is identical 2008-

3778 , In effect, IVR holds the low order address bits and
Page Select holds the high order address bit.

Operating on data in Working Storage requires two
steps:

a. Selecting the 128 byte page which contains the data.
b. Accessing and operating on the actual data byte(s).

Page selection requires two instructions:

XMIT 177H,IVR Enables Page Select
Register

XMIT PAGE, PSR Selects Page

Thereafter all references to bytes within the selected
page require two instructions:

XMIT ADDRESS, IVR Selects byte
MACHINE INSTRUCTION

When using instructions that involve the transfer of
fields of less than 8 bits between an IV Byte and Working
Storage, the following results should be noted.

EXAMPLE: A MOVE instruction that specifies an IV Byte and. Working Storage will have the following resl!!t:

MOVE 0

IV Byte Field

Selected IV Byte

WS Byte Field

Selected WS Byte

Specified Destination Field

ACTION: The specified IV Byte source field is transferred into the specified Working Storage Byte field.
The remainder of the destination byte is filled by the contents of the corresponding bit positions
in the source bytes.

84 National Computer Conference, 1975

EXAMPLE: An ADD, XOR or AND instruction that specifies an IV Byte and Working Storage will have the
following result:

ADD
AND
XOR

o

Specified Source Field

Selected WS Byte

ADD

Auxiliary Register

Specified Destination Field
Corresponding bits of Source Field

ACTION: The specified source field (right justified with leading zero's inserted) is added/anded/exclusive
or'ed with the Auxiliary Register and the result placed in the destination field. The remainder of
the destination byte is filled with the corresponding bit positions of the source byte.

EMMY-An emulation system for user
microprogramming*

by M. J. FLYNN and C. NEUHAUSER
Stanford University
Stanford, California

and

ROBERT M. McCLURE
Palyn Associates, Inc.
San Jose, California

INTRODUCTION

A relatively unique emulation laboratory facility is being
developed at Stanford University to support research in
computer architecture and language processing. The center
of this system is a "universal host" computer which is
capable of emulating (or simulating) the behavior of many
other computers.

The facility will serve three purposes. It will allow research­
ers to:

1. access a variety of computera rchitectures-facilitating
inter-architecture comparisons-providing for the pro­
cessing of archival code for obsolete computers;

2. analyze the effectiveness of various computer architec­
tures and compilers through the use of "software
probes";

3. develop new "soft" computer architectures which
reflect the artifacts of specific higher level languages­
ultimately each higher level language would have its
own coded machine architecture dynamically loaded
into a host system.

For some time microprogramming techniques have been
used in the design of computer control units. 1,2,3 However,
in the past the principal interest has centered around read­
only-memory microprogram systems.

The introduction of very high speed, read-write storage
based on large scale integration (both bipolar and fast MOS
technologies) represented a significant change in the above
environment. Now microprograms-and data-could be
rapidly loaded into the "control storage" which we term
"microstorage" here. The environment of the Seventies
introduced the possibility that one "host" system could
serve as an emulator for a wide variety of "image" systems.
This led to the introduction of two new architectural con-

* The general architecture of EMMY was based on a series of studies
conducted at the Johns Hopkins University and was supported, in part,
by the U.S. Atomic Energy Commission under contract AT (1 1-1 3288).

85

cepts: the soft computer architecture; 4 and dynainic
microprogramming. 5

The soft computer architecture-as represented by the
N anodata QMI 6 machine and to the Burroughs B1700 7

takes advantage of this fast read-write. capability, coupling
it with a number of innovative processor features including:

1. field handling and selection
2. high speed shifting ability
3. extensive bit testing
4. flexible specification of data paths (residual control)

Each of these features can be used effectively in implement­
ing interpretive emulation processes.

A soft architecture is enhanced through a technique known
as "dynamic microprogramming"-in which the read-write
micromemory is identified as the primary storagE?,media of the
system as well as the medium which contains the emulator
code. Such architectures are arranged to both execute micro­
instructions and fetch data out of this fast storage media. The
"control storage" then becomes a microstorage which more
closely resembles an explicit Cache than a simple ROM. The
advantage of dynamic microprogramming is that data access
times can be shortened by having the data present in this
high speed storage media, thus resulting in improved system
performance.

El\tIMY

Emmy is the name given to the processor which forms the
nucleus of our facilities at Stanford. It was designed, with
severe cost constraints, to be an efficient as well as unbiased
host machine. The goal was for a CPU design that could fit
on one large printed circuit board with an inherently high
instruction processing rate. Further, the design would have
to accommodate the flexibility required to emulate a variety
of conventional machines as well as to allow the development
of new, abstract, language oriented machines. As a result,
EMMY is both a soft architecture and dynamically micro-

86 National Computer Conference, 1975

I
I

R 7 I
I
I

I I
I I

L ___ :.?~O~~~:'_C~~,:?':... ____ J ~ PRIMARY DATA PATH

----+ SECO NDARY OATA PATH

----+ CONTROL PATH

Figure I-Structure of host machine

programmable. It is based upon a series of simulated systems
which have been developed by our research group over the
past several years. The EMMY machine is a 32 bit system
which has 4,096 words (32 bit) of fast microstorage (access
time 60 nanoseconds-cycle time less than 200 nanoseconds) .
The system is implemented using a very high speed tech­
nology-e.g., the switching technology has an internal
cycle time of 25 nanoseconds. It is highly organized about
LSI both in memory area and in processor implementation,
and typically executes an instruction once every 200 to 400
nanoseconds. A strong influence on the design was the desire
to minimize the amount of logic required to implement it,
since cost and size were considered very critical.

An unusual feature, for a machine of this size, is that there
exists a high degree of parallelism within the individual
instructions. The host machine contains three separate, yet
interdependent, finite state machines, each receiving control
input from ~he current microinstruction and each controlling
a resource associated with one class of instructions (Figure 1) .
These machines are designed as:

1. T -machine (con troIs functional resources),
2. A-machine (controls memory resources), and
3. I-machine (controls fetching of the next microinstruc­

tion) .

Microinstructions in the host machine are formatted so
that, in general, one half of the instruction (the T-control
field or TCF) controls the T-machine and the other half
(the A-control field or ACF) controls the A-machine. The
I-machine may be controlled by either or both halves of
the microinstruction.

Both the T- and A-machines manipulate data residing in
the eight general purpose registers. The A-machine also moves
data between micromemory and the registers and initiates
communications with external memory units on the host
bus. I-machine operation controls the fetching of the next
microinstruction from micromemory. Host machine state
information necessary to control the I-machine is contained
in register 0 of the register file. Since this state register is

directly accessable to the microprogrammer, flexible proce-·
dure oriented operations are possible.

Instruction set structure

Microinstructions (Figure 2) are 32 bits in length-the
leftmost 14 bits, the TCF field, being dedicated to the control
of the T-machine and the remaining 18 bits, the ACF field,
being dedicated to the control of the A- and I-machines.
Note that although there is a high degree of parallelism in
these instructions, the TCF and ACF fields are vertically
encoded independently of each other. The resulting micro­
instruction set is a relatively simple programming medium.

T -machine instructions

T -machine instructions are designed to provide the basic
functional operations that the microprogrammer needs to
emulate the functional and control aspects of a target
machine. Instructions for the T -machine may be divided into
the following classes:

1. logical,
2. arithmetic,
3. shift and rotate,
4. extended arithmetic, and
5. field insert and extract.

Instructions in the first four classes have a standard format
which specifies opcode, subopcode, two register operands and
indicates the possible use of immediate data. When immediate
data is specified, the 18 bit field usually used to control the
A-machine is expanded into a 32 bit quantity of immediate
data. The extended arithmetic instructions subopcodes are
designed to give the microprogrammer powerful sihgle cycle
operations with which to build complex target machine
instructions, such as multiply and divide, by repetition.

Field insert and extract instructions are full word instruc­
tions which the microprogrammer may use to isolate and

INSERT/EXTRACT

LOAD DIRECT}
STORE DIRECT

LOAD IMMEDIATE

ACCESS INDIRECT}
MODI FY POI NTE R

STACK

'8

1

'7

~~==~-L-+ __ ~ ________ ~

SHORT T-MACHINE
INSTRUCTION

}
LONG T- MACHINE

INSTRUCTION

ITYPE10PI I ADDRESS }

.------------+---..---r-...... ".,..--.-------, A -MACHINE INSTRUCTION

ISHORT T-MACHINE INST

} [-MACHINE

Figure 2-Structure of host machine instruction set

move fields of a data word residing in the registers. The insert
instruction, for example, takes a word from one register,
rotates it by a specified amount (0-31 bit positions) and
places the result in a designated register under masking
specified by the ACF field. This instruction is useful in
breaking down target machine instructions and in matching
host machine resources to target machine requirements
when their word lengths differ.

A -machine instructions

A-machine instructions are used by the microprogrammer
to access micromemory, manipulate address pointers, and
communicate with external devices on the host bus system.
A-machine instructions fall into the following classes:

1. move registers directly to and from micromemory,
2. load a register with immediate data,
3. access memory resources indirectly,
4. manipulate pointers, and
5. maintain stacks in micromemory

Access to external memory is designed so that once the
operation is initiated the instruction address counter may
continue to advance while awaiting the completion of the
operation. This is an important source of parallelism in the
emulation of instruction and data fetch in many target
machines. A-machine stack operat.ions allow the micro­
programmer to access and maintain stacks in micromemory.
Pointer manipulation instructions involve register increment­
ing, decrementing, addition, and conditional branching on
results. Stack and pointer operations are particularly useful
for operand indexing and sequencing of interpretive sub­
routines.

I -machine instructions

Fetching of the next microinstruction is controlled by the
I-machine. Microinstructions are fetched sequentialy from
micromemory unless the I-machine is specifically directed to
fetch from a different location. Since the machine state, which
includes the microinstruction address, is contained in one of
the general purpose registers, the programmer may change

OVERFLOW
MACHINE SET SIGN
CONDITIONS CARRY

'--_----r __ -J1

[ADDRESS OF NEXT
MICROINSTRUCTION

INTERRUPTS

{
~~~~Y 

LOW BIT 
HOMOGENEITY 
BUS REQUEST STATUS 

Figure 3-Layout of host machine state register 

EMMY 87 

the usual sequence by using the current microinstruction to 
modify the state register. 

Within the state register is an eight bit condition code field 
representing various aspects of the previous T -machine 
operation (Figure 3). Instructions are provided to allow the 
microprogrammer to test these condition codes and control 
the operation of the A-and I-machines. These instructions are 
classified as: 

1. conditional, 
2. branching, and 
3. looping 

A conditional instruction is one in which the TCF field of the 
microinstruction specifies the testing of the condition codes 
and controls the subsequent execution of the A-machine. If 
the indicated condition is found to hold then the instruction 
for the A-machine, as specified in the ACF field, is executed, 
otherwise it is skipped. Using this facility the microprogram­
mer is able to specify conditional jumps, stacking operations, 
memory accesses and so forth. 

A branch instruction may be specified in the A-machine 
control field (ACF) and allows the programmer to test the 
condition codes and perform a short relative jump from the 
current location based on the results. This instruction is used 
to provide control of the I-machine concurrently with T­
machine operation. 

Pointer modification instructions, which control the A­
machine, may also provide looping capability. The results of 
each pointer modification operation may be tested for 
one of the common arithmetic conditions (e.g., less than 
zero), and the results of the test may cause a short relative 
jump. This instruction allows the microprogrammer to 
control repetitive operations such as normalize and multiply. 
In fact, the emulation of a target machine multiply instruc­
tion requires only one microinstruction since the extended 
arithmetic instruction "multiply step" and the looping in­
struction may be combined. 

DATA FLOW DESCRIPTION 

The general purpose register file (Figure 3) consists of 
seven 32 bit working registers and one status register. The 
status register (reg. 0) contains status and machine state 
information including the micromemory address pointer. The 
seven working registers are all full accumulators. There are 
two registers designated Register A and Register B at the 
input to the T-machine. These are temporary holding and 
shifting registers between the register file and the Arith­
metic Logic Unit (ALU) in the T-machine. The ALU always 
accepts one operand from register A, and may accept the 
second operand from register B, the immediate field from 
the microinstruction, micromemory, or an outside resource. 
A multiplexer switch that gates the appropriate second oper­
and to the ALU is also termed the "expansion unit" in that 
it can gate partial word operands left or right justified with 
zero or one fill in the remaining bits. 

The ALU result is gated back to the appropriate (desig-



88 National Computer Conference, 1975 

nated in the microinstruction) register in the register file. 
For arithmetic and logical operations a second cycle then 
gates the condition code into the correct field in register O. 

The Micro-Instruction Register holds the current micro­
instruction being executed. As noted earlier, each instruction 
is divided into two parts: T-control field (TCF) and the A­
control field (ACF). The TCF controls data transformation 
resources and the ACF controls auxiliary operations such as 
loads, branches, and I/O operations. For some instructions 
the ACF may not be executed due to the result of the TCF 
execution satisfying a given condition. Immediate fields from 
Micro-Instruction Register may be gated to either the ALU 
or micromemory. 

The micromemory address counter is located in the right­
most 12 bits of register O. 

All registers save those in the register file are transparent 
to the microprogrammer, although he should obtain a some­
what qualitative understanding of EMMY's architecture 
and its hardware operation. 

REGISTER 0 (STATE REGISTER) 

Register 0 contains 4 main fields. They are the Condition 
Code, Indicator Code, Machine State, and the Micromemory 
Address Counter. 

The CCODE is set by arithmetic, logical and various 
internal operations. The CCODE comprises bits 31 through 
24 of register O. Bits 31. through 25 make the arithmetic 
condition code and are set only by arithmetic and logical 
operations. Thesigniflcance of each bit is listed in Figure 3. 

Bit 24 is set when micromemory is busy. The micro­
programmer must test this bit to determine completion of 
memory cycle. 

The indicator code, ICODE, (bits 23 through 16) is for 
programmer access only. Various TCF instructions may 
access this field for the purpose of setting flags or any other 
purpose the programmer deems reasonable (or unreasonable 
if he so desires). Thus the CCODE code is set by the machine 
while the ICODE is set by the programmer. However, both 
are testable by the branch and both are saved on an interrupt. 

The Machine State is depicted by bits 15 through 12. The 
functions are indicated on Figure 3. 

The Micromemory Address Counter, MAC, (bits 11 
through 0) points to the next instruction to be fetched in the 
MIR from micromemory. After the MIR is loaded the 
MAC is incremented, and the instruction execution begi~s. 

ADDRESSING SCHEME 

Certain devices within the EM MY and all external devices 
have an address assigned to them. All are connected to a 
common address and data bus. When an address is gated onto 
the address bus, each device looks to see if it is the device 
being selected. The following table lists all the internal 
device addresses. All other addresses are either unused or the 
address of an external device. 

Address 

FFOOOO-FFOFFF 
FF 1000-FF 1007 
FEOOOO 
FEOOOl 
FE0002 
FE0003 
000000-03FFFF 

INTERRUPTS 

Device 

Micromemory 
Register file 
Address display register 
Data display register 
Data/Address switch register 
Push button register 
IVlain memory addresses 

'iVhen the interrupt system is enabled and an interrupt is 
received, Register 0 is saved at a micromemory location 
(with the Micromemory Address Counter field incremented 
by (1) corresponding to the type of interrupt. Register 0 
is then reloaded from an associated location and execution 
resumes. By reloading register zero, the programmer can 
(obviously) change all the information contained in register 
zero, that is, the condition and indicator codes, the machine 
state, and the Micromemory Address Counter. 

A (partial) table of defined micromemory interrupt loca­
tions is listed below. Register zero is saved at the odd location 
(the listed address plus one) and is reloaded from the even 
location (the listed address). 

Location 

44 
46 
48 
4A 
4C 

PERFORMANCE 

Interrupt Type 

Console interrupt 
Main memory interrupt 
Console interrupt 
Block Transfer interrupt 
Bus time-out interrupt 

Microinstructions which reference other registers are 
executed in the 200-250 ns range with the exception of long 
shifts which require an extra 25 ns per bit shifted after 2 bits, 
extract-insert, which require long shifts, and a few of the 
extended instructions. Referencing micromemory requires an 
additional 200 ns. Referencing the external bus requires a 
varying amount of time depending on the unit referenced 
and the function performed. Memory activity specifically 
is conducted asynchronously, and the CPU need not wait for 
a memory read or write. Memory completion testing may be 
either explicit or implicit. A single statement of performance 
is difficult to make. A few examples might be most infor­
mative: 

Example Timings of Emulated Instructions 

Multiply-32 X 32 = 64 bit* 
(2's complement) 

Divide-64/32 = 64 bit* 
(correct sign, 2's compo rem.) 

Binary to Decimal-20b to 7d* 
(unsigned) 

7.2 us 

8.4 us 

5.0 us 



Decimal to Binary-11d to 32b* 
(signed 2's comp., 360 style dec.) 

MVC-360, 32 bytes non-aligned 
(assumes 1.0us main memory for 
both instructions and data) 

AR-360 RR add 
(assumes 1.0us memory for 
instructions, regs. in micromemory) 

IMPLEMENTATION 

9.2 us 

12.8 us 

7.4 us 

The natural choice of TTL was initially selected. It became 
apparent very early, however, that to meet the performance 
objective of an average of 200ns per microinstruction, it 
would be necessary to both use a large percent&ge of Schottky 
TTL and also provide two adder paths with attendant inter­
locking difficulties. 

Since we have had extensive experience with high-speed 
current-mode logic, we took a second look at the cost and 
advantages of using MECL-lOK logic. We found that the 
logic problems were simpler and the performance target could 
more easily be met. The additional care required in me­
chanical and electrical design did not prove to be a serious 
problem. 

The resulting design requires a minimum number of logic 
design tricks. It is a straightforward synchronous design with 
a 25 ns clock. The T operations, A operations, and I oper­
ations are viewed as three cooperating finite state machines. 
Each of these three machines is implemented as a 16 state 
machine (although not all states are currently used in any 
of them). By implementing these three functions as indepen­
dent, automata, simultaneous use of CPU resources is 

* not including main memory access and instruction in­
terpretation 

EMMY 89 

achieved with minimum difficulty. The bus control logic 
is independent of all of these and serves to further maximize 
overlap. 

Physically, the CPU is on a single PC card of approxi­
mately 12" X 15". The micromemory and console logic each 
have a PC card. 

CONCLUSIONS 

EMMY is a low-cost, soft machine developed using high 
speed technology. This system has uniform 32 bit instructions 
and data paths. 

The instruction format exhibits threefold parallelism: 
transformational specification, auxiliary (move and pointer 
handling) and an implied next instruction fetch. This 
parallelism together with fast native performance (200-
400 nsec/instruction) produces respectable emulation capa­
bility across a variety of target machines. 

REFERENCES 

1. Wilkes, M. V., "The Best Way to Design an Automatic Calculating 
Machine," .'41anchester University Computer Inaugural Conference, 
16-18, July 1951. 

2. Husson, S. S., Microprogramming Principles and Practice, Prentice­
Hall 1970. 

3. Tucker, S. G., Microprogram Control for System 360, Vol. 6, No.4, 
1967. 

4. Flynn, M. J. and M. D. MacLaren,"Microprogramming Revisited," 
ACM National Conference Proceedings, Vol. 22, Thompson Books, 
Washington, D.C. 1967, pp. 457-464. 

5. Cook, R. and M. J. Flynn, "System Design of a Dynamic Micro­
processor," IEEE Transactions on Computers, Vol. C-19, No.3, 
pp. 213-222, March 1970. 

6. Q M-1, Nanodata Corp., Buffalo, New York. 
7. B1700, Systems Reference Manual, Burroughs Corp., Detroit, 

Michigan, 1972. 





Instruction sequencing in microprogrammed 
computers 

by LOUISE H. JONES* 
University of Delaware 
Newark, Delaware 

INTRODUCTION 

The purposes of this paper are to review the microinstruc­
tion sequencing capabilities of several microprogrammed 
computers; to determine whether these sequencing ca­
pabilities permit easy implementation of the control 
constructs of flowchartable program logic in modular 
microcode; and to present a set of microinstruction se­
quencing functions which will support "structured" micro­
programming. Several microprogrammable mini- and 
microcomputers which provide the user with the ~eans 
for implementing special purpose instruction sets have 
been introduced relatively recently.l However, the experi­
ments by Weber and Balzer which demonstrated the 
possibilities for increasing computation speeds, decreasing 
main memory space usage, and easing the task of applica­
tions programming by means of special purpose instruc­
tion sets implemented in microcode were performed some 
time ago. 

Any trend toward implementing more complex func~ 
tions in microcode raises the question of whether the 
methodology of "structured programming" described by 
Dijkstra4 and Mills5 should be applied to microprogram­
ming in order to manage the complexity of the program­
ming task. This requires stepwise refinement of the func­
tion into subfunctions related by a limited number of con­
trol constructs until the sub functions can be described 
easily in terms of modules of microcode. In order to test 
the microprogram, it is necessary that the behavior of the 
modules of microcode be defined independently of their 
context at the next higher level. In addition, a micro­
programmed implementation of a special purpose instruc­
tion that is based on "context-free" modules of microcode 
will minimize the control memory requirements of the 
system by allowing each module of microcode to be called 
from several different locations in the microprogram. 

The microinstruction sequencing capabilities of micro­
program machines provide the basic mechanism for imple­
menting various forms of program logic. Previous dis­
cussions6 of microinstruction sequencing have been pri­
marily concerned with differences in the number of 
branching conditions that can be implemented using 

* Presently employed by E. I. du Pont de Nemours & Co., Wilmington, 
Delaware. 

91 

various sequencing schemes. There has been little or no 
discussion of the relations between the sequencing ca­
pabilities of microprogrammable computers and the 
microcoded implementation of the control constructs 
either of structured programming or of other classes of 
program schema.7 

TYPES OF INSTRUCTION SEQUENCING IN 
MICROPROGRAM PROCESSORS 

Various microinstruction sequencing strategies have 
been implemented in contemporary microprogram ma­
chines. These strategies range from the explicit generation 
of the complete address of the next microinstruction using 
an address which is specified in the current microinstruc­
tion and possibly modified by the status of the machine 
(e.g., the IBM System/36OS) to the implicit calculation of 
the next microinstruction address either by incrementing 
the contents of a microprogram address register or by 
incrementing the contents of an alternate microprogram 
address register (e.g., the Burroughs Interpretet'). In addi­
tion, the sequencing capabilities of microprogram ma­
chines depend on the design of the microinstruction. In 
vertically microprogrammed machines, each instruction 
usually controls a single operation and the address of the 
next microinstruction is obtained implicitly by increment­
ing the address of the current microins~r~ction unless th~ 
current microinstruction affects a condItIonal or uncondI-
tional BRANCH; in this case the address of the next mi­
croinstruction is generated explicitly from an address field 
in the instruction and the status of the machine (e.g., the 
Hewlett-Packard 21MX10

). In contrast, in horizontally 
microprogrammed machines, each microinstruction con­
trols multiple operations including the testing of appro­
priate conditions and microinstruction sequencing. Hori­
zontal microinstructions usually specify, frequently im­
plicitly, both the address of the next microinstruction to 
be executed on success and that of the instruction to be 
executed on failure of the test (e.g., the Naval Resea{~h 
Laboratory MCUll). Specific examples of microinstruc­
tion sequencing capabilities for several microprogram­
mabIe machines are given in the next section. 



92 National Computer Conference, 1975 

A. BLOCK: -GJ-GJ-
f then g 

B. CONDITIONAL: 

If P then 

;:Gi 
f,else~g-

C. ITERATIVE: 

While p do f 

Note: f and g may be flow charts consisting of structures 
A. , B. , and C. 

Figure I-Basic control constructs for flowchartable program logic 

IMPLEMENTATION OF THE CONTROL 
CONSTRUCTS OF STRUCTURED 
PROGRAMMING IN MICROCODE 

The basic methodology of structured programming re­
quires the stepwise refinement of flowchartable program 
logic using the basic sequential (BLOCK), conditional (IF­
THEN-ELSE), and iterative (WHILE-DO) control 
constructs shown in Figure 1 where f and g may be single 
lines of microcode, straight line sequences of microcode, or 
any other structure defined recursively from the struc­
tures in Figure 1. Microcoded implementations of the con­
trol constructs of Figure 1 have been developed for the 
special cases where f and g are single microinstructions 
and straight line segments of microcode for several 
representative microprogram computers having both ex­
plicit and implicit implementations of microprogram se­
quencing functions. These implementations are schematic 
in the sense that the control function of the microinstruc­
tion is emphasized and the corresponding data transforma­
tion function is ignored. While the specific form of the 
schematic microcode is machine dependent, the following 
simple conventions have been used: 

1. Register assignments are made from left to right. 
2. ADR(f) denotes the control memory address of mi­

croinstruction f; this microinstruction may be 
denoted either by its function, f, or a label, ABC. 

3. (AMPCR) denotes the contents of register AMPCR. 
4. The meaning of the successor commands such as 

STEP, JUMP, CALL are machine dependent and 
are defined in Tables I, III, IV, VI, or in the case of 
the HP-21MX, in the description of the machine. 

5. The schematic microinstructions for Machine V are 
written as IFETCH opsjEXECUTE ops where the 
IFETCH operations have the format (successor, 
ALTINSAR stack operations). 

The Burroughs interprete,s 

The Burroughs Interpreter has two different types of 
instructions, Type I and Type II, which differ both in 
function and in possible successors. Sequencing is defined 
implicitly using two pointers into control memory; these 
are called the microprogram count register (MPCR) and 
the alternate microprogram count register (AMPCR). 
Type I microinstructions contain pointers to horizontal 
control words stored in a "nanomemory"; there are eight 
possible successor commands for Type I instructions 
which are described in Table I. These include the stan­
dard STEP and SKIP commands, CALL and RETN com­
mands which provide one level of subroutine capability, 
and EXEC which provides indirect addressing by allowing 
the single microinstruction at the address specified by 
(AMPCR) + 1 to be executed out of sequence. Each nano­
instruction includes a test field and fields for specifying 
successors to the microinstruction for both success and 
failure of the test. In contrast, Type II microinstructions 
are used to load literals into various registers; the (implicit) 
successor command for these microinstructions is always 
STEP. 

Although the sequencing commands of this machine 
permit easy implementation of the basic control constructs 
for flowchartable program logic when f and g are single 
lines of microcode; implementation of these constructs is 
much more difficult when f and g are straight line seg­
ments of microcode (macros) (see Table II). The first dif­
ficulty appears in the implementation of the IF-THEN­
ELSE construct; different return mechanisms are re­
quired for the two macros f and g. This means either that 
there must be two copies of each macro in the control 
memory of that the set of all macros must be partitioned 

TABLE I-Successor Commands for the Burroughs Interpreter9 

Next Alternate 
Next Microinstruction Microinstruction 

Successor Command (MPCR) (AMPCR) 

STEP (MPCR)*+l ** 
SKIP (MPCR)+2 ** 
SAVE (MPCR)+l (MPCR) 
CALL (AMPCR)+l (MPCR) 
JUMP (AMPCR)+l ** 
RETN (AMPCR)+2 ** 
WAIT (MPCR) ** 
EXEC (AMPCR)+ 1 *** ** 

* (MPCR) denotes "contents of microprogram count register." 
** Denotes "no change." 

*** EXEC causes a single microinstruction to be executed out of 
sequence; there is no change in (MPCR). 



Instruction Sequencing in Microprogrammed Computers 93 

TABLE II-Microcoded Implementation of the Basic Control Constructs of 
Flowchartable Program Logic 

Host Machine: Burroughs Interpreter 
Structure ofl and g: Straight line segments of microcode 

Control Construct 

Itheng 

Where I: 110 

Ifp thenl else g 

Where I: 11, 

Schematic Microcode* 

ADRifl)-l=: AMPCR 
CALL 
ADR(gl)-l=: AMPCR 
CALL 

STEP and where g : g10 

JUMP 

ADRifl)-l=: AMPCR 
If p then CALL else STEP 
ADR(gl)=: AMPCR 
CALL 

STEP and where g : g10 

STEP 

JUMP 

STEP 

In, STEP JUMP 
(AMPCR)+2=: AMPCR 
JUMP 

While (-p) dol XXX: ADRi(1)-1=: AMPCR** 
If (-p) then JUMP else STEP 

Where I: 11> STEP 

In, STEP 
ADR(XXX)-l=: AMPCR 
JUMP 

* ADR i(1) denotes the control memory address 'of microinstruction II> XXX is a label 
for a microinstruction. 

** Much of the difficulty in implementing the WHILE-DO construct in "context-free" 
microcode results from the required STEP successor for microinstructions used to 
load literals. 

into one subset that is called only on success of a test and 
a second subset that is called only on failure of a test. In 
either case there are difficulties. The second difficulty ap­
pears in the implementation of the WHILE-DO construct; 
here a specific return address must be embedded within 
the macro f. This means that the macros used in WHILE­
DO constructs cannot be modular; there must be one copy 
of f for each WHILE-DO loop involving this function and 
the control memory will contain blocks of nearly identical 
microcode. It should also be noted that different· return 
mechanisms must be embedded in f for use in the IF­
THEN-ELSE and WHILE-DO constructs. 

The Hewlett-Packard 21MXlO 

This machine is a vertically controlled microprogram­
mabIe minicomputer with encoded microinstructions. 
Normal microinstruction execution is sequential with 
branching capabilities derived from two types of instruc­
tion, CONDITIONAL JUMP and UNCONDITIONAL 
JUMP; the address of the microinstruction that is the 
target of the jump is specified explicitly in the instruc-

tions. In addition, returns from subroutines can be accom­
plished by means of a particular encoding ("RETN") of 
the "SPECIAL" field of the COMMON type of instruc­
tion; the implicit target address of the return is contained 
in the SAVE register which can be loaded only by the 
instruction which specifies an (unconditional) jump to a 
subroutine, JSB. The SAVE register is cleared by the 
"RETN" microoperation. Microinstruction sequencing is 
sequential unless a jump, subroutine jump, or subroutine 
return is specified. 

Implementations of the control constructs for flow­
chartable program logic, using the sequencing capabilities 
of the HP21MX, are given in Table III. It is clear that the 
combination of the unconditional subroutine jump mi­
croinstruction (JSB) and the RETN microoperation sup­
port modular implementation of the BLOCK construct 
when f and g are straight line segments of microcode. 
However, the HP21MX does not have a conditional sub­
routine jump microinstruction and this means that a JMP 
instruction giving a specific return address must be added 
to f (as an unconditional jump) in order to implement the 
WHILE-DO construct. Similarly a JMP instruction speci­
fying a return address must be added to the module of 



94 National Computer Conference, 1975 

TABLE III-Microcoded Implementation of the Basic Control Constructs of Flowchartable 
Program Logic 

Host Machine: Hewlett-Packard 21MX 
Structure of I and g: Straight line segments of microcode 

Control Construct Schematic Microcode* 

I then g 

If p then I else g 

Whilep dol 

Where I: 

Where/: 

JSB** 
JSB 

11 

In, 

XXX: 
XXX+1: 

11 

In 
JMP 

XXX: 

Where I: 11 

In 
JMP 

ADRifl) 
ADR(gI) 

and where g: gl 

RETN gm, RETN 

JMP CNDX p ADRifl)*** 
JSB ADR(gI) 

and where g: gl 

ADR(XXX+2) RETN 

JMP CNDX p ADRifl)*** 

ADR (XXX) 

* ADRifl) and ADR(XXX) denote the control memory addresses of microinstruction 11 
and the microinstruction whose label is XXX, respectively. 

** JSB=Jump to subroutine, JMP CNDX=conditional jump, see Reference 10. 
*** ADRifl) and ADR(XXX) must refer to the same 256 word control memory module. 

microcode selected on success of the test in the IF-THEN­
ELSE construct. Thus, the microinstruction sequencing 
capabilities of the HP21MX, like those· of the Burroughs 
Interpreter, do not support implementation of the control 
constructs of structured programming in modular 
microcode. 

The A rgonne Microprocessor12 

The Argonne Microprocessor (AMP) is an experimental 
horizontally controlled microprogrammable processor 
designed as a tool for research in .microcontrol, including 
microsequencing, language processing, and processor 
design research. The microinstruction sequencing ca­
pabilities include incrementing the microinstruction ad­
dress register (UMAR) by one or by two (unconditionally 
or if one of five bus conditions is satisfied), or jumping to a 
location specified by the jump address field in the current 
microinstruction (unconditionally or if one of five bus con­
ditions is satisfied) or to the microinstruction specified by 
incrementing the instruction on the top of the microad­
dress stack. The default successor of the test of a condition 
is the microinstruction at (UMAR) + 1. The sequencing ca­
pabilities of the Argonne Microprocessor are summarized 
in Table IV. 

Implementations of the control constructs of structured 
programming using the sequencing capabilities of the 
AMP are given in Table V. The implementation of the 
BLOCK construct in modular microcode is straightfor-

ward as in the cases of the Burroughs Interpreter and the 
Hewlett-Packard 21MX. Implementation of the WHILE­
DO construct requires that the address of the instruction 
before the appropriate jump instruction be stored because 
the return address mechanism of the AMP increments the 
address on the top of the microaddress stack. Microcoded 
implementation of IF-THEN-ELSE requires that a 

TABLE IV-Sequencing Capabilities of the Argonne Microprocessor12 

Successor 
Command 

STEP 
SKIP 
SKPCDl 
SKPCD2 
S.KPCD3 
SKPCD4 
SKPCD5 
JUMP 
JMPCDl 
JMPCD2 
JMPCD3 
JMPCD4 
JMPCD5 
RETN 

Next Microinstruction (UMAR) Condition 

(UMAR)*+1 
(UMAR)+2 

(JUMP ADDRESS FIELD)*** 

(MICRO ADDRESS STACK)+1**** 

(BJ**<O 
(BJ=O 
(BJ>O 
(BJ=l1 ... 1 
(BJ=ODD 

(BJ<O 
(BJ=O 
(BJ>O 
(BJ=l1 ... 1 
(BJ=ODD 

* (UMAR) denotes the contents of the micromemory address register. 
** Bi denotes Bus 1 or Bus 2 depending on bit 72 of the control word. 

*** JUMP ADDRESS FIELD refers to bits 1-11 of the control word. 
**** The return address is pushed onto the ILSTACK if bit 71 of the 

control word is set. RETN pops this stack. 



Instruction Sequencing in Microprogrammed Computers 95 

TABLE V-Microcoded Implementation of the Basic Control Constructs of 
Flowchartable Program Logic 

Host Machine: 
Structure ofl and g: 

Control Construct 

I then g 

If p then I else g 

Whilep dol 

Argonne Microprocessor 
Straight line segments of microcode 

Schematic Microcode 

Where I: II 

JUMP (to ADRifl», * PUSH 
JUMP (to ADR(gI», PUSH 

and where g: gl 

RETN 

XXX: JMPCDX** (to ADRifl», 
JUMP (to ADR(gI», PUSH 

Where I: II and where g: gl 

In, JUMP (to gm, 
ADR(XXX) +2) 

STEP, PUSH 
JMPCDX** (to ADRifl» 

Where I: II 

In, RETN 

RETN 

RETN 

* The address of microinstruction 11 is specified in the Jump Address Field of 
the current microinstruction. 

** It is assumed that p corresponds to one of the conditions listed in Table IV. 
The testable conditions in the AMP are quite limited. 

specific return address be embedded in the module of 
microcode entered on success of the test p but not in that 
entered on failure of p. The requirements for embedded 
return addresses in this construct are similar to those of 
the Burroughs Interpreter. 

field. 13 The microinstruction sequencing capabilities of this 
processor were designed to support the interpretation of a 
machine instruction set and permit the next microinstruc­
tion address to be the contents of the main memory read 
data bus, the current microinstruction address plus one, 
the contents of the MARK register, or the address 
specified explicitly by a special eight bit field in the cur­
rent microinstruction. Loading of the MARK register is 
controlled by the mark bit in the microinstruction; if this 
bit is set, the address of the current microinstruction plus 
one is loaded into the MARK register. Conditional 
branches are accomplished using the T-field. The mi­
croinstruction sequencing capabilities of the Univac CjSP 
processor are inadequate for implementation of the IF­
THEN-ELSE structure shown in Figure 1 in context-free 
modules of microcode for the same reasons that the mi­
croinstruction s~quencing capabilities of the Argonne 
Microprocessor are inadequate and will not be discussed 
further. 

The Microprogrammed Univac C/8P Processor3 

A horizontally controlled microprogrammed version of 
the Univac C j SP Processor has been described by Red-

TABLE VI-Successor Commands for Machine V 

Successor 
Command 

True Successors 
STEP 
SKIP 
SAVE 
CALL 
JUMP 
RETN 
WAIT 

Next Next Alternate 
Microinstruction Microinstruction INSAR Stack 

(INSAR) (AL TINSAR) Operations 

(INSAR)***+ 1 ** 
(INSAR)+2 ** 
(INSAR) + 1 (INSAR)+l ** 
(ALTINSAR) Push(INSAR)+ 1 
(ALTINSAR) ** 
(TOS)**** * Pop 
(INSAR) ** 

False Successors 
STEP (INSAR) + 1 ** ** 
SKIP (INSAR)+2 ** ** 

* For each true successor, the ALTINSAR stack pointer may be left 
unchanged (NOP), incremented (lAP), or decremented (DAP). 

** Denotes "no change". 
*** (INSAR) denotes the conte~ts of the microprogram count register. 

**** (TOS) denotes the contents of the top of the INSAR stack. 

The INTEL 3001 Microprogram Control Unit14 

Recently Intel has announced the INTEL 3001 Micro­
program Control Unit which controls the microinstruction 
sequencing for the new, high-speed INTEL 3002 micro­
processor. The INTEL 3001 permits explicit addressing of 
512 microinstructions; the jump operation field in the cur­
rent microinstruction specifies one of four unconditional 
or seven conditional address control functions which use 
selected bits of the current machine state (e.g., latch, flags, 
and accumulator bits) to compute the address of the next 



96 National Computer Conference, 1975 

TABLE VII-Microcoded Implementation of the Basic Control Constructs of Flowchartable 
Program Logic 

Host Machine: Machine V 
Structure of! and g Straight line segments of microcode 

Control Construct Schematic Microcode* 

!theng (STEP, NOP)/ADRifl)**=: ALTINSAR 
(CALL, NOP)/ADR(gl) =: ALTINSAR 
(CALL, NOP)/ __ 

Ifpthen!elseg (STEP, NOP)/ADRifl)=: ALTINSAR 
If p then (CALL, NOP) else (SKIP)/ADR(gl)=: 

ALTINSAR 
(SKIP, NOP)/ __ 
(CALL, NOP)/ __ 

Whilep do! (STEP, NOP)/ADRifl)=: ALTINSAR 
XXX: Ifp then (CALL/NOP) else (SKIP)/ADR(XXX)=: ALTINSAR 

(JUMP, NOP)/ __ 

Where!: (STEP, NOP)ifl and where g: 
(RTN, NOP)ifn 

(STEP, NOP)/gl 
(RTN, NOP)/gm 

* In Machine V the microinstruction IFETCH phase includes condition test, successor 
choice and ALTINSAR stack operations and is completed before the execution phase. 
Microcode is written IFETCH ops/EXECUTE ops with (Successor, ALTINSAR stack ops). 

** ADRifl) denotes control memory address of the microinstruction with execution function!l 
Note: These modular implementations result largely from Machine V's capability for 
specifying all successors for instructions that load the ALTINSAR. 

microinstruction from that of the current microinstruc­
tion. These functions include 16-way jump and test 
instruction. It is clear that the microinstruction sequenc­
ing strategy used in the INTEL 3001 does not permit im­
plementation of the control constructs of flowchartable 
program logic in modular microcode. Furthermore, the im­
plementation in microcode of a macroinstruction set or of 
a specific controller algorithm will be quite difficult, pri­
marily because of the difficult translation from the control 
structures commonly used to express algorithmic tasks to 
those implemented as the microinstruction sequencing op­
tions of this machine. 

MACHINE V, A MICROINSTRUCTION 
SEQUENCING SET FOR "STRUCTURED" 
MICROPROGRAMMING 

None of the five microprogrammed machines described 
in the previous section have microinstruction sequencing 
functions which permit implementation of the structures 
of Figure 1 in "context-free" modular microcode. 
However, it is possible to design a set of microinstruction 
sequencing functions which permit implementation of the 
structures of Figure 1 in modular microcode not only for f 
and g being straight line segments of microcode but also 
for the general case that f and g are structures defined re­
cursively from any of the structures in Figure 1. The ma­
chine with these sequencing capabilities is called Machine 
V. 

The sequencing capabilities of Machine V were designed 
to permit implementation of flowchartable program logic 

using completely modular subroutines (no embedded 
return addresses or "tricky" sequencing instructions such 
as "AMPCR+2=:AMPCR") and a relatively low number 
of bits to control microinstruction sequencing. Machine V 
has two hardware stacks: the INSAR (INStruction 
Address Register) stack, which is used to save return ad­
dresses for subroutine calls, and the ALTINSAR 

A. Structure 

B. Schematic Microcode (see Table VII for coding conventions) 

Microinstruction 

1. (STEP, NOP)/ADR(f l ) =: ALTINSAR 

2. XXX: If p, then (CALL, lAP) else (SKIP)/ADR(XXX)=: ALTINSAR 

3. (JUMP, DAP)/ __ 

{

10. 

11. 
12. 

13. 

f l : (STEP, IAP)/ADR(gl) ALTINSAR 

yyy: If P2 then (CALL, lAP) else (SKIP)/ADR(yyy)=: ALTINSAR 

(JMP, DAP)/ _ 

(RTN, DAP)/_ 

g { 20. gl: 
29. 

(STEP, NOP)/ _ 

(RTN, NOP)/ 

Note: Both f and g are modular. 

Figure 2-Implementation of nested while-do structures in modular 
microcode (Machine V) 



Instruction Sequencing in Microprogrammed Computers 97 

(ALTernate INStruction Address Register) stack, which is 
used to eliminate repeated loading of identical alternate 
addresses. In Machine V fetching of microinstruction i+ 1 
is done in parallel with execution of microinstruction i; the 
following sequence of events occurs during the fetch cycle: 
(1) fetch microinstruction i+ 1, (2) specify test condition, 
(3) choose successor microinstruction, and (4) perform 
ALTINSAR stack operations; it is assumed that the 
execution of microinstruction i is completed before the 
AL TINSAR stack operations associated with fetching mi­
croinstruction i+ 1 are performed. 

The sequencing functions of Machine V are given in 
Table VI. If the test of a condition succeeds, one of seven 
successor microinstructions is selected and one of three 
AL TINSAR stack operations is performed. Only the 
STEP and SKIP successors can be specified for the unsuc­
cessful test and no AL TINSAR stack operation can be 
executed. Seven bits of the microinstruction are required 
for these sequencing functions: 3 bits for the TRUE suc­
cessors, 2 bits for the AL TINSAR stack operation, 1 bit 
for the FALSE successor, and 1 bit to negate the condi­
tion. 

Implementations of the control constructs of Figure 1 
using the sequencing functions of Machine V are given in 
Table VII for the special case where f and g are straight 
line segments of microcode. In addition, examples of the 
use of the ALTINSAR stack to implement nested 
WHILE-DO and IF-THEN-ELSE structures are given in 
Figures 2 and 3. Rules governing the use of the 

rb 
A. '«udu<o b ~ 

Lr 

f 
r-------

I 

i r<b[b: 
I r-l I 
I ~ n I 
II~I 
--- ,----

B. Schematic Microcode (see Table VII for coding conventions) 

Address Microinstruction 

1. (STEP, NOP)/ADR(f l ) =: ALTINSAR 
2. If Pl then (CALL, NOP) else (SKIP)/ADR(gl) =: ALTINSAR 

3. (SKIP, NOP)/ __ 

4. (CALL, NOP)/ __ 

(STEP, NOP)/ADR(ml ) ALTINSAR 

11. If P2 then (CALL, NOP) else (SKIP)/ADR(n l ) 

{

lO. flo 

12. (RTN, NOP)/ __ 

13. (CALL, NOP)/ __ 

14. (RTN, NOP)/ __ 

(STEP, NOP)/gl 

(RTN,NOP)/gm 

(STEP, NOP)/ml 
(RTN, NOP)/mn 

(STEP, NOP)/nl 

(RTN, NOP)/nn 

Note: f, g, m, and n are all modular. 

ALTINSAR 

Figure 3-Implementation of nested if-then-else structures in modular 
microcode (Machine V) 

AL TINSAR stack pointer in modularized subroutines are: 
(1) the pointer must be at the same location when entering 
and leaving a subroutine, and (2) the ALTINSAR pointer 
must be incremented before loading the AL TINSAR 
stack. The sequencing capabilities of Machine V permit a 
subroutine to be called from several points in the program 
and, due to the INSAR and AL TINSAR stacks, permit 
the basic structures of flowchartable program logic embed­
ded within each other (to the limits of the stacks) to be im­
plemented in modular microcode. Machine V, unlike the 
machines discussed in the previous section, has a 
hardware control structure which supports the control 
structures which provide a basis for flowchartable 
program logic. Thus, it is reasonable to conjecture that 
Machine V will be significantly easier to program and that 
the cost of implementing algorithms such as floating point 
arithmetic and parsing functions15 (e.g., table search), in 
microcode will be considerably less for Machine V than 
for machines such as the Intel 3002, AMP, or Burroughs 
Interpreter. 

SUMMARY 

Current advances in semiconductor technology have led to 
microprogrammed and user-microprogrammable 
processors having a variety of microinstruction sequencing 
capabilities. At the present time, the primary use of micro­
programs is as an alternative to hardwired control se­
quencers in the implementation of the control function in 
computers with conventional instruction sets; thus, micro­
programs are used to implement tasks which have a rela­
tively simple logical structure. However, it is likely that in 
the future microprograms will be used to support special 
purpose architectures with instruction sets chosen to sim­
plify programming of certain classes of algorithms; these 
microprograms will be used to implement tasks which 
may have a relatively complex logical structure. The suc­
cess of these architectures will depend on their cost-effec­
tiveness; this includes the cost of writing and storing 
microcode. Thus, it is important that the microinstruction 
sequencing capabilities of the underlying machine organi­
zation support the implementation of the basic constructs 
of the appropriate program logic using "context-free" (no 
embedded return addresses) modules of microcode. 
Review of the microinstruction sequencing capabilities of 
several contemporary microprogram machines (the Bur­
roughs Interpreter,9 the Hewlett-Packard 21MX,1O the 
Argonne Microprocessor/2 the Univac C/SP/3 and the 
Intel 300114

) has shown that these sequencing capabilities 
generally fail to support modular implementation of the 
basic constructs of flowchartable program logic. This 
failure is inherent in the explicit sequencing strategies im­
plemented in machines, such as the Intel 3000 series, in 
which the address of the next microinstruction is obtained 
explicitly from the address of the current microinstruction 
modified by the state of the machine. However, this 
failure can be overcome in machines in which the address 
of the next microinstruction is specified implicitly by 



98 National Computer Conference, 1975 

designing an appropriate set of sequencing functions. One 
such set of microinstruction sequencing functions (Ma­
chine V) designed to simplify microprogramming by per­
mitting a completely modular implementation of the basic 
control constructs of flowchartable program logic has been 
described. 

ACKNOWLEDGMENT 

The help of David Hawk in designing Machine V and the 
constructive comments of the referees are gratefully ac­
knowledged. 

REFERENCES 

1. Thomas, R. T., "The Development of User Microprogramming: A 
Survey and Status Report," Seventh Annual Workshop on Micro­
programming, Palo Alto, October 1974 (Preprints), pp. 212-216. 

2. Weber, H., "A Microprogrammed Implementation of EULER on 
IBM System/360 Model 30," Comm. ACM, 10, 1967, pp. 549-558. 

3. Balzer, R. M., "An Overview of the ISPL Computer System Design," 
Comm. ACM, 16, 1973, pp. 117-122. 

4. Dijkstra, E. W., "Structured Programming," in Software Engineer­
ing Techniques, NATO Science Committee (Eds. Burton, J. N. and 
B. Randell), 1969, pp. 88-93. 

5. Mills, H. D., Mathematical Foundations for Structured Program-

ming, Report No. FSC 72-6012, Federal Systems Division, IBM Cor­
poration, Gaithersburg, Maryland, 1972, 62 p. 

6. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware Organiza­
tion and Design, John Wiley and Sons, Inc., New York, 1973,481 p. 

7. Jones, L. R., et aI., "An Annotated .Bibliography on Microprogram­
ming I, II, and III" (late 1969-early 1974), SIOMICRO Newsletter, 
S, 2, July 1972, pp. 39-55, 3, 2, July 1973, pp. 7-18, and 5, 2, July 
1974 pp. 7-18~ 

8. Tucker, S. G., "Microprogram Control for System/360," IBM 8yst. 
J., 6,1967, pp. 549-558. 

9. Reigel, E. W., V. Faber, and D. A. Fisher, "The Interpreter-A 
Microprogrammable Building Block System," in 1972 Spring Joint 
Comput. Conf., AFIP8 Cont Proc., 36, AFIPS Press, Montvale, 
N.J., 1972, pp. 705-723. 

10. Microprogramming 21MX Computers, Operating and Reference 
Manual, Hewlett-Packard Co., Document 02108-90008, August, 
1974. 

11. Roberts, J. D., Jr., J. Ihnat, W. R. Smith, Jr., "Microprogrammed 
Control Unit (MCU) Programming Reference Manual," 8IOMICRO 
Newsletter, 3,3, October 1972, pp. 18-57. 

12. Barr, R. G., J. A. Becker, W. P. Lidinsky, and U. V. Tantillo, "A Re­
search Oriented Dynamic Microprocessor," IEEE Trans. Comp., C-
22, 1973, pp. 976-985. 

13. Redfield, S. R., "A Study in Microprogrammed Processors: A Me­
dium Sized Microprogrammed Processor," IEEE Trans. Compo C-
20, 1971, pp. 743-750. 

14. Intel 3001 Microprogram Control Unit, Product Information 
Bulletin. 

15. De Remer, F. L., "Simple LR(k) Grammars," Comm. ACM, 14 
1971, pp. 453-460. 



Microcomputer software design-A checkpoint 

by GARY A. KILDALL 
Naval Postgraduate School 
Monterey, California 

INTRODD.CTION 

The general availability of low cost microcomputers has , 
revolutionized digital design and digital applications. Us­
ing LSI chip technology, microcomputers are no more 
than scaled-down central processing units with minicom­
puter capability, and are treated as component computers 
at the heart of a digital design. Thus, microcomputers find 
wide application in both dedicated and general purpose 
roles, ranging from simple controllers through smart ter­
minals and test instruments to small business data 
processing systems. 

In each application, hardware and software modules are 
intermixed to minimize unit cost. As a result, the overall 
quality of a microcomputer-based product is directly de­
termined by the quality of its hardware and software 
components. Similar to its hardware counterparts, the 
product's programmed subsystems must be well specified 
and engineered for long term reliability. In fact, well­
engineered software has never been as important: 
packaged systems are often produced in the hundreds or 
thousands, where each program is permanently stored in 
unalterable ROM (Read-Only-Memory). Unreliable pro­
grams have far-reaching effects, while ill-specified 
software hinders product adaptability. 

A particular high level language has emerged as an aid 
to ,the microcomputer software engineer which forecasts 
some industry standardization. This paper briefly reviews 
current design aids, with particular emphasis on ap­
plicability of high level languages in the microcomputer 
environment. A particular project case study is presented 
which exemplifies current design methodology, followed 
by projected trends in microcomputer software aids. 

BEYOND THE DATA SHEET 

In essence, a microcomputer is simply another in­
tegrated circuit chip set, with somewhat more than 
average capability. In fact, many design engineers 
consider a microcomputer CPU as simply a ROM-driven 
LSI chip which, with proper arrangement of l's and O's in 
the external ROM, can be tailored to act like a custom 
chip. The design engineer breadboards a circuit including 
the microcomputer, fills the ROM's with binary codes 
which drive the chip, and proceeds to debug with logic 
probe and scope. Although costly in development and 

99 

maintenance time, this approach is quite popular since no 
external support is required beyond the chip's data sheet. 

At the opposite end of the applications spectrum, the 
microcomputer is considered just another processor which, 
independent of physical characteristics, provides a key to 
product update and new marketing areas. Often from a 
minicomputer background, customers are unwilling to 
return to primitive programming tools and meager design 
support. 

As a result of demands from a broad customer base, 
many of today's semiconductor housis find themselves in 
the software business. A recent survey cross-references ten 
microcomputer manufacturers by the software design aids 
which they support. 1 Of these manufacturers: 

all ten support across-assembler, 
four offer resident assemblers, 
three provide a resident editor, 
eight supportrelocatable or absolute loaders, 
five provide primitive debugging facilities, 
six offer cross-simulators, and 
two support a high level language. 

The cross products all require a larger host computer for 
actual execution. That is, cross-assemblers are usually 
written in ANSI standard FORTRAN to allow some 
measure of machine independence. The customer either 
purchases the program directly from the manufacturer, or 
contracts with a timesharing service which supports the 
manufacturer's software. 

Resident software systems, on the other hand, execute 
using microcomputer developmental hardware. Most 
manufacturers offer a built-up microcomputer prototyping 
system as a hardware developmental aid, including CPU, 
memory, I/O access, and front panel control. In this con­
figuration, the microcomputer has minicomputer charac­
teristics, and thus can support its own software systems, 
including assemblers, paper tape editors, loaders, and 
debuggers. Although some of these resident software tools 
are quite comprehensive, current manufacturer's offer­
ings are hindered by limited I/O facilities. As a result, 
resident software tools are less convenient than cross 
systems, but are generally less expensive to support. 

Although similar in capability to a minicomputer, 
developmental systems generally incorporate features pe­
culiar to microcomputer systems development. National's 
IMP-16P prototyping machine, for example, contains spe-



100 National Computer Conference, 1975 

Figure l-Rockwell's PPS-4 microcomputer development system 

cial circuitry for loading reprogrammable ROM's, while 
Rockwell's "assemulator," shown in Figure 1, contains a 
built-in assembler and CPU emulator for programming 
and debugging their PPS-4 microcomputer. Thus, the 
manufacturer's developmental systems are generally inap­
propriate as end-user products. 

Cross simulators are also used on larger host computers 
to programmatically simulate actions of the microcom­
puter. The primary problem, however, is that extensive 
program testing and simulation of real-time external 
events, such as signals input from a device controller, is 
tedious and expensive. Thus, cross simulators are princi­
pally used to step-through subroutines and program 
modules independent of the electronic environment. A 
simulator is extremely useful, however, when exact execu­
tion time must be determined for time-critical program 
segments. 

Two major manufacturers of microcomputer chip sets 
are currently supporting a particular subset of PLjI as a 
base language for their products. Intel's language, called 
PL/M, has been available since mid-1973 through a cross­
compiler, while National's product, called PL/M+, will 
be available in mid-1975 as an integral part of their 
resident developmental system. Intel's PL/M provides a 
base language for their 8-bit processors, and National's 
PL/M+ is designed for the IMP-16 and PACE microcom­
puters. The two languages are basically compatible, thus 
allowing transportation of customer software between 
these two manufacturers. 

SYSTEMS LANGUAGES 

As interest grows in PL/M-like languages for microcom­
puter systems development, one immediately questions 
the- suitability of high-level languages in such an environ­
ment. First, does a language such as PL/M support 
necessary low-level control functions which occur in 
microcomputer systems, or does the designer "lose con­
trol" of his machine? Second, how memory-efficient can a 
translator for such a language be? The cost of high­
quantity electronics products is largely determined by 
component count, and high-level language translators are 
notorious for their inefficient code sequences, resulting in 

excessive memory requirements in the final product. 
Thus, the discussion focuses on experiences with Intel's 
product as a benchmark for this class of languages. 

First, a few general comments on PL/M itself. The lan­
guage is modest in structure and scope: basic operators are 
tied closely to the capabilities of 8- and 16-bit processors, 
augmented by structures for writing assignments, simple 
expressions, conditional statements, looping control, and 
subroutine mechanisms. The result is a language which 
simplifies the expression of microcomputer systems, while 
allowing access to all machine functions, without becom­
ing completely dependent upon a particular CPU organi­
zation. The language has facilities which are reflected 
within the capability of the microcomputer, and, simi­
larly, each machine function is reflected in some high-level 
statement. Architecture-oriented languages of this sort, 
often referred to as systems languages, are traditionally 
used to implement the lowest level system functions to 
avoid the rigidities of assembly language coding. In the 
larger computer environment, systems languages are often 
used to implement operating systems, language processors, 
utilities, and some applications software. Thus, they are 
themselves self-supporting, generally requiring little exist­
ing system support. As illustrated in the examples which 
follow, this close relationship between the language and 
the machine architecture holds also for PL/M. 

The Appendix contains a sample PL/M program which 
indicates the basic facilities of the language. This 
particular language has global characteristics of the "PL­
family," but derives its basic structure from the 
microcomputer problem environment, as described 
above.2 

As a final comment, one notices that after decades of ad 
hoc programming, there is finally an emerging body of 
theory and practice concerning software engineeringll,4,5,6 
which is gaining industrial acceptance. Languages such as 
PL/M, which provide clear representation of control 
flows, are important tools in support of structured 
programming techniques. When combined with 
professional project management and programming 
practices, the result is usually well-specified, reliable, and 
efficient software systems.7 ,8,9 

A CASE STUDY 

Given the current level of support, how does one ap­
proach a microcomputer project which involves a total 
system design? Non-trivial projects are generally evolu­
tionary in nature, where each phase of development and 
testing is a controlled experiment. In the case of software 
generation, the designer starts with cross systems for 
initial program development and testing, gradually mov­
ing to resident developmental systems, and then to a 
breadboarded prototype. Since system malfunctions can 
occur at any level, from low voltage power supplies 
through marginal IC's to programming blunders, this evo­
lutionary approach isolates the range of errors at each 



stage. A particular microcomputer project is outlined 
below which demonstrates this approach. 

A dedicated computer system was recently constructed 
at the Naval Postgraduate School to be used by Navy 
divers while working underwater for extended periods. 
The device monitors the dive time and depth, and 
produces a continuous read-out of the "safe ascent depth." 
The safe ascent depth is the depth to which the diver can 
ascend from his current depth without contracting the 
"bends." As the diver descends, his blood takes on 
nitrogen, and as he ascends, the nitrogen is given off. De­
pending upon the length of time he has worked at various 
depths on a particular dive, he can rise only to the safe 
ascent depth before nitrogen gases form in the blood. 
Thus, the computer keeps the diver informed of this 
depth. The diving computer has four principal functions 
to perform: 

compute partial pressures of nitrogen for several con­
trolling tissues, 

monitor external parameters such as elapsed time and 
current dive depth, 

drive simple displays with the current and safe ascent 
depths, and 

control the sequencing of external monitoring, comput­
ing, and display. 

The final prototype was developed in two man-months, 
with approximately three weeks devoted to software 
development, and the remainder in hardware design and 
debugging. 

With the overall analysis of the dive problem complete, 
a BASIC program was written which computed test 
values. The computations involved 32-bit signed integer 
values with fixed precision. Since the 8 bit processors 
support only simple operations on 8-bit quantities, 
subroutines were written in PL/M to provide necessary 
functions. Each subroutine was compiled using the PL/M 
cross-compiler on the school's IBM S/360, and the ma­
chine code was read-in by another program, called 
INTERP /8, which simulates 8008 CPU actions. Using the 
break point and display commands of the simulator, the 
numeric subroutine package was checked-out, using only 
the S /360, with no physical microcomputer hardware. 

The numeric subroutines were augmented by additional 
PL/M coding which evaluated standard formulae 
(essentially the same as those of the BASIC program) for 
determining the partial pressures of nitrogen for a 
particular depth. Again, these subroutines were checked­
out under simulation by inserting test values in simulated 
memory, running a single computation, and displaying the 
values resulting from the simulation. A control and se­
quencing program was then written which simulated a 
complete dive by looping through a predetermined dive 
profile of times and depths. Using the simulation, several 
complete dive profiles were run, and the intermediate and 
final results were compared with the BASIC program. Ex­
tensive testing was infeasible, however, since a simulated 

Microcomputer Software Design 101 

fifteen minute diYe to a depth of 130 feet required over 
thirty minutes ofS/360 CPU time. 

Transition to real microcomputer hardware thus be­
came necessary to complete the testing. From this point 
on, the program was compiled using the cross PL/M com­
piler on the S /360, but executed in real time using a 
developmental system. A paper tape was produced from 
the S /360 compilation containing the 8008 machine code 
which was then loaded through the Teletype reader into 
the memory of the developmental system, and executed. 

In order to properly check-out the central algorithms, 
another set of subroutines was written in PL/M which 
provided basic communication between the program and 
Teletype, allowing the program to read commands, write 
test results, and read and print 32-bit fixed point numbers. 
These subroutines formed a software test bed which would 
eventually be discarded. Each test involved a dive profile 
with various times and depths preset from the Teletype 
console. The program would run the dive profile and print 
the safe ascent depth at crucial points in the test. The 
computations executed in five times real time (a 30 
minute dive was completed in six minutes of 8008 time), 
and thus it was possible to verify results by comparing 
with both the BASIC program and standard Navy diving 
tables. After check-out, the central algorithms were 
separated from the test environment, and set aside for the 
final prototype. 

At this point, it was determined that there were several 
disadvantages in using the 8008 for the final prototype, 
including factors such as power consumption and com­
pactness. Thus, the design was altered to incorporate the 
newer 8080 microcomputer. Because of its increased 
speed, the 8080 could be "shut-down" for longer periods 
between each computation, resulting in significant power 
savings (partial pressures were updated every two seconds, 
and could be computed in 50 milliseconds). The PL/M 
language is upward compatible along this processor line, 
and thus the program was recompiled using the 8080 ver­
sion ofPL/M. 

The prototype was constructed and debugged, and, upon 
completion, I/O drivers were coded in PL/M, placed into 
erasable ROM in the prototype, and independently 
tested. The I/O drivers were then combined with the core 
computation and control algorithms. The total program 
was compiled on the S/360, placed into ROM in the pro­
totype and checked-out. As shown in Figure 2, the com­
pleted prototype is contained on a single 7 X 9 wirewrap 
board with space for 2K bytes of erasable ROM (the 
program currently uses 1.2K), and 1024 bytes of random 
access memory. 

ADDITIONAL APPLICATIONS 

The case study given above serves to illustrate current 
methods used to develop dedicated microcomputer 
software. In addition, the application involves both bit­
level and simple numeric processing, which are both han­
dled well in this particular high level language. To 



102 National Computer Conference, 1975 

Figure 2-N avy SCUBA diving computer, using the Intel microcomputer 

illustrate the range of applicability of PL/M, however, ad­
ditional projects from more traditional computer areas are 
considered. 

There is current industry-wide interest in incorporating 
today's low-cost peripherals with microcomputer devices 
to build inexpensive general purpose processors for 
resident microcomputer development and end-user ap­
plications. One such computer system, shown in Figure 3, 
includes a floppy disk operating system, which imple­
ments a named file structure with dynamic disk allocation 
on multiple disks, sequential or random access, and 
optimal disk arrangement strategies. When combined with 
the system's loaders, language processors, editors, and 
debuggers, the resulting facility rivals that of most time­
sharing services for microcomputer program development. 
All software modules are written in PL/M including basic 
file management subroutines (3K), transient console com­
mand handler (2K), and various utility programs. An in­
definite number of programs and subsystems can be sup­
ported since they reside on disk, and are loaded into 
memory on demand. Clearly, this particular application of 
a microcomputer heavily overlaps traditional general-pur­
pose minicomputer areas. 

A number of language processors have been imple­
mented in PL/M, including a translator for the BASIC 
language as an aid in developing microcomputer programs 
which make heavy use of floating point operations. The 
BASIC translator operates under the disk system 
described above, and produces code which is executed in­
terpretively by a special run-time subroutine package. 
More importantly, any translated program can optionally 
be loaded into ROM with the run-time subroutines, and 
placed into a circuit with a microcomputer which executes 
the program repetitively at the push of a button. 

The translator for BASIC was itself written in PL/M 
(5K), and demonstrates its use as an implementation lan­
guage. That is, PL/M has only simple operations, and 
thus is relatively easy to implement for any microcom-

puter. Given that PL/M exists, further special-purpose 
programs, such as the BASIC translator can be coded 
easily. As a result, all system software can be transported 
between different architectures if the base language can be 
transported. It is reassuring to know, for example, that the 
disk system software, BASIC translator, and BASIC pro­
grams will execute on Intel's 8008 and 8080 machines, as 
well as National's IMP-16 and PACE microcomputers 
with little modification. 

SUITABILITY OF PL/M 

These examples indicate the suitability of one high-level 
language in microcomputer systems design. Based upon 
this implementation, the most straightforward applica­
tions were those which the basic machine could already 
perform, including bit-level I/O control and character 
manipulation found in word-processing, operating systems, 
and language processors. In these cases, the algorithms 
were easy to express, and simple to debug and maintain. 
The operating system application, however, contains 
heavier use of table subscripting and run-time address 
computations. Although these functions were easy to 
express in PL/M, the underlying computations are more 
complicated for Intel's 8-bit machines. General floating 
point applications were by far the most complicated to 
code and debug in PL/M and, in general, resulted in a se­
quence of unintelligible mainline calls on these numeric 
subroutines. 

The question of memory-efficiency is also a part of the 
suitability discussion. Again, the bit-level and character 
processing functions result in short code sequences which 
are quite competitive with good assembly language 
programming. The 16-bit address computations found in 
operating system work cause excessive program length un­
less the programmer uses techniques, such as localizing 
computations to common subroutines, which minimize 
this overhead. The general floating point application took 
an inordinate amount of program storage, due principally 
to the lack of basic machine facilities to perform these 
functions. One should consider implementing basic 
arithmetic functions of this sort in PL/M-compatible 

Figure 3-A disk-based microcomputer development system 



assembly language where the side-effects of the machine 
can be more easily exploited. In any case, measured 
overhead for PL/M is in the range 10 percent to 35 
percent when compared with assembly language coding, 
based upon experienced programmers and the current 
PL/M compiler.!! 

One can conclude, however, that the most suitable prob­
lems for expression in PL/M are precisely those problems 
which are most appropriate for the 8-bit processors. That 
is, the low-level functions are all present in PL/M, and the 
high-level functions are not. Further, the low-level func­
tions are exactly the ones which are most memory-effi­
cient. 

FUTURE TRENDS 

Microcomputer development practices seem to change 
on a monthly basis as manufacturer support increases, 
and - hardware component costs decrease. Although any 
projections are questionable in light of this advancing 
technology, several trends are evident. First, the use of in­
convenient and expensive cross development tools will be 
short-lived. Although the cost for cross assembly and cross 
compilation is comparable, either approach can rapidly 
consume project funds. Inexpensiv,e disk-based resident 
developmental machines are becoming commercially 
available which, although still somewhat primitive, can be 
purchased for the price of the timesharing services 
necessary for even a moderate project. National's PL/M+, 
for example, will be available in mid-1975 as an integral 
part of their floppy disk-based development system, while 
numerous independent companies are providing add-on 
equipment for Intel, Rockwell, and other manufacturers. 
Due to the developmental nature of these systems, 
resident language processors will soon be augmented by 
comprehensive debuggers which provide high level 
reference through symbolic names and statement context. 

Current interest in PL/M as a base language indicates 
that high level language standards are possible to some 
degree in the 8-bit processor category. Although there are 
obvious customer benefits in training, documentation, 
benchmarking, program portability, and machine inde­
pendence, standardization also benefits the manufacturer. 
The present similarity between Intel's PL/M and Na­
tional's PL/M + allows the companies to "second source" 
one another at the language compatibility level. Thus able 
to share customer bases, their products can .compete on a 
meaningful level: questions of suitability are settled by 
benchmarked performance and cost, not simply on the 
cycle time of the CPU. The role of the microcomputer has 
expanded since the initial introduction of PL/M, however, 
and thus the language must evolve to suit these applica­
tions. Nearly all major manufacturers have investigated 
the implementation of a PL/M-like language for their 
processors, and one can only guess whether these factors 
will lead to a unified base language, or simply a 'maze of 
confused dialects. 

Microcomputer Software Design 103 

REFERENCES 

1. Falk, H., "Microcomputer Software Makes its Debut," IEEE 
Spectrum, Vol. 10, No. 11, October, 1974. 

2. A Guide to PL/M Programming, Intel Corporation, 3065 Bowers 
Ave., Santa Clara, Ca., 95051. 

3. Buxton, J., Software Engineering Techniques, Nato Science Commit­
tee, OTAN/NATO, 1110 Bruxelles, Belguim, April, 1970. 

4. Dahl, et aI., Structured Programming, Academic Press, 1972. 
5. Kernighan, B., et al., The Elements of Programming Style, McGraw 

Hill,1974. 
6. Yourdon, Advanced Programming Techniques Volume 1: Program 

Structure and Design, Yourdon, Inc., New York, N.Y., 1974. 
7. Davidow,' W., "Processors and Profits: How Microprocessors Boost 

Them," Electronics, July 11, 1974. 
8. Metzger, Managing a Programming Project, Prentice Hall, 1973. 
9. Kildall, G., "Systems Languages: Management's Key to Controlled 

Software Evolution," Proceedings of the 1974 Western Electronics 
Show and Convention, September, 1974. 

APPENDIX 

The listing given in Figure 4 is an example of an 8080 
PL/M pwgram which executes on an Intel developmental 
system. The purpose of the program is to test a procedure 
which keeps track of the elapsed time since system start­
up. After each minute of elapsed time, the program prints: 

hh HRS mm MINS 

at the teletype, where hh and mm are decimal values for 
the hours and minutes of elapsed time. 

The following run-time environment is assumed. A 
Teletype is connected to the 8080 CPU through a UART 
(Universal Asynchronous Receiver-Transmitter). In addi­
tion, an external interrupt is generated every Ytioth of a 
second, and is used for the basic program timing. 

The program consists of a number of procedures 
followed by calls on these procedures. The mainline 
procedures are listed below along with their function in 
the program: 

PRINTCHAR print the single ASCII character in 
CHAR 

CRLF 
PRINTBCD 
PRINT 

send a carriage-return and line-feed 
print two decimal digits 
print a sequence of characters 

One "interrupt procedure," called TIMEKEEPER, is de­
fined with the attribute INTERRUPT 2. This interrupt 
attribute results in control transfer to TIMEKEEPER 
whenever interrupts are enabled and the external inter­
rupt occurs. 

The first PLrM statemeritwhich is executed follows the 
TIMEKEEPER procedure. The four variables FRACS, 
SECS, MINS, and HRS are zeroed. The first variable, 
FRACS, is a byte variable, 'which tallies the number of 
Ytioths of a second which have elapsed during a one second 
interval. The remaining variables each hold a pair of BCD 



104 National Computer Conference, 1975 

00001 1 
00002 1 
00003 1 
00004 1 
00005 1 
00006 1 
00007 1 
00008 1 
00009 1 
00010 1 
00011 1 
00012 1 
00013 1 
00014 1 
00015 1 
00016 1 
00017 1 
00018 1 
00019 1 
00020 1 
00021 1 
00022 1 
00023 2 
00024 2 
00025 2 
00026 2 
00027 2 
00028 2 
00029 2 
00030 2 
00031 2 
00032 2 
00033 1 
00034 1 
00035 2 
00036 2 
00037 2 
00038 1 
00039 1 
00040 2 
00041 2 
00042 2 
00043 2 
00044 2 
00045 1 
00046 1 
00047 2 
00048 2 
00049 2 
00050 2 
00051 2 
00052 2 
00053 2 
00054 3 
00055 3 
00056 2 
00057 2 
00058 1 
00059 1 
00060 1 
00061 .1 

/* THE FOLLOWING 8080 PL/M PROGRAM COMPUTES AND DISPLAYS THE 
ELAPSED TIME SINCE SYSTEM START-UP. THE ELAPSED TIME IS 
PRINTED AT THE TELETYPE CONSOLE EVERY MINUTE */ 

DECLARE 
/* LITERAL SUBSTITUTIONS IN THE PROGRAM */ 
TRUE LITERALLY '1', 
FALSE LITERALLY '0', 
FOREVER LITERALLY 'WHILE TRUE', 

/* TELETYPE CONSTANTS FOR UART */ 
TTO LITERALLY '0', /* DATA TO TTY IS OUTPUTCO) */ 
TTS LITERALLY '1', /* STATUS PORT IS INPUT(l) */ 

/* SPECIAL CHARACTERS (NON GRAPHIC) */ 
BEL LITERALLY '7', /* RING TELETYPE BELL */ 
CR LITERALLY '15Q', /* CARRIAGE RETURN (15 OCTAL) */ 
LF LITERALLY 'OAH'; /* LINE FEED (A HEXADECIMAL) */ 

/* TELETYPE OUTPUT SUBROUTINES */ 

PRINTCHAR: PROCEDURE(CHAR); 
DECLARE CHAR BYTE; 
/* PRINT THE 8-BIT ASCII CHARACTER IN 'CHAR' AT THE 
TELETYPE CONSOLE */ 

DO WHILE RORCINPUT(TTS),2); 
/* WAIT FOR UART TRANSMIT READY */ 
END; 

OUTPUT(TTO) = NOT CHAR; 
END PRINTCHAR; 

CRLF: PROCEDURE; 
/* SEND A CARRIAGE-RETURN FOLLOWED BY A LINE-FEED */ 
CALL PRINTCHAR(CR); CALL PRINTCHAR(LF); 
END CRLF; 

PRINTBCD: PROCEDURE(B); 
/* PRINT THE BCD-PAIR HELD IN THE 8-BIT VARIABLE 'B' */ 
DECLARE B BYTE; 
CALL PRINTCHAR(SHR(B 4) + '0'); 
CALL PRINTCHAR«B AN6 OFH) + '0'); 
END PRINTBCD; 

PRINT: PROCEDURE(A); 
/* WRITE CHARACTERS TO THE TELETYPE STARTING AT ADDRESS 'A' 
IN MEMORY UNTIL THE FIRST '$' CHARACTER IS ENCOUNTERED */ 
DECLARE A ADDRESS, 

(MESSAGE BASED A) BYTE; 

DO WHILE MESSAGE <> '$'; 
CALL PRfNTCHAR{MESSAGE); 
A = A + 1; 
END; 

END PR I NT; 

/* END OF TELETYPE OUTPUT SUBROUTINES */ 

/* FRACS HOLDS THE NUMBER OF 1/60THS OF A SECOND WHICH 



00062 1 
00063 1 
00064 1 
00065 1 
00066 1 
00067 1 
00068 2 
00069 2 
00070 2 
00071 2 
00072 2 
00073 2 
00074 2 
00075 2 
00076 2 
00077 3 
00078 3 
00079 3 
00080 3 
00081 4 
00082 4 
00083 4 
00084 4 
00085 5 
00086 5 
00087 5 
00088 4 
00089 3 
00090 2 
00091 1 
00092 1 
00093 1 
00094 1 
00095 1 
00096 1 
00097 1 
00098 1 
00099 1 
00100 1 
00101 1 
00102 1 
00103 1 
00104 1 
00105 1 
00106 2 
00107 2 
00108 3 
00109 3 
00110 3 
00111 3 
00112 3 
00113 3 
00114 3 
00115 3 
00116 3 
00117 2 
00118 1 
NO PROGRAM 

Microcomputer Software Design 105 

HAVE ELAPSED IN THE LAST PARTIAL SECOND, WHILE 
SECS, MINS, AND HRS HOLD THE ELAPSED TIME COUNTS */ 

DECLARE (FRACS, SECS, MINS, HRS) BYTE; 

TIMEKEEPER: PROCEDURE INTERRUPT 2; 
/* THE TIMEKEEPER PROCEDURE IS CALLED THROUGH AN EXTERNAL 
INTERRUPT (RST 2) EVERY 1/60TH OF A SECOND. THE PROCEDURE 
UPDATES THE VALUES OF HRS, MINS, AND SEeS SO THAT THE TOTAL 
ELAPSED TIME SINCE SYSTEM START-UP IS MAINTAINED IN 
BCD-PAIR FORM */ 

IF (FRACS := FRACS + 1) )= 60H THEN /* ONE FULL SECOND */ 
DO; 
FRACS = 0; 

IF (SECS := DEC(SECS + 1» = 60H THEN /* ONE MINUTE */ 
DO; 

END; 

SECS = OOH; 

IF (MINS := DEC(MINS + 1» = 60H THEN /* HOUR */ 
00; 

END; 

MINS = 0; 
IF (HRS := DEC(HRS + 1» = 24H THEN 

/* ONE DAY ELAPSED */ HRS = 0; 
END; 

END TIMEKEEPER; 

/* SET COUNTERS TO ZERO */ 
FRACS, SECS, MINS, HRS = 0; 

/* START COUNTING TIME */ 
ENABLE; 

/* WRITE INITIAL MESSAGE */ 
CALL CRLF; CALL CRlF; 
CALL PRINT(.'** ELAPSED TIME COUNTER **$'); 
CALL CRLF; 

/* WRITE ELAPSED TIME EVERY MINUTE */ 
DO FOREVER; /* OR UNTIL RESET, WHICHEVER COMES FIRST */ 
IF SECS = OOH THEN 

END; 
EOF 
ERRORS 

DO; /* PRINT ELAPSED HOURS AND MINUTES */ 
CALL CRLF; 

g~tt ~~:~t~~~~~R§}];C~lLR~~YNfT~'~obks*"); 
CALL PRINTBCO(MINS); CALL PRINT(.'MINS$'); 
CALL PRINTCHAR(BEl); 
CALL CRLF; 

/* NOTE THAT 'SECS' MUST HAVE CHANGED WHEN THE MESSAGE 
WAS SENT (ASSUMING 10 CPS TRANSMISSION RATE) */ 
END; 

Figure 4-A sample PL/M program for the 8080 microcomputer 



106 National Computer Conference, 1975 

numbers. The ENABLE statement turns on the 8080 
interrupt system. 

At this point, the program execution must be considered 
in two parts: the mainline code which continues past the 
ENABLE statement, and the interrupt code which is exe­
cuted each time an interrupt is generated. If the interrupt 
system had not been enabled, the mainline code within the 
DO FOREVER block would execute indefinitely, and, 
since the value of SECS remains at zero, the message 

00 HRS 00 MINS 

would print continuously. 
Given that the interrupt system has been enabled, the 

interrupt which occurs 60 times each second causes the 
mainline code to stop at each interrupt. The TIME-

KEEPER procedure immediately receives control, with 
the interrupt system automatically disabled and the ma­
chine state saved. Upon completion of the interrupt 
processing, control returns back to the interrupted main­
line code to the point of interruption with the machine 
state restored, and interrupts enabled. As a result, the 
values of SECS, MINS, and HRS are continuously incre­
mented as the mainline progr.am executes. Thus, the 
program output will appear as follows: 

00 HRS 01 MINS 
00 HRS 02 MINS 
00 HRS 03 MINS 

and so-forth, with one minute intervals between each line 
of output. 



Computer communications networks 

Area Director: 
Robert F. Daly 
Stanford Research Institute 
Menlo Park, California 

Advances in computer and communication technologies are profoundly af­
fecting the nature, structure, and operation of computer-communications net­
works. The joint exploitation of these technologies while promising seemingly 
unlimited operational possibilities, generates an almost endless parade of issues 
for the designer, supplier, user, and regulator of such networks. This series of 
four sessions reports on the results of recent research on various technical issues 
in the area of computer-communications networks. 

An introductory session has been organized to prepare the novice for the later 
more technical sessions and to inform the expert of current status. This session 
is followed by three state-of-the-art sessions on substantive research activities af­
fecting current and future operational systems. 

A session on advances in packet switching includes papers on system design 
considerations and issues, speech transmission in packet networks, and control 
schemes for multi-access broadcast packet channels. A session on the future im­
pact of packet radio addresses ,ssues in the design of packet radio networks, the 
technology of packet radio and personal terminals. Finally, a session on ad­
vanced data communications in computer-communications networks will be in­
cluded. 

107 





Computer communications-How we got 
where we are 

by IVAN T. FRISCH and HOWARD FRANK 
Network Analysis Corporation 
Glen Cove, New York 

HENRY FORD WAS WRONG 

Of course, Henry Ford was wrong. History is not bunk. It 
just tends to look like bunk in the short range. Legiti­
mately, historians must allow some time for the confusion 
of events to die away. They can then evolve theories about 
fading memories of the events. In his short story, "The 
Ugly Little Boy," Isaac Asimov1 has a reporter say the 
following about a machine which recovers people from the 
past and makes them live in the present. "You Gan only 
reach out so far; that seems sensible; things get dimmer 
the further you go; it takes more energy. But then, you can 
only reach out so near." It is the same with history. 

Accordingly, some of the giants of history still have only 
little to say about the computer revolution. Arnold 
Toynbee, who has provided the greatest conceptual unifi­
cation of world history in this century, is still involved in 
the purely negative aspects of the revolution. His chapter 
on computerization2 is called "Mechanization, Regimenta­
tion and Boredom"; this brings to mind some advice for 
fourteenth century magicians, "If you want to be a suc­
cessful prophet, prophecy evil."3 Daniel Boorstin, winner 
of the Bancroft Prize, the Parkman Prize and the Pulitzer 
Prize for his penetrating series of books, "The Ameri­
cans," is most fascinated by the gadgetizing of Americans: 
"When automation became widespread and electronic 
computers became almost as common as the adding ma­
chine, there were new cataclysms in the jobs of Americans 
and in their ways of thinking. By 1967, only a half-century 
after the first commercially successful billing machine, the 
annual American production of cash registers and comput­
ing machines totaled more than $4.5 billion. When precise 
and up-to-date information was available about the quan­
tities of everything, businessmen and consumers could not 
help thinking quantitatively." 4 

The facts are right, but the impact is trivialized. This 
nearsightedness, being fairly general among historians, we 
therefore seek for the general history and impact of com­
puter-communications elsewhere. We must search among 
the participants, namely ourselves, and among other com­
mentators, who will be broadly classified as journalists. 
One must be wary of Marshall McLuhan's generalizations. 
After all, in their book, "War and Peace in the Global 
Village," McLuhan and Quentin Fiore attribute the age of 
chivalry to the invention of the stirrup.5 Granted that Mc-

109 

Luhan is not a master of understatement, one can still 
find truth in his estimation, in the same book: "The com­
puter is by all odds the most extraordinary of all 
technological clothing ever devised by man, since it is the 
extension of our central nervous system. Beside it, the 
wheel is a mere hula-hoop." One of the best journalist his­
torians is James Martin. After all, he published a book in 
1971 called, "Future Developments in Telecommunica­
tions," and much of this book intended as almost science 
fiction for the year 1980 is a good history of the years 
1971-1974. 

SEPARATING THE USER FROM HIS 
COMPUTERS 

In 1939 Aikin and a team of IBM engineers at Harvard 
began the work that resulted in 1944 in the Mark I, the 
first automatic electromechanical digital computer. The 
first completely electronic computer was designed by 
Eckert and Mauchly at the University of Pennsylvania, 
for the Ballistic Research Laboratory at Aberdeen. The 
ENIAC (Electronic Numerical Integrator and Calculator) 
became operational in 1946. The history of computing in 
the 30 years since Mark I is a monumental one, which will 
require some new giants of history. For the present, we 
will try to simply indicate some of the trends and 
milestones, in the more limited area of computer-com­
munications, or computer networking or, in simpler terms, 
the process of separating the user from his computer. We 
will subdivide this process into two categories-terminal 
oriented networks and the area with the shorter history, 
but greater technical promise, computer to computer net­
works. 

EVOLUTION OF TERMINAL ORIENTED 
NETWORKS 

The first computer network consisted of a computer 
with several cables attaching input devices. A majority of 
the networks in the world are still of this fashion. Very 
shortly, the need arose to do more than just communicate 
with a computer 100 feet away. Thus, remote terminals 
were added to the network. The networks were first 
extended to cover all of the buildings within an industrial 



110 National Computer Conference, 1975 

V 
\ 
\ 
\ 
\ 

(a) 

V 
\ 
\ 
\ 
\ 

(b) 

(c) (d) 

V 
/ 

I 
I 
I 

Figure I-Evolution ofterminal oriented networks 

complex on leased or specially constructed lines. The ca­
pability to dial into the main frame computer was then ad­
ded and the networking era began in earnest. 

As networks grew, their costs also grew, often quite 
rapidly. For example, as more and more demands were 
made on the system, the cost of the communications be­
came a very significant fraction of the cost of the overall 
network. Originally, the computer represented the ma­
jority of the total system cost. But, as the network 
expanded, communications often exceeded 50 percent of 
the overall system cost. Therefore, efforts began to reduce 
this aspect of the overall cost. Innovations like multidrop 
lines, which allowed a number of different terminals to 
share a common line, were introduced to take advantage 
of all possible economies of scale. You might be able to 
lease a very low bandwidth line for, let's say, a thousand 
or fifteen hundred dollars per month. On the other hand, 
you could probably increase the capacity of the line by a 
factor of ten or more at a cost increase of only a factor of 
two. This provided sufficient capacity to allow sharing of 
the line by several terminals. But, to do this, control 
mechanisms for selecting different terminals on the line 
and for protecting data had to be invented and techniques 
for contention resolution and queueing were required. 

The next major difficulty encountered in building com­
puter networks were the changes to the main frame 
software which were found to be exceptionally difficult 
and costly. Thus, to reduce the time and cost of system 

development, devices called "front ends" were introduced. 
These allowed the communication functions of the com­
puter network to be separated, by and large, from the 
processing function of the computer. Front end use grew 
very rapidly, beginning in the late 1960's and was assisted 
by the introduction of low cost minicomputers. Today, 
front ends play an important role in network communica­
tions. 

N ext, the interesting observation was made that there 
was a cable between the front end and the computer. Since 
large networks always tend to get larger, the cable became 
longer, with communication equipment required between 
the front end and the computer. As the front end increased 
its distance from the main frame, its name changed to that 
of "concentrator." In modern networks, concentrators 
may be thousands of miles from the computer. Their main 
function is to reduce communication cost by more effec­
tive communication line utilization. The next development 
was quite natural; another front end was added to the 
computer side of the network to complete the isolation of 
the computer from its network elements. 

In Figure 1, we have a typical structure of a terminal 
oriented network.6 This particular network is called the 
NASDAQ System. "NASDAQ" stands for the National 
Association of Securities Dealers Automated Quotations 
System. This network was built in 1970 and became 
operational in 1971. Its function is to collect quotation in­
formation about the Over-the-Counter Securities market. 
Users distributed throughout the country receive 
responses to their input in five or six seconds. Responses 
contain information about the prices at which dealers are 
willing to sell or buy securities, and the exact bid and ask 
prices of each market maker who deals in a particular se­
curity. There are on the order of 1,700 terminals in this 
system at a thousand different locations in about 400 dif­
ferent cities. The system has reduced the problem of get­
ting the information about Over-the-Counter stocks from 
one of making ten phone calls to the input of a single net­
work message. During: active trading days, the NASDAQ 
System has handled more than one million messages a 
day. 

Automated Quotations 
OTC Dealers, Market Makers,Wire Services 
1,000 Offices, 1.700 Terminals 
I, 000. 000 Transactions Per Day 
QUotations, Updates, News, Volume, Ind~ces 
5 Second Response, 50\ of Time. 7 second, 95, 
Maximum 3-6 Hours DOwntime Per Year 

Figure 2-Simplified network diagram for the NASDAQ system 



Computer Communications-How We Got Where We Are 111 

MILESTONE TERMINAL ORIENTED NETWORKS 

There are almost as many terminal oriented systems at 
present as there are computers, since almost every com­
puter has terminals attached to it. And almost all these 
systems fit somewhere into the evolutionary pattern we 
have described. However, only a small number of these 
networks set milestones in· either timing, structure, func­
tion or size. Those that have been major benchmarks fall 
into two general categories: special purpose net­
works-intended to serve a specific function for a selected 
set of users-and time sharing services-intended as a 
general utility for any user . 

. Special purpose networks 

Military 

Among special purpose networks the military has been 
one of the leading users and pioneers. Indeed, much of the 
technology developed for military purposes has been 
transferred and adapted for commercial use. The prime 
examples are point of sale systems, of which banking and 
airline reservation systems are pioneering areas. Other 
users such as educational institutions have also added 
major improvements necessitated by their particular re­
quirements. Certainly a milestone in military systems and 
in computer communications development, in general, is 
the SAGE (Semiautomatic Ground Environment) system. 
Lest we forget in how many different ways this system was 
a pioneering effort I will quote Ruth Davis: 

"The first use of an automated display which permitted 
the user to exercise control over the information presented 
(and also to enter requests and information based on what 
was presented to him) occurred in the SAGE system. The 
significance of the introduction into this system of the 
light gun as a pointing device under the control of the dis-

r;'l AA GUNS 

,It 
4' / , ... f ~::~/~~" I 

~ ~~-b .~ .. ~.. J:IKE AlR'~ ~~ ~ ....... 

~n:R . ., .... ~ II .~ 
----~-._11 V .. ,., ft____ -:::-

I=r..-..:-~-: =~ ~ 
eASES CENTERS DEFENSE 

Figure 3-Typical sage sector 
__ Data circuits 
.... Other circuits 

MIAMI 
TERMINAL 
CONTROL 

UNIT 

TERMINAL 

CONTROL 
UNIT 

SITE 
COMPLEX 

Figure 4-Airlines reservations system 

AGENT 
TERMINALS 

/ 
BOSTON 

play operator cannot be overemphasized. It was probably 
the one most important event which made possible the 
man-computer interaction deemed so essential at the 
present time. It occurred in 1952 utilizing the Whirlwind 
computer."7 

But let us look at the computer communications 
aspects. The purpose of the system was air defense for the 
U.S. The results were benchmark efforts in computers, 
communications and computer communications. 

The Air Defense System Engineering Committee 
(ADSEC), a group formed by the Scientific Advisory 
Board at the request of the Air Force, evaluated the status 
of overall air defense in the 1950's. They recommended 
initial feasibility tests utilizing digital radar inputs to a 
central computer. This was to be accomplished by cou­
pling the data-processing capabilities of the Digital Com­
puter Laboratory to the radar data-transmission tech­
niques of the Cambridge Research Center. Favorable 
results led to Project Charles and the establishment of 
Lincoln Laboratory in 1951 with a charter to work toward 
a computer-based air defense system. Project Charles 
activities led to recommendations for a prototype test 
facility known as the Cape Cod System, which was es­
tablished in 1952. 

The New Y or k Air Defense Sector became the first 
operational site in 1958. By 1963, SAGE Direction Center 
and Combat Centers had been installed at all continental 
stations. The system was designed in 1955 with IBM 
AN/F SQ-7 prototype computers, with SDC software at 
the central facilities. Each computer contained 58,000 



112 National Computer Conference, 1975 

Central 
computer 

low speed lines 
into phone system 

low speed lines 
into phone system 

Figure 5-Dartmouth time sharing system interconnections between 
remote and local communications computers (1968) 

vacuum tubes, consuming 1,500 KWatts of power and oc­
cupying an entire building floor.s Radars and information 
sources feed information to the centers and the centers 
send information to interceptors and other weapons. Real 
time processing required key developments by many com­
panies, small computer (not mini computers) front-end 
processors, specification of 1600 baud data lines with bet­
ter conditioning than voice grade lines, and redundant 
diverse routed paths for reliability. ' 

Banking 

The development of commercial systems such as bank­
ing could be done on a smaller scale and hence had less 
auspicious milestones. Certainly, the first of any system 
must be a milestone. The first banking milestone therefore 
sounds almost like an entry from the Guiness book of 
records. Telefile is described by Sackman7 as the first 
online banking system in the world, linking the transac­
tions of each of the three participating banks and their af­
filiated branches into a central data-processing system. 
This system grew out of automation feasibility studies 
initiated by the Howard Savings Insitution of Newark, 
New Jersey in 1953. By 1956, system requirements were 
specified, two other banks cooperated in the venture, and 
the Teleregister Corporation was awarded the contract for 
developing and implementing the data-processing system. 

The three main system requirements were as follows: 

1. Online data processing at the teller window­
for example, direct communication between the teller 
and the central computer for deposits and with­
drawals. 

2. High system reliability and accuracy commensurate 
with rigorous banking standards. 

3. Uninterrupted continuity in banking service 
throughout the transition. period from the initial 
manual system to the successor semi-automated 
system. 

The system is a long way in scope from present broad 
purposed vast networks such as that of the Barclay Bank 
or that being considered by the Federal Reserve Board. 

Airlines 

One of the earliest large scale users of point of sale type 
systems have been the airlines. As Janet Taplin9 has com­
mented "American Airlines has been uniquely successful 
in its use of computers. Its SABRE I was the first on-line 
reservation system and represented a major breakthrough 
in terms of real-time computer usage". A joint research ef­
fort by IBM and American Airlines in the early 50's 
culminated in the SABRE system in the early 60's. The 
system consists of a central computer site with 2000 na­
tionwide terminals multi dropped to the central site.lO 

Education 

One of the earliest and most ambitious educational net­
works is the Dartmouth Time Sharing System (DTSS) 
first placed in operation in 1964. 

"It was ... decided that exposure to computing and free 
availability of computing should become a standard part 
of the liberal arts educations at Dartmouth, an under­
graduate college where only 25 percent of the students 
elect majors in the sciences and engineering . 

. . . Against this background, it was recognized that the 
user-computer interface had to be simplified and har­
monized with the educational environment if liberal arts 
students were to ingest a reasonable dose of sensible 
knowledge about computing. Two important consequences 
of this recognition were the decisions to bring the com­
puter to the student via remote individual terminals 
(teletypes) and to devise an extremely simple user inter­
face."ll 

The system evolved through several stages of hardware 
and software systems as well as communications. The use 
of DTSS by schools outside Dartmouth developed spo­
radically until given a major impetus in 1967-1968 by NSF 
Grants. The configuration in 1968 is shown in Figure 5. 

Time-sharing networks 

The emergence of time-sharing systems as general pur­
pose on line computing facilities is a development pri­
marily of the 1960's. Some of the early experimental work 
took place at Project MAC at MIT; SDC under the aegis 
of ARPA; and RAND. By the mid 1960's practically all 
computer manufacturers were marketing or developing 
some form of time-sharing facilities. A number of organi­
zatiQns now run commercially available time shared 



Computer Communications-How We Got Where We Are 113 

services. Among them are United Computing Services, 
Inc., Utility Network of America and so on. 

The most significant networks are unusual in function, 
size and complexity. 

The largest time sharing network is that run by General 
Electric.12

,13 It has local data lines in some 25 cities in the 
U.S., nine cities in Canada, Mexico City, San Juan and 
via COMSAT, London, Manchester, Brussels, Am­
sterdam and Paris. The system evolved from GE's 
experience with the Dartmouth Time Sharing System and 
in 1965 used the operating system developed at Dart­
mouth. 

The most sophisticated time-sharing networks currently 
in operation is TYMNET owned by Tymshare, Inc.12,14 

The network employs 80 communications processors all 
over the U.S. accessing 26 host computers. The network 
configuration consists of a backbone of multiple rings, 
rather than a star, with other nodes connected in stars or 
straight runs. If one path to a computer is saturated or 
down, the network automatically switches to an alternate 
path. The network goes far beyond the concept of indi­
vidual real time terminal users and services entire organi­
zations such as major accounting firms and the National 
Library of Medicine. 

COMPUTER TO COMPUTER NETWORKS 

Parallel to the development of terminal oriented 
systems, efforts were under way to allow computers to 
directly communicate with other computers in real time. 
The first step was, of course, to place two identical com­
puters in the same building and to connect a cable 
between them. (Many of the computers being built today 
can be regarded as sophisticated computer networks in 
themselves.) To assist in this difficult task, devices very 
much like front ends were developed to handle the com-

LEGEND 
... SUPERCENTER 

o NETWORK DISTRI· 
BUTION POINT 

o AREA SERVED BY 
NETWORK 

-a.. SATELLITE 

Figure 6-General Electric international network 

Figure 7-Tymnet 

(a) 

(b) 

(c) 

Figure 8-Evolution of computer-to-computer networks 



114 National Computer Conference, 1975 

December 1969 December 1970 

Ca) (b) 

September 1971 August 1972 

(e) Cd) 
Figure 9-Geographical expansion of the ARPA network 

munications functions and other chores needed. Naturally, 
the communication lines became longer, necessitating 
communication hardware at the ends of the line. 

A result of this approach is star· like networks with a 
store and forward central switch. The most significant net· 
work in this category is the AUTODIN System. I5 

AUTODIN was built and -is maintained and managed by 
Western Union for the U.S. Government. 

An extension of this type work is the ring computer net· 
work in which a front end type device (often called a net· 
work interface processor) connects the network lines and 
the computers. Data for a computer is addressed to that 
computer and sequentially sent, link by link, in a circular 
fashion. At each step around the circuit, the data is inter· 
rogated by the interface processor and when it finally 
reaches the interface processor connected to the destina· 
tion computer, it is removed from the ring. Naturally, if a 
network like this is not planned very well, data may 
eventually circulate forever. Thus, control devices to 
remove data which is "too old" from the network must be 
placed in the network. In addition, as such a network 
grows, its reliability can become very low because all ele. 
ments along the ring must operate for the network to 
operate. Therefore, additional lines for redundancy and 
more flexible routing techniques must be added for effec· 
tive operation. 

A more ambitious type of system, called AR· 
PANET/6,I7 was also developing during the last five 
years. The concept of this system was to provide high 
flexibility by allowing any kind of interconnections, and 
adaptive routing of information. In late 1969, the first four 
elements were installed on the West Coast. The network 
grew to about a 25 node system in 1971, to about a 40 node 
system in 1973, and is today about a 50 node system. This 
network is one of the first major applications of the new 
technology called "packet switching" in which data is 
broken up into blocks that are separately addressed and 
then allowed to make their way independently through the 
network from origin to destination. This type of network 
must handle the problem of controlling flows using a "dis· 
tributed" control scheme. 

The ARPANET significantly differs from the 
centralized system approach. In a centralized system such 
as NASDAQ, nearly all the controls reside in the central 
computer. If it cannot handle the flow, the computer will 
slow down the concentrators and do whatever else is 
necessary to prevent additional calls from being sent. In a 
distributed network, very sophisticated techniques of flow 
control and routing adaption incase of a line or node 
failure had to be developed. Packet switching is now 
viewed as a major addition to the technology of computer 
networking, and has already been applied to radio com· 



Computer Communications-How We Got Where We Are 115 

September 1974 

HAWAII 
AMES 

(e) 
Figure lO-Geographical expansion of the ARPA network (continued) 

munications.18 A number of other networks are now being 
built or designed that are based on the packet switching 
technology of the ARPANET and the future of the field 
appears quite bright. 

PROPHECY 

Clearly an important part of the computer communica­
tions revolution has been the proposal and development of 

.... , .. -: ............ -............ 

!' \ ~':< 
; t 

( ! 
•• J 
+ .. 

@ ~~=~I=~.::~:~.~~TE"S-
• CONCINYIIATORIAUlltQUfI 

TJlA,'ICCOfIItAOL.CIN'a:U 
• SUlliCIUIlIiOROf'S 

-VOteIGIlAOI\. ... ' 
• ___ ~TI&.lTYftLINI 

Figure ll-A computer plotted output for a data communication 
network of 500 locations 

an incredible array of digital services. This includes new 
technical offerings and tariff structures by the common 
carriers dominated by AT&TI9 and Western Union.15 A 
further development of crucial interest to the computer in­
dustry is the growth of the specialized common carriers 
including Mel, DATRAN and a large number of regional 
carriers such as Western Tele-Communications. The pic­
ture is further enhanced by the addition of value added 
networks and satellite communication. These topics have 
only been alluded to here since they are the subject of 
another paper in this session.20 

Our mandate for this talk does not include 
prophecy-for evil or for good. But after all the only 
reason for knowing "How we got there", is so we can 
extrapolate to "Where we are going." Some things are 
certain. As Fano says "The 'Marriage' of computers and 
communication has been celebrated and consummated. 
By now the honeymoon is over and the two partners are 
beginning to face the realities of their interdependence."21 

Looking into the very near future networks are planned 
that tend to combine the distributed network control con­
cepts of ARPANET for computer to computer communica­
tions with the centralized NASDAQ-like approach for ter­
minal to computer and terminal to terminal communica­
tions. These networks are an extension of the multidrop 
centralized net where now the terminal processor replaces 



116 National Computer Conference, 1975 

the computer and the backbone communications is then 
through a packet oriented net like ARPANET. An example 
of this type of net is shown in Figure 11. This particular 
example is a sample design for a planned FAA Air Traffic 
Control Network. This network has 21 air traffic control 
computers at appropriate locations. It has a backbone com­
munication network which is a simple loop like network. 
Emanating from the nodes of this network is an extensive 
terminal communications network which is itself a collec­
tion of networks. 

The growth of computer communication networks has 
clearly left the linear part of its presumed exponential 
growth. In-house systems or inter-corporation facilities 
abound not only on paper but in actual implementation. 
In addition many more facilities are on the horizon. For 
example: 

• In Canada, the Datapac Network is a nationwide, 
packet switched, shared, data network which has 
been designed to become the basic Canadian network 
for data communications. By 1976 there will be four 
network nodes: Toronto, Montreal, Ottawa and Cal­
gary. These four nodes, or networks switching centers, 
will initially serve the entire country. By 1980, at 
least fourteen Canadian cities will have network 
nodes. After 1980, the network will continue to 
expand to meet Canada's data requirements. 

• Also in Canada plans are being developed for 
CANUNET, Canadian Universites Computer Net­
work, a packet switched network sponsored by the 
Ministry of Communications to link some 20 
universities.22 

• An international effort is planned by the Organization 
for Economic Cooperation and Development. The 
result is to be a European data communication net­
work between certain universities and research 
centers. This network, which will work on the "packet 
switching" principle, is reminiscent of the ARPA net­
work. Secondary networks can be connected to nodal 
centers. Nodal centers will exist in Italy, France, 
Switzerland, the United Kingdom, and within the 
OECD administration. Norway, Sweden, Portugal and 
Yugoslavia have also joined the project.23 

Beyond extrapolation we indeed enter the realm of 
prophecy. We can only list a few achievements' we all know 
are here or on immediate horizon, make an obvious 
observation, and relate a I?ersonal eX2erience. 

First the list. The following developments are here: 

• Minicomputers 
• Programmable calculators 
• Hand calculators 
• Microprocessors 
• Hand held radio transmitters 
• Cable TV system for data transmission 

Second, the obvious observation. Even without looking 

into the far future of hand held minicomputers on a chip 
or optical fibers it is clear that computer networks will 
soon look nothing like they look now. Mobile users with 
hand' held terminals dialing into vast networks of mini­
computers and maxicomputers, with little difference 
between front ends and processors, is clearly possible. 

Finally, a personal experience; as usual, one of us (LF.) 
did his Christmas shopping on Christmas eve. He was at 
the counter at Macy's trying all the calculators, using one 
calculator to calculate the cost per feature on all the other 
calculators at the latest bargain price of overstocked 
Japanese calculators with Italian names. A woman stand­
ing next to him, silent for many minutes, finally got up the 
courage to ask the salesman what memory was used for on a 
calculator. He tried to explain several times and failed. Fi­
nally, he showed her how it was used to store an inter­
mediate answer. A glow of discovery appeared on her face. 
For the first time after years of propaganda, advertising 
and intimidation about computer memory banks she 
understood what memory was. A new American became 
intimate with the computer. This element of citizen accep­
tance of the computer when combined with the technical 
elements make a new revolution both inevitable and un­
predictable. 

Many others are, of course, actively speculating on the 
effect of the computer communications revolution on so­
ciety. Some of this speculation is didactic. Says Peter 
Goldmark,24 "What I propose is that the advances of 
telecommunications technology-satellites, cable TV, 
broadband circuits and similar devices-make it possible 
to attract future generations into the smaller towns of 
America beyond the commuting dependency range of the 
big city and suburbs and thus cut down on the excessive 
use of power." Some of the speculation is more rumina­
tive. Says Paul Baran,25 "The key man in the new power 
elite will be the one who can best program a computer, 
that is, the person who makes the best use of the available 
information and the computer's skills in formulating a 
problem. In a world where knowledge is power, and where 
communications mean access to power, he who can most 
effectively utilize this access will be in the driver's seat. 
Some persons (primarily computer programmers) claim 
that the richest man in the world in the year 2000 will be a 
computer programmer. This may sound outlandish, but 
few really good programmers laugh when they consider 
this assertion." 

But the best appraisal is by Steward Brand,26 humanist 
author of "The Whole Earth Catalog". In his essay, 
"Fanatic Life and Symbolic Death Among the Computer 
Bums," he sums it all up, "Ready or not, computers are 
coming to the people". 

REFERENCES 

1. Asimov, I., "The Ugly Little Boy," Nine Tomorrows, Doubleday & 
Co., Inc., 1959. 

2. Toynbee, A. J., Change and Habit: The Challenge of Our Time, Ox­
ford University Press, 1966. 



Computer Communications-How We Got Where We Are 117 

3. Thorndike, L., A Hi1;tory of Magic and Experimental Science: 
Volumes III and IV; Fourteenth and Fifteenth Century, Columbia 
University Press, Second Printing, 1953. 

4. Boorstin, Daniel J., The Americans: The Democratic Experience," 
Random House, 1973. 

5. McLuhan, M. and Q. Fiore, War and Peace in the Global Village, 
McGraw-Hill,1968. 

6. Frank, H., 1. T. Frisch and R Van Slyke, "Testing the NASDAQ 
System-Traffic and Response Time," Proceedings of the Sympo­
sium on Computer-Communications Networks and Teletraffic, 
Polytechnic Institute of Brooklyn, 1972, pp. 577-586. 

7. Sackman, H., Computer System Science and Evolving Society, John 
Wiley, 1966. 

8. Enticknap, R. G. and E. F. Schuster, "SAGE Data System 
Considerations", Transactions of the American Institute of Electrical 
Engineers, January, 1959, pp. 824-832. 

9. Taplin, J., A Hi1;tory of the Remote Access Computer Industry in the 
United States 1964-1972, Master's Thesis, University of Pennsyl­
vania, August 11, 1972. 

10. Knight, J. R, "A Case Study: Airline Reservations Systems," 
Proceedings of the IEEE, Vol. 60, No. 11, November, 1972, pp. 1423-
1430. 

11. Hargraves, Jr., Robert F., "The Dartmouth Time Sharing Network," 
Computer Communication Networks, N. Abramson and F. F. Kuo 
(Editors), Prentice Hall, 1974. 

12. Gaines, G. and J. Taplin, Time Sharing Today, Vol. 3, Nos. 1&2, 
May 1972. 

13. Mauceri, L. J., "Control of an Expanding Network-An Operational 
Nightmare," Networks, Vol. 4, No.4, 1974, pp. 287-297. 

14. Beere, M. P. and N. C. Sullivan, "TYMNET-A Serendipitous Evo­
lution," IEEE Transactions on Communications, Vol. COM-20, No. 
3, June 1972, pp. 511-515. 

15. Cox, J. E., "Western Union Digital Services," Proceedings of the 
IEEE, Vol. 60, No. 11, November, 1972, pp. 1350-1356. 

16. Frank, H., 1. T. Frisch and W. Chou, "Topological Considerations in 
the Design of the ARPA Computer Network," SJCC, May 1970, pp. 
581-587. 

17. Roberts, L. G. and B. Wessler, "Computer Network Development to 
Achieve Resource Sharing," SJCC, 1970, pp. 543-549. 

18. Abramson, N., "The ALOHA System," Computer Communication 
Networks, N. Abramson and F. F. Kuo (Editors) Prentice Hall, 1974. 

19. James, R J., and P. E. Muench, "AT&T Facilities and Services," 
Proceedings of the IEEE, Vol. 60, No. 11, November, 1972, pp. 1342-
1349. 

20. Gerla, M., "Moving Bits by Air, Land and Sea," in this session. 
21. Fano, R M., "On the Social Role of Computer Communications," 

Proceedings of the IEEE, Vol. 60, No. 11, November 1972, pp. 1249-
1253. 

22. deMercado, J., R. Guindon, J. DaSilva, M. Madoch, "The Ca­
nadian Universities Computer Network: Topological Considera­
tions," Proceedings of the First International Conference on Com­
puter Communication, S. Winkler (Editor), October, 1972, pp. 220-
225. 

23. Larsson, T., "Data Communication in Sweden-and Some Aspects 
of the Situation in Europe," Proceedings of the First International 
Conference on Computer Communications, S. Winkler (Editor) 
October, 1972, pp. 17-25. 

24. Goldmark, P. C., "A Rural Approach to Saving Energy," The New 
York Times, Sunday, November 11,1973. 

25. Baran, P., "On the Impact of the New Communications Media Upon 
Social Values," Law and Contemporary Problems, Vol. 34, No.2, 
Spring, 1969, pp. 244-253. 

26. Brand, S., II Cybernetic Frontiers, Random House 1974. 
27. Gaines, E. C., "Specialized Common Carriers-Competition and Al­

ternative," Telecommunications, September, 1973, pp. 17-26. 
28. Luther, W. J., "Conceptual Bases of CYBERNET," Computer Net­

works, R. Rustin (Editor), Prentice Hall, 1972. 
29. Schwartz, M., R R Boorstyn and R L. Pickholtz, "Terminal­

Oriented Computer Networks," Proceedings of the IEEE, Vol. 60, 
No. 11, November, 1972, pp. 1408-1422. 

30. Worley, A. R., "The Datran System," Proceedings of the IEEE, Vol. 
60, No. 11, November, 1972, pp. 1357-1368. 





Computer communication networks-The 
parts make up the whole 

by WUSHOW CHOU 
Network Analysis Corporation 
Glen Cove, New York 

INTRODUCTION 

A computer network, in the broad sense, is any system 
composed of one or more computers and terminals, com­
munication transmission facilities, and specialized or 
general purpose hardware to facilitate the flow of data 
between terminals and/ or processors. Its parts consist of 
communication devices, the host processors, the trans­
mission lines and a set of rules, implemented in either 
hardware or software, to insure the orderly flow of traffic 
in the network. 

The characteristics of the components of a computer 
network depend on the environment in which theory is 
implemented. Thus, in this paper, we first discuss com­
puter network architecture and currently available al­
ternatives of communication devices, transmission 
facilities, and the required rules and protocols which make 
up the network. 

NETWORK ARCHITECTURE AND NETWORK 
STRATEGIES 

Introduction 

In this section, computer communication networks will 
be classified according to their topological structures and 
network architecture. A network architecture has at least 
two levels: the global level of overall networking strategy 
and the local level of terminal access. In a simple network, 
terminal access lines constitute the whole network. Thus, 
there is no difference in the two levels. In more compli­
cated networks, there are communication processors and 
devices in addition to host computers and terminals. Some 
or all of the terminals communicate with host computers 
by first accessing the communication processors (CPs). It 
is even possible that there are no terminals at all, thus the 
main characteristics of the overall network may not be the 
same as that ofthe terminal access structure. 

In the following, the overall networking strategies will be 
classified as centralized, ring-switched, and store-and-for­
ward (S/F) message or packet switched~ The terminal ac­
cess will be classified as star structured, multidropped, 
and ring-structured. 

119 

Global network architecture 

A centralized data communication network 

In a simple case, a centralized network may just consist 
of a computer with a small 'number of terminals connect­
ing directly to it to form a star structure. Figures 1 and 2 
show two more complicated networks structures. A well­
known example for the centralized structure is the NA­
SDAQ, which is an over the counter stock automatic 
quotation system.1 (Its topological is shown in Figure 1.) 

Figure 3 represents a general communication path 
between a terminal and a host computer. The path has the 
following sequence: terminal to terminal control unit, to 
multiplexer, to concentrator, to a front-end processor, to a 
CP, or a central computer. (lVlultiplexers and concentra­
tors will be discussed later. For the moment, they may be 
viewed simply as communications cost saving devices that 
allow several low speed lines sharing one higher speed line. 
Multiplexers are usually hardware devices and concentra­
tors are minicomputers.) Not every network or communi­
cation path contains terminal control units, multiplexer 
and/ or concentrators. 

Centralized network usually has the following typical 
characteristics: 

1. Its computing facilities (i.e., computers) and switch­
ing facilities (i.e, if it is a message switching system) 
are centrally located at one site. However, this state­
ment needs qualifications. In performing the func­
tion to allow several low speed lines sharing one 
high speed line, concentrators do carry out a simple 
switching function by passing messages between tlie 
central computer and the terminals. This switching 
function which is a necessary consequence of utiliz­
ing concentrators is not considered as a real switching 
function in the above statement. Furthermore, mini­
computers used as concentrators and terminal con­
trol units are quite underutilized. In some networks, 
they have been used for limited local processing, 
local data base access, and/ or local switching. These 
approaches have been termed by some people as 
"distributed processing" or "distributed data base", 
even though the basic network architecture is still 
centralized. 



120 National Computer Conference, 1975 

........•........ 

Figure I-An example of a centralized communication network 

2. It has a tree-like appearance. This is quite evident 
from Figures 2 and 3. :fIowever, t~ere are cases in 
which terminals controlled by the same control unit 
form a ring or loop-type network. A notable example 
is IBM's 3600 system.2 

3. There is only one unique communication path 
between a terminal and its central computer. 
(However, there are dial-up lines for backup when 
dedicated lines fail. Also, there may be parallel lines 
between two points, such as the central computer and 
a concentrator for the purpose of higher line 
throughput and better reliability. In this case, a 
message may be sorted through any of the parallel 
lines.) 

4. It is a terminal oriented system. Traffic flow is 
between a large number of terminals and their host 
computers. There is little or no traffic between com­
puters. 

Ring-switched computer network3
,4,5,6 

In a ring-switched network a ring or loop-type network is 
formed by a set of CPs. Terminals and computers desiring 
communications are connected to the CPs in a ring or 
loop. An example is shown in Figure 4. The main function 

(!) =~'=':':=~=.~:'TIM-
• COfIIChTUJ'ORIAYIi MJU'. 

TIIIU'IC CONTROL CIJITIQ 
• ....:a ... .,... 

-votC.oa .... " .... 
--fiLl"" .... ---,..... ...... 

Figure 2-Another example of a centralized network 

Figure 3-A "general" communication path between a terminal and a 
computer 

of the CPs (Box B in Figure 4) is to interface the terminals 
and computers with the ring. They will be appropriately 
called Ring Interface Processor (RIP) in this paper. More 
than one terminal and/ or computer may be connected to a 
usually co-located RIP. A RIP bridges its input and output 
lines with a shift register. RIP switches information from 

r Regional 
\ Ring 

A = Ring Controller 

B = Ring Interface Processor 

C = switching Processor 

Figure 4-A ring network 



input to output by shifting incoming signals from trans­
mission lines through its shift register: The channel ca­
pacity of the ring is multiplexed into a series of time slots. 
(To illustrate, assume the channel capacity is 10 Kbps and 
it is divided into 10 slots. Each slot will then consist of 
1000 bits. Bits belonging to the same slot do not have to be 
continuous. Without loss of generality, for easy under­
standing, we can assume they are.) The time slots flow 
though the ring from RIP to RIP, or from station to sta­
tion, in the same direction (either clockwise or counter­
clockwise). When a terminal or computer has a message to 
send, the message is first stored in the RIP. It is then sub­
divided into blocks or packets that fit into slots. A header 
is attached to each packet to indicate the origination and 
destination. The RIP then checks the shift register and 
waits for an empty slot. When an empty slot is detected, 
and available for the RIP to use, the packet is shifted onto 
the ring to occupy the slot. The RIP also has the responsi­
bility to detect the occupied slots that are addressed to it. 
Sometimes a minicomputer is included in the ring to 
perform supervisory functions. A ring-switched network 
may consist of several rings. Two neighboring rings are in­
terconnected by a switching processor. It transfers from 
one ring to another by comparing a part of the address in­
cluded in the packets' header with a wired-in address. 

Following are typical characteristics of ring-switched 
networks: 

1. Inexpensive communication hardware 
2. Easy to design 
3. Low start-up cost 
4. High line throughput 
5. Low network reliability 
6. Higher line costs 
7. More suitable for interconnecting terminals and com­

puters in the same building complex than for a trans­
continental network 

8. Except for terminal access network almost all such 
networks are experimental 

9. Quite often, T1 technology is used for the trans­
mission lines. 

Store-and-forward networks 

In a message switched, store-and-forward communica­
tion network, several geographically distributed processors 
are linked together with dedicated lines to form a back­
bone network which is also called the communication 
subnet. This backbone network acts as a common user 
service to terminals and computers. Terminals and com­
puters requiring communications must first obtain access 
at a store-and-forward communication processor. Messages 
are then sent through the network by the CPs, which in 
this capacity, are also called switches. 

Classical message switching network 

Messages are sent in their entirety along a prede­
termined path from sender to receiver. At each inter-

Computer Communication Networks 121 

mediate CP or switch along the path, the message is first 
stored on an on-line mass storage device or on an off-line 
storage device (when too long to be feasibly stored within 
core), and then forwarded to the next CP on the path 
when an appropriate circuit is available. Compared with 
packet-switches approach to be described below, the 
conventional message switching approach has the follow­
ing disadvantages: very expensive switch costs, long 
message delays, less efficiency in utilizing network 
resources and less flexibility in adjusting to traffic condi­
tions. 

Packet switching S/F computer network7 

The basic conceptual difference between message­
switching and packet-switching is that in a packet-switch­
ing network, a message is subdivided into frames or 
packets before it is transmitted and is reassembled when it 
is received. The basic advantage is that the packets can be 
stored in the main core, instead of in mass storage devices, 
thus reducing substantially both the delay time and the 
switch cost. 

While the packet-switching concept was being 
developed, many advanced network control concepts were 
also developed and new technology utilized. Some of them 
can be conceptually applied to message switching also. 
However, people have exclusively associated these new con­
cepts with the packet-switching. 

Many of the packet-switching network's desirable 
characteristics result from the use of adaptive routing, 
where the path through the network between any two 
points is not chosen in advance, but is a dynamic function 
of conditions in the- network at any time. With its ability 
to reallocate its resources as needed, the network over­
comes adverse effects of temporary congestion and failed 
links or switches. 

Each switch in the network functions as a "local" net­
work manager, deriving its management information from 
the network. To send a message, the computer precedes 
the text of its message with an address and delivers it to its 
local CP; this minicomputer dynamically determines the 
best route, provides error control, and notifies the sender 
of its receipt. 

When a message is ready for transmission, the originat­
ing CP divides the message into a set of one or more 
packets, each with appropriate header information. Each 
packet makes its way independently through the network 
to the destination CP, where the packets are reassembled 
into the original message and then transferred to the desti­
nation. 

A packet-switching S/F computer network provides eco­
nomical, fast response, and reliable services to its users. 
However, it is advantageous over other approaches only 
if there is a large volume of traffic among widespread 
users. 

Terminal access network structures 
Star-structure 
A Star structure consists of a set of point-to-point con­

nections. Every local access line connects only one ter-



122 National Computer Conference, 1975 

minal to a terminal control unit port, a multiplexer port,a 
concentrator port, or a computer port. This local access 
line may be either of the following three connection types: 

• Dedicated connection.-Leased line, private trans­
mission line, or hard-wired connection. 

• Dial-up connection.-Terminals dial to a multiplexer, 
concentrator, or computer only if and when there is a 
need. 

• Radio connection.8 

For the dedicated line connections, each terminal has a 
fully dedicated port. In the cases of dial-up and radio con­
nection, a set of terminals must share and contend for a 
smaller number of ports. 

Multidrop (or multipoint) line 

In this structure several terminals may share one dedi­
cated line (usually leased). A multidrop line has a tree-like 
appearance. The structure in Figure 2 is composed mainly 
of multidrop lines. Terminals access the port either by 
contention or under the control of a computer. 

Ring structure 

A terminal control unit and terminals are connected in a 
ring in the same fashion as described earlier. IBM's 3600 
system is such an example.2 

COMMUNICATIONS DEVICES 

Communication devices used in centralized network9 

M ultiplexerlO
,l1 

We will use "facility" to refer to the part of the 
telephone plant described in terms of its properties as a 
transmission medium, and "channel" to refer to a func­
tional communications path. A channel is described by its 
capacity, i.e., the maximum rate at which information can 
be acceptably transferred over it. The capacity of. the 
channel, or maximum data rate acceptable, depends on a 
variety of factors, including the bandwidth of the facility 
and the hardware characteristics of the modems. The use 
of one facility to form several separate channels is called 
multiplexing. A device which combines multiple facilities, 
each used for one or more distinct channels, into one 
facility, formed into the same distinct channels, is called a 
multiplexer. A device performing the reverse process, i.e., 
transforming one facility, formed into several channels, 
into multiple facilities, each with one or more of the chan­
nels, is called a demultiplexer. Many current hardware 
devices perform multiplexing in one direction, and de­
multiplexing in the other direction. Such a device is 
usually simply called a multiplexer. 

The channel is the functional communications path, 
whereas the facility is part of the hardware used to form a 

channel. A multiplexer does not alter the channel struc­
ture of the network, and thus is functionally transparent. 
However, the physical facilities from which channels are 
formed determine a large part of network costs. Multiplex­
ing offers a way to achieve significant economies in 
facilities use. To understand these economies, it is helpful 
to examine the two fundamental approaches to imple­
menting multiplexing. 

One approach is to divide the bandwidth of the facility 
into several separate segments, and allow each segment to 
serve a separate channel. This is referred to as frequency 
division multiplexing (FDM). The second approach is to 
establish a high speed data stream over the facility and 
assign periodic time slots or bits positions of the data 
stream to separate channels. This is referred to as time di­
vision multiplexing (TDM). There are several variations 
on the implementation of these approaches. 

ConcentratorlO,12,13 

The word "concentration" appears to have a very broad 
meaning in data communications. We will discuss only 
one narrow interpretation of concentration. 

Consider a device having several facilities connected to 
its input, and only one facility connected to its output. At 
this point the device may be a multiplexer. However, it is 
distinguished by the following characteristic: the single 
facility on the output side carries one channel, the ca­
pacity of which is less than the sum of all the capacities on 
its input side. Such a device providing effective communi­
catons is called a concentrator. A multiplexer is 
transparent to the channel structure of a network; a 
concentrator obviously is not. 

The percent of time a channel is used is called its 
utilization. Many terminals generate data for transmission 
at an average rate which is much less than the capacity of 
the channel; resulting in channels with low utilization. A 
concentrator achieves economic advantage by replacing 
several low utilization channels with one highly utilized 
channel. A prerequisite for a concentrator is that its 
output channel capacity be greater than the sum of the 
average data rates of the terminals on its input. It is at 
this point perhaps helpful to examine the difference 
between a multiplexer and a concentrator in more detail. 

To each time slot of each channel on the input of a 
TDM, a time slot is assigned in the high capacity channel 
on its output. This effectively divides the high capacity 
output channel into several separate subchannels, each 
associated with a particular channel on the input. It does 
not matter whether or not a time slot is being used to 
transfer information. A concentrator has more time slots 
arriving on its input side than leaving on its output side. 
Each time slot carrying information must be assigned a 
time slot on the output side. Thus a concentrator must be 
able to identify which time slots are in fact transferring in­
formation. Furthermore, it must be able to assign output 
time slots to this information in such a manner as to be 
understood by whatever device is on the other end of 



the output channel. Although the average number of time 
slots carrying information on the input will be less than 
the number available on the output, the random nature of 
terminal use may result in the number of slots carrying in­
formation arriving over a brief interval being greater than 
the number of slots available on the output. Hence, the 
concentrator must also have the ability to buffer the arriv­
ing information as it waits for available slots. The require­
ments of intelligence and storage for a concentrator in­
variably lead to its implementation with a minicomputer. 
The actual operation of concentrators varies considerably, 
but is usually much more sophisticated than the simple 
bit packing noted above. By performing such local opera­
tions as polling, error checking, line control, etc., and 
transferring information to the computer with efficient 
high speed transmission techniques, the concentrator can 
achieve an apparent output channel utilization in excess of 
100 percent. 

The minicomputer implementation of a concentrator 
implies a fundamental component cost of approximately 
$10,000. Compared to a $1000 cost of a multiplexer, such 
a figure requires large economies to be achieved for cost ef­
fectiveness. Concentrators can typically handle 64 chan­
nels, (provided reasonable traffic characteristics). 
However, hardware required in addition to the minicom­
puter to achieve this capability raises the cost to ap­
proximately $20,000, or $500/month rental (excluding 
maintenance). (Dollar values are for the purpose of illustra­
tion only.) 

Front end processors 

The central computer and terminals use the data com­
munications network to interchange information. The 
general facility of a computer for transferring information 
between it and the outside world is its input/output (I/O) 
channel. Particular devices are connected with a hardware 
interface. In the case of a communications line, the 
modem terminating the line must be interfaced with the 
CPU. The overhead required for a large CPU to interact 
with many communications lines at a modem level is far 
too great to be economically attractive. Thus a sophisti­
cated interface is used to handle the modem interaction, 
and only useful information is transferred through the 1/ a 
channel to the CPU. In the early history of such inter­
faces, hardwired logic devices called Line Termination 
Units (LTU) were used. More recently, it has become very 
attractive to use minicomputers to accomplish this task. 
Such minicomputers are called Front End Processors 
(FEP). 

The software capabilities of minicomputers results in a 
very broad range of sophistication in their use as FEPs. 

Other devices 

Modem14 

A voice-grade line may be roughly characterized as hav­
ing usable bandwidth extending from 300 Hz to 3400 Hz. 

Computer Communication Networks 123 

Full duplex lines can transfer information simultaneously 
in both directions, while half duplex lines can transfer in­
formation in only one direction at a time. Both computers 
and terminals supply and accept information in the form 
of a digital baseband signal. The function of the modem 
(modulator-demodulator), is to interface the digital base­
band requirement to the analogue bandpass requirement. 

Modem sharing unit 

A modem sharing unit (MUS), or multiple access coup­
ler, is a device for connecting several (typically up to six) 
terminals to a single modem.· The terminals are usually 
restricted to be in the same location (within 50 feet of the 
MSU). 

Port sharing unit 

A port sharing unit (PSU) is a device for connecting 
several (typically up to six) modems to a single computer 
port (or conecentrator, or multiplexer). The PSU 
broadcasts data from the port to all the modems, and de­
livers data to the port from the first modem to generate an 
appropriate response. 

Biplexers 

A biplexer is a device which uses two voice grade lines to 
effectively achieve a single high speed channel (up to 19.2 
kbps). Such a device must be able to compensate for the 
possible differential delays of the two separate facilities. 
Typically, acceptable operation can be achieved with the 
two lines diversely routed with differential delays up to 
12 second. 

The cost effectiveness of a biplexer is principally 
derived from the current tariff structure for high speed 
lines versus voice grade lines. 

Communication devices for packet switching 8jF 
networks 

There are three major communication functions that 
CPs in a S/F packet-switching network must perform: in­
terfacing host computers with the backbone network, in­
terfacing terminals with the backbone network, and 
managing the packets flowing through the backbone net­
work. It is not necessary to have three distinctive types of 
CPs to handle these three functions. It is possible to have 
one type of CP perform more than one of the functions. 
On the other hand, a host computer or a remote concentra­
tor may perform part of the interfacing functions also. 

Interfacing host computers with the 
communication subnet. 

This function includes the following tasks: 

1. Breaking a long outgoing message into message 
blocks so that the size or length of the message 



124 National Computer Conference, 1975 

blocks are within the limit allowed by the network's 
protocols. (In the ARPANET, it is about 8000 bits 
and is simply called as a message rather message 
block) 

2. Formatting and code-converting the message blocks 
into a standard format acceptable to the network 

3. Attaching a header with addresing and control in­
formation to each message block. (In ARPANET, 
this header is called a "leader") 

4. Attaching a trailer with error checking information 
to each message block 

5. Storing the unacknowledged messages andj or 
message blocks for possible retransmission 

6. Reassembling receiving message blocks into 
messages 

7. Breaking long outgoing message blocks into packets 
or frames so that the maximum length of the 
packets is within the limit acceptable to the net­
work. (In APANET, it is 1008 bits) 

8. Attaching a header to each packet 
9. Attaching a trailer to each packet 

10. Storing the unacknowledged packets for possible 
retransmission 

11. Reassembling receiving packets into message 
blocks. 

12. Controlling the input rate to avoid congestion. 

This interfacing function can be carried out in two 
possible ways: 

1. Tasks 1 through 6 are carried out in host computers 
by attaching to host computers with appropriate 
hardware interface and software interface. Tasks 7 
through 12 are carried out as part of communication 
subnet switches' responsibilities. (This approach has 
been adopted by ARPANET. Host computers are 
linked directly to Interface Message Processors, 
IMPs, the name for the switching nodes in the AR­
P ANET, with host computers performing the first-6 
tasks and IMPs performing the last six tasks.15,27) 

2. All the tasks are lumped into one CP. (If so, some of 
the tasks can be merged, to reduce the total number 
of distinct tasks.) In this case, there will be an addi­
tional processor between a switching node and its 
host computer and when the switching node receives 
a packet, it will not know whether the packet is from 
a host computer or a neighboring switching node. 

Interfacing terminals to the communication 
subnet. 

The following are some of the tasks belonging to this 
function: 

1. Recognizing functional applications of the messages, 
such as file transfer, interactive, RJE, etc., such that 
appropriate protocols can be applied. 

2. Breaking long messages (RJE, graphic terminals, 
etc.) into packets. 

3. Code-conversion for a variety of different terminals. 
4. Formatting the packets. 
5. Attaching the headers and trailers. 
6. Storing unacknowledged message or packets for 

possible retransmission. 
7. Reassembling receiving packets. 

This function can also be achieved with two approaches: 

1. Group this function with the traffic managing func­
tion, (i.e., make it part of the switching node's re­
sponsibilities). (In ARPANET, the CP performing 
both functions is called a Terminal IMP, or TIP.16) 

2. Make a distinct CP, specially designed to handle all 
tasks. This CP will stand between switching nodes 
and terminals. In this fashion, when a switching node 
receives a packet, it may not know whether the 
packet is from a terminal or a neighboring switching 
node. The CP in this case may act like a front-end to 
the switching node, a host computer, or a concentra­
tor. (In ARPANET, there is a minihost to interface 
RJE terminals and IMPs, there is a special com­
munication processor called ELF to interface a va­
riety of terminals with the IMPs. ELF is a PDP-ll 
based system.) 

Managing packets in the network 

This is the most important function in an SjF packet 
switching network. Among the tasks that can be classified 
into this function are: 

1. Routing input packets to appropriate output lines ac­
cording to packet destination, traffic condition and 
routing tables. 

2. Periodically updating routing-tables. 
3. Detecting network element failures and network dis-

connection. 
4. Controlling input rates to avoid traffic congestion. 
5. Recovering from failure. 
6. Acknowledging packet receipt. 
7. Controlling errors 
8. Statistics collection 

There are four possible ways to perform this function: 

1. Combining this function with part of the host com­
puter interfacing function (e.g., ARPANET's IMP). 

2. Combining this function with the terminal interfac­
ing function (e.g., ARPANET's TIP). 

3. Combining this function, the terminal interface func­
tion, and part of the host interface function into one 
machine (e.g., the High Speed IMP (HSIMP) also 
called the pluribus IMP, currently being developed 
for ARPA by Bolt Beranek and Newman, Inc. 17 ) 



4. Performing no other functions but managing the 
packet flow. 

Communication device for ring-switched network5
,18,19 

There are three major communication functions in a 
ring-switched network: ring interfacing, ring control, and 
switching between a ring and the rest of the network. De­
pending on design philosophy, the control function may be 
distributed among RIPs and switches. 

Ring-interface 

A RIP basically consists of a shift register, buffers and 
an associative store which can be written into by the at­
tached computers or terminals. A RIP can be a minicom­
puter, microprocessor, or hard-wired device. Among the 
tasks to be performed are: 

• Breaking messages into packets 
• Detecting a usable empty slot for sending packets. 

(An empty slot may not be usable. In a central con­
trol system, the assignment of empty slots to users is 
the responsibility of a central controller) 

• Shifting packets onto the ring 
• Detecting arriving packets 
• Shifting arrived packets into buffers. 
• Error control 
• Erasing delivered packets from ring slots, if this func­

tion is not performed by the ring-controller. 

Ring-control 

Major tasks performed by a CP designated as the ring 
controller are: 

• Maintaining synchronization of the ring 
• Preventing the build up of traffic in the ring because 

of undeliverable packets. (If a packet tries to pass 
through the controller a second time, it is either 
destroyed, creating an empty slot or sent back to its 
destination) 

• Empty slot assignment upon demand. (This. is 
performed only in a centrally-controlled system in 
which a RIP cannot shift a packet into an empty slot 
without permission from the controller.) 

Switching function 

Packets destined for a station outside a particular ring 
have addresses indicating this and are picked off by a 
switching node in exactly the same way that intra-ring 
traffic is picked off by the RIPs. This traffic is buffered 
and shifted onto the next ring in the same way that local 
traffic is shifted onto a ring by the RIPs. 

Computer Communication Networks 125 

TRANSMISSI ON FACILITIES 

Transmission signaling 

There are two ways in which digital signals are sent 
down a transmission line. They may be sent as they are, 
without modulation, or they may be superimposed upon, 
or "modulate" a higher frequency which "carriers" them. 
Without modification, signals cannot be. sent long dis­
tance because of distortion on the line. If the data sig­
nals are to be carried by a high frequency, they may 
either be sent in analog or digital form. 

1. Basehand transmission 
The transmission of signals at their original fre­
quency and shape is called "basehand" signaling. 
Basehand signals may be sent over open wire pairs of 
a few miles in length at speeds up to 300 bps. The 
speed could be increased significantly if coaxial ca­
bles rather than open wires are used, or if regenera­
tive repeaters are inserted at approximately one 
thousand foot intervals in the line. 

2. Analog trans mission 
Almost every data and computer communication net­
work relies on the telephone plant's facilities for 
transmission. Today's telephone facilities have been 
designed for voice transmission and almost all of 
them use analog transmission with frequency divi­
sion multiplexing, requiring analog modulation for 
carrying and transmitting data signals. A voice grade 
channel has a bandwidth of4K Hertz (cycles per 
second). With proper modulation techniques, up to 
4.8 Kbps can be derived from a dial-up line and with 
proper line conditioning, up to 9.6 Kbps can cur­
rently be derived from a voice grade leased line. It is 
possible that even higher rates will be achieved in the 
future. Data rates commonly derived from a voice 
channel are 300 bps, 600 bps, 1200 bps, 1800 bps, 
2000 bps, 2400 lips, 3600 bps, 4800 bps, 7200 bps and 
9600 bps. For speeds higher than this, broadband 
channels are necessary. At present, modulation of 6 
voice band channel yields 19.2 Kbps, modulation of 
12 voice band channels yields 40.8 or 50 Kbps, and 
modulation 60 voice band channel yields 23.4 Kbps. 

3. Digital Transmission (or pulse transmission) 
With digital transmission (in contrast to analog), a 
train of high rate pulses is used to "carry" informa­
tion (digital information as well as voice), instead of 
a sinusoidal, or analog carrier. A commonly used 
technique is called Pulse Code Modulation (PCM). 
In the Bell System, this carrier system is called Tl 
carrier. It has a total rate of 1.544 Mbps and is 
multiplexed to several lower rate channels. Using the 
Tl system, a voice grade channel is equivalent to 56 
Kbps (in contrast to 9.6 Kbps in the analog system), 
and, is thus much more economical for digital in­
formation transmission. Transmission offerings are 
discussed in detail by Gerla in another paper in these 
proceedings.20 



126 National Computer Conference, 1975 

Terminal access lines and trunk lines 

Terminal access lines 

With the exception of RJE and graphics terminals, ter­
minal speeds are rarely higher than 2400 bps. Speeds of 
RJE and graphics terminals, are usually no greater than 
4800 bps. Thus a terminal access connection is usually a 
subvoice line, voice grade line with medium speed modem, 
dial-up connection, or 2.4/4.8 Kbps DDS line. Exceptions 
are for terminals using radio wave links and using the ring 
switching technology. 

Trunk lines 

Trunk lines are the lines on the higher speed side of 
multiplexers and concentrators, the lines connecting CPs, 
or the lines connecting host computers to the CPs. 

1. Centralized network 
The speed of lines merging from a multiplexer or a 
concentrator is usually 2.4, 3.6, 4.8, 7.2, or 9.6 Kbps. 
Thus, voice grade or DDS line can be used. Occa­
sionally, higher speed lines, 19.2 Kbps or 50 Kbps 
are also used between concentrators and host com­
puters. 

2. Ring-switched networks 
T1 carriers with their capacity of 1.544 Mbps are 
often used, even though other types of services and 
speeds can also be used. 

3. S/F networks 
Trunk line speeds range upwards from 9.6 Kbps. For 
example, in ARPANET, most inter-IMP ITIP lines 
have a speed of 50 Kbps, with a few 230.4 Kbps 
lines. The line speed between a host computer and its 
IMP or TIP is usually 100 Kbps. Thus, most suitable 
lines to be used for S 1 F networks backbone trunks 
are broadhand lines, Telepaks and DDS 56 Kbps 
lines. 

TRAFFIC MANAGEMENT AND SOFTWARE 

Introduction 

In any communication system, and in particular, a com­
puter communication system, it is essential to have a set 
of well designed basic control procedures to insure effi­
cient, correct and smooth transfer of information in the 
system. The main purpose of these control procedures are: 

1. To make the system convenient to use 
2. To prevent loss of data 
3. To detect message duplications 
4. For efficient and orderly use of resources (lines, com­

munication processors, etc.) 
5. For error detection and correction 
6. To detect systen~ element failures 

7. For recovery from system failure 
8. To prevent and recover from traffic deadlocks 
9. To prevent congestion 

In a centralized system, these procedures are relatively 
simple. On the other hand for packet switched S / F 
systems, they are very complex and must be carefully 
designed. In general, they can be partitioned into four 
catogories. 

1. Communication Protocols 
2. Flow control strategies 
3. Routing strategies 
4. On-line monitoring and control 

A communication protocol is a set of rules established to 
manage the information exchange between two communi­
cation entities. (For example between a pair of communi­
cation processors.) The protocol provides standard 
representations to allow the communicating entities to 
understand one another and to cooperate with one 
another. The goal of such rules, is to insure that the in­
formation exchange is made in an orderly fashion. A flow 
control strategy is a set of rules that governs the accep­
tance of traffic data into the system, or into a communica­
tion processor. The design objective for such rules is to 
optimize the trade-off between traffic congestion protec­
tion and system performance during normal traffic condi­
tions. A routing procedure manages output queues in the 
communication processors. It decides when and where a 
message should be transmitted. The design objective of 
such procedures is to minimize the messag-e delay and 
optimize the throughput according to traffic conditions. 
Strictly speaking, flow control and routing are a subset of 
the communication protocols. However, because of the 
unique functions and importance of flow control and rout­
ing, they will be treated separately in this paper. An on­
line monitoring and control function monitors system 
malfunctions and performance, and generates diagnostic 
information. This function provides the means to report 
system changes and malfunctions so that correct measures 
can be taken when needed. 

Protocols 

In a terminal oriented centralized system, there are in 
general two levels of protocols: (1) the line control 
procedure that administers the physical transmission me­
dium and, possibly, detects and corrects errors; (2) the 
protocol that manages the information flow between a ter­
minal and a concentrator or a host computer. In a packet 
switched system there are three additional possible levels of 
protocol between the two. The protocols are further com­
plicated by the requirements that there are in general a 
variety of communication functions to be performed 
among diverse terminals and computer operating systems. 

Protocols can be classified into the following five levels. 



Not every computer network has all ofthem:21.22 

• Line control procedures. 
This is the lowest level of all of the protocols. Such a 
protocol administers the physical transmission me­
dium and, possibly, automatically detects and corrects 
errors (such as by retransmission). ANSI's ADCCP, 
IBM's BSC and SDLC,23 and ISO's HDLC all belong 
to this level. 

• Between a pair of communication processors (such as 
IMPs). This protocol provides for reliable communi­
cation among communication processors and handles 
transmission error detection and correction, flow con­
trol, and routing. 

• Between a communication processor and a host com­
puter, or between a communication processor and a 
terminal. With this protocol, a host computer (or ter­
minal) has operating rules that permit it to send 
messages to specified host computers (or terminals) 
and to be informed of the disposition of those 
messages. In particular, it constrains host computers 
(or terminals) to make good use of available com­
munications capacity without denying such 
availability to other users. 

• Between a pair of host computers. This set of rules 
allows host computers to maintain communications 
between processes (user jobs) running on remote com­
puters. One process requiring communications with 
another on some remote computer system makes 
requests on its local supervisor to act in its behalf in 
establishing and maintaining these communications 
under this protocol. 

• Between a pair of user processes (e.g., a terminal and 
a time-sharing operating system). This is the highest 
level of protocol, the user level. It provides user 
processes (modules in time sharing computer systems, 
modules in multiprogramming systems, terminals) 
with a general set of primitives to isolate them from 
many of the details of operating systems and com­
munications. At this user level, the protocols are 
interface function oriented' and join an open-ended 
collection of modules. Examples are remote job entry 
protocol, file transfer protocol, etc. 

Flow control 

Flow control procedures regulate the input amount and 
rate a communication processor can accept in order to 
prevent or minimize the occurrence of traffic congestion 
and deadlocks. In a centralized system or a ring-switched 
system, the flow control procedure is very simple. For the 
former, the concentrator or host computer stops polling 
terminals if no appropriate buffers are available for an 
input. For the latter, no message or only a few messages 
can get on to the ring, if the ring is fully or highly utilized. 

For S/F systems, flow control procedure must be very 
so:phisticated and is still an ongoing topic for research. 

Computer Communication Networks 127 

Many flow control strategies have been proposed. Some 
have been implemented. Although they are different, they 
basically achieve the control by allowing an input message 
only if a buffer has been reserved for it, and/ or by limit­
ing input to communications processors if the number of 
occupied buffers reaches a specified lower limit.26.24 

Routing 

The routing problem is a centralized network or in a 
ring switched network is elementary. This is usually one 
unique path from origination to destination. In the 
centralized network, a message originating from a terminal 
is routed to a concentrator (if there is one) over the only 
line between the two, then to the host computer. (Some­
times there are parallel lines between a concentrator and a 
host computer. The choice is then the first non-busy line 
for routing.) In the ring network, a message placed on the 
ring circulates in a specified direction until it reaches its 
destination if both origin and destination are on the same 
ring. Otherwise, it circulates on ring to a switching node, 
where it is switched to a different ring and then circulates 
on the new ring in a similar fashion. 

For the S/F computer network, the routing problem is 
more complicated. The existing and' proposed routing 
strategies can be characterized as follows.25 

Deterministic vs adaptive 

• In a deterministic routing strategy, packets between a 
same pair of communication processors are always 
routed through a same path, unless there is network 
element failure. 

• With an adaptive (or dynamic) routing strategy, mes­
sages flowing between a pair of processors are not 
necessarily routed through a same path. The chosen 
path usually has certain desirable characteristics, 
such as least delay or maximum available capacity 
and varies according to traffic conditions. 

Centralized control vs distributed control 

• Centralized control: Determination of host routes is 
performed at one computer. 

• Distributed control: Best routes are determined at 
each communication processor. 

Single path vs multiple paths 

• Single path: There is only a singl~ path that can carry 
traffic between a same pair of communication proc­
essors. 

• Multiple paths: At any time traffic may now through 
more than one distinct path between the same pair of 
communication processors. 



128 National Computer Conference, 1975 

On-line monitoring 

This function is sometimes termed an on-line control 
function and is not necessarily less complex in a 
centralized network then in a S/F computer network. 
Generally speaking, this function incorporates the follow­
ing elements: 

• Monitoring and reporting malfunctions in the com­
munication network, terminals, controllers, data base, 
etc. 

• Performance monitoring and interpretation for 
response time and traffic activities. 

• Generating diagnostic responses for input transac­
tions that could not get a normal response. 

CONCLUSION 

Based on a broad definition for the computer network, 
three basic types or' computer networks are defined and 
characterized. Centralized, ring-switched, and store-and­
forward switched. For each type, the parts that make up a 
computer network are given. The parts are: communica­
tion devices, transmission facilities and traffic manage­
ment. - Communication devices carry out the responsi­
bilities of switching, network control, interfacing, and/ or 
saving communications costs. Transmission facilities inter­
connect communication devices, terminals and computers. 
Depending on applications, their speed ranges from under 
100bps to over 1.5Mbps. Traffic management is a set of 
rules that ensure the smooth and orderly exchange of in­
formation among elements of a computer network. Its 
main functions are protocol, routing, flow control and 
monitoring. In short, this paper has explained "what a 
computer network is and what it consists of." 

REFERENCES 

1. Schwartz, M., R. R. Boorstyn, and R. L. Pickholtz, "Terminal­
Oriented Computer-Communication Networks," Proceedings of the 
IEEE, November 1972, pp. 1408-1423. 

2. IBM, "IBM 3600 Finance Communication System-System Sum­
mery," GC27-0001-2, 1973. 

3. Pierce, J. R., "How Far Can Data Loops Go," IEEE Transactions on 
Communications, Vol. COM-20, No.3, June 1972, pp. 527-530. 

4. Farmer, W. P. and E. E. Newhall, "An Experimental Distributed 
Switching System to Handle High Speed Aperiodic Computer Traf­
fic," Proc. ACM Symp. Problems on the Optimization of Data Com­
munication Systems, 1969. 

5. Farber, D. J. and K. Larson, "The Structure of a Distributed Com­
munication System," Proc. of the Symp. on Computer-Communica­
tions Networks and Teletraffic, Polytechnic Institute of Brooklyn, 
April 4-6, 1972. 

6. Fraser, A. G., "Spider-An Experimental Data Communications 
System," Proc. of 1974 NTC. 

7. Roberts, L. G. and B. Wessler, "The ARPA Computer Network 
Development to Achieve Resource Sharing," Proc. of the SJCC, 
AFIPS Press, 1970, pp. 543-549 . 

8. Abramson, N., "The ALOHA System," Technical Report B72-1, 
University of Hawaii, January 1972. 

9. McGregor, P., "Effective Use of Data Communications Networks," 
Proc. of the NCC, AFIPS Press, 1974, pp. 565-575. 

10. Doll, D. R., "Multiplexing and Concentration," Proceedings of 
IEEE, 60:11, November 1972, pp. 1313-1321. 

11. Pack, C. D., "The Effects of Multiplexing on a Computer-Communi­
cations System," Communications of the ACM, Vol. 16, No.3, 
March 1973, pp. 161-168. 

12. Newport, C. B. and J. Ryzlak, "Communication Processors," 
Proceedings of IEEE, Vol. 60, No. 11, November 1972, pp. 1321-
1332. 

13. Mills, D. L., "Communication Software," Proceedings of the IEEE, 
Vol. 60, No. 11, November 1972, pp. 1333-1341. 

14. Davey, J. R. "Modems, " Proceedings of IEEE, 60:11, November 
1972, pp. 1284-1292. 

15. Heart, F. E., et al., "The Interface Message Processor for the ARPA 
Computer Network," AFIPS Proceedings, SJCC, Vol. 36, 1970, pp. 
551-567. 

16. Ornstein, S. M., et al., "The Terminal IMP for the ARPA Computer 
Network," AFIPS Proceedings, SJCC, Vol. 40,1972, pp. 243-254. 

17. Heart, F. E., et at., "A New Minicomputer/Multiprocessor for the 
ARPA Network," Proceedings of the NCC, 1973, pp. 529-537. 

18. Hayes, J. F. and D. N. Sherman, Bell System Technical Journal, 
Vol. 50, No.9, November 1971, pp. 2947-2978. 

19. Hassing, T. E., R. M. Hampton, G. W. Bailey, and R. S. Gardella, 
"A Loop Network for General Purpose Data Communications in a 
Heterogeneous World," Proc. of 3rd Data Communications Symp., 
November, 1973. 

20. Gerla, M., "Moving Bits by Air, Land and Sea: Carriers, Vans and 
Packets," Proceedings of 1975 NCC. 

21. Crocker, S. D., et al., "Function-Oriented Protocols for the ARPA 
Computer Network, " AFIPS Proceedings, SJCC, 1972, pp. 271-279. 

22. Trans-Canada Telephone System, "Datapac Standard Network Ac­
cess Protocol," 1974. 

23. IBM, "IBM Synchronous Data Link Control~General Informa­
tion," GA27-3093-0, 1974 

24. Opderbeck, H. and L. Kleinrock, "The Influence of Control 
Procedures on the Performance of Packet-Switched Networks," 
Proceedings of 1974 NTC. 

25. Gerla, M., "Deterministic and Adoptive Routing Policies in Packet­
Switched Computer Networks," Proc. of 3rd Data Communications 
Symp.: Data Networks Analysis and Design, November 1973. 

26. Gerla, M. and W. Chou, "Flow Control Strategies in Packet Switched 
Computer Networks," 1974 NCC Proceedings, Volume 43, AFIPS 
Press, Montvale, N.J. 

27. Carr, S., S. Crocker and V. Cerf, "Host-Host Communication Pro­
tocol in the ARPA Network," AFIPS Conference Proceedings, 
Volume 36,1970, AFIPS Press, Montvale, N.J_ 



Moving bits by air, land and sea-Carriers, 
vans and packets 

by MARIO GERLA and JOHN ECKL 
Network Analysis Corporation 
Glen Cove, New York 

INTRODUCTION 

In the past, the data network designer was confronted with 
only a few choices relative to communications service 
alternatives and line tariffs. Basically, he had to choose 
between dial-up or private line from terminal to computer 
and, in the case of private line, between narrowband or voice 
grade. After this preliminary choice was made, the network 
was optimized based on a well defined line cost structure. 

Recently, the need for high bandwidth and high quality 
computer to computer communications, and the emergence 
of new communications services both from conventional 
common carriers and from specialized carriers has created new 
requirements and new line alt~rIiatives for the data network 
user, thus adding a new, important dimension to network 
design. Line economy, service quality, network growth 
flexibility and value added services are among the considera­
tions that should guide the user in the selection between such 
alternatives. 

In this paper, we attempt to identify the impact of the new 
offerings on the \optimal network 'strategy, in a typical data 
communications 'environment. The important aspects of the 
various alternatives· are briefly outlined and compared, and 
some technical details on the operation of the new value 
added networks are presented. General guidelines for the 
selection of the best alternative are provided, and are 
illustrated in two applications. 

NETWORK STRATEGIES 

In selecting the optimal strategy for a data network 
configuration we must consider a variety of elements such as: 
number and location of terminals and host computers; 
terminal speed; traffic pattern (single or multiple hosts); 
traffic volume; type of data transmitted (interactive, file 
transfer, computer to computer etc.) ; terminal connect time 
and frequency of usage; reliability requirements etc. 

In some cases the best strategy inight be that of connecting 
the t~rminals to the host computer via dial-up; in other cases 
a high speed, distributed network is required to inter­
connect computers and terminal concentration sites ( e.g., 
ARPANET). It is clear that the new carrier services will 
have a different impact on the two above mentioned limiting 
cases. More generally, each carrier service has a different 

129 

impact on different types of data communications users, 
network strategies and requirement profiles. Therefore, a 
rigorous cost-performance comparison of the various offerings 
would imply the analysis case by case of an extremely large 
number of possible situations, and is certainly beyond the 
scope of the present paper. Instead, we focus here on a 
typical network structure and evaluate the impact of the new 
offerings on its cost and performance. 

The most general configuration of a modern, medium-sized, 
nationwide, terminal oriented data network is represented 
by a two-level hierarchical structure. 

The lower level corresponds to several local distribution 
subnetworks which connect geographically distributed termi­
nals to regional collection centers' (which could be TDMX 
devices, concentrators, packet switching processors, satellite 
ground stations etc.) . A variety of techniques can be used for 
connecting terminals to regional centers, such as: dial-up, 
time or frequency division multiplexing and polling. 

The higher level network is the backbone network which 
connects the regional centers to the host (or hosts) and, if 
required, between each other.' We can identify two types of 
backbone configurations: the· tree-like structure (star, mini­
mum spanning tree, or an intermediate solution) generally 
used when there is only one host; and the distributed, 
2-connected packet or message switched structure, which is 
desirable when there are several hosts in different locations, 
or when two disjoint paths to the host are required for 
reliability. Backbone links are generally implemented with 
synchronous channels of voice grade bandwidth or higher. 

The above network model includes the two limiting cases 
of a nationwide computer to computer network (in which 
case the network reduces to the high speed backbone' com­
ponent) and of a local, single host, terminal oriented network 
(in which case the network reduces to the local distribution 
subnet). 

The emphasis of the new offerings is to provide a very 
competitive (cost-wise) and specialized (quality-wise) serv­
ice on long distance routes between a selected number of 
cities, with only a limited capability of extending such service 
outside the urban areas. Therefore, the user can achieve 
considerable savings in backbone trunk cost if the regional 
centers are properly selected and, in the 'limit, can even 
consider to replace a private backbone network with the 
shared network facilities of value added vendors such as PCI 
and Telenet. However, he should be aware of the fact that 



130 National Computer Conference, 1975 

line cost saving, quality improvement and flexibility gained 
in the backbone network must be traded off, in general, with 
a cost increase and performance degradation in the local 
distributions, especially if a substantial number of his 
terminals require interconnection via high cost and low 
quality conventional communication services. 

CONVENTIONAL AND SPECIALIZED CARRIERS 

In the following we briefly review the properties of 
conventional carrier (AT&T, Western Union), specialized 
carrier (MCI, Southern Pacific Communications, U.S. Trans­
mission Systems, Western Telecommunications, Datran) and 
satellite carrier (American Satellite, RCA, Western Union) 
offerings; and relate such properties to the line cost economies 
obtainable during network design. 

Switched services 

The use of dial up over the public switched network is 
cost-effective both in the local distribution subnetwork 
(primarily as a local access technique for terminals of 
unfrequent nse) and in the backbone network (primarily a.s 
a back up in case of failure of the leased facilities). 

Dial up is presently offered by the common carriers over 
half duplex, non-conditioned voice grade facilities. The 
quality is acceptable for low speed connections, but is often 
not adequate for backbone communications. In fact, full 
duplex operations require two half duplex lines, and data 
speed cannot exceed 4.8 Kb/s. 

A new type of truly digital switched service (Data Dial) 
will be soon offered by Datrap., and probably AT&T and 
other specialized carriers will follow the example. The major 
features of this service are: digital channel (no modems); 
connection established in less than 1 second; large selection 
of channel speeds (up to 19.2 Kb/s) at different costs and 
with 1 second incremental charges; low error rate; low 
blocking. 

The introduction of the digital dial up might have . a 
substantial impact on distributed network strategies. In 
particular, it could efficiently complement, if not replace, the 
packet switching strategy to accommodate bursty, high speed 
distributed requirements in a network with several computers 
and high speed peripherals that can communicate with each 
other. 

Dedicated line offerings 

The majority of data communications services available 
today are based on analog facilities originally developed for 
voice communications. The most popular voice grade dedi­
cated service is offered by AT&T under the Hi-Lo Tariff, and 
can accommodate up to 9.6 Kb/s with line conditioning and 
appropriate modems. The Hi-Lo rate structure is a location 
dependent structure, in the sense that it applies different 
mileage and service termination charges depending on the 
locations of the stations at both ends of the line. More 

precisely, there are 370 locations, classified as high density 
locations and corresponding to high volume communications 
areas, while the remaining locations are designated as low 
density. The basic elements of the tariff are reported below: 

High point-high point: 
High point-low point or low 

point-low point: 
Short haul (~25 miles) : 

.85 $/Mile X Mo. 
2.50 $/Mile X Mo. 

3.00 $/Mile X Mo. 

Monthly channel terminal charges are $35 for Hi and $15 
for Low; station terminal charges are $25 for both Hi 
and Low. 

A low to low connection can be implemented either directly 
(in which case the low to low direct distance charge applies), 
or via two intermediate high density points (in which case 
different tariffs apply to different segments). For a typical 
data network with geographically distributed terminals, the 
effect of the Hi-Lo structure (as opposed to a uniform 
structure) is that of reducing backbone cost, at the expense 
of higher distribution costs, especially if most of the terminals 
are in areas with low degree of industrialization.' 

For data rates higher than 9.6 Kb/s, AT&T offers the 
Series 8000 service for speeds of 19.6 and 48 Kb/s, and the 
Series 5000 service (Telpak) for speeds up to 230 Kb/s. Both 
offerings are based on analog channels, which can be sub­
divided into lower speed, voice grade channels. 

In.addition:.to the analog facilities, AT&T plans to offer in 
the near future the Dataphone Digital Service (DDS), a 
truly digital service, with synchronous transmission at speeds 
of 2.4,4.8, 9.6 and 56 Kb/s. Main features of the system are: 
end to end digital transmission (no modems required); high 
circuit availability (99.9 percent); and mileage charges 
considerably lower than tihe analog channels of equivalent 
bandwidth. The basic elements of the proposed DDS Tariff 
are reported below. 

Channels Between Digital Cities 

For Transmission 
Speed of: 

2.4 Kbps 
4.8 Kbps 
9.6 Kbps 

56 Kbps 

Fixed Charge 

$ 20.00/mo 
40.00 
60.00 

125.00 

Rate Per 
Airline Mile 

$ .40/mo. X mile 
.60 
.90 

4.00 

Digital Access Lines In Digital City Serving Areas 

Type I (~ 5 miles from Telco office) 

For Transmission 
Speed of: 

2.4 Kbps 
4.8 Kbps 
9.6 Kbps 

56 Kbps 

Monthly Charge 

$ 65.00/mo 
85.00 

110.00 
200.00 

N on-Recurring 
Charge 

$100.00 
100.00 
100.00 
150.00 



Type II (> 5 miles from Telco office) 

For Trans-
mission Rate Per Non-Recurring 

Speed of: Fixed Charge Airline Mile Charge 

2.4 Kbps $ 9O.00/mo $ .60/mo X mile $100.00 
4.8 Kbps 110.00 
9.6 Kbps 130.00 

56 Kbps 250.00 

Data Service Units 

For Transmission 
Speed of: 

2.4 Kbps 
4.8 Kbps 
9.6 Kbps 

56 Kbps 

.90 
1.30 
6.00 

Monthly Charge 

$15.00/mo 
15.00 
15.00 
20.00 

100.00 
100.00 
150.00 

Non-Recurring 
Charge 

$25.00 
25.00 
25.00 
25.00 

DDS will be initially offered between 5 cities, and will be 
extended to include 96 cities in 1976. Since terminals outside 
the DDS cities require expensive analog interconnections, it is 
likely that the benefits of the DDS service will be felt much 
earlier in the backbone network, rather than in the local 
distributions. 

Western Union, the other large common carrier, parallels 
AT&T in most of the analog offerings. In addition, Western 
Union offers to the data users a unique service known as Data 
Comm. The service is available in some 60 cities and is in­
tended for users with a mixed set of low speed data require­
ments between two or three Data Comm cities. The low 
speed lines are time division multiplexed and demultiplexed 
by Western Union in the D.ata Comm offices. The trans­
mission between cities is over voice grade lines. 

Specialized carriers have the general connotation of 
offering analog andlor digital services of high quality, at low 
rate, between a limited number of cities, typically in high 
industrialization areas. The main features of some of the 
specialized carriers are described below. 

MCI Telecommunications Corporation serves more than 
20 cities stretching from New York to Washington, D.C., 
west to Chicago and south to Dallas and Houston. Data 
speeds range froni 300 bps to 56' Kb/s, including an' interesting 
19.2 Kb/s offering. The rates are similar to the corresponding 
AT&T high density and bulk discount rates. 

Southern Pacific Communication (SPC) offers nationwide 
data communications services from teletype up to 100 Kb/s 
speeds at very competitive rates. For example, the monthly 
cost for a voice grade New York to Los Angeles connection is 
$1,144, i.e., less than half the equivalent AT&T high density 
charge. These special rates apply between cities connected by 
SPC leased satellite channels. For other cities, the rates are 
still 10 to 20 percent less than the equivalent AT&T high 
density rates. 

U.S. Transmission System, Inc. (USTS), one of the latest 
specialized carriers to receive FCC authorization, plans to 
establish a 1500 mile backbone microwave network from 
Houston to N ew York, with data speed offerings ranging 
from teletype to 960 Kb/s. A very diversified gamut of 

Moving Bits by Air, Land and Sea 131 

service offerings (part time usage; metered service; store and 
forward message switching; facsmile etc.) is being planned. 

Western Telecommunication Inc. offers data services up to 
50 Kb/s between four major western cities (Los Angeles, 
San Diego, Phoenix and Tucson), at rates somewhat lower 
than the AT&T equivalent. An agreement has recently been 
reached between Amersat, MCI and Western TCI, to extend 
the specialized service nationwide. 

While the above mentioned carriers provide analog chan­
nels for data transmission, Datran is offering a truly digital 
service to compete with the DDS of AT&T. The service is 
available between about 10 major cities in the mid-west, and 
will be extended to the east and west coasts through an 
interconnect agreement with Southern Pacific Communica­
tions. Data speeds are 2.4, 4.8, 9.6 and 56 Kb/s. Ultra high 
speeds of 1.344 and 2.688 Mbls will be available on a 
point-to-point basis. Datran rates are parallel to the DDS 
rates. Circuit availability better than 99.95 percent is 
promised, on a money back guarantee basis. 

On the domestic satellite scene, several carriers are offering 
analog and digital channels with bandwidth up to 230 Kb/s 
(and even larger) between major U.S. cities, at extremely 
competitive rates. The basic rates offered by Western Union 
(excluding local loops) are shown below. Identical rates are 
offered by the other satellite carriers. 

Service Route 

New York-Los Angeles 
New York-San Francisco 
Atlanta-Los Angeles 
Atlanta-San Francisco 
W ashington-Los Angeles 
Washington-San Francisco 

Chicago-Los Angeles 
Chicago-San Francisco 
Dallas-New York 
Dallas-Washington 
Dallas-Los Angeles 
ri~llas-San Francisco 

Chicago-Dallas 
Chicago-New York 
Chicago-Washington 
Atlanta-New York 
Atlanta-Dallas 
Atlanta-Chicago 
Atlanta-Washington 

Single 
Channel 

$1,000 

750 

500 

Base 
Group 

(12 
Channels) 

$10,800 

8,100 

5,400 

(monthly rates) 

Super 
Group 

(60 
Channels) 

$48,000 

36,000 

24,000 

If not in the rates, the domestic satellite carriers differ from 
each other in number and location of ground stations; local 
distribution arrangements, large bandwidth offerings, channel 
quality and specialized digital services. The characteristics of 
the major satellite carriers are illustrated below. 

American Satellite Corporation (Amersat) has stations in 
New York, Los Angeles and Dallas, with terrestrial connec­
tions to San Francisco, Chicago and Washington, D.C. 
Nationwide distribution is obtained through interconnect 
agreements with several specialized carriers. In addition, 



132 National Computer Conference, 1975 

Amersat is considering the possibility of providing direct 
satellite connection to the customers, bypassing the AT&T 
local loop, with the application of advanced satellite 
technologies. 

RCA Satcom offers service between Alaska, N ew York and 
San Francisco, with stations in Washington, D.C. and 
Los .Angeles to be added in the near future, and 6 more 
stations to be added by 1976. 

Western Union satellite service is provided between 7 
major cities, directly or via the Western Union microwave 
network. Extensions to other cities are available at terrestrial 
private line rates. An interesting aspect of the Western Union 
service is the possibility of leasing an entire transponder 
(36 MHZ) for a rate ranging from 100 K$ to 180K$ per 
month, excluding ground stations. The customer can use his 
own ground stations, if he desires. 

In summary, the new offerings both from AT&T and from 
specialized and satellite carriers provide a data service of 
better quality, higher reliability, greater flexibility and lower 
cost between a limited number of highly industrialized areas. 
However, these benefits are often lost when the end points 
of the connection are not within the urban areas covered by 
the service, since in those cases expensive, relatively unreliable 
and lower quality local loops must be used for the inter­
connection. Typically the adoption of a new data offering 
will lead to considerable dollar savings, better quality and 
higher flexibility in the backbone network, at the expense of a 
cost increase in the local distribu~ions. Thereforr, the match 
between the geographical distribution of user requirements 
and carrier stations plays a fundamental role in the selection 
of the appropriate data service. 

Besides conventional and specialized carriers, the user will 
have yet another alternative to consider, namely the data 
service provided by the value added carriers. Since the 
common connotation of such carriers is the adoption of the 
relatively new packet-switching technique, a brief description 
of such technique is provided in the next section. 

HOW PACKET-SWITCHING MOVES DATA 

Packet-switching techn.ology is a spinoff from the develop­
ment of ARPANET, a distributed network which inter­
connects more than 40 research installations of the Advanced 
Research Projects Agency (ARPA). Operational since the 
summer of 1971, the network was developed with more than 
$10 million of government funds to explore networkt ech­
nology and gave researchers at ARPA-sponsored centers the 
facility to share each other's programs, services and data 
bases. 

For ARPANET, researchers developed the distributed 
packet-switching concept to achieve lower costs, higher 
speeds, greater reliability and greater flexibility than had 
been realized before in data networks. Virtually error-free 
communications are possible from almost any known terminal 
type to any of a variety of computers, as well as between 
computers. The advantages of distributed packet-switching 
both for terminal-to-computer and computer-to-computer 

communications make the system one of the most significant 
recent contributions to the field of data communications. 

Packet-switched networks use leased lines as transmission 
links and minicomputers for store-and-forward message 
switching and network control. Many of the network's 
desirable characteristics result from the use of adaptive 
routing, where the path through the network between any 
two points is not chosen in advance but is a dynamic function 
of conditions in the network at any time. With its ability to 
reallocate its resources as needed, the network overcomes 
adverse effects of temporary congestion and failed links or 
switches. Packet-switched networks utilize a powerful error­
control scheme, and an undetected error can be expected to 
occur only once every few years. Message delivery to the 
addressee is confirmed with an acknowledgment message 
returned to the sender. 

Each switch in the network functions as a "local" network 
manager, deriving its management information from the 
network. This function is implemented through a Network 
Control Center (NCC) which appears to the network as 
another data processing computer facility. The NCe auto­
matically collects comprehensive status reports from all 
switches and provides for extremely effective "global" net­
work management. 

A typical example of packet-switched network configura­
tion is offered by ARPANET. In the network, each user 
computer is called a host. User terminals and host computers 
are connected to the network through two types of mini­
computers: an Int~rface Message Processor (IMP), which 
interfaces one or more host computers with the network; and 
a Terminal Interface Message Processor (TIP), which 
performs the functions of an IMP arid also interconnects the 
network directly with up to 63; user terminals or consoles. 
Serving as a simple host, a TIP conv~rts the characteristics of 
diverse types of terminals to' a network standard. IMP's 
provide the standard interface for each host computer, and 
perform all communications functions. 

In ARPANET, the IMP's and TIP's are connected by 
leased communication lines and may use a wide range of 
communication channel data rates up to 230 kbps. Each IMP 
handles its communications tasks completely independently 
of the host computers, and the network operates under a 
distributed control scheme, where each IMP and TIP makes 
its own decisions as to control of· communications with its 
host and routing of mes.sag~ traffic through the networks. To 
send a message to another host, the computer precedes the 
text of its message with an address and delivers it to its local 
IMP; this mini computer dynamically determines the best 
route provides error control, and notifies the sender of its 
receipt. TIP's perform the same function for terminals. 

When a message is ready for transmission, the originating 
IMP or TIP divides the message into a set of one' or more 
packets, each with appropriate header information. Each 
packet makes its way independently through the network to 
the destination IMP or TIP, where the packets are 
reassembled into the original message and then transferred to 
the destination host or terminal. Since parts of a message 
may take different paths through the network, unauthorized 



access to a transmission link allows only partial interception 
of the messages, so that packet-switching networks provide 
enhanced security. Also, in a packet-switched network whose 
facilities aredistrihl}ted across the United States, the cost of 
sending data between two distant points is approximately the 
same as the cost of sending data between two relatively close 
points. 

Essentially, packet-switching is a, specialized form of 
store-and-forward message switchi~g. However, it differs 
significantly from both conventional message-switching and 
the circuit-switching techniques employed in the public 
telephone network. 

In a circuit-switched network, the entire transmission path 
between sender and receiver is chosen in advance, and for the 
period of the call, network resources are allocated to the 
exclusive use of the conversation, whether or not there is any 
conversation or data being sent. In a conventional message­
switching network, data messages are sent along a predeter­
mined path from sender to receiver; however, messages can 
be temporarily stored at intermediate relay points. This 
storage capability means that network circuits are not 
allocated in advance, but as they become available. By 
delaying the delivery of a message from sender to receiver, 
message-switching effectively spreads peak demand for service 
over time and thus more efficiently utilizes network facilities. 

VALUE ADDED NETWORKS (VAN's) 

Value added networks are communication service com­
panies which lease transmission facilities from common or 
specialized carriers and resell communication services not 
available from the original carrier. One of the features com­
monly offered is packet-switching, with service comparable to 
that in the ARPANET. FCC approval has been granted to 
GRAPHNET, Packet Communications, Inc., and Telenet. 
The introduction of VAN's services may be quite rapid since 
they do not undertake the construction of new transmission 
lines. 

Figure I-Proposed Telenet configuration 

Moving Bits by Air, Land and Sea 133 

Cost: 
Thruput: 
Delay: 

Figure 2-Nationwide computer network 

Typical value added services deriving from the packet­
switched implementation are: automatic terminal speed 
recognition and conversion; code translation; powerful error 
detection and correction; high network availability; easy 
access to distributed resources. 

Network charge consists of two components: 

1. The charge for the usage of dedicated or dial-up ports 
at the packet,-switching centers; and 
2. The charge for the volume of data transmitted 
(typically independent of distance travelled). 

In addition to VAN charges, the user must pay for the 
lines (dedicated or dial-up) from terminals to VAN service 
centers. If there is no good match between user locations and 
VAN locations, the local access charge might actually exceed 
the direct VAN charge, as shown in an application at the end 
of this paper. 

PCI was the first VAN to obtain FCC authorization in 
November 1973. The initial PCI network will connect 18 
major US cities via terrestrial, wideband lines. Future plans 
call for the extension of the service to 40 cities. 

Telenet also plans an 18-city network,. which will use 
terrestrial as well as satellite links. The proposed configura­
tion is shown in Figure 1. The tariff filed by Telenet is 
reported below: 

Packet charge 
Dedicated port charge: 

Dial-in port charge 

$ 1. 25/Kilopacket 
$ 50/mo (up to 9.6Kb/s) 
$100/mo (50Kb/s) 
0-1800bps $1.00/hr. 
2400bps $2.00/hr. 
4800bps $3.5/hr. 

It is anticipated that value added services will have a 
profound impact on network design strategy, especially for 
the small and medium data communications user. In fact, 
such users might find it advantageous to replace the tradi­
tional private backbone network with the shared use of a 



134 National Computer Conference, 1975 

Cost: 
Thruput: 
Delay: 

Figure 3-Satellite upgraded configuration 

VAN, for better quality, flexibility growth capability and, 
possibly, lower cost. 

SELECTING THE BEST ALTERNATIVE 

The new services offer potential benefits that are extremely 
attractive, and certainly must be considered by the cost­
conscious communications user. It must be remembered, 
however, that the effective use of such services often places 
new constraints on overall network design. A fundamental 
restriction is represented by the fact that the services are 
generally available only in a limited number of urban areas, 
so that the user with geographically sparse requirements 
often loses the cost and quality benefits when interconnecting 
terminals outside the cities in which the service is available. 

Therefore, it is i'mp~r~tive that use~s explore the largest 
possible number of alternatives. But, in performing this 
evaluation, they must identify and accurately analyze all 
network cost components (backbone, local distribution, 

Cost: 

Thruput: 
Delay: 

Figure 4-Terrestrial upgraded configuration without satellite 

communication hardware and software, etc.) and, if neces­
sary, reoptimize network topology and strategy for each 
alternative. Furthermore, the comparison cannot be limited 
to cost and performance criteria relative to the present 
communications needs, but must be extended to consider 
also growth capability and flexibility in meeting future 
requirements. 

Two examples of evaluation of different service alternatives 
for network design are reported here. The first example is 
relative to the expansion of -a large computer network using 
terrestrial or satellite links. The second example compares 
in-house backbone implementation versus rental of VAN 
services for a medium-sized, terminal oriented network. 

Under contract with the Advanced Research Project 
Agency, we recently evaluated the cost-effectiveness of using 
satellite services in order to upgrade the capacity of 
ARPANET, the large nationwide computer network whose 
continental links are now implemented exclusively with 
wideband terrestrial channels. 1,2 The satellite alternative 
consisted of a satellite channel of 1.5 MHz bandwidth made 
available at the vendor ground stations at a yearly rate of 
$100,000. This charge does not include the cost of local 
100ps.3 

The study was carried out by optimally upgrading network 
capacity to meet a 50 percent increase in traffic, using either 
the terrestrial or the satellite alternative. The results, 
illustrated in Figures 2, 3, and 4, show that the satellite 
alternative is more cost-effective, and leads to total cost 
savings on the order of 10 percent. It might be noticed that 
a major reoptimization of the terrestrial network was neces­
sary, in order to take full advantage of the low cost satellite 
bandwidth. 

The advantages of the satellite solution are not limited to 
cost savings. In fact, the satellite channel offers more 
flexibility in adjusting to changes in traffic requirements 
(this property is inherent in the satellite multiple access 
channel) and better growth capability (the user can provide 
his own ground stations and lease more satellite bandwidth, 
with formidable volume discounts). 

In another example, we compare two alternative design 
strategies-private backbone network and Telenet-for the 
implementation of a medium-sized network with a few 

TABLE I-In-House and Telenet Costs 

IN-HOUSE ALTERNATIVE 

Total Network Cost 

TELENET ALTERNATIVE 

Data Transmission Charge 
Port Charge 
Local Access Cost from Terminals to Telenet sites 
Cost of Direct Terminal to Host Connections 

TOTAL NETWORK COST 

$42,000/mo. 

$ 1.300/mo. 
2.600 

21,500 
800 

$26.200/mo. 



hundred terminals sparsely distributed across the nation and 
the host computer located on the East Coast. 

In the in-house network case, TDMX devices are stra­
tegically located across the nation, and are connected to the 
host via private trunks. Terminals are connected to the 
nearest TDMX (or to the host) via dedicated or dial-up 
line, depending on connect time and frequency of usage. 

In the Telenet alternative, terminals are connected to the 
nearest packet-switching station, or to the host (when more 
economical) . 

The results of the evaluation are reported in Table I. 
Private and dial-up line charges were computed according to 
the current AT&T tariffs; Telenet charges were determined 
according to the tariffs shown earlier. The results indicate 
that the Telenet solution is much more cost-effective than 
the in-house solution. Furthermore, the use of Telenet offers 
better terminal growth capability, and better flexibility to 
changes in traffic pattern and, possibly, to distributed host 
and data base implementations. 

CONCLUSIONS 

The future will see a rapid growth of conventional and 
specialized data communications offerings, with tariffs subject 
to frequent changes, mainly because of the competition 
between carriers and the development of new techniques. 

The cost conscious user must be prepared to react to this 
dynamic communications market. In particular, he must be 
prepared to explore a large number of alternatives during the 
network implementation phase, and must be ready to 
reconfigure his network more often than before, in order to 
take advantage of rapidly changing cost and quality of 
service. 

The evaluation of different alternatives must be very 
accurate and comprehensive, to identify and appraise all 
network cost components (communications hardware and 
software, local distribution lines, backbone trunks, etc.). 
Sophisticated network design and evaluation tools become 

Moving Bits by Air, Land and Sea 135 

an absolute necessity, especially for networks of considerable 
size. 4 

The selection of the best alternative is not based uniquely 
on cost. In fact, in a competitive environment, it is likely 
that the same channel bandwidth between the same points 
will be offered at similar cost by all carriers. However, one 
carrier may differ from another for channel type and quality, 
availability of service, number of cities served (or planned 
for service), provision for interconnection with other carriers, 
etc. In evaluating VAN's, for example, type and quality of 
the value added service, rather than the mere data trans­
mission cost might be the overriding consideration. 

Finally, the user, in making his decision, must carefully 
analyze his present and future communications requirements, 
and for each alternative, determine not only the cost of 
satisfying his present needs, but also the growth capability 
and flexibility in meeting future needs. 

ACKNOWLEDGMENTS 

This work was supported by the Advanced Research Project 
Agency of the Department of Defense under Contract No. 
DAHC-l5-73-C0135. 

REFERENCES 

1. Roberts, L. G. and B. D. Wessler, "Computer Network Develop­
ment to Achieve Resource Sharing," AFIPS Conference Proceedings, 
36, pp. 543~599, SJCC, Atlantic City, New Jersey, 1970. 

2. Frank, H., I. T. Frisch, and W. Ch<m, "Topological Considerations 
in the Design of the ARPA Computer Network,"-AFIPS Conference 
Proceedings, 36, pp. 581-587, SJCC, Atlantic City, New Jersey, 1970. 

3. Network Analysis Corporation, "Practical Impact of Recent 
Computer Advances on the Analysis and Design of Large Scale 

I Networks," Second Semiannual Technical Report, December, 1973, 
available from the Defense Documentation Center, Arlington, Va. 

4. Gerla, M., "New Line Tariffs and Their Impact on Communications 
Network Design," Proceedings of the National Computer Conference, 
Chicago, Illinois, May, 1974. 





Speech transmission in packet-switched store­
and-forward networks* 

by JAMES W. FORGIE 
M.l. T. Lincoln Laboratory 
Lexington, Massachusetts 

INTRODUCTION 

The past few years have seen a widespread and growing 
application of packet-switched store-and-forward networks 
for data communication between geographically separated 
computer installations.1

,2 Such networks can provide con­
nections between facilities with the many desirable 
properties of dedicated communication lines but at 
reduced costs which result from the time-sharing of the 
actual lines among many customers. Barring the failure of 
local terminal equipment, such a network provides con­
nections among its customers which implicitly exist 
regardless of the load being placed on the network. 
However, the network characteristics seen by an indi­
vidual customer will vary with overall network traffic, 
since the network will tend to deliver messages less 
frequently and with increased delay (possibly beyond the 
point of usefulness) as load increases. This property of 
packet-switched networks-guaranteed connections with 
variable throughput and delay-is just the reverse of that 
exhibited by circuit-switched networks such as the 
telephone system. When circuit-switched systems are 
heavily loaded, delay may be experienced in making a 
connection, but once it is established, its throughput and 
delay will not vary with other system activity. 

Interest in transmitting speech in packet-switched net­
works grows out of the value of the guaranteed connection 
offered by such a network. The· advantage of a guaranteed 
connection is obvious in many governmental and com­
mercial situations, and such connections are often realized 
today by dedicating leased circuits to this function. If 
speech communication could be handled effectively with 
packet-switching techniques, then some economies could 
be expected by combining speech with data traffic and us­
ing the same network to provide both services. 

Other benefits could 'be expected from handling speech 
in digital form as would be required to be compatible with 
the data in a combined network. Digital transmission is 
inherently insensitive to noise, crosstalk, and distortion. 
Encoding to insure privacy and security is greatly sim­
plified. By treating speech as data and introducing it into 
computers on the network, a number of interesting new 

* This work was sponsored by the Advanced Research Projects Agency of 
the Department of Defense. 

137 

possibilities are opened up for supporting conferencing 
and handling spoken messages on a non-real-time basis. 

The purpose of this paper is to discuss the technical 
problems which must be overcome if satisfactory speech 
communication is to be achieved in a packet-switched net­
work. The paper is semi-tutorial in nature and attempts to 
provide some background for those who may be unfa­
miliar with the nature of the speech communication 
process and/ or the characteristics of packet-switched net­
works. In addition to a statement of the problem, the 
paper concludes with some requirements which the author 
feels must be met by networks if they are to support 
speech communication. 

CHARACTERISTICS OF THE SPEECH DATA 
STREAM 

In order to transmit a speech signal through a packet­
switched store-and-forward network, it is necessary to 
convert it to an appropriate digital form. Many techniques 
are available to achieve this transformation, and they vary 
greatly in data rate, hardware complexity, and quality of 
the output speech. If high-fidelity reproduction of the 
speech waveform were to be required, and conventional 
analog-to-digital conversion techniques were used, the 
resulting PCM (pulse code mudulation) representation of 
the signal would require the communication system to 
handle a data rate of about 250,000 bps (bits per second). 
If "telephone" quality speech were adequate, and the 
same techniques were used, only about 50,000 bps of ca­
pacity would be needed. PCM techniques imply high re­
quired data rates, low complexity and cost, and good 
quality. 

Since high data rates mean high communication cost, 
much effort has been directed to the exploration of 
schemes to handle speech satisfactorily at lower data 
rates. In the years since Dudley's invention of the vo­
coder,a activity in the speech bandwidth compression area 
has followed a somewhat cyclical pattern. At the moment 
research in the area is relatively intense, spurred by recent 
theoretical advances, the availability of high-speed 
processors capable of simulating vocoders in real time, 
and the continuing downward trend in component costs 
for digital hardware. Space limitations preclude even a 



138 National Computer Conference, 1975 

cursory review of the techniques presently being investi- . 
gated. The interested reader can find in References 4 
through 8 both overviews4

,5 and more detailed discussions 
of particular techniques. References 5 and 6 also include 
recordings ·which allow subjective evaluation of the 
processed speech. 

Broadly speaking, two approaches to bandwidth 
compression have been pursued, each with many varia­
tions. The first might be called a waveform coding ap­
proach. Here an attempt is made to reconstruct a good 
replica of the original speech waveform by taking ad­
vantage of the fact that successive samples of the input 
signal are not independent of each other, as would be 
allowed by the PCM representation, and that con­
sequently fewer bits are needed to represent the range of 
possibilities for the successor to a known sample. The cur­
rent state of the waveform-coding art offers devices of 
modest cost and complexity which can produce good 
quality speech at data rates of 16,000 to 24,000 bps. 

The second, or vocoder approach, abandons the concept 
of re-creating the original waveform. Instead, the input is 
analyzed in terms of a model of the speech process. The 
results of the analysis are transmitted to the receiver 
where a speech-like signal is synthesized. Ideally, the 
synthesized signal will sound very much like the original 
speech. 

Vocoders have been available for some time which 
operate in the range of 2400 to 9600 bps, and experimental 
vocoders have been demonstrated at 1200 bps. While in­
telligibility tests suggest that vocoders operating toward 
the lower end of the range should be adequate for speech 
communication, they have not been widely used. The 
market for such vocoders has been small because of high 
cost and the somewhat unnatural quality of the output 
speech. The adequacy of the speech quality from vocoders 
has often depended on the characteristics of the talker's 
voice so that a particular vocoder may seem quite satisfac­
tory for some voices and very bad for others. A substantial 
fraction of current research effort is being directed toward 
the exploration of linear prediction techniques6

,7 which 
promise to give improved quality and talker independence 
in the 2000 to 4000 bps range. 

Since most speech transmission has involved circuits of 
constant bandwidth, it has become the custom to think of 
a speech signal as requiring a constant data rate equal to 
the peak rate. However, for the purposes of packet­
switched communications it is useful to consider a speech 
signal as a variable-rate bit stream. Obviously, no bits at 
all need to be transmitted when the talker is silent, either 
pausing to think or to wait for the other party in a con­
versation to finish talking. The statistics of this on-off 
aspect of the speech data stream have been investigated9 

. and used to advantage in the TASI* system to at least 
double the number of conversations which a group of 
speech channels can handle. Unfortunately, while the 

* TASpo, an abbreviation for Time Assigned Speech Interpolation, is a 
high-speed transmission and switching system used in some long-distance 
telephone systems to interpolate additional talkers into the idle channel 
time present in telephone conversations. 

most frequently occurting "talkspurts" have durations of 
less than half a second, many go on for 10 seconds or 
more, and the statistics are such that the communication 
system designer cannot take much advantage of the 
potential saving in channel capacity unless the system ca­
pacity is large enough to handle 20 to 50 simultaneous con­
versations.10 

Further reductions in average data rate are possible by 
taking advantage of the fact that during certain speech 
sounds the character of the sound changes much more 
slowly than its maximum rate. ll In order to make use of 
this type of variable data rate, buffering is required at 
both ends of the transmission link. Since buffering is al­
ready required to cope with the variable bandwidth of a 
packet-switched network, it would appear desirable to 
take advantage of this fact by using a variable-rate vocod­
ing technique. Since work on such techniques is still at an 
early research stage and cost/benefit ratios are not yet 
available, it is premature to assume that such devices will 
prove to have practical advantages. It is likely, however, 
that speech transmission in a network will take advantage 
of the on-off aspects of the speech signal. 

In comparing waveform-coding devices with vocoders, it 
appears safe to assume that a vocoder will be more expen­
sive than a waveform-coder giving comparable speech 
quality. A vocoder is also likely to be more sensitive to er­
rors in the data stream. On the other hand, both the com­
rimnication costs and the delay introduced into conversa­
tions will be greater for the waveform-coder with its ex­
pected factor of five to ten higher data rate. The choice of 
the technique to be used in a particular situation will 
depend on overall costs, delay characteristics of the net­
work, and subjective quality judgments. Present knowl­
edge does not suggest an obvious choice for general use 
in packet-switched networks.It is therefore reasonable 
to expect that both high (16,000-24,000 bps) and low 
(2000-4000 bps) rate devices will find application in such 
nets. 

CHARACTERISTICS OF PACKET-SWITCHED 
NETWORKS 

In a packet-switched communication network, cus­
tomers are provided with ports which accept and emit 
data streams made up of entities called messages and 
associated identifiers. The identifiers must contain enough 
information to specify the destination to which the 
message is to be sent, and they may contain additional in­
formation such as requests for special handling by the net­
work. A message given to the net is not generally 
forwarded immediately. It must wait until an opportunity 
arises to transmit it along a shared wire line, radio chan­
nel, satellite link, or whatever to another node in the net. 
There it is likely to wait again for an opportunity for 
transmission to yet another node. Eventually it will arrive 
at a node which can deliver it to its intended destination. 
The number of nodes through which a message will pass 
cannot be less than some minimum determined by the to-



pology of the net, but it may be larger if the network 
makes use of alternate routing to avoid trouble at some 
node or communication channels which are congested or 
have failed. 

In order to provide reliable, error-free communication in 
the presence of er!ors in the communication links, the net­
work will add extra bits to a message to allow error detec­
tion or correction. To avoid propagating errors in the net, 
the network control algorithm is likely to require that a 
node receive an entire message and check its integrity 
before starting to send it to the next node on its route. As a 
result the message will experience some inherent delay in 
traversing the net, independent of the availability of com­
munication channel capacity and other traffic in the net 
which may cause further delay. The minimum network 
transit time may be written 

Tmin= L~:~ (L/Ci+Pi+St+Ri+l) 

where n is the number of nodes through which the message 
would pass on a best route through the net, 

L is the length of the message (in bits) within the 
net (i.e., L includes overhead bits for desti-' 
nation codes,error detection, line synchro­
nization, etc.), 

Ci is the channel capacity (in bits per second) of the 
communication link between nodei and 
nodei+1o 

Pi is the propagation time for the communication 
link between nodei and nodeH 10 

Si . is the processing time associated with trans­
mission at nodeio 

and Ri is the processing time associated with reception 
at nodei' 

The actual total transit time experienced by a message 
will be longer than T min by the time spent waiting at the 
nodes due to other traffic and the time required to transfer 
the message between the network ports and the source and 
destination customers. Additional delay may be in­
troduced by a need to retransmit the message because of 
communication link errors or buffer overflow problems at 
one or more nodes. 

Since messages can follow each other through the net 
unless prohibited by network control algorithms, the 
minimum time to deliver k equal length messages is not 
kTmin but 

Tmin +(k-1) max (L/Ci+S;). 
i=l.n-l 

This expression denotes the time for the first message to 
cross the net plus the time for the succeeding k-1 
messages to pass through the node for which the sum of 
transmission handling time and link transmission time is 
maximum.12 Since this expression is generally less than 
kTmin , it is desirable for a customer who wants fast de­
livery to break long messages into sequences of shorter 
messages. For example, let us assume an equal channel ca­
pacity of 1 Mbps for all links, a route involving 10 node.s, 
an overhead of 200 bits per message, handling time of 0.5 
msec per node, and an end-to-end propagation time of 20 
msec. Under these conditions, a 20,000 bit message would 

Speech Transmission 139 

require a minimum of 227 msec to traverse the net, but a 
sequence of 20 messages each 1000 bits long could get 
through the net in only 69.2 msec. This advantage of short 
messages is even greater when the transfer time b'etween 
the network and the source and destination customers is 
taken into account. 

The relative advantage of shorter messages holds in the 
presence of other traffic, but since in that case the network 
is interleaving messages from many streams, maximum 
benefit can be obtained only if all messages are kept short. 
This goal can be accomplished by limiting the maximum 
length of messages which the network will accept or by us­
ing packetization techniques. In the latter case, the net­
work arbitrarily chops long messages into packets of 
length no greater than the desired maximum. Packets are 
then handled within the net as independent messages each 
with its own destination code, error checking, etc. On ar­
rival at the destination node, the packets are reassembled 
into messages before being delivered to the destination 
customer. Actually, the entities sent from node to node are 
called "packets" by the designers of packet-switched net­
works whether the entities are messages of limited size or 
pieces of longer messages, hence the name "packet-switch­
ing". The choice of an optimum maximum packet length 
depends on many network design parameters, and its dis­
cussion is beyond the scope of this paper. It is important 
to note, however, that since delay is a critical parameter in 
voice communication, it is likely that a network will have 
to enforce a low limit on message lengths or make use of 
packetization with a short maximum packet, if it is to 
handle speech satisfactorily. 

SPEECH IN PACKET-SWITCHED NETWORKS 

Barring catastrophic failure or gross overloading, the 
only aspect of store-and-forward networks which poses a 
problem for speech communication is the delay which 
they introduce into the speech data stream. While it is 
true that under overload conditions the average 
throughput of a network may fall below the required data 
rate for speech transmission, a speech receiver can wait 
for enough data to accumulate before beginning to re­
constitute the output speech to avoid destroying the intelli­
gibility of the speech. The delays which would result in 
such a situation could be very long and might prevent 
normal conversational use of the network, but communica­
tion would still be possible. Such overload conditions 
would hopefully be rare in a network designed and sized to 
serve a community of speech customers. However, packet­
switched store-and-forward networks can be expected to 
introduce delays into the speech data stream which could 
cause problems even under normal conditions. 

Although delay has no effect on the intelligibility or 
naturalness of a speech signal, when it is introduced into a 
conversational situation, it becomes readily detectable and 
can have disruptive effects on the conversation. With the 
anticipated use of stationary satellites for speech com­
munication, experiments13

•
14 were undertaken to evaluate 



140 National Computer Conference, 1975 

the effects of delays of the order of 0.6 seconds which 
would be expected in the round-trip time to such satellites. 
The results showed that the effects of delays of this 
amount or more were largely of a psychological nature. 
Telephone conversations normally involve frequent 
interaction between the participants even though one 
person may be doing most of the talking for an extended 
period. When the reinforcing feedback of an expected 
"yes", "really?", or whatever is delayed, the talker gets 
the feeling that the other party is not paying proper atten­
tion, and he tends to become irritated. Similarly, when the 
other party tries to interrupt the speaker, he becomes an­
noyed because the speaker appears to be ignoring his at­
tempt to interrupt. 

The nature of the problem posed by delay is such that 
one would expect people to adjust their behavior to cope 
with it, and experiments15.16 have shown that such adjust­
ment does occur. Speech patterns change, with the most 
noticeable effect being a tendency to cling to the role of 
talker for longer periods. These results assume that any 
delayed echo of the speaker's voice has been eliminated. 
Such a delayed echo would result from any crosstalk 
(electrical or acoustical) between the signal being received 
at the far end of the communication system and the signal 
being transmitted from there. Crosstalk of this kind occurs 
in the ordinary 2-wire local telephone system, and it is 
dealt with in long distance telephony by the use of special 
echo-suppressor circuits. A delayed echo is very disturb­
ing, and it can seriously interfere with a person's ability to 
speak coherently and intelligibly. It is important to avoid 
such echoes in a packet-switched speech system, but to do 
so poses no consequential problems. 

The variability of the delay in a store-and-forward net­
work also poses problems for speech communication. For 
example, the transmitter may chop the input speech into 
chunks of equai length and give the corresponding 
messages to the net at equal time intervals. When they ar­
rive at the receiver, the time between messages is no longer 
likely to be uniform but will generally exhibit considerable 
variation, and the receiver must take appropriate action to 
compensate for this jitter. Depending on the network con­
trol algorithms, the messages may even arrive in a dif­
ferent order than the one in which they were sent. In that 
case a sequence number or some equivalent information 
will have to be added to the messages to allow the receiver 
to reproduce the speech in the proper sequence. 

When the receiver is reconstituting the spee<:h from the 
message stream, and a message has been abnormally de­
layed in the net, a point may be reached where all the 
available messages have been used up. If this point cor­
responds to a pause in the input speech, all will be well. 
Otherwise a gap or "glitch" will be introduced into the 
output speech. The glitch may be left as a silent gap, or if 
a vocoder is being used to synthesize the output speech, 
the last vocoder frame may be repeated to fill the glitch. 
This latter procedure has the effect of stretching the 
speech and could be a good technique for handling short 
glitches. Long glitches are likely to be best left as silent 
gaps. Unfortunately, it will often be the case that the 

receiver will not have any information about the expected 
duration of the glitch. Only in the situation where 
messages are delivered out of order and a successor to a 
late or missing message has been received will an upper 
bound on the glitch duration be available. In any event, 
the occurrence of glitches will tend to increase the dura­
tion of output talkspurts in relation to the corresponding 
inputs. This effect requires the receiver to make cor­
responding adjustments in the length of the pauses 
between talkspurts to avoid a situation where the output 
gets farther and farther behind the input. 

Unlike delay, which has a primarily psychological effect 
on a conversation, glitches can effect the intelligibility of 
the output speech. Experiments to assess the subjective ef­
fects of the sort of glitches to be expected with packet­
switched speech and the various schemes for dealing with 
them have not yet been carried out. It seems reasonable to 
expect that the glitch rate will have to be kept low for 
satisfactory speech communication in a packet-switched 
system. Observations with the TASI system,10 which can 
produce similar glitches (but only at the start of a 
talkspurt), show that a glitch rate of 0.5 per cent is readily 
detectable, and two percent is disturbing to the continuity 
of a conversation. 

In order to keep the glitch probability low, the receiver 
will have to introduce some additional delay in the speech 
stream to smooth the jitter in message arrival times. The 
magnitude of the smoothing delay required to achieve a 
glitch probability less than some given value will depend 
on the dispersion of network transit times. This dispersion 
is caused by contention for resources among the messages 
being handled by the net. Network control algorithms 
have some influence on this dispersion, and if speech is to 
be handled satisfactorily, they should be designed both to 
minimize the mean dispersion and to limit the extremes. 
Of course, the true extremes, caused by transmission link 
or node failures, cannot be controlled, but these should not 
occur frequently enough to be troublesome. Similarly, the 
speech receiver should be designed to keep the smoothing 
delay as short as conditions allow by adjusting it period­
ically on the basis of the observed dispersion of message 
arrival times in its data stream. 

Since the speech data stream has predictable properties 
and stringent delay requirements, it is likely that a net­
work designed to handle speech as well as data would give 
different service to the two kinds of traffic. To minimize 
delay, speech messages would be given priority on the 
communication links. In order to handle the resulting 
preemption of data traffic without requiring retrans­
mission, it would be necessary to reserve appropriate buf­
fer space at the nodes. Fortunately, the size of such buffer 
space is determined by the relatively predictable speech 
traffic. To provide the speech receiver with the maximum 
available information, speech messages would be delivered 
as they arrive at the destination node without regard to the 
order in which they were transmitted. If the receiver 
chooses to operate in a mode in which it proceeds without 
waiting for abnormally delayed messages, it would be ap­
propriate for the network to discard "tale messages 



without wasting further effort on attempts to deliver them. 
This mode of behavior should be under customer control 
since there may be a need to record the speech for later 
use, in which case the delayed messages could be im­
portant. 

While there is no need for the confirmation of the suc­
cessful delivery of individual messages in a speech stream, 
it would be desirable. for the network to send appropriate 
messages to the transmitter in the event that failure to 
make a timely delivery has occurred. Such failures could 
occur because of momentary or prolonged overload condi­
tions or because of communication link or node failures. 
The transmitter could indicate the fact that trouble had 
been detected to the talker who could then take appro­
priate action. 

CONCLUSIONS AND OBSERVA'.I;'IONS 

The principal effect noticed by users of a packet-switched 
voice communication system would be the delay in­
troduced into their conversations. While such delays are 
readily detected by people accustomed to communication 
systems without appreciable delay, experience has shown 
that people can adapt to delays of the order of 0.5 to 1.0 
second without great difficulty. Packet-switched networks 
can be designed and implemented using current 
technology which can keep delays within that range. Such 
networks would make use of appropriate combinations of 
communication link bandwidths and network topologies, 
and they would keep message lengths short within the net 
either by setting limits on allowable message lengths or 
adopting packetization techniques. Care would have to be 
taken in the design of the network control algorithms to 
minimize average delay and to control the dispersion of 
delays seen by speech messages. 

This paper has not addressed the many economic issues 
involved in evaluating the prospects for packet-switched 
networks capable of giving satisfactory service for both 
speech and data. These issues will play an important role 
in deciding whether such networks are actually built in the 
future. Without going into a detailed analysis of costs it is 
hazardous to predict whether a network designed to have 
delay characteristics suitable for voice use would have 
higher or lower per unit message costs than one designed 
solely for data applications. It is clear that using more and 
higher capacity communication links to achieve better 
delay characteristics would result in higher overall system 
costs. Similarly, the extra processing power required at the 
network nodes would add to overall costs. On the other 
hand, the traffic handling capacity of the faster net would 
be larger, and non-linear communication tariffs and 
processor costs might well result in lower per unit costs. 

The potential advantage posed by low data rate speech 
coding devices over high rate ones can be used in a net­
work to achieve higher total capacity, lower average delay, 
or some combination of the two. Economic considerations 
favor using any such advantage to increase capacity and 
thus reduce the cost per conversation. The same argu-

Speech Transmission 141 

ments would allow average delay to rise toward the upper 
end of the acceptable range. 

This paper has been concerned with evaluating the pros­
pects for achieving satisfactory voice communication in 
packet-switched networks. While attention has been 
focused on networks using pure packet-switching tech­
niques, it is not the intent of the paper to argue that such 
networks are the only kind to be considered for handling 
mixed voice and data traffic. Other schemes have been 
proposed for handling such traffic in a digital communica­
tion system by combining line-switching and packet­
switching techniques. 17 Straightforward use of line switch­
ing for voice traffic would avoid the delay problems dis­
cussed in this paper, but it would also lose the benefits of 
the guaranteed connection property inherent in packet 
switching. However, it may well be possible to design a 
mixed system which could retain the advantages of both 
techniques. 

ACKNOWLEDGMENTS 

The author wishes to acknowledge the efforts of his 
colleagues L. F. Mondshein, J. Tierney, and C. J. 
Weinstein in providing useful reference material, dis­
cussion of the issues, and comments on the paper. Helpful 
comments were also provided by the reviewers. 

REFERENCES 

1. Roberts, L. and B. Wessler, "Computer Network Development to 
Achieve Resource Sharing," AFIPS Conference Proc., Vol. 36, pp. 
543-549, 1970 Spring Joint Computer Conference. 

2. Pouzin, L., "Presentation and Major Design Aspects of the Cyclades 
Computer Network," Proc. 3rd Data Communications Symposium, 
pp. 80-88, November 1973. 

3. Dudley, H., "The Vocoder," Bell Lab. Record 17, pp. 122-126, 1939. 
4. Flanagan, J. L., Speech Analysis Synthesis and Perception, second 

edition, New York, Springer-Verlag 1972, pp. 321-406. 
5. Bayless, J. W., S. J. Campanella, and A. J. Goldberg, "Voice Signals: 

Bit-by-Bit" IEEE Spectrum, October 1973, pp. 28-34. 
6. Atal, B. S. and S. L. Hanauer, "Speech Analysis and Synthesis by 

Linear Prediction of the Speech Wave" J. Acoust. Soc. Am. 50, pp. 
637-655, 1971. 

7. Markel, J. D., A. H. Gray, Jr., and H. Wakita, "Linear Prediction of 
Speech-Theory and Practice," SCRL Monograph No. 10, Speech 
Communication Research Lab., Santa Barbara, Calif., 1973. 

8. Abate, J. E., "Linear and Adaptive Delta Modulation," Proc. IEEE 
55, pp. 298-308, 1967. 

9. Norwine, A. C. and O. J. Murphy, "Characteristic Time Intervals in 
Telephonic Conversation," Bell System Tech. J. 17, pp. 281-291, 
1938. 

10. Bullington, K. and J. M. Fraser, "Engineering Aspects of TASI," 
Bell System Tech. J. 38, pp. 353-364, 1959. 

11. McLarnon, E., J. N. Holmes, and M. W. Judd, Experiments with a 
Variable-Frame-Rate Coding Scheme Applied to Formant 
Synthesizer Control Signals, Preprints of the Speech Communication 
Seminar, KTH, Stockholm, Sweden, pp. 71-79, 1974. 

12. McQuillan, J. M., Adaptive Routing Algorithm for Distributed Com­
puter Networks, Bolt Beranek and Newman Inc., Report No. 2831, 
Cambridge, Mass., p. 90, May 1974. 

13. Emling, J. W. and D. Mitchell, "The Effects of Time Delay and 
Echoes on Telephone Conversations," Bell System Tech. J. 42, pp. 
2869-2891, 1963. 



142 National Computer Conference, 1975 

14. Riesz, R. R. and E. T. Klemmer, "Subjective Evaluation of Delay 
and Echo Suppressors in Telephone Communication," Bell System 
Tech. J. 42, pp. 2919-2941, 1963. 

15. Klemmer, E. T., "Subjective Evaluation of Transmission Delay in 
Telephone Conversations," Bell System Tech. J. 46, pp. 1141-1147, 
1967. 

16. Krauss, P. M. and P. D. Bricker, "Effects of Transmission Delay 
and Access Delay on the Efficiency of Verbal Communication," J. 
Acoust. Soc. Am. 41, pp. 286-292, 1967. 

17. Zafiropulo, P., "Flexible Multiplexing for Networks Supporting Line­
Switched and Packet-Switched Data Traffic," Proc. 2nd Int. Con/. 
on Computer Communications, pp. 517-523, 1974. 



Dynamic control schemes for a packet 
switched multi-access broadcast channel* 

by SIMON S. LAM 
IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

and 

LEONARD KLEINROCK 
University of California 
Los Angeles, California 

INTRODUCTION 

Domestic satellites are emerging as an exciting alternative 
to satisfying the communications requirements of data users, 
providing both flexibility and economy. Two attributes of 
satellites are especially advantageous for the transmission of 
data in large geographically distributed computer networks. 
They ar..e (i) the availability of wide transmission band­
widths over long distances and (ii) the multi-access broad­
cast capability inherent in radio communications which per­
mits transmission to, and reception from, all points in a 
satellite connected network. These considerations also apply 
(on a smaller geographical scale) to the use of ground radio 
channels in a terminal access computer-communication net­
work exemplified by the ALOHA System at the University 
of Hawaii,! 

The random access scheme of the ALOHA System has 
inspired a number of packet switching techniques which 
permit the sharing of a high-speed multi-access broadcast 
channel by a large population of channel users.2- 8 Such 
paclret switched radio systems (both satellite a~d grou~d 
radio) have a number of advantages over conventIOnal WIre 
communication techniques for 'Computer communications, 
such as: the elimination of complex topological design and 
routing problems in large networks, the possibility of mobile 
users the cost reduction over long distances and the in­
creas~d flexibility for system reconfiguration and upgrading. 
Another attractive feature is that in these systems each user 
is merely represented by an ID number. Thus, the number 
of active users is bounded only by the channel capacity and 
there is no limitation to the number of inactive (but poten­
tially active) users beyond that of a finite address space. 
Moreover, measurement studies have shown that interactive 
computer data traffic tends to be bursty.9 A single high-sp~ed 
radio channel permits the total demand of a large populatIOn 
of bursty users to be statistically averaged at the channel. 
Furthermore, each user transmits data at the full wideband 

* This research was supported in part by the Advanced Research 
Projects Agency of the Department of Defense under Contract No. 
DAHC-15.-73-C-0368. 

143 

data rate of the radio channel. Such efficient sharing and 
wideband transmission are in general not possible in a geo­
graphically distributed computer-communication network 
using wire communications. 

Of interest in this paper is the slotted ALOHA random 
access scheme.8 ,4,7,10-13 A slotted ALOHA channel multi­
accessed by a large number of users has been shown to exhibit 
unstable behavior, i.e., the system may drift into an unde­
sirable saturation state with a virtually zero probability of 
transmission success as a result of repeated user con­
flictS.4,7,1Q-12,14 In this paper, a model is first presented for a 
slotted ALOHA channel supporting input from a large popu­
lation of bursty users; the data rate of each channel user is 
assumed to be much less than the channel transmission rate. 
The underlying concepts of channel stability are then intro­
duced. A dynamic channel control model is next presented 
and four dynamic channel control algorithms are given. The 
performance of these algorithms are tested through simula­
tion and compared to analytic results previously obtained. 7 ,13 
We conclude that these algorithms are capable of preventing 
the occurrence of channel saturation under temporary chan­
nel overload conditions and at the same time achieving a 
level of channel performance close to the theoretical optimum. 

The slotted ALOHA model here is similar to one previ­
ously studied by Metcalfe through a steady-state analysis. 10 ,14 
He has also recognized the need for control of the channel 
and proposed a method for controlling the transmission 
probability of IIready" packets. 

Other multi-access broadcast packet switching schemes 
have been proposed to take advantage of special system and 
traffic characteristics. A reservation scheme studied by 
Roberts5 employs a slotted ALOHA sub channel for broad­
casting block transfer reservation requests. Reservation­
ALOHA2 and carrier sense multi-access8 are both interesting 
variants of the random access scheme. These systems seem 
to exhibit unstable behavior similar to that of slotted 
ALOHA and may be dynamically controlled by algorithms 
similar to those presented in this paper. Consider, for in­
stance, the ALOHA System at the University of Hawaii 
which uses two 24 KBPS radio channels and which has been 



144 National Computer Conference, 1975 

USER 1 

USER2-+--~--~~--~--~~--+-~~~--+--4--~ 

USER3-+--~--~~--~--~~~~~ 

USER4~~-+--+--4--~~kXl~~-~---+I----+~---4-----4-----~~I 
TIME---

II- SUCCESSFUL PACKET TRANSMISSION 

~ TRANSMISSION CONFLICT 

..... ---" RANDOM RETRANSMISSION DELAY 

F.igure I-Slotted AWHA random access 

estimated to be able to support up to 500 interactive users.1.3 

We feel that this figure is unrealistic for an uncontrolled 
system, but may be achieved given some appropriate dy­
namic channel control. 

THE RANDOM ACCESS CHANNEL MODEL 

Consider a radio communication system such as a packet 
switching satellite system3-7 or the ALOHA System.1 In 
each case, there is a broadcast channel for point-to-multipoint 
communication and a multi-access channel shared by a large 
number of users. Since the broadcast channel is used by a 
single transmitter, no transmission conflict will arise. All 
nodes covered by the radio broadcast can receive on the 
same single frequency, picking out packet transmissions ad­
dressed to themselves and discarding packets addressed to 
others. The problem we are faced with is how to resolve 
conflicts which arise when "simultaneous" demands are 
placed upon the multi-access channel. If two or more packet 
transmissions overlap in time at the multi-accessed radio 
receiver (of the satellite transponder or the central com­
puter), it is assumed that none is received correctly. This 
event will be referred to as a channel collision. The channel 
may be slotted by requiring all channel users to synchronize 
the leading edges of their packet transmissions at the multi­
accessed radio receiver.3- 7 The duration of a channel time 
slot is set equal to a packet transmission time. In the slotted 
ALOHA random access scheme, all users transmit newly 
generated packets into channel time slots independently. In 
the event of a channel collision, each collided packet is re­
transmitted independently after a retransmission delay of 
RD slots. The above scheme is illustrated in Figure 1 for the 
case of a channel random-accessed by four users. (In a 
ground radio system, RD corresponds to the positive ac­
knowledgment time-out interval.) 

Consider a satellite multi-access broadcast system. Let R 
be the number of time slots in a round-trip satellite channel 
propagation time which is assumed to be the same for all 
earth stations. Thus, R time slots after transmitting a packet, 
a user will either hear that he was successful or know that he 
had a channel collision. (We ha;e ignored the possibility of 
random noise errors assuming that the channel has a low 

error rate.) The retransmission delay RD for a collided 
packet must be greater than R. Randomization of RD is 
necessary to minimize the probability of repeated channel 
collisions for the same packets. Randomization schemes 
which have been considered include: (1) the uniform retrans­
mission randomization scheme4 in which the probability 
distribution of RD is given by 

i~R 
R+1~i~R+K 
i>R+K 

(1) 

and (2) the geometric retransmission randomization 
scheme6.7.10-14 in which the probability distribution of RD is 
given by 

Prob [RD=iJ={O 
p(1_p)i-R-1 i>R 

i~R 
(2) 

The uniform retransmission randomization scheme is 
adopted in Reference 4. In that reference, R is taken to be 
12 and each time slot is 22.5 milliseconds long, giving 44.4 
slots/ second. These figures are computed from the assump­
tions of a 50 KBPS satellite voice channel, 1125 bits/packet 
and a roundtrip channel propagation time of 0.27 second for 
all channel users. These same numerical constants are 
adopted in this paper. However, to study the problems of 
stability and dynamic channel control, it is necessary to 
consider a simplified l\1:arkovian model in which R = 0 and 
the geometric retransmission randomization scheme is as­
sumed, such that RD has a memoryless geometric distri­
bution.7.10-14 Simulation results have shown that the slotted 
ALOHA channel performance (in terms of average through­
put and delay) is dependent primarily upon the average 
retransmission delay RD and quite insensitive to the exact 
probability distributions considered.7 In order to use the 
analytic results of the Markovian model to predict the 
throughput-delay performance of a real slotted ALOHA 
channel with nonzero R, it is necessary to use a value of p in 
the Markovian model which matches the value of RD. For 
example, to approximate the slotted ALOHA channel with 
uniform retransmission randomization and for which RD = 
R+(K+1)/2, we must let 

1 
P=R+(K+l)/2 

(3) 

such that RD is the same in both cases. Numerical results 
in this paper will always be expressed in terms of K (rather 
than p) through use of Equation (3). 

Let us now introduce the Markovian model, 7 .11-13 in which 
we consider a slotted ALOHA channel with a user population 
consisting of M users. Each such user can be in one of two 
states: blocked or thinking,l°·14 In the thinking state, a user 
generates (and transmits) a new packet in a time slot with 
probability u. A packet which had a channel collision and is 
waiting for retransmission is said to be backlogged. The 
retransmission delay RD of each backlogged packet is as­
sumed to be geometrically distributed, i.e., each backlogged 
packet retransmits in the current time slot with probability 
p. Assuming bursty users, we must have p»;. From the 



time a user generates a packet until that packet is success­
fully received, the user is blocked in the sense that he cannot 
generate (or accept from his input source) a new packet for 
transmission. 

Let Nt be a random variable (called the channel backlog) 
representing the total number of backlogged packets at time 
t. The "channel input" rate at time t is St= (M -Nt)u. We 
shall assume M and u to be time-invariant unless stated 
otherwise. In this case, Nt is a Markov process (chain) with 
stationary transition probabilities and serves as the state 
description for the system. The discrete state space consists 
of the set of integers to, 1,2, ... , M}. 

CHANNEL STABILITY 

In this section, we give a brief description of the stability 
behavior of an uncontrolled slotted ALOHA system studied 
earlier. 7 ,10-12 ,14 Consider the trajectory of (Nt, St) in the 
two-dimensional (n, S) plane. Assuming that M and u are 
constant, (Nt, St) is constrained to lie on the straight line 
S = (M -n)u called the channel load line. Corresponding to 
a fixed value* of K, there is an equilibrium contour in the 
(n, S) plane defined as the locus of points for which the 
channel input rate S is exactly equal to the expected channel 

(f) 
~ 
w 

240 

200 

G 160 
<l: n.. 
<.:> 
0 
~ 
x:: 

120 u 
<t 
m 
~ 
w 
z 
Z 
<t 

80 I 
U 

40 

n 

R= 12 SLOTS 

oL-~--~~--.. ~~~~~~S 
o .10 .20 .30 .40 

CHANNEL INPUT (PACKETS/SLOT) 
Figure 2-Equilibrium contours 

* Or equivalently a fixed value of p under Equation (3). 

" 

M 

"max 

Dynamic Control Schemes 145 

CD STABLE CHANNEL LOAD LINE 
® UNSTABLE CHANNEL LOAD LINE 
@ OVERLOADED STABLE CHANNEL 

LOAD LINE 

• CHANNEL OPERATING POINT 
• CHANNEL SATURATION POINT 
o UNSTABLE EQUILIBRIUM POINT 

EQUILIBRIUM CONTOUR 
AT K=Ko 

SLOPE =- J.. (T 

Sma x 

Figure 3-Stable and unstable channels 

throughput (defined to be the probability of 3t successful 
packet transmission) Sout(n, S) in a time slot. A family of 
such contours is illustrated in Figure 2. Let us focus upon an 
equilibrium contour corresponding to K =Ko in Figure 3. In 
the shaded region enclosed by the equilibrium contour, 
Sout(n, S) is greater than S; elsewhere, S exceeds Sout(n, S). 
Arrows on the channel load lines point in the direction of 
"drift" of the channel backlog size Nt. Three channel load 
lines are also shown in Figure 3 corresponding to channel 
user population sizes M, M' and Mil, and an average user 
think time of 1/ u slots. 

A channel load line may intersect the equilibrium contour 
one or more times, and we refer to these as equilibrium 
points which we denote by (n'e, S e). An equilibrium point 
on a load line is said to be a stable equilibrium point if it 
acts as a "sink" with respect to the drift of Nt; ~n equi­
librium point is said to be an unstable equilibrium point if it 
acts as a "source." A stable equilibrium point is said to be 
the channel operating point if ne~nmax as shown in Figure 3; 
it is said to be the channel saturation point if ne>nmax. (We 
shall use (no, So) instead of (ne, Se) to distinguish the chan­
nel operating point from other equilibrium points.) A chan­
nelload line is defined to be stable if it has exactly one stable 
equilibrium point; otherwise it is defined to be unstable. 
Thus, the load lines 1 and 3 in Figure 3 are stable by defini­
tion; the load line 2 is unstable. 



146 National Computer Conference, 1975 

INPUT PARAMETERS => => => 
INPUT RATE = 0.350 
PROPAGATION DELAY 12 
K = 15 

AVERAGE VALUES IN 200 TI ME SL.-..Q~PE.~.QQ2- ______ c-- __________________ _ 

TIME PERIOD THROUGHPUT TRAFFIC PACKET FRACTlGN AVERAGe 
RATE- s RATE- G OELAY- 0 EMPTY BACKLOG 

.... _._---_._-----_._--- ... _----- --'-" . .._- .--- --.-

1 200 0.330 0.510 17.924 0.59~ :1.1 
201 400 0.370 0.605 3 O. 892 0.530 5 • .3 
401 600 0.360 0.860 32.764 0.425 9. ~'l 
601 800 o ."""'J'4"(f -o;S40------n;T"47 ---- - ---0-;435 -- --- I).:> 
801 1000 0.315 1.415 58.889 0.250 21.5 

1001 1200 0.380 1.260 72.066 - J .260 tb.e 
1201 1400 0.325 0.455 37.2'-5 0.610 3.(' 
1401 1600 0.355 0.480----m_~0 .803 ---0-;-590 2~5 
1601 1800 0.275 0.405 20.600 0.665 2.6 
1801 2000 0.360 0.560 27.528 0.550 4.5 
2001 2200 0.330 0.430 18.561 0.620 1 • R 
2201 2400 0.310 o • 54S----- 2 2 • 065 -- -------- 0-;-580 4 • ~"3 
2401 2600 0.335 0.840 44.A66 0.455 9.') 
2601 2800 0.320 0.705 34.703 :>.500 7.~ 
2801 3000 0.325 1.085 43.-815 0'. ~50 14. 1 
3001 3200 0.3io 1.71~ 67.161 - ---- 0-.-( dO - 26;9-
3201 3400 0.105 3.255 147.143 0.050 61 • b 
3401 3600 0.015 5.910 220.333 o .000 111.4 
3601 3800 0.000 9.155 0.000 0.000 179. _S 
3801 4000 0.000 12.4()0 0.000 ---- 0 • 7foo---- -----. - -2-43. ij 

Figure 4-An unstable channel drifting into saturation 

If M is finite, a stationary probability distribution always 
exists for Nt. In a stable channel, the equilibrium point 
(ne, Se) gives (approximately) the steady-state throughput­
delay performance of the channel over an infinite time hori­
zon. On the other hand, an unstable channel exhibits "bi­
stable" behavior; the throughput-delay performance given 
by the channel operating point is achievable only for a finite 
time period before the channel drifts toward the channel 
saturation point. When this happens, the channel perform­
ance degrades rapidly as the channel throughput rate de­
creases and the average packet delay increases. In this state, 
the communication channel can be regarded as having failed. 
(In a practical system, external control should be applied 
at this point to restore proper channel operation.) In Figure 
4, we have shown a simulation of the above behavior. In 
this example, jJ;1 is assumed to be so large that the channel 
input is Poisson distributed at a constant rate S =0.35. 

The channel load line labelled 3 in Figure 3 has a channel 
saturation point as its only stable equilibrium point. It is 
overloaded in the sense that Mil is too big for the given u 

and K. From now on, a stable channel load line will always 
refer to 1 instead of 3. 

Given a channel load line, suppose K opt is the optimum K 
which minimizes no and maximizes So at the -channel operat­
ing point. For this value of K, the channel may be unstable 
in which case the optimum channel performance given by 
(no, So) is achievable only for a finite time period. In Refer-

ences 7, 11 and 12, the average "up" time of an unstable 
channel has been quantified as a stability measure of the 
channel. To render the channel stable, two obvious solutions 
are available: (1) use a larger value for K (see Figure 2), 
and (2) reduce the user population size M. The first solution 
gives rise to a smaller So and a larger no; the corresponding 
average packet delay may then be too large to be acceptable. 
In the second solution, a small]l,1 implies that So«Smax (see 
Figure 3) since u«l under the assumption of bursty users. 
This results in a waste of channel capacity. 

The third solution is the use of dynamic channel control 
which constitutes the subject matter of the balance of this 
paper. 

THE DYNAMIC CHANNEL CONTROL MODEL 

To prevent the disastrous consequences of channel satura­
tion, various dynamic control measures may be taken. In 
this section, we describe the dynamic channel control model 
studied in References 7 and 13, and outline some of the re­
sults obtained there under the assumption of perfect channel 
state information, i.e., each channel user knows the exact 
value of the channel backlog Nt at time t. t~ the next section, 
we shall consider practical control schemes which estimate 
the channel state and apply the theoretical optimal control 
policies using this estimate. 



Consider the finite-state Markovian decision model ob­
tained by injecting the following two classes of control ac­
tions into our earlier model for Nt: 

(i) each packet arrival is accepted for transmission with 
probability {j and rejected with probability 1- (3 

where 0:::; {j:::; 1 and {j E f .81, .82, . . . , .8m} 6<t1; 
(ii) each backlogged packet is retransmitted with prob­

ability "I where 0<"1<1 and "IE hi, "12, ... , 'Yk}6<tz• 

<x6 G.tX<X2 is said to be the control action space. Three 
special cases have been studied extensively in References 7 
and 13, namely, 

(1) The Input Control Procedure (ICP) with <t= to, I} X 
{Po}, 

(2) The Retransmission Control Procedure (Rep) with 
<X= {I} x {Po, Pc}, and 

(3) The Input-Retransmission Control Procedure (IRCP) 
with Ct= to, I} X {po, Pc}. 

In these control procedures, po corresponds to some Ko which 
optimizes the channel operating point of the given channel 
load line; pc corresponds to some Kc which is sufficiently 
large to render the given channel load line stable. 

A control policy I is defined to be any rule for choosing 
control actions in <t. The action at, at time t given by the 
policy I, specifies both the state transition probabilities and 
some predefined expected state transition cost for the tth 
time slot. Thus I determines both the evolution in time of 
Nt and the sequence of costs it incurs. Given a cost structure 
(denoted by 0), the cost rate ga (I) of Nt under a control 
policy I is defined to be the steady-state average cost per 
unit time incurred by Nt. 

An important subclass of all policies is the class of sta­
tionary policies. A stationary policy is defined to be one which 
chooses an action at time t depending only upon the state of 
the process at that time. From well-known results in :J\Ilarkov 
decision theory, we know that (1) if I is a stationary policy, 
ga(1) is independent of the initial state of the process Nt, and 
(2) a stationary policy 1* exists, which minimizes ga(f) over 
the class of all policies. Thus in our search for an optimal 
control strategy, we can limit our attention to the class of 
stationary policies only. 

As the process Nt evolves from one time slot to the next, 
various expected state transition costs may be incurred, such 
as 

( 1) the expected channel throughput in the tth time slot, 
(2) the OdeIay) cost of holding backlogged packets, and 
(3) th'e;expected (delay) cost of rejecting packet arrivals. 

Type 1 costs take on negative values since we want to maxi­
mize the channel throughput rate. Type 2 costs are chosen 
such that each backlogged packet incurs 1 unit of delay per 
time slot. In the references, the expected cost in units of 
delay per packet arrival rejected (type 3 costs) is assumed 

Dynamic Control Schemes. 147 

0.5 500 

0.4 400 b:so
", (l c!~' '.:i=( .. ,-(~!-

0.3 300 
~._r l'--\'-\"-

0.2 200 

Vi 
I-
0 
-I 
~ 

0.1 > 100 <{ 
-I 
LU 
0 

::> I-
10 0 LU 

en :.: 
u 
<{ 
"-
LU 50 
~ 
<{ 
a: 

40 LU 

> 
<{ 

30 

20 
iVI = 200 

SIMULATION 
K = 10 

+ MINrMUM 
+ MAXIMUM 

0.01 10 
0 10 20 30 40 50 60 

INPUT CONTROL LIMIT 

Figure 5-Channel performance versus ICP control limit for 111 =200 

to be equal to an average user think time. This assumption 
is needed for our Markovian model formulation and may be 
justified in a terminal access communications environment 
as follows. A person sitting at a terminal generates a new 
packet with an average think time of 1/0" whenever his 
previous packet has been successfully transmitted. If, at the 
time of a packet arrival, the channel is in the reject state, 
this packet is lost in the sense that it is not transmitted over 
the channel immediately. In a practical situation, the user 
may be informed of the event and must enter some com­
mand character to "resend" the packet. Hence, the cost in 

. terms of delay is probably in the order of an average think 
time (=1/0"). 

Let g8(f) denote the cost rate of Nt given by policy I and 
type 1 costs, and gd(f) denote the cost rate of Nt given by 
policy I and types 2 and 3 costs. The channel performance 
measures, namely, the steady-state channel throughput rate 
Sout and the expected packet delay D can then be calculated 
in terms of g3(1) and gd(f). 

In the references, it is shown that for the given model an 
optimal stationary control policy maximizes Bout and mini­
mizes D simultaneously. An efficient computational algo­
rithm (POLITE) based upon Howard's policy-iteration 
method15 is given for calculating the optimal policy. Given a 
channel load line and a dynamic control procedure (<t), this 
algorithm usually arrives at the optimal control policy and 
the optimum values of Sout and D in very few iterations. 
Furthermore, numerical results indicate that each optimal 



148 National Computer Conference, 1975 

Ul 
I-
0 
...J 

~ 
>-« 
...J 
LJ.J 
0 
I-
LJ.J 
::.::: 
u « 
c.. 
LJ.J 
c.:J 
« 
a: 
LJ.J 

> « 

200 

150 K·~ 10 

100 

90 

80 

70 

60 

50 

40 

30 

20 

--------15 

10 
0.1 0.2 

I 
I 
I 

lin ~ 30SEC I 
I 

20SEC~ : , 
10 SEC I 

Sout 

, 
~ 

~ 

I 
I , 

.tit 

IN~N~ 
POPULATION 
MODEL 

0.3 0.37 

Figure 6-ICP optimum throughput-delay tradeoffs at fixed (1" 

control policy f for the control procedures ICP and RCP has 
the following structure: 

{

ao 

f(i) = 
ac 

( 4) 

where ao corresponds to "accept" in ICP and "Po" in RCP; 
ac corresponds to "reject" in ICP and "pc" in RCP. On the 
other hand, an optimal control policy f for IRCP has the 
following structure: 

{

(accept, Po) 
f(i) = (accept, Pc) 

(reject, Pc) 

O:::;i:::;nl 
nl <i:::;n2 
n2<i:::;M 

(5) 

We shall refer to n, nl and nz as control limits and the control 
policies in Equations (4) and (5) as control limit policies. 

In Figure 5, we have shown the performance measures, 
Sout and D, for two channel load lines specified by M =200 
and the channel operating point (no, So) = (4,0.32) and 
(7,0.36), over a range of ICP control limit policies. Observe 
that the same control limit minimizes D and maximizes Sout 

at the same time as predicted by the theory. Note the amaz­
ing flatness of Sout and D near the optimum point for the 
channel load line with So =0.32. The consequence is that 
even if a nonoptimal control policy is used (due, for example, 
to not knowing the exact current backlog size such as in 
most practical systems), it is still possible to achieve a 
throughput-delay performance close to the optimum. 

In Figure 5, we have also shown simulation results for 
throughput and delay. In these simulations, channel control 

policies are applied assuming that the exact channel backlog 
size Nt is known to all channel users. However, contrary to 
the Markovian model, each collided packet is assumed to 
suffer the more realistic fixed delay R and its retransmission 
is randomized uniformly over the next K slots. The excellent 
agreement between the simulation and analytic results pre­
sented here demonstrates the accuracy of the approximation. 

In Figure 6, we show optimum throughput-delay tradeoffs 
at fixed values of u for ICP. (1/u is the average think time of 
a channel user.) In this case, increasing Sout corresponds to 
increasing M, that is, admitting more channel users. We see 
that the channel performance improves as the packet gener­
ation probability u increases, since this implies that for the 
same Sout, the number of channel users M is smaller. In the 
latter case, the channel is "less unstable." 7 ,11,12 

PRACTICAL CONTROL SCHEMES 

In a practical system, the channel users often have no 
means of communication among themselves other than the 
multi-access broadcast channel itself. Each channel user 
must individually estimate the channel state by observing 
the outcome in each channel slot. Moreover, whatever chan­
net state information available to the channel users is at 
least one round-trip propagation delay (R) old and may in­
troduce additional errors in the users' estimates if R is large 
(such as in a satellite channel). Thus, the control action ap­
plied based upon an estimate of the channel state may not 
ne0essarily be the optimal one at that time, which then will 
lead to some degradation in channel performance. 

Below we first give a heuristic scheme for estimating the 
channel state assuming that the channel history (i.e., empty 
slots, successful transmissions or collisions) is available to all 
channel users. The optimal ICP, RCP and IRCP control 
policies will be applied based upon the above estimate. A 
heuristic control procedure is next proposed which circum­
vents the state estimation problem. These control procedures 
are then examined through simulation and compared with 
the optimum throughput-delay results in the previous section. 
The ability of these control procedures to handle time­
varying inputs (with pulses) is also examined. 

Channel control-estimation (CONTEST) algorithms 

The channel traffic in a time slot is defined to be the number 
of packet transmissions (both new and previously collided 
packets) by all users in that time slot. Our heuristic pro­
cedure for estimating the channel state is based upon the 
observation that the channel traffic in a time slot is approxi­
mately Poisson .distributed. (See Chapter 4 and Appendix A 
of Reference 7.) Below we present algorithms which imple­
ment channel control procedures studied in the previous 
sections using estimates of the channel state. These channel 
CONTrol-ESTimation algorithms will be referred to as 
CONTEST algorithms. 

Here we give a procedure for implementing RCP. Suppose 
n is the RCP control limit such that the channel users switch 



their retransmission K value from Ko to Kc when the channel 
backlog size exceeds n and from Keto K Q as soon as the 
channel backlog size drops below n. We define 

Go=npo+ (M -n)u (6) 

and 
(7) 

Go and Gc represent the average channel traffic rates given 
that the channel backlog size is n packets with K equal to 
Ko and Kc respectively. Assuming that the channel traffic is 
approximately Poisson distributed, we define the following 
critical values (corresponding to the probability of zero 
channel traffic in a time slot), 

and 
Jc=e-tJc 

Since Ke>Ko we must have 

(8) 

(9) 

Suppose each channel user keeps track of the channel 
history (one round-trip propagation delay ago) within a 
window frame of W slots. Let Jt be the measured fraction of 
empty'slots in the W slots within the history window for the 
tth time slot. Jt will closely approximate the probability of 
zero channel traffic in the tth time slot provided that the 
channel traffic probability distribution does not change ap­
preciably in (W + R) time slots, that W» 1 and the Poisson 
traffic assumption holds. We give the following algorithm to 
be adopted by each channel user. d t denotes the control de­
cision at time t. 

Algorithm 1 (RCP-CONTEST)-This algorithm. gener­
ates the decision dt = K o, Kc at each time point based 
upon the channel state estimate Jt and the RCP control 
limit n. Start at step (1) or step (4). 

(1) t 4;- t + 1 
dt = Ko 

(2) If Jt<Jo, go to (4) 
(3) Go to (1) 
(4) t~t+1 

dt=Kc 
(5) IfJt>Jc, go to (1) 
(6) Go to (4) 

Next we consider a similar implementation for ICP. We 
define 

and 

Ga=np+ (M -n)u 

flr=np 

Ja=e-tJa 

Since fla>flr, we must have 

(10) 

(11 ) 

(12) 

(13) 

Dynamic Control Schemes 149 

TABLE I~Throughput-delay Results of a Controlled Channel 
(M=200, 8 0 =0.32) 

CONTROL SCHEME Sout D 

rcp (POLITE) 0.31778 29.857 
RCP (POLITE) 0.31817 29.085 
rRCP(POLITE) 0.31817 29.085 

rcp (Simulation) 0.315 33.427 
RCP (Simulation) 0.318 28.824 

rCP-CONTEST W = 20 D.314 40.893 
rCP-CONTEST W = 40 0.315 30.514 
rCP-CONTEST W = 60 0.317 32.355 
rCP-CONTEST W = 80 0.318 35.809 
RCP-CONTEST W = 20 0.315 33.052 
RCP-CONTEST W = 40 0.322 33.335 
RCP-CONTEST W = 60 0.319 32.138 
RCP-CONTEST W = 80 0.317 32.501 

{'1 = 10 0.316 33.720 
Heuristic RCP 

~ = 60 m~2 0.315 34.554 

f = 10 

Heuristic Rep .: = 60 
0.310 35.425 

0.316 34.635 

'\n = 120 m>3 

Algorithm 2 (ICP-CONTEST)-This algorithm gener­
ates the decision dt=accept, reject at time t, based upon the 
channel state estimate Jt and ICP control limit n. Start at 
step (1) or step (4). 

(1) t~t+1 
dt=accept 

(2) If Jt<Ja go to (4) 
(3) Go to (1) 
(4) t~t+1 

dt=reject 
(5) IfJt>Jr go to (1) 
(6) Go to (4) 

Finally, to implement IRCP, we assume that the control 
policy is of the form given in Equation (5) such that it is 
uniquely specified by the control limits nl and n2. We define 
fo and fe by using 1h in Equations (6)-(9), Jac and Jrc by 
using n2 and Pc in Equations (10)-(13) and Jao by using n2 
and po in Equations (10) and (12): Since po>Pc>u and 
n2>nl, we havefao<Jo and Jac<Jc. 

Algorithm 3 (IRCP-CONTEST)-This algorithm gener­
ates the decision dt = (accept, Ko), (accept, K c), (reject, Kc) 



150 National Computer Conference, 1975 

TABLE II-Throughput-delay Results of a Controlled Channel 
(M =400,80=0.32) 

CONTROL SCHEME Sout 0 

rcp (POLITE) 0.31807 33.096 
RCP (POLITE) 0.31844 31.608 
IRCP (POLITE) 0.31844 31.608 

ICP (Simulation) 0.315 31. 427 
RCP (Simulation) 0.317 31.023 

ICP-CONTEST W == 20 0.315 43.262 
rCP-CONTEST W == 40 0.314 34.723 
rCP-CONTEST W == 60 0.312 53.240 
rCP-CONTEST W == 80 0.316 39.112 

RCP-CONTEST W == 20 0.313 41.087 
RCP-CONTEST W == 40 0.319 43.379 
RCP-CONTEST W == 60 0.318 38.821 

RCP-CONTEST W == 80 0.317 40.068 
RCP-CONTEST W == 100 0.314 35.689 
RCP-CONTEST .w == 120 0.319 47.149 

{K "10 0.316 45.150 

Heuristic RCP 
Kl == 150 m>2 0.316 44.750 m -

{K1 " 10 0.312 42.040 Heuristic RCP K2 == 100 
K == 200 m>3 0.311 43.136 
m -

at time t based upon the channel state estimateJt and IRCP 
control policy (nl, ~). Start at step (1), (4),. or (7). 

(1) t~t+I 
d t = (accept, Ko) 

(2) If Jt<1ao go to (7) 
otherwise, if Jt <10 go to (4) 

(3) go to (1) 
(4) t~t+I 

d t = (accept, Kc) 
(5) If Jt>1c go to (1) 

otherwise, if Jt<1ac go to (7) 
(6) go to (4) 
(7) t~t+I 

d t = (reject, Kc) 
(8) If Jt > 1 rc go to (4) 
(9) go to (7) 

The size W of the channel history window kept by each 
channel user is very important for successful channel state 
estimation. If W is too large, we may lose information on the 
dynamic behavior of the channel such that the necessary 
actions are taken too late. If W is too small, we may get 
large errors in approximating the probability of zero channel 
traffic by the fraction of empty slots in the history window. 
A good initial estimate is that W should be bigger than R 
and of the same order of magnitude. Below we· compare 

simulation results on channel performance for different values 
ofW. 

A nother retransmission control procedure 

In this section we describe a simple heuristic control pro­
cedure which has the property that when the channel traffic 
increases the retransmission delays of backlogged packets 
will also increase. Hence, it will be referred to as the heuristic 
retransmission control procedure (Heuristic RCP). The ad­
vantage of such a control procedure is that it is simple and 
can be implemented easily without any need for monitoring 
the channel history and estimating the channel state. 

Algorithm 4- (Heuristic RCP)-For a backlogged packet 
with m previous channel collisions, the uniform retransmis­
sion randomization * interval is taken to be K = Km where 
Km is a monotone nondecreasing function in m. 

When the channel traffic increases, the probability of 
channel collision increases. As a result, the "effective" value 
of K increases. If Km is a steep enough function of m, we see 
that channel saturation will be prevented. An effective value 
of K can be defined only with respect to a specific perform­
ance measure (e.g., average packet delay). To illustrate the 
effect of the function K m , we derive below the average value of 
K as a function of q (the probability of successful trans­
mission) for two cases. Let 

Case 1 

ri=Prob [a packet retransmits i times before 
success] 

= (I-q)iq i~l 

Km=K2 for m~2 and K 2>Kl 

K = average value of K 

1 co i K 
=- L: ri L: --; 

I-q i=1 m=1 1, 

1 co • • (Kl i-I ) 
=- L: (l-q)tq --:-+-. K2 

I-q i=1 1, 1, 

q In q 
=K2+-

I 
- (K2-Kl ) 
-q 

(14) 

which is equal to Kl at q= 1 and increases to ·K2 as q de­
creases to zero; In is the natural logarithm function. 

Case 2 Km=mK 

1 co i K 
K=- L: ri L:--; 

I-q i=1 m=1 1, 

K co (1-q) iq i 

=-L: . L:m 
I-q i=1 1, m=1 

(15) 

* Note that the same control scheme can be extended to geometric 
retransmission randomization by letting P = Pm where Pm is a monotone 
nonincreasing function in m. 



Dynamic Control Schemes 151 

INPUT PARAMETERS: 
NUMBER OF TERMINALS M = 400 , PROPAGATION DELAY R = 12 
FOR THE TIME PERIOD 1-1000, INPUT RATE Mcr = 0.3232 
FOR THE TIME PERIOD 1001-1200, INPUT RATE Mcr = 1.0 
FOR THE TIME PERIOD 1201-6000, INPUT RATE Mo = 0.3232 
RETRANSMISSION CONTROL LIMIT = 23, INPUT CONTROL LIMIT 116 
Ko = 10 , Kc = 150 , WINDOW SIZE W = 60 

AVERAGE VALUES IN 200 TIME SLOT PERIODS: 
THROIIGHPIIT ._. TRAF.£..LC-

RATE- 5 ~ATE- G 
PACKET 

OELAY- 0 
ERACT 111N _~_...AVEb'A(jF 

EMPTY HACKLOG 
2A.C.iQ :rs ... 
,~[" JEC T ED 

1 - 200 0.290 0.625 30.29 0.555 5.5 0 
__ ._. 2.Q.L - 4. a a a 32 5 ~.z..a..o. .. _____ .3.A.....Q..C. _._ ...... 0I-<·a..;5~o .. 5;;;1..-__ 6 ·9 0 

401 - 600 0.285 0.450 23.67 0.635 2.q 0 
601 800 0.2<.)5 0.625 31.76 0.565 5.9 0 
801 1000 0.325 0.850 42.57 0.455 9.3 0 

1 001 - I? 00 0 .20 5 .. __ .2..a...lA.!i ___ . .....;5;.J.o2~41L&. • ...;J3...:;2~ __ ...JO ........ ...L'.=:e9~OL-____ ..::l5!...ioOu.,""OL-.. ___ ..Jj4~9 

1201 1400 0.345 1.330 389.68 0.325 75.2 13 
1401 - 1600 0.355 0.880 188.11 0.435 51.5 0 
1601 1800 0.375 0.735 179.37 0.460 34.9 0 

_---LI .l..J.8.wO..&.I_. __ ... 2 ..... 0 .... 0 .... 0~ ____ .... o ..... .2.2.!i ____ ...... 1 ......... ? ..... 9 .... 5/L.. 2 9 7 • d 5 0 e 3 8 5 3 " • 1 --5.... __ 
2001 - 2200 0.325 1.005 530.77 0.415 35.3 21 
2201 2400 0.380 0.905 127.32 0.365 1b.7 G 
2401 - 2600 0.305 0.485 27.64 0.605 3.1 0 
2601 ? 800 __ O. 290 0 • 4. J a 2 O. 86 a .64 a 2 • 3 ____ ----L.. _____ . 
2801 - 3000 0.345 0.745 35.38 0.485 7.2 0 
3001 - 3200 0.300 0.455 17.62 0.635 2.4 0 
3201 - 3400 0.280 0.615 28.4A 0.575 5.6 0 
3401 - 3600 0.390 O.BIO 37.90 O •• ?~ 7.9 a 
3601 - 3800 0.330 0.655 30.65 0.520 5.6 0 
3801 - 4000 0.300 0.390 19.30 0.655 1.7 0 
4001 - 4200 O. 31 5 0 • 61 5 29. 24 0 • 56 0 5 • 1 0 
4201 - 4400 0.335 0.600 24.51 0.545 4.5 a 
4401 4600 0.300 0.450 24.32 0.630 2.6 0 
4601 4800 0.280 0.480 25.29 0.625 3.7 0 
4801 - 5000 0.285 0.585 32.07 0.580 5.3 0 
5001 - 5200 0.330 0.510 26.41 0.555 4.1 0 
5201 54CO 0.335 0.550 23.67 0.560 3.7 0 
5401 - 5600 0.335 0.640 28.81 0.530 5.2 0 
5601 - 5800 0.275 0.410 21.56 0.66b 2.4 0 
56Q' - 6000 ft.285 peAtS 22 35 0.64 5 2.7 a 

Figure 7-Bimulation run for IRCP-CONTEST subject to a channel input pulse 

which is equal to K at q = 1 and increases to infinity as q de­
creases to zero. 

The above results indicate that the average value of K 
behaves in the desired manner, namely, K increases as q de­
creases due to an increasing channel traffic. Below we examine 
the CONTEST algorithms and Heuristic RCP through 
simulations. 

Simulation results 

We summarize in Tables I-II, throughput-delay results 
for channel load lines specified by 

(1) M=200, (no, So)= (4,0.32) 
(2) M=400, (no, So)= (4,0.32) 

In both cases, we assume Ko= 10 and Kc=60. Included in 
these tables are (a) optimum POLITE results for ICP, RCP 
and IRCP, (b) simulation results for ICP and Rep using 
optimal control policies and under the assumption of perfect 
channel state information, (c) simulation results for the 
CONTEST algorithm using ICP and RCP optimal control 
policies, and (d) simulation results for Heuristic RCP. The 

duration of each simulation run was taken to be 30,000 time 
slots. IRCP was not tested by simulation since the optimal 
value of n2 is in all cases so large that within the simulation 
duration, the channel state Nt (almost surely) will not ex­
ceedit; the control procedure becomes effectively RCP speci­
fied by n1'-

The ICP-CONTEST algorithm was tested with channel 
history window sizes of 20, 40, 60, and 80 time slots. We see 
from Tables I and II that W =40 appears to give the best 
throughput-delay results. Note that for R = 12 and K = 10, 
W=40 is approximately twice R+K. 

The RCP-CONTEST algorithm was also tested with 
various values of W. In this case, K takes on two values, Ko 
and Kc. 'There is no clear-cut optimal W. It appears that 
W = 60 is a good choice. 

There is no significant degradation in channel performance 
(from the theoretical optimum) given by the CONTEST 
algorithms and Heuristic RCP. The CONTEST algorithms, 
however, seem to have an edge over Heuristic RCP. The ex­
cellent performance of the CONTEST algorithms can be 
attributed to the flatness of Sout and D near the optimum as 
a function of the control limit (see Figure 5). We found that 
this flatness property is less pronounced for channel load 
lines with large values of So or M, such as So=0.36 or 



152 National Computer Conference, 1975 

INPUT PARAMETERS: 
NUMBER OF TERMINALS M = 400 , PROPAGATION DELAY R = 12 
FOR THE TIME PERIOD 1-1000, INPUT RATE Mo = 0.3232 
FOR THE TIME PERIOD 1001-1200, INPUT RATE Mcr = 1.0 
FOR THE TIME PERIOD 1201-6000, INPUT RATE Mcr = 0.3232 
K1 = 10 Km = 150 (m ~ 2) 

AVERAGE VALUES IN 200 TIME SLOT PERIODS: 

TIME PFRIOD THR OlJGHPlII TRAFFIC PACKET ERACIICN AVERAGE 
RATE- S RATE- G OELAY- 0 E~PTY BACKLUG 

1 200 0.285 0.395 19.877 0.665 2.1 
__ ....i::2:JQLLI--==--....fI4J.1QLLQL-___ --L.IQL.l ..... ].12~Q~ ___ -L.iO:.. ...... J:a.:9::&.Ou-___ ...Jlu6~ • ..:l11.oil2::;J8:1... ___ ...... o~.Lo6u..;;,)5~C ....... ____ .-.-J.......2.. ___ _ 

401 600 0.255 0.425 22.824 0.660 ?8 
601 800 0.290 0.475 26.172 0.630 4.0 
801 1000 0.325 0.570 28.554 0.570 5.7 

1001 IZOO 0.230 2.395 34.109 0.120 b8.8 
1201 1400 0.285 1.695 141.333 0.215 112.6 
1401 1600 0.310 1.500 273.177 0.230 91.8 
1601 1 800 0 • 375 1 • 41 5 2 88 .693 O. 1 q C 68 • 5 
1801 2000 0.260 1.110 224.661 0.J7 5 ~3.1 

2001 2200 0.360 1.240 257.333 0.300 48.8 
2201 2400 0.355 0.925 193.986 0.395 31.3 
2401 2600 0.385 0.655 122.818 0.490 15.2 
2601 2600 0.320 0.565 66.094' 0.565 8.8 
2801 3000 0.280 0.420 39.357 0.660 5.6 
3001 3200 0.295 0.495 31.678 0.615 6.~ 
3201 34CO 0.265 0.680 45.000 0.545 11.7 
3401 3600 0.350 0.750 37.057 0.485 13.3 
3601 3800 0.310 0.465 65.274 0.625 8.2 
3801 4000 0.275 0.520 33.618 0.610 7.7 
4001 4200 0.330 0.480 34.652 0.595 5.2 
4201 4400 4.325 0.615 29.585 0.540 7.5 
4401 4600 0.370 0.525 38.608 0.560 7.6 
4601 4800 0.260 0.705 44.250 0.550 15.9 
4801 5000 0.315 0.720 63.520 0.460 11.1 
5001 5200 0.350 0.635 41.729 0.520 9.0 
5201 5400 0.285 0.475 29.368 0.625 6.6 
5401 5600 0.315 0.510 36.460 0.595 4.9 
5601 5800 0.290 0.425 24.190 0.650 4.1 
5601 6000 0.305 0.490 26.736 0,610 •• 7 

Figure 8-Simulation run for heuristic Rep subject to a channel input pulse 

M =400. This explains the more significant degradation in 
channel performance given by the CONTEST algorithms 
shmvn in Table II for M = 400 than in Table I for M = 200. 

In Figure 4, it was shown that in an uncontrolled slotted 
ALOHA channel, a channel input rate of 0.35 packet/slot 
was enough to cripple the channel indefinitely. In Figures 7 
and 8, we show by simulation that under severe pulse over­
load circumstances both the IRCP-CONTEST algorithm and 
Heuristic RCP prevented the channel from going into satura­
tion. In these simulations, the normal channel load line was 
given by M =400 and (nO) So) = (4, 0.32) both before and 
after the pulse. During a period of 200 slots (namely, the 
time period 1000-1200 in the figures), the packet generation 
probability (T was increased such that M (T = 1.0 packet/slot. 
Observe that both algorithms handled the sudden influx of 
new packets with ease. In both cases, the channel through­
put, instead of vanishing to zero as in an uncontrolled chan­
nel, maintained at a high rate and within less than 3000 
slots, the channel returned to almost normal operation. 

FurtherdisCU8sions of results 

In a real system, the channel input source will typically 
vary slowly with time; for example, the number of users 
fluctuates during the day. We must emphasize the fact that 
the control policies considered have been optimized to con­
trol statistical channel fluctuations under the assumption of a 
stationary channel input. Although we have shown that they 
can temporarily handle very high channel input rates, addi­
tional control mechanisms should be designed into the system 
to make sure that channel overload conditions do not prevail 
for any long period of time (e.g., by limiting the maximum 
number of users who can "sign-on" and become active chan­
nel users). 

The control action space of IRCP includes both control 
action spaces of ICP and RCP as subsets. Thus IRCP must 
give a channel performance at least as good as ICP and RCP. 
Next, comparing IRCP-CONTEST and Heuristic RCP, we 
see that the latter is easier to implement. However, under a 



normal load (say So~O.32), IRCP-CONTEST is superior to 
Heuristic RCP. This is because Heuristic RCP introduces 
longer delays to collided packets even when these packets 
are merely unlucky in ligh~ channel traffic. On the other 
hand, with IRCP, control actions are not exerted until the 
channel traffic exceeds certain "dangerous" levels. 

CONCLUSIONS 

Packet switched satellite and ground radio systems have 
been proposed as new alternatives for computer communica­
tions. A multi-access broadcast packet switching technique 
that has attracted considerable interest is the slotted ALOHA 
random access scheme. A slotted ALOHA channel multi­
accessed by a large population of users has been shown to 
exhibit unstable behavior. Dynamic control schemes are 
necessary to prevent the occurrence of channel saturation in 
unstable channels. The dynamic channel control problem has 
been studied using a finite-state Markovian decision model 
in References 7 and 13 under the assumption of perfect chan­
nel state information. 

In this paper we have studied dynamic channel control 
algorithms (CONTEST algorithms) which implement the 
theoretical control policies by using a heuristic scheme to 
estimate the instantaneous channel state. A heuristic retrans­
mission control algorithm has also been studied which cir­
cumvents the state estimation problem. Simulation results 
indicate that these control algorithms are capable of achiev­
ing a channel throughput-delay performance close to the 
theoretical optimum, as well as capable of preventing chan­
nel saturation under temporary overload conditions. 

The problem of unstable behavior is very real in random 
access systems (e.g., ALOHA, slotted ALOHA, reservation­
ALOHA, carrier sense multi-access, etc.). To guarantee an 
acceptable level of channel performance for such systems, 
some form of dynamic channel control is a must. The prob­
abilistic model and dynamic channel control schemes intro­
duced herein for a slotted ALOHA channel can probably be 
extended to solve stability and dynamic control problems of 
other random access systems. 

REFERENCES 

1. Abramson, N., "THE ALOHA SYSTEM-Another Alternative for 
Computer Communications," Fall Joint Computer Conference, 
AFIPS Conference Proceedings, 1970, Vol. 37, pp. 281-285. 

Dynamic Control Schemes 153 

2. Crowther, W., R. Rettberg, D. Walden, S. Ornstein and F. Heart, 
"A System for Broadcast Communication: Reservation-ALOHA," 
Proceedings of the Sixth Hawaii International Conference on System 
Sciences, University of Hawaii, Honolulu, January, 1973. 

3. Abramson, N., "Packet Switching with Satellites," National Com­
puter Conference, New York, June 4-8, 1973, AFIPS Conference 
Proceedings, 1973, Vol. 42, pp. 695-702. 

4. Kleinrock, L. and S. S. Lam, "Packet-Switching in a Slotted 
Satellite Channel," National Computer Conference, "New York, 
June 4-8, 1973, AFIPS Conference Proceedings, 1973, Vol. 42, 
pp 703-710. 

5. Roberts, L. G., "Dynamic Allocation of Satellite Capacity Through 
Packet Reservation," National Computer Conference, New York, 
June 4-8, 1973, AFIPS Conference Proceedings, 1973, Vol. 42, 
pp. 711-716. 

6. Butterfield, S., R. Rettberg and D. Walden, "The Satellite IMP for 
the ARPA Network," Seventh Hawaii International Conference on 
System Sciences, University of Hawaii, Honolulu, January 8-10, 
1974, Proceedings of the Special Subconference on Computer Nets, 
1974. 

7. Lam, S. S., Packet Switching in a Multi-Access Broadcast Channel 
with Application to Satellite Communication in a Computer Network, 
Ph.D. Dissertation, Computer Science Department, University of 
California, Los Angeles, March 1974 (available as Technical Report 
UCLA-ENG-7429, April 1974). 

8. Kleinrock, L. and F. A. Tobagi, "Carrier Sense Multiple Access for 
Packet Switched Radio Channels," Proc. of the International 
Conference on Communications, Minneapolis, Minn., June 1974. 

9. Jackson, P. E. and C. D. Stubbs, "A Study of Multi-access Com­
puter Communications," Spring Joint Computer Conference, 
AFIPS Conference Proceedings, 1969, Vol. 34, pp. 491-504. 

10. Metcalfe, R. M., "Steady-State Analysis of a Slotted and Con­
trolled ALOHA System with Blocking," Proceedings of the Sixth 

. Hawaii Internatianal Conference on System Sciences, University of 
Hawaii, Honolulu, January 1973. 

11. Kleinrock, L. and S. S. Lam, "On Stability of Packet Switching in 
a Random Multi-Access Broadcast Channel," Seventh Hawaii 
International Conference on System Sciences, University of Hawaii, 
Honolulu, January 8-10, 1974, Proceedings of the Special Sub­
conference on Computer Nets, 1974. 

12. Kleinrock, L. and S. S. Lam, "Packet Switching in a Multi-Access 
Broadcast Channel: Performance Evaluation," IEEE Transactions 
on Communications, Vol. COM-23, April 1975. 

13. Lam, S. S. and L. Kleinrock, "Packet Switching in a Multi-Access 
Broadcast Channel: Dynamic Control Procedures," to appear in 
IEEE Transactions on Communications. 

14. Metcalfe, R. M., Packet Communications, Ph.D. Dissertation, 
Harvard University, 1973 (available as MIT Project MAC Technical 
Report TR-114, December 1973). 

15. Howard, R., Dynamic Probabilistic Systems Vol. 1: Markov Models 
and Vol. 2: Semi-Markov and Decision Processes, Wiley, New York, 
1971. 





Operating system design considerations for 
the packet-switching environment* 

by DAVID L. RETZ 
Speech Communications Research Laboratory, Inc. 
Santa Barbara, California 

INTRODUCTION 

One of the striking developments in computing and com­
munication technology during the past decade is reflected 
in the evolution of packet-switching computer net­
works. 1

,2,3 Packet-switching communication techniques 
allow dynamic allocation of a set of communication 
resources (circuits) so that they may be flexibly shared 
among a number of autonomous processors. Implementa­
tion of such packet-switching networks has required many 
design decisions, such as the choice of network topology, 
routing strategies, and the establishment of conventions, 
or protocols, for information interchange between network 
resources. 

This paper is concerned with the design requirements of 
Host operating systems: those _ systems whose primary 
business is the management of computing resources rather 
than communication resources. Low-level communication 
tasks such as routing fall outside the realm of the Host 
responsibilities discussed here and are performed by 
means of a sub-network of small computers dedicated to 
the task of packet-switching. In the ARPANET these com­
puters are called Interface Message Processors, or IMPS, 
and use packet-switching techniques to communicate via 
50-kilobit common carrier circuits. Each IMP provides. up 
to four high-speed synchronous serial ports to which Hosts 
connect using special-purpose Host-IMP interfaces.4 

Packet-switching network environments place special re­
quirements on the design of the connected Host operating 
systems. Attachment to the ARPANET, for example, has 
required a number of additions or modifications to exist­
ing operating systems. There are certain structural fea­
tures which must be incorporated in system design in 
order to facilitate effective use of distributed computing 
resources. We begin by examining a few of these features. 

IMPLICATIONS ON HOST SYSTEM 
ARCHITECTURE 

Sharing of distributed resources is made possible by the 
cooperation of distributed processes. The notion of process 

* This work was supported by the Advanced Research Projects Agency, 
Department of Defense, through Contract Number NOOOl4-73-C-0221, 
administered by the Office of Naval Research. 

155 

has been widely used in operating system structures5
,6 in 

order to provide a modular representation of autonomous, 
event-driven computational tasks. Specification and im­
plementation of protocols-well-defined conventions by 
which processes communicate-has allowed resource shar­
ing to occur in a non-homogeneous environment. A process 
might utilize a remote resource such as a disk file, for 
example, by transmitting a prescribed command to a re­
mote process which interprets and carries out the 
hypothetical command: "read the tenth record of disk file 
XYZ and transmit back its contents." 

A layered structure of protocols has evolved to make 
possible network-wide sharing of ARPANET resources. 
The Host-Host protocol rests at the foundation of this 
structure, providing a mechanism by which processes in 
the network may communicate.7 A number of higher level 
protocols make use of Host-Host protocol to perform func­
tion-oriented tasks.s For example, the Telnet protocol 
provides terminal access to remote interactive systems on 
the network, and the File Transfer Protocol allows files to 
be copied from one site to another. 

The standard ARPANET Host-Host protocol creates 
inter-process communication (lPC) channels, or "connec­
tions," at the request of Host processes, through an ex­
change of special control messages between the Host 
operating systems. In general, this facility has been pro­
vided by the implementation of a set of procedures, collec­
tively referred to as a Network Control Program, or NCP, 
which provides primitives for creation, control of data 
flow, and destruction of connections. An excellent survey 
of techniques used to implement the NCPs of various AR­
P ANET Host systems has been given by Postel,9 

Two major inferences regarding the desirable charac­
teristics of Host operating system structure may be drawn 
from the ARPANET's evolution. First, the real-time 
event-driven nature of Host-IMP and Host-Host interac­
tion requires some form of multiprogramming (i.e., 
multiple-process) capability in the Hosts. A Host system 
which supports terminal access to a network, for example, 
might utilize a process for each terminal. Each of these 
processes waits until a network message is received for ter­
minal display or until a key-code is received for trans­
mission to a remote system. 

A second significant structural requirement of Host 
operating systems is a mechanism for communication 



156 National Computer Conference, 1975 

between processes residing within a given Host ("local" 
processes) and processes residing in other Hosts on the 
network ("remote" processes). This inter-process com­
munication (IPC) facility is achieved by the transmission 
of messages between Hosts according to an agreed-upon 
protocol. Implementation of network-wide IPC 
mechanisms (such as those embodied by the ARPANET 
Host-Host protocol) is greatly facilitated by the presence 
of internal mechanisms for IPC within each Host system.10 

Systems which lack these capabilities force the NCP to ac­
cept this responsibility; this is usually a fairly major im­
plementation task when processes reside in different 
protected regions or address spaces. 

Another important decision that must be made relates 
to the way in which the NCP is included in an operating 
system. The N CP may be embedded in the Host's file 
system, allowing network "connections" to be created and 
data transfers to occur in the same fashion that files are 
opened and read/written. This greatly facilitates the im­
plementation of higher level protocols (e.g., file transfer) 
because it enables the standard file system primitives to 
be used for data transfer on network connections. Such an 
approach is practical when network protocol software is 
included as an integral part of the development of an 
operating system or when significant modification to an 
existing operating system may be tolerated. A disad­
vantage is that the file system must be modified when 
changes occur to low-level Host-Host protocols. 

To simplify implementation and maintenance, it is de­
sirable that an NCP run within a normal "user" job under 
the system. If system-wide IPC facilities are non-existent, 
this technique is feasible only when: (1) it is possible for 
the user job to usurp control on certain system calls which 
are issued by other user jobs, or (2) the scope of interac­
tion with network resources is limited to a set of processes 
within a job, rather than globally available to all jobs. The 
first case makes assumptions about the protection struc­
ture which exists in the system, and i~usually impractical 
when jobs occupy mutually exclusive protected memory 
spaces. The second case is feasible when the Host's sole 
function in the network is the management of resources 
which are allocated to the NCP "user" job; this technique 
might be used, for example, to provide access to a large 
data base. In both of the above cases it is necessary that 
the NCP implement an inter-process communication 
mechanism. 

When a robust IPC facility is provided by an existing 
Host system it is possible to allow processes within the 
Host to communicate on a network-wide basis with 
minimal system modification. In this case, an NCP may 
exist as a user job, making use of the operating system's 
IPC facility to accept commands from the Host's 
processes (such as requests to open connections) and to 
handle the data transfer between local and remote 
processes .. 

Designers of Host operating systems for packet-switch­
ing networks must be sure that the chosen architecture 
provides sufficient flexibility. This is exemplified by the 
evolution of an ARPANET standard Host-Host protocol as 

well as special-purpose protocols for inter-network com­
munication and packetized speech transmission. In some 
systems additional flexibility has been obtained by system 
calls which allow processes to intercept certain arriving 
messages and to transmit network messages directly, 
rather than forcing all network communication to occur by 
means of a standard Host-Host protocol. 

HOST IPC MECHANISMS 

Techniques for inter-process communication and 
synchronization in multiprogramming systems have 
received a good deal of attention.6,n There tend to be two 
strategies for implementing IPC systems. The first of 
these, like the telephone system, has required the es­
tablishment of a connection, or logical data path, before 
data may be transmitted between processes. In the dis­
tributed environment this strategy entails the utilization of 
special-purpose control messages which establish a name 
and control the data flow for the connection. The second 
approach has shunned the notion of prolonged connec­
tions, and performs the transfer of messages between 
processes whenever they mutually agree to communicate 
(e.g., process A requests. to receive from process B while 
process B requests to send to process A). Control informa­
tion (such as acknowledgment of messages received) is ef­
fectively embedded in each message exchanged between 
the Hosts. Walden has proposed such a connection-free 
mechanism12 for inter-process communication within a 
packet-switching network. Metcalfe has also discussed the 
possibility of connection-free protocols.13 In fact, it is be­
coming clear that the distinction should not actually be 
between connection-based protocols vs. connection-free 
protocols. The proper distinction to make is between pro­
tocols based on transmission of a single indefinitely long 
bit stream (starting when a connection is opened and end­
ing when a connection is closed) vs. a stream of discrete 
messages (which may still require some connection-like 
control information). The message-based strategy is less 
sensitive to transmission errors which might occur in the 
communication subnetwork; the combination of control 
and data information within each transmitted message, for 
example, reduces the possibility of inconsistencies arising 
from the loss of a message. In addition, the message-based 
scheme requires minimal explicit connection setup, in 
some cases eliminating it entirely. Such an approach is be­
ing investigated in the design of Host-Host protocol tech­
niques for interconnected packet-switching networks.14 

There are various means by which IPC techniques have 
been implemented in operating systems. Some systems 
make use of a shared area of storage to pass messages 
between processes, utilizing the system's process synchro­
nization techniques to announce the existence and ac­
knowledgrilent of these messages. In other cases there 
exist special system calls (e.g., SEND, RECEIVE) which 
transfer data from a specified sender's buffer address to a 
matching receiver's buffer address. Akkoyunlu, Bernstein, 
and Schant~15 have pr~posed a system (SBS) which sup-



ports inter-process communication and file I/O activities 
in a unified fashion. This approach has the distinct ad­
vantage of allowing processes to access data files stored 
within a remote system in the same way they would if the 
files were stored locally. 

A similar IPC mechanism has been implemented in the 
ELF system16 by means of the I/O primitives provided by 
the operating system. This technique enables the NCP to. 
be included in the system as a user job, and all communi­
cation with the ARPANET occurs via this IPC structure. 
IPC occurs by means of a set of rendezvous-points, or 
ports, which appear identical to I/O devices except for dif­
ferences in name. Processes may agree to communicate on 
a predesignated port, or may use a pair of such ports to ex­
change port numbers. 

The ELF operating system provides a multiprogram­
ming environment which allows creation and destruction 
of processes. Each process is named by means of a 
process-ID, owns an associated linked list structure called 
an event queue, and may be in one of two states: ready or 
blocked. 

Processes synchronize by means of short (24-bit) 
messages which signal the occurrence of events. This is im­
plemented by means of the following system primitives: 

(1) SIGNAL (process-ID, event message) 
(2) WAIT. 

The SIGNAL primitive adds an event message to the 
event queue of process-ID; the SIGNALled process is 
placed in the ready state. The WAIT primitive tests the 
event queue of the active process, and places the process 
in the blocked state if the event queue is null; otherwise 
WAIT removes the first event message from the event 
queue and returns to the caller with the event message and 
the signalling process-ID. WAIT thus blocks the active 
process until an event message is placed on its event 
queue. 

A process transmits data to another process by means of 
the primitive: . 

WRITE (port, mode, addr, count, event message), 

in which port is the port name, mode denotes a stream or 
record-oriented transfer ,addr is the address of data to be 
transmitted, count is the number of bytes for transfer, and 
event is an event message which the process wishes to 
receive (from WAIT) when the message has been sent. In 
record mode transfers the process is signalled when one or 
more bytes are taken by a receiver; in stream mode 
transfers the process is signalled when all bytes of the 
message are taken. 

A process receives messages from another process by 
means of the primitive: 

READ (port, mode, addr, count, event message). 

All arguments are identical to those of the WRITE primi­
tive. In record mode the receiving process is signalled 

Operating System Design Considerations 157 

when one or more bytes are placed in its input buffer; in 
stream mode the receiver is signalled only when all of the 
requested bytes have been placed in its input buffer. This 
allows a receiving process to reserve a large input buffer 
and wake-up when any data has been placed in its buffer 
(as is the case for a process awaiting input from the net­
work and destined to be displayed on the user's terminal). 
Processes issuing WRITE or READ requests cause entries 
to be placed on a queue for the specified port; entries are 
removed from the queue when matching WRITEs and 
READs occur, and the appropriate transfer conditions 
(i.e., record or stream) are satisfied. 

An additional primitive is provided to aid processes 
(e.g., and NCP) in gauging their allocation of buffer 
storage. 

STAT (port) 

returns the number of bytes which are queued to be writ­
ten or read on the specified port. Special consideration is 
given when the requested count is specified as o. In this 
case the WRITEing or READing process is signalled if 
there is a matching request on the specified port; the state 
of the port is unaffected in this case, and the process may 
then issue a normal WRITE or READ to transfer the 
pending data. This enables a process to wait for a match­
ing request without locking up an input buffer for an un­
known period of time. 

OTHER HOST FACILITIES 

Thus far we have dealt primarily with facilities for 
inter-process communication among Hosts in a distributed 
network. The capability of the Host as a viable network 
resource, however, depends heavily on services available 
in the Host operating system. In many cases this involves 
more than an implementation of protocols, and requires 
significant augmentation of Host facilities. Hosts provid­
ing interactive services, for example, must allow network 
access to occur in a fashion which is compatible with local 
terminal 1/ O. Many time-shared operating systems utilize 
a dedicated "logger" process which awaits the activation 
of previously dormant terminals. A mechanism is required 
to enable notification of the logger process when a network 
port becomes assigned on behalf of a user at a remote ter­
minal. In a system which treats files and network connec­
tions uniformly this may be achieved by means of a 
system primitive which assigns a pair of files (Le., the net­
work connections) as controlling input and output data 
streams for the logger. 

Batch-oriented service Hosts require the ability to re­
direct input and output files to network ports. This task is 
facilitated in systems which support remote job entry, 
allowing the set of network ports to be associated with a 
pseudo remote job entry terminal. 

Host operating systems supporting file transfer must 
supply a flexible set of primitives for the allocation, updat­
ing, deletion, and directory maintenance of the file system. 



158 National Computer Conference, 1975 

TERMINALS 

USER 
FRONT-END 

} 
NETWORK 

} PERIPHERALS 

PACKET-SWITCHED 
PORT 

Figure I-Typical user front-end system 

In addition, a means of user authentication is usually re­
quired to provide an access control and accounting 
mechanism for the Host's resources. 

FRONT-END SYSTEMS 

In a number of cases it has been desirable to minimize 
the changes to a Host operating system when adding a pre­
existing Host to the network. In other cases, it has been de­
sirable for reasons of reliability, flexibility, or increased 
Host system performance, to clearly separate the network 
functions from the Host. These two cases have frequently 
been handled by the addition of a front-end system as an 
interface between the network and the Host. Front-end 
Hosts are usually implemented by means of small com­
puters utilizing operating systems which support network 
protocols as well as various terminal and peripheral 
handlers. 

The most common application of front-end systems in 
the ARPANET results from the need for user terminal 
and peripheral access to network computing resources. 
The TIP, 17 ANTS,18 and ELF16 systems are examples of 
such user front-ends, shown in Figure 1. In the above 
systems, for example, users at terminals may LOG IN at 
the front-end and use the Telnet protocol to connect to 
various server sites on the network. Data may be trans­
ferred to or from attached peripheral devices (line printers, 
magnetic tape units, disk drives) by means of a file transfer 
protocol. 

A second type of front-end system facilitates the attach­
ment of a computing resource (server Host) to a network. 
This approach aims to relieve the server Host of network 

communication tasks, such as those required to support 
Host-Host protocols, and is desirable when software modi­
fications to an existing Host system are prohibited. 

The structural requirements of the operating system in 
the server front-end are similar to those in the user front­
end. (In fact, systems may serve both as a user and as a 
server front-end.) Figure 2 illustrates the means of inter­
connection of server and server front-end. Processes in the 
server front-end respond to (user) requests from the net­
work, and provide access to the server via a number of 
server / front-end ports (hard-wired connections). For 
example, a front-end system might be connected to a 
number of terminal interface ports belonging to a server 
system which supports interactive terminal access. When 
a network message which requests connection to the server 
is received by the front-end, a process is created in the 
front-end; this process then allocates an unused 
server/front-end port and initiates requests for (full-du­
plex) data transfer between the remote network process 
an~ the server front-end port. This approach allows the 

SERVER 

I 
I ... 
I 
I 

SERVER 
FRONT-END 

NETWORK 

I 
I 
I 
I 
} SERVER / 

F RONT-END 
PORT(S) 

PACKET- SWITCHED 
PORT 

Figure 2-Server front-end system 



server to be accessed from the network with no change to 
server software; however, it lacks generality, and server 
capabilities are limited to those functions associated with 
terminals. The server front-end model also applies to 
batch-oriented systems, in which case the style of connec­
tion between the server and the server front-end might re­
semble a set of card readers or printers. 

When software additions are feasible in the server, a 
server / front-end protocol may be utilized to permit com­
munication over a single hard-wired connection. As in the 
case of NCP implementations described earlier, however, 
general access to network resources by processes within 
the server requires some form of server IPC capability. 

Interestingly, in some cases, functions may be 
performed by a large Host on behalf of a small front-end. 
For example, the means of providing control of access to a 
network require,s access to a data base of user names, 
passwords, account numbers, and so forth. This may be 
accomplished by allowing the front-end system to si­
multaneously request connection (broadcast) to a number 
of "server" Hosts, accepting the first successful comple­
tion of a connection, and then requesting the attached 
server to perform the user authentication task; such a 
cooperative technique is in use between the TIP and 
TENEX RSEXEC19 systems on the ARPANET. This type 
of interaction between Host systems is an example of au­
tomated resource sharing. 

AUTOMATED RESOURCE SHARING 

Host operating systems in the network environment 
may be structured to allow automatic utilization of 
resources in other Hosts. This subject has generated 
considerable interest because there is need for distributed 
data bases and load sharing in the network environment. 
As the size of network user communities expands, it be­
comes increasingly important to automate the allocation of 
processing and storage resources to allow their widespread 
and efficient use, while reducing problems faced by unso­
phisticated users. The realization of these techniques in­
volves a diversion from the traditional image of 
centralized operating system structures; it involves the 
management of resources which are distributed, as op­
posed to centralized, by means of the coordination of dis­
tributed processes. This coordination requires within each 
centralized system a well-defined protocol and a flexible 
set of facilities to enable the processes to reliably carry out 
the management of network-wide resources. 

Facilities provided by such a distributed operating 
syste:ql make possible common file naming schemes which 
are global to the network, thereby freeing a user of the 
responsibility of remembering a particular file's location. 
In addition, a network-wide user (directory) naming 
convention may be established. Tools for user-user com­
munication, such as mail facilities, direct terminal inter­
communication, and conferencing are needed on a net­
work-wide basis. These capabilities will become increas­
ingly desirable as the number of widely-dispersed service 

Operating System Design Considerations 159 

systems and users requiring access to shared data bases 
increases. Techniques are required for automatic archiv­
ing of network data bases; similarly, there is need for auto­
matic retrieval of files (or portions thereof) upon 
reference, in much the same way as information flows 
between levels of storage in current centralized hierar­
chical storage systems. Of course, solutions to these prob­
lems raise a number of complex data management, ac­
counting and security issues. 

Development of the TENEX RSEXEC19 System has 
been a step in this direction, providing users with a unified 
network file directory structure and terminal-terminal 
communication capabilities. The associated RSEXEC pro­
tocol allows the involvement of a number of TENEX sites, 
and allows other non-TENEX systems to participate. The 
success of this effort has been made possible in part by the 
characteristics of the TENEX operating system, which 
provides a tree-structured process and virtual memory ca­
pability.20 

The development of distributed operating system struc­
tures requires a number of support facilities within each 
centralized system. A "system within a system" approach 
is desirable in which the resource-sharing processes utilize 
system primitives available in the parent operating system 
and create sub-processes which carry out remotely 
requested tasks. The creator processes intercept system 
calls issued by the sub-processes, providing them with a 
different virtual programming environment from that pro­
vided by the parent operating system. For example, a sub­
process may access files in a network-wide directory struc­
ture by means of what it thinks are standard system calls. 

Load-sharing techniques are aimed at an allocation of 
resources which provides distribution of load or assign­
ment of processing tasks to the most appropriate server 
sites. For example, it is possible to allow tasks to be 
cooperatively carried out (simultaneously) by a number of 
servers; a protocol is being designed and implemented 
which allows processes to call procedures which execute on 
differing machines.21 Basic problems are encountered in 
attempts at dynamic distribution of load: programs may 
depend on locally available data bases or on hardware or 
software peculiarities of a particular system.22 These prob­
lems may be relieved by establishing a "standard" set of 
programs (e.g. editors, text-formatting programs, com­
pilers) and conventions which guarantee compatibility 
with the virtual programming environment provided by 
the resource-sharing processes. The practicality of 
performing this type of load sharing, however, hinges on 
the existence of methods of accessing remotely distributed 
data. 

SUMMARY 

This paper has discussed structural characteristics which 
are required in Host operating systems for a packet­
switching network; the need for flexible mechanisms for 
inter-process communication in the network Host (along 
with an example of an IPC mechanism for an ARPANET 



160 National Computer Conference, 1975 

Host System); the function and structure of "front-end" 
Host systems as network user and server interfaces; and fi­
nally, the need for development of automated techniques 
for managing resources in the distributed environment. 
These techniques will eventually provide capabilities for 
widespread access to shared data bases and new services 
for user-user communication. Their development requires 
well-structured centralized operating systems which serve 
as building blocks in the framework of a network-wide dis­
tributed operating system. 

ACKNOWLEDGMENTS 

The author wishes to thank R. Brooks, J. Malman, J. 
Miller, M. Retz, and D. Walden who assisted in the 
development of this manuscript. 

REFERENCES 

1. Roberts, L. G., F. D. Wessler, "Computer Network Development to 
Achieve Resource Sharing," Proceedings of AFIPS SJCC, 1970, pp. 
543-549. 

2. Kahn, R. E., "Resource Sharing Computer Communications Net­
works Proceedings of the IEEE," Vol. 60, No. 11, November 1972, 
pp.1397-1407. 

3. Pouzin, L., "Presentation and Major Design Aspects of the 
CYCLADES Computer Network," Proc. 3rd. Data Communications 
Symp., 1973, pp. 8()'88. 

4. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, D. C. 
Walden, "The Interface Message Processor for the ARPA Computer 
Network," Proceedings of AFIPS SJCC, 1970, Vol. 36, pp. 551-567. 

5. Dijkstra, E. W., "The Structure of the "THE"-Multiprogramming 
System," Communications of the ACM, Vol. 11, No.5, May 1968, pp. 
?41-346. 

6. Horning, J. J., B. Randell, "Process Structuring," ACM Computing 
Surveys, Vol. 5, No.2, March 1973, pp. 5-30. 

7. McKenzie, A. A., HOST/HOST Protocol for the ARPA Network, Na­
tional Technical Information Service, AD757680. 

8. Crocker, S. D., R. M. Metcalfe, J. B. Postel, J. F. Heafner, "Func­
tion-Oriented Protocols for the ARPA Computer Network," Proceed­
ings of AFIPS SJCC, 1972, Vol. 40, pp. 271-279. 

9. Postel, J. B., Survey of Network Control Programs in the ARPA 
Computer Network, MITRE Technical Report #6722, October 1974, 
Revision 1, 89 pp. 

10. Metcalfe, R. M., "Strategies for Operating Systems In Computer 
Networks," Proceedings of the ACM Annual Conference, August 
1972, pp. 278-281. 

11. Spier, M., E. Organick, "The MULTICS Interprocess Communica­
tion Facility," Proceedings ACM Second Symposium on Operating 
System Principles, Princeton University, October 2()'22, 1969, pp. 
83-91. 

12. Walden, D. C., "A System for Interprocess Communication in a 
Resource Sharing Computer Network," Communications of the 
ACM, Vol. 15, No.4, April 1972, pp. 221-230. 

13. Metcalfe, R. M., Packet Communication, MIT Report, MAC TR-
114, December 1973. 

14. Cerf, V. G., R. E. Kahn, "A Protocol for Packet Network Intercom­
munication," IEEE Transactions on Communications, Vol. COM-22, 
No.5, May 1974, pp. 637-648. 

15. Akkoyunlu, E., A. Bernstein, R. Schantz, "Interprocess Communica­
tion Facilities for Network Operating Systems," Computer, June 
1974, pp. 46-55. 

16. Retz, D., J. Miller, J. McClurg, B. Schafer, ELF System Program­
mer's Guide, September 1974, Speech Communications Research 
Lab, Inc., Santa Barbara, California. 

17. Ornstein, S. M., F. E. Heart, W. R. Crowther, H. K. Rising, S. B. 
Russell, A. Michel, "The Terminal IMP for the ARPA Computer 
Network," Proceedings of AFIPS SJCC, 1972, Vol. 40, pp. 243-254. 

18. Bouknight, W. J., S. Denenberg, ANTS-A New Approach to Access­
ing the ARPA Network, University of Illinois Report CAC No. 47, 
July 1972. 

19. Thomas, R. H., "A Resource Sharing Executive for the ARPANET," 
Proceedings of AFIPS NCC, 1973, pp. 155-163. 

20. Bolt Beranek and Newman Inc., Computer Science Division, 
TENEX JSYS MANUAL-A Manual of TENEX Monitor Calls. 

21. White, J. E., Procedure Call Protocol Specification, November 1974, 
Augmentation Research Center, Stanford Research Institute. 

22. Dennis, J. B., "A Position Paper on Computing and Communica­
tions," Communications of the ACM, Vol. 11, No.5, May 1968, pp. 
37()'377. 



Issues in packet switching network design* 

by w. R. CROWTHER, F. E. HEART, A. A. McKENZIE, J. M. McQUILLAN, and 
D. C. WALDEN 
Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

The goals of this paper are to identify several of the key 
design choices that must be made in specifying a packet­
switching network and to provide some insight in each 
area. Through our involvement in the design, evolution, 
and operation of the ARPA Network over the last five 
years (and our consulting in the design of several other 
networks), we have learned to appreciate both the op­
portunities and the hazards of this new technical domain. 

The last year or so has seen a sudden increase in the 
number of packet-switching networks under consideration 
worldwide. It is natural that these networks try to improve 
on the example of the ARPA Network, and therefore that 
they contain many features different from those of the 
ARPA Network. We recognize that networks must be 
designed differently to meet different requirements; 
nevertheless, we think that it is easy to overlook important 
aspects of performance, reliability, or cost. It is vital that 
these issues be adequately understood in the development 
of very large practical networks-common user systems 
for hundreds or thousands of Hosts-since the penalties 
for error are correspondingly great. 

Some brief definitions are needed to isolate the kind of 
computer network under consideration here: 

Nodes. The nodes of the network are real-time com­
puters, with limited storage and processing resources, 
which perform the basic packet-switching functions. 

Hosts. The Hosts of the network are the computers, 
connected to nodes, which are the providers and users of 
the network services. 

Lines. The lines of the network are some type of com­
munications circuit of relatively high bandwidth and 
reasonably low error rate. 

Connectivity. We assume a general, distributed to­
pology in which each node can have multiple paths to 
other nodes, but not necessarily to all other nodes. Simple 
networks such as stars or rings are degenerate cases of the 
general topology we consider. 

Message. The unit of data exchanged between source 
Host and destination Host. 

Packet. The unit of data exchanged between adjacent 
nodes. 

* This work was supported under Advanced Research Projects Agency 
Contracts DAHC15-69-C-0179 and F08606-73-C-0027. 

161 

Acknowledgment. A piece of control information 
returned to a source to indicate successful receipt of a 
packet or message. A packet acknowledgment may be 
returned from an adjacent node to indicate successful 
receipt of a packet; a message acknowledgment may be 
returned from the destination to the source to indicate suc­
cessful receipt of a message. 

Store and Forward Subnetwork. The node stores a copy 
of a packet when it receives one, forwards it to an adjacent 
node and discards its copy only on receipt of an ac­
kno~ledgment from the adjacent node, a total storage in­
terval of much less than a second. 

Packet Switching. The nodes forward packets from 
many sources to many destinations along the same line, 
multiplexing the use of the line at a high rate. 

Routing Algorithm. The procedure which the nodes use 
to determine which of the several possible paths through 
the network will be taken by a packet. 

Node-Node Transmission Procedures. The set of 
procedures governing the flow of packets between adjacent 
nodes. 

Source-Destination Transmission Procedures. The set 
of procedures governing the flow of messages between 
source node and destination node. 

Host-Node Transmission Procedures. The set of 
procedures governing the flow of information between a 
Host and the node to which that Host is directly con­
nected. 

Host-Host Transmission Procedures. The set of 
procedures governing the flow of information between the 
source Host and the destination Host. 

Within the class of network under consideration, there 
are already several operational networks and many net­
work designs. The ARPA Network l is made up of over 
fifty node computers called IMPs and over sevent?' J:Iosts. 
The Cyclades Network2 is a French network consIstm~ of 
about six nodes and about two Hosts per node. The SocIete 
Internationale de Telecommunication Aeronautique 
(SITA) Network3 connects centers in eight or so cities 
mostly in Europe. The European Informatics Network 
(EIN),. also known as Cost-ll, is currently in a. design 
stage and will be a network interconnecting about SIX com­
puters in several Common Market countries. Som~ other 
packet-switching network designs include: Autodm 11,5 
NPL,6 PCI,7 RCP,s and Telenet.7 



162 National Computer Conference, 1975 

Some of the more obvious differences among these net­
works can be cited briefly. The ARPA Network splits 
messages into packets up to 1000 bits long; the other net­
works have 2000-bit packets and no multipacket messages. 
Hosts connect to a single node in the ARPA Network and 
SIT A; multiple connections are possible in Cyclades and 
EIN. Dynamic routing is used in the ARPA Network and 
EIN; a different adaptive method is used in SITA; fixed 
routing is presently used in Cyclades. The ARPA Network 
delivers messages to the destination Host in the same se­
quence as it accepts them from the source Host; Cyclades 
does not; in EIN it is optional. Clearly, many of the design 
choices made in these networks are in conflict with each 
other. The resolution of these conflicts is essential if 
balanced, high-performance networks are to be planned 
and built, particularly since many future designs will be 
intended for larger, less experimental, and more complex 
networks. 

FUNDAMENTAL ISSUES 

In this section we define what we believe are funda­
mental properties and requirements of packet-switching 
networks and what we believe are the fundamental criteria 
for measuring network performance. 

Network properties and requirements 

We begin by giving the properties central to packet­
switching network design. The key assumption here is that 
the packet processing algorithms (acknowledg­
ment/ retransmission strategies used to control trans­
mission over noisy circuits, routing, etc.) result in a virtual 
network path between the Hosts with the following charac­
teristics: 

a. Finite, fluctuating delay-A result of the basic line 
bandwidth, speed of light delays, queueing in the 
nodes, line errors, etc. 

b. Finite, fluctuating bandwidth-A result of network 
overhead, line errors, use of the network by many 
sources, etc. 

c. Finite packet error rate (duplicate or lost 
packets)-A result of the acknowledgment system in 
any store-and-forward discipline (this is a different 
use of the term "error rate" than in traditional tele­
phony). Duplicate packets are caused when a node 
goes down after receiving a packet and forwarding it 
without having sent the acknowledgment. The pre­
vious node then generates a duplicate with its 
retransmission of the packet. 'Packets are lost when a 
node goes down after receiving a packet and ac­
knowledging it before the successful transmission of 
the packet to the next node. An attempt to prevent 
lost and duplicate packets must fail as there is a 
tradeoff between minimizing duplicate packets and 
minimizing lost packets. If the nodes avoid duplica­
tion of packets whenever possible, more packets are 

lost. Conversely, if the nodes retransmit whenever 
packets may be lost, more packets are duplicated. 

d. Disordering of packets-A property of the ac­
knowledgment and routing algorithms. 

These four properties describe what we term the store-and­
forward subnetwork. 

There are also two basic problems to be solved by the 
source and destination * in the virtual path described 
above: 

e. Finite storage-A property of the nodes. 
f. Differing source and destination bandwidths­

Largely a property of the Hosts. 

A slightly different treatment of this subject can be 
found in Reference 9. 

The fundamental requirements for packet-switching net­
works are dictated by the six properties enumerated 
above. These requirements include: 

a. Buffering-Buffering is required because it is 
generally necessary to send multiple data units on a com­
munications path before receiving an acknowledgment. 
Because of the finite delay of the network, it may be de­
sirable to have buffering for multiple packets in flight 
between source and destination in order to increase 
throughput. That is, a system without adequate buffering 
may have unacceptably low throughput due to long delays 
waiting for acknowledgment between transmissions. 

b. Pipelining-The finite bandwidth of the network 
may necessitate the pipelining of each message flowing 
through the network by breaking it up into packets in 
order to decrease delay. The bandwidth of the circuits 
may be low enough so that forwarding the entire message 
at each node in the path results in excessive delay. By 
breaking the message into packets, the nodes are able to 
forward the first packet of the message through the net­
work ahead of the later ones. For a message of P packets 
and a path of H hops, the delay is proportional to P + 
H - 1 instead of P * H, where the proportionality constant 
is the packet length divided by the transmission rate. ** 

c. Error Control-The node-to-node packet processing 
algorithm must exercise error control, with an acknowledg­
ment system in order to deal with the finite packet error 
rate of the circuits. It must also detect when a circuit be­
comes unusable, and when to begin to use it again. In the 
source-to-destination message processing algorithm, the 
destination may need to exercise some controls to detect 
missing and duplicated messages or portions of messages, 
which would appear as incorrect data to the end user. 
Further, acknowledgments of message delivery or non-de­
livery may be useful, possibly to trigger retransmission. 
This mechanism in turn requires error control and 
retransmission itself, since the delivery reports can be lost 

* The question of whether the source and destination nodes or the source 
and destination Hosts should solve these problems is addressed in a later 
section. 
** See page 90 of Reference 9 for a derivation and more exact result. 



Qr duplicated. The usual technique is to. assign SQme 
unique number to. identify each data unit and to. time Qut 
unanswered units. The errQr cQrrectiQn mechanism is in­
vQked infrequently, as it is needed Qnly to. reCQver frQm 
nQde Qr line failures. 

d. Sequencing-Since packet sequences can be received 
out of order, the destinatiQn must use a sequence number 
technique Qf SQme fQrm to. deliver messages in CQrrect 
Qrder, and packets in Qrder within messages, despite any 
scrambling effect that may take place while several 
messages are in transit. The sequencing mechanism is 
frequently invQked since it is needed to. reCQver frQm line 
errQrs. 

e. StQrage allQcatiQn-The fact that stQrage in the nQdes 
is finite means that bQth the packet prQcessing and 
message prQcessing algQrithms must exercise cQntrQI Qver 
its use. The stQrage may be allQcated at either the sender 
Qr the receiver. 

f. FIQW CQntrQI-The different source and destination 
data rates may necessitate implicit Qr explicit flQW cQntrQI 
rules to. prevent the netwQrk frQm becQming cQngested 
when the destinatiQn is slQwer than the SQurce. These rules 
can be tied to. the sequencing mechanism, with no. mQre 
messages (packets) accepted after a certain number, Qr 
tied to. the stQrage allQcatiQn technique, with no. mQre 
messages (packets) accepted until a certain amQunt Qf 
stQrage is free, Qr the rules can be independent Qf these 
features. 

In satisfying the abQve six requirements, the algQrithm 
Dften exercises cDntentiQn resQlutiDn rules to. allQcate 
reSQurces amDng several users. The twin prQblems Df any 
such facility are: 

• fairness-resDurces shQuld be used by all users fairly; 
• deadlQck preventiDn-reSQurces must be allQcated so. 

as to. aVDid deadlDcks. 

We have also. CDme to. believe that it is essential to. have 
a reset mechanism to. unlQck "impDssible" deadlQcks and 
Qther cDnditiQns that may result frDm hardware Qr 
sDftware failures. 

Network performance goals 

Packet-switching cQmmunicatiQns systems have two. 
fundamental gQals in the prQcessing Qf data-IDw delay 
and high thrQughput. Each message shDuld be handled 
with a minimum Df waiting time, and the tQtal flDW Qf data 
shQuld be as large as PQssible. The difference between IDW 
delay and high thrQughput is impDrtant. What the netwDrk 
user wants is the cDmpletiQn Df his data transmissiDn in 
the shDrtest PQssible time. The time. between transmissiQn 
Df the first bit and delivery Qf the first bit is a functiQn Df 
netwDrk delay, while the time between delivery Qf the first 
bit and delivery Df the last bit is a functiQn Qf netwDrk 
thrDughput. FQr interactive users with shQrt messages, low 
delay is mQre impDrtant, since there are few bits per 
message. FDr the transfer Df IDng data files, high 
thrDughput is mDre impDrtant. 

Issues in Packet Switching NetwQrk Design 163 

There is a fundamental tradeQff between IQW delay and 
high thrDughput, as is readily apparent in cQnsidering 
SQme Df the mechanisms used to. accQmplish each gQal. FDr 
IDW delay, a small packet size is necessary to. cut trans­
missiDn time, to. imprDve the pipelining characteristics, 
and to. shQrten queueing latency at each nQde; further­
mQre, shQrt queues are desirable. FDr high thrQughput, a 
large packet size is necessary to. decrease the circuit 
Dverhead in bits per secQnd and the prQcessing Qverhead 
per bit. That is, IDng packets increase the effective circuit 
bandwidth and nQdal processing bandwidth. Also., IDng 
queues may be necessary to. prDvide sufficient buffering 
fDr full circuit utilizatiDn. TherefDre, the netwQrk may 
need to. emplQy separate mechanisms if it is to. prQvide IDW 
delay fQr SQme users and high thrDughput fDr Qthers. 

To. these two. gQals Dne must add two. Dther equally im­
PQrtant gQals, which apply to. message prQcessing and to. 
the DperatiQn Df the netwQrk as a whDle. First, the netwQrk 
shQuld be cQst-effective. Individual message service shQuld 
have a reasDnable CDSt as measured in terms Df utilizatiQn 
Df netwDrk reSQurces; further, the netwQrk facilities, pri­
marily the nDde cQmputers and the circuits, shQuld be 
utilized in a cDst-effective way. SecDndly, the netwQrk 
shDuld be reliable. Messages accepted by the netwQrk 
shDuld be delivered to. the destinatiDn with a high 
prDbability Qf success. And the netwDrk as a whQle shDuld 
be a rDbust cDmputer cQmmunicatiQns service, fault­
tDlerant, and able to. functiDn in the face Df nDde Qr circuit 
failures. 

In summary, we believe that delay, thrQughput, relia­
bility, and CDst are the fDur criteria upDn which packet­
switching netwDrk designs shDuld be evaluated and CQm­
pared. Further, it is the cQmbined performance in all fQur 
areas which CDunts. FQr instance, pDQr delay and 
thrQughput characteristics may be tDD big a price to. pay 
fDr "perfect" reliability. 

Key design choices 

We believe there are three majQr areas in which the key 
chDices must be made in designing a packet-switching net­
wQrk. First, there is netwDrk hardware design, including 
the nDde cDmputer, the netwDrk circuits, the HQst-tQ-nQde 
cQnnectiDns, and Dverall cDnnectivity. SecQnd, there is 
stDre-and-fDrward subnetwQrk sQftware design, primarily 
the rDuting algDrithm and the nDde-tD-nDde transmissiQn 
prQcedures. Third, there is sDurce-tD-destinatiDn sQftware 
design, which enCQmpasses end-tQ-end transmissiQn 
prDcedures and the divisiDn Qf respDnsibility between 
HQsts and nDdes. * These topics are cDvered in the fQllQw­
ing sectiDns. 

* There are strong interactions between the topics discussed in the second 
and third areas. The end-to-end traffic requirements of a specific user 
can only be met if the store-and-forward subnetwork has mechanisms 
which act in concert with the source-to-destination mechanisms to 
provide the required performance. Discussion of this interaction, an im­
portant consideration in packet-switching network design, is beyond the 
scope of this paper. 



164 National Computer Conference, 1975 

NETWORK HARDWARE DESIGN 

In this section we outline some of the design issues 
associated with the choice of the node computer, the net­
work circuits, the Host-to-node connections, and overall 
connectivity. Since the factors affecting these choices 
change rapidly with the introduction of new technology, 
we discuss only general observations and design questions. 

The node computer 

The architecture of the node computer is related to 
several other network design parameters, as detailed 
below. 

Processor 

The speed of the processor is important in determining 
the throughput rates possible in the network. The store­
and-forward processing bandwidth of the processor can be 
computed by counting instructions in the inner loop (see 
Reference 10 for an example). The source-to-destination 
processing bandwidth can be calculated in a similar 
fashion. These rates should be high enough so that the 
entire bandwidth of the network liries can be used, i.e., so 
that the node is not a bottleneck. It has been our 
experience that the speed of the processor and memory is 
the main factor in this bandwidth calculation; complex or 
specialized instruction sets are not valuable because 
simple instructions make up most of the node program. 

A different aspect of the node computer which can also 
affect throughput is its responsiveness. Because circuits 
are synchronous devices, they require service with very 
tight time requirements. If the node does not notice that 
input has completed on a given circuit, and does not 
prepare for a new input within a given time, the next input 
arriving on that circuit will be lost. Likewise on output, 
the node must be responsive in order to keep the circuits 
fully loaded. This requirement suggests that some form of 
interrupt system 1 or high-speed polling device ll is 
necessary to keep response latency low, and that the 
overhead of an operating system and task scheduler and 
dispatcher may be prohibitive. Finally, we note that the 
amount of time required by the node to process input and 
output is most critical in determining the minimum 
packet size, since it is with packets of this size that the 
highest packet arrival and departure rates (and thus 
processing requirements) can be observed. Of course, data 
buffering in the device interfaces can partially alleviate 
these problems. 

Memory 

The speed of memory may be a major determinant of 
processor speed, thus affecting the node bandwidth. An 
equally important consideration is memory speed for I/O 
transfers, since the node's overall bandwidth results from 

a division of total memory bandwidth based on some 
processing time for a given amount of I/O time. First, 
there is the question of whether the I/O transfers act in a 
cycle-stealing fashion to slow the processor or whether 
memory is effectively multi-ported to allow concurrent 
use. Then there is the issue of contention for memory 
among the various synchronous I/O devices. In a worst­
case scenario, it is possible for all the I/O devices to 
request a memory transfer at the same instant, which 
keeps memory continuously busy for some time interval. 
A key design parameter is the ratio of this time to the 
available data buffering time of the least tolerant I/O 
device. This ratio should be less than one, and may 
therefore determine how much I/O can be connected to the 
node. 

The size of the memory, naturally, is another key 
parameter. It has been our experience1,lO that the program 
and associated data structures take up the majority of 
storage in the node. The remainder of memory is devoted 
to buffering of two kinds: packet buffering between ad­
jacent nodes, and message buffering between source and 
destination nodes. These requirements can be calculated 
quite simply in each case as the product of the maximum 
data rate to be supported times the round trip time (for a 
returning acknowledgment). In large networks it may be 
necessary to rely on sophisticated compression techniques 
to ensure that tables for the routing algorithm, the source­
to-destination transmission procedures, and so on, do not 
require excessive storage. 

110 

The speed of the I/O system has been touched upon 
above in relation to processor and memory bandwidth. 
Other factors worth noting are the internal constraints im­
posed by the I/O system itself-its delay and bandwidth. 
A different dimension, and one that we have found to be 
inadequately designed by most manufacturers, is the flexi­
bility and extensibility of the I/O system. Most manufac­
turers supply only a limited range of I/O options (some of 
which may be too slow or too expensive to use). Further, 
only a limited number of each type can be connected. A 
packet-switching network node requires high performance 
from the I/O system, both in the number of connections 
and in their data rates. 

General architecture 

There are other factors to consider in evaluating or 
designing a node processor apart from performance in 
terms of bandwidth and delay. As we mentioned, extensi­
bility in I/O is very important and comparatively rare; it 
is more common to find memory systems which can be 
expanded. Processor systems which can be expanded are 
not at all common, and yet processor bandwidth may be 
the limiting factor in some node configurations. Without a 
modular approach allowing processing; memory and I/O 



growth, the cost of the node computer can be quite high 
due to large step functions in component cost. 

Another aspect of node computer architecture is its re­
liability, particularly for large systems with many lines 
and Hosts. A failure of such a system has a large impact 
on network performance. We have studied these issues of 
performance, cost, and reliability of node computers in a 
packet-switching network, and have developed, under 
ARPA sponsorship, a new approach to this problem. Our 
computer, called the Pluribus, is a multiprocessor made 
up of minicomputers with modular processors, memory, 
and 110 components, and a distributed bus architecture to 
interconnect them. ll Because of its specially designed 
hardware and software features,12 it promises to be a 
highly reliable system. We point out that many of these 
issues of performance, cost, and reliability could become 
critically important in very large networks serving thou­
sands of Hosts and terminals. 

We also note that there are so many stringent technical 
constraints on the computer that a choice made on other 
grounds (e.g., expediency, politics), as is common, is 
particularly unfortunate. 

The network circuits 

We next consider some of the important characteristics 
of the circuits used in the network. 

Bandwidth 

The bandwidth of the network circuits is likely to be 
their most important characteristic. It defines the traffic­
carrying capacity of the network, both in the aggregate 
and between any given source and destination. What is 
less obvious is that the bandwidth (and hence the time to 
clock a packet out onto the line) may be the main factor 
determining the transit delays in the network. The 
minimum delay through the network depends mainly on 
circuit rates and lengths, and additional delays are largely 
accounted for by queueing delay, which is directly propor­
tional to circuit bandwidth. These two factors lead to the 
general observation that the faster the network lines, the 
longer the packet should be, since long packets have less 
overhead and permit higher throughput, while the added 
delay due to length is less important at high circuits rates. 
In addition, more packet and message buffering is re­
quired when higher speed circuits are used. 

Delay 

The major effect of circuits with appreciable delay is 
that they require more buffering in the nodes to keep them 
fully loaded. That is, the node must maintain more 
packets in flight at once over a circuit with longer delay. 
This effect may be so large (a circuit using a satellite has a 
delay of a quarter of a second) as to require significantly 

Issues in Packet Switching Network Design 165 

more memory in the nodes.1O This meniory is needed at 
the nodes connected to the circuit to permit sufficient 
packet buffering for node-to-node transmission using the 
circuit. The subtle point is that additional buffering is also 
required at all nodes in the network that may need to 
maintain high source-to-destination rates over network 
paths which include this circuit. If they are to provide 
maximum throughput, they need sufficient message buf­
fering to keep the entire network path fully loaded. 

Reliability 

Traditionally, the telephone carriers have quoted error 
rates in the following manner: "No more than an average 
of 1 bit in 106 bits in error." This definition is not entirely 
adequate for packet switching, though it may be for 
continuous transmission. For packet switching, the 
average bit error rate is less interesting than the average 
packet error rate (packets with one or more bits in error). 
For example, ten bits in error in every tenth packet is a 10 
percent packet error rate, while one bit in error in every 
packet is a 100 percent packet error rate,;Jet the two cases 
have the same bit error rate. 

An example of an acceptable statement of error perfor­
mance would be as follows: 

The circuit operates in two modes. Mode 1: no 
continuous sequence of packet errors longer than two 
seconds, with the average packet error rate less than one 
in a thousand. Mode 2: a continuous sequence of errors 
longer than two seconds with the following frequency dis­
tribution: 

> 2 seconds 
> 1 minute 
>15 minutes 
> 1 hour 
> 6 hours 
> 1 day 

no more often than once per day 
no more often than once per week 
no more often than once per month 
no more often than once per 3 months 
no more often than once per year 
never 

While the figures above may seem too stringent in 
practice, the mode 1 bit error rate is actually quite lax 
compared to conventional standards. In any case, these 
are the kinds of behavior descriptions needed for in­
telligent design of packet-switching network error control 
procedures. Therefore, it is important that the carriers 
begin to provide such descriptions. 

The packet error rate of a circuit has two main effects. 
First, if the rate is high enough, it can degrade the effec­
tive circuit bandwidth by forcing the retransmission of 
many packets. While this is basically a problem for the 
carrier to repair, the network nodes must recognize this 
condition and decide whether or not to continue to use the 
circuit. This is a tradeoff between reduced throughput 
with the circuit and increased delay and less network con­
nectivity without it. Before the circuit can be used, it must 
be working in both directions for packets and for control 
information like routing and acknowledgments, and with a 
sufficiently low packet error rate. 



166 National Computer Conference, 1975 

The second effect of the error rate is present even for 
relatively low error rates. It is necessary to build a very 
good error-detection system so that the users of the net­
work do not see errors more often than some specified 
extremely low frequency. That is, the network should de­
tect enough errors so that the effective network error rate 
is at least an order of magnitude less than the Host error 
or failure rate. A usual technique here is a cyclic redun­
dancy check on each packet. This checksum should be 
chosen carefully; to first order, its size does not depend on 
packet length* and it should be quite large, for example 24 
bits for 50-Kbs lines and 32 bit~ for multi-megabit lines or 
lines with high error rates. 

The Host-to-node connections 

We examine the bandwidth and reliability of the Host 
connection to the network in the next two sections. 

Bandwidth 

The issues in choosing the bandwidth of the Host con­
nections are similar to those for the network circuits. In 
addition to establishing an upper bound on the Hosts' 
throughput, the rate is also an important factor in delay. 
The delay to send or receive a long message over a rela­
tively slow Host connection may be comparable in mag­
nitude to the network round trip time. To eliminate this 
problem, and also to allow high peak throughput rates, the 
Host connection bandwidth should be as high as possible 
(within the limits of cost-effectiveness), even higher than 
the average Host throughput would indicate. By the same 
argument given above for packet size, a higher speed Host 
connection allows the use of a longer message with less 
overhead and Host processing per bit and therefore greater 
efficiency. 

Reliability 

The reliability of the Host connection is an important 
aspect of the network design; several points are worth not­
ing. First, the connection should have a packet error rate 
which is at least as low as the network circuits. This can 
be accomplished by a highly reliable direct connection 
locally or by error-detection and retransmission. The use 
of error control procedures implies that the Host-node 
transmission procedures resemble the node-node trans­
mission procedures which are discussed in a later section. 
Second, if the Host application requires extremely high re­
liability, a Host-to-Host data checksum and message se­
quence check are both useful for detecting infrequent net-

* Assuming that the probability of packet error is proportional to the 
product of packet length and bit error rate, the checksum length should 
be proportional to the log of the product of the desired time between un­
detected errors, the bit error rate, and the total bandwidth of all network 
circuits. 

work failures. Third, if the Host requires uninterrupted 
network service, and the Host is reliable enough itself to 
justify such service, multiple connections of the Host to 
various nodes can improve the availability of the network. 
This option complicates matters for the source-to-destina­
tion transmission procedures in the nodes (e.g., sequenc­
ing) since there may be more than one possible destination 
node serving the Host. 

Overall connectivity 

The subject of network topology is a complex one,13 and 
we limit ourselves here to a few general observations. In 
practice, it seems that the connectivity of the nodes in the 
network should be relatively uniform. It is obvious that 
nodes with only a single line are to be avoided for relia­
bility considerations but nodes with many circuits also 
present a reliability problem since they remove so much 
network connectivity when they are down. We also feel 
that the direction for future evolution of network 
geometries will be toward a "central office" kind of 
layout with relatively fewer nodes and with a high fan-in 
of nearby Hosts and terminals. This tendency will become 
more pronounced as higher reliability in the node com­
puter becomes possible, even for large systems. One reason 
that we favor this approach is that a large node computer 
presents an increased opportunity for shared use of the 
node resources (processor and memory) among many dif­
ferent devices leading to a much more efficient and cost-ef­
fective implementation. This trend will mean that in the 
future, even more than now, a key cost of network to­
pology will be the ultimate data connection to the user 
(Host or terminal), who may be far from the central office. 
Concentrators and multiplexors have been the traditional 
solution; in packet-switching networks, a small node com­
puter could fill this function. In conclusion, we see flexi­
bility and extensibility as two key requirements for the 
node computer. These factors together with increasing 
performance and fan-in requirements imply a very high 
reliability standard as well. 

STORE-AND-FORWARD SUBNETWORK 
SOFTWARE DESIGN 

We cover two major areas in our discussion of store-and­
forward subnetwork software design, the routing algorithm 
and the node-to-node transmission procedures, both of 
which are packet-oriented and require no information 
about messages. 

The routing algorithm 

The fundamental step in designing a routing algorithm 
is the choice of the control regime to be used in the opera­
tion of the algorithm. Non-adaptive algorithms make no 
real attempt to adjust to changing network conditions; no 



routing information is exchanged by the nodes, and no 
observations or measurements are made at individual 
nodes. Centralized adaptive algorithms utilize a central 
authority which dictates the routing decisions to the indi­
vidual nodes in response to network changes. Isolated 
adaptive algorithms operate independently with each node 
making exclusive use of local data to adapt to changing 
conditions. Distributed adaptive algorithms utilize in­
ternode cooperation and the exchange of information to ar­
rive at routing decisions. * 

Non-adaptive algorithms 

Under this heading come such techniques as fixed rout­
ing, fixed alternate routing, and random routing (also 
known as flooding or selective flooding). 

Simple fixed routing is too unreliable to be considered in 
practice for networks of more than trivial size and com­
plexity. Any time a single line or node fails, some nodes 
become unable to communicate with other nodes. In fact, 
networks utilizing fixed routing always assume manual up­
dates (as necessary) to another fixed routing pattern. 
However, in practice this means that every routine net­
work component failure becomes a catastrophe for opera­
tional personnel, every site spending frantic hours 
manually reconstructing routing tables. 15 

At their best, in the absence of network cqmponent 
failure, fixed routing algorithms are inefficient. While the 
routing tables can be fixed to be optimal for some traffic 
flow, fixed routing is inevitably inefficient to the extent 
that network traffic flows vary from the optimal traffic 
flow. Unreliability and inefficiency are also characteristic 
of two alternative techniques to fixed routing which fall 
under the heading of non-adaptive algorithms: fixed rout­
ing with fixed alternate routes and random routing. 14 

Non-adaptive algorithms are all extremely simple and 
can therefore be implemented at low cost. They are thus 
possibly suitable for hardware implementation, for 
theoretical analysis and for studying the effects of varying 
other network parameters and algorithms. 

In conclusion, we do not recommend non-adaptive rout­
ing for most networks because it is unreliable and ineffi­
cient. Despite these drawbacks, many networks have been 
proposed or begun with non-adaptive routing, generally be­
cause it is simpler to implement and to understand. 
Perhaps this tendency will be reversed as more informa­
tion about other routing techniques is published and as 
network technology generally grows more sophisticated. 

Centralized adaptive algorithms 

In a centralized adaptive algorithm, the nodes send the 
information needed to make a routing decision to a Rout­
ing Control Center (RCC) which dictates its decision back 
to the nodes for actual use. The advantages claimed for a 

* A much more detailed discussion is given in Reference 14. 

Issues in Packet Switching Network Design 167 

centralized algorithm are: (a) the routing computation is 
simpler to understand than a non-centralized algorithm, 
and the computation itself can follow one of several well 
known algorithms, e.g.;16 (b) the nodes are relieved of the 
burden and overhead of the routing computation; (c) more 
nearly optimal routing is possible because of the sophisti­
cation that is possible in a centralized algorithm; and (d) 
routing "loops" (a possible temporary property of dis­
tributed algorithms) can be avoided. 

Unfortunately, the processor bandwidth utilization at 
the center is likely to be very heavy. The classical al­
gorithms that a centralized approach might use generally 
run in time proportional to NB (where N is the number of 
nodes in the network), while their distributed counterparts 
can run (through parallel execution) in time proportional 
to JV2. While it may be a saving to remove computation 
from the nodes, it may not be possible to perform a cubic 
computation on a large network in real time on a single 
computer, no matter how powerfuU4 

The claim that more optimal routing is possible with a 
centralized approach is not true in practice. To have 
optimal routing, the input information must be completely 
accurate and up-to-date. Of course, with any realistic 
centralized algorithm, the input data will no longer be 
completely accurate when it arrives at the center. Simi­
larly, the output data-the routing decisions-will not go 
into effect at the nodes until some time after they have 
been determined at the center. 

Distributed routing algorithms, whether fixed random, 
fixed alternate, or adaptive, may contain temporary loops, 
that is, a packet may traverse a complete circle while the 
algorithm adapts (or simulates adaptation in fixed 
strategies) to network change. Proponents of centralized 
routing often argue that such loops can best be avoided by 
centralization of the computation. However, because of the 
time lags cited above, there may indeed be loops during 
the time of propagation of a routing update when some 
nodes have adopted the new routes and other nodes have 
not. 

A centralized routing algorithm has several inherent 
weaknesses in the updating procedure, the first being 
unreliability. If the RCC should fail, or the node to which 
it is connected goes down, or the lines around that node 
fail, or a set of lines and nodes in the network fail so as to 
partition the network into isolated components, then some 
or all of the nodes in the network are without any routing 
information. Of course, several steps can be taken to 
improve on the simple centralized policy. First, the RCC 
can have a backup computer, either doing another task 
until a RCC failure, or else on hot standby. This is not suf­
ficient to meet the problem of network failures, only local 
outages, but it is necessary if the RCC computer has any 
appreciable failure rate. Second, there can be multiple 
RCCs in different locations throughout the network, and 
again the extra computers can be in passive or active 
standby. Here there is the problem of identifying which 
center is in control of which nodes, since the nodes must 
know to which center to send their routing input data. 



168 National Computer Conference, 1975 

A related difficulty with centralized algorithms lies in 
the fact that when a node or line fails in the network, the 
failed component may have been on the previously best 
path between the RCC and the nodes trying to report the 
failure. In this case, just at the time the RCC needs routes 
over which to receive and transmit routing information, 
no routes are available; the availability of new routes re­
quires the very change the RCC is unsuccessfully attempt­
ing to distribute. Solutions which have been proposed to 
solve this "deadlock" are slow, complicated, awkward, and 
frequently rely on the temporary use of distributed al­
gorithms.17 

Finally, centralized algorithms can place heavy and 
uneven demands on network line bandwidth; near the 
RCC there is a concentration of routing information going 
to and from the RCC. This heavy line utilization near the 
center means that centralized algorithms do not grow 
gracefully with the size of the network and, indeed, this 
may place an upper limit on the size of the network. 

Isolated adaptive algorithms 

One of the primary characteristics of an isolated al­
gorithm which attempts to adapt to changing conditions is 
that it takes on the character of a heuristic process: it 
must "learn" and "forget" various facts about the network 
environment. While such an approach may have an intui­
tive appeal, it can be shown rather simply that heuristic 
routing procedures are unstable and are therefore not of 
interest for most practical network applications. The fun­
damental problem with isolated adaptive algorithms is 
that they must rely on indirect information about network 
conditions, since each node operates independently and 
without direct knowledge of or communication with the 
other nodes. 

There are two basic approaches to be employed, 
separately or in tandem, to the process of learning and 
forgetting. We call these approaches positive feedback and 
negative feedback. One way to implement positive feed­
back was suggested by Baran as part of his hot-potato 
routing doctrine. 18 Each node increments the handover 
number in a packet as it forwards the packet. Then the 
handover number is used in a "backwards learning" tech­
nique to estimate the transit time from the current node to 
the source of the packet. Clearly, this scheme has 
drawbacks because it lacks any direct way of adapting to 
changes. If no packets from a given source are routed 
through a node by the rest of the network, the node has no 
information about which route to choose in sending a 
message to that source. In general, as part of a positive 
feedback loop, the routing algorithm must periodically try 
routes other than the current best ones, since it has no 
direct way of knowing if better routes exist. Thus, there 
must always be some level of traffic traveling on any route 
that the nodes are to learn about, since it is only by feed­
back from traffic that they can learn. 

The other half of an adaptive isolated algorithm is the 
negative feedback cycle. One technique to use here is to 

penalize the choice of a given path when a packet is de­
tected to have returned over the same path without being 
delivered to its destination. The relation of this technique 
to the exploratory nature of positive feedback is evident. 

An adaptive isolated algorithm, therefore, has this fun­
damental weakness: in the attempt to adapt heuristically, 
it must oscillate, trying first one path and then another, 
even under stable network conditions. This oscillation vio­
lates one of the important goals of any routing algorithm, 
stability, and it leads to poor utilization of network 
resources and slow response to changing conditions. Incor­
rect routing of the packets during oscillation increases 
delay and reduces effective throughput correspondingly. 
There is no solution to the problem of oscillation in such 
algorithms. If the oscillation is damped to be slow, then 
the routing will not adapt quickly to improvements and 
will therefore declare nodes unreachable when they are 
not, with the result that suboptimal paths will be used for 
extended periods. If the oscillation is fast, then suboptimal 
paths will also be used much of the time, since the net­
work will be chronically full of traffic going the wrong 
way. 

Distributed adaptive algorithms 

In our experience, distributed adaptive algorithms have 
none of the inherent limitations of the above algorithms; 
e.g., not the inherent unreliability and inefficiency of non­
adaptive algorithms, nor the unreliability and size limita­
tions of centralized algorithms, nor the inherent ineffi­
ciency and instability of isolated algorithms. For example, 
the distributed adaptive routing algorithm in the ARPA 
Network has operated for five years with little difficulty 
and good performance. However, distributed algorithms 
do have some practical difficulties which must be over­
come in order to obtain good performance. 

Consider the following example of a distributed adap­
tive algorithm. Each node estimates the "distance" it ex­
pects a packet to have to traverse to reach each possible 
destination over each of its output lines. Periodically, it 
selects the minimum distance estimate for each destina­
tion and passes these estimates to its immediate neighbors. 
Each node then constructs its own routing table by 
combining its neighbors' estimates with its own estimates 
of distance to each neighbor. For each destination, the 
table is then made to specify that selected output line for 
which the sum of the estimated distance to the neighbor 
plus the neighbor's distance estimate to the destination is 
smallest. 

Such an algorithm can be made to measure distance in 
hops (i.e., lines which must be traversed), delay, or any of 
a number of other metrics including excess bandwidth and 
reliability (of course, for the latter two, one must maxi­
mize rather than minimize). The above algorithm is 
representative of a class of distributed adaptive algorithms 
which we consider briefly in the remainder of this section. 
For simplicity of discussion we will assume that distance 
is measured in hops. 



The first point is that distributed algorithms are slow in 
adapting to some kinds of change; in particular, the al­
gorithm reacts quickly to good news, and slowly to bad 
news. If the number of hops to a given node decreases, the 
nodes soon all agree on the new, lower, number. If the hop 
count increases, the nodes will not believe the reports of 
higher counts while they still have neighbors with the old, 
lower values. This is demonstrated in Reference 14. 
Another point is that there is no way for a node to know 
ahead of time what the next-best or fall-back path will be 
in the event of a failure, or indeed if one exists. In fact, 
there must be some finite time, the network response time, 
between when a change in the network occurs and when 
the routing algorithm adapts to the change. This time de­
pends on the size and shape of the network. 

We have come to conclude that the routing algorithm 
should continue to use the best route to a given destina­
tion, both for updating and forwarding, for some time pe­
riod after it gets worse. That is, the algorithm should 
report to the adjacent nodes the current value of the pre­
vious best route and use it for routing packets for a given 
time interval. We call this hold down. 14 One way to look at 
this is to distinguish between changes in the network to­
pology and traffic that necessitate changing the choice of 
the best route, and those changes which merely affect the 
characteristics of the route, like hop count, delay, and 
throughput. In the case when the identity of the path 
remains the same, the mechanism of hold down provides 
an instantaneous adaptation to the changes in the charac­
teristics of the path; certainly, this is optimal. When the 
identity of the path must change, the time to adapt is 
equal to the absolute minimum of one network response 
time, while the other nodes have a chance to react to the 
worsening of the best path and to decide on the next best 
path. This is optimal for any algorithm within the 
practical limits of propagation times. * 

The routing algorithm is extremely important to net­
work reliability, since if it malfunctions the network is 
useless. Further, a distributed routing algorithm has the 
property that all the nodes must be performing the routing 
computation correctly for the algorithm to be reliable. A 
local failure can have global consequences; e.g., one node 
announcing that it is the best path to all nodes. Routing 
messages between nodes must have checksums and must 
be discarded if a checksum error is detected. All routing 
programs must be checksummed before every execution to 
verify that the code about to be run is correct. The 
checksum of the program should include the preliminary 
checksum computation itself, the routing program, any 
constants referenced, and anything else which could affect 
its successful execution. Any time a checksum error is de­
tected in a node, the node should immediately be stopped 
from participating in the routing computation until it is 
restored to correct operation again. 

* This is a very simplified description of hold down. A more complete 
description states in detail when hold down should be invoked and for 
what duration. Such a description may be found in Reference 14 and 
more is being learned. 19 

Issues in Packet Switching Network Design 169 

Node-to-node transmission procedures 

In this section we discuss some of the issues in designing 
node-to-node transmission procedures, that is, the packet 
processi~g algorithms. We touch on these points only 
briefly since many of them are simple or have been dis­
cussed previously. Note that many of these issues occur 
again in the discussion of source-to-destination trans­
mission procedures. 

Buffering and pipelining 

As we noted in discussing memory requirements, the 
amount of node-to-node packet buffering needs to equal 
the product of the circuit rate times the expected ac­
knowledgment delay in order to get full line utilization. It 
may also be efficient to provide a small amount of addi­
tional buffering to deal with statistical fluctuations in the 
arrival rates, i.e., to provide queueing. These requirements 
imply that the nodes must do bookkeeping about multiple 
packets, which raises the several issues discussed next. 

Error control 

We have discussed many of the aspects of node-to-node 
error control above: the need for a packet checksum, its 
size, the basis of the acknowledgment/retransmission 
system, the decision on whether the line is usable, and so 
on. These procedures are critical for network reliability, 
and they should therefore run smoothly in the face of any 
kind of node or circuit failure. Where possible, the 
procedures should be self-synchronizing; at least they 
should be free from deadlock and easy to resynchronize. 1O 

Storage allocation and flow control 

Storage allocation can be fairly simple for the packet 
processing algorithms. The sender must hold a copy of the 
packet until it receives an acknowledgment; the receiver 
can accept the packet if it is without error and there is an 
available buffer. The receiver should not use the last free 
buffer in memory, since that would cut off the flow of con­
trol information such as routing and acknowledgments. In 
accepting too many packets, there is also the chance of a 
storage-based deadlock in which two nodes are trying to 
send to each other and have no more room to accept 
packets. This is explained fully in Reference 20. 

The above implies that the flow control procedures can 
also be fairly simple. The need to buffer a circuit can be 
expressed in a quantitative limit of a certain number of 
packets. Therefore, the node can apply a cut-off test per 
line as its flow control throttle. More stringent rules can be 
used, but may be unnecessary. 

Priority 

The issue of priority in packet processing is quite im­
portant for network performance. First of all, the concept 



170 National Computer Conference, 1975 

of two or more priority levels for packets is useful in 
decreasing queueing delay for important traffic. Beyond 
this, however, careful attention must be paid to other 
kinds of transmissions. Routing messages should go with 
the highest priority, followed by acknowledgments (which 
can also be piggybacked in packets). Packet retrans­
missions must be sent with the next highest priority, 
higher than that for first transmission of packets. If this 
priority is not observed, retransmissions can be locked out 
indefinitely. The question of preemptive priority (i.e., 
stopping a packet in mid-transmission to start a higher 
priority one) is one of a direct tradeoff of bandwidth 
against delay since circuit bandwidth is wasted by each 
preemption. 

Packet size 

There has been much thought given in the packet­
switching community to the proper size for packets. Large 
packets have a lower probability of successful trans­
mission over an error-prone telephone line (and this drives 
the packet size down), while overhead considerations 
(longer packets have a lower percentage overhead) drive 
packet size up. The delay-lowering effects of pipelining be­
come more pronounced as packet size decreases, generally 
improving store-and-forward delay characteristics; 
further, decreasing packet size reduces the delay that 
priority packets see because they are waiting behind full 
length packets. However, as the packet size goes down, ef­
fective throughput also goes down due to overhead. Met­
calfe has previously commented on some of these points.21 

Kleinrock and N aylor2 recently suggested that the 
ARPA Network packet size was suboptimal and should 
perhaps be reduced from about 1000 bits to 250 bits. This 
was based on optimization of node buffer utilization for 
the observed traffic mix in the network. However, in 
Reference 23, we point out that the relative cost of node 
buffer storage vs. circuits is possibly such that one should 
not try to optimize node buffer storage. The true trade-off 
which governs packet size might well be efficient use of 
phone line bandwidth (driving packet size larger) vs. delay 
characteristics (driving packet size smaller). If buffer 
storage is limiting, perhaps one should just buy more. 
Further, it is probably true that if one is trying for high 
bandwidth utilization, buffer size must be large. That is, 
high bandwidth utilization probably implies the use of 
large packets, which implies full buffers; when idle, the 
buffer size does not matter. 

As noted above, the choice of packet is influenced by 
many factors. Since some of the factors are inherently in 
conflict, an optimum is difficult to define, much less find. 
The current ARPA Network packet size of about 1000 bits 
is a good compromise. Other packet sizes (e.g., the 2000 
bits used in several other networks) may also be ac­
ceptable compromises. However, note that a 200D-bit 
packet size generally means a factor of two increase in 
delay over a 100D-bit packet size, because even high 
priority short packets will be delayed behind normal long 

packets which are in transmission at each node. The use of 
preemptive priority might make longer packet sizes effi­
cient. 

Davies and Barber' are often quoted as recommending 
a minimum length "packet" of about 2000 bits because 
they have concluded that most of the messages currently 
exchanged within banks and airlines fit nicely in one 
packet of this size. To clarify this point, we note that they 
use the term "packet" for the unit of information we call a 
"message" and thus are not actually addressing the issue 
of packet size. We discuss message size below. 

SOURCE-TO-DESTINATION SOFTWARE DESIGN 

In this section we discuss the end-to-end transmission 
procedures and the division of responsibility between the 
Hosts and nodes. 

End-to-end transmission procedures 

There is a considerable controversy at the present time 
over whether or not a store-and-forward subnetwork of 
nodes should concern itself with end-to-end transmission 
procedures. Many workers2 feel that the subnetwork 
should be close to a pure packet carrier with little concern 
for maintaining message order, for high levels of correct 
message delivery, for message buffering in the subnet­
work, etc. Other workers, including ourselves,23 feel that 
the subnetwork should take responsibility for many of the 
end-to-end message processing procedures. Of course, there 
are some workers who hold to positions in between.3 

However, many design issues remain constant whether 
these functions are performed at Host level or subnetwork 
level, and we discuss these constants in this section. 

Buffering and pipelining 

As noted earlier in this paper, any practical network 
must allow multiple. messages simultaneously in transit 
between the source and the destination, to achieve high 
throughput. If, for example, one message of 2000 bits is 
allowed to be outstanding between the source and destina­
tion at a time, and the normal network transit for the 
message including destination-to-source acknowledgment 
is 100 milliseconds, then the throughput rate that can be 
sustained is 20,000 bits per second. If slow lines, slow 
responsiveness of the destination Host, great distance, etc., 
cause the normal network transit time to be half a second, 
then the throughput rate is reduced to only 4,000 bits per 
second. Likewise, we think that pipelining is essential for 
most networks to improve delay characteristics; data 
should travel in reasonably short packets. 

To summarize, low delay requirements drive packet size 
smaller, network and Host lines faster, and network paths 
shorter (i.e., fewer node-to-node hops). High throughput re­
quirements drive the number of packets in flight up, 
packet overhead down, and the number of alternative 
paths up. 



Error control 

We consider source-to-destination error control to com­
prise three tasks: detecting bit errors in the delivered 
messages, detecting missing messages or pieces of 
messages, and detecting duplicate messages or pieces of 
messages. 

The former task is done in a straightforward manner 
through the use of checksums. A checksum is appended to 
the message at the source and the checksum is checked at 
the destination; when the checksum does not check at the 
destination, the incorrect message is discarded, requiring 
it to be retransmitted from the source. Several points 
about the manner in which checksumming should be done 
are worthy of note: (a) If possible, the checksum should 
check the correctness of the resequencing of the messages 
which possibly got out of order in their traversal of the net­
work. (b) A powerful checksum is more efficient than al­
ternative methods such as replication of a critical control 
field; it is better to extend the checksum by the number of 
bits that would have been used in the redundant field. (c) 
Unless encryption is desirable for some other reason it is 
simpler (and just as safe) to prevent delivery of a message 
to an incorrect Host through the use of a powerful 
checksum than it is to use an encryption mechanism. (d) 
Node-to-node checksums do not fulfill the same function 
as end-to-end checksums because they check only the 
lines, not the nodes. 

An inherent characteristic of packet-switching networks 
is that some messages or portions of messages (i.e., 
packets) will fail to be delivered, and there will be some 
duplicate delivery of messages or portions of messages, as 
described in the section on network properties. * 

Missing messages can be detected at the destination 
through the use of one state bit for each unit of informa­
tion which can be simultaneously traversing the network. 
An interesting detail is that for the purposes of missing 
message detection, the state bits used must precisely cycle 
through all possible states. For example, stamping 
messages with a time stamp does nothing for the process of 
missing message detection because, unless a message is 
sent for every "tick" of the time stamp, there is no way to 
distinguish the case of a missing message from the case 
where no messages were sent for a time. 

Duplicate messages can be detected with an identifying 
sequence number such that messages which arrive from a 
prior point in the sequence are recognized as duplicates. 
What should be noted carefully here is that duplicate 
messages can arrive at the destination up to some time, 
possibly quite long, after the original copy, and the se­
quence number must not complete a full cycle during this 
period. For example, if a network goal is to be able to 
transmit 200 minimum length messages per second from 
the source to the destination and each needs a unique 
sequence number, and if it is possible for messages to ar-

* Throughout the remainder of this subsection we use the word 
"message" to mean either messages or portions of messages (i.e., 
packets). 

Issues in Packet Switching Network Design 171 

rive at the destination up to 15 seconds after initial trans­
mission from the source, then the sequence number must 
be able to uniquely identify at least 3000 packets. It is 
usually no trouble to calculate the maximum number of 
messages that can be sent during some time interval. What 
is more difficult is to limit the maximum time after which 
duplicate messages will no longer arrive at the destination. 
One method is to put a timer in each message which is 
counted down as the message traverses the network; if the 
timer ever counts out, the message is discarded as too old, 
thus guaranteeing that no messages older than the initial 
setting of the timer will be delivered to the destination. Al­
ternatively, one can calculate approximately the 
maximum arrival time through study of all the worst case 
paths through the network and all the worst case combina­
tions of events which might cause messages to loop around 
in the network for excessive lengths of time; this seems to 
work reasonably well in practice. 

In either case, there certainly must be mechanisms to 
resynchronize the sequence numbers between the source 
and the destination at node start-up time, to recover from 
a node failure, etc. A good practice is to resynchronize the 
sequence numbers occasionally even though they are not 
known to be out of step. A good frequency with which to 
do redundant resynchronization would be every time a 
message has not been sent for longer than the maximum 
delivery time. In fact, this is the maximum frequency with 
which the resynchronization can be done (without addi­
tional mechanisms); if duplicates are to be detected re­
liably, the sequence number at the destination must func­
tion without disruption for the maximum delivery time 
after the "last message" has been sent. If it is desirable or 
necessary to resynchronize the sequence numbers more 
often than the maximum time, an additional "use" 
number must be attached to the sequence number to 
uniquely identify which "instance" of this set of sequence 
numbers is in effect; and, of course, the packets must also 
carry the use number. This point is addressed in greater 
detail in References 25 and 26. 

The next point to make about end-to-end error control is 
that any message going from source to destination can 
potentially be missing or duplicated; i.e., not only data 
messages but control messages. In fact, the very messages 
used in error control (e.g., sequence number resynchroni­
zation messages) can themselves be missing or duplicated, 
and a proper end-to-end protocol must handle these cases. 

Finally, there must be some inquiry-response system 
from the source to the destination to complete the process 
of detecting lost messages. When the proper reply or ac­
knowledgment has not been received for too long, the 
source may inquire whether the destination has received 
the message in question. Alternatively, the source may 
simply retransmit the message in question. In any case, 
this source inquiry and retransmission system must also 
function in the face of duplicated or lost inquiries and in­
quiry response control messages. As with the inter-node ac­
knowledgment and retransmission system, the end-to-end 
acknowledgmellt and retransmission system must depend 
on positive acknowledgments from the destination to the 



172 National Computer Conference, 1975 

source and on explicit inquiries or retransmissions from 
the source. Negative acknowledgments from the destina­
tion to the source are never sufficient (because they might 
get lost) and are only useful for increased efficiency. 

Storage allocation and flow control 

One of the fundamental rules of communications 
systems is that the source cannot simply send data to the 
destination without some mechanism for guaranteeing 
storage for that data. In very primitive systems one can 
guarantee a rate of disposal of data, as to a line printer, 
and not exceed that rate at the data source. In more so­
phisticated systems there seem to be only two alternatives. 
Either one can explicitly reserve space at the destination 
for a known amount of data in advance of its transmission, 
or one can declare the transmitted copy of the data 
expendable, sending additional copies from the source 
until there is an acknowledgment from the destination. 
The first alternative is the high bandwidth solution: when 
there is no space, only tiny messages travel back and forth 
between the source and destination for the purpose of re­
serving destination storage. The second alternative is the 
low delay solution: the text of the message propagates as 
fast as possible. See Reference 10 for a more lengthy dis­
cussion. 

In either case storage is tied up for an amount of time 
equal to at least the round trip time. This is a funda­
mental result-the minimum amount of buffering re­
quired by a communications system, either at the source 
or at the destination, equals the product of round trip time 
and the channel bandwidth. The only way to circumvent 
this result is to count on the destination behaving in some 
predictable fashion (an unrealistic assumption in the 
general case of autonomous communicating entities). 

As we stated earlier, our experience and analysis con­
vince us that if both low delay and high throughput are 
desired, then there must be mechanisms to handle each, 
since high throughput and low delay are conflicting goals. 
This is true, in particular, for the storage allocation 
mechanism. In several networks, e.g.,2 mainly for the sake 
of simplicity, only the low delay solution has been 
proposed or implemented; that is, messages are transmit­
ted from the source without reservation of space at the 
destination. Those people making the choice never to 
reserve space at the destination frequently assert that high 
bandwidth will still be possible through use of a 
mechanism whereby the source sends messages toward the 
destination, notes the arrival of acknowledgments from the 
destination, uses these acknowledgments to estimate the 
destination reception rate, and adjusts its transmissions to 
match that rate. We feel that such schemes may be quite 
difficult to parameterize for efficient control and therefore 
may result in reduced effective bandwidth and increased 
effective delay. If, in addition to possible discards at the 
destination, the network solves its internal problems by 
discarding packets, or if the destination Host too often 
solves its internal problems by discarding packets, perfor-

mance will suffer further. As reeorted in Reference 20, 
contention for destination storage, which must be resolved 
through the discard of packets in the absence of a storage 
allocation mechanism, happens practically continuously 
under even modest traffic loads, and in a way uncoor­
dinated with the rates and strategies of the various 
sources. As a result, well-behaved Hosts may unavoidably 
be penalized for the actions of poorly-behaved Hosts. 

In addition to space to hold all data, there must also be 
space to hold all control messages. In particular, there 
must be space to record what needs to be sent and what 
has been sent. If a message will result in a response, there 
must be space to hold the response; and once a response 
has been sent, the information about what kind of answer 
was sent must be kept for as long as retransmission of that 
response may be necessary. 

Precedence and preemption 

The first point to note about precedence and preemption 
is that the total transit time being specified for most 
packet-switching networks of which we are aware is on the 
order of less than a few seconds (often only a fraction of a 
second). Thus, the traditional specifications (for example, 
low priority traffic must be able to preempt all other traf­
fic so that it can traverse the network in under two 
minutes) no longer make much sense. When all messages 
traverse the network in less than a few seconds, there is 
generally no need to specify that top priority traffic must 
preempt other traffic, nor to specify the relative 
precedences between the other types of traffic. 

Though priority is not strictly necessary for speed, it 
may be useful for contention resolution. It appears to us 
that there are three precedence and preemption strategies 
that are reasonable to consider for a packet-switching net­
work. Strategy 1 is to permanently assign the resources 
necessary to handle high priority traffic; this guarantees 
the delivery time for the high priority traffic but is expen­
sive and should only be done for limited high priority traf­
fic. Strategy 2 is to preempt resources as necessary for 
high priority traffic. This can have two effects. Preempt­
ing packet buffers results in data loss; preempting internal 
node tables (e.g., the tables associated with packet se­
quence numbering) results in state information loss. State 
information loss means that data errors are possible which 
may go unreported. Strategy 3 is not to preempt resources, 
and to rely on the standard mechanisms with a priority 
ordering. This is simple for the nodes, but it does not itself 
guarantee delivery within a certain time. 

We think the correct strategy is probably a mixture of 
the strategies above. Possibly some resources, on a very 
limited basis, should be reserved for the tiny amount of 
flash traffic. This guarantees minimum delay without any 
queueing latency. For the rest of the traffic, the normal de­
livery times are probably acceptable. The presence of 
higher priority traffic can cause gradual throttling of lower 
priority traffic, without loss of state information. As the 
time to do this graceful throttling is normally only a frac-



tion of a second, the higher priority traffic has no real 
reason to demand instantaneous, information-losing 
preemption of the lower priority traffic. 

Message size 

The question is often asked: "If one increases packet 
size, and decreases message size until the two become the 
same, will not the difficult message reassembly problem 
be removed?" The answer is that, perhaps unfortunately, 
message size and packet size are almost unrelated to 
reassembly. 

We have already noted the relationship between delay 
and packet size. Delay for a small priority message is, to 
first order, proportional to the packet size of the other traf­
fic in the network. Thus, small packets are desirable. 
Larger packets become desirable only when lines become 
so long or fast that propagation delay is larger than trans­
mission time. 

Message size needs to be large because the overhead on 
messages is significant. It is inefficient for the nodes to 
have to address too many messages and it may be ineffi­
cient for Hosts to have too many message interrupts. The 
upper limit on message size is what can conveniently be 
reassembled, given node storage and networks delays. 

When a channel has an appreciable delay, it is 
necessary to buffer several pieces of data in the channel at 
one time in order to obtain full utilization of the channel. 
It makes little difference whether these pieces are called 
packets which must be reassembled or messages which 
must be delivered in order. 

We do not feel that the choice between single- and multi­
packet messages is as important as all the controversy on 
the subject would lead one to believe. There is agreement 
that buffering many data units in transit through the net­
work simultaneously is a necessity. Having multi-packet 
messages is probably more efficient (as the extra level of 
heirarchy allows overhead functions to be applied at the 
correct, i.e., most efficient, level); having single-packet 
messages probably offers the opportunity for finer grained 
storage allocation and flow control mechanisms. 

Division of responsibility between subnetwork and Host 
( 

In the previous section we discussed a number of issues 
of end-to-end procedure design which must be considered 
wherever the procedures are implemented, whether in the 
subnetwork or in the Hosts. In this section we discuss the 
proper division of responsibility between the subnetwork 
and the Hosts. 

Extent of message processing in the subnetwork 

There has been considerable discussion in the packet­
switching community about the amount and kind of 
message processing that should be done in communica­
tions subnetworks. An important part of the ARPA Net-

Issues in Packet Switching Network Design 173 

work design which has become controversial is the ARPA 
Network system of messages and packets within the 
subnetwork, ordering of messages, guaranteed message de­
livery, and so on. In particular, the idea has been put forth 
that such functions should reside at Host level rather than 
subnetwork levep,27,28 

We summarize the principles usually given for eliminat­
ing message processing from the communications subnet­
work: (a) for complete reliability, Hosts must do the same 
jobs, and therefore the nodes should not; (b) Host/Host 
performance may be degraded by the nodes doing these 
jobs; (c) network interconnections may be impeded by the 
nodes doing message processing; (d) lockups can happen 
in subnetwork message processing; (e) the node would be­
come simpler and have more buffering capacity if it did 
not have to do message processing. 

The last point is true although the extent of simplifica­
tion and the additional buffering is probably not signifi­
cant, but we believe the other statements are subject to 
some question. We have previously23,25 given our detailed 
reasons for this belief. Here we simply summarize our 
main contentions about the place of message processing 
facilities in networks: 

a. A layering of functions, a hierarchy of control, is 
essential in a complex network environment. For effi­
ciency, nodes must control subnetwork resources, and 
Hosts must control Host resources. For reliability, the 
basic subnetwork environment must be under the effective 
control of the node program-Hosts should not be able to 
affect the usefulness of the network to other Hosts. For 
maintainability, the fundamental message processing 
program should be node software, which can be changed 
under central control and much more simply than all Host 
programs. For debugging, a hierarchy of procedures is 
essential, since otherwise the solution of any network diffi­
culty will require investigating all programs (including 
Host programs) for possible involvement in the trouble. 

b. The nature of the problem of message processing 
does not change if it is moved out of the network and into 
the Hosts; the Hosts would then have this very difficult 
job even if they do not want it. 

c. Moving this task into the Hosts does not alleviate any 
network problems such as congestion, Host interference, or 
suboptimal performance but, in fact, makes them worse 
since the Hosts cannot control the use of node resources 
such as buffering, CPU bandwidth, and line bandwidth. 

d. It is basically cheaper to do message processing in 
the nodes than in the Hosts and it has very few detri­
mental effects. 

Peripheral processor connections 

In a number of cases, an organization has desired to 
connect a large Host to a network by inserting an addi­
tional minicomputer between the main Host and the node. 
The general notion ha$ been to locate the Host-Host trans­
mission procedures in this additional machine, thus reliev-



174 National Computer Conference, 1975 

ing the main Host from coping with these tasks. Stated 
reasons for this notion include: 

• It is difficult to change the monitor in the main Host, 
and new monitor releases by the Host manufacturer 
pose continuing compatibility problems. 

• Core or timing limitations exist in the main Host. 
• It is desirable to use I/O arrangements that may al­

ready exist or be available between the main Host 
and the additional mini (and between the mini and 
the node) to avoid design or procurement of new I/O 
gear for the main Host. 

While this approach may sound good in principle, and, 
in fact, may be the only possible approach in some 
instances, it often leads to problems. 

First, the I/O arrangements between the main Host and 
any preexisting peripheral processor were not designed for 
network connection and usually present timing and 
bandwidth constraints that greatly degrade performance. 
More seriously, the logical protocols that may have 
preexisted will almost certainly preclude the ma.in Host 
from acting as a general purpose Host on the network. For 
instance, while initial requirements may only indicate a 
need for simple file transfers to a single distant point, re­
quirements tend to change in the face of new facilities, 
and the network cannot then be used to full advantage.29 

Second, the peripheral processor and its software are 
often provided by an outside group, and the Host organiza­
tion may know even less about their innards than they 
know about the main Host. The node is centrally main­
tained, improved, modified, and controlled by the Net­
work Manager, but the peripheral processor, while an 
equally foreign body, is not so fortunate. This issue alone 
is crucial; functions that do not belong in the main Hosts 
belong in centrally monitored network equipment. Note 
that it is exactly those Host groups who are unwilling to 
touch the main Host's monitor who will be unlikely to be 
able to make subtle improvements in the protocols, error 
message handling, and timing of the peripheral processor. 
From a broader economic view, common functions belong 
in the network and should be designed once; the pe­
ripheral processor approach is a succession of costly spe­
cial cases and the total cost is greatly escalated. 

The long term solution to the dilemma is to have the 
various manufacturers support hardware and software in­
terfaces that connect to widely used networks. This is not 
likely to occur until commercial networks exist and are 
widely available. In the meantime, potential Host organi­
zations that wish to use early networks (like the ARPA 
Network) should try to find ways to put the network con­
nection directly into the main Host. An anthropomorphic 
illustration may be helpful: the network is, among other 
things, a set of standardized protocols or languages. A 
potential network Host is in the position of a person who 
needs to have dealings with people who speak a language 
he does not know. If he does not want to learn the lan­
guage, he can indeed opt for using an interpreter, but 

performance is poor, the process is very inconvenient, 
expensive, and unpleasant, and subtle meaning is always 
lost. The situation is quite similar when a Host tries to 
work through a peripheral processor. If a Host wishes to 
interact with a network, it is usually unrealistic to try to 
make the Host think that the network is a card reader or 
some other familiar peripheral. As usual, you get what you 
pay for. 

Other message services 

One commonly suggested design requirement is for 
storage in the communications subnetwork, usually for 
messages which are currently undeliverable because a 
Host or a line is down. This requirement should have no 
effect whatsoever on the design of the communications 
part of the network; it is an orthogonal requirement which 
should be implemented by providing special storage Hosts 
at strategic locations in the network. These can be at every 
node, at a few nodes, or at a single node, depending on the 
relative importance of reliability, efficient line utilization, 
and cost. 

Another commonly suggested design requirement is for 
the communications subnetwork to provide a message 
broadcast capability; i.e., a. Host gives a message to _ its 
node along with a list of Host addresses and the nodes . 
somehow send copies to all the Hosts in the list. Again we 
believe that such a requirement should have no effect on 
the design of the communications part of the network and 
that messages to be broadcast should be sent to a special 
Host (perhaps one of the ones in the previous paragraph) 
for such broadcast. 

CONCLUSION 

There has now been considerable experience with the 
design of packet-switching networks and several groups 
(ours included) believe that they have come to understand 
many of the fundamental design issues. On the other 
hand, packet switching is still in its youth, and there are 
many new issues to be explored. Such new issues include, 
among others: (a) the techniques for transferring packet­
switching technology from its initial limited R&D imple­
mentations to widespread production implementations; 
(b) the methods whereby the newly available packet-by­
satellite technology can be utilized in packet-switching net­
works; (c) transmission of speech through packet-switch­
ing networks; (d) packet transmission by radio; (e) inter­
connection of packet-switching networks; and (f) effects of 
packet-switching networks on Host operating system 
design. Several other papers in these same proceedings 
cover in detail some of the new design issues just rn.en­
tioned30,31,32,33 and we plan to address some of these new 
issues ourselves in the near future. 



ACKNOWLEDGMENTS 

Since 1969 our research on packet-switching network 
design has been encouraged and supported by the In­
formation Processing Techniques office of the Advanced 
Research Projects Agency. Many of our colleagues at Bolt 
Beranek and Newman Inc. have participated in our re­
search. Through the ARPA Network and through the 
International Network Working Group we have been 
fortunate to be able to receive frequently incisive critiques 
of our work and to have the opportunity to study the work 
of others. In particular, over the past year our interactions 
with Holger Opderbeck and his colleagues at UCLA have 
been enlightening. Finally, we acknowledge the substantial 
assistance of Robert Brooks and Barbara Erwin with the 
preparation of the manuscript, and we acknowledge the 
very useful comments of Drs. J. Burchfiel, W. Hawyrlko, 
R. Metcalfe, and J. Postel, who reviewed the presentation 
and content of this paper. 

REFERENCES 

1. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. 
C. Walden, "The Interface Mess~ge Processor for the ARPA Com-
puter Network," AFIPS Conference Proceedings, Vol. 36, June 1970, 
pp. 551-567; also in Advances in Computer Communications, W. W. 
Chu (ed.), Artech House Inc., 1974, pp. 300-316. 

2. Pouzin, L., "Presentation and Major Design Aspects of the Cyclades 
Computer Network," Proceedings of the Third ACM Data Com­
munications Symposium, November 1973, pp. 80-88. 

3. Brant, G. J. and G. J. Chretien, "Methods to Control and Operate a 
Message-Switching Network," Computer-Communications Network 
and Teletraffic, Polytechnic Press of the Poly technical Institute of 
Brooklyn, Brooklyn, N.Y., 1972. 

4. Barber, D. L. A. (ed.), A Specification for a European Informatics 
Network, Co-Operation Europeenne dans Ie Domaine de Iii 
Recherche Scientifique et Technique, January 4, 1974. 

5. Rosner, R. D., "A Digital Data Network Concept for the Defense 
Communications System," Proceedings of the National Telecom­
munications Conference, Atlanta, November 1973, pp. 22Cl-6. 

6. Davies, D. W., K. A. Bartlett, R. A. Scantlebury, and P. T. 
Wilkinson, "A Digital Communication Network for Computers Giv­
ing Rapid Response at Remote Terminals," Proceedings of the ACM 
Symposium on Operating Systems Principles, October 1967. 

7. Auerbach Publishers Inc., Public Packet Switching Networks, Data 
Processing Manual No. 3-08-04, 1974. 

8. Despres, R. F., "A Packet Switching Network with Graceful Satu­
rated Operation," Proceedings of the First International Conference 
on Computer Communication, October 1972, pp. 345-351. 

9. Pouzin, L., Basic Elements of a Network Data Link Control 
Procedure (NDLC), INWG 54, NIC 30375, January 1974, a limited 
number of copies available for the cost of reproduction and handling 
from INWG, c/o Prof. V. Cerf, Digital Systems Laboratory, Stan­
ford, CA. 94305. 

10. McQuillan, J. M., W. R. Crowther, B. P. Cosell, D. C. Walden, and 
F. E. Heart, "Improvements in the Design and Performance of the 
ARPA Network," AFIPS Conference Proceedings, Vol. 41, 
December 1972, pp. 741-754. 

11. Heart, F. E., S. M. Ornstein, W. R. Crowther, and W. B. Barker, "A 
New Minicomputer/Multiprocessor for the ARPA Network," AFIPS 
Conference Proceedings, Vol. 42, June 1973, pp. 592-537; also in 
Selected Papers: International Advanced Study Institute, Computer 

Issues in Packet Switching Network Design 175 

Communication Networks, R. L. Grimsdale and F. F. Kuo (eds.), 
University of Sussex, Brighton, England, September 1973; also in 
Advances in Computer Communications, W. W. Chu (ed.), Artech 
House Inc., 1974, pp. 329-337. 

12. Ornstein, S. M., W. R. Crowther, M. F. Kraley, R. D. Bressler, A. 
Michel, and F. E. Heart, "Pluribus-A Reliable Multiprocessor," 
these proceedings. 

13. Frank, H., R. E. Kahn, and L: Kleinrock, "Computer Communica­
tions Network Design-Experience with Theory and Practice," 
AFIPS Conference Proceedings, Vol. 40, June 1972, pp. 255-270; also 
in Networks, Vol. 2, No.2, 1972, pp. 135-166; also in Advances in 
Computer Communication, W. W. Chu (ed.), Artech House Inc., 
1974, pp. 254-269. 

14. McQuillan, J. M., Adaptive Routing Algorithms for Distributed 
Computer Networks, BBN Report No. 2831, May 1974, available 
from the National Technical Information Service, AD781467. 

15. Grange, J. L., Cyclades Network, personal communication. 
16. Floyd, R. W., "Algorithm 97, Shortest Path," CACM 5 (6), June 

1962, p. 345. 
17. Gerla, M., "Deterministic and Adaptive Routing Policies in Packet­

Switched Computer Networks, Proceedings of the Third ACM Data 
Communications Symposium, November 1973, pp. 23-28. 

18. Baran, P., On Distributed Communications: l. Introduction to Dis­
tributed Communications Networks, Rand Corp. Memo RM-3420-
PR, August 1964, p. 37. 

19. Opderbeck, H. and W. Naylor, ARPA Network Measurement 
Center, personal communication. 

20. Kahn, R. E. and W. R. Crowther, "Flow Control in a Resource-Shar­
ing Computer Network," Proceedings of the Second ACMIIEEE 
Symposium on Problems in the Optimization of Data Communica­
tions Systems, Palo Alto, California, October 1971, pp. 108-116; also 
in IEEE Transactions on Communications, Vol. COM-20, No.3, Part 
II, June 1972, pp. 539-546. 

21. Metcalfe, R. M., Packet Communication, Massachusetts Institute of 
Technology Project MAC Report MAC TR-1l4, December 1973. 

22. Kleinrock, L. and W. Naylor, "On Measured Behavior of the ARPA 
Network," AFIPS Conference Proceedings, Vol. 43, May 1974, pp. 
767-780. 

23. Crowther, W. R., F. E. Heart, A. A. McKenzie, J. M. McQuillan, and 
D. C. Walden, Network Design Issues, BBN Report No. 2918, 
November 1974, to be available from National Technical Informa­
tion Service. 

24. Davies, D. W., and D. L. A. Barber, Communication Networks for 
Computers, London: John Wiley and Sons, 1973. 

25. McQuillan, J. M., "The Evolution of Message Processing Techniques 
in the ARPA Network," to appear in International Computer State 
of the Art Report No. 24: Network Systems and Software, Infotech, 
Maidenhead, England. 

26. Tomlinson, R. S., Selecting Sequence Numbers, INWG-Proto­
col Note #2, August 1974, available as with Reference 9. 

27. Cerf, V. and R. Kahn, "A Protocol for Packet Network Intercom­
munications," IEEE Transactions on Communications, Vol. COM-
22, No.5, May 1974, pp. 637-648. 

28. Cerf, V., An Assessment of ARPANET Protocols, RFC 635, NIC 
30489, April 1974, available as with Reference 9. 

29. Metcalfe, R. M., "Strategies for Operating Systems in Computer Net­
works," Proceedings of the ACM National Conference, August 1972, 
pp. 278-281. 

30. Retz, D. L., "Operating System Design Considerations for the Packet 
Switching Environment," these proceedings. 

31. Forgie, J. W., "Speech Transmission in Packet-Switched Store-and­
Forward Networks," these proceedings. 

32. Lam, 'S. S., and L. Kleinrock, "Dynamic Control Schemes for a 
Packet Switched Multi-Access Broadcast Channel," these proceed­
ings. 

33. Kahn, R. E., "The Organization of Computer Resources into a 
Packet Radio Network," these proceedings. 





The organization of computer resources into a 
packet radio network 

by ROBERT E. KAHN 
Advanced Research Projects Agency 
Arlington, Virginia 

INTRODUCTION 

In this paper, we describe the use of packet radio com­
munication for organizing computer resources into a com­
puter communications network. A system to demonstrate 
the packet radio concept is being developed by the Ad­
vanced Research Projects Agency with initial testing in 
the San Francisco area beginning in 1975. The attributes 
of this system are presented and its application to mobile 
radio communications and computer architecture is 
briefly discussed. 

The development of packet switching has made possible 
the economic sharing of computer resources23,24,36 over a 
wide geographic area and, as a valuable byproduct, it has 
provided an effective alternative to circuit switching in 
providing error-free wideband communication net­
works.27

,30 The basic architecture of a resource sharing 
computer network includes Host computers connected to 
one or more packet switches which may be colocated or re­
mote from the Hosts. The packet switches are intercon­
nected by point to point data circuits according to a topo­
logical design which results in low cost networks for a 
given target throughput, reliability and delay.l4,29 For a 
given packet switching technology, it is possible to increase 
network throughput greatly by assembling a higher per­
formance switch out of a cluster of lower performance 
switches (see Figure 1) and by providing many more cir­
cuits between clusters.22 An alternate approach which uses 
multiple minicomputers to obtain a higher perform­
ance swit~h is described in Reference 2l. 

The use of packet broadcasting techniques for intercon­
nection becomes attractive when the number of minicom­
puters (or microprocessors!) is sufficiently large and the 
overall traffic flow is small. The use of wire "busses" for 
packet broadcasting appears certain to be an effective in­
terconnection technique. However, packet radio provides 
another alternative that may be useful for organizing the 
communications among a large or even a small number of 
computer resources regardless of the physical setting; in­
side a box, within a room, or throughout a wide geographic 
area (see Figure 2). In addition to its utility for mobile 
communications, packet radio may eventually result in 
the development of improved techniques for maintenance, 
breadboarding, and packaging of computer equipment. 

177 

For a geographically distributed network, economic 
studies have shown that the cost of local distribution for a 
large user population can be a significant part of the 
overall system cost.ll For this reason alone, it would be de­
sirable to identify more economic techniques for local data 
distribution than the use of telephone lines. Some progress 
in this direction has already taken place28 and further 
development of cable systems is expected. However, even 
if the cost of telephone access lines were not a dominant 
factor, an effective means of obtaining mobile access 
would still be required. This has provided one incentive 
for the development of a local radio distribution system. 
The burst characteristics of computer communication3l 

will surely be significantly different from the characteris­
tics of mobile radio telephone. By using packet switching 
over radio channels, one should be able to achieve 
increased utilization of the frequency spectrum for com­
puter communications than with conventional fixed chan­
nel allocation techniques. 

The progress in integrated circuit electronics, low power 
displays and microprocessors makes it feasible to develop 
a personal terminal which may be conveniently carried 
about by an individual.3,8 This capability allows a user 
with access to a radio network to be continually in com­
munication with people and computer resources or, selec-
tively, to avoid any and all communications if desired. 
This latter capability becomes increasingly important as 
computers and communication capabilities are brought 
increasingly close to the individual. 

The Aloha system 

Several years ago, researchers at the V niversity of 
Hawaii, noting the unusually high error rates on the local 
telephone lines which adversely affected their ability to re­
motely utilize the university computer, proposed a re­
search program to investigate the use of burst radio trans­
mission in place of telephone lines for error-free line of 
sight communications to the computer center. This led to 
the development of the Aloha System at the university, a 
set of terminals linked directly to the computer center by 
VHF packet radio? A discussion (in retrospect) of the 
lessons learned in the Aloha System experience is given in 
a companion paper.6 



178 National Computer Conference, 1975 

Figure I-Packet switch formed by clustering 

A simplified schematic diagram of the original Aloha 
system is given in Figure 3. In this system, all terminals 
were in line of sight of the antenna atop the computer 
center which served as the hub or station for all communi­
cations. Subsequently, a simple form of relay was 
developed to allow the range of the system to be extended 
over the mountains of Oahu and to the other islands. 

For some applications, the Aloha architecture as 
developed by Hawaii represents a good choice without 
modification. For other applications where it is desirable 
to obtain coexistence with possibly different systems in the 
same frequency band, anti-jam protection, authentication, 
or direct communication by a ground radio network 
between users over a wide area, the Aloha system would 
have to be extended. In this paper, we discuss a packet 
radio system which is capable of meeting these added re­
quirements and which is a network extension of the basic 
Hawaii work. 

The main attributes of the packet radio system to be 
described in this paper which differ from the original 
Alohanet are: 

(1) Distributed control of the network management 
functions among multiple stations for reliability, 
and the use of a netted array of possibly redundant 
repeaters for area coverage as well as reliability. 

(2) The use of spread spectrum signalling for coex­
istence with other possibly different systems in the 
same band and for anti-jam protection. Surface 
acoustic wave technology is a viable current choice 
for matched filtering in the receiver. 12 

(3) The provision of authentication and anti-spoof 
mechanisms. 

(4) The use of system protocols that include network 

mapping to locate and label repeaters, route de­
termination and resource allocation, remote debug­
ging and other distributed network functions. 

(5) The use of various implementation techniques to 
provide efficient operational equipment such as 
repeater power shutdown except while processing 
packets. 

The Alohanet has served as a useful model of a system 
which has a single central station with many distributed 
terminals within line of sigh~. Considerable progress has 
been made in analyzing thismode1.25 ,26,32,33 In addition to 
random aloha and slotted aloha, the techniques analyzed 
have included carrier sense multiple access, busy tone 
multiple access and split-channel reservation multiple ac­
cess.5,15 

The packet radio system described in this paper is 
predicated upon the existence of an array of low cost 
repeaters and the need for reliable backup of all the critical 
system functions. It has served from the beginning as a use­
ful model of a multiple station repeatered network. 
Analysis of this model has proven to be considerably more 
difficult than the single station model with terminals within 
line of sight. Consequently, simulation techniques have 
been extensively used for the packet radio network design.2 
We shall refer to this multi-station repeatered network as 
the Radionet to distinguish it from the original Alohanet at 
the University of Hawaii. 

Frequency management 

Frequency management has become a topic of 
considerable importance for both commercial and military 
use. The spectrum is already heavily crowded and efforts 

Figure 2-Packet switch using radio transmission 



• • • • • 

\ / / 

ALOHA MENEHUNE 

Figure 3-The original Aloha System 

are constantly being made to obtain more effective use of 
the spectrumY For example, there would seem to be no 
valid reason why a Radionet could not coexist in the same 
band as broadcast TV with virtually no adverse technical 
effect. Although laboratory tests of data under voice and 
data under video are known to have occurred, we are 
aware of no efforts to carry out coexistence tests in the 
broadcast TV band. It would not be surprising if both 
systems could coexist in the same band to mutual ad­
vantage. 

New frequency allocations and assignments are becom­
ing increasingly difficult to obtain due to the existence of 
prior assignments. This has resulted in a continual push, 
in the one direction, for frequency allocations at higher 
and higher frequencies. Non-essential use of the radio 
spectrum is likely to meet with pressure for movement to 
cable or other suitable channels. There is obviously a 
practical limit to the rate at which technological develop­
ment can move the frequency frontiers and better tech­
niques are needed for utilizing spectrum which is already 
handled by existing technology. . 

According to current doctrine, spectrum is assigned 
roughly in accordance with each users stated require­
ments, which are usually worst case requirements. Once 
allocated to a given user~ the frequency band is not usually 
available for use by others in the same area. Joint use is 
presumed to cause mutual interference and thus degrade 
at least one and possibly both systems. This would be an 

1"'10 UTILIZATION 

f, 

BAi"JD 3ArJD 
2 

BAfJD 
N 

Figure 4a-Fixed frequency allocations 

FREQUErJCY 

The Organization of Computer Resources 179 

effective management technique if each assigned band 
were actually used most of the time. In Figure 4a, we show 
a set of N channels each allocated to a single user. For 
computer communications, the utilization of each channel 
would typically be on the order of a few percent or less. If 
each channel were used approximately p percent of the 
time on the average, the total utilization of the assigned 
band would also be about p percent and could not be 
increased without employing a different strategy. It ap­
pears that a factor of 10-100 more utilization can be ob­
tained for burst type traffic with the use of multiple access 
techniq ues. 

On the other hand, if each of the N channels could be 
scheduled for transmission of one packet and then 
released, approximately N / p users could be served with 
equivalent service. Approximately the same service could 
also be achieved by pooling all the users into a single chan­
nel N times as wide.35 In Figure 4b, we illustrate the 
spectral occupance of a common band by a set of users 
who coexist with each other. 

In a spread spectrum multiple access system, additional 
bandwidth is used to provide protection against unwanted 
interference. However, the spread system can self interfere 
with itself in multiple access mode as each signal of 
received power P contributes P / K noise power to the 
output of a spread spectrum receiver, where K is the ratio 
of the spread bandwidth to the unspread band. Although it 
doesn't seem straightforward to increase the utilization by 
a factor of K without control of system timing to within a 
small fraction of 1lbandwidth, additional users may be si­
multaneously permitted to access the system without 
system wide control of timing, provided the self in­
terference does not become too great. Thus, one pays a 
price for spreading the spectrum, but one also receives the 
advantages of a multiple access anti-jam system. Multiple 
access coding techniques may also be useful to increase 
the overall system efficiency. 16-18 

TARGET SYSTEM REQUIREMENTS 

In this section the overall system objectives and the 
basic requirements to be met by the Radionet are dis~ 
cussed. The system consists of terminals and stations 
linked together by line of sight radio repeaters. The sta­
tions are minicomputers which provide system control; 
the terminals are hand-held devices, IIO consoles, com­
puters, sensors, etc. We include Host computers in the 
general category of terminals. The repeaters are simple 
relay devices which provide network area coverage for ter­
minals and for one or more stations. 

~ER j\J 

~ER 2 

USER 1 

f, FREQUENCY 

Figure 4b-Utilization of a common frequency band 



180 National Computer Conference, 1975 

One could also envision a substantially different kind of 
radio network where increased capability is resident in the 
repeater. The intent here, however, is to keep to a 
practical minimum all the functions that a repeater 
performs and to delegate the rest to the stations. 

No attempt is made in this paper to compare the packet 
radio techniques with standard mobile radio techniques 
and assignment methods. The interested reader is referred 
to Reference 37 for background information. Comparative 
studies of these systems will no doubt be a topic for dis­
cussion in the coming years. 

Computer communications 

The system should be capable of meeting the require­
ments for mobile communication with computers includ­
ing real-time speech communication to and from com­
puters as well as handling data to or from portable digital 
terminals, various types of Host computers, etc. Since com­
puter communication is characterized by a high ratio of 
peak to average traffic, a multiple access radio system is 
appropriate since it provides shared use of a common 
radio channel and is therefore expected to be more effi­
cient than a system which dedicates resources to users 
with low duty cycles. A peak user data rate of 100 
kilobits/second is desirable to meet the need for the 
rapid transfer of files and for real-time response. 

The packet radio system should appear to a user as if a 
direct connection exists between the user and the destina­
tion. The operation of the Radionet should otherwise be 
transparent to the end user. For initial testing purposes 
the coverage area should have a diameter of at least 100 
miles. The design of the radio net should be capable of ex­
tension to handle increasingly larger geographic areas with 
attendant increases in cost, delay, and amount of equip­
ment. 

Coexistence 

The system should be able to share a common fre­
quency band with other (possibly different) systems. The 
advantages of shared frequency bands are: (1) that certain 

, equipments for different systems can be made compatible 
at the digital level allowing internetting to be conveniently 
achieved, if desired. This capability could have striking 
economic impact in situations where separate radio nets 
with separate equipment and separate frequency bands 
are currently established. With common equipment types 
and a common band, the separation could be achieved via 
packet labels rather than by using different bands and in­
compatible equipment, (2) that shared operation can 
result in better utilization of the frequency spectrum, (3) 
that the system may be introduced into a band which is 
currently assigned to one or more other users without first 
requiring the other users to vacate the band and without 
mutual interference, (4) that the system shall inherently 
be capable of providing some degree of protection against 
unwanted interference. Spread spectrum signalling can 

assist in achieving this objective and is desirable for anti­
jam communications.19 

Mobile communications 

It is desirable for the packet radio technology to be 
able to serve users whether on land, at sea or in the air. 
Relative speeds of several thousands of miles/hr may oc­
cur among high speed aircraft. In the initial testing, the 
technology is only required to serve speeds such as might 
occur with ground vehicles or while walking. A target 
speed of one hundred miles per hour is sufficient to 
conduct tests with automobiles and is an appropriate 
initial choice. Doppler and system timing considerations 
are being studied to insure that higher speed vehicles can 
be incorporated at a later time, if desired. 

No special demands should be placed on the user of the 
system in order that he be able to use the system while 
moving within its specified boundaries. In particular, the 
method of utilization should be the same for a user at rest 
and a user in motion and the performance of the system 
should be nominally the same regardless of the users loca­
tion within the boundaries of the Radionet. Further study 
is required to determine what, if any, degradation results 
from trying to achieve exactly equal performance (as op­
posed to nominally equal) within some widespread portion 
of the Radionet. 

Traffic handling 

Experimental evidence34 indicates that a maximum 
packet size of 1000 bits seems to be a satisfactory choice 
for the vast majority of computer communication require­
ments. For portable digital terminals (as with real-time 
computer speech input) packet sizes of a few hundred bits 
are more than ample, and character by character trans­
mission is often needed. The use of special protocols20 for 
handling character transmission will help in reducing the 
number of single character packets. This reduction is 
achieved by allowing transmission to occur only when an 
appropriate character (such as a command terminator) oc­
curs or when sufficient characters have been accumulated. 
The Radionet should therefore be able to handle packet 
sizes from zero to 1000 bits and, for interactive response, 
an average delivery time of 0.1 seconds is desired for the 
longest packets within the 100 mile coverage area. 

Rapid and convenient deployment 

The individual elements of the packet radio system 
should be constructed so that they can be installed in the 
field with little delay. Technology has progressed to the 
stage where the individual elements that must be deployed 
can be made small enough and light enough to be carried 
by hand. There should be no requirement for careful 
alignment or other tailoring of the equipment during in­
stallation. Rather, it should be insensitive to the specific 



characteristic of the setting. Omni-directional antennas 
can be used and the system can be made to learn of the 
presence or absence of individual components auto­
matically so as to avoid the need for careful coordination 
among different sites in the deployment or installation 
process. 

An omni-directional radiation pattern is also desirable 
for area coverage of mobile terminals. In specific cases, 
however, directional antennas may be useful for very low 
power terminals or for an occasional long range shot to a 
predetermined location. It is expected that alignment will 
involve greater installation complexity and coordination 
and, in addition to taking somewhat longer to install, may 
rule out simple forms of deployment. Assuming no prob­
lems are encountered with the equipment as a result of the 
transportation, it should be possible for a small team of 
persons to completely install the field elements of a 
Radionet (or remove them) in little more time than it 
takes to reach the appropriate deployment locations. 

Unattended operation and reliability considerations 

Once in place, a packet radio network should not re­
quire the presence of any personnel for its normal opera­
tion. Furthermore, certain debugging and restart or shut­
down operations should be possible to perform remotely. 
Power consumption should be kept to a minimum and 
reduced to almost zero during periods when no packets are 
being processed. This technique will lengthen the interval 
between maintenance visits which is expected to be princi­
pally determined by the powering requirements. 

A hand-held terminal might be expected to provide 
several hours of service without recharging. A repeater 
unit should be able to provide service for many days, if 
not several weeks or months between replenishments of 
the power supply. This time period will depend on the 
amount of traffic handled. 

The probability that some part of the network is unable 
to communicate with the rest of the net should be less 
than 0.5 percent and the mean time between failures should 
be at least 1000 hrs for any component in the field under 
normal conditions. 

Error free performance 

The system should provide essentially error-free per­
formance for computer communications. A target objec­
tive of no more than one undetected packet error per 
10exp(10) packets assuming 1000 bit packets, a 100 
kilobit/second data rate and 100 percent occupancy. This 
is equivalent to a mean time between undetected packet 
errors in excess of 30 years. 

Experiments in urban areas have shown1o that noise im­
pulses occur every few milliseconds in both the UHF and 
L bands principally due to automobile ignition noise. A 
packet has a very high probability of encountering one or 
two impulses and· therefore some form of error correction 
is required. In general the error correction choice should 

The Organization of Computer Resources 181 

depend on the characteristics of the environment. A 
simple form of error correction should be provided and the 
system design should facilitate the addition of additional 
error correction capability, if necessitated by the environ­
ment. 

Internetting 

Internetwork communication is of particular im­
portance in the computer communications field due to the 
expected proliferation of multiple nets and the high cost of 
user interfacing. Thus, it may be necessary for a user or a 
Host on the Radionet to access a particular user or 
resource on some other packet switched network. This 
should be possible using a protocol designed for internet­
ting so that differences in format, packet size, addressing 
and other conventions can be properly handled.9 

Resource allocation 

When traffic levels are sufficiently low, there is little 
need for regulating or otherwise controlling the use of the 
packet radio channel. As the potential demand for service 
rises, however, a point is reached where some form of 
system control of the channel· is necessary for resource 
allocation. The packet radio system must be able to 
guarantee service to authorized individual subscribers so 
that their requirements are provided by the system even 
when certain users require or are privileged to obtain a 
larger allocation of resources than others. 

Directories and virtual subnets 

A user on the Radionet should be able to communicate 
with other users or systems by name rather than strictly 
by numerical ID. Thus, a user named Smith could be 
reached using only Smith's alphanumeric name. The 
system performs the directory lookup and all necessary 
conversions from Smith to the appropriate internal ad­
dressing on behalf of the user who need never be aware of 
the address mapping. If more than one Smith were known 
to the system, the user would have to supply additional in­
formation to distinguish among them. Smith may also 
choose to refuse communications. 

In addition, selected users on the net may wish to form 
logical subnets of their own within the Radionet for han­
dling specific functions or for otherwise organizing 
themselves. The net should provide a mechanism to allow 
the formation of these virtual subnets and allow au­
thorized individual users to join or leave these subnets as 
needed. Initially, these subnets could be provided as a spe­
cial service to the net by one or more Hosts on the net­
work. 

SYSTEM STRUCTURE 

The communication system consists of a distributed ar­
ray of packet radio repeaters (see Figure 5) each of which 



182 National Computer Conference, 1975 

T ;I T 

cb T 
T tI 

T cb 
T T T 

T 
T 

T 
tv.' ;I T T T T 

T T T 

T 
T T tI 

T 
T T 

T ;I T T T 

cb tI T 
T T 

T T 

T 

T T 

T T T 

T 

T T ;I T tI 
T Tcb T T 

T 
T 

T ... TERMINAL 

6 ... REPEATER 

o . STATION 

~i~ure 5-User communication in a packet radio network 

is able to receive and then transmit a sequence of packets, 
thereby serving as a relay. The range of each repeater is 
determined by its geographic setting and its effective 
radiated power. A maximum spacing of 20-25 miles 
between repeaters is practical in the light of the target re­
quirements in the previous section. A denser packing of 
repeaters is desirable for communication with hand-held 
terminals and for reliability. In particular, certain 
repeaters could be placed in the field and remain inactive 
until needed for reliability. 

The initial system concept utilizes a single radio channel 
shared by all the repeaters which operate as transceivers. 
Two repeaters may communicate with each other by 
"leapfrogging" over any other repeaters which may hap­
pen to lie in their path. A discussion of these choices is 
contained in the companion paper by Frank.2 Simulation 
results show that a higher data rate (e.g., 400 
kilobits/ second) should be used for repeater to repeater 
communication than for terminal to repeater communica­
tion (100 kilobits/sec). 

The 1710-1850 MHz fixed and mobile band has been 
selected for the initial experimentation. The system will be 
operated in a 20 MHz portion of the band. In addition to 
being wide enough to support the initial requirement of 20 
MHz, it is capable of supporting possible requirements for 
multiple channel operation using a 100 MHz bandwidth. 
Alternate bands in the range between 100 MHz and 2 G Hz 
were considered for possible selection, but were rejected 
for the initial tests due to their heavy usage. Operational 
use of the Radionet at some lower frequency can be easily 
achieved by using a different amount of band shifting. 

Although the characteristics of the lower frequency 
bands are somewhat better suited to radio propagation in 
adverse environments, the higher bands will afford a more 
conservative system test. The use of the lower frequencies 
is particularly important when all users are expected to 
receive directly the initially launched wave which may en­
counter built-up areas, mountains, etc. For a repeater 
system, it makes less difference if the waves pass around 
mountains since the end user would not normally be ex­
pected to receive the initial wave, but only a repeater ver­
sion of it. Although it is slightly more efficient to generate 
power at the lower frequencies, this difference in the 
bands under consideration is no greater than a factor of 
two and is compensated for by the scaling down in size of 
components, particularly the antenna. 

As there is a potential for confusion between the func­
tion of a repeater and the function of a terminal, we 
digress a moment to discuss terminology. A device which 
is capable of transmitting a radio packet or receiving a 
radio packet is called a packet radio. A repeater, in our 
context, is merely a particular kind of packet radio which 
is equipped to retransmit by radio some or all packets 
which it receives by radio. 

A terminal on the Radionet also requires the capability 
to transmit radio packets and to receive radio packets. Its 
role, though, is one in which it accepts no packets destined 
for other users and consequently it only transmits packets 
which are originated by its user. That is, it does not act as 
a repeater and it is not programmed to act as a repeater. A 
repeater is simply a packet radio which happens to be 
programmed to function in a repeater mode. If there is 
need for clarification, we shall refer to the packet radio at 
the terminal, or to the packet radio repeater (or simply 
repeater). 

Practically speaking, there will be some difference in 
implementation between a repeater and a packet radio at 
the terminal, although they will both function in similar 
(if not identical) ways. For one, the repeater will be more 
heavily powered to last longer and may be a more rugged 
unit (particularly if it must be housed outdoors in all 
weather). A good description of the technology for packet 
radio is given in Reference l. 

A packet radio which fits in one's pocket will obviously 
have different attributes. In addition, the user will require 
some means of inputting data to the packet radio and 
reading out received data. For example, this may take the 
form of voice or keyboard input, and display, print or 
voice output. 

The logical functions of packet processing in the 
Radionet are handled by microprocessors. A user terminal 
may actually have two separate microprocessors, one for 
keyboard and display control and one for the radio 
processing, or it may have only one to provide both func­
tions. A discussion of digital terminals for packet radio 
networks is given in a companion paper.3 

The repeaters are designed to be relatively simple, and 
most of the system control functions are deliberately 
separated out for handling by one or more control stations. 
The control station consists of a minicomputer which is a 



repository of centralized information and control for the 
packet Radionet. It is connected to the rest of the system 
by its own packet radio. The packet radio at the station is 
logically equivalent to a packet radio at a terminal. 
However, the radio at the station may also serve as a 
repeater in the multi-station case. 

For reliability, a packet Radionet will contain two or 
more stations. Two ways to allocate responsibilities 
between the stations are: 

(1) To have one station assume the active role of con­
b'oller while the other stations are kept in readiness 
and advised of the network status in order that one 
of them may automatically become active should 
the currently active control station fail or need to be 
removed from service. 

(2) To dynamically apportion or partition the control 
task among the stations such that each station only 
serves its share of the users and/ or network 
resources. Backup of each station by the others is 
also provided in this case and automatic switchover 
occurs if a station fails. 

A goal in either case above is to quickly achieve a 
switchover with as little loss of data as possible (hopefully 
none). Both of these techniques are currently under study. 
A description of the station and its functions is given in 
Reference 3. 

In the initial tests, all data will flow from the user to the 
station and then from the station to the final destination! 
However, the protocols are such that it would be possible 
to support direct communications between source and 
destination for some or all of the network communication 
(with the station not in the path). However, changes in the 
repeater functions may also be necessary if the station is 
not directly involved, which might complicate the repeater 
design. These alternatives will be a subject for study dur­
ing the test program to determine whether or not (1) it is 
desirable or necessary for the station to be in the path to 
guarantee allocation of resources or to provide critical 
services for certain users, (2) to determine the limits on 
system performance induced by the station in the path, 
and (3) to determine how the results of (1) and (2) above 
are affected if multiple stations are simultaneously in use 
within the same net. The station also serves as th'e gateway 
to other networks, and unless the destination user or Host 
resource is also on the packet Radionet, all traffic must 
pass through a station anyway. 

When the station is in the direct path, it provides flow 
control. Each packet is hop by hop acknowledged between 
repeaters for error control as it proceeds to the station and 
from the station, but is acknowledged from the station to 
the packet radio at the terminal and from the destination 
to the station for flow control. A Host is allowed to have 
multiple packets in transit within the net at any time. End 
to end acknowledgments are required every N packets ,ac­
cording to the flow control doctrine, and do not depend on 
the proper sequential receipt of packets by the station. 
The Radionet will allow occasional packets to be delivered 

The Organization of Computer Resources 183 

out of order unless specifically required to provide se­
quencing for a given terminal or Host. It is assumed that 
the Host/ Host protocol is prepared to handle sequencing. 

A user's packet radio makes initial contact with the sta­
tion by sending a search packet. All repeaters which hear 
the search packet forward it to the station which, in turn, 
selects one of the repeaters and transmits the address of 
the selected repeater to the users packet radio. As a user 
moves about within the boundaries of the Radionet, the 
station detects when a handoff from one repeater to 
another is desirable and performs the handoff by advis­
ing the user's packet radio to address a new repeater. 

The repeaters do not determine routes. All the routing 
computations are performed by the station. The complete 
routing information for each packet is inserted in the 
packet by the source and is carried along with the packet 
as it moves through the Radionet. 

AUTHENTICATION AND PRIVACY 

In principle, every packet radio is capable of being 
modified to receive packets not intended for it, and 
packets must be encrypted to provide privacy or security. 
The situation in the Radionet is considerably different 
from that which occurs in a wireline network where access 
to internal network packets is restricted. Similarly, every 
receiver in a Radionet is also a transmitter and capable, in 
principle, of being modified to masquerade as another 
packet radio. Some mechanism must therefore be in­
troduced into the net to verify the authenticity of both the 
sender and the receiver in each stage of the communica­
tion process, and to avoid disruption of normal communi­
cations. 

The same basic considerations apply whether we focus 
on a repeater or on a packet radio at the terminal. Con­
sequently, in the following discussion, we shall only 
consider 'the case of authenticating repeaters within the 
net. Authentication and privacy mechanisms will not be 
incorporated into the initial packet radio system, but are 
planned for incorporation in a later phase. 

Authentication 

Let us assume that all data is suitably encrypted for pri­
vacy and that we are interested in verifying at repeater A 
that traffic leaving repeater A and addressed to repeater B 
is actually being received by intended repeater B. In addi­
tion, we are interested in verifying that traffic being 
received from a so-called repeater B is actually coming 
from an authentic repeater B. 

One possible approach to this problem is outlined below. 
Each repeater is assumed to include an algorithm whose 
operation is unknown to the users and which may be 
changed dynamically. Identification of non-authentic 
repeaters is primarily. dependent upon the detection of a 
violation of protocol or by observing a repeater using the 
wrong algorithm. The algorithm is assumed to be 
packaged in a repeater in such as way that it cannot be 



184 National Computer Conference, 1975 

read out if a repeater is captured. We recognize that this 
assumption, as well as the assumption that the algorithm 
can be kept private enough, may be subject to question. 
However, the packaging of the algorithm in an appropriate 
way is believed to be achievable and an approach of this 
form is believed to be necessary if mobile terminals and 
unattended operation of repeaters is to be achieved in the 
Radionet. 

Several methods of using the algorithm are currently 
under study. One possible method involves a three way 
handshake to communicate data. Let us assume that 
repeater A selects a number at random and communicates 
it to repeater B with an implicit request to forward a 
packet. Repeater B, acting suspiciously, uses the received 
number to generate a new number with the aid of the al­
gorithm. Repeater A also generates the new number which 
it uses to select a spread spectrum code pattern. Repeater 
B acknowledges the request using the spread spectrum 
code. Repeater B then prepares to receive the data within 
several milliseconds after receiving· the original request. 
The request thus serves as the preamble for signalling the 
arrival of a packet. It could also provide exact timing for 
the data, if desired. 

The data is sent by repeater A using another portion of 
the spread spectrum code. The acknowledgment from B to 
A serves to validate the receiver to A and the receipt of the 
data by B from A in the correct code serves to validate A 
to repeater B. Eventually the packet will be correctly 
received by B and, to avoid endless repetitions from A, B 
acknowledges the correct receipt back to A using yet 
another portion of the spread spectrum code. One effect of 
this handshake procedure, however, is to reduce the ca­
pacity of the system and to increase the average delay in 
order to provide authentication and to protect the trans­
mission from unwanted interference. Several techniques 
are available for insuring that some postulated level of in­
terference can be overcome, through the use of spread 
spectrum for anti-jam protection and by random selection 
of preambles. 

Privacy 

Data is encrypted at the point of origination and 
decrypted only at the final destination. Although we do 
not discuss it further in this paper, it is assumed that a 
key distribution scheme is used to achieve the requisite 
protection. In Figure 6 we illustrate a terminal, a station 
and a Host on the Radionet. The terminal is shown with 
two microprocessor units, one on either side of an encryp­
tion unit. One microprocessor is an integral part of the 
packet radio. The other microprocessor is used to support 
the keyboard display portion of the terminal. 

Each packet is assumed to be encrypted independently 
of the others. Only one encryption unit is shown at the 
Host, but for multiple access, more than one might be 
desired. In this situation, the station only serves to provide 
functions such as flow control, resource allocation, and ad-

KEYBOARD 
DISPLAY 

STATION 

HOST 

Figure 6-Microprocessors and encryption 

dress mapping. It does not and cannot interpret the data 
which passes by in any meaningful way. 

Data from the terminal is packetized by its micro­
processor prior to encryption where it may also be echoed 
according to a Telnet protocol.20 We assume the address of 
the desired destination Host is resident at the station, it 
having been notified prior to setup of the connection either 
by the terminal (or the key distribution system). The 
encrypted packet is stored in the packet radio micro­
processor until acknowledged by the next repeater. The 
station may sequence packets from the terminal, but is 
not assumed to be able to ask for retransmissions. Such 
requests are assumed to come as part of the end to end 
protocol with the Host or other user. Communication from 
the Host to the terminal is typically sequenced by the sta­
tion to simplify the reassembly task at the terminal. There 
is no such requirement in general for sequencing of 
packets headed to the Host. In certain cases, such as with 
speech, there may be no advantage to reordering packets 
headed to the terminal either. 

In internetwork connections between the Radionet and 
another net, the station serves as a gateway. However, the 
encrypted packets are forwarded as before to the destina­
tion Host without any meaningful interIuetation at the sta­
tion, and none is possible. 



SWITCHING AND SORTING APPLICATIONS 

The use of packet radio in switch design was briefly dis­
cussed at the beginning of the first section. Its use in the 
implementation of an mxn crossbar switch with m+n 
radio units is also clear. In fact, if the output lines from 
the switch coincide with the input lines, then only m radio 
units are needed. Another example of the use of packet 
radio in bucket sorting is discussed below. 

A bucket sort is one way of processing data items for 
rapid storage and retrieval from a small table. Let us 
assume that M data items are to be stored in K buckets. A 
unique name must be supplied to retrieve a data item. 
Each data item (and the unique name) is assigned to one 
of the buckets based on a simple test (e.g., its low order n 
bits). 

In a typical implementation of a bucket sort, all the 
bucket items are stored in a single processor. Entries 
within a bucket are chained together serially. To store an 
item, its bucket is first identified and the item is ap­
pended to the end of the chain either by searching for the 
end or with the aid of a pointer to the end. To retrieve the 
item, a search of the chain is required. On the average, 
this takes M / K tries. 

N ow consider the implementation of a bucket sort on a 
set of microprocessors all in communication with each 
other via packet radio. The buckets are now conceptual 
entities each of which is distributed among the micro­
processors. For simplicity, each processor is assumed to 
store only one entry from any single bucket, but may also 
store entries from other buckets. If bucket i contains k 
entries, they would be stored in k distinct microprocessors. 
Responsibility for storing the next item in a bucket is 
passed around round robin among the processors so that, 
at any time, only one microprocessor is designated to store 
the next item for a given bucket. Once that item is stored, 

PACKET 
RADIO 

BUCKET 1 

BUCKET 2 

BUCKET 3 

BUCKET 4 

• 
• 
• 

BUCKET 2 • • ITEM 2 

• • 
• • 
• • 

MICRO MICRO 
PROCESOOR PROCESOOR 

2 

Figure 7-Bucket sorting by packet radio 

• BUCKET 2 
ITEMK 

• 
• 
• 

MICRO 
PROCESOOR 

K 

The Organization of Computer Resources 185 

some other microprocessor is designated to store the suc­
ceeding item. The storage contents of a set of micro­
processors is shown schematically in Figure 7. The items 
in bucket 2 are shown in boldface on the figure. 

In order to retrieve an item in bucket j, a micro­
processor broadcasts the unique name. Each micro­
processor hears the request, determines the bucket and 
performs a match with the contents of the j-th entry in its 
table. If the contents match the unique name, it 
broadcasts back the requested data item and the unique 
name. A data item may therefore be retrieved in exactly 
one try. If the number of microprocessors does not exceed 
the number of entries per bucket, the number of tries will 
be greater than one, but still much less than M / K. 

Many other applications of packet radio can be envi­
sioned including remote monitoring and detection net­
works, Satellite networks, factory automation, linguistics, 
and command and control. However, no attempt is made 
to discuss these or other applications in this paper. 

CONCLUSIONS 

The packet radio technology utilizes a distributed set of 
microprocessors to provide computer control of a multiple 
access radio communication system. It is capable of sup­
porting switched wide band communications over very 
short distances (inches) and over wide geographic areas 
(hundreds of miles). Within limits, the system allows coex­
istence with other, possibly different, systems which may 
reside in the same frequency band. 

An overview of the initial packet radio system was 
presented in this paper. Several of its design objectives are 
expected to be upgraded in a latter phase of the system 
development. These include higher data rates, smaller 
repeater size, expanded station functions, and improved 
coding and reception techniques for fading, interference, 
and multi-access channels. Authentication and privacy 
mechanisms will be incorporated at that time. 

Among the wide variety of uses to which packet radio 
may be put are the following: 

1. Personal radio terminals-Each user has his or her 
personal radio terminal which he or she can use to 
communicate over the radio system with other 
subscribers and resources. Although keyboard entry 
and display devices are envisioned for the initial ex-

2. 

3. 

perimental terminals, low rate, high quality speech 
input/ output devices will soon be available as viable 
means of computer interaction, and could augment 
the initial terminals. 
Cable TV-The basic concept of packet radio may be 
applied to two way cable TV systems for use within 
buildings and in urban areas. In principle, the radio 
signal (prior to RF conversion) could be sent over one 
or more Cable TV channels. 
Computer Architecture-Low power, low cost packet 
radio devices in small enough size would allow the 
assembly of wireless combinations of computer 
resources such as memory, processors and I/O 



186 National Computer Conference, 1975 

devices. Such structures could provide for effective 
organization of large scale computational procedures. 
We believe that packet broadcasting may become a 
natural way for system architects to interconnect 
large numbers of microprocessors in the future. 

4. Rapid Deployment-It is often desirable to in­
troduce communications to a temporary work site in 
a very short time period. Packet radio is ideally 
suited to this requirement. In fact, the technology 
may herald an era of discardable electronics if the 
technology can be made low enough in cost and size. 

5. Frequency Management-Spectrum management 
techniques are sorely needed to assure that the 
present and expected requirements for use of the fre­
quency bands can be effectively satisfied. Computer 
control of the spectrum along with coexistence tech­
niques will allow graceful transitions from ineffi­
ciently used single user systems to more efficiently 
used multiple access systems. 

REFERENCES 

1. Fralick, S. and J. Garrett, "A Technology for Packet Radio," AFIPS 
Conference Proceedings, Volume 44, 1975, AFIPS Press, Montvale, 
N.J. 

2. Frank, H., I. Gitman and R. VanSlyke, "Packet Radio Network 
Design-System Considerations," AFIPS Conference Proceedings, 
Volume 44, 1975, AFIPS Press, Montvale, N.J. 

3. Fralick, S., D. Brandin, F. Kuo and C. Harrison, "Digital Terminals 
for Packet Broadcasting," AFIPS Conference Proceedings, Volume 
44, 1975, AFIPS Press, Montvale, N.J. 

4. Burchfiel, J., R. Tomlinson and M. Beeler, "Functions and Structure 
of a Packet Radio Station," AFIPS Conference Proceedings, Volume 
44,1975, AFIPS Press, Montvale, N.J. 

5. Kleinrock, L. and F. Tobagi, "Random Access Techniques for Data 
Transmission over Packet Switched Radio Channels," AFIPS 
Conference Proceedings, Volume 44, 1975, AFIPS Press, Montvale, 
N.J. 

6. Binder, R., et aI., "Aloha Packet Broadcasting-A Retrospect," 
AFIPS Conference Proceedings, Volume 44, 1975, AFIPS Press, 
Montvale, N.J. 

7. Abramson, N., "Another Alternative for Computer Communica­
tions," AFIPS Conference Proceedings, FJCC70, pp. 695-702. 

8. Roberts, L., "Extension of Packet Switching to a Hand Held Per­
sonal Terminal," AFIPS Conference Proceedings, SJCC72, pp. 295-
298. 

9. Cerf, V. and R. Kahn, "A Protocol for Packet Network Intercom­
munication," IEEE Transactions on Communications, May 1974, 
pp. 637-648. 

10. Nielson, D., Microwave Propagation and Noise Measurements for 
Digital Radio Application, SRI Internal Report, February 1975. 

11. Roberts, L., "Data by the Packet," IEEE Spectrum, February 1974. 
12. Kino, G. S. and H. Matthews, "Signal Processing in Acoustic Sur­

face-wave Devices," IEEE Spectrum, August 1971, pp. 22-35. 
13. McConoughey, S. R., "New Concepts in Spectrum Usage," IEEE 

Transactions on Communications, Vol. COM-21, Nov. 1973, pp. 
1172-1176. 

14. Kleinrock, L., "Analytic and Simulation Techniques in Computer 

Network Design," AFIPS Conference Proceedings, SJCC70, pp. 569-
579. 

15. Kleinrock, L. and F. Tobagi, "Carrier Sense Multiple Access for 
Packet Radio Channels," Proceedings of the International Conf. on 
Communications, Minneapolis, Minn., June 1974. 

16. Cover, T., "Broadcast Channels," IEEE Transactions on Informa­
tion Theory, Jan. 1973, pp. 2-14. 

17. Slepian, D. and J. Wolf, "A Coding Theorem for Multiple Access 
Channels with Correlated Sources," Bell System Technical Journal, 
September 1973. 

18. Liao, H., Multiple Access Channels, Ph.D. dissertation, Department 
of Electrical Engineering, University of Hawaii, Honolulu, Hawaii, 
1972. 

19. "Special Issue on Microwave Acoustic Signal Processing," IEEE 
Trans. on Microwave Theory and Techniques, Vol MTT-21, April 
1973. 

20. Remotely Controlled Telnet Echoing, RFC 581, Network Informa­
tion Center, Stanford Research Institute, Menlo Park, Calif. 

21. Heart, F., et aI., "A New Minicomputer/Multiprocessor for the 
ARPA Network," AFIPS Conference Proceedings, NCC73, pp. 529-
537. 

22. Network Analysis Corporation, Glen Cove, New York, Semiannual 
Technical Report, 1975. 

23. Roberts, L. G. and B. D. Wessler, "Computer Network Development 
to achieve Resource Sharing," AFIPS Conference Proceedings, 
SJCC70, pp. 543-549. 

24. Kahn, R. E., "Resource Sharing Computer Communication Net­
works," IEEE Proceedings, Nov. 1972, pp. 1397-1407. 

25. Abramson, N., "Packet Switching via Satellite," AFIPS Conference 
Proceedings, NCC73, pp. 696-702. 

26. Kleinrock, L. and S. Lam, "Packet Switching in a Slotted Satellite 
Channel," AFIPS Conference Proceedings, NCC73, PP703-710. 

27. Heart, F. and R. Kahn et aI., "The Interface Message Processor for 
the ARPA Computer Network," AFIPS Conference Proceedings, 
SJCC70, pp. 551-567. 

28. Farber, D. and K. Larson, "The Structure of a Distributed· Com­
puter System-Software," Proceedings of the Symposium on Com­
puter-Communications and Teletraffic, Polytechnic Press, MRI 
Symposium Proceedings, Vol. XXII, 1972, kpp. 539-545. 

29. Frank, H., W. Chou and I Frisch, "Topological Considerations in the 
Design of the ARPA Computer Network," AFIPS Conference 
Proceedings, SJCC70, pp. 581-587. 

30. Frank, H., R. Kahn, and L. Kleinrock, "Computer Communication 
Network Design-Experience with Theory and Practice," AFIPS 
Conference Proceedings, SJCC72, pp. 255-270. 

31. Jackson, P. and C. Stubbs, "A Study of Multi-Access Computer 
Communications," AFIPS Conference Proceedings, SJCC69, pp. 
491-504. 

32. Roberts, L. G., "Dynamic Allocation of Satellite Capacity through 
Packet Reservation," AFIPS Conference Proceedings, NCC73, pp. 
711-716. 

33. Lam, S. and L. Kleinrock, "Packet Switching in a Multi-Access 
Broadcast Channel; Dynamic Control Procedures," Submitted to 
IEEE Transactions on Communications. 

34. Kleinrock, L., W. Naylor and H. Opderbeck, "A Study of Line 
Overhead in the ARPANET," to be published in Communications of 
the ACM, 1975. 

35. Kleinrock, L., "Resource Allocation in Computer Systems and Com­
puter Communication Networks," IFIP Congress Proceedings, 
IFIP74, pp. 11-18, North Holland Publishing Co., 1974. 

36. Abramson, N. and F. Ruo (co-editors), Computer-Communication 
Networks, Prentice-Hall Publishing Company, 1973. 

37. "Special Issue on Mobile Radio Communications," IEEE Transac­
tions on Communications, Vol. Com-21, November, 1973. 



Random access techniques for data 
transmission over packet-switched radio 
channels* 

by LEONARD KLEINROCK and FOUAD TOBAGI 
University of California 
Los Angeles, California 

INTRODUCTION 

Terminal access to computer systems has long been and con­
tinues to be a problem of major significance. We foresee an 
increasing demand for access to data processing and storage 
facilities from interactive terminals, point-of-sales terminals, 
real-time monitoring terminals, hand-held personal ter­
minals, etc. What is it that distinguishes this problem from 
other data communication problems? It is simply that these 
terminals tend to generate demands at a very low duty cycle 
and are basically bursty sources of data; in addition, these 
terminals are often geographically distributed. In the com­
puter-to-computer data transmission case, one often sees 
high utilization of the communication channels; this is just 
not the case with terminal traffic. Consequently, the cost of 
providing a dedicated channel to each terminal is often 
prohibitive. Instead, one seeks ways to merge the traffic 
from many terminal sources in a way which allows them to 
share the capacity of one or a few channels, thereby reducing 
the total cost. This cost savings comes about for two reasons: 
first, because of the economies of scale present in the com­
munications tariff structure; and secondly, because of the 
averaging effect of large populations which permit one to 
provide a channel whose capacity is approximately equal to 
the sum of the average demands of the population, rather 
than equal to the sum of the peak demands (i.e., the law of 
large numbers). This merging of traffic and sharing of capac­
ity has been accomplished in various ways such as: polling 
techniques, contention systems, multiplexing, concentrating, 
etc. Many of these are only weak solutions to the problem of 
gathering low data rate traffic from sources which are 
geographically dispersed. 

In this set of papers,1-6 we suggest another solution to the 
terminal access problem, namely that of packet switching 
over radio channels. In such a system, data terminals 
package their data into constant length segments known as 
packets to which is added additional control information 
such as source and destination address, error control bits, 
etc. All terminals are assumed to share a common (wide­
band) radio channel and to be within range and in line-of-

* This work was supported by the Advanced Research Projects Agency 
of the Department of Defense (DAHC-15-73-0368). 

187 

sight of a receiver station. When any terminal generates a 
packet, that terminal follows some transmission protocol 
which determines when transmission may take place at which 
time the packet is transmitted using the full channel band­
width. Depending upon the protocol, more than one ter­
minal might (unfortunately) transmit in overlapping time 
intervals, in which case these packets may destructively 
interfere with each other. Whenever the station receives a 
packet correctly (as. determined by the error control sum 
check), then an acknowledgment is broadcast to the ter­
minal population, identifying which packet was correctly 
received. If a terminal receives no acknowledgment after 
some appropriate timeout interval, then it knows that its 
packet was "destroyed" and must take some action to cause 
a retransmission attempt. The key point is that all terminals 
are simultaneously sharing a single channel; this offers a 
solution which handles the geographical dispersion of ter­
minals and which at the same time takes advantage of the 
available cost savings mentioned earlier. Moreover, this 
solution is highly effective when terminals are mobile (police 
cars, fire trucks, taxis, ambulances, army vehicles and 
personnel, etc.) and/or when the environment is itself 
hostile (natural dangers or man-made dangers). 

The use of radio packet switching is relatively new* and 
has been reported upon in the recent literature. The ALOHA 
system7 at the University of Hawaii is not unlike the system 
we have in mind, and the description of experience with this 
system as it impacts the current study is described in these 
proceedings.2 In 1973, a series of papers describing the use of 
packet switching in satellite radio channels was published in 
these proc~edings;8-10 the satellite problem is very similar to 
the terminal radio problem, with the key distinction being 
the enormous difference in the propagation delay (roughly 
7.i second for a stationary satellite as opposed to small 
fractions of a millisecond for line-of-sight ground radio). 

The Advanced Research Projects Agency of the Depart­
ment of Defense, recently undertook a new effort whose goal 
is to develop new techniques for packet radio communication 

* On the other hand, digital (pulse) systems using radio propagation are 
not new-e.g., telegraphy, radar, etc. Here we restrict our comments to 
addressed packets. The most well known example of a packet switched 
wire network is the ARPANET.l1 



188 National Computer Conference, 1975 

among geographically distributed, fixed or mobile, user 
terminals and to provide improved frequency management 
strategies to meet the critical shortage of r.f. spectrum. The 
research presented in this paper is an integral part of the 
total design effort, of this system which encompasses many 
other research topics. A number of these are considered in 
this set of papers. In this paper, we are concerned with one 
aspect of design and analysis, namely the consideration of 
various random access protocols, their behavior, and the 
difficult problem of controlling a channel which must carry 
its own control information. Specifically, we do not investigate 
the networking issues when radio relays (repeaters) are 
required to extend the range of the terminals; such issues 
(layout, routing, etc.) are dealt with in References 1 and 4. 
We consider an environment in which all terminals are within 
radio range and line-of-sight of a common receiver station. 
One of the first protocols studied in conjunction with ground 
radio and satellite packet switching was "pure ALOHA" as 
mentioned above. In this mode, users are permitted to 
transmit any time they desire. If they receive an acknowl­
edgment within some predetermined time-out period, then 
they know their transmission was successful. Otherwise 
they assume a multi-access collision occurred and they must 
retransmit. To avoid the same collision again (and forever!) 
anyone of many schemes may be used for introducing a 
random retransmission delay, thereby spreading the con­
flicting packets over time. It is known that the maximum 
fraction of successful packet transmissions on the average is 
simply Y2e( ~ 18 percent) for random ALOHA.7 This is 
abominably small compared to the maximum of 100 percent 
successful if transmission were perfectly scheduled to avoid 
all collisions. A second method for using the radio channel is 
to modify the completely unsychronized use of the ALOHA 
channel by "slotting" time into segments whose duration is 
exactly equal to the transmission time of a single packet 
(assuming constant length packets). If we require each user 
to start his packets only at the beginning of a slot, then when 
two packets conffict, they will overlap completely rather 
than partially, providing an increase in channel efficiency. 
This method is referred to as "slotted ALOHA."9 The 
optimum performance of this system is twice that of random 
ALOHA, namely l/e( ~37 percent); this is still poor. Not 
only is the capacity of the ALOHA channels wanting, but so 
too is the average delay 5) until successful transmission; we 
give the throughput-delay characteristic later in Figure 7. 

Let us compare slotted ALOHA to Frequency Division 
IVlultiple Access (FDMA) which is a common method for 
partitioning a channel into a given number of separate sub­
channels which are assigned on a point-to-point basis be­
t\,veen user pairs; synchronous Time Division Multiple 
Access (TDMA) is equivalent to FDMA so far as we are 
concerned here (we neglect guard bands). The fixed channel 
assignment in FDMA is effective in preventing collisions but 
succeeds in this at the expense of possibly poor utilization of 
each channel since the smoothing effect of a large population 
is absent. To analyze FDMA, we adopt the following assump­
tions: (a) an assumed finite (but large) population of M 
users; (b) each user generates a new fixed length packet 
(of bm bits) according to a Poisson process at a rate A per 

second; (c) the total channel has a bandwidth of W hertz 
modulated at 1 bit/hertz-sec (giving a channel capacity of 
W bits/sec). Thus, with M users in this FDMA mode, each is 
assigned a channel of W / M bits/sec. Each such channel 
behaves as an M/D/l queueing system giving an average 
time in system 5) (waiting plus transmission) as follows :12 

5)= ---- (1) 
I-p 

where p=Mbm/W. . 
Weare assuming that queueing is permitted at each ter­

minal. However, the analysis for slotted ALOHA assumes an 
infinite population of users with an aggregate input rate of 
M A packets per second and this produces an upper bound 
on delay. (We note that a finite population model with M 
users at rate A and with queueing permitted will produce 
fewer collisions than the infinite population would since each 
terminal will avoid conflicts among its own packets). 

Equation (1) for FDMA is compared with the results for 
delay in slotted ALOHA with an infinite population (see 
Reference 8 and Figure 7 below) as follows. We consider the 
(M, A) plane in Figure 1, in which we represent constant 5) 
contours. Comparing the delay performance of the two 
systems, we note that when we are in presence of bursty 
users (small A), slotted ALOHA can support many more 
users than FDMA, for the same packet delay. For example, at 
5)=0.1 sec, slotted ALOHA can support a number of users 
which is over 3 orders of magnitude greater than the number 
that FDMA can support when A= 10-3 packet/sec; as A 
increases (i.e., as the burstiness decreases), this difference 
reduces until at A ~ 5 the two systems can support roughly 
an equal number of users. Beyond this point, FDMA is 
superior. This crossover point clearly depends upon the value 
of 5) examined. In fact, slotted ALOHA can support total 
traffic only in the range M Abm/W < 1/ e""'" .37 and beyond 

10 .1 SEC 

1 
10.4 10.3 1Ir2 10.1 1 10 102 103 

USER INPUT RATE A (PACKETS/SECOND) 

Figure I-FDMA and slotted ALOHA ramdom access: 
Performance with 100 KBPS bandwidth 



that, FDMA will always be superior until it too saturates at 
M Abm/W = 1; this tradeoff is clearly evident in the curves 
of Reference 10. 

The above result can be alternatively presented in the 
following manner. Let M be some large number, say 1000. 
}-'igure 2 shows constant :D contours in the (W, A) Plane. 
Again we note that if we are in presence of bursty users, in 
order to achieve the same small delay, FDMA requires a 
bandwidth larger than slotted ALOHA by as much as three 
orders of magnitude. This factor is exactly equal to M as 
A~ since in this region queueing effects are insignificant; in 
this limit the delay !D is simply the packet transmission time 
(observe the flatness of the curves in Figures 1 and 2), 
which for FDMA is :D = Mbm/W and for slotted ALOHA is 
:D = bm/W. It is also obvious here, for the same total band­
width W, that FDMA will give M times the delay as com­
pared to slotted ALOHA. This gain diminishes as A increases, 
until finally as M Abm/W ~ 1/ e the situation reverses as 
mentioned above. 

Finally, let us fix A and consider the delay contours in the 
(W, M) plane. Figure 3 corresponds to A = 10-1 packets per 
second. Such input rates correspond again to bursty users. 
We note again that in order to support a large number of 
users, FDMA requires a larger bandwidth for the same delay 
performance. 

It is all too evident from the above comparison that 
random access is by far superior to FDMA or TDMA when 
the environment consists of large populations of bursty 
users. However, we note that slotted ALOHA itself does not 
use the channel as efficiently as we, might hope and this 
prompts one to inquire as to other,superior,protocols; such 
an inquiry is the subject of this paper. Following we consider 
two random access modes which we refer to as "Carrier 
Sense Multiple Access" (CSMA) and "Split-channel Reser­
vation Multiple Access" (SRMA). 

106 

0 105 
z 
0 
~ 
(/I 

a: 
w 

104 Q,. 

~ 
ai 
0 ... 
g 
~ 103 
:z: 
I-
0 
i 
0 z 
:a 

-- FDMA / 
- - - SLOTTED ALOHA ",,,,l' 

,," / 
10.5 SEC _ ...... ----------- , 

.01 SEC / 

",-'/" 
... '" / 

10'" SEC _...... /. -------- , 

{FDMA~ INFEASIBLE REGIONS 
M • 1000 SLOTTED ALOHA c:::J 

,~--=--- <b
m 

• 1000 ~ITS 

10.2 10"1 1 10 102 
USER INPUT RATE A (PACKETS/SECOND) 

Figure 2-FDMA and slotted ALOHA ramdom access: 
Bandwidth requirements for 1000 terminals 

Random Access Techniques for Data Transmission 189 

106~----------------------~~---~---~ 

-- FDMA 
--- SLOTTED ALOHA 

105 
10.5 SEC .............. --~------

102 ,/\ = 10.1 

bm = 1000 BITS 

NUMBER OF USERS M 

Figure 3-FDMA and slotted ALOHA ramdom access: 
Performance for A = 10-2 packets per second 

CARRIER SENSE MULTIPLE ACCESS :MODES 

The radio channel considered in this paper is characterized 
as a wideband channel with a propagation delay between any 
source-destination pair which is very small compared to the 
packet transmission time. * This suggests a new approach for 
using the channel; namely, the Carrier-Sense Multiple 
Access (CSMA) mode. In this scheme one attempts to avoid 
collisions by listening to (i.e., "sensing"t) the carrier due to 
another user's transmission. Based on this information about 
the state of the channel, one may think of various actions the 
terminal may take. Three protocols will be considered which 
we call "persistent" CSMA protocols: the I-Persistent, the 
Non-Persistent, and the p-Persistent CSMA. Below, we 
present the protocols, and display the throughput-delay 
performance for each. 

in this paper we omit the proofs for conciseness and 
clarity of presentation; the details of these proofs are to be 
found in a series of forthcoming papers.13- 15 

C 8M A transmission protocols and system assumptions 

The various protocols considered below differ from one 
another by the action (pertaining to packet transmission) 

* Consider, for example, 1000 bit packets transmitted over a channel 
operating at a speed of 100 Kilohits per second. The transmission time 
of a packet is then 10 mseconds. If the maximum distance between the 
source and the destination is 10 miles, then the (speed of light) packet 
propagation delay is of the order of 54 JLseconds. Thus the propagation 
delay is a very small fraction (a = 0.005) of the transmission time of a 
packet. On the contrary, when one considers satellite channels [8) the 
propagation delay is a relatively large multiple of the packet trans­
mission (a» 1). 
t Sensing carrier prior to transmission is a well-known concept in use for 
(voice) aircraft communication. In the context of packet radio channels 
it was originally suggested by D. Wax of the University of Hawaii in an 
internal memorandum dated March 4, 1971. 



190 National Computer Conference, 1975 

that a terminal takes after sensing the channel. However, in 
all cases, when a terminal determines (by the absence of a 
positive acknowledgment) that its transmission was un­
successful, then it reschedules the transmission of the packet 
according to a randomly distributed retransmission delay. 
At this new point in time, the transmitter senses the channel 
and repeats the algorithm dictated by the protocol. At any 
instant a terminal is called a ready terminal if it has a packet 
ready for transmission at this insta:nt (either a new packet 
just generated or a previously confi'icted packet rescheduled 
for transmission at this instant) . 

A terminal may, at anyone time, either be transmitting 
or receiving (but not both simultaneously). However, the 
delay incurred to" switch from one mode to the other is 
negligible. All packets are of constant length and are trans­
mitted over an assumed noiseless channel (i.e., the errors in 
packet reception caused by random noise are not considered 
to be a serious problem and are neglected in comparison with 
errors caused by overlap interference). The system assumes 
non-capture (i.e., the overlap of any fraction of two packets 
results in destructive interference and both packets must be 
retransmitted). We further simplify the problem by as­
suming the propagation delay r (small compared to the 
packet transmission time) to be identical* for all source­
destination pairs. 

I-Persistent CSMA 

The I-Persistent CSMA protocol is devised in order to 
(presumably) achieve acceptable throughput by never 
letting the channel go idle if some ready terminal is available. 
l\10re precisely, a ready terminal senses the channel and 
operates as follows: 

• If the channel is sensed idle, it transmits the packet with 
probability one. 

• If the channel is sensed busy, it waits until the channel 
goes idle (i.e., persisting on transmitting) and only then 
transmits the packet (with probability one-hence, the 
name I-Persistent) . 

A slotted version of the I-Persistent CSMAcan be con­
sidered in which the time axis is slotted and the slot size is r 
seconds (the propagation delay). All terminals are syn­
chronized and are forced to start transmission only at the 
beginning of a slot. When a packet's arrival occurs during a 
slot, the terminal senses the channel at the beginning of the 
next slot and operates according to the protocol described 
above. 

Non-Persistent CSMA 

While the previous protocol 'was meant to make "full" use 
of the channel, the idea here is to limit the interference 
among packets by always rescheduling a packet which finds 

* By considering this cons tan t propagation delay equal to the largest 
possible, one gets lower (i.e., pessimistic) bounds on performance. 

the channel busy upon its arrival. On the other hand, this 
scheme may introduce idle periods between two consecutive 
non-overlapped transmissions. More precisely, a ready 
terminal senses the channel and operates as follows: 

• If the channel is sensed idle, it transmits the packet. 
• If the channel is sensed busy, then the terminal schedules 

the retransmission of the packet to some later time 
according to the retransmission delay distribution. At 
this new point in time, it senses the channel and repeats 
the algorithm described. 

A slotted version of this Non-Persistent CSMA can also be 
considered by slotting the time axis and synchronizing the 
transmission of packets in much the same way as for the 
previous protocol. 

p-Persistent CSMA 

The two previous protocols differ by the probability (one 
or zero) of not rescheduling a packet which upon arrival 
finds the channel busy. In the case of a I-Persistent CSMA, 
we note that whenever two or more terminals become ready 
during a transmission period, they wait for the channel to 
become idle (at the end of that transmission) and then they 
all transmit with probability one. A conflict will also occur 
with probability one! The idea of randomizing the' starting 
times of transmission of packets accumulating at the end of a 
transmission period suggests itself for interference reduction 
and throughput improvement. The scheme' consists of in­
cluding an additional parameter p, the probability that a 
ready packet persists (1- p being the probability of delaying 
transmission by r seconds). The parameter p will be chosen 
so as to reduce the level of interference while keeping the idle 
periods between any two consecutive non-overlapped trans­
missions as small as possible . 

More precisely, the protocol consists of the following: the 
time axis is slotted where the slot size is r seconds. For 
simplicity of analysis, we consider the system to be syn­
chronized such that all packets begin their transmission at 
the beginning of a slot. 

Consider a ready terminal: 

• If the channel is sensed idle, then 

----:-with probability p, the terminal transmits the packet. 
-with probability I-p, the terminal delays the trans-

mission of the packet by r seconds (i.e., one slot). If 
at this new point in time, the channel is still detected 
idle, the same process above is repeated; otherwise, 
some packet must have started transmission, and our 
terminal schedules the retransmission of the packet 
according to the retransmission delay distribution 
(i.e., acts as if it had conflicted and learned about the 
conflict) . 

• If the ready terminal senses the channel busy, it waits 
until it becomes idle (at the end of the current trans­
mission) and then operates as above. 



Note that I-Persistent is the special case of p-Persistent with 
p=l. 

Throughput equations 

We assume that our traffic source consists of a very large 
number M of users who collectively can be approximated by 
an independent Poisson source with an aggregate mean 
packet generation rate of A packets/second. This implies 
that each user will generate packets infrequently and each 
packet can be successfully transmitted in a time interval 
much less than the average time between successive packets 
generated by a given user. 

In addition, we characterize the traffic as follows. We have 
assumed that each packet is of constant length requiring T 
seconds for transmission. Let S = AT. S is the average 
number of new packets generated per transmission time, 
i.e., the input rate normalized with respect to T. If we were 
'able to perfectly .schedule the packets into the available 
channel space with absolutely no' overlap or space between 
the packets, we would have S = 1; therefore, we also refer to 
S as the channel utilization, or throughput. The maximum 
achievable throughput for an access mode is called the 
capacity of the channel under that mode. 

Each user delays the transmission of a previously collided 
packet by some random time (introduced to avoid repeated 
conflicts) whose mean is X (chosen, for example, uniformly 
between 0 and X max = 2X). Since conflicts can occur, the 
traffic offered to the channel from our collection of users 
consists of new packets and previously collided packets. 
This increases the mean offered traffic rate to G packets per 
transmission time T, where G~S. 

Our two further assumptions are: 

(AI) The average retransmission delay X is large com­
pared to T. 

(A2) The interarrival times of the point process defined 
by the start times of all the packets plus retrans­
missions are independent and exponentially dis­
tributed. 

We wish to solve for the channel capacity of the system for 
all of the access protocols described above. This we do by 
expressing S in terms of G (as well as other system param­
eters). The channel capacity is obtained by maximizing S 
with respect to G. Note that S/G is merely the probability of 
a successful transmission and G / S is the average number of 
times a packet must be transmitted or scheduled until success. 

The basic equations for the throughput S are expressed in 
terms of a (the ratio of propagation delay to packet trans­
mission time) and G (the offered traffic rate) as follows:* 

I-Persistent CSMA 

G[1 +G+aG (1 +G+aG/2) ]e-G (1+2a)' 
S = G(1 +2a) - (1-e-aG ) + (1 +aG)e-G(l+a) 

* For proofs, the reader is referred to Reference 13. 

(1) 

Random Access Techniques for Data Transmission 191 

Slotted I-Persistent CSMA 

Ge-G(l+a) [1 +a - e-aG] 
S = ----=----~----=--

(1 +a) (1-e-aG ) +ae-G(l+a) 

Non-Persistent CSMA 

Ge-aG 
S=-----­

G(1+2a) +e-aG 

Slotted Non-Persistent CSMA 

aGe-aG 
S=------­

(1 +a) (l-e-aG ) +a 

p-Persistent CSMA 

(2) 

(3) 

(4) 

where P/, P s, [', t and ?To are defined in Reference 13. We 
note that 

. G 
S(G,p~,a=O)~-G G 

+e-

In Figure 4 for a =0.01, we plot S versus G for the various 
access modes introduced so far and show the relative per~ 
formance of each. We also summarize these results in the 
following table: 

PROTOCOL 

Pure ALOHA 
Slotted ALOHA 
I-Persistent CSMA 
Slotted I-Persistent CSMA 
O.l-Persistent CSMA 
Non-Persistent CSMA 
0.03-Persistent CSMA 
Slotted Non-Persistent CSMA 
Perfect Scheduling 

CAPACITY'C 

0.184 
0.368 
0.529 
0.531 
0.791 
0.81:'5 
0.827 
0.8fi7 
1.000 

While the capacity of ALOHA channels does not dep'end 
on the propagation delay, the capacity of aCSMA channel 
does. An increase in a increases the "vulnerable" period of a 
packet and reduces its capacity. This also results in "older" 
channel state information from sensing. In Figure 5 we plot, 
versus a, the channel capacity for all of the above random 
access modes. For large a, we note that slotted ALOHA (and 
even "pure" ALOHA) is superior to any CSMA mode since 
decisions based on partially obsolete data are deleterious; 
this effect is due in part to our assumption about the constant 
propagation delay. 



192 National Computer Conference, 1975 

.8 

.6 

.4 

.2 

0=0.01 

.03 - PERSISTENT CSMA 

.1 - PERSISTENT CSMA 

g.Ob1=::::=---0.l..1-----....J1--.=::::..-~--=-----;!100 
G (OFFERED CHANNEL TRAFFIC) 

Figure 4-Throughput for the various random access modes (a=O.Ol) 

Delay performance 

We introduce at this point the expected packet delay ~ 
defined as the average time from when a packet is generated 
until it is successfully received. Our principal concern in this 
section is to investigate the tradeoff between the average 
delay and the throughput S. 

For the present study, it is assumed that the acknowledg­
ment packets are always correctly received with probability 
one. The simplest way to accomplish this is to create a 
separate channel to handle acknowledgment traffic. If suffi­
cient bandwidth is provided, overlaps between acknowledg­
ment packets are avoided, since a positive acknowledgment 
packet is created only when a packet is correctly received, 
and there will be at most one such packet at any given time. 
Thus, if T a denotes the transmission time of the acknowl­
edgment packet on the separate channel, then the time-out 
for receiving a positive acknowledgment is T+r+Ta+r, 
provided that the processing time needed to perform the 
sumcheck and to generate the acknowledgment packet is 
assumed negligible. _ 

The Delay ~ is a function of Sand X. Thus, for each S, 

SLOTTED NON - PERSISTENT CSMA 

. 8 
NON - PERSISTENT CSMA 

.6 
SLOTTED 1 - PERSISTENT CSMA 

1 - PERSISTENT CSMA 

.4~~S~LO~T~TE~D~AL~~~A~ ___________________ ~~~r_--~ 

.2~~~P~~E~A~L~~ ________________________________ ~~ 

oL---~-L_~_-L_~_~~ ___ L_ __ ~~ __ _L_~ 
.001 .002 .003 .006 .01 .02 .03 .05 .2 .3 .5 

Figure 5-CSMA and ALOHA: 
Effect of propagation delay on channel capacity 

(I) 10 
<.7 
Z 
..J 
:::> 
o 
w 
:I: 
(,J 
(I) 

~ 5 
<t 
(I) 

z o 
en 
(I) 

i 
(I) 

Z 
<t 
a: 
~ 
IL. 
o 
a: 
w 
CO 
~ 
:> 
z 
z 
<t 
w 
~ 

NON-PERStSTENT CSMA 

0.03-PERSISTENT CSMA """"-.."'--

1·PERSISTENT CSMA 

o .2 .4 .6 .8 

S (THROUGHPUT) 

Figure 6-CSMA and ALOHA: 
GIS versus throughput (a=O.01) 

a minimum delay can be achieved by choosing an optimal 
X. Such an optimization problem is difficult to solve analyti­
cally and simulation techniques have been employed. 

B~fore we proceed with the discussion of the simulation 
results, we compare the various access modes in terms of the 
average number of transmissions (or average number ?f 
schedulings) GIS. For this purpose, we plot GIS versus S m 
Figure 6 for the ALOHA and CSMA modes, when a=O.Ol. 
Note that CSMA modes provide lower values for G / S than 
the ALOHA modes. Furthennore, for each value of the 
throughput, there exists, a value of p such that p-Persistent 
is optimal. For small values of S, p= 1 (i.e., I-Persistent) is 
optimal. As S increases, the optimal p decreases. 

Simulation results 

The simulation model is based on all system assumptions 
presented above. However, we relax the assumptions con­
cerning the retransmission delay and the independence of 
arrivals for the offered channel traffic . 

In general, our simulation results indicate the following: 

(1) 

(2) 

For each value of the input rate S, there is a minimum 
value X for the average retransmission delay variable, 
such that below that value, it is impossible to achieve 
a throughput equal to the input rate. The higher Sis, 
the larger X must be to prevent a constantly in­
creasing backlog, i.e., to prevent the channel from 
saturating. In other words, the maximum achievable 
throughput (under stable conditions) is a function of 
X, and the larger X is; .the higher is the maximum 
throughput. 
Recall that the throughput equations were based on 



40 

20 

)0-
e::( 
..J 

10 w 
C 

c 
w 
N 
::::i 5 
e::( 
~ 
a:: 
0 z 

2 

1 

I 
b. 

1 
b. 

I 
b. 

l 
J 

o .1 

PURE 

0 

.2 .3 .4 .5 .6 .7 .8 .9 

S (THROUGHPUT) 

Figure 7-CSMA and ALOHA: Throughput-delay trade-offs from 
simulation (a=O.Ol) 

the assumption that X is infinitely large compared to 
T. Simulation shows that for finite values of X, larger 
than some value Ko but not too large compared to T, 
the system already "reaches" the asymptotic results 
(K---7oo), i.e., for some finite values of X, assumption 
(A2) is satisfied and delays are acceptable. Simulation 
experiments were conducted to find the optimal delay, 
that is, the value of X(8) which allows one to achieve 
the indicated throughput with the minimum delay. 

Finally, in Figure 7, we give the throughput-minimum 
delay trade-off for the three Carrier Sense Multiple Access 
modes and a =0.01. This is the basic performance curve. 

THE EFFECT OF HIDDEN TERMINALS ON 
CHANNEL CAPACITY FOR CARRIER SENSE 
MULTIPLE ACCESS 

The performance obtained in the previous section (in 
terms of channel capacity and throughput-delay trade-offs) 
was based on the (strong) assumption that all terminals 
were in line-of-sight and within range of each other. There are 
many instances where this is not the case, forcing us to relax 
that assumption. Two terminals can be within range of the 
station but out-of-range of each other, or, they can be 
separated by some physical obstacle opaque to UHF radio 
signals. Two such terminals are then said to be "hidden" 
from ea~h other. It is evident that the existence of hidden 
elements in an environment affects (degrades) the per-

Random Access Techniques for Data Transmission 193 

formance of CSMA. In th;is section we discuss this effect. 
(For simplicity, we restrict our study to I-Persistent and 
Non-Persistent CSMA protocols only.) 

Definitions and representation of configurations with hidden 
elements 

In the sequel, terminals are in line-of-sight and within 
range of the station, but not necessarily with respect to each 
other. By definition, terminal i "hears" (is connected to) 
terminal j if i and j are within range and in line-of-sight of 
each other. In order to represent terminal configurations 
with hidden elements, it is advantageous to partition the 
population into several groups (say N) such that all ter­
minals in a group hear exactly the same subset of terminals 
in the population. (This partitioning is easily formed if we 
know the hearing matrix of the population. See References 
14 and 15). Let h(i) be the set of groups that group i can hear. 

We shall further assume that each group i consists of a 
large number of users who collectively form an independent 
Poisson source with an aggregate mean packet generation 
rate Ai packets per second such that L:~1 Ai = A. Let 8 i = AiT .. 
and 8 = AT = L:~1 8 i ; S is the total throughput of the 
channel. 

Let S= (81,82, ••• , 8N ). 

We can write S as S = 8U such that 

N 

and II U I-IL~ L: Ui= 1 
i=1 

(The vector U describes a direction in N-dimensional space.) 
The capacity of the channel along the directionU is defined as 

C(U) = Maximum 8 
O~S~l 

such that the set of inputs determined by the vector S(U) is 
achievable. Equivalently, we say that a set S (U) of input 
rates is feasible if and only if 

S(U) :::;C(U) 

LetGi denote the mean offered traffic rate of group i(Gi 2 Si). 
Let G= (GI , G2, ••• ,GN ) and G= L:~l Gi • Finally, we 
consider X to be the same for all groups and the assumptions 
"Concerning the retransmission delay and the independence of 
arrivals for the offered traffic to still hold true. 

Throughput equations 

We recognize that 8 i/Gi is merely the probability of 
success of an arbitrary packet from group i. This quantity 
is a function of the traffic vector G. By expressing 8 i/Gi for 
each i in terms of G, we obtain a set of equations relating the 
components of S to the components of G. 

In the case of independent groups (i.e., such that terminals 
in a group do not hear terminals in other groups) for a given 
G and under the system and model assumptions stated above, 



194 National Computer Conference, 1975 

the probability of success of an arbitrary packet· from group 
i is given as follows* .~ 

For I-Persistent CSMA 

Ps'= Si = [1+Gi+aGi (1+G i +aGi/2)] 
t Gi (1 +aGi) e-Gi(1-2a) 

For Non-Persistent CSMA 

(7) 

This set of equations relates the components of the input 
vector S to the components of the traffic vector G. For a 
given input vector S, we can numerically solve for Gi , 

i = 1, ... , N. This we do by writing the above equations in 
the form 

where Ji is a function of the vector G, and by solving the set 
of equations iteratively, starting with the initial values 
G = S. If the input vector is a feasible one, then the iterative 
procedure will result in a (finite) traffic vector G, satisfying 
the above set of equations. Thus the convergence of the 
iterative procedure determines the feasibility of the input 
vector S and the final values Gil Si, i = 1,2, ... , N give the 
average number of transmissions and schedulings a packet 
from group i undertakes before success. This will be our 
measure of relative performance of the various groups. Some 
simple examples are treated in the following section. 

In the case of dependent groups, similar but approximate 
relationships can be found for the Non-Persistent CSMA 
protocol. They are expressed as 

II e-aGi ' II e-Gk'(l-a) 
jEh(i) kEh(i) 

Si=Gi ---------- (8) 
N 

II [Gz'(1+2a)+e-aGI'] 
l=l 

G-'=G. II I+aG/ 
~ ~ jEh(i) G/(1+2a) +e-aGi ' 

(9) 

Examples 

Here we consider some typical examples of independent 
groups to which we apply the analytical results found above. 
Simulation techniques have been used to check the validity 
of the assumptions Oll which the analysis was based. We 
restrict ourselves to d = 0.01. 

* See References i4and 15 for proof. 

.8 

.6 

.5 

NON·PERSISTENT CSMA 

1·PERSISTENT .cSMA 

INDENDENT GROUPS 
a = 0.01 

.4~~~ ________ S~LO~T~TE~D~A~LO~HA~ ______________________ ~ 

PURE ALOHA 

.1 

oL-_~_-L_~ __ ~_-L_~ __ L-_~_~_~ 

1 

NUMBER OF INDEPENDENT GROUPS N 

Figure 8-Independent group case: 
Channel capacity versus the number of groups 

Independent Groups Case-A SYlllllletric 
Configuration 

10 11 

The population is partitioned into N groups of equal size. 
For each terminal there exists a fraction {3 of the population 
which is hidden, namely {3= (N -I)IN(~0.5). The channel 
capacity for various values of N is plotted in Figure 8. Note 
that the channel capacity experiences a drastic decrease 
between the two cases: N = 1 (no hidden terminals, (3=0) 
and N=2({3=O.5). For N~2, slotted ALOHA performs 
better than CSMA. This decrease is more critical for the 
Non-Persistent CSMA than for the I-Persistent CSMA as 
shown in the Figure. For N > 2, the channel capacity is 
rather insensitive to N and approaches pure ALOHA for 
large N. 

Independent Groups Case-Colllplelllentary Couple 
Configuration 

The previous example did not show the effect of a small 
fraction of the population being hidden from the rest. In this 
example the population consists of two independent groups 
(N=2) of unequal sizes such that U= (a, I-a) that is 

Sl=aS 

S2= (l-a)S 

Equations (6) and (7) are readily applicable. The channel 
capacity is plotted versus a for both CSMA protocols in 
Figure 9. Here again we note that the capacity decreases 
rapidly as a increases from O. This decrease is much more 
critical for the Non-Persistent than for the I-Persistent. As 
soon as a= 10-2, the capacity of Non-Persistent CSMA is 
only 0.5, as compared to 0.82 when a =0. In addition, CSMA 
performs (capacity-wise) only as good as slotted ALOHA as 
soon as a=0.08 for the Non-Persistent protocol and a=O.I 
for the I-Persistent protocol. I;n both cases, we note that the 
minimum capacity is obtained for a=0.5; this corresponds to 
the case N = 2 in the previous example. 



.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

0 
10-6 

l·PERSISTENT CSMA 

SLOTTED ALOHA 

PURE ALOHA 

10.5 

COMPLEMENTARY COUPLE 
a = 0.01 

Figure 9-Complementary couple configuration: 
Channel capacity versus a 

.5 1 

In addition, we simulated the I-Persistent CSMA case for 
this example and various values of a. The comparison of 
(S1, G1) and (S2, G2) relationships obtained from simulation 
to the results obtained from the analytical model exhibits an 
excellent match, thus checking the validity of the model. 

Examining Gil Si for each group, we noted that the large 
group always performed better than the smaller one. Al­
though we noted for a""'O.1 that I-Persistent CSMA has a 
capacity only as great as slotted ALOHA, the average number 
of transmissions a (Gt! S1) + [ (1- a) (G21 S2) ] was lower 
(superior) for the I-Persistent CSMA than for slotted 
ALOHA. 

CARRIER SENSE MULTIPLE ACCESS WITH A 
BUSY TONE 

System operation 

In this section we wish to consider a solution to the hidden 
terminal problem which we call the Busy Tone Multiple 
Access mode (BTMA). The operation of BTMA rests on the 
assumption that the station is, by definition, within range 
and in line-of-sight of all terminals. The total available band­
width is to be divided into two channels: a message channel 
and a busy tone (BT) channel. As long as the station senses 
a (terminal) carrier on the incoming message channel it 
transmits a (sine wave) busy tone signal on the busy tone 
channel. It is by sensing a carrier on the busy tone channel 
that terminals determine the state of the message channel. 
The action pertaining to the transmission of the packet that a 
terminal takes (again) is prescribed by the particular 
protocol being used. We shall restrict ourselves to the N on­
Persistent protocol because of its simplicity in analysis and 
implementation, as well as its relatively high efficiency as 
shown above. In CSMA, the difficulty of detecting the 
presence of a signal on the message channel when this message 
uses the entire bandwidth is minor and therefore is neglected. 

Random Access Techniques for Data Transmission 195 

It is not so when we are concerned with the (statistical) 
detection of the (sine wave) busy tone signal on a narrow 
band channel. The detection time, denoted by td, is no longer 
negligible and must be accounted for. The Non-Persistent 
BTMA protocol is similar to the Non-Persistent CSMA 
protocol and corresponds to the following. Whenever a 
terminal has a packet ready for transmission, it senses the 
busy tone channel for td seconds (the detection time) at the 
end of which it decides whether the BT signal is present or 
absent. (td is a system parameter and its optimal value is 
discussed below). If the terminal decides that the BT signal 
is absent then it transmits the packet, otherwise it re­
schedules the packet for transmission at some later time 
incurring a random rescheduling delay; at this new point in 
time, it senses the BT channel and repeats the algorithm. In 
the event of a conflict, which the terminal learns about by 
failing to receive an acknowledgment from the station, the 
terminal again reschedules the transmission of the packet for 
some later time, and repeats the above process. 

Of interest is first, the determination of the channel 
capacity under a N on-Persistent BT1\1A protocol and second, 
the throughput delay characteristics of the latter. The total 
available bandwidth being the limiting resource, the problem 
then reduces to selecting the system parameters in order to 
achieve the best system performance. 

Here we make the same assumptions as above. However 
while the effect of noise is assumed to be negligible on the 
message channel, we do account for it in the (narrow band) 
busy tone channel. Each packet is of constant length re­
quiring T m seconds for transmission on the message channel. 
Let Sm = 'ATm. 8m is the average number of new packets 
generated per transmission time, i.e., this is the input rate 
normalized with respect to T m. Under steady state conditions, 
Sm can also be referred to as the message channel throughput 
rate and as the message channel utilization. Let if; be the 
fraction of the bandwidth assigned to the BT channel. Let 
S = (1- if;) Sm. S is the overall channel utilization. The maxi­
mum achievable channel utilization is the capacity of the 
channel. 

Signal detection 

The detection of the busy tone signal is the problem of' 
detecting a signal of known form in the presence of noise. 
The useful signal is a given function with some unknown 
parameters, namely, phase and amplitude.t However the 
observation (detection) time is usually small compared to 
the "fluctuation time" of these parameters, and the unknown 
phase and amplitude can be regarded as constant. 

The problem of detecting a signal in a background of 
random noise is a classical statistical problem involving the 
choice of one hypothesis from two mutually exclusive 
hypotheses. This has been extensively studied in the litera-

t Because of the mobility of terminals, the signal fluctuates. Thus we 
assume it to be of unknown amplitude. In the case of fixed terminals, 
we may idealize the problem to be that of detecting a signal with known 
amplitude but unknown phase. 



196 National Computer Conference, 1975 

ture. 16 The quality of the decision can be characterized by 
two probabilities: 

D Probability of correct detection (in presence of the 
signal) 

F Probability of incorr-ect detection or false alarm 

The detector at the receiver consists of a filter, an integrator 
and a threshold decision box. Assuming the step response of 
the busy tone detect filter to be exponential, and considering 
the same peak power to be used for the busy tone as for the 
message on the message channel, then the signal-to-noise 
ratio (SNR) JJ(t) on the busy tone channel at time t is given 
by 

1-1/1 JJ(t) =JJm -- (1_e-2,yWt)2 

1/1 
(10) 

where 

• JJm is the SNR of the message on the message channel 
required for suitable operation (typically JJm = 10) 

• 1/1 is the fraction of bandwidth assigned to the BT 
channel 

• the time constant of the filter exponential rise is taken 
to be Y21/1W. 

Consider now a signal starting at t = 0 and terminating at 
t= T. Let D(t) be the probability of correct detection at time 
t after having observed the channel over td seconds (t is the 
time at which the decision is made). D(t) is determined by 
(See Reference 16). 

D(t) =F(l/l+I'(u)) (11) 

where 

u= {:, 

if O~t~td 

if td~t~T 

l T-t+td if T~t~T+td 

For t>T+td, the probability of false alarm is F. 

Throughput equation 

We wish to solve for the channel capacity, given the system 
parameters F, 1/1, W, bm , T, td' This we do by solving for S in 
terms of 'Y (the traffic rate measured in packets per second) 
and other parameters. The channel capacity is then found by 
maximizing S with respect to 'Y. 

Contrary to the CSMA modes the fraction of the popula­
tion which decides to transmit is a function of time. The 
analytical approach consists of identifying the busy and idle 
periods and of determining the condition for a successful 
transmission over the busy period. To keep the analysis 
simple, some very minor approximations are made yielding 
a lower bound on throughput as given in the following 

.7~------------------------------------------~ 

.6 

.5 

.4 

.3 

NON.pERSISTENT BTMA 
F = 10.3 

W = 100 kHz 

1 = 100 ~SEC 

b", = 1000 BITS 

a ~ 0.01 

10-4 10.3 

DETECTION TIME 'II 

Figure 10-BTMA: Channel capacity versus observation window td 

equation* 

S> S = bm exp [ - ~m (0, T m) ] 
- I W B+I (12) 

It can also be shown that in the limit, when td--?oO, the channel 
capacity reduces to 

Results 

1 
S= (1-1/1) -

2e 
(13) 

The design problem in BTMA consists of maximizing the 
channel capacity (under the Non-Persistent protocol) by 
properly selecting the design variables 1/1, F and td when the 
number of bits per packet, bm , and the total available band­
width Ware given. Because of the complicated form of the 
expressions for S, numerical optimization techniques are 
used. 

To reduce the dimensionality of the problem, and to 
provide an easy comparison with the previously analyzed 
CSMA protocols we restrict ourselves to the following: 

• T (maximum propagation delay) = 100 JJsec. * 

• JJm=10 

bm 
• W = 102 msec.t 

We consider two cases for bm and W: 

case I: bm = 1000 bits; W = 105 Hz 
case II: bm = 10,000 bits; W = 106 Hz 

* See References 14 and 15 for proof and for the definition of m(O, T m), 
B and I. 
* The bandwidth is assumed to be modulated a 1 bit/Hz-sec. 
t This corresponds to a maximum distance of about 20 miles. The ratio 
of propagation delay to transmission time of a packet, denoted by a, 
is, in all cases less than (but very close to) or equal to 0.01. 



" 1; .5 

~ 
i 
X .4 
..: 
::. 
> .... 
~ .3 

5 
~ .2 
z 

5 

NON.pERSISTENT BTMA 
W = 100 kHz 

T = 100 ~SEC 

bm = 1000 BITS 

a ~ 0.01 

Figure ll-BTMA: Channel capacity (maximized over td) versus if/ 

For F = 10-3 and various values of 1/; we plot in Figure 10 
the channel capacity versus the observation window td. 
Similar curves can be plotted for other values of F. For each 
couple (F, 1/;) the channel capacity reaches its maximum at 
some optimum value of td. This optimum is explained by the 
fact that the larger td is, the better is the probability of 
correct detection D (td) when the signal is present during the 
entire window. However, the larger td is, the longer the idle 
period will be. The effect is reversed as td gets smaller. 

Note that when the observation window shrinks to 0, the 
capacity of the channel decreases to (I-1/;) }1e, the capacity 
provided by the pure ALOHA access mode. Qualitatively 
speaking td---?O reduces to very bad detection, and terminals 
behave in a pure ALOHA mode. 

In Figure 11, we plot for various F, the maximum capacity 
of the channel (maximized over td ) versus 1/;. We note here 
that the maximum capacity is not very sensitive to small 
variations of 1/;. However, there is a certain range of 1/; which 
yields the best performance. For those values of F con­
sidered in the graph (F = 10-3, 10-2, 10-\ 0.5), the optimum 
1/; is the range (10-2, 2,X 10-2). 

In Figure 12, we plot the capacity (maximized over 1/; and 
td) versus F for cases I and II. Note that for both cases the 
capacity of the channel is a logarithmic function of F. The 
ultimate performance (~0.68 for Case I and "-'0.72 for 
Case II) is obtained for F---?1. However, the channel capacity 
is not very sensitive to variations of F. Case II offers a 
channel capacity higher than that offered by Case I; we 
note that this gain does not consider other factors such as 
increased power requirements. * 

To compare the delay performance of BTMA for various 
values of the system parameters, we first consider the quan­
tity G/ S, the average number of transmissions and sched­
ulings that a packet incurs before successful transmission. 
In Figure 13, we plot, for each value of F, G / S versus S for 

* The larger the bandwidth is, the better is the correct detection. Thus 
larger W provides larger channel capacity. However, the channel 
capacity is always bounded from above by the capacity of CSMA with 
propagation delay equal to 2T.14 

Random Access Techniques for Data Transmission 197 

.8,---------------------------------------------, 
NON.pERSISTENT BTMA 

T = 100 "SEC 
a ~ 0.01 W • 1 MHz 

{

CASE I 

;J' b". = 104 BITS 

~ .7L-------------------~~:---------------------l 
~ 
i 
X 
..: 
::. 
~ 
(3 

~ .6 

...J 
w 
Z 
z 

5 
.5~--~~~~~~----~~~~~~----~~~~~~ 

10.3 

FALSE ALARM PROBABILITY F 

Figure 12-BTMA: Channel capacity 
(maximized over td and if/) versus F 

those values of '" and td yielding the maximum channel 
capacity. Note that for each value of S there exists a value of 
F minimizing G/ S. However, for relatively small values of S 
(not too close to the saturation point of the channel) we note 
that the higher the probability of false alarm F is, the larger 
is G/S. An explanation can be given by the following fact: 

100 

NON PERSISTENT BTMA 

W = 100 kHz 

= 100 IlSEC 

50 bm = 1000 BITS 

~ 
"" 0.01 

~ 
CI) 
z 
0 

~ F 
i 1/1 CI) 

~ 20 ttt 
IX: 
I-
0 
Z 
< 
CI) 
~ z 
::::i 10 
::l 
0 
w 
:J: 
Co) 
CI) 

F LL. 
0 

1/1 
IX: 
w 5 ttt CD 
:::ii! 
::l 
Z 
w 
~ 
< 
IX: 
w 
> = 10.2 
< 

2 
= 10.2 

= 7 x ,0-4 
= 10.1 SEC 

= 10.2 

= 5 x 10-4 SEC 

1 
0 .1 .2 .3 .4 .5 .6 .7 

THROUGHPUT S 

Figure 13-BTMA: Average number of schedulings and transmissions 



198 National Computer Conference, 1975 

>-
<{ 
...J 
W 
0 
~ 
w 
~ 
(,) 

~ 

100 ~-----------------------------------------, 

50 

20 

10 

S 

2 

.1 

SLOTTED NON·PERSISTENT BTMA 

a = 0.01 

.2 .3 .4 .5 .6 .7 
THROUGHPUT S 

.8 .9 

Figure 14-BTMA: Throughput-delay trade-oft's (a=O.Ol) 

t 

when G~O and S~O, the terminal incurs an average number 
of schedulings and transmissions equal to 1/ (1-F). This is 
shown on Figure 13 at 8=0. 

G/ S, as a measure of delay, can be of importance since the 
complexity of the equipment and the implementation of the 
protocol can be directly related to the number of schedulings 
and transmissions that a packet incurs. For exampl-e, at each 
scheduling, the terminal has to generate a random number 
determining the scheduling delay. Of even more importance 
in evaluating the performance of such a system is the deter­
mination of the actual packet delay, defined as the time lapse 
since the packet is first generated, until the time it is success­
fuL As discussed earlier, the mathematical determination of 
packet delays is fairly complex, and simulation techniques 
are employed. For various values of F (F = 10-3 and F = 0.5), 
by selecting the optimum system parameters (1/1, td ) with 
respect to channel capacity, we simulated the BTMA mode. 
In Figure 14 we plot the throughput-minimum-delay* curve 
for these values of F. It is to be noted that, even though G/ S 
can be significantly affected by F, the minimum delay is 
relatively insensitive'to F. However, for each value of S 
there exists a value of F which provides the lowest delay. By 
comparing the lower envelope of these throughput-delay 

* Delay is minimized with respect to X. In BTMA, the larger F is, th~ 
larger is GIS. The minimum delay is obtained for very small values of X 
since the packet incurs 1/(1-F) reschedulings when the channel is idle. 

curves to the curve corresponding to the Non-Persistent 
CSMA without hidden terminals, we note the relatively­
good performance of BTMA. 

RESERVATION TECHNIQUES 

We have shown that, in the presence of a large population 
of users exhibiting a bursty behavior, FDMA and TDMA 
produce much higher delays with the same available band­
width than random multiple access, and in order tc achieve 
the same delay performance, they require a much larger 
bandwidth; in the latter case, the utilization of the channel 
is extremely low. In order to increase the channel utilization 
beyond FDMA and TDMA, statistical multiplexing or 
Asynchronous Time Division Multiple Access (ATDMA) has 
been proposed.17 However, this technique is less attractive in 
situations where the terminals are geographically spread 
and/or mobile. 

Of more recent interest are "controlled" techniques for 
transmission from terminals to computer. There are two 
methods in common usage for wired networks: contention 
and polling. In a contention network, the terminal makes a 
request to transmit: if the channel is free, transmission goes 
ahead; if it is not free, the terminal must wait; the station 
schedules the transmissions either in a prearranged sequence 
(according to some scheduling scheme) or in the sequence in 
which the requests were made. In the polling technique, the 
station asks the terminals one by one whether they have 
anything to transmit. For this, the station may have a polling 
list giving the order in which terminals are polled. A poning 
message is sent to the terminal under consideration. If the 
terminal has some data to transmit, it goes ahead; if not, a 
negative reply (or absence of reply) is received, and the next 
terminal is polled. 

These controlled techniques are readily applicable to radio 
networks. They constitute the subject of this section. It has 
been shown that although polling may allow the system to 
achieve high utilization of the channel, the delay incurred 
by a packet is large (mainly for the large M case which is of 
interest to us) rendering the polling technique less attractive 
than CSMA and BTMA. The alternative is the use of 
reservation techniques. In this section, we study the Split­
channel Reservation Multiple Access (SRMA) as one 
implementation of sueh reservation techniques. The available 
bandwidth is divided into two parts: one used to transmit 
control information, the second used for the message itself. 

System operation 

In the particular scheme considered here, the bandwidth 
allocated for control is further divided into two channels: 

-the request channel 
-the answer-to-request channeL 

The request channel will be operated in a random access 
mode (ALOHA or CSl\1A). Consider a terminal with a 
message ready for transmission. To initiate the sending of 



the message, the terminal sends, on the request channel, a 
request packet containing information about the address of 
the terminal and, in the case of variable length or multi­
packet messages, the length of the message. At the correct 
reception of the request packet, the scheduling station com­
putes the time at which the message channel will be available 
and transmits back to the terminal, on the answer-to­
request channel, an answer packet containing the address of 
the terminal and the time at which it can start transmission. 

Analysis 

The total delay is composed of the two following com­
ponents: 

(i) ~1, the time for the request packet to be successfully 
received at the station, and 

(ii) ~2, the time between reception of the request packet 
at the station and the end of the message transmission. 

Let W m be the bandwidth allocated to the message channel 
and (J = W m/W. The answer-to-request channel is an inter­
ference-free channel since the station is the only transmitter. 
That is, answer packets can be queued at the station and 
transmitted without conflicts. It is possible to give the 
answer-to-request channel enough bandwidth Wa such that 
answer packets do not incur any queueing delay at the 
station. Indeed, if br and ba are the number of bits per request 
packet and answer-to-request packet respectively, then Wa 
should satisfy 

(14) 

where Wr is the bandwidth assigned to the request channel. 
Let A be the average number of messages generated per 

second. As usual, we shall assume the generation process to 
be Poisson. The maximum generation rate that the total 
bandwidth W can ever handle is W/bm • The channel utiliza­
tion denoted again by S is then expressed as 

(15) 

Since both control packets contain the same type of informa­
tion, it is reasonable to assume that ba = br and therefore let 
'I/=br/bm. We further let W r= Wa. In this case we have 

(16) 

Consider the request channel operated in a random access 
mode. The expected delay incurred by a request packet is 
readily obtained from the simulation results presented 
earlier. 

To estimate the delay ~2, we assume that the output of the 
random access request channel defined as the process corre­
sponding to the arrival of successful requests at the station 
is Poisson with mean A requests per seconds. We verified the 
above assumption by examining the distribution of inter-

Random Access Techniques for Data Transmission 199 

departure times (i.e., time between successive successful 
packets) of the Non-Persistent CSMA simulator and com­
paring it to the exponential density function. Except for 
interarrivals in the range of one or two packet transmission 
times the match is acceptable and the smaller Sr is, the more 
valid is the assumption. Under this assumption, the message 
channel can be modeled as an M/G/1 queueing system.12 

The maximum bandwidth utilization is determined by the 
fact that the throughput on the request channel does not 
exceed its capacity (under the access mode in use) and the 
utilization of the message channel does not exceed one. 

Numerical results 

Systelll Capacity 

In Figure 15 we plot system capacity versus '1/ (which 
represents a relative measure of the overhead due to control 
information) for the following access modes: 

Pure ALOHA SRMA 
Slotted ALOHA SRMA 
Slotted N on-Persistent Carrier Sense SRlVIA 
(rW/bm =O.01, 0.05) 

We note that the system capacity in SRl\1A reaches 1 for 
very small '1/. A case of interest considered throughout the 
paper corresponds to bm = 1000 bits and br anywhere from 10 
to 100 bits (b r is directly related to the number of terminals 
in the population, since addressing information increases with 
increasing M). Thus, the interesting range for '1/ is 0.01 to 
0.1. For '1/ >0.01, the effect on the system capacity of the 
random access used to operate the request channel is impor­
tant: a large improvement is gained when t~ request channel 
is operated in slotted Non-Persistent CSMA as compared to 
ALOHA. On the other hand, in comparing the capacity of 
'SRMA to the capacity of random access modes, we note that 
SRMA can be superior only for relatively small values of '1/. 

.8 SLOTTED 1 a = 0.01 I 
NON-PERSISTENT 
CSMA a = 0.05 \ 

.6 

SLOTTED ALOHA SRMA 

PURE ALOHA SRMA 
.4 SLOTTED ALOHA 

.2F-__ ~P~UR~E~A~LO~HA~ __________________________ ~ __ ~~ 

Figure 15-SRMA: Channel capacity versus '1/ 



200 National Computer Conference, 1975 

CONCLUSION 

Of interest to this paper was the consideration of packet­
switched radio channels as a means of communication be­
tween terminals and a station (computer center, gate to a 
network, etc.). The objective of the research was to provide 
the communication system designer with various new access 
modes to the shared packet-switched radio channel, as well 
as the tools and conclusions necessary to select optimal 
solutions. Carrier Sense Multiple Access (CSMA) was 
introduced as a new method of multiplexing the terminals on 
the radio channel. Its performance was shown to be heavily 
affected by the ratio, a, of propagation delay to packet 
transmission time. In the cases of interest (a«l), and under 
the major assumption that all terminals are in line-of-sight 
and within range, we have shown that CSMA provides 
improved capacity over the ALOHA modes. 

However, the existence of hidden terminals can badly 
degrade the performance of CSMA. A good solution to the 
problem is provided by the Busy Tone Multiple Access 
(BTMA). BTMA under a Non-Persistent protocol is shown 
to achieve a channel capacity of 0.68 when the available 
bandwidth W is 100 KHz and up to 0.72 when W = 1 MHz. 
Moreover, the channel capacity is shown to be insensitive to 
the precise setting of the system parameters. 

A second alternative of multiplexing the terminals on the 
radio channel is the use of reservation techniques. The 

100 .---------------------------------~r_----~ 

~ 
E 

.c 
u.. 

50 

o 20 

~ 
Z 
:::> 

~ 
~ 10 
...I 
W 
o 
I­
w 
~ 
u 
f 5 
...I « 
I-
g 

2 

SLOTTED NON-PERSISTENT 
CARRIER-SENSE SRMA 

TW/bm = 0.01 

{j = 2 
17 = 0.01 
17 = 0.1 

S = .7 

I 
I 
I 
I 
I 
I 

1 ~ __ ~ __ ~ __ -'-__ -L __ ~ __ -L __ ~ __ ~ __ ~~~ 

o .2 .4 .6 .8 

BANDWIDTH ASSIGNMENT (j 

Figure 16-Slotted non-persistent carrier sense SRMA: 
Packet delay versus bandwith assignment 

100 ~--------------------------------,---~--" 

~ 
E 
.c 
u.. 
o 

50 

en 20 
t: 
z 
:::> 

~ 
>-:3 10 
w 
o 
I­w 
~ 
u « 
0-

:E 
:::> 
:E 
Z 
:E 

5 

2 

o 

ALOHA SRMA 
SLOTTED NON PERSISTENT 
CARRIER SENSE SRMA 
(Tw/bm = 0.01) 

.2 .4 .6 

S 

.8 

Figure 17-Minimum packet delay in SRMA 

Delay Considerations 

Let us restrict ourselves here to r W Ibm = 0.01. :For given 1] 

and S, the total message delay ~ is a function of (J, the band­
width assignment. As an example, we show slotted N on­
Persistent Carrier Sense SRMA with fixed message length 
(packet) and rWlbm =O.01 in Figure 16. Similar plots can be 
obtained for other random access modes used for the request 
channel. For each value of S, (J must lie in a feasible range 
denoted as [(Jmin, (Jinax]; (Jrnin and (Jtnax are determined by the 
saturation of the message channel and the request channel 
respectively. For small values of (J ((J close to (Jmin) , the major 
part of delay is due to ~2; for (J close to (Jmax, it is due to ~1. 
The optimal bandwidth assignment is defined as the value 
of () which minimizes total delay. We note that the higher the 
load is, the more critical is the choice of ()opt. The minimum 
delay for ALOHA-SRMA and Slotted Non-Persistent 
Carrier Sense SRMA is shown in Figure 17 as a function of S 
for various values of 1]. First, in comparing the two systems 
between themselves, we note again an important improve­
ment in using CSMA for the request channel. The improve­
ment is more important when larger values of 1] are involved. 

In comparing Carrier Sense SR1\1A with CSMA or BT1\1A, 
we note that, unless 1] is large (0.1 and above), there is a 
value of S below which CSMA or BTMA performs better 
than SRMA and above which the opposite is true. 



Split-Channel Reservation Multiple Access (SRMA) was 
considered which employs random access techniques for the 
request channel. The capacity of the channel under SRMA 
is heavily affected by the level of overhead introduced. 
Moreover, the throughput delay performance is significantly 
dependent on the performance of the random access mode 
used on the request channel: aNon-Persistent Carrier Sense 
SRMA provides better performance than ALOHA-SRMA. 

In all these comparisons we note that most of the channel 
capacity which was unavailable with pure and slotted 
ALOHA may be recovered by use of these more sophisticated 
access schemes. 

REFERENCES 

1. Kahn, R. E., "The Organization of Computer Resources into a 
Packet Radio Network," NCC 1975 Proceedings. 

2. Abramson, N., R. Binder, F. Kuo, A. Okinaka, and D. Wax, 
"ALOHA Packet Broadcasting-A Retrospect," NCC 1975 
Proceedings. 

3. Garrett, J. and S. C. Fralick, "A Technology for Packet Radio," 
NCC 1975 Proceedings. 

4. Frank, H., R. Van Slyke, and I. Gitman, "Packet Radio Network 
Design-System Considerations," NCC 1975 Proceedings. 

5. Fralick, S. C., D. Brandin, F. Kuo, and C. Harrison, "Digital 
Portable Terminals," NCC 1975 Proceedings. 

6. Burchfiel, J., R. Tomlinson and M. Beeler, "Functions and Structure 
of a Packet Radio Station," NCC 1975 Proceedings. 

7. Abramson, N., "THE ALOHA SYSTEM-Another Alternative for 

Random Access Techniques for Data Transmission 201 

Computer Communications," Fall Joint Computer Conference, 
AFIPS Conference Proceedings, 1970, Vol. 37, pp. 281-285. 

8. Kleinrock, L. and S. S. Lam, "Packet-Switching in a Slotted 
Satellite Channel," National Computer Conference, New York, 
June 4-8, 1973, AFIPS Conference Proceedings, 1973, Vol. 42, 
pp. 703-710. 

9. Abramson, N., "Packet Switching with Satellites," National Com­
puter Conference, New York, June 4-8, 1973, AFIPS Conference 
Proceedings, 1973, Vol. 42, pp. 695-702. 

10. Roberts, L. G., "Dynamic Allocation of Satellite Capacity Through 
Packet Reservation," National Computer -Conference, New York, 
June 4-8, 1973, AFIPS Conference Proceedings, 1973, Vol. 42, 
pp. 711-716. 

11. Spring Joint Computer Conference, AFIPS Conference Proceedings, 
1970, Vol. 36, pp. 543-597; 1972, Vol. 40, pp. 243-298. 

12. Kleinrock, L., Queueing Systems, Vol. I, Theory, Vol. II, Computer 
Applications, Wiley Interscience (1975). 

13. Kleinrock, L. and F. A. Tobagi, "Packet Switching in Radio 
Channels: Carrier Sense Multiple Access Modes and their Through­
put-Delay Characteristics," to appear in IEEE Transactions on 
Communications. 

14. Tobagi, F. A. and L. Kleinrock, "Packet Switching in Radio 
Channels: The Hidden Terminal Problem and the Carrier Sense 
Multiple Access Mode with a Busy Tone," to appear in IEEE 
Transactions on Communications. 

15. Tobagi, F. A., Random Access Techniques for Data Transmission 
Over Packet Switched Radio Networks, School of Engineering and 
Applied Science, University of California, Los Angeles, UCLA­
ENGR 7499, December 1974. 

16. Wainstein, L. A. and V. D. Zubakov, Extraction of Signals from 
Noise, Prentice Hall, Englewood Cliffs, New Jersey, 1962. 

17. Chu, W. W., "A Study of Asynchronous Time Division Multiplexing 
for Time-Sharing Computer Systems," Spring Joint Computer 
Conference, AFIPS Conference Proceedings, 1969, Vol. 35, pp. 
669-678. 





ALOHA packet broadcasting-A retrospect 

by R. BINDER,* N. ABRAMSON, F. KUO, A. OKINAKA and D. WAX 
University of Hawaii, THE ALOHA SYSTEM** 
Honolulu, Hawaii 

INTRODUCTION 

Packet broadcasting is a technique whereby data is sent 
from one node in a net to another by attaching address in­
formation to the data to form a packet-typically from 30 
to 1000 bits in length. The packet is then broadcast over a 
communication channel which is shared by a large 
number of nodes in the net; as the packet is received by 
these nodes the address is scanned and the packet is ac­
cepted by the proper addressee (or addressees) and 
ignored by the others. The physical communication chan­
nel employed by a packet broadcasting net can be a 
ground based radio channel, a satellite transponder or a 
cable. 

Packet broadcasting networks can achieve the same effi­
ciencies as packet switched networks, l but in addition they 
have special advantages for local distribution data net­
works2 and for data networks using satellite channels.3 In 
this paper we concentrate on those characteristics which 
are of interest for a local distribution data network: In 
particular, we discuss the lessons learned in the design and 
implementation of the ALOHANET, a packet broadcast­
ing radio network in operation at the University of Hawaii 
since 1970. A number of design issues which arose in the 
construction of the system are defined, our solutions are 
explained, and in some cases they are justified. The 
lessons learned from the ALOHANET are used to indicate 
how such a radio packet broadcasting system might best 
be built using the technology available in 1975. 

In the next section a brief description of the 
ALOHANET and its rationale is given. This is followed by 
a detailed discussion of the major system protocol choices 
that have evolved, pointing out some related theoretical 
work where appropriate. Choices concerning the design of 
the radio communication subsystem are then examined, 
followed by an evolutionary view of the important impact 
microcomputer technology has had on the user interface 
design and resulting system capabilities. The concluding 
section summarizes our present views with respect to the 
basic system configuration and properties of packet 
broadcasting nets. 

* Now with Bolt Beranek and Newman, Inc., Cambridge, Massachusetts. 
** Supported by the Advanced Research Projects Agency of the Depart­
ment of Defense and monitored by NASA Ames Research Center under 
Contract No. NAS2-8590. 

203 

THE ALOHANET 

The ALOHANET is the first system which successfully 
utilized the packet broadcasting concept for on-line access 
of a central computer via radio. Its primary purpose is to 
provide inexpensive access to one or more time-sharing 
systems by a large number of terminal users, typically in 
the hundreds. However, it also allows user-to-user com­
munication within the net and is evolving toward use in a 
more generally-oriented computer communications envi­
ronment. 

Operation 

The present network configuration makes use of a 
broadcast channel for only one direction of traffic flow. 
(As we shall see in later sections, the lack of a broad­
cast capability in the other direction has seriously handi­
capped the development of effective protocols in certain 
areas.) Two 100 KHz channels are used in the UHF 
band-a random access channel for user-to-computer com­
munication at 407.350 MHz and a broadcast channel at 
413.475 MHz for computer-to-user messages. The original 
system was configured as a star network, allowing only a 
central node to receive transmissions in the random access 
channel; all users received each transmission made by the 
central node in the broadcast channel. Recently the addi­
tion of ALOHA repeaters has generalized the network 
structure. 

A block diagram of the present operational 
ALOHANET is shown in Figure 1. The central communi­
cations processor of the net is an HP 2100 minicomputer 
(32K of core, 16 bit words) called the MENEHUNE4 (Ha­
waiian for IMP) which functions as a message multi­
plexor / concentrator in much the same way as an AR­
PANET IMP.5 The MENEHUNE accepts messages from 
the UH central computer, an IBM System 360/65 running 
TSO (as of December 1974, a 370/158) or from ALOHA's 
own time-sharing computer, the BCC 500, or from any 
ARPANET computer linked to the MENEHUNE via the 
ALOHA TIP.6 Outgoing messages in the MENEHUNE are 
converted into packets, the packets are queued on a first­
in, first-out basis, and are then broadcast to the remote 
users at a data rate of 9600 baud. 

The packet consists of a header (32 bits) and a header 
parity check word (16 bits), followed by up to 80 bytes of 



204 National Computer Conference, 1975 

A LOHANET 

~ ~4 1 

TCU ~ TCU TTY ~~~~fsH H > 
~ 

~ IRJ:TERI~ ~ 
2 

GRAPHICS! PCU 

\RElTERI 
TCU H TTY > (lMLAC) : 

~ 

\ ~ ~ 
8 

TCU H TTY > 
~ 

MINICOMPUTER 
~ (SUE) 

~ 
MENEHUNE CONCENTRATOR 

ALOHANET (SUE) 

(HP 2114) CENTRAL STATION 

GATEWAY 

ATS-I 
GROUND 
STATtON 

NETWORK RESOURCES ARPANET 

BCC 500 IBM 3701158 

Figure I-The ALOHANET 

data and a 16-bit data parity check word. The header 
contains information identifying the particular user so 
that when the MENEHUNE broadcasts a packet, only the 
intended user's node will accept it. More will be said about 
packet formats later. 

The random access channel (at 407.35 MHz) for com­
munication between users and the MENEHUNE is 
designed specifically for the traffic characteristics of 
interactive computing. In a conventional communication 
system a user might be assigned a portion of the channel 
on either an FDMA or TDMA basis. Since it is well 
known that in time-sharing systems, computer and user 
data streams are bursty,7 such fixed assignments are 
generally wasteful of bandwidth because of the high peak­
to-average data rates that characterize the traffic. The 
multiplexing technique that· is utilized by the 
ALOHANET is a purely random access packet switching 
method that has come to be known as the pure ALOHA 
technique.8 Under a pure ALOHA mode of operation, 
packets are sent by the user nodes to the MENEHUNE in 
a completely unsynchronized manner-when a node is idle 
it uses none of the channel. Each full packet of 704 bits re­
quires only 73 msecs at a rate of 9600 baud to transmit 
(neglecting propagation time). 

The random or multi-access channel can be regarded as 

a resource which is shared among a large number of users 
in much the same way as a multiprocessor's memory is 
"shared". Each active user node is in contention with all 
other active users for the user of the MENEHUNE 
receiver. If two nodes transmit packets at the same time, a 
collision occurs and both packets are rejected. In the 
ALOHANET, a positive acknowledgment protocol is used 
for packets sent on the random-access channel. Whenever 
a node sends a packet it must receive an acknowledgment 
message (ACK) from the MENEHUNE within a certain 
time-out period. If the ACK is not received within this in­
terval the node automatically retransmits the packet after 
a randomized delay to avoid further collisions. These colli­
sions will limit the number of users and the amount of 
data which can be transmitted over the channel as loading 
is increased. 

An analysigB of the random access method of transmit­
ting packets in a pure ALOHA channel shows that the nor­
malized theoretical capacity of such a channel is 
Y2e=0.184. Thus the average data rate which can be sup­
ported is about one sixth the data rate which could be sup­
ported if we were able to synchronize the packets from 
each user in order to fill up the channel completely. Put 
another way, this result shows the present 9600 bit/second 



channel could support between 100 and 500 active 
teletype users-depending upon the rate at which they 
generate packets and upon the packet lengths. 

ALOHANET remote units 

The original user interface developed for the system is 
an all-hardware unit called an ALOHANET Terminal 
Control Unit (TCU), and is the sole piece of equipment 
necessary to connect any terminal or minicomputer into 
the ALOHA channel. As such it takes the place of two 
dedicated modems for each user, a dial-up connection and 
a multiplexor port usually used for computer networks. 
The TCU is composed of a UHF antenna, transceiver, 
modem, buffer and control unit. 

The buffer and control unit functions of the TCU can 
also be handled by a minicomputer or a microcomputer. 
In the present system several minicomputers have been 
connected in this manner in order to act as multiplexors 
for terminal clusters or as computing stations with net­
work access for resource sharing. A new version of the 
TCU using an Intel 8080 microcomputer for buffer and 
control has been built. Since these programmable units 
allow a high degree of flexibility for packet formats and 
system protocols, they are referred to as PCU's (Program­
mable Control Unit). A more detailed discussion of ter­
minal considerations is given in a companion paper in 
these proceedings.9 

Since the transmission scheme of the ALOHANET is by 
line-of-sight, the radio range of the transceivers is severely 
limited by the diversity of terrain (mountains, high rise 
buildings, heavy foliage) that exists in Hawaii. A recent 
development has allowed the system to expand its 
geographical coverage beyond the range of its central 
transmitting station. Because of the burst nature of the 
transmissions in the ALOHA channel it is possible to build 
a simple store-and-forward repeater which accepts a 
packet within a certain range of ID's and then repeats the 
packet on the same frequency. Each repeater performs 
identically and independently for packets directed either 
to or from the MENEHUNE. Two of the repeaters have 
been built which extend coverage of the ALOHANET 
from the island of Oahu to other islands in the Hawaiian 
chain. These repeaters are discussed in more detail in the 
following section. 

PROTOCOL CHOICES 

Two fundamental choices which have dictated much of 
the system protocol are the two-channel star configuration 
of the original network and the use of random accessing 
for user transmissions. Investigation of the random access­
ing principle using radio was in fact the original motiva­
tion for constructing the ALOHANET, while the two-chan­
nel configuration was primarily chosen to allow this inves­
tigation without complication from the relatively dense 
total traffic stream being returned to all users. An addi­
tional reason for the star configuration was the desire to 

ALOHA Packet Broadcasting 205 

centralize as many communication functions as possible at 
the MENEHUNE, minimizing the cost of the TCU at 
each user node. 

Within this context, a number of protocol issues must be 
resolved: The more important of these are: 

• random access channel control 
.• broadcast channel queueing 
• packet length 
• addressing 
• error control 
• flow control 

Many of the original choices in these areas have un­
dergone significant changes as a result of new user 
resources and user interfaces, or in some instances due to 
advancements in theoretical knowledge. The addition of 
repeaters has (potentially) a particularly significant im­
pact on protocol. 

We now discuss some of the considerations and resulting 
choices made in each of the above areas, with the impacts 
of new factors introduced within the context of each area. 
The section concludes with a brief discussion of the 
problem of integrating file traffic into the random access 
channel, a subject of current concern in the ALOHANET. 

Random access channel control 

The retransmission strategy used in the random access 
scheme plays a central role in the scheme's effectiveness. 
Its determination directly affects the average delay 
experienced by users for a successful transmission, given a 
certain number of users accessing the channel, their traffic 
statistics, and the channel capacity. It can also be used to 
prevent the occurrence of channel saturation, a situation 
.in which the channel becomes filled with retransmissions 
and the number of successful packets falls to zero. These 
topics have only recently been quantified1o

,11 and remain 
subjects of current investigation. 

One approach is to use different constant retransmission 
intervals at each node, with the intervals equal to integer 
multiples of the maximum packet transmission time to 
avoid subsequent conflicts. This results in a priority struc­
ture, since nodes assigned the longer intervals will 
experience a correspondingly longer average delay. As the 
number of nodes becomes large, however, unacceptably 
large delays result for the majority of users. 

A strategy more appropriate for large user populations 
is to randomize the retransmission intervals used at each 
node (note that a priority structure can still be introduced 
if desired by using larger mean values for lower priority 
users-in the remaining discussion, equal priorities will be 
assumed). According to recent results by Lam,l1 the result­
ing channel behavior appears to be relatively insensitive to 
the exact nature of the randomization, at least when com­
paring the use of uniform and geometric distributions. In 
any event, the cost of implementing a particular distribu­
tion at each node is an important design consideration. 



206 National Computer Conference, 1975 

MENEHUNE RADIO 
CHANNELS dala 

paclr6ls 
1/'0lIl ~----------------------.---------------. ---F. CHANNEL 
U6t1r 1 

natJe6 

dala 

ACK QUEUE 

DATA PACKET 
QUEUE 

packets -------.~ _____ .J 
to user 

nodes 

.. ...,. .-.----~ CHANNEL 

Figure 2-Broadcast Channel Multiplexing 

Based on initial estimates of the expected ALOHANET 
characteristics, a choice was made to use a uniform dis­
tribution. This allowed a relatively simple implementation 
in both hardware and software user nodes. 

A simple technique was used in the original system 
nodes to achieve short delays when the channel is lightly 
loaded, while preventing channel saturation from occur­
ring due to peak-hour loading or statistical traffic fluctua­
tions: small retransmission intervals are used (relative to 
the intervals between new packets), but only for a 
maximum of three successive retransmission attempts. If 
the third attempt is unsuccessful, the user is notified of a 
failure and must manually reinitiate the retransmissions. 
This in effect introduces a long interval between every 
three retransmissions, allowing time for retransmissions 
from other users to succeed. Based on a maximum packet 
transmission time of 70 milliseconds, the intervals are 
selected from a range of 0.2 to 1.5 seconds, giving a mean' 
of about 0.7 seconds (ten maximum packet times) per 
retransmission. The lower bound is chosen to allow suffi­
cient time to receive an ACK from the MENEHUNE if 
the packet was sent successfully, avoiding unnecessary 
retransmissions. (This time is based on a direct user­
MENEHUNE path; if repeaters form a part of the radio 
path, the lower limit must be increased accordingly.) 

The newer programmable PCU's in the system offer the 
capability of a more flexible strategy, for example allowing 
the interval used after each third retransmission to be au­
tomatically inserted. The use of different strategies, such 
as continuously increasing the time range used for selec­
tion of successive retransmissions, is, also easily imple­
mented by program; these and other strategies are cur­
rently under investigation. 

Broadcast channel queueing 

The MENEHUNE acts as a concentrator for the 
broadcast (F 2) channel, queueing waiting traffic when 
necessary for sequential transmission to user nodes. Four 

complicating factors exist, however: a need for priority 
queueing, fair allocation of the channel, the turnaround 
delay required by half duplex nodes, and the presence of 
repeaters. 

Priority queues 

It is important that the F 2 channel data traffic not 
p~event the prompt return of an ACK to a user node, since 
this could lead to unnecessary user retransmissions and 
possible degradation of the random access (F 1) channel. 
Thus, an integral part of the F 2 channel multiplexing is 
the priority queueing mechanism maintained by the 
MENEHUNE, as shown in Figure 2. Whenever a trans­
mission is completed on the F 2 channel the ACK queue is 
checked, and if not empty the ACK at the head of the 
queue is sent. Only when the ACK queue is empty is the 
data packet queue checked for waiting packets. This 
guarantees that at most one complete data packet plus any 
previously queued ACK's will be sent ahead of an ACK 
just placed on the queue. (Because the average rate of suc­
cessful arrivals on the F t channel is limited to one-sixth 
the rate of F 2 transmissions by the random access tech­
nique, the number of previously queued ACK's will be 
zero most of the time.) 

Fairness 

A second problem is the possible hogging of the F 2 chan­
nel by one or a few users. This problem is eliminated by 
the queueing discipline used for the data packet queue. 
Only one packet per user is allowed on the queue at any 
time, and the queue is serviced on a first-come-first-served 
(FIFO) basis. The prevention of more than one packet per 
user on the queue is handled in conjunction with user flow 
control, discussed below. 

Turnaround delay 

A delay function is used by the MENEHUNE to count 
off the time required by half-duplex user nodes to switch 
from a transmit to a receive state. The actual time is de­
termined by the equipment type-the original off-the-shelf 
equipment required 100 milliseconds due to its use of 
mechanical relays; approximately 10 milliseconds is 
counted off for newer equipment now in use. 

Repeater scheduling 

The addition of repeaters to the system introduces a 
number of new problems into the F2 channel, both because 
of radio range overlap and the nature of the repeaters 
themselves. The latter are store-and-forward devices; a 
packet which is to be repeated is first received and stored 
in its entirety, then transmitted on the same frequency on 
which it was received (preventing reception of a new 
packet during this time). In order to prevent the loss of a 



second packet destined to the same repeater, the 
MENEHUNE must therefore appropriately.schedule the 
packets in its F 2 channel queues. 

For efficient scheduling (i.e., to maximize channel 
utilization), the MENEHUNE must know the repeater 
routing paths for each user node. This function could thus 
become quite complicated or even not achievable, depend­
ing on the degree of dynamic routing used. Because of the 
small percentage of traffic currently handled by repeaters 
in the present ALOHANET, a very simple brute force 
method is used: whenever a packet is sent which is 
forwarded by one or more repeaters, the MENEHUNE 
counts off sufficient time for it to be repeated once before 
beginning a new transmission to any node (knowledge of 
which packets are to be repeated is available from the user 
address, discussed below). This results in wasted channel 
capacity, but is not significant due to the capacity 
available in the system at present. 

Packet length 

Three factors having an important impact on the system 
are the use of variable or fixed-length packets, the way 
packet length or the number of data bytes is indicated, 
and the maximum packet length allowed. The choices 
made must take into account the different traffic charac­
teristics generated by line-oriented and character-oriented 
user-computer interactions. 

Line transmissions 

Fixed-length packets were used in the initial system to 
simplify the design and construction of system hardware. 
The data packet length for both channels was chosen to 
allow up to 80 data bytes (640 bits), based on the user 
delays introduced by the 9600 bps channel data rates, the 
line length of the terminals in the system, and the line­
oriented characteristics of the IBM 360/65 used as the 
central time-sharing system. An end-of-line (EOL) indica­
tor consisting of eight zero bits was used within the packet 
to identify the end of actual data, where the latter was 
restricted to 7-bit ASCII with the eighth (parity) bit set to 
one. Since it was anticipated that many of the lines typed 
by users would be less than 40 characters, a second packet 
type was also defined which contained a 40-byte data field 
(a "Half-Packet"). This last step proved to be a mis­
take-the half-packet logic at each end of the link was a 
significant source of both hardware and software bugs. 

The packet formats have since been changed to allow 
the use of variable-length packets with newer user nodes. 
An 8-bit count field is used in the packet header to indi­
cate the number of 8-bit data bytes in the packet, with the 
data parity word immediately following the last data byte. 
In addition to eliminating the wasted channel capacity of 
the fixed-length packets, this also removes constraints on 
the data themselves necessitated by unambiguous detection 
of the EOL indicator within the data stream. The 80 data­
byte maximum has been retained for both channels, since 

ALOHA Packet Broadcasting 207 

it still appears to be a reasonable upper bound with 
respect to both the multiplexing delays introduced to 
either channel and node buffering requirements. This 
should not be construed as an indication that this length is 
optimal, however; as file-oriented messages are introduced 
to the total traffic and/or user node storage continues to 
become cheaper, a larger maximum may be desirable for 
one or both channels (for a given channel data rate and 
user response time constraints). 

Character-by-character 

The increased flexibility provided by PCU's has allowed 
the introduction of a 'short' data packet in which a single 
data byte is sent in the header in place of the byte count, 
followed only by the header parity word. Although a use 
for this packet occasionally arises for interactions with 
line-at-a-time systems, its main use is with the character­
oriented ARPANET computers now available to 
ALOHANET users. 

The use of these character-oriented systems can have a 
considerable impact on the size and frequency of packets 
sent in the random access channel. This has an important 
consequence for the buffering strategy and choice of 
packet length used at each node: since a new transmission 
cannot begin until an ACK has been received for the last 
one, all characters typed by the user during the ACK wait­
ing time should be sent in a single packet. Thus if com­
munication delays tend to overlap inter-character genera­
tion times, the affected characters are accumulated at the 
originating node and sent (more efficiently) in a variable­
length packet, without adversely affecting user-computer 
interaction. 

A logical extension of this last strategy is to buffer all 
characters typed by the user at his node until one is typed 
which causes some action to be taken by the computer. If 
the appropriate set of action characters is known at the 
user node, this allows an optimum use of both channel ca­
pacity and system buffering without degrading the user­
computer interaction. A scheme which allows this to be 
done in conjunction with echoing control is given by 
Davidson,12 and is currently being introduced into selected 
ARPANET hosts. Its implementation cost in ALOHANET 
PCU user nodes appears reasonable, and is anticipated for 
use as its support by host computers becomes widespread. 

Addressing 

User nodes 

User addressing is determined by the radio channel con­
figuration and associated multiplexing technique. Ignoring 
repeaters for the moment, the two-frequency configuration 
used in the ALOHANET allows only a single destination 
in the random access channel (the MENEHUNE), and a 
single source in the broadcast channel (the 
MENEHUNE). Thus only the sender's address is required 
in the random access channel and only the destination ad-



208 National Computer Conference, 1975 

dress in the broadcast channel, which in both cases is the 
user address. Concentration of more than one user at a 
radio node is handled by permanently allocating a block 
of user addresses to the node, allowing user node multi­
plexing without introducing another level of addressing 
complexity to the system. The required address space is 
determined by the total number of users expected to be 
supported by the random access channel, and is 28 (eight 
header bits) for the present 9600 bps ALOHANET chan­
nel. 

Repeaters 

The use of repeaters in the system introduces some sig­
nificant new factors to be considered in choosing an ad­
dress scheme. Because of radio range overlap and the 
store-and-forward nature of the repeaters, problems can 
arise involving conflicts generated by two or more 
repeaters repeating simultaneously to the same destina­
tion, infinite repeating of the same packet (looping), "and 
weak-signal operation due to multiple (but time­
sequential) paths. In addition, the addressing scheme 
directly affects the MENEHUNE's ability to schedule 
transmissions in order to maximize broadcast channel 
utilization, as discussed in a preceding section. The 
ability to eliminate or minimize these problems depends 
on the degree of mobility desired for user nodes and/ or the 
repeaters themselves. 

Because of the small percentage of user nodes which 
currently require repeaters in the ALOHANET, a simple 
scheme is in use based on the hardwired properties of the 
original repeaters built for the system. A block of user ad­
dresses is defined for each repeater, the latter repeating 
only those addresses in its block. The block assigned to a 
repeater two hops from the MENEHUNE is a subset of 
the block assigned to its fIrst hop repeater. User nodes are 
constrained to operate within the geographic range of their 
'assigned' repeater by this scheme, but the node's user ad­
dress is easily changeable if a relocation becomes 
necessary. Since only one path choice exists between each 
user node and the MENEHUNE at present, the optimum 
path is selected by default. As the number of repeaters in 
use increases and existing units are replaced by program­
mable devices, a more flexible repeater addressing scheme 
is expected to be implemented. 

Resource addressing 

This refers to the user's choices regarding which system 
resource he may communicate with. The system allows 
users to request a connection to the campus IBM 370/158, 
the ARPANET, or another ALOHANET user node. This 
is accomplished by sending special sequences of ASCII 
characters in the data portion of packets to the 
MENEHUNE, which may either be typed by a terminal 
user or automatically generated. If the requested destina­
tion is available, its identification is stored in a Connec-

tion Table entry for the requesting user in the 
MENEHUNE, and the user's address stored in a similar 
entry for the destination. All subsequent packets from the 
user are passed to the stored destination and conversely, 
until either end requests that the connection be broken. 

Two exceptions exist to this connection table routing of 
packets. The first are commands intended for the 
MENEHUNE, such as the 'connect' and 'disconnect' 
above. The second is a capability which allows a user to 
send a single packet to another ALOHANET user inde­
pendently of current connection table entries. The origi­
nating user simply types a special two-character ASCII se­
quence followed by the destination user's address (up to 
three ASCII digits), followed by the desired text. 

Note that in the case of a connection to another 
ALOHANET node, the latter's address is also the resource 
address. If the node's resource can service more than one 
user at a time (such as might be the case for a specialized 
minicomputer or storage device), the present addressing 
scheme requires either that a block Df addresses be 
allocated to the receiving node (as in the case of a concen-" 
trator for sending), or a sub-address be sent in the text 
portion of every packet. The block allocation suffers from 
rigidity in that resource addresses cannot be reused dy­
namically by different users, and does not appear de­
sirable if many such addresses must be allocated in the 
system. 

Error control 

Random-access channel 

Two distinct error sources exist at the MENEHUNE 
receiver, the usual random noise and errors due to packet 
conflicts. Because of the high probability of errors due to 
conflicts at full loading of the random access channel, a 
very reliable error detection mechanism is required. To 
achieve this it was decided to use two 16-bit cyclic poly­
nomial parity check words in each data packet, one follow­
ing the header and a second following the data. The 
separate header parity check forms the basis for a highly 
reliable packet synchronization method discussed in 
another part of this paper; it also allows reliable establish­
ment of packet length and other information prior to 
processing the data portion of a packet. A single header bit 
is also used in conjunction with the parity check for se­
quence numbering, allowing the detection of duplicate 
packets by the MENEHUNE. 

Broadcast channel 

Error control for broadcast channel data packets 
(MENEHUNE to user nodes) involves some special 
considerations. For efficient operation, the usual positive 
acknowledgment scheme in which the ACK's themselves 
are not acknowledged depends on a high probability of the 
ACK's being successfully received. However, an ACK sent 



from user nodes must compete with data traffic in the 
random access channel. At full channel loading each 
random access packet must be retransmitted an average of 
1.7 times, which means each data packet or ACK must be 
sent a total of 2.7 times on the average before it is success­
fully received. * But in order to force retransmission of the 
ACK's, the data packet being acknowledged must also be 
sent an average of 2.7 times by the MENEHUNE-even 
though it was received correctly the first time! The 
problem is compounded by the typically high ratios of 
computer/user traffic which exist for most interactive 
systems, resulting in many more ACK's than data packets 
in the random access channel. This problem was "re­
solved" for the initial implementation by simply not send­
ing ACK's from user nodes. Because of the high received 
signal strengths at the nodes, a very low error rate was an­
ticipated; considering also that user nodes consisted only 
of human terminal users, it was decided that a simple er­
ror detection/user notification .scheme would be sufficient. 

However, this is in general not adequate when more s<r 
phisticated data transfer functions take place or signifi­
cant error rates exist at user nodes. An example of the first 
case is the loading of programs into core storage of a mini­
computer node, where manually initiated error recovery 
usually requires restarting the loading from the beginning 
of the file. In the second case, error rates can become ap­
preciable when user nodes are located in weak signal areas 
caused by distance, multipath interference, or line-of-sight 
blocking, or in strong signal areas in which strong local 
noise sources also exist. To allow for these situations an 
option which allows user nodes to send positive' ac­
knowledgments has been implemented. The scheme 
works identically to that for the random access channel, 
but is only used selectively with newer programmable 
nodes when required (it can be turned on or off by a com­
mand from the user node to the MENEHUNE). Its effec­
tiveness is based on the relatively light existing channel 
loading of the system and its use by only a few of the 
nodes. 

One solution to this problem when all traffic to user 
nodes must be acknowledged in a loaded random access 
channel is to use sequence numbering with a large 
modulus, sending an ACK only when the maximum se­
quence number is received. This approach suffers from 
the unpredictable nature of interactive user-computer traf­
fic, however; if the last computer output prior to new user 
input is missed by the node, a potential deadlock situation 
is created until the user decides something is wrong and 
takes manual action. An additional mechanism can be 
used to circumvent this, such as using automatic timeouts 
at the user node or sending dummy traffic to the node to 
'flush out' missed packets. However, the sequence num­
bers succeed only in reducing the number of ACK's sent in 
the random access channel-to eliminate the unnecessary 

* This assumes ACK's and data packets are the same length; although 
the ACK's are in fact shorter, the resulting error rate is still very high 
compared to a typical conflict-free channel. 

ALOHA Packet Broadcasting 209 

repetitions of data packets from the MENEHUNE, it is 
also necessary to acknowledge the ACK. That is, the.ACK 
sent by a user node is timed out and retransmitted until 
an acknowledgment for it is received, just as for data 
packets. If another packet is waiting for transmission to 
the node at this time, its transmission with the next se­
quence number constitutes the ACK to the ACK; 
otherwise, a short ACK-ACK packet is sent by the 
MENEHUNE. This can be easily shown to result in sig­
nificantly less total channel overhead, at the expense of 
more complication in the node implementation. 

Repeaters 

We have so far ignored the effects of repeaters in this 
discussion on both random access and broadcast channel 
error control. The repeaters currently in use in the 
ALOHANET do not generate acknowledgments in either 
direction, resulting in only end-t<rend acknowledgments 
between the MENEHUNE and user nodes as above (but 
with longer minimum retransmission timeouts). This 
choice was made for initial repeater simplicity; it has been 
shown analytically, however, that a hop-by-hop ac­
knowledgment scheme is in general superior to an end-t<r 
end scheme, at least in co~te~ts such a~ ARP ANETlO and 
the ARPA Packet Radio effort. 13 Thus we expect to 
convert to a hop-by-hop scheme when the existing 
repeaters are replaced by programmable units and/ or 
repeater traffic error rates require it; this area remains a 
relatively unexplored problem domain within the present 
ALOHANET implementation. 

Single-channel configurations 

Finally, we note that the problems discussed above con­
cerning ACK's sent by user nodes in the random access 
channel are effectively non-existent if a single-frequency 
channel configuration is used (and propagation times are 
less than the shortest packet transmission times). If all 
nodes can hear the transmission of all other nodes, it is 
only necessary that nodes refrain from sending for an 
ACK packet time following the transmission of a data 
packet by any node, except for the intended receiver who 
sends an ACK (if appropriate) during this time. Thus 
ACK's are sent conflict-free, allowing a simple positive ac­
knowledgment scheme to be used for all traffic. Note that 
packets sent by the MENEHUNE are treated exactly the 
same as packets sent by user nodes with respect to ACK's, 
thus also eliminating any effects due to asymmetric com­
puter-user traffic ratios. 

Flow control 

The initial system 

In the initial system environment of a single half-duplex 
time-sharing system, model 33 Teletypes, and hardwired 



210 National Computer Conference, 1975 

I ,# __ L __ , 

t~lock) 
------" 

Figure 3-Broadcast Channel Flow Control (Original System) 

user nodes which buffered only the line being displayed, 
flow control was a relatively simple matter. A user always 
received at least one output line from the time-sharing 
s~stem (IBM's TSO running on a 360/65) for each input 
lme, and a prompt character when it was ready for more 
input. The bandwidth between the MENEHUNE and 360 
and the latter's I/O response times are such that one or 
two MENEHUNE buffers are normally sufficient to sup­
port transfers of packets received from the random access 
channel; in the unlikely event that no buffers are available 
when a packet arrives, the channel protocol guarantees its 
retransmission. Thus no explicit flow control was provided 
to prevent new packets from being sent by a user node. If 
the user sends one before the 360 is ready, the packet is 
discarded and a "WAIT" message returned to the user by 
the MENEHUNE (the status of each 360 connection is 
known in the MENEHUNE by information routinely 
passed from the 360). 
. Broadcast channel flow control was necessary, however, 

smce each line (packet) sent to a (hardwired) user node 
must be completely displayed before a new line can be 
received. This was accomplished by the scheme shown in 
Figure 3, in which the control for each user node is 
centralized at the MENEHUNE. The latter counts off the 
required display time following transmission of each 
packet to a user, inhibiting further transmissions to that 
user until the time is up. To prevent 360 output from tying 
u? MENEHUNE buffers while packets are being 
dIsplayed, a handshaking flow control is used; the 360 
sends only one line of output for each user, then waits for 
a go-ahead (GA) message with that user's address. The GA 
is sent by the MENEHUNE whenever a user's display 
time is up, resulting in at most one buffer required for 
each user (the MENEHUNE can also hold up acceptance 
of any packet from the 360 indefinitely until it has buffer 
space available). Note that this strategy also prevents any 
user from hogging the broadcast channel, since it allows 
only one packet per user in the channel queue. 

Some terminal complications 

The introduction of high speed CRT and hardcopy ter­
minals to the system required an expansion of the 
MENEHUNE's flow control mechanism for the broadcast 
channel. A set of display rates was added, with the rate 
used at each user node stored in a permanent table in the 

MENEHUNE; a user can change the stored value for his 
node by typing a special command to the MENEHUNE at 
any time. The CRT terminals require an additional flow 
control mechanism to suspend output when the CRT 
screen has filled, allowing the user to signal when he is 
ready to proceed. Thus a screensize command was created 
which allows users to specify a screensize of between one 
and 99 lines (or an infinite screensize); this value is also 
stored in MENEHUNE tables for each user node. A 
counter is maintained for each user with a finite screensize 
specification and is updated for each line sent to the ter­
minal; when the maximum is reached, the MENEHUNE 
suspends generation of the GA message until the user 
inputs a carriage return. 

Satellite complications 

The next complication to MENEHUNE flow control 
processing was caused by the connection of the 
ALOHANET to the ARPANET. The latter involves a 50 
Kbps INTELSAT IV satellite path connecting Hawaii to 
California; because of its long propagation time (ap­
proximately 0.25 seconds) and ARPANET flow control 
protocol, a large amount of buffering is required at the 
receive end of the link to support continuous display at 
higher speed terminals-in particular, a 9600 bps terminal 
requires approximately a 1000-byte buffer. (Since in 
general CRT terminal users do not require continuous 
output at this rate, a smaller amount of buffering is in fact 
used.) This required a substantial increase in the size of 
the MENEHUNE buffer pool and a more complicated 
queueing structure to support the broadcast channel, since 
now more than one packet per user must in general be 
stored in the MENEHUNE during display at the user 
node. To maintain the single-packet-per-user policy for the 
channel queue, a separate queue was created for each user 
to hold additional packets. The resulting flow control 
scheme is shown in Figure 4, where the GA's sent to the 
360 in Figure 3 are now sent to the internal ARP ANET 
protocol module. The maximum allowed size of each user 
queue is determined by the user's terminal rate and the 
available MENEHUNE buffer pool, and in tum defines 

USER CHANNEL 
NODE QUEUE 

O~im--

... ...L 
tCLDCK) 
'-.. ---'" 

MENEHUNE 
USER 

QUEUES 

: Data 
MtI$$op$ 

Figure 4-Broadcast Channell ARPANET Flow Control 



the parameters used in the ARPANET flow control pro­
tocol. 

Multiple-line packets 

A second complication resulting from the ARPANET 
connection concerns the extra time required by some 
higher speed displays for certain characters such as car­
riage return (CR) and/ or line feed (LF). Output from the 
360 in the initial system contained such characters only at 
the end of a line (packet), allowing the transmission time 
and other inter-packet delays to provide any extra time re­
quired. However, many ARPANET computers are 
character-oriented, at times generating many CR and LF 
characters within a single packet. Thus it was necessary to 
provide a padding function in the MENEHUNE which 
inserts dummy characters or otherwise adds a display 
time delay after each CR or LF occurrence within packets 
destined for a higher speed (greater than 110 bps) ter­
minal. This necessitates the splitting of packets whenever 
the maximum 80-byte packet length is exceeded, and in 
general involves a significant amount of additional 
processing per packet. 

Full duplex interaction 

A third complication arising from many ARPANET 
computers is their full duplex user interaction. Unlike the 
360, users do not necessarily receive output in response to 
each input or an indication of when the computer is wait­
ing for more input. Since no explicit flow control is pro­
vided for input from user nodes to the MENEHUNE, 
users are forced to either interact in a half duplex fashion 
(guessing as to when the computer has finished its output) 
or suffer occasional losses of input data and subsequent 
retyping. The latter can occur frequently with the 
hardwired TCU's, since they contain a single buffer which 
is used for both keyboard input and display; if computer 
output arrives while the user is typing, the typed 
characters are overwritten in the buffer by the, received 
packet. The newer programmable user nodes now in the 
system provide full duplex buffering for the terminal, 
allowing a packet to be received and displayed without 
disturbing the keyboard buffer. 

However, even if user nodes are completely full duplex a 
flow control problem exists for packets sent to the 
MENEHUNE. Unlike the case for the 360, users of full 
duplex hosts may generate successive input packets 
without receiving responses from the host computer. If the 
ARPANET or host computer or both slow down, an 
excessive number of buffers can become queued in the 
MENEHUNE on behalf of the user. Thus, to prevent user 
hogging of the buffer pool a count of the number of input 
buffers queued for each user is now maintained; when 
equal to the maximum allowed, arriving packets are dis­
carded and a discard notification returned to the user. 

ALOHA Packet Broadcasting 211 

File traffic 

The original ALOHANET design was based on a homo­
geneous population of terminal users generating bursty 
traffic into the random access channel. However, the con­
nection of minicomputers and other terminals with 
memory has introduced at least two sources of non-bursty, 
or 'file', traffic. The first case occurs when users desire to 
transfer data from a paper tape or other storage media to 
a host computer. The second occurs when it is desired to 
transfer program-generated output from a minicomputer 
at a user node to a display device at a second user node 
(users can connect to other user nodes through the 
MENEHUNE in the same way as to the 360 or AR­
PANET). In either case the resulting traffic must be 
prevented from, hogging or degrading the random access 
channel, and must also be constrained to the destination's 
acceptance rate. 

The random access technique itself implicitly provides 
an anti-hogging mechanism, since retransmission timeouts 
can be used to decrease the user's average rate if conflicts 
occur. This does not provide for destination flow control, 
however, and is not necessarily an optimal solution for the 
random access channel. A second approach is. the use of 
explicit flow control in the form of GA's sent by the 
MENEHUNE to the sending user node. This provides a 
solution to both problems at the expense of a small 
percentage of broadcast channel capacity. Since the 
MENEHUNE receives GA's from the user's destination, 
either explicity from the 360 or ARPANET module or 
from its display time counting for another ALOHANET 
node, it can simply relay them to the sending node in a 
short control packet. This approach also allows centralized 
optimization of traffic in the random access channel by 
the MENEHUNE, and is the subject of current investiga­
tion. 

RADIO SUBSYSTEM CHOICES 

The design of the ALOHANET radio communication 
system required the balancing of a number of perfor­
mance goals against various system constraints which are 
peculiar to the use of radio frequencies for data communi­
cation channels. These trade-off studies resulted in the se­
lection of our RF channels and modulation method. The de­
termination of operating ranges and the choice of a data 
synchronization method resulted from the basic channel 
and modulation selection decisions. In this section we will 
describe the primary issues related to RF channel selection, 
modulation design, radio range determination, and data 
synchronization design. 

RF channels and modulation 

The choice of radio channels for any communication 
system is a complex task, requiring the trade-off of many 
factors such as desired bandwidth, area coverage, 
spectrum availability, potential interference and noise 



212 National Computer Conference, 1975 

F1: 407.350 MHz 

F2 : 4 13.475 MHz 

MENEHUNE 

ALOHA TERMINAL 

REPEATER 

Figure 5-ALOHA System UHF Radio Communication System 

sources, regulatory requirements, and equipment costs. In 
the case of the ALOHANET, a wide channel bandwidth 
was considered desirable for the random access channel 
since user nodes are required to send messages to the 
MENEHUNE at high peak data rates compared to their 
average data rate. Wide bandwidth was also deemed 
advisable for the broadcast channel due to the expected 
high traffic density from the MENEHUNE. The use of 
wide channel bandwidth tends to force the use of higher 
frequencies where spectrum crowding is less severe and 
the availability of bandwidth is greater. Crowded radio 
bands are undesirable not only from the standpoint of in­
terference to other users but also because of potential in­
terference from them. Another disadvantage of lower fre­
quencies is the higher probability of interference from 
man-made noise sources, particularly in an urban area 
where the ALOHANET has most of its terminals. 

From the above considerations it can be seen that the 
system's communication requirements tend to emphasize 
the use of higher radio frequencies. The primary 
constraint on moving to even higher frequencies is equip­
ment cost and radio range. Above 500 MHz equipment 
costs tend to escalate rapidly. Area coverage also becomes 
more difficult due to more pronounced shadowing effects 
of the radio waves by buildings and hilly terrain. (Above 
30 MHz radio propagation tends to be limited to line-of­
sight paths.) 

Therefore, the 400 to 500 MHz UHF band was selected 
as the optimum for the ALOHANET radio frequencies. 
Reasonably priced commercial radio equipment was 
found to be available in this frequency region and radio 
band crowding was not severe in Hawaii. Initially, assign­
ments in the 450 to 470 MHz mobile radio band were 
requested but were rejected by the FCC because of our 
wide channel bandwidth requirements. (The mobile radio 
channels are specified at about 15 KHz bandwidth, 
whereas we were requesting 100 KHz.) We were fortunate 
enough to receive assignments as an experimental service 
in the government UHF band of 406 to 420 MHz, where 
spectrum space was available. 

Since most radio equipments available in the UHF 
bands use frequency modulation (FM), this type of 

modulation was selected for the RF channels. A slight 
variation was incorporated in the hardware design to mini­
mize the interface problems between the radios and the 
data modems. This variation was the use of a subcarrier 
tone to carry the actual data moqulation. This tone is 
phase-shift-keyed by the data and the resultant signal is 
used to modulate the FM transmitter. This modulated 
tone is recovered from the FM receiver and fed to the 
demodulator of the modem. This modulation system is 
referred to as FM/DPSK to indicate frequency modula­
tion by a differentially phase-shift-keyed subcarrier. (Dif­
ferential phase-shift-keying is used to resolve the problem 
of received phase ambiguity.) The resultant configuration 
is shown in Figure 5. 

Radio range 

The maximum operating distance between any terminal 
of the ALOHANET and the MENEHUNE (or a repeater) 
is specified as the system's radio range. This distance is 
primarily a function of a transmitter's radiated power, the 
receiver's sensitivity, and the attenuation of radio signal 
power for the given distance. Local noise conditions at the 
receiver location can also affect this distance, but for 
system planning purposes, range is usually calculated on 
the basis of some given propagation model. For line-of­
sight paths, which exist at VHF, UHF, and higher fre­
quencies, two different models are used depending upon 
local topographical conditions. In an urban area these 
paths are partially obstructed and suffer from multi path 
effects. A power loss proportional to 1/R4 is usually 
assumed for these conditions.14 Where paths are 
unobstructed and well clear of the local terrain, a spread­
ing loss proportional to 1/R2 can be assumed. Receiver 
threshold sensitivity in the ALOHA NET is defined as that 
receiver input power level which causes an average bit' 
error rate of 10-5

• This bit error rate should provide a 
packet throughput reliability better than 99 percent for 
full-length ALOHA packets. 

Assuming a transmitter equivalent radiated power of 10 
watts, a simple whip antenna at a user terminal, an ele­
vated antenna at the MENEHUNE or repeater and a 3 
microvolt receiver sensitivity, the radio range works out to 
about 17 miles in the urban area for the ALOHANET fre­
quencies. Between repeaters and the MENEHUNE ter­
minal, which have well-elevated antennae and good path 
clearances, the assumed 1/R2 model gives a maximum 
range of 290 miles. The use of high-gain omnidirectional 
antenna arrays at repeater sites extends these ranges. 
Tests conducted on a 100 mile path between two 
ALOHANET repeaters confirmed the 1/R2 spreading-loss 
assumption and indicated a fade margin of 30 db existed 
(due to the 10 db gain antennae used for the test). 

Data synchronization 

Because of the burst nature of radio transmission of 
ALOHANET packets, special synchronizatio~ techniques 



must be employed in the modem and data terminal equip­
ment. Since the phase-shift-keying used in the 
ALOHANET modem design is a bit-synchronous tech­
nique, bit synchronization must first be performed in the 
demodulator before packet synchronization can be at­
tempted. Bit-sync is performed by a phase-locking circuit, 
and a lock-indication signal is passed to the data equiJr 
ment when bit-sync has been attained. The bit-sync detec­
tion circuit is so designed to provide a very low false detec­
tion probability (less than 10-6

) and a high probability of 
packet detection. The narrow bandwidth of the phase-lock 
circuit presently designed into the ALOHANET modem 
requires a bit-sync preamble of 90 bits to ensure reliable 
bit-sync. Studies have indicated that this preamble can be 
reduced to about 10 bits by use of a redesigned wide-band 
phase-lock circuit. In fact, we are presently contemplating 
doing away with the bit-sync preamble entirely, further 
reducing packet overhead. The unique characteristics of 
the ALOHA modem design make such an approach 
feasible. 

Packet synchronization is accomplished in the 
ALOHANET data terminal buffer by means of the 16-bit 
parity word contained in the packet header. When the 
parity check routine accepts the header, the packet is 
assumed to be synchronized. Since the parity check 
routine is initiated by the first bit of the header, packets 
can be missed due to detection of an early error bit before 
the header. This miss probability is presently controlled 
by the modem at about 10-3 or less, providing a packet de­
tection probability of99.9 percent or better. The false de­
tection probability of this circuit is"", 1.5 X 10-5

, which is 
independent of that of the modem. Thus, the overall 
probability of false detection is less than 1.5 X 10- 11

• 

Therefore, less than one out of a thousand packets will be 
lost due to packet sync errors and packet sync false 
alarms occur with extreme rarity. 

USER INTERFACE CHOICES 

The development of the ALOHANET user interface has 
been an evolutionary process, as is typical of most re­
search developments. Since there were expected to be 
many user nodes (as compared to the single MENEHUNE 
node), the primary design goals were -initially set as sim­
plicity of design and low cost. This led to the design of a 
hardwired control unit with limited data storage ca­
pability coupled to a modem and radio transceiver. This 
initial design was termed a Terminal Control Unit (TCU). 
As experience developed with operation of the net, other 
functions became evident as being desirable in a TCU. At 
about this time the first microprocessor chips and low-cost 
semiconductor memory chips were becoming available in 
the marketplace. It was decided that a new TCU design 
should be initiated using these new devices since much 
greater flexibility and additional functions could be 
readily incorporated in a unit having a capability of being 
programmed. It was also noted that the cost of these new 
devices was such that a unit could be built for the same 

ALOHA Packet Broadcasting 213 

cost or less than that of the original design. Thus, the 
Programmable Control Unit (PCU) was developed, and 
there are now several operating units in the system. We 
will now discuss some of the issues involved in designing a 
terminal control unit for use on the ALOHANET. These 
issues lie in the general areas of interface considerations 
and the technology of microprocessors. ' 

The original TCU 

The ALOHANET was originally envisioned as a ter­
minal network, with the TCU's interfacing human users to 
a half duplex, line-oriented time-sharing system. At the 
time of the first TCU design effort memory was relatively 
expensive, so in order to minimize cost a single buffer was 
chosen for use with both the terminal keyboard and dis­
play. (As noted earlier in this paper, when full duplex 
computer interactions were available in the system the 
single buffer was found to be quite a disadvantage.) The 
buffer was designed for a full line length of 80 characters 
which allowed handling of both the 40 and 80 characte; 
fixed-length packets defined for the system. 

Additional basic functions performed by the TCU's 
were generation of a cyclic-parity-check code vector and 
decoding of received parity code words for error-detection 
purposes, and generation of packet retrans.missions using a 
simple random interval generator. If an acknowledgment 
was not received from the computer after the prescribed 
number of retransmissions, a flashing light was used as an 
indicator to the human user. Since the TCU's did not send 
acknowledgments to the MENEHUNE, a steady warning 
light was displayed to the human user when an -error wa; 
detected in a received packet. Thus it can be seen that 
considerable simplification was incorporated into the 
initial design of the TCU, making use of the fact that it 
was interfacing a human user into the network. 

Other functions hardwired into the TCU were the ob­
vious requirements of checking for and generating its ad­
dress, packet sequence numbering, checking to see if a 
received packet is an ACK packet or a data packet, and 
generating and checking for half- or full-packet conditions. 
(The control bits for these functions all reside in the 
header portion of the packet.) 

The final consideration was the choice of standard inter­
face signals between the TCU and the user's equipment. 
This was a relatively simple choice, since most equipment 
is designed to meet the EIA standard RS 232C interface 
specification. Therefore, the TCD was designed to meet 
this standard, which allows direct connection of most ter­
minals in use today. 

Minicomputer nodes 

As the ALOHANET developed, some minicomputers 
were interfaced into the network as concentrators for a 
number of terminals. Many of the logical functions 
performed in a TCU were now incorporated into the 
mini's software, with error detection and parity word 



214 National Computer Conference, 1975 

generation performed in a special hardware interface unit 
illlPosed between the minicomputer and an ALOHA 
modem. (This unit was very much like the encoder/de­
coder unit used at the MENEHUNE to interface that mini­
computer to the channel.) Parallel-to-serial and serial-t<!­
parallel conversion was also performed in this interface 
unit. 

However, a minicomputer is an expensive device to use 
for these simple functions, and it requires considerable 
amounts of power and space. If it already exists for the 
purpose of performing various user-oriented tasks, then it 
is cost-effective to incorporate the software interface and a 
minimal amount of hardware for use on the ALOHANET. 

The advent of the microprocessor chip changed all this. 
The relatively low-cost processing power demonstrated by 
these units made it apparent that many system options we 
had previously considered and discarded because of 
hardware complexity and cost limitations in the TCU, 
were now viable in a PCU. Some of these options-file 
transfer, remote user ACKs, single frequency operation, 
character-by-character transmission-were discussed in 
previous sections. This trend toward programmable and 
more powerful TCU's has thus led to the development of 
the ALOHA PCU, using a microprocessor to handle the 
TCU buffering and control functions, in addition to more 
complex and sophisticated functions. 

Microprocessor technology 

The development from the hardwired TCU concept to 
the fully-programmable PCU has closely followed the 
rapidly changing technology of microprocessors. The 
availability of lower-cost semiconductor memory has 
allowed the evolution from half-duplex to full-duplex 
operation in the PCU, with the beneficial side-effect of 
decreased logical complexity due to separation of the input 
and output functions. However, the first PCU developed 
had a hardware complexity level comparable to the TCU 
due to the relatively primitive structure of early micro­
processor designs. This first PCU, designed with the Intel 
8008 CPU, required a considerable amount of circuitry for 
buffering and multiplexing functions needed with this 
early microprocessor .chip. Because of the slow speed of 
the chip, bit-by-bit processing was not possible and addi­
tional buffering was also necessary. But, much greater 
flexibility was introduced into the scope of functions 
which could be performed, due to its programmability. 

Later microprocessor designs, such as the Intel 8080 and 
National IMP-16, have introduced much greater sophisti­
cation into the processor chips accompanied by significant 
processing speed improvements. A newer PCU design, in­
corporating an Intel 8080 chip, has demonstrated a 
considerable reduction in hardware complexity accom­
panied by an even greater degree of processing flexibility. 
For example, parity generation and checking are done in 
software with this prototype design. 

Buffering has progressed from the simple shift-register 
storage devices of the TCU to the use of semiconductor 

RAM devices used in the microprocessor's random-access 
memory. All of the micro-instructions for the Intel 8080 
microprocessor PCU design reside on four PROM chips, 
providing 1024 bytes of microcode. The random-access 
memory consists of 2048 bytes of RAM. 

Recent product introductions such as Intel's 3000 series 
bi-polar chips promise -even greater reductions in chip 
counts and increases in processing power and speed. With 
machines such as these, bit-by-bit processing can be 
readily incorporated into software, thus further eliminat­
ing the need for external interfacing hardware and si­
multaneously providing greater flexibility in the imple­
mentation of additional functions. A more' detailed dis­
eussion of communications microprocessors is given in a 
companion paper in these proceedings.9 

Size and power 

In the -earlier versions of the TCU smaller size and 
power drain of the unit were not considered major design 
objectives. The first units were designed for ease of access 
and hardware modifications to these TeU's were made on 
a fairly casual basis. As more and more of the 
ALOHANET came into use, however, small size, port­
ability and lower power drain became desirable. 

Of particular interest is the possibility of designing low 
power battery operated portable PCU's for mobile units in 
the ALOHANET. Since the transmitter power need only 
be on for a short burst corresponding to the period of the 
data burst, the average power of the transmitter can be a 
small percentage of the peak power. Since low power and 
small size were not original design objectives, it appears 
that the construction of low power portable PCU's will in­
volve redesign of several subsections of the PCU and some 
new design efforts. Of particular importance is selection of 
a microprocessor unit which provides a minimum power­
drain computer architecture consistent with functional re­
quirements. The modem should be redesigned to use MOS 
devices to minimize power drain, and the transceiver 
designed for minimum complexity. 

CONCLUSIONS 

As the system has been modified during the past· several 
years it has become apparent that packet broadcasting ar­
chitecture is remarkably flexible in its tolerance of 
hardware, system and protocol modifications. This flexi­
bility follows from the packet verification algorithms 
which lie at the basis of packet broadcasting. The only 
packets accepted by a remote unit or by the 
MENEHUNE are packets which meet all the tests ex­
pected by the potential acceptor; and the only system 
resource consumed by an unaccepted packet is the ca­
pacity of the channel during the short burst of the packet 
duration. Thus it is perfectly feasible in a packet 
broadcasting network to introduce a new form of packet 
(new in format, new in packet length, or even new in 



modulation technique) without disturbing any unit operat­
ing with the existing scheme. Only the units designed to 
look for the new packets will accept these packets and all 
other units will simply discard them. 

We plan to employ this property of packet switched 
channels to switch the polynomial used for error control in 
the present packet format. The new polynomial is 
available in a single IC chip and will allow the possibility 
of error correction as well as error detection in some cases. 
As remote units with new packet formats are put into 
operation we can continue to operate the existing remote 
units without modification as long as we have a single unit 
capable of accepting the new packet format at the 
MENEHUNE. As a side benefit of the introduction of this 
modification we also note that we have effectively doubled 
the number of user addresses in the system. An address in 
use with the old packet format may be reused with the 
new, since each is effectively invisible to the other. 

Another result of our ALOHANET experience, current 
technology, and recent theoretical work on ALOHA chan­
nels, is that a single-channel network configuration ap­
pears preferable to the two channels used in our present 
system. The major reason why this is so has to do with the 
broadcast property of the single-channel system, in which 
all nodes can (for a given geographic range) hear the trans­
mission of all other nodes in the net. 

A number of desirable properties result from this 
broadcast feature. First, each node can determine if the 
channel is free before transmitting, greatly reducing the 
number of packet conflicts-Klein rock and Tobagi15 have 
shown analytically that this can increase the throughput 
of a random access channel by a factor of three to five for 
reasonable user delays, depending on the propagation 
times between nodes. Second, the problem of sending ac­
knowledgments from user nodes is resolved in a simple 
manner. Third, system bandwidth can be optimally 
allocated to both directions of traffic by simple time-shar­
ing of the channel. Fourth, single channel repeaters re­
quire only half the radio hardware of two-channel 
repeaters, and, in fact, the radio transceivers at all nodes 
need be only half duplex. Finally, a single-channel system 
constitutes a fully-connected network allowing direct com­
munication between all nodes. A star configuration can 
still be imposed by protocol to direct all user traffic 
through a central node, but is no longer required. 

It is important to note that many of the above 
properties are made feasible by the availability of PCU's 
at a reasonable cost through microcomputer technology. 

ALOHA Packet Broadcasting 215 

This raises a related issue: the desirability of distributing 
presently centralized protocol functions such as flow con­
trol among the user nodes. Since we have just begun to 
gain experience with PCU's in a packet broadcast net­
work, we must leave this as an open question. 

REFERENCES 

1. Roberts, L. G. and B. Wessler, "The ARPA Computer Network," in 
Computer Communication Networks edited by Abramson and Kuo, 
Prentice-Hall, 1973. 

2. Kahn, R. E., "The Organization of Computer Resources into a 
Packet Radio Network," in this issue, AFIPS Conference Proceed­
ings, Volume 44. 

3. Abramson, N., "Packet Switching with Satellites," AFIPS 
Conference Proceedings, Volume 42, 1973, pp. 695-702. 

4. Binder, R., W. S. Lai and M. Wilson, The ALOHANET 
MENEHUNE- Version II, ALOHA SYSTEM Technical Report 
B74-6, University of Hawaii, September 1974. 

5. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther and D. C. 
Walden, "The Interface Message Processor for the ARPA Computer 
Network," AFIPS Conference Proceedings, Volume 36, 1970, pp. 
543-567. 

6. Ornstein, S. M., F. E. Heart, W. R. Crowther, H. K. Rising, S. B. 
Russell and A. Michel, "The Terminal IMP for the ARPA Computer 
Network," AFIPS Conference Proceedings, Volume 40, 1972,· pp. 
243-254. 

7. Jackson, P. E. and C. D. Stubbs, "A Study of Multi-Access Com­
puter Communications," AFIPS Conference Proceedings, Volume 
34, 1969, pp. 491-504. 

8. Abramson, N., "The ALOHA System," in Computer-Communication 
Networks edited by Abramson and Kuo, Prentice-Hall, 1973. 

9. Fralick, S. C., D. H. Brandin, F. F. Kuo and C. Harrison, "Digital 
Terminals for Packet Broadcasting," in this issue, AFIPS 
Conference Proceedings, Volume 44. 

10. Metcalfe, R. M., Packet Communication, Project MAC Technical 
Report, MAC TR-114, MIT, July 1973. 

11. Lam, S. S., Packet Switching in a Multi-Access Broadcast Channel 
with Application to Satellite Communication in a Computer Net­
work, UCLA-ENG-7429 Report, University of California at Los 
Angeles, Computer Science Department, April 1974. 

12. Davidson, J., An Echoing Strategy for Satellite Links, NIC Docu­
ment 10599, (RFC 357), Stanford Research Institute, June 1972. 

13. Frank, H., R. M. Van Slyke and I. Gitman, "Packet Radio Network 
Design-System Considerations," in this issue, AFIPS Conference 
Proceedings, Volume 44. 

14. Okumura, Y., E. Ohmori, T. Kawano and K. Fukuda, "Field 
Strength and its Variability in UHF and VHF Land-Mobile Radio 
Service," Review of the Electrical Communication Laboratory, Vol. 
16, No. 9-10, September-October 1968. 

15. Kleinrock, L. and F. Tobagi, "Packet Switching in Radio Channels: 
Carrier Sense Multiple-Access Modes and their Throughput Delay 
Characteristics," to be published in IEEE Transactions on Com­
munications. 





Packet radio system-Network 
considerations· 

by HOWARD FRANK, ISRAEL GITMAN and RICHARD VAN SLYKE 
Network Analysis Corporation 
Glen Cove, New York 

INTRODUCTION AND NETWORK OVERVIEW 

The Packet Radio Systeml considered as a network is char­
acterized by devices, terminals, repeaters and stations, 
linked together by broadcast radio channels. 

The main features which distinguish the Packet Radio 
System from a point-to-point packet switching system (such 
as the ARPANET) are: (i) devices in the system transmit 
packets by using a random access scheme, and (ii) devices 
broadcast so that packets can be transmitted to several de­
vices simultaneously, and/or several packets can be simul­
taneously received by a receiver because of independent 
transmissions of several devices. These features have a major 
impact on practically every aspect of network considerations. 

There are three basic functional components of the Packet 
Radio System: the Packet Radio Terminal, the Packet Radio 
Station, and the Packet Radio Repeater. (See Figure 1) 
Packet Radio Terminals may include diverse devices such as 
hand held mobile terminals, TTY-like and CRT terminals, 
unattended sensors, computers (micro, mini, and maxi), 
display printers, and position location devices. 

In some applications the Packet Radio Station will be the 
interface component between the broadcast system and a 
point-to-point network. As such it will have broadcast chan­
nels into the Packet Radio System and link channels into 
the point-to-point network. In addition, it will perform ac­
counting, buffering, directory, and routing functions for the 
overall system. 

The basic function of the Packet Radio Repeater is to 
provide a network for connection of terminals to one or more 
stations, thereby increasing the size of the area that can be 
served by a station and providing paths to alternate stations 
to insure reliable communications. A more detailed discus­
sion of the network hardware functions can be found in the 
next section. 

The devices (repeaters, stations, and terminals) of the 
Packet Radio System communicate in a broadcast mode us­
ing random access techniques.2 The configuration of the 
broadcast channel is discussed later-where it is shown that 
unless the traffic rates from station to terminals as compared 
to the traffic rates from terminals to station are known quite 

* This work was supported by the Advanced Research Projects Agency 
of the Department of Defense under Contract Number DARe 
15-7a-C0135. 

217 

accurately, it is better to share the channel between the two 
directions rather than divide the channel into two channels: 
one for traffic to the station, and another for traffic away 
from the station. Means for alleviating the large concentra­
tion of traffic near the station offers large potential benefits. 
Two approaches to achieve these benefits are: ( 1) adding 
directional antennas on the repeaters next to the station for 
the repeater station link to minimize interference, and (2) 
using multiple directional antennas at the station to com­
municate with adjacent repeaters. These approaches are also 
evaluated in the fourth section of this paper. 

The number of stations within the network is determined 
by too amount of traffic to be handled. Thus, to first approxi­
mation, we can think of partitioning. the area to be covered 
into regions of equal traffic and allocate one station for each 
region. In regions of low traffic density, the station may not 
be in "line of sight" of all the tenninals in the region; hence 
repeaters are used to relay the traffic to the station. Thus, 
repeaters correspond to a geographical partition, of the area 
into sections small enough so that each terminal can com­
municate with a repeater and be relayed by it to a station. 
Network topology, the location of devices (terminals, re­
peaters, and stations) and the interconnection between them 
on the broadcast channel, is discussed in more detail later. 

The principal goals of communication in the Packet Radio 
Network are to send packets through the network (1) effi­
ciently and (2) correctly. The first objective is intimately 
related to the routing procedures used and the second to the 
acknowledgment mechanisms used. These two topics are 
covered in a later section. Of particular interest is a hier­
archical directed routing algorithm. 

The broadcast transmission equipment, common to re­
peaters stations and terminals in the experimental system, 
has the capability of sending at two data rates and with 
adaptive (variable) transmission power. In the last part of 
this paper; the studi€s leading to the incorp~ration of these 
features in the units are discussed. 

In areas of high traffic, such as urban areas, repeaters may 
not be needed: in fact, the problem may be that a station 
can communicate with more terminals than it can handle. 
Broadcast of data in urban areas is also complicated by 
multipath interference.3 The rapidly expanding Cable Tele­
vision (CATV) Systems within urban areas offer an attrac­
tive alternative to over-the-air broadcasting, except for 
mobile users who must use broadcast techniques. The same 



218 National Computer Conference, 1975 

T - Packet Radio Terminal 

R - Packet Radio Repeater 

S - Packet Radio Station 

SW - Packet Switch in Point-to-Point 
Network 

SGS - Satellite Ground Station 

G - Gateway Functions 

Point-to-Point Terrestrial Channel 

I\!\I\ Satellite Channel 

/\I Broadcast Channel 

\ 

\ 
\ , 

\ 
\ 

\ 
\ , 

'\ 

s 
\ 

'-----' \ 

\ 
\ 

\ 

\ 
\ 

PACKET RADIO NETWORK ¢::: 90THER NETWORKS 

Figure 1-Packet radio network 

general Packet Radio concept can be applied to Packet Com­
munication on CATV systems. This approach is discussed 
in Reference 4. 

The techniques used to ,investigate the problems discussed 
in this paper were analytic modeling and simulation, applied 
to specific system configurations. The design decisions and 
performance characteristics projected using these techniques 
will be evaluated by a sequence of studies being planned for 
the experimental packet radio system. 

NETWORK DEVICES 

In this section we discuss the devices' functional capabili­
ties which are necessary for communication in the Packet 
Radio network:5- 8 Functional requirements of elements not 
directly related to communication are not discussed. 

Terminals: There are two categories of terminals; (i) 
those which usually await a response to a message they trans­
mit (e.g., manually held radio terminals, small computers), 
and (ii) those which do not require such responses or ac­
knowledgments (e.g., unattended sensors, position indica-· 
tors). Some terminals in the former category will usually 
send and/or receive several packets in one message. 

Necessary or desirable communication capabilities of a 
terminal: 

(1) Ability to identify packets addressed to it. 
(2) Calculation of packet checksum. 

(3) Capabilities related to packet routing such as; re­
transmitting packets when acknowledgments are not 
received, recording and using a specific ID of a re­
peater and/or station to be used for other packets of 
the same message, counting the number of retrans­
missions. 

(4) Capabilities related to the response to previously 
determined types of error. 

(5) For unattended terminals, capabilities by which a 
centralized control or a station will be able to identify 
whether the terminal is operative or dead. 

Repeaters: Requirements for repeaters include: 

(1) Calculating packet checksum. 
(2) Packet storage and retransmission. 

,(3) Capabilities by which a station can determine whether 
a particular repeater (or any repeater in a particular 
area) is operative or dead. 

( 4) Capabilities (1), (3), and (4) of terminals. 
(5) Capabilities, dependent on the routing strategy, for 

calculating the most efficient next repeater on a trans­
mission path to a station or to a terminal. 

Stations: Among the stations' requirements are: 

(1) A dynamic directory of active terminals and repeaters 
in its region. 

(2) Gateway functions necessary to transfer packets be­
tween the Packet Radio System and another network. 



(3) Storage buffers for packets received from terminals 
and for packets to be transmitted to terminals. 

(4) Storage for character position information for active 
terminals which do not have this capability. 

(5) Accounting capabilities. 
(6) Capabilities related to routing flow control, and net­

work management. 

NETWORK TOPOLOGY 

General considerations 

Many factors affect the location or repeaters and stations. 
Simple consideration of repeaters as area covers and sta­
tions as traffic covers neglects interactions between the two 
types of devices. 

Factors affecting the location of repeaters and stations in 
addition to range and traffic are: 

(i) Logistics: Some locations for repeaters may be prefer­
able to others because of greater accessibility or more readily 
available power, eliminating the need for batteries (e.g., on 
telephone, poles or near power lines) . 

(ii) Reliability and redundancy: For many reasons, re­
dundant repeaters and stations will be required. Since re­
peaters in remote a.reas will operate on batteries, it will be 
necessary to have sufficient redundancy so they need not be 
replaced immediately. Stations and repeaters will have inter­
mittent and catastrophic failures for which backup is re­
quired. Extra repeaters are needed when line of sight to the 
primary repeater is locally blocked. 

The devices (repeaters, stations, and terminals) of the 
Packet Radio System communicate in a broadcast mode 
using random access techniques which are suitable for termi­
nals that: (i) are mobile, so that a broadcasting mode is 
necessary, (ii) are located in remote or hostile locati~ns 
where hardwire connections are infeasible; (iii) have a hIgh 
ratio of peak bandwidth to average bandwidth requirements 
(because random access methods allow the dynaIl).ic alloca­
tion of channel capacity without centralized control); or 
(iv) require little communication bandwidth so that hard­
wire connections are uneconomical. 

In order to realize these potential benefits of random ac­
cess techniques, effective traffic control procedures are re­
quired. The discipline chosen and its efficiency will probably 
be the single most important factor affecting system per­
formance. This will prevent messages from circulating end­
lessly among the same group of repeaters, and from propa­
gating to a geometrically increasing number of repeaters in a 
large network. 

Device location 

To provide line-of-sight coverage of an area where mobile 
terminals or fixed terminals are transmitting by radio from 
unspecified locations we must locate repeaters so that any 

Packet Radio System 219 

such terminal will be in line-of-sight of repeaters and that 
there be reliable connections between every pair of terminals 
(and repeaters). To make this possible there must be several 
repeaters visible to each terminal. We would like to minimize 
the installation cost and maintenance cost of the repeaters 
subject to a constraip.t on the reliability of service. 

In general, determining if line-of-sight micro-wave trans­
mission between two points is possible, involves taking into 
account many factors including wave-length (Fresnel zones), 
weather conditions (effective earth radius), anter..na design, 
height, topography, etc. Nevertheless there are methods for 
making such calculations;9 we describe methods for using 
the results of the determinations to choose good locations for 
the reoeaters. 

The principal and immediate interest is in an appropriate 
mathematical model of the situation and some indications 
on how to solve the problem. The first problem is the proper 
choice of reliability measure or grade of service. We assume 
that the radio network is for local distribution-collection of 
terminal traffic with rates small compared to the channel 
capacity so that throughput capacity is not a constraint. 
That is, if any path through the network exists for a given 
nair of terminals we assume there is sufficient capacity for 
:lraffic between them. Possible measure of network reliability 
that have proven useful in the analysis of communication 
networks are given in Reference 10. However, for network 
8ynthesis as distinguished from analysis these approaches 
appear too difficult both from computational and data col­
lection point of view. This suggests the "deterministic" re­
quirement that there exist k node disjoint paths between 
every terminal pair. This guarantees that at least k repeaters 
or line of sight links must fail before any terminal pair is 
disconnected. 

One might demand only that there be k node disjoint 
paths between every pair of terminals instead of between 
each terminal-repeater pair, but we are assuming that com­
munication always takes place through a "station" which 
could be any of the repeaters. The analysis of the terminal 
to terminal model is similar in any case. 

The constraint can be broken into two parts: 

1. the repeaters must be located so that at least k of them 
are in line of sight with each terminal, and 

2. between each pair of repeaters there must be k node 
disjoint paths. 

Because the repeaters will have substantially greater 
range than terminals, the first aspect of the constraint will 
ordinarily be dominating. This problem is closely related to 
the classical set covering problem. Extensive research has 
been and is being done on this problem but there is good 
evidence empiricalll and theoreticaP2 that the problem is 
intrinsically difficult. 

Given the limited success to be expected from exact algo­
rithms in solving large scale problems, we have been led to 
consider heuristic methods to find good solutions to the 
covering of terminals by repeaters problem, which is typically 
large scale. It is intuitively appealing to consider a terminal 
as particularly critical if it is adjacent to few repeaters. (In 



220 National Computer Conference, 1975 

5 ft. terminal 

Fi~re 2 

I 

the extreme cases, if a terminal has fewer than k adjacent 
potential repeater locations, the problem is infeasible and if 
it has exactly k adjacent repeaters, all of them must be chosen 
for any feasible solution.) Similarly, a repeater is desirable if it 
is adjacent to a large number of terminals, especially if the 
terminals are highly critical. The heuristic algorithms sys­
temize these intuitive notions in the search of a "good" 
solution. 

The size of test problems solved varies from problems with 
as few as 5 repeaters and 5 terminals to problems with as 
many as 400 potential repeater locations and 400 terminals. 
Roughly speaking, the computation time is directly pro­
portional to the size of the incidence matrix and the cover 
multiple required. The computer used is a PDP-10 (time 
sharing). The larger problems (400 repeaters, 400 terminals, 
2-cover) were solved in 70 sec. or less. The time, as may be 
expected, is dependent on the density of the repeater-terminal 
incidence matrix. Thus, the maximum time recorded arose 
from terminal-repeater configurations where each repeater 
covers many repeaters. The running time is of the order of 
1 T 1 X 1 R 12 where 1 T 1 and I R 1 are the number of terminals 
and repeater locations respectively. 

Another test problem used to compare various techniques 
to solve the k-covering problem was generated by using real 
data obtained from a topographical map for the region of 
Palo Alto. This part of the U.S. was selected because it con­
tained many interesting topographical attributes: a flat ter­
rain (salt flats, the region surrounding the Bayshore 
Freeway), an urban center (Palo Alto and neighboring 
communities) on slightly sloping terrain and finally a hilly 
region (with valleys, small plateaus, etc.). Moreover, a re­
duced scale experiment of a packet radio network is planned 
by ARPA for late 1975, in the Palo Alto area. 

LOS Computation: To determine if a terminal at location 
j can be seen from a repeater at location k, we proceeded as 
follows. It was assumed, that if no particular high construc­
tion (building, water tower, etc.) was available to install the 
repeater's antenna, it would be installed at 30 feet above the 
ground level (making use of a tree, telephone pole, etc.). The 
terminals were assumed to be 5 feet above ground level. The 
points were said to be in LOS if the first Fresnel Zone associ­
ated with transmission between these two points was free of 
any obstacle. To compute the Fresnel Zones, we assumed that 
transmission would occur at 1500 MHz corresponding to a 
wave length A = .2m (7.87 in.). 

The problem was solved by the heuristic algorithm and by 
OPHELIE-a mixed-integer programming system for the 
CDC-6600 computer. (A rapid analysis of the terminal­
repeater adjacency matrix shows that none of the optimal 

solutions would have been generated if one had used the 
more simplistic approach of selecting the repeater with high­
est adjacency degree. Such a selection yields quite different 
answers requiring a larger number of repeaters.) 

The optimal solution requires the installation of 14 re­
peaters (different runs with the heuristic showed that there 
were in fact a number of optimal solutions with 14 repeaters). 
The total running time for OPHELIE was approximately 
12 CPU sec. excluding set up time. The heuristic required 
3 sec. to produce a solution. The relative success of the 
OPHELIE code must, at least in part, be attributed to the 
fact that the linear programming solution (which is used to 
initiate the branch-and-bound part of the code) is actually 
the optimal solution. 

Network reconfiguration 

From the general topological considerations, it is apparent 
that the routing and flow control algorithms will be the main 
factor which will determine the efficiency of the Packet 
Radio System. However, there are two contradictory require­
ments; reliability considerations imply that every repeater 
should be able to transmit to several repeaters; on the other 
hand, efficiency considerations suggest that one repeater 
should receive and relay the packet, preferably the repeater 
along the shortest path to the destination. A sensible solution 
is to assign to the set of repeaters a structure which will 
transform the broadcast network to a point-to-point net­
work for routing purposes. The problem is that the connec­
tivity of devices is changing, and therefore, it is necessary to 
develop algorithms for dynamically changing the network 
structure (reconfiguration) under certain conditions. Ex­
amples of a changing topology are when the network is 
mobile (e.g., a Packet Radio System for a fleet of ships), when 
a repeater's range charges (e.g., from battery drainage) or 
when repeaters fail. A different type of network change occurs 
when terminals enter or leave the areas served by a given 
repeater or station. 

In Reference 13, we propose algorithms for dynamically 
changing the network configuration of repeaters. It is as­
sumed that every repeater and station has a fixed ID, and 
that there is a simple routing algorithm which may be in­
efficient, however, which is independent of any network 
structure. The process contains three steps; 

STEP I-Mapping the network connectivity. This is ob­
tained by a process in which stations transmit packets to 
repeaters,. requesting each to respond with a trace packet 
into which every repeater along the path adds its fixed ID. 

STEP II-Determining network structure. The connectivity 
information obtained above is used to obtain a network 
structure which has several properties: for example, it en­
ables every packet to be r~mted along the shortest path 
(minimum number of hops); it determines the repeaters 
which are not needed for relaying packets and which should 
be temporarily disabled. 



Packet Radio System 221 

STEP III-In this step, the stations transmit the structure ~ 
information to repeaters and tests each path in both directions. 

CHANNEL CONFIGURATION 

Split versus comnwn channel 

Apart from the suitability for mobile terminals, random 
access schemes offer an attractive alternative to fixed assign­
ment of channel capacity (FDM, TDMA) for applications 
characterized by traffic of a bursty nature. (That is, when 
the traffic requirements of users can be characterized as 
having a high peak to average data rate.) This is because at 
any given time, the· capacity assigned to non-active users is 
not utilized; whereas the active users experience relatively 
long delays due to the low data rate available to each. . 

We pursue this same argument one step further and In­

vestigate for the packet radio system whether we should 
have two channels, one for transmission from terminals to 
stations and the second in the reverse direction; or alterna­
tively whether we should dynamically share the total capac­
ity (common channel). This problem was investigated for a 
single hop network in which n stations communicate with an 
infinite number of terminals using the slotted ALOHA ran­
dom access scheme.14 In the model it is assumed that all 
stations and terminals are within an effective transmission 
range of each other, that the processes of packet originations 
and packet originations plus retransmissions are Poisson, and 
that there is a ratio a of the rate of packets which originate 
from stations to the rate which originate from terminals. 

Figure 3 shows the comparison of the maximum effective 
utilization of the two configurations as a function of a with 
the number of stations, n, as a parameter. The subscripts s 
and c denote the split (into equal parts) and common con­
figurations, respectively. The results show that for any given 
channel split, there is an interval for a, within which the 
split channel configuration is superior to the common chan­
nel configuration. Outside this interval, the common channel 

N 

c:i 
------ S.(n:3) 5: (n=-J 

Figure 3-Maximum t'.tili?Jation of split and common 
channel configurations 

~ 

=* 

.. 
li 
~ 
~ . 

d 

II) 

d 

=* 
d 

"" d 

0 

ciio 0.1 0.2 0.3 O.Ii s?9\a 0.6 0.7 0.8 0.9 l.~ 

THROUGHPUT 

Figure 4-Delay vs; throughput, a = 10 

configuration is superior. The above interval decreases when 
the number of stations increases and reduces to a single 
point when n tends to infinity. 

The conclusion from these results is that if the ratio a is 
not known or if it varies, it is preferable to share dynamically 
the total capacity. Figure 4 shows an example of the average 
delay of a packet in the system (weighted average of packets 
in the two directions) as a function of the total throughput, 
for the case a = 10. The difference in the packet transmission 
time (slot) due to the difference in the data rates of the two 
configurations has been taken into account. In this case, the 
common channel performance is uniformly better than the 
performance of the split channel. Moreover, it can be shown 
that this superiority holds in almost all cases. ~4 

Directional antennas and multiple transmitters 

Another problem related to channel configuration is the 
possible use of directional antennas by repeaters and/or 
stations and the advantage (if any) of using multiple direc­
tional transmitters. This problem was investigated for a 
2-hop and single station packet-radio network.1s The investi­
gation was done assuming separate channels from station to 
terminals and from terminals to station, and for the slotted 
ALOHA random access scheme. 

Translllission frOID terlllinals to station 

Consider a 2-Hop system with m repeaters and a single 
station as shown in Figure 5. The traffic originates from 
terminals and is destined to the station. A terminal transmits 



222 National Computer Conference, 1975 

. . 

Figure 5-Transmission from terminals to station 

its packets to a repeater (hop 1), which in turn transmits the 
packets to the station (hop 2). The transmission protocol is 
as follows: when a packet becomes ready for transmission, it 
is transmitted into the next slot; the device then times out 
waiting for an ack, and if one is not received the packet is 
retransmitted at a future random slot. 

We use the following assumptions. The combined process 
of packet originations and packet retransmissions, from each 
set of terminal~ to a repeater, is Poisson. The probabilities 
of transmission by a repeater into different slots are inde­
pendent. The probabilities of transmission by two or more 
repeaters into a randomly chosen slot are mutually inde­
pendent; and the probabilities of transmission into a random 
slot by a terminal and by a repeater are independent. Further­
more, we assume that the terminal transmission range is 
short, so that it can reach only one repeater. On the other 
hand, the transmission from a repeater to the station can 
interfere with the transmission of terminals to 1-1 other re­
peaters; 1::; I ::; rn. 

The effect of directional antennas at repeaters is that the 
transmission from repeaters to the station is directed toward 
the station and does not interfere with the transmission of 
terminals to other repeaters. Thus, it is the special case with 

.5 

.. 

.1 

2 - HOP SLOTTED ALOHA NETIIORX 

TRANSMISSION FROM TERMINALS TO STATION 

INa INTERFERENCE (I.1) 

III - Nl1HURS OF REPEATERS 

Figure 6-Network throughput vs. number of repeaters; Directional 
and non-directional antennas· 

1= 1. We notice, however, that directional antennas do not 
increase the capacity of the hop from repeaters to station be­
cause all antennas are directed toward the same physical 
location where the station is placed and where the conflicts 
may occur. 

Figure 6 shows the capacity of the system as a function of 
the number of repeaters, rn, for I =rn and 1=1, which is 
equivalent to omnidirectional and directional antennas re­
spectively. One can see that there is a significant gain in 
capacity when using directional antennas only whenrn = 2, 
and a small gain for rn = 3; for rn ~ 4 the capacity of the sys­
tem does not increase. 

As far as the number of repeaters is concerned, one can see 
that 2 or 3 repeaters would be a good design; any additional 
repeaters that may be added because of other considerations 
(such as area coverage) will result in a reduction in the sys­
tem capacity. Another problem investigated is the critical 
hop. That is, when the capacity of the system is reached, is 
it due to the saturation of the hop from terminals to re­
peaters or of the hop from repeaters to the station? The re­
sults demonstrate that when the number of repeaters, rn, is 
small the critical hop is from terminals to repeaters, whereas 
when rn is large the critical hop is from repeaters to the 
station. The exact number at which the change occurs de­
pends on the interference parameter I. 

Transmission from station to terminals 

In this section, we consider the second channel which is 
used for transmission from the station to terminals via re­
peaters. It is assumed that the effective transmission range of 
the station is such that it interferes with the transmission 
from repeaters to terminals. However, we assume that 
terminals are not designed to directly receive from the sta­
tion. We use the same assumptions as in the previous section. 
A transmission from the station to Rican be interfered with 

,.2 

2-HOP SLOTTED ALOHA NE'l'WORK 

TRANSMISSION FROM STATION TO TERMINALS 

_ STATION USES DIRECTIONAL I\N'l'ENNA 

_____ STATION USES OMNI-DlRECTIONAL ANTENNA 

----~-------------------------
"'..­,.",'" 

-------------------------------- -

• - NUMBER OF REPEATERS 

Figure 7-System capacity vs. number of repeaters for directional and 
non-directional antennas at the station and different interference 
parameters 



by transmissions from the I repeaters in the interfering set 
of Ri when these repeaters transmit to their terminals (T's). 
A transmission from Ri to T can be interfered with by a trans­
mission from the station to any repeater or by the I -1, 
excluding R i , repeaters in the interfering set of R i • For con­
sistency with the interference model of the previous section 
we assume the same energy-per-bit-to-noise-density for de­
tection with equal error rates, by the repeater and by the 
terminal and that the repeater uses a higher transmitter 
power than terminals. 

Figure 7 shows the capacity of the system as a function of 
m for 1= 1 and 1= m, both for an omnidirectional and direc­
tional antenna from the station to repeaters. Further investi­
gations for this case were performed and the conclusions 
follow. 

a. The interference of the station with the transmission 
of repeaters to terminals significantly reduces the 
system capacity. Thus, if possible, it is important to 
enable terminals to receive such transmissions directly, 
without retransmission by the repeater. 

b. The system capacity is increased substantially when 
the interference level between repeaters is decreased. 
Note that this is not the case when transmitting to 
the station. Consequently, it is important to reduce 
the interference factor by a mechanism such as adap­
tive power. 

c. A directional antenna at the station significantly in­
creases the system capacity when the interference 
level between repeaters is low to moderate. This is 
not the case when the interference level is high, since 
the throughput on the hop from repeaters to termi­
nals is limited due to this interference. 

d. When the station has directional antennas, then 
multiple transmitters and antennas may further in­
crease, significantly, system capacity. In this case, one 
can obtain a throughput greater than the capacity of 
a single channel. 

ROUTING AND ACKNOWLEDGMENT 
CONSIDERATIONS 

Routing considerations 

There are two key objectives in developing a routing pro­
cedure for the packet radio system. First, we must assure, 
with high probability, that a message launched into the net­
work from an arbitrary point will reach its destination. 
Second, we must guarantee that a large number of messages 
will be able to be transmitted through the network with a 
relatively small time delay. The first goal may be thought of 
as a connectivity or reliability issue, while the second is an 
efficiency consideration. 

Neither of the above objectives can be accomplished in a 
network where the repeaters are unintelligent transponders. 
In such a network: (1) a single packet could saturate the 
capacity of the entire net'vork if arbitrarily repeated; (2) 
packets could propagate indefinitely within the network; and 

Packet"Radio System 223 

(3) copies of the same packet could reach many different 
stations. Combinatorial analyses of message flow within these 
types of networks have shown the need for repeaters 
with sufficient computational capability to support more 
sophisticated routing and flow control procedures.16 

In the next two subsections we describe two routing tech­
niques. The first, "Undirected Routing," is useful for initial­
izing the network, and for performing routing without the 
management or direction of a station. The second, "Directed 
Routing," requires the participation of the station but is 
much more efficient in two ways: (1) packets generally follow 
a single, shortest route to a station; and (2) paths are de­
scribed by a hierarchical label which reduces the length of 
the necessary packet header. 

Undirected routing 

A rudimentary, but workable, routing technique to achieve 
connectivity at low traffic levels can be simply constructed 
by using a maximum hand over numberI7 and saving unique 
identifiers of packets at each repeater for a specified period 
of time. The handover number is used to guarantee that any 
packet cannot be indefinitely propagated in the net. Each 
time a packet is transmitted in the net, a handover number 
in the header is incremented by one. When the handover 
number reaches an assigned maximum, the packet is no 
longer repeated and that copy of the packet is dropped from 
the net. Thus, the packet is "aged" each time it is repeated 
until it reaches its destination or is dropped because of ex­
cessive age. 

If the maximum hand over number is set large, extensive 
artificial traffic may be generated in areas where there is a 
high density of repeaters. On the other hand, if it is set small, 
packets from remote areas may never arrive at stations. This 
problem can be resolved as follows : We assume that every 
repeater can calculate its approximate distance in number of 
hops to stations by observing response packets. The first re­
peater which received the packet from a terminal sets the 
maximum handover number based on its calculated distance 
from the station. The number is then decremented by one 
each time it is relayed through any other repeater. The 
packet is dropped when the number reduces to zero. When a 
station transmits a packet, it will set the maximum handover 
number by "knowing" the approximate radius in "repeaters" 
in its region. 

Even if a packet is dropped after a-large number of trans­
missions, local controls are needed to prevent packets from 
being successively "bounced" between two or a small number 
of repeaters which repeat everything they correctly receive. 
(Such a phenomenon is called "cycling" or "looping.") A 
simple mechanism to prevent this occurrence is for repeaters 
to store for a fixed period of time entire packets, headers, or 
even a field within the header that uniquely identifies a 
packet. A repeater would then compare the identifier of any 
received packet against the identifiers in storage at the re­
peater. If a match occurred, the associated packet would not 

"be repeated. 
The time allotted for storage of any packet identifier would 



224 National Computer Conference, 1975 

Level 1 

Level 2 

Level 3 

Figure 8 

depend on the amount of available storage at a repeater and 
the number of bits required to uniquely identify the packet. 
For example, more than 4K packets could be uniquely 
identified with 12 bit words. Thus, 4K of storage could con­
tain identifiers for more than 300 packets. With a 500 Kbps 
repeater to repeater common channel for broadcast and re­
ceive and 1,000 bit packets, this would be sufficient storage 
for over 1.5 seconds of transmission if the channel were used 
at full rate. Assuming a single hop would require about 20 
milliseconds of transmission and retransmission time, a maxi­
mum hop number of 20 would guarantee that any packet 
would be dropped from the system because of an excessive 
number of retransmissions long before it could return to a 
previously used repeater not containing the packet identifier. 

The combination of loop prevention and packet aging 
with otherwise indiscriminate repetition of packets by re­
peaters will enable a packet to travel, on every available 
path, a maximum distance away from its origin equal to its 
original hand over number. Thus, if the maximum handover 
number is larger than the minimum number of hops between 
the terminal and the nearest station, a packet accepted into 
the net should reach its destination. Unfortunately, with this 
scheme, copies of the packet will also reach many other 
points, with each repetition occupying valuable channel ca­
pacity. However, if those packets for which adequate capac­
ity is not available are prevented from entering the net, the 
network will appear highly reliable to accepted packets. 

. T~e above routing scheme is an undirected, completely 
dIstrIbuted procedure. Each repeater is in total control of 
packets sent to it, and the stations play no active part in the 
system's routing decisions. (They must still play a role in 
flow control.) In the above procedure, no advantage is taken 
of the fact that most traffic is destined for a station either 

. ' as a termmus or as an intermediate point for communication 
with elements of a different network. Also, the superior speed 
and memory space of the station is ignored. For efficiency, 
one is therefore led to investigate directed (hierarchical) 
routing procedures. 

Directed routing 

A directed routing procedure utilizes the stations to peri­
odically structure the network for efficient flow paths. Sta-

tions periodically transmit routing packets called labels to 
repeaters to form, functionally, a hierarchical point-to-point 
network, as shown in Figure 8. Each label includes the fol­
lowi~g information: (i) a specific address of the repeater for 
routmg purposes, (ii) the minimum number of hops to the 
nearest station, and (iii) the specific addresses of all repeaters 
0\1. a shortest path to the station. In particular, the label con­
tains the address of the repeater to which a packet should 
preferably be transmitted when destined to the station. 

When relaying a packet to its destination, the repeater 
addresses the packet to the next repeater along the pre­
ferred path. Only this addressed repeater will repeat the 
packet and only when this mechanism fails will other re­
peaters relay the message. 

F?r simplicity, we describe routing for the case of a single 
st~tlOn network. A label of repeater R i of hierarchy level j 
WIll be denoted by L ij ; i, j> 1. The station will have the 
label L11• LO ij will denote the label of the repeater which is 
the "nearest available" to the communicating terminal. 

A label is composed of H subfields, where H is the maxi­
mum number of hierarchy levels (H -1 is the maximum 
number of hops on the shortest path between any repeater 
and the station). Every subfield has three possible entries 
blank (BLK) , a serial number (SER) , or ALL. Lij has j 
SER entries and (H - j) BLK's as shown in Figure 9. 

We say that b ij "homes" on L kp, h(Lij) =Lkp, if p=j-1 
and the first j -1 subfields of both are identical. If two re­
peaters at level j home on the same repeater, their labels will 
differ only in the entry to subfield j. 

As ah example, if we use 3 bits per subfield the labels of 
the station and the repeaters of the network sh~wn in Figure 
8 are as follows: 

Subfield 1 Subfield 2 Subfield 3 

L11 001 000 000 
L12 001 001 000 
L22 001 010 000 
L33 001 001 001 
L43 001 001 010 
L53 001 010 001 
L63 001 010 010 
L73 001 010 o 1 1 

In this example, a subfield in which all bits are "0" is con­
sidered "blank." Note that all entries in Subfield 1 are the 
same since all repeaters home (eventually) on the same 
station. 

The packet header, shown in Figure 10 includes the follow­
ing routing information. L kn is the label of the repeater to 

1 2 j-l 

r~ER SER \. .1 'SER SER 

V 
serial numbers 

Figure 9 

1\ 

j+l H 

BLK I. 
v,.----/ 

(H-j) blanks 



which the packet is currently addressed. The complete packet 
will always be transmitted to a specific device; other devices 
which may receive the packet will drop it. The shortest path 
from a terminal to the station consists of LO iii h(LO ij), 
h(h(LO ij)), up to L 11, in the given order, and in the reverse 
order when routing from station to terminal. When a specific 
repeater along the shortest path is not known (by the termi­
nal) or not available, then the terminal or repeater (which 
has the packet) will transmit only the header part of the 
packet, trying to identify a specific repeater. In that case, 
the label L kn will include some entries ALL. To see how the 
proposed routing technique would operate, we trace the se­
quence of steps performed when a terminal attempts to 
transmit a packet to the station. 

When a previously silent terminal begins to communicate, 
it first identifies a repeater or a station in its area. It trans­
mits only the header part of the packet with all entries in 
L kn set to ALL. The header is addressed to all repeaters and 
stations that can hear the terminal. A device which correctly 
receives this header substitutes its label in the space L kn and 
repeats the header. This particular L kn is also LO kn and will 
be used by the terminal to transmit all packets during this 
period of communication. If a terminal is stationary, it can 
store this label for future transmissions. LO kn begins to trans­
mit the complete packet along the shortest path to the 
station. 

Suppose that Lij along the shortest path is not successful 
in transmitting the packet to h(Lij). Then Lij begins the 
soarch stage of trying to identify another repeater. In the 
first step, it tries to identify a repeater which is in level 
p ~j -1. This is done by using the label shown in Figure 11. 
The header is addressed to all repeaters in levels 2 to j -1, 
which eventually home on L 11• If this step is not successful, 
in the second (last) step, Lij tries to identify any available 
repeater by using a label in which the first entry is SER and 
all other entries are ALL. When a specific repeater is identi­
fied and receives the packet, it transmits the packet on the 
shortest path from its location. 

Note that if repeaters have sufficient storage, they can 
save alternative labels and thus reduce the necessity of 
searching for a specific repeater. Alternative solutions in 
which repeaters have multiple labels are also possible, 

A cknowledgment considerations 

Acknowledgment procedures are necessary both as a 
guarantee that packets are not lost within the net and as a 

TO LABEL OF 
NEAREST 
REPEATER TO 
THE TERMINAL 

OTHER HEADERS AND 
PACKET INFORMATION 

Figure 10 

Packet Radio System 225 

1 2 3 j-l j j+l 

ISER ALL ALL I . I ALL I BLK I BLK I . . . I BLK I 
Figure 11 

flow control mechanism to prevent retransmissions of packets 
from entering the net. Two types of acknowledgments are 
common in packet oriented systems: 

1. Hop-by-Hop Acknowledgments (HBH Acks) are 
transmitted whenever a packet is received success­
fully by the next node on the transmission path. 

2. End-to-End Acknowledgments (ETE Acks) are 
transmitted whenever a packet correctly reaches its 
final destination within the network. 

In a point-to-point oriented network such as the AR­
P ANET, HBH Acks are used to transfer responsibility (and 
thus open buffer space) for the packet from the transmitting 
node to the receiving node. This Ack insures prompt re­
transmission should parity errors or relay IMP buffer con­
gestion occur. The ETE Ack serves as a flow regulator be­
tween source and destination and as a signal· to the sending 
node that the final destination node has correctly received 
the message. Thus, the message may be dropped from storage 
at its origin. 

Both types of Ack's serve to ensure message integrity and 
reliability. If there is a high probability of error free trans­
mission per hop and the nodes have sufficient storage, the 
Hop-by-Hop scheme is not needed for the above purpose. 
Without an HBH Ack scheme, one would retransmit the 
packet from its origin after a time out period expired. One 
introduces the HBH Ack to decrease the delay caused by 
retransmissions at the expense of added overhead for ac­
knowledgments. 

In the packet radio system, the overhead can be kept small 
by listening, whenever possible, for the next repetition of the 
packet on the common channel instead of generating a sepa­
rate acknowledgment packet. 

The value of an End-to-End acknowledgment is sufficiently 
great that it can be assumed present a priori. However, the 
additional use of a Hop-by-Hop acknowledgment is not as 
clear. Therefore, in this section, we examine the question of 
whether the ETE Ack is sufficient, or whether one needs a 
Hop-by-Hop (HBH) acknowledgment in addition. The 
problem is therefore whether a HBH Ack is superior to an 
ETE Ack with respect to throughput and delay, since the 
ETE Ack ensures message integrity. It is noted that the 
routing and flow control by devices in the network depend on 
the type of acknowledgment scheme used. 

We consider a simple case wher~ (n -1) repeaters separate 
the packet radio terminal from the destination station. As-

hop 2 t::\ 
---+ \:v -+ 

Figure 12 

8
hopn 

• •• --+ [~J 



226 National Computer Conference, 1975 

Figure l3-Connectivity' of repeaters and stations 

suming that the terminal is at a distance of "one hop" from 
the first repaater, one obtains the n-hop system shown in 
Figure 12. 

A simple model is used to evaluate the total average delay 
that a packet encounters in the n-hop system when using 
HBH and ETE acknowledgment schemes. When the ETE 
acknowledgment scheme is used, every repeater transmits 
the packet a single time. If the packet does not reach the 
station, retransmission is originated by the terminal. The 
ETE acknowledgment is sent from the station. In the HBH 
scheme, repeaters store and retransmit the packet until 
positively acknowledged from the next repeater stage. 

If, after a terminal (or a repeater in the HBH case) trans­
mits the packet, an acknowledgment does not arrive within 
a specified period of time, it retransmits the packet. The 
waiting period is composed of the time for the acknowledg­
ment to arrive' when no conflicts occur plus a random time 
for avoiding repeated conflicts. 

Two different schemes for ETE acknowledgment and one 
scheme for HBH acknowledgment have been studied. Curves 
for the total average delay as a function of the number of 
hops and the probability of successful transmission per hop 
were obtained. Two cases were considered: One in which the 
probability of success is constant along the path and another 
in which the probability of success decreases linearly as the 
packet approaches the station. This model is consistent with. 
Packet Radio Network, because all packets which originate 
from terminals are routed toward a station. Finally, chan­
nel utilizations are compared when using ALOHA18,19 random 
access modes of operation. 

The results show that the HBH scheme is superior in 
terms of delay and channel utilization. The difference in 
performance becomes significant when the number of hops 

increases or when the probability of successful transmission 
per hop is relatively low as is the case in the Packet Radio 
System. For example, in a five hop system, if the probability 
of success per hop is 0.7, then the total average delay is 12.5 
and 53 packet transmission times for the HBH and ETE 
acknowledgment schemes, respectively. 

RANGE, POWER, DATA RATE AND CAPACITY 
CONSIDERATIONS 

Transmission range and network interference 

A variety of situations are possible concerning the range 
and interference patterns of devices. For example, with 
identical r.f. elements and similar antenna placements, Re­
peater to Repeater range is the same as Terminal to Repeater 
range. This need not always be the case since repeaters can 
often have higher antennas than terminals, (especially hand 
held terminals). Thus, if repeaters are allocated for area 
coverage of terminals, the repeater range will be higher than 
terminal range and higher network connectivity or device 
interference will result. 

The problem which then arises is to determine the impact 
of this interference on system performance. Alternatively, 
one may seek to reduce repeater transmission power when 
transmitting in the repeater-station network. As an indica­
tion of the tradeoffs that occur, two systems with common 
channels and single date rates (CCSDR) were simulated, 
one with high interference CCSDR (HI), and the other with 
low interference CCSDR (LI). As a first step, the routing 
labels of the two systems were the same and are shown in 

Figure l4-Hierarchicallabelingscheme for low interference model 



Packet Radio System 227 

TABLE I-Performance Measures 

DELAY OF 
IP *TO 

OFFERED THROUGH- STATION RATE OF PROB. TOTAL % 
RATE PUT [Terminal STATION STATION % OF IP* OF IP* TERMINALS 
[%] [%] Slots] RESPONSE BUSY BLOCKED LOSS REMAINING 

-----------------------------------------------------

CCSDR (LI) 13 5.95 40.11 
CCSDR (HI) 13 10.55 23.93 
CCSDR (HI) 

(Improved 
Labels) 13 12.14 16.61 

Figure 14. The interference of the CCSDR (LI) system is 
shown in Figure 13 and the interference of the ·CCSDR (HI) 
system in Figure 15. (Figure 15 shows only the connectivity 
for two devices in the network.) A different label assignment 
for the high interference system is shown in Figure 16. 

The results are shown in Figure 17 and Table I. Figure 17 
shows the throughput of the two systems as a function of 
time while Table I summarized other measures of perform­
ance. The third row of Table I summarizes performance of 
the high interference system under an improved set of re­
peater labels. It is clear that the high interference system 
has better performance than the low interference systems. 
The only measure of the low interference system which is 
better is terminal blocking which is a direct result of the low 
interference feature. In fact, CCSDR (LI) is saturated at the 
offered traffic rate. This can be seen from the fact that the 

Figure 15-Interference'of CCSDR (HI) system 

1.14 
1.81 

2.06 

.53 2.98 32.83 13 

.43 9.83 9.83 13 

.50 10.63 11.41 10 

* Information Packet 

throughput is decreasing as a function of time; the relatively 
high total loss; and the low station response.* The CCSDR 
(HI) with improved labels compared in Table I, has better 
performance than the other two systems. This indicates the 
importance of proper labeling. The experiments of this sec­
tion suggest that it is preferable to use high transmitter power 
to obtain long repeater range, despite the network inter­
ference that results. 

Single versus dual data rate signalling 

Because of the problem of developing different hardware 
(r.f. and digital) for repeaters, terminals and stations, a basic 

Figure 16-CCSDR (HI) system with improved labeling 

* The average number of station response packets assumed for these 
studies is 2.0. 



228 National Computer Conference, 1975 

13 

10 

THROUGHPUT VS. TERMINAL SLOTS: ceCR (HI) & CCSDR 

OFFERED RATE 13 % 

CCSDR (LI) 

1500 

TIr-tE (TERMINAL SLOTS) 

Figure 17-Throughput vs. terminal slots: CCDR (HI) and CCSDR (LI) 

design decision for the experimental system was to use the 
same hardware, called a Packet Radio Unit (PRU) for all 
three devices. Because of this decision, these devices have the 
same transmission capabilities. However, in many applica­
tions the antennas of repeaters and stations can be placed in 
elevated areas, and therefore, the quality of the transmission 
links between devices within this category can be superior to 
the quality of the links between terminals and repeaters or 
terminals and stations. Consequently, an important problem 
is to determine whether repeaters and stations should use 
this extra capability to achieve longer range or higher data 
rates than the terminals. 

This section discusses some of the studies performed to 
investigate this tradeoff. The results indicate that a dual 
data rate approach can significantly increase system per­
formance. Thus, the Packet Radio Unit is being implemented 
with this feature. 

Among the systems studied were: 

• The common channel and single data rate system 
CCSDR (HI) of the previous section with improved 
labels to take advantage of the high range to impr~ve 
the routing labels of repeaters and obtain fewer hier­
archy levels which we denote by CCSDR. The routing 
labels used are shown in Figure 16, and the connectivity 
is shown in Figure 15 . 

• A Common Channel Two Data Rate (CCTDR) system 
with the routing labels as in Figure 14 and connectivity 
as in Figure 13. 

In the CCTDR system, the terminal has a low data rate 
channel, the same rate as in the single data rate system, for 
communication with a repeater or station. Repeaters and 
station have two data rates. The high data rate is used for 
communication in the repeater-station network. The two 
data rates use the same carrier frequency so that only one 
can be used at a time. 

The two systems were tested with offered rates of 13 percent 
and 25 percent. * The throughputs as a function of time for 
the two runs are shown in Figures 18 and 19, respectively; 
and the summary of other measures is given in Table II. 
The comparison demonstrates that the CCTRD system is 
superior to the CCSDR system, in terms of throughput, de­
lay, and other measures. One can see that the CCSDR sys­
tem is saturated at an offered rate of about 13 percent. 

• Effect on Blocking Level 

In Table II, one can see that one reason for the relatively 
low throughput of the CCSDR system at an offered rate of 
25 percent is due to blocking. Furthermore, the fraction of 
time that the station is busy has decreased. This may suggest 

* In the simulation runs we used the inverse square law for the relation 
between data rate and distance, rather than the result in 20; this 
however, favors CCSDR. 

TABLE II-Performance Measures 

DELAY OF 
IP *TO 

OFFERED THROUGH- STATION RATE OF PROB. 
RATE PUT [Terminal STATION STATION % OF IP* TOTAL % OF TERMINALS 
[%] [%1 Slots] RESPONSE BUSY BLOCKED IP* LOSS REMAINING 

--------------------------------------------------------

13 12.14 16.61 2.06 .50 10.63 11.41 10 
CCSDR 

25 12.20 34.97 1.61 .48 29.50 32.95 23 

-------------------~ --------------------------------------

13 12.39 4.91 1.99 .26 1.59 1.59 9 
CCTDR 

25 23.33 11.51 1.97 .31 3.31 3.31 34 

* Information Packet 



13 

10 

TIME (TERMINAL SLOTS) 

Figure 18-Throughimt vs. terminal slots 

that the station may be able to handle more terminals pro­
viding they are able to enter the system. To examine this 
point, we ran the CCSDR system with offered rate of 25 
percent, and relaxed the constraint for entering the system. 
Rather than resulting in better performance, this step re­
sulted in reduction in blocking and increase in delay. The 
throughput increased to 12.63 percent, the blocking de­
creased to 18.35 percent and the total loss decreased to 
30.73 percent. On the other hand, the delay increased to 
57.82, the fraction of time the station is busy increased to 
.57, and the rate of station response decreased to 1.32. 

To conclude, when we enabled more terminals to enter the 
system, the throughput increased insignificantly, from 12.20 
percent to 12.63 percent; on the other hand, the average 
packet delay increased significantly, from 34.97 to 57.82 
terminal slots. This suggests that one of the important design 
problems in the packet radio system is the blocking level of 
terminals. 

20 

12 

T!ME (TERMINAL SLOTS) 

500 1000 1500 

Figure 19-Throughimt vs. terminal slots 

Packet Radio System 229 

20 

10 

10 40 

OFFERED RATE [% 1 

Figure 20-System throughput vs. offered rate 

Throughput, loss, and delay of CCSDR and CCTDR systems 

Similar to curves of throughput versus channel traffic ob­
tained analytically,2 we can attempt to draw curves of sys­
tem throughput vs. offered rate for estimating the maximum 
throughput by simulation. Figure 20 shows the throughput 
versus offered rate for CCSDR and CCTDR systems. The 
curves are linear for low offered rates and saturate when the 
offered rate increases. 

For the CCSDR system one can see that the throughput is 
practically the same when the offered rate is increased from 
13 percent to 25 percent. This and the other measures (see 
Table II), (for example, the rate of station response) show 
that the system is overloaded at a 25 percent offered rate. 
On the other hand, the system seems to operate at steady 
state at an offered rate of 13 percent (rate of station response 
2.06). A rough estimate of maximum throughput for this 
system would be between 12 percent and 15 percent. Similar 
observations of the performance measures led to an "esti­
mate" of between 27 percent and 30 percent for the maximum 

40 

30 

20 

10 

10 20 30 

OFFERED RATE [%] 

Figure 21-Terminal-station delay vs. offered rate 

40 



230 National Computer Conference, 1975 

40 

30 CCSDR 

20 

10 

CCTDR 

10 20 30 40 

OFFERED RATE [% J 

Figure 22-IP blocking vs. offered rate 

throughput of the CCTDR system in the specified repeater 
configuration. 

The average delay of the first Information Packet from 
terminal to station, -and the Total Loss, as a function of 
offered rate are shown in Figure 21 and Figure 22, respec­
tively. 

Remark: There are many parameters in the simulation 
program which we have not experimented with and which 
affect the quantities discussed above. One parameter, Ol, 

which is significant in determining the maximum throughput 
is the ratio of the average number of packets from station to 
terminal to the average number of packets from terminal to 
station. The effect of this parameter has been analyzed in 
Reference 14 for a slotted ALOHA random access mode. It 
has been shown that the maximum throughput is increased 
in the Common Channel system when Ol increases, and the 
maximum throughput tends to 100 percent of the data rate 
when Ol tends to infinity. We expect that this parameter has 
a similar effect for the mode of access simulated. In the results 
reported here Ol is 2.0 which is small compared to usual esti­
mates for terminals interacting with computers. Thus the 
estimates of this section will probably somewhat under­
estimate the maximum throughput. 

CONCLUSIONS 

As is evident, packet radio offers a new and challenging area 
for network analysis and design. These studies have merely 
touched upon crucial areas. Further studies, to develop 
methodology, to provide support for hardware and software 
design, and to effectively control and manage network re­
sources are currently under way. These studies will: 

a. Estimate system capacity as a function of terminal­
repeater and repeater-repeater signaling rates for 
mult.istation networks. 

b. Compare the performance of systems with varying de­
grees of receiver capture, multiple channels, direc­
tional antennas and multiple detectors. 

c. Determine efficient operating parameters including 
time out intervals, handover numbers, and number of 
retransmissions. 

d. Determine relationship between number of repeaters, 
throughput, delay and blocking. 

e. Compare the efficiency of direct terminal to terminal 
routing versus hierarchical routing in multistation 
networks. 

f. Estimate throughput, 'delay and blocking for multi­
station networks. 

g. Develop and test multistation algorithms for routing, 
labeling, and relabeling. 

h. Develop high level global flow control algorithms to 
allow effective utilization of system resources. 

i. Determine network control strategies to identify and 
monitor network congestion and eliminate failure 
conditions. 

j. Formulate dynamic reliability and survivability cri­
teria and develop algorithms for network reliability 
analysis and design. 

k. Develop algorithms for configuring packet radio net­
works to meet specified reliability and survivability 
criteria. 

REFERENCES 

1. Kahn, R. E., "The Organization of Computer Resources Into a 
Packet Radio Network," National Computer Conference, May, 1975. 

2. Kleinrock, L. and F. Tobagi, "Random Access Techniques For 
Packet Radio Networks," National Computer Conference, May, 1975. 

3. Turin, G. L., "A Statistical Model of Urban Multipath Propaga­
tion," IEEE Transactions on Vehicular Technology, Vol. VT-21, 
February, 1972, pp. 1-9. 

4. Frisch, I. T., "Technical Problems in Nationwide Networking and 
Interconnection," IEEE Transactions on Communications, January, 
1975. 

5. Garrett, J. and S. Fralick, "A Technology For Packet Radio," 
National Computer Conference, May, 1975. 

6. Fralick, S., D. Brandin, and F. Kuo, Harrison, "Digital Portable 
Terminals," National Computer Conference, May, 1975. 

7. Burchfiel, J., R. Tomlinson, and M. Beeler, "Functions and 
Structure of a Packet Radio Station," National Computer Conference, 
May, 1975. 

8. Abramson, N., R. Binder, F. Kuo, Wax, D. Oklinaka, "ALOHA 
Packet Broadcasting-A Retrospect," National Computer 
Conference, May 1975. 

9. Okamura, Y. et aI., "Field Strength and Its Variability on VHF 
and UHF Land-Mobile Radio Service," Review of the Electrical 
Communication, Vol. 16, No. 9-10, September-October, 1968. 

10. Van Slyke, R. and H. Frank, "Network Reliability Analysis-I," 
Networks, Vol. 1, No.1, No.3, 1972, pp. 279-290. 

11. Garfinkel, R. and G. Nemhauser, Integer Programming, J. Wiley, 
New York, 1972. 

12. Karp, R., "Reducibility Among Combinatorial Problems," Complex­
ity of Computer Computations, R. Miller and J. Thatcher (eds.), 
Plenum, 1972. 

13. (Network Analysis Corporation), "The Practical Impact of Recent 
Computer Advances on the Analysis and Design of Large Scale 
Networks," Third Semiannual Technical Report, June, 1974, 
available from Defense Documentation Center, Arlington, Va. 



14. Gitman, I., R. M. Van Slyke and H. Frank, "On Splitting Random 
Access Broadcast Communication Channels," Proceedings of the 
Seventh Hawaii International Conference on System Sciences, Sub­
conference on Computer Nets, January, 1974~ 

15. Gitman, I., "On the Capacity of Slotted ALHOA Networks and 
Some Design Problems," IEEE Transactions on Communications, 
March, 1975. 

16. NAC (Network Analysis Corporation), "The Practical Impact of 
Recent Computer Advances on the Analysis and Design of Large 
Scale Networks," Second Semiannual Technical Report, December, 
1973. 

Packet Radio System 231 

17. Boehm, S. P. and P. Baran, "Digital Simulation of Hot-Potato 
Routing in a Broadband Distribution Communications Network," 
Rand Corporation, Memorandum RM-3103-PR, August, 1964. 

18. Abramson, N., "The ALOHA System-Another Alternative for 
Computer Communication," AFIPS Conference Proceedings, Vol. 
37, November, 1970, pp. 281-285. 

19. Abramson, N., "Packet-Switching with Satellites," National Com­
puter Conference, June 1973, pp. 695-702. 

20. Fralick, S. C., "R. F. Channei Capacity Considerations," available 
from ARPA Network Information Center, Stanford Research 
Institute, Menlo Park, Calif., 1974. 





Technological considerations for packet radio 
networks· 

by STANLEY C. FRALICK 
Stanford Research Institute 
Menlo Park, California 

and 

JAMES C. GARRETT 
Rockwell International 
Richardson, Texas 

INTRODUCTION 

The application of packet-switching techniques to radio 
channels has provided a solution to many computer-com­
munications problems previously unsolved.! For example, 
a packet radio network can readily be designed to provide 
area coverage at data rates fast enough to support interac­
tive operations for thousands of users having a variety of 
terminals such as hand-held devices, TTY-like devices, 
display devices, computers, and unattended sensors. Since 
the interconnections are by radio, the users can be fixed or 
mobile, and the network can be easily moved. Further­
more, it can be readily established in remote or primitive 
areas where a wired network would be impossible, and 
total connectivity of users will be provided. 

Packet radio provides an economical solution to these 
needs when the user demand for information transfer has 
a high peak to average ratio or a "bursty" behavior.2 This 
is, in fact, the case for a large number of data communica­
tion users. Packet switching, as opposed to circuit switch­
ing, allows resources, including the transmission capacity, 
to be dynamically allocated to satisfy data transfer de­
mands. 

A typical packet radio network uses radio broadcast 
properties over one common channel to provide area 
coverage. The network traffic is quantized into discrete 
segments called packets and a header is attached that 
defines the routing protocol of the packet.3 

Packets are independently transferred from one net­
work element to another asynchronously with control 
mechanisms for the management of these transactions dis­
tributed throughout the network. A typical packet radio 
network consists of three primary functional elements: 
Terminal, Station, and Repeater. A typical network is 
shown in Figure 1. The terminal4 is the user's interface to 
the network. The station5 has the responsibility for over-all 
management of the network including initialization, rout-

* This work was supported by the Advanced Research Projects Agency 
on Contract No. DARC 15-73-C-0187 and Contract No. DARC 15-73-C-
0192. 

233 

ing, flow control, directory, and accounting functions. It 
also serves as the gateway from the network to other net­
works. In a network covering a small area, terminals and a 
station suffice.2 However, terminals must have limited 

. power to be portable, and this power limits their range. To 
provide coverage over extended areas, repeaters are 
needed. The repeater has the function of extending the 
range of station-terminal links and providing a mechanism 
for distributing the network management logic. It, 
therefore, receives and retransmits packets with the addi­
tional responsibilities of detecting errors and invoking 
routing protocols dictated by the station. 

A repeater element contains a radio section which 
provides access to the network radio channel and a digital 
section which performs the logical functions of error con­
trol and packet routing. Figure 2 illustrates this organiza­
tion of the repeater element. 

An experimental repeater has been constructed by 
Collins Radio Group and is undergoing tests at Stanford 
Research Institute. A description of this experimental 
packet radio repeater along with a discussion of the 
physical limitations of the RF channel and design 
constraints of modern technology on this development are 
presented. 

MULTIPATH CHANNELS 

The experimental packet radio repeater operates in the 
1 to 2-GHz range. The ALOHA network2 operates at 400 
MHz. Potential networks might be designed almost 
anywhere in the UHF band. Such networks will be re­
quired to operate in urban areas with high-rise buildings, 
as well as in suburban and rural areas such as jungles and 
deserts. Propagation in these topologies is highly variable, 
and significant multipath results. 

An example of multi path propagation is shown in Figure 
3. The pulse distortion here is very apparent. This picture 
was taken in Palo Alto at 1370 MHz using a spread­
spectrum transmitter and matched filter receiver giving a 
200 ns time-resolution capability. 



234 National Computer Conference, 1975 

PACKET RADIO NETWORK ---:-'< 
& & (I \ 
& & & I S 

& & 0 & 
& & 

8 & 
&0& 

& 
\ 

\/ 

Packet Radio Terminal 

Packet Radio Repeater 

o Packet Radio Station 

Point to Point 
Terrestrial Channel 

/V Satellite Channel 

~-- POINT TO POINT NETWORK 

Figure I-A packet radio network 

The signal distortion introduced by the multipath chan­
nel places a limit on the bit-rate which the channel will 
support. The delay spread of the channel is a measure of 
the distortion introduced. It is determined by the 3-dB 
points on the channel impulse response, as shown in 
Figure 3. If this spread is greater than the duration of one 
signaling element, which is usually a single bit, then in­
tersymbol interference will result, and errors will occur 
even at high signal-to-noise ratios. 

RANDOM PATH. LOSS 

Satisfactory performance of the rf links of a network 
depend upon the receipt of adequate signal power to over­
come the noise at the receiver. 

Because coverage is so terrain dependent, it is possible 
only to present "typical" range curves. Such curves are 
shown in Figure 4 for a 10-W transmitter and a receiver 
with an 8-dB noise figure and 200-kHz noise bandwidth, 
assuming no nonthermal noise components. These curves 
were calculated using Okumura's curves6 of median signal 
strength corrected for terrain type and antenna height. 

RADIO 

DIGITAL 

SA-2325-89 

Figure 2-Basic organization of packet radio repeater 

UJ 
o 
=> 
t:: 
.J 
a.. 
:lE « 
ex: 
« 
UJ 
z 
:::i 

o 2 3 4 5 6 7 8 9 

TIME - micro-sec 

Figure 3-Channel impulse response in suburban area 

Notice that the signal strength is 40 to 80 dB less than 
might be calculated using a free-space propagation model, 
and that the median levels vary as liRa where a is 
between 3 and 4. This very rapid decrease in signal 
strength with range means that a low-powered terminal 
cannot provide adequate area coverage in many cases, so 

90 

80 
5i 
'0 70 c 
cti 
E 60 
Q) 

£ 
co 50 
""0 

40 
0 
i= 30 <! 
et: 
W 
en 20 
6 
z 
0 10 
I-
-l 
<! 0 
Z 
(!) 

en -10 
z 
~ 

-20 Cl 
w 
~ 

-30 

-40 
0.6 1 2 4 6810 20 40 60 80 100 

f--LOG SCALE ---t-o>---LI NEA R SCALE---I 

DISTANCE - km 

Figure 4-Communication link range 



Technological Considerations for Packet Radio Networks 235 

that either terminals must be very high-powered or some 
range-extension means must be found. 

For example, suppose that a modulation scheme was 
used which required 13-dB signal-to-noise ratio for satis­
factory performance. Then to obtain a 20-km range in an 
urban area at a 100-kBs bit rate, the transmitter power re­
quired would exceed 10 kW. Clearly this is excessive for a 
small portable terminal, and networks to support such ter­
minals must have rf repeaters spaced closely enough so 
that terminal-repeater range never exceeds the capability 
of the terminal transmitters. 

Notice that these curves ignore the effects of non­
thermal noise. If the system must maintain a positive 
signal-to-noise ratio even in the presence of impulsive 
(usually man-made) noise, the transmitter power to 
provide a given range must be increased in proportion to 
the energy in the noise impulses. As discussed below, this 
often exceeds 40 dB. 

NOISE 

There are at least three major types of noise in this 
band. These are characterized by their nature as back­
?round (or Gaussian), impulsive (or non-Gaussian), and 
mterference. The latter will be considered separately. 

Link power budget and repeater LOS coverage calcula­
tions are based on the background noise level. In the UHF 
band, this noise is primarily of thermal origin and may be 
taken as thermal noise at 20° C. Such noise is assumed to 
have uniform spectral density of -172 dBm/ Hz and to 
have a Gaussian amplitude distribution. Receiver noise 
figures in this band will increase the background noise 
level from 4 to 8 dB. 

The primary impulsive noise in the UHF band appears 
to be derived from automobile ignition spark discharges. 
Hence, it varies with population density. Other sources of 
impulsive noise are also man-made, such as arc-welders, 
electric trains, and ac power distribution systems. All are 
population density dependent. 

Impulsive noise is not generated at a high level, so that 
it is only effective at short range. For example, a terminal 
on a main city street, or near a freeway might experience 
noise impulses exceeding the thermal noise by 60 to 80 dB; 

1.0 

l' 0.9 

.~ 08 il . 
VI 0.7 

~ 0.6 

...;:.. 0.5 
~ 
!::: 0.4 
...J 

iii 0.3 
« 
~ 0.2 
a: 
a.. 0.1 

/-
_/ Number of Intervals 

/- < 10 ms ;;. 10 ms 
_/ -- _ 64 104/ Alongside State Hwy 9; 

/,.- - - 28 118
1

1430 PDT, 30 APR 74 .=. ~g ~~8 } First and Harrison, SFO 
__ 82 81 ~;~oB~ig~e On-ramp 

o ~~L-__ L-~ __ ~ __ ~ __ ~ __ ~~~~-L __ -L~ 
o 10 

INTERVAL BETWEEN NOISE IMPULSES - ms 

Figure 5-Cumulative distribution of impulse noise threshold crossings 

Figure 6-Effect of one-second burst of signal on radar plan-position 
indicator 

but a repeater, several hundred feet above the street on a 
tall building, might experience impulses only 30 to 40 dB 
above thermal noise, and a repeater on a mountain in a 
su?urban or rural area might experience only background 
nOIse. 

It is not desirable to limit repeater ·coverage so that all 
impulses can be overpowered by the signal. This would re­
quire excessive transmitter power in worst-case situations. 
Instead, because an impulse may affect only a few bits per 
packet, provision has been made to implement and experi­
ment with error-correcting coding techniques. Such tech­
niques will depend on the detailed time-statistics of the 
noise impulses which have been collected and are dis­
cussed in Reference 7. 

The importance of the impact of impulsive noise on the 
desi~ of a packet radio network can be partially ap­
precIated from an examination of Figure 5, which shows 
the cumulative probability distribution of noise impulse 
threshold-crossing intervals measured at several urban lo­
cations. This figure shows that noise impulses exceeding 
the background thermal noise by 46 dB arrive with inter­
vals less than 5 ms,. 50 percent of the time, and with inter­
vals less than 10 ms almost all of the time. Thus packets 
which are longer than 10 ms will almost always experience 
at least one very large noise pulse. Since it is impractical 
to design the system to overpower these impulses, it is 
necessary to reduce packet lengths, so that only a small 
proportion will experience noise pulses, and to provide er­
ror detection. Longer packets in urban areas must include 
error correction or the channel throughput will be very low. 

INTERFERENCE 

The interference problem has two aspects. The system 
must avoid interference from other users, and it must 
avoid interfering with other users. The specific nature of 
the problem depends on the specific community of users 



236 National Computer Conference, 1975 

Figure 7-Effect of reducing burst duration to one millisecond 

coexisting. Preliminary coexistence experiments have been 
performed which suggest that it is possible to coexist with 
even such difficult users as radars if the repeater coverage 
is sufficiently small and error-correcting codes are used. 
Coexistence in other user communities should be much 
simpler and exploration of this issue will be a major goal 
of future experiments. 

Figure 6 is a picture of one segment of a radar plan-posi­
tion indicator showing the effect of a one-second burst 
from a signal similar to that planned for the first experi­
mental network using a 6-W transmitter at a range of 8 
miles. The very small dots are caused by noise, the larger 
dots are aircraft, and the large strobes are the packet radio 
signal. Figure 7 shows the effect of a full power burst of 
signal for 1 ms. and Figure 8 shows the effect of a one-half 
second burst with power reduced by 20 dB. For these tests 
the signal was not tuned to the center of the radar receiver 
passband. The two frequencies differed by 13 MHz, or 
three times the nominal radar bandwidth. 

ACHIEVABLE RANGE 

The transmitted power, modulation, coding scheme, and 
bit rate of packet radio equipment will interact with the 
radio channel in a complex way to limit the range of a 
repeater-terminal link. It is this limitation which furnishes 
the fundamental motivation for a repeater-oriented net­
work philosophy. The primary need for a packet radio net­
work is to service portable terminals which are small, 
(someday hand-held) light weight and conveniently used. 
If the terminals are not small and light weight, they will 
not be portable and many of the advantages of a radio con­
nection will be lost. Because of transmitter power 
constraints, limited terminal size implies limited terminal 
range, so that repeaters must be used to extend area 
coverage. 

The desired size and weight restrictions on packet radio 
equipment imply both an average and a peak power 

constraint. The average power constraint has little effect 
on range, since the transmitter duty cycle for packet­
switched terminals is so low that the average transmitter 
power is only a few percent of the total terminal or 
repeater power consumption. On the other hand, the peak 
power constraint limits the power transmitted during a 
burst, and therefore the range. This peak power constraint 
comes about because the typical burst exceeds the thermal 
time-constant for semiconductor devices used as rf power 
amplifiers; i.e., the burst lasts long enough to overheat the 
rf power amplifier if the peak burst-power exceeds the 
average-power rating of the device. This can be overcome 
by paralleling amplifiers or otherwise increasing device 
bulk-only at the cost of increasing packet radio equip­
ment bulk. 

The rf channel distorts transmitted signals and adds 
noise, so that the performance of an rf communication 
link will typically be less reliable than a wire link. Relia­
bility is measured in terms of the probability of a bit error 
(PBE ). If the rf channel simply adds white gaussian noise, 
then PBE will depend monotonically on the ratio of 
received energy in one bit (Eb ) to background noise 
intensity (No). Since the packet radio transmitter will be 
peak-power limited, the received energy will be propor­
tional to the product of peak power (P) and bit duration 
(T). Assuming a worst-case urban propagation condition in 
which the received energy varies inversely with the fourth 
power of range (R) (See Figure 4), the performance will be 

PBE = f(:;4) 

where f( . ) is a monotonic decreasing function depending 
on the type of signalling scheme used. The tradeoff rela­
tion between T and R is shown in Figure 9 for three types 
of modulation and coding schemes, assuming that a bit er­
ror probability of 10-5 must be achieved and that the 
transmitter operates at 1500 MHz with 10 Wpeak power 

Figure 8-Effect of attenuating burst power by 20 dB 



Technological Considerations for Packet Radio Networks 237 

limit. Also shown is Shannon's bound for this power­
limited gaussian channel. The spread-spectrum modula­
tion scheme selected for the experimental repeater was 
chosen as a compromise between the relatively inefficient 
use of power achieved by the simplest scheme and the 
very complex receiver to achieve the most efficient 
scheme. 

Also shown on Figure 9 is the multipath bound which 
occurs when the multipath delay-spread exceeds a single 
bit duration and introduces intersymbol interference. This 
will occur in worst cases at bit rates of 100 KB. Schemes 
to overcome this limitation include the use of spread­
spectrum signals which change waveform at each bit, and 
the use of signals transmitting several bits per signalling 
element. 

OTHER DESIGN CONSIDERATIONS 

One problem of packet radio communications is 
generated by the need to share one common channel by 
many radio elements. Omni-directional radiation from 
radio transmitters increases the congestion in the channel. 
If a receiver is able to sort out or capture a packet from an 
ensemble of many packet signals impinging on its 
antenna, more users can be served by the network. The 
spread-spectrum modulation and detection techniques 
used in the experimental repeater are intended to provide 
a measure of discrimination so that one or more packets 
can be successfully detected in the presence of other 
packets. When there is no multipath, this discrimination 
can be achieved by sampling the detector output 
synchronously with one of the signals through a narrow 
sampling window. The probability of interference from an 
overlapping packet will be reduced by the ratio of sam­
pling window width to bit duration. Since packets are 
transmitted in an asynchronous fashion, the receiver must 
synchronize itself to the transmissions to successfully de­
tect a packet. Synchronization must be accurate enough so 
that peaks from successive bits fall within the sampling 
window. Furthermore, synchronization must be achieved 
rapidly to avoid long synchronizing headers which would 
add to the packet overhead. Multipath compounds the 
synchronization problem in several ways. First, it spreads 
out the received signal in time so that the probability of in­
terference is increased and multiple-packet discrimination 
is decreased. Second, the multiple peaks (see e.g., Figure 
3) are often of approximately equal amplitude so that 
small scintillations cause difficulty during sync acquisi­
tion and tracking. Finally, if the receiver (or transmitter) 
is moving a strong path may become weak and a weak 
path strong, so that the signal in the sampling window 
may exhibit deep fades. 

A design consideration arising from the network struc­
ture of packet radio is the requirement that control and 
management of packet routing, flow control, and error de­
tection is distributed throughout the network.3 This re­
quires that each station, repeater, and terminal in the net­
work possess a minimal digital computation and control 

w 
l­
e::( 
a: 
t­
ea 

10 W TRANSMITTER 
URBAN PROPAGATION 1500 MHz 
PBE = 10-5 

\1--~DCPSK 

(

THIS SCHEME ) 
CHOSEN FOR 
EXPERIMENTAL 
REPEATER 

101 102 

RANGE - km 

Figure 9-Comparison of some modulation schemes 

capability. Therefore, small, flexible, inexpensive 
processors with memories are needed in each element for 
the packet radio network to operate successfully. 

Thus the rf channel and distributed network control re­
quirements necessitate network elements with maximum 
rf power using complicated modulation, encoding, and 
synchronization techniques and with packet formatting, 
channel access, and network protocol software-controlled 
by a small CPU with memory. The implementation of 
such a component represents a challenge to current and 
future technology. 

AN EXPERIMENTAL PACKET RADIO 
REPEATER 

A repeater recently developed to support network ex­
periments is a good example of the application of current 
technology to a packet radio network. The repeater ele­
ment is chosen since it is an internal network element and 
invariant to the user interface or specific application. Ad­
ditionally, it contains most of the needed functions of all 
network elements. The function of a packet radio repeater 
is to extend the range of terminal-station links, therefore, 
it must receive and retransmit packets. It must also 
invoke routing protocols and error control. For these 
reasons, the repeater mqst have access to the radio chan­
nel and contain logical decision capability to carry out the 
routing and error control tasks. The repeater consists of a 
radio, a digital processing section, and software for this 
processing. The description is divided into these three 
subelements. 

The radio portion of the repeater is a transceiver that 



238 National Computer Conference, 1975 

Figure 10-The experimental packet radio repeater antenna 

operates in the 1 to 2 G Hz frequency range. The 
transceiver transmits and receives over a common channel 
via one antenna and therefore operates in a simplex mode 
(receive and transmit modes are mutually exclusive). The 
repeater antenna shown in Figure 10 is a 4 element 
colinear array with omnidirectivity in the azimuthal plane 
and provides vertical directivity to obtain a gain of 8 dBu. 
The use of a single rf channel and omnidirectional anten-

nas allows dynamic allocation of channel capacity over 
large areas using relatively simple network protocol.3 

The signal processing section includes the encoding and 
modulation processes in the transmitter and the automatic 
gain control, demodulation, detection, and synchronization 
processes in the receiver. The encoding/modulation 
process functional diagram is shown in Figure 11. The 
data is differentially encoded to avoid the necessity of re­
constructing a phase-coherent reference at the receiver. A 
read only memory (ROM) is used to store a pseudo­
random spread spectrum chip code. The differentially 
encoded data gates the sequence or its complement to the 
impulse generator. The impulse generator impulses a 2-
chip-long, cosine-weighted surface acoustic wave device 
(SA WD)8 every chip interval. The resultant output of the 
SA WD is the transformation of a data bit into a multichip 
spread spectrum waveform. The chips are minimum 
phase shift keyed (MSK)9 which yields a waveform that is 
constant amplitude and phase continuous. 

The signal processes in the receiver are shown in the 
functional diagram of Figure 12. The received signal, after 
passing through the RF preamplifier, is down converted to 
the IF frequency. Then it is amplified by an automatic 
gain control (AGe) IF amplifier. The output of the AGC 
amplifier drives a SA WD matched filter which may be 
viewed as a tapped delay line. The SA WD property of 
nondispersive group-delay allows significantly long delays 
(up to many microseconds) in a 3- or 4-inch package. By 
proper placement and weighting of the taps along the 
device, any causal impulse response can be realized that is 
within the bandwidth of the device. The SA WD impulse 
response is reverse-time-matched to the pseudo-random 
spread spectrum code sequence described in the encod­
ing/ modulation process. When the received signal is 
identical to the SA WD impulse response, the output of the 
SA WD matched filter is the autocorrelation function of 
the sequence. A typical autocorrelation output response is 

(ROM) 
PSEUDO-RANDOM 

SPREAD SPECTRUM 
SEQUENCE 
STORAGE , 

DIFFERENTIAL 
ENCODER 

Data t 

r--. IMPULSE 
GENERATOR , 
2-CH I P-LONG 

SAWD 
-. 

Spread 
Spectrum 
MSK 
Waveform 

Figure ll-Functional diagram of encoder/modulator 



Technological Considerations for Packet Radio Networks 239 

shown in Figure 13. The signal passes through two 
identical SA WDs and the outputs of the two SA WDs are 
summed and subtracted in the 1800 hybrid. This allows 
the decoding of differentially encoded data by comparing 
the pseudo-random sequence autocorrelation of a bit to the 
previous bit's autocorrelation. The sum and difference 
outputs are each AGC-amplified and envelope-detected on 
separate but identical channels. The outputs of the two 
channels provide the inputs to the data detector. The data 
detector consists of a differential comparator that com­
pares the sum and difference inputs and decides the data 
is a lor a O. 

The other processes needed in the receiver signal 
processing are the bit synchronization circuit and the end­
of-preamble detector. The bit synchronization circuit gates 
the data detector output through a narrow time window to 
provide time and multipath discrimination. The bit 
synchronization circuit phase locks to the sum of the dif­
ference and sum channels so that the time window is 
synchronous with the autocorrelation peaks of the SA WD 
matched filters. The purpose of the preamble detection 
circuit is to properly define the beginning of a packet. This 
is accomplished by attaching a preamble to the front of a 
packet which consists of a sequence of Barker codes. lO The 
Barker codes were selected because of their high peak-to­
sidelobe autocorrelation property. The preamble detector 
is a digital matched filter matched to the Barker bit se­
quence. 

Assuming that repeaters are elevated above the ground, 
the path loss and multipath environment in repeater­
repeater links will not" be as severe as in the terminal­
repeater links where the terminal is operating in a mobile 
environment. In order to take advantage of this and maxi­
mize network throughput, the repeater radio has two data 
detectors with different data rates. The lower data rate is 
100 kB/s for terminal-repeater traffic and the higher data 
rate is 400 kB/s for repeater-repeater traffic. The receiver 
signal processing is, therefore, duplicated for these two 
data rates and the psuedo-random spread spectrum codes 
for the 100 kB/s and 400 kB/s are 128 and 32 chips long, 
respectively. This allows the occupied bandwidth to be 
held constant for both data rates. Careful selection of the 
pseudo-random codes for the two data rates provides low 
cross-correlation between the two rates and allows si­
multaneous reception of high and low data rate packets in 
the repeater radio. 

1 BIT 1 BIT 
AGe IF AMP INTERVAL 

Figure 12-Signal processing circuits 

DATA 

END 
OF 
PREAMBLE 

Figure 13-Typical autocorrelation response out ofSAWD (128 
chips/bit) Vertical scale: 10 mv/cm. Horizontal scale: 1 microsec/cm. 

The functions of the RF head are frequency translations 
and power amplification. The application of thin film 
hybrid circuits to the repeater radio has represented an 
important technological tool. The integration of RF ·func­
tions through the use of thin film hybrid techniques 
provides a means to reduce size and eliminate intra-con­
nectors in the radio. Figure 14 (RF Head) shows an L­
band RF head that contains an up converter, power ampli­
fication chain, transmit/ receive switch, circulator, 
receiver preamplifier and filter all on thin film alumina 
substrates. This affords a significant savings in space, con­
nectors and cabling. A functional block diagram of the RF 
head is shown in Figure 15. 

The packet transport protocols3 consisting of repeater 
initialization, packet routing, packet acknowledgments, 
and error control demand that the repeater possess signifi­
cant logical processing power. The digital section of the ex­
perimental repeater provides this processing ability. It 
controls the radio and performs the following functions: 
Packet reception and transmission, error detection, packet 
routing protocols, and acknowledgment protocols. The 
hardware of the digital section consists of the CPU, ad­
dress register decode, direct memory access control 
(DMA), radio interface and control, and memory. 

The CPU is made up of National Semiconductor IMP-
16 MOS devices. It has a 4 J.,Lsec machine cycle so that low 
power consumption CMOS control logic can be used. The 
address decode provides for addressing up to 8K of 16 bit 
words. The DMA provides the interface between the radio 
transmitter and the two receiver detectors. All DMA ports 
are identical and provide direct access (write/read) to 
memory. The CPU initializes the DMA channels, which 
then proceed to access memory by stealing bus cycles with 
no further supervision from the CPU. The CPU is given 
priority on bus cycles. The radio interface and control 
performs bit serial to parallel conversions between radio 
and DMA channels and error detection using a cyclic code 
decoder. It also provides control of output power, center 



240 National Computer Conference, 1975 

Figure 14-L-band RF head 

IF AMP RF AMPLIFIER 

BPF 

G 15 dB 

WILKENSON 
DIVIDER 

BANDPASS 
FILTER 

G = 27 dB G 17 dB 

PRE­
DRIVER 

DRIVER 

STEP 
ATTENUATOR 

5 dB/10 dB 

A B 

G = 5.0 dB 

T/R SWITCH 
LIMITER 

STEP 

ATTENUATOR 
5 dB/10 dB 

C D 

Figure 15-Functional block diagram of L-band RF head 

XMTR RFL 
PWR PWR 

COUPLER/ 
DETECTOR 

BANDPASS 
"FILTER 



Technological Considerations for Packet Radio Networks 241 

frequency, transmit enable, and receive enable to radio. 
The memory consists of 3K words of random access 
(RAM) C-MOS memory for low power consumption and 
1K words of programmable read only (PROM) MOS 
memory. The size and proportions of RAM to PROM are 
based on flexibility requirements for an experimental 
repeater. 

The software for the experimental system is a 
multi programmed, interrupt driven system. Two inde­
pendent programs coexist in the system and the state of 
the system is saved as control is transferred from one 
program to another. The operating system is interrupt 
driven with program control being transferred and 
processing initiated as a result of CPU interrupts. The 
system is structured into three programs which are de­
fined as executive, background and foreground. 

The executive program is utilized for operating system 
initialization, program control, and system test aids. The 
executive mode is noninterruptible. It transfers control 
between foreground and background while saving the state 
of programs. The executive removes power from selected 
repeater hardware elements when not in use and restores 
power when processing is reinitiated. 

The foreground program contains the radio I/O packet 
handling processes. There are two levels of packet han­
dling in the foreground program. The high level packet 
processing contains the routing and acknowledgment pro­
tocols. The low level packet processing contains the radio 
and DMA control and performs the actual handling 
processes under the direction of the high level packet 
processing. This modularization of packet handling 
provides flexibility for modifying packet transfer protocols 
without affecting the basic radio functions of transmitting 
and receiving packets. 

The background program provides for overlay pr(}­
grams, on-line diagnostics, and performance monitoring. 
The overlay programs include programs that are received 
by the repeater and are executed and then overlayed. This 
feature allows for remote programming and reduces the 
memory requirements for resident software in the 
repeater. 

The initial software in the experimental repeater resides 
in the 3K words of RAM and 1K words of PROM to 
provide flexibility. At the present, the executive program 
along with the debug control program, common routines, 
and the terminal I/O routines are resident in PROM. This 
leaves the foreground program and most of the back­
ground program in RAM. The packet buffers, diagnostic, 
and test programs are also in RAM. The projection of 
memory allocation for a packet radio repeater in an opera­
tional network would be 2K words of RAM and 2K words 
of PROM. Most of the software would reside in PROM 
with RAM memory devoted to packet buffers, temporary 
storage, base page, and overlay area. 

Although the major goal of this first experimental 
repeater was to develop a versatile element to support net­
work experiments, secondary goals to investigate and 
demonstrate applications of advanced technology to small 

light weight self-powered repeaters were also achieved. It 
was found that significant savings in size and power 
consumption could be achieved by applying thin film 
technology to integrate the RF functions in the RF head, 
and to integrate CMOS RAM chips in the memory. It was 
also found that power consumption could be reduced by 
powering down the CPU, modulator, and power amplifier 
chain when not in use. Using these techniques, a repeater 
has been constructed which is one cubic foot, weighs 40 
pounds, and requires 25 watts average power. 

In concluding the discussion of the experimental packet 
radio repeater, it is appropriate to identify what features 
of the repeater are most likely to change or be improved. 
It is most certain that the physical size will be reduced by 
using LSI techniques in the digital section and hybrid thin 
film circuitry in the radio section. Another area where 
improvement is probable is in spread spectrum processing 
gain. The present repeater has a maximum spread of 128 
(21 dB processing gain). Spreads in the thousands can be 
obtained with convolver surface wave devices. The ability 
to change spread spectrum codes on a packet or bit basis 
is another feature which will further enhance the 
repeater's antijam and antispoof capability. Other. fea­
tures to be forthcoming are full mobile radio operation via 
diversity techniques and higher data rates, made possible 
using m-ary coding or convolvers with multipath sup­
pression capability. A more detailed discussion of the ap­
plication of future technology to the development of 
packet radio network elements follows and addresses 
several of these issues. / 

APPLICATIONS OF FUTURE TECHNOLOGY 

Although a packet radio network using small micr(}­
processor-based repeaters is feasible with today's 
technology, a great deal of work remains to be undertaken 
before such a network is a realistic practical alternative. 

In this initial effort to develop an experimental 
repeater, every attempt has been made to retain ver­
satility and flexibility so that the repeater will support a 
wide variety of experiments. New technological develop­
ments will be incorporated as they become available and 
as more is learned about packet radio networks. Future 
technological advances which seem particularly promising 
include advances in SAW technology to achieve a greater 
variety of devices, and applications of semiconductor 
technology to achieve LSI and VLSI memories, CPU's 
and interface circuits. 

Surface Acoustic Wave devices can be applied to a large 
variety of rf signal processing problems.8 Simple bandpass 
filters using SA W technology would integrate easily into rf 
thin-film circuits and might replace bulky coaxial filters to 
-reduce size and weight. SA WDs may also find application 
in the feedback structure of oscillators. 

Size, weight, and power consumption can also be 
reduced by the application of LSI and VLSI to both 
analog and digital circuits currently built with discrete 



242 National Computer Conference, 1975 

components and MSI chips. The most likely areas of 
improvement here are in the modem, the I/O interfaces, 
and the microprocessor. The microprocessor memory size 
may be reduced when a single network protocol is es­
tablished as the best. When this occurs, the software can 
be microcoded to reduce ROM size. New ROM chips with 
more bits of storage, using less power are also probable as 
semiconductor technology advances. As the network and 
component design firm up interfaces will be standardized 
so that it will be worthwhile to develop single chip LSI in­
terface circuits. 11 

It will be desirable to obtain a faster microprocessor 
since this will provide higher throughput and less time 
delay through the network. Higher speed, lower power 
processors soon to be availablel2 seem to offer an order of 
magnitude improvement in both speed and power 
consumption. According to all indications, microcomputer 
technology will change at a tremendous rate. The develop­
ment of Silicon on Saphire (SOS), integrated injection 
logic (IlL) and low power Schottky (LPS) devices all point 
toward the day when as few as four chips may replace the 
13 cards presently in the digital section of the repeater. 
Ideally, the four chips will be: a CPU chip with 500 ns 
cycle time, a 2KX 16 bit 100 ns RAM, a 4KX16 bit 100 ns 
ROM, and a multiport byte-parallel and bit-serial inter­
face. The total power consumption should be less than 1 
W. 

The experimental repeater was designed to test new 
modulation technologies to operate in difficult rf environ­
ments. Two directions of change are possible here. Much 
simpler modulation techniques can be applied to packet 
radio nets to operate in less hostile environments, and 
more complex techniques can be applied to improve 
performance in the most hostile environments. The 
ALOHA net at the University of Hawaii is a good example 
of the former possibility. In this case, the straightforward 
application of thin-film hybrid technology to the RF por­
tions, and LSI technology to the lower frequency portions 
of the radio and modem will reduce size and power by an 
order of magnitude. 

We expect that new SAW devices such as convolvers 
will improve operation of the system in hostile environ­
ments. A convolver is a device which accumulates the 
cross-product of two signals. l3 Such a device has an ad­
vantage over the usual fixed-impulse response SAWD, 
since any causal impulse response within the device time­
bandwidth constraints can be obtained, and the impulse 
response can be varied with time. Using a convolver it 
would be possible to eliminate most intersymbol in­
terference caused by multipath by changing the transmit­
ted waveform (and receiver matched-filter) for each bit. If 
waveforms are chosen to be pseudo-orthogonal, then one 
symbol will not interfere with the next. The use of a 
convolver can, however, make synchronization more dif­
ficult since the impulse response depends upon a local 
reference and the reference must be in rough synchroniza­
tion with the received waveform. Nevertheless, a convolver 
may allow higher bit rates over short ranges. 

A major requirement in all future designs will be to 
reduce average power consumption so that the power­
source size and weight can be reduced. Any improvements 
in portable power source energy-density will result in a 
much more flexible network. Although much effort is be­
ing expended to develop such improved sources, none 
seem to be on the immediate horizon. Perhaps this is the 
one area of technology in which there is a major gap 
between need and availability. 

CONCLUSION 

We have focused on the impact of rf channel, network 
design, and technology on the repeater because it is the 
critical communications element in a packet radio net­
work. It can be converted to a station by adding a mini­
computer, and to a terminal by adding appropriate I/O 
components. Since a repeater has been successfully imple­
mented, it is reasonable to conclude that a packet radio 
network is technically feasible. Future experiments must 
be aimed at demonstrating operation of an entire network. 

ACKNOWLEDGMENT 

The authors wish to thank the members of the Advanced 
Research Project Agency research team designated as the 
Packet Radio Working Gro~p who havt:: contributed ideas, 
concepts and specific design details to the work discussed 
in this paper. 

REFERENCES 

1. Kahn, R. E., "The Organization of Computer Resources into a 
Packet Radio Network," National Computer Conference 1975, 
Anaheim, California, Proceedings of this conference. 

2. Abramson, N., "The ALOHA System-Another Alternative for Com­
puter Communications," Proceedings of AFIPS 1970 Fall Joint Com­
puter Conference, Vol. 37, pp. 281-285. 

3. Frank, H., I. Gitman and R. Van Slyke, "Packet Radio System: Net­
work Considerations," National Computer Conference 1975, 
Anaheim, California, Proceedings of this conference. 

4. Fralick, S., D. Brandin, F. Kuo and C. Harrison, "Digital Terminals 
for Packet Broadcasting," National Computer Conference 1975, 
Anaheim, California, Proceedings of this conference. 

5. Burchfiel, J., R. Tomlinson and M. Beeler, "Functions and Structure 
of a Packet Radio Station," National Computer Conference 1975, 
Anaheim, California, Proceedings of this conference. 

6. Okumura, Y., E. Ohmori, T. Kawano and K. Fukuda, "Field 
Strength and Its Variability in VHF and UHF Land-Mobile Radio 
Service," Rev. Elec. Commun. Lab., Vol. 16, pp. 825-873, Sep­
tember-October 1968. 

7. Nielson, D. L., Microwave Propagation and Noise Measurements for 
Mobile Digital Radio Application, SRI Packet Radio Note No.4, 
January 1975, Stanford Research Institute, Menlo Park, California. 

8. Holland, M. G. and L. T. Clairborne, "Practical Surface Acoustic 



Technological Considerations for Packet Radio Networks 243 

Wave Devices," Proceedings of the IEEE, Vol. 62, pp. 582-611, May 
1975. 

9. Doelz, M. L. and E. T. Heald, Minimum-Shift Data Communication 
System, U.S. Patent No. 2,977,417, March 28,1961. 

10. Barker, R. H., "Group Synchronizing of Binary Digital Systems," 
Communication Theory, W. Jackson, Ed. 1953, pp. 273-287. 

11. Young, L., T. Bennett and J. Larell "N-Channel MOS Technology 

Yields New Generation of Microprocessors," Electronics, pp. 88-95, 
April 1974. 

12. Schmid, Herman, "Monolithic Processors," Computer Design; Vol. 
13, No. 10, October 1974. 

13. Smith, J. M. ,smd E. Stern, "Surface Acoustoelectric Convolvers," in 
Proc. 1973 IEEE Ultrasonics Symp., Monterey, California, 
November 1973, pp. 142-144, IEEE Order 73CH0807-8SU. 





Functions and structure of a packet radio 
station· 

by J. BURCHFIEL, R. TOMLINSON and M. BEELER 
Bolt Beranek and Newman 
Cambridge, Massachusetts 

INTRODUCTION 

A packet radio network is a digital broadcast channel, 
fixed and mobile digital terminals which are sources and 
sinks of information, stations which provide centralized 
routing control and interconnections to other networks, 
and repeaters which provide area coverage for mobile ter­
minals by performing a store-and-forward function on the 
radio broadcast channel. An experimental testbed for 
these concepts is. now under construction at the Stanford 
Research Institute, Palo Alto, California to provide experi­
mental validation of theoretical models and simulation 
predictions. 1-6 

Objectives of this technology exploration include low­
cost use of a broadcast band in digital burst mode to sup­
port digital computer and terminal communication, 
demonstration of coexistence with existing broadcast ap­
plications, and secure mobile communications through 
encryption techniques. 

The Packet Radio Network (PRN) concept was initially 
explored in the ALOHA Project at the University of 
Hawaii.2 Such a network is different from point-to-pbint 
packet switched networks in a number of significant areas: 

1. The use of mobile terminals requires facilities for 
tracking and handoff of the terminals from repeater 
to repeater and station to station. 

2. The use of a common br-oadcast channel results in 
collisions due to simultaneous packet transmissions: 
the communications paths require extensive error 
checking and correction to handle the resulting high 
error rate. 

3. The repeater is required to operate unattended in 
relatively remote areas for long periods of time. It 
must therefore be a simple, low-powered component. 
Accordingly, it is not designed to support complex 
dynamic routing algorithms. Instead, such functions 
must be provided in the stations, giving some 
measure of centralized control in the Packet Radio 
Network. 

On the other hand, a PRN has many features and func-

* This research was supported in part by the Advanced Research 
Projects Agency of the Department of Defense under Contract No. 
DAHCl5-71-C-0088. 

245 

tions in common with a point-to-point packet switched net­
work: 

1. The PRN must provide routing which adapts dy­
namically to component failures. 

2. The PRN must support interprocess connections 
which have flow control and error control. 

3. The PRN must have centralized monitoring, debug­
ging, and statistics collection tools to provide 
maintenance and performance eval uation ca­
pabilities. 

The dynamic packet routing capability (packet store­
and-forward) is programmed in the repeaters, with the sta­
tions providing initialization and centralized control of 
parameters for terminal tracking. The programmable ca­
pability of the repeater is provided in its IMP-16 micro­
processor. 

Reliable data transmission between PRN data sources 
and sinks is required in spite of errors and transmission 
'collisions' on the broadcast channel. This is achieved by 
defining a logical entity called a 'connection' between the 
source process and destination process, and performing 
end-to-end error detection and correction over this noisy 
channel. The connection is thus a reliable (error corrected) 
data transmission path. 

The programs for providing interprocess connections 
within the PRN must be programmed into each terminal 
(data connection), each repeater (control connection), and 
each station (data and control connections). 

In addition to the communications support, the terminal 
must also have a terminal handler program which 
manages terminal input and output buffers and performs 
translation of format effector characters as needed. 

The programs which provide centralized monitoring, 
debugging, and statistics collection are located in the sta­
tion, with a small (slave) routine in each repeater. These 
functions are shown in Figure 1. 

The set of functions which appear in common in a sta­
tion, repeater, and terminal are identified in Figure 1 as a 
Packet Radio Unit, or PRU, which has been implemented 
as a standard piece of hardware and software by Collins 
Radio. It will serve standalone as a repeater; addition of 
the station interface hardware and software option 
converts it to a station; addition of the terminal interface 



246 National Computer Conference, 1975 

f----STATION .1- REPEATER !.. TERMINAL----1 

~ --rz--
I PRU I PRU 

I I 
I I 
I I 
I I 
I I 

I I-
I I 

I 
I I 
I I 

~------~ 

Figure I-Functions of a packet radio station, repeater and terminal 

hardware and software option converts it to a terminal. 
The additional functions shown for terminal may either be 
implemented in a separate microprocessor or provided in 
a separate memory partition within the terminal's PRU, 
timesharing its microprocessor for economy. 

Our prototype station has the additional station func­
tions implemented in a Digital Equipment Corp. PDP-ll, 
which is also interfaced to the ARPANET. 

An implementation of the station described in this 
paper will provide control functions for an experimental 
test of packet radio concepts in a testbed packet radio net­
work in the Palo Alto, California area during 1975. 

CONNECTIONS IN THE PACKET RADIO 
NETWORK 

One of the basic facilities required in the PRN is sup­
port of interprocess connections which provide reliable de­
livery of data from a PRN source to a PRN destination. 
Such connections require flow control to prevent a source 
from overloading the network and causing serious conges­
tion. They also require error control because of message 
interference in the shared broadcast communjcation chan­
nel. The error control mechanisms selected are: 

1. A sequence number in each packet to permit detec­
tion of missing or duplicate packets. 

2. An end-to-end positive acknowledgment for packets 
which arrive successfully. 

3. A source timeout which causes periodic retrans­
missions of unacknowledged packets. 

t 

Since most expected uses of the PRN will require bi-di­
rectional communication, the PRN connection is bi-direc­
tional, with flow control and error -control information for 
data transmission in each direction piggybacked onto the 
data flow in the opposite direction. This arrangement is 
depicted in Figure 2. -

Certain applications of packet radio will not require re-

liable delivery of data (e.g., real time seismic or speech 
data), and such devices will not be required to support the 
connection protocol described above. 

Figure 2 shows that multiple packets of data can be in 
transit in both directions at one time. The acknowledg­
ments are cumulative, i.e., an acknowledgment carrying 
serial number 9 acknowledges successful receipt of all 
packets up, to and including packet number 9. It is 
therefore unnecessary to send out an acknowledgment for 
each data packet received; one 'ack' can cover a number 
of data packets. Further, the 'ack' carries such a small 
amount of information, that it can be inserted into the 
header of a data packet travelling in the same direction, 
resulting in very low overhead for this acknowledgment 
mechanism. However, timely acknowledgment is re­
quired to prevent source timeout and retransmission, so if 
there is no data traffic which can be used in this piggy­
back. fashion for 100 milliseconds or so, a separate 'ack' 
packet must be generated and sent. 

The status information which must be maintained at 
each end of the connection is minimal: four sequence 
numbers. The values of the sequence numbers at the two 
ends differ by the traffic currently 'in the pipeline'. Flow 
control is established by the convention that the sender 
can only send up to N packets ahead of the last packet 
which was acknowledged. Equivalently, a source may not 
have more than N packets 'in the pipeline' at one time. To 
keep the repeater code as simple as possible, N should be 
equal to one (packet-at-a-time) for repeater control connec­
tions. This protocol is a simplified subset of the protocol 
developed by Cerf and Kahn7 for internetwork communi­
cations. 

The protocols of the Packet Radio Network are layered, 
or hierarchical. The program which deals with control in­
formation at level M passes control and data for all levels 
greater than M as transparent data. Conversely, the 
program which deals with control at level M does not see 
control information at levels less than M; it is inserted by 
lower level programs on transmission, and stripped off by 
lower level programs on reception. 

Figure 3 shows this layering explicitly: the connection 
protocol described above is the level 2 protocol, based on 
the level 1 routing protocol which controls the PRN store­
and-forward routing for the packet. The routing protocol is 
itself based on a level 0 'Radio Hop' protocol which 
provides broadcast synchronization and error detection for 
transmission of the packet from one PR U to the next. 

A STATUS: 

SENT ~ 

DATA 13A ACK SA 
ACK 58 DATA 56 

6 STATUS: 

SENT ~ 

DATA 76 ACK 46 
ACK lOA DATA lOA 

Figure 2-Full duplex, point-to-point connection 



The sequence numbers shown were discussed pre­
viously. The 'sequence control' field is used to synchronize 
sequence numbers when a connection is established, and 
to signal termination of the connection. The 'function 
fields' provides an address: within a PRU, it selects the 
control process, the debugging process, or the measure­
ment process. 

STATION CONTROL FUNCTIONS 

The control functions performed by a station include 
initialization of the PRN, dynamic routing changes, and 
multi-station coordination. Initialization of the PRN in­
cludes the following steps: 

1. Measurement of RF propagation connectivity 
between all stations and repeaters. This measure­
ment data is used to construct the connectivity ma­
trix: this is a matrix of binary values which indicate 
the radio units which are capable of direct communi­
cation with each other. 

2. Configuring the PRN by loading each repeater with 
routing parameters which control the packet store­
and-forward program. These parameters specify 
forwarding of packets [in the direction of minimum 
distance] to the next repeater within "earshot". 

3. Establishing control, debugging, and measurement 
connections from the station to each repeater that it 
controls. These connections remain open to perform 
the indicated functions as long as the station and 
repeater continue to function normally. 

The initialization algorithm must be able to bring up the 
network from a cold start, with no information in any sta­
tion. It must permit any element to enter the net'at any 
time on its own initiative, e.g., when a terminal is powered 
up the algorithm must connect it into the net. This al­
gorithm should also provide a continuous monitor on con­
nectedness to identify component failures. Finally, it 
should be quick, accurate and use minimum traffic. 

The proposed procedure to meet these requirements is 
as follows: 

1. Repeaters have two states: labelled (containing rout­
ing parameters) and unlabelled. 

2. Each PRU (station, repeater, terminal) has a unique, 
hardwired LD. 

3. All repeaters send "search" packets at random times 
with some average rat~ dependent on whether or not 
the repeater is labelled. 

4. A search packet states whether or not the repeater is 
labelled, gives its repeater LD., and the LD. of the 
station which labelled it. 

5. All labelled repeaters that hear a search packet on 
the first hop forward it via their established route to 
every station that has labelled the receiving repeater. 
All unlabelled repeaters ignore search packets. 

6. The station uses search packets arriving to generate 

Functions and Structure of a Packet Radio Station 247 

LEVEL 0 

LEVEL 1 

LEVEL 2 

17~~1 

1

5

/ 1 
I FUNCTION 1 SEQ CONTROLIACK SEQ 1 DATA SEQ ~ 

/ 1 
I DATA 

Figure 3-Protocols for support of a PRN connection 

RADIO HOP 

ROUTING 

CONNECTION 

the connectivity matrix, and relabel (or initially 
label) the net. 

7. On initial entry by a station into an unlabelled net: 
a. The station listens for at least one search packet. 
b. If it hears none it should try to stimulate receivers 

in earshot. 
c. The first search packet heard is labelled as soon 

as heard. 
d. The next search packet may come through the 

labelled PRU or directly or both. The station la­
bels the new PRU and notes whether the first 
PRU could hear it, and starts the connectivity 
matrix. 

e. The station continues to label or relabel as 
repeaters report in. 

8. If an ability to trigger search packets is available, the 
process can be speeded up. This should allow stations 
entering a labelled net (one where another station is 
operating) to do so more rapidly. Repeaters should 
also have ability to trigger local repeaters, or to get 
local repeaters to bounce back search packets. This 
will occur in the above process for all labelled local 
repeaters, but requires special consideration for 
unlabelled PRU's. 

Once the station has labelled all PRU's and established 
connections to them, the information for maintaining 
these connections is entered into the station's connection 
table. This contains the status information described 
above for handling the connection protocol. As terminals 
come "on-line" within the PRN, each terminal is also 
given a connection to its controlling station, and this in­
formation is added to the station's connection table. 

Dynamic routing changes are performed locally within 
the PRN by permitting a repeater to specify an alternate 
address for the next hop after some number of unsuccess­
ful attempts to forward the packet along its specified 
route. This capability provides a localized terminal track­
ing facility which will hand off a mobile terminal from one 
repeater to another. 

A less dynamic but more global routing change is re­
quired when a repeater or station fails: persistent al-



248 National Computer Conference, 1975 

ternate routing of packets signals this failure, and the sta­
tion detecting it must reconfigure the PRN to route all 
traffic around the failed element. The station performs 
this reconfiguration by updating the connectivity matrix 
to indicate that the failed element is incommunicado; by 
recomputing minimum distance routes to the elements 
which are still active; and finally, by updating repeater 
routing parameters to route packets along these new 
routes. 

The third station control function is multi-station coor­
dination. This will be supported by PRN connections 
between stations and a station-station protocol. In some 
cases, when both stations are connected to a point-to-point 
network, it may be more efficient to use this network for 
station coordination rather than the PRN. This coordina­
tion is required in two cases: 

1. Hand off of a mobile terminal as it passes out of the 
area controlled by one station and into the area con­
trolled by another station. 

2. An alternate station assuming all communications 
responsibilities for a station which fails. 

These applications will require a distributed data base 
stored redundantly at a number of stations. The data will 
give status information on each active connection, and will 
be updated often enough that little information will be lost 
in the event of a station failure. Some of the PRN termi­
nals may be accessing host resources in the ARPANET: 
an ARPANET reconnection protocol will be defined to 
permit switching the ARPANET portion of the terminal 
connection from the failed station to the backup station. 
These complexities are not being addressed in the initial 
experimental implementation, but they will be vital relia­
bility measures in an operational packet radio network. 
Many of these issues of reliability achieved through 
maintenance of redundant distributed data bases have 
been explored in the RSEXEC (Resource Sharing Execu­
tive) distributed computation testbed.1o 

A second phase of the experimental program being 
conducted at the Packet Radio testbed network at Palo 
Alto will demonstrate the concepts of redirecting traffic 
from a failed station to an operational station, and the 
backup of resource allocation information. 

STATION DEBUGGING AND STATISTICS 
FUNCTIONS 

A level-3 debugging protocol has been defined which 
supports debugging of remote PRU's from terminals at­
tached to a central station. The debugging functions in­
clude examining and depositing words into the PR U 
memory, and setting "mousetraps" which send an error 
code to the controlling station when some anomalous con­
dition occurs, e.g., hardware failure. These functions make 
it possible to do centralized software maintenance of re­
mote, unattended repeaters. The maintenance terminal of 

the station will normally be attended by an operator or 
system programmer. 

A similar mechanism permits centralized collection of 
traffic statistics, both through examination of counters in 
PR U memory and through centralized reception of special 
status conditions such as "trace packets" moving through 
the network. Again, it was essential to centralize this func­
tion for remote, unattended repeaters. 

Once the station has collected a set of traffic statistics, it 
will normally forward these measurements to a service 
host for detailed statistical analysis, logging and plotting. 

STATION SUPPORT OF NONENCRYPTED 
TERMINALS 

Some PRN applications will require secure or private 
communications, i.e., end-to-end encryption between a ter­
minal and the service host which it is accessing. Assuming 
that the station is merely an intermediate node in the path 
from terminal to host, the station must be completely 
transparent to the scrambled data. (Any modification of 
the data could make it impossible to unscramble.) 

On the other hand, some PRN applications do not re­
quire encrypted terminals: for these applications, the sta­
tion can take over part of the terminal service function 
and simplify the terminals. One example of this is the 
TELNET RCTE option. [Reference 9] TELNET is the pro­
tocol which translates a variety of different physical termi­
nals into a single standard logical terminal called a network 
virtual terminal: this conversion may involve both code 
conversion and interpretation of format effector characters 
(tab, carriage return, etc.). This concept provides and 
extremely valuable simplification because previously N*M 
conversion routines were required to interface N terminals 
to M systems. Using the network virtual terminal concept, 
only N + M conversion routines are required. 

The RCTE option of TELNET is Remote Controlled 
Transmission and Echoing. It permits character echoing 
for a full duplex connection to be performed local to the 
terminal (eliminating annoying echoing delays) under con­
trol of the remote service host, which may, for example, 
suppress echoing of typed-in passwords. 

The TELNET RCTE protocol option may be too com­
plex to incorporate into the simplest unencrypted PRN 
terminal. In this case, the station can handle the protocol 
conversation with the remote server on the terminal's be­
half. Of course, the station cannot perform this service for 
encrypted terminals. 

The TELNET process in the station may also be used to 
specify and set up connections to remote server hosts via a 
gateway connection. 

INTERNETWORKING APPLICATIONS 

So far, we have focussed on the attachment of terminals 
to a PRN. It is also reasonable to attach service host com­
puters to a PRN, particularly when the network may be 



deployed in the absence of other communications net­
works, (e.g., for fleet communications). Such a host at­
taches to the PRN as a multiplexed set of the standard 
PRN connections described earlier. 

When some other network is present, it is important to 
provide connections between the terminals and hosts of 
the PRN and the terminals and hosts of the other network. 
This is being done for the ARPANET in two ways: 

1. For communication with ARPANET hosts which 
support a protocol congruent with the PRN connec­
tion protocol (the Cerf-Kahn protocol mentioned pre­
viously qualifies here), the station functions as an 
extremely simple gateway: arriving packets are 
simply forwarded into the other network after their 
header format is converted to that of the destination 
network. In this case, the station does not detect 
missing or duplicate packets, and does not reorder 
packets which arrive out of order; it is merely a packet 
reformatting and readdressing service. 

2. The second approach will be conversion between the 
host-host protocols of the two networks. In particular, 
one connection will be established from a PRN device 
to a station using the PRN connection protocol 
described in an earlier section. Another full-duplex 
connection will be established from the station to an 
ARPANET host using the current ARPANET host­
host protocol. Data arriving from either of these con­
nections will be forwarded through the other connec­
tion. 

The first approach has four obvious advantages beyond 
its simplicity: first, error control is truly end-to-end 
instead of two path (PRN device-to-station, station-to-AR­
PANET device). Failure of the station will not cause data 
loss with this approach though it would with the two-path 
approach. . 

The second advantage of this approach is dynamic 
rerouting after a station failure. Since the station is merely 
doing packet readdressing, any other station attached to 
the PRN and the ARPANET can do this function equally 
well; no connection status information is kept in the sta­
tion. Recovery and continued operation of a connection 
after the station fails merely requires redirecting the 
packet traffic to another gateway station. 

The third advantage of the "simple gateway" approach 
is that the gateway does not introduce additional delay 
into t~e end-to-end path by forcing reassembly and 
reordermg of packets at an intermediate location (the sta­
tion). 
. The ~ourth advantage of the "simple gateway" approach 
IS that It supports end-to-end encryption of all data except 
the address headers. This can provide security against data 
disclosure, but no security against traffic pattern and 
volume analysis. The second gateway approach would re­
quire a secure station to decrypt and re-encrypt data flow­
ing through it. 

Functions and Structure of a Packet Radio Station 249 

UNIBUS 
r-----------~ ~--------~ r---------~ 

R.F. 

Figure 4-Station hardware 

ARPANET 
IMP 

On the other hand, the second approach enjoys two ad­
vantages: first, there is independent flow control on the 
two connections, so 'acks' for PRN packets are returned 
from the station (about 200 msec) rather than from the re­
mote host (about 1 sec). This faster turn-around of ac­
knowledgments ~ermits shorter source timeouts and 
more rapid recovery from lost packets. 

The second advantage of this approach is that it permits 
the utilization of completely different protocols which are 
currently operational within the two networks, as long as 
the two protocols are functionally equivalent and a map­
ping exists between the two. This applies not only to host­
host protocol, but also to higher level protocols such as 
TELNET, file transfer, and remote job entry. All that is 
required is a conversion program for the high-level pro­
tocol of interest, interposed between the PRN connection 
and the ARPANET connection. 

The experiments planned for the packet radio testbed 
system will explore the tradeoffs and performance ad­
vantages of these two different gateway concepts in detail. 

STATION STRUCTURE 

Figure 4 shows the hardware organization of our pro­
totype station: it is a PDP-II processor interfaced to a 
packet radio unit. In the initial tests, it will also be 
connected as a gateway to the ARPANET. The hardware 
interface between the PDP-II and the PRU consists of a 
pair of memory channels on each end, permitting fulldu­
plex DMA packet transfers. 

The software organization inside the PDP-ll is shown in 
Figure 5. We selected the ELF operating system* as the 
basic environment. This is a time-sharing operating 
system written in PDP-ll assembly language. Twomodifi­
cations were required to ELF to support the packet radio 
application: first, the PRU was added as a bidirectional 
ELF device. This required addition of an interrupt service 
routine for the PRU interface hardware, and send and 

* Developed by the Speech Communication Research Lab., Santa Bar­
bara, California. 



250 National Computer Conference, 1975 

KEY: 
PRN = PACKET RADIO NETNORK 

ETE = END-TO-END 

1-0 = INPUT/OUTPUT 

NVT = NETI,ORK VIRTUAL TERMINAL 

IPP = INTERPROCESS PORT 

PRU = PACKET RADIO UNIT 

Figure 5-Station software 

receive subroutines within the ELF 1-0 multiplexor 
module. These routines were coded in assembly language 
and integrated into the ELF operating system. The second 
change required to ELF was the 'Network Virtual Ter­
minal' support package which permits PRN terminals to 
appear identical to local ELF terminals (attached to the 
PDP-ll) by use of a connection to the PRN terminal, a 
protocol-handling PRN TELNET process, and ELF's in­
terprocess communication facility. These routines were 
also coded in PDP-II assembly language and integrated 
into ELF. The use of internetwork protocoF will permit 
PRN terminals to access services of hosts on other net­
works. 

It was possible to do the remaining packet radio 
software as independent user applications processes which 
execute under ELF. Accordingly, they were programmed 
in BCPL (Basic Compatible Programming Language) to 
obtain all the clarity, debugging, maintenance, and exten­
sibility advantages of high-level programming. These 
modules are not part of ELF, and they are not integrated 
into the operating system. 

First, a pair of processes was created which send and 
receive packets to and from the PRU device previously in­
tegrated into ELF. The send process and receive process 
share a common address space which contains the connec­
tion table: this holds all status information for every con­
nection being maintained by the station. These two 
processes are responsible for handling the PRN connection 
protocol described previously. 

Within the same program module is a subroutine for 
creating a connection. This subroutine takes the address of 
the destination PRN device, consults the radio propaga­
tion connectivity matrix, and constructs the route which 
should prefix all packets sent to the specified destination. 
This route is stored as part of the connection status in the 
connection table when the connection is established. 

The control process is another independent process for 
initializing the network and causing dynamic routing 
changes in response to changes in repeater-terminal propa­
gation connectivity or repeater failures. It is responsible 

for keeping the propagation connectivity matrix up-to­
date. This matrix is shared with the connection initializa­
tion routines which find a route to the requested device. 

In the PRN initialization procedure, the control process 
calls on the connection module to establish a control con­
nection to the station's PRU. It sends commands over this 
connection to trigger connectivity measurements (explora­
tory packets which request answerback from stations and 
repeaters within earshot). As measurement information 
comes back on this connection, the control process fills in 
entries in the connectivity matrix~ and establishes control 
connections to the PRU's of the newly-discovered devices. 
This procedure is iterated until every station and repeater 
in the area has been configured into the network. At this 
point, the control process has an open control connection 
to every other station and repeater in the PRN. 

When any repeater detects a significant routing event, 
e.g., failure of some previously established route or a 
request from a terminal to enter the network, the repeater 
forwards this information over its control connection to 
the nearest station. When a terminal comes on-line, the 
station establishes a data connection to it and provides an 
'information service' to assist in completing the connection 
to the destination device, which may be either in the PRN 
or in the ARPANET. When repeater connectivity changes 
the station will update the connectivity matrix and recon­
figure the network to bypass the failed link by modifying 
the routing control parameters in the effected repeaters. 

The debug program is another independent process. On 
request from the maintenance terminal, it calls on the con­
nection module to open a debugging connection to the 
PRU of interest. The debugger sends commands over this 
connection to examine or deposit words in thePRU's 
microprocessor memory, and the PRU responds with a 
positive acknowledgment for each command. There are 
also commands for setting traps on anomalous program 
conditions. When one of these conditions is encountered 
(assuming the PRU is still operational) it sends the appro­
priate trap code over the debugging connection to the 
debugger. This types out on the controlling terminal, 
which is presumably attended by a system programmer or 
operator. 

The statistics collection module is another independent 
process which gathers data both by examining PRU 
memory, and by receiving statistics trap conditions spon­
taneously emitted by PRU's. This operation parallels the 
operation of the debugger described above. 

Finally, the PRN TELNET process performs the second 
type of gateway function described above: conversion 
between the PRN connection protocol and the ARPANET 
host-host protocol. Terminals on the PRN appear identical 
to the terminals attached to the PDP-II, and are able to 
access remote ARPANET service hosts in the same way. 

CONCLUSION 

Successful demonstration of the packet radio concepts will 
lead to new digital communications services for mobile ter-



minals which are reliable, difficult to detect or jam, and 
which make efficient use of the electromagnetic spectrum 
by providing coexistence with current uses of the 
spectrum. Possible applications include both command 
and control communications and secure digital voice. 

The system structure described above will provide re­
liable, efficient and maintainable support for packet radio 
network communications. 

REFERENCES 

1. Kahn, R. E., The Organization of Computer Resources into a Packet 
Radio Network, these proceedings. 

2. Abramson, N., R. Binder, F. Kuo and W. Okinaka, ALOHA Packet 
"Broadcasting, A Retrospect," these proceedings. 

Functions and Structure of a Packet Radio Station 251 

3. Garrett and S. Fralick, "A Technology for Packet Radio," these 
proceedings. 

4. Kleinrock, L. and F. Tobagi, "Random Access Techniques for Packet 
Radio Networks," these proceedings. 

5. Frank, H., R. Van Slyke and 1. Gitman, "Packet Radio Network 
Design, System Considerations," these proceedings. 

6. Fralick, S., D. Brandin, F. Kuo and Harrison, "Digital Portable Ter­
minals," these proceedings. 

7. Cerf, V. and R. Kahn, "A Protocol for Packet Network Intercommuni­
cation," IEEE Trans. Comm., May 1974. 

8. Crocker, S., J. Heafner, R. Metcalfe and J. Postel, "Function Oriented 
Protocols for the ARPA Computer Network," AFIPS Conference 
Proceedings, Vol. 40. 

9. Crocker, D. and J. Postel, Remote Controlled Transmission and Echo­
ing Telenet option. RFC #581, Network Information Center. 

10. Thomas, R. H., "A Resource Sharing Executive for the ARPANET," 
AFIPS Conference Proceedings, Vol. 42. 





Digital terminals for packet broadcasting* 

by STANLEY C. FRALICK and DAVID H. BRANDIN 
Stanford Research Institute 
Stanford, California 

and 

FRANKLIN F. KUO and CHRISTOPHER HARRISON 
University of Hawaii 
Honolulu, Hawaii 

INTRODUCTION 

Roberts illustrated the potential use of packet switching 
technology by postulating a personal computer terminal 
using radio broadcasting to connect the user to a com­
puter.1 The proposed terminal had a unique five-finger 
keyboard and plasma-discharge display. The keyboard 
would generate and send characters, one at a time, to the 
computer using 64 bit packets per character. The com­
puter could convert these to a 35-bit (5 X 7) pattern and 
retransmit a 144-bit packet to the terminal to control a 5 X 
7 dot matrix character. Thus, the terminal needed no 
character generation logic and only a minimum of digital 
control logic to interface keyboard and display to a radio 
modem. This was a reasonable concept insofar as the ter­
minal was intended to operate within a short distance of 
the computer to accommodate low-power radios, and so 
long as only a few terminals were in use. 

Roberts assumed a random access packet broadcasting 
transmission mode formerly developed by Abramson2 and 
now known as the pure ALOHA technique. Under a pure 
ALOHA mode of operation, packets are sent by the termi- . 
nals to the central station computer(s) in an 
unsynchronized manner. In this scheme the lack of posi­
tive acknowledgments (POSACK) controls retransmis­
sions, as necessary. Using the pure ALOHA technique 
with a 10-character per second terminal and assuming 64-
bits per character (a peak data rate of 640 bits per 
second), it can be shown that a 100 kilobits per second 
channel will simultaneously support only 26 terminals.2 

To accommodate more terminals, higher bit-rate channels 
are needed, along with a more efficient packet structure. 
For example, with' Robert's proposed packet structure, 
modified by sending 10 characters instead of one 
character per packet, the same channel will support twice 
as many terminals. 

Higher bit-rates require more transmitter power for the 

* This work was supported by the Advanced Research Projects Agency 
on Contract No. DAHC 15-73-C-0187 and Contract No. NAS2-6700. 

253 

same range. Greater efficiency requires more memory and 
logic in the terminal. It has been found that the size, 
weight, and power consumption of the radio transmitter 
will dominate the terminal at high bit-rates unless the ter­
minal range is small. To obtain larger coverage areas, a 
network of radio repeaters is needed. Because of the 
random nature of propagation, repeaters must have over­
lapping coverage for reliability. Any repeater network 
generates a good deal of overhead traffic in the form of ac­
knowledgment and duplicate messages, and some form of 
network protocol for routing and flow control is needed. 
Fortunately, the implication of this protocol is readily ac­
complished by distributing the network control functions 
in the repeaters. 

One design for such a network, currently in the experi­
mental stage, indicates that a microprocessor with 3 J,LS 

cycle time and 3K 16-bit words of memory will supply the 
needed control functions at each repeater to support a 
100 kbs throughput.3 However, this is only a preliminary 
estimate and subsequent experiments may suggest more or 
less computing capacity. 

Terminals interfaced to this network must also have the 
capability to perform the packet formatting and network 
protocol functions. It has been found that terminals with 
microprocessors are generally more cost-effective in terms 
of size, weight, and power consumption than terminals 
without central processor unit (CPU) power. Such hard­
wired units tend to use radio channel resources ineffi­
ciently. 

Several years have elapsed since the Robert's paper, 
and microcomputer technology has emerged from its in­
fancy. Because of this single major innovation, the outlook 
for a packet radio terminal has radically changed. In this 
paper we reexamine, in light of today's technology and the 
requirements imposed by packet radio development ef­
forts,3-S specifications and design issues for a digital ter­
minal for packet broadcasting. We also discuss how these 
issues have influenced the design and implementation of 
two terminal prototypes fabricated at the University of 
Hawaii and SRI. 



254 National Computer Conference, 1975 

\/ 

RADIO CO:MMUNICATIONS 

• TRANSCEIVER 

• MODEM 

• CODEC 

NETWORK CONfROL LOGIC 

• ACCESS MODE 

• PROTOCOL 

• BUFFERS 

INPUT / CUTror 

KEYBOARD DISPLAY 

Figure I-Functional diagram of radio terminal 

FUNCTIONAL ORGANIZATION OF RADIO 
TERMINALS 

Figure 1 is a functional diagram of a radio terminal. It 
is shown in three parts: radio communications (RC), net­
work access and control logic [network control logic (NL)], 
and input/output (I/O). We are accustomed to thinking of 
terminals primarily as an I/O interface device because in 
a wired· network the 110 is usually packaged separately 
and separated from the NL by very simple communica­
tions devices and long wires. However, in a radio network, 
the NL and RC devices must be physically adjacent to the 
IIO,or the mobility advantage of the radio will be lost. 
Hence, a radio terminal must be approached from a new 
point of view; it must contain a share of the NL. 

The communications package in a terminal containing 
transceiver, modem, and codec is best designed for a 
specific network, since frequency, modulation, and coding 
may be different in each network. Thus, a single design 
that is able to operate in several networks would be very 
inefficient. In short, the RC package is network-specific 
and should be hard-wired. 

On the other hand, network access and control· logic are 
likely to be similar enough from one packet network to 
another, in terms of logical functions and required 
throughput, so that such functions may be efficiently im­
plemented using a microprocessor. In fact, since a few of 
the net-control functions overlap in time, time-sharing a 
microprocessor CPU and memory may prove the most ef­
ficient approach.6 

The I/O devices are terminal-specific and may be 
physically integrated with NL or separately packaged. If 
separately packaged, then standard I/O devices such as 
CRT or TTY wired-net terminals might be used; however, 
since no small portable 110 terminals are available, this 
approach must sacrifice much in mobility. 

Thus, four terminal packaging configurations are 
possible: 

(1) Separately packaged RC, NL, I/O 
(2) Integrated RC, NL with separate I/O 
(3) Integrated NL, I/O with separate RC 
(4) Integrated RC, NL, I/O. 

Each configuration has advantages and disadvantages, 
and each has been built for experimental purposes to 
verify these. We discuss the impact of these configurations 
on hardware and software design in the next section. 

TERMINALS 

ALOHA system terminal control unit 

The ALOHA system2 terminal control unit (TCU) 
consists of UHF antenna, transceiver, modem, and buffer. 
The first versions of the ALOHA TCU were packaged in 
configuration (1) of the previous section (i.e., RC, NL, and 



I/O were packaged separately) and the total cost was 
$8,000 to $10,000. The next version was packaged in Con­
figuration (2)-integrated RC, NL with separate 1/ O. 
These first versions used hard-wired logic for net-control 
functions,. and the protocols, once set, could not be easily 
altered. 

The most recent version of the TCU, called the In­
tegrated Control Unit (lCU) uses INTEL 8008 and 8080 
microcomputers. The ICU is completely programmable 
and its flexibility enables the use of a variety of different 
transmission protocols including variable length packets 
and character-by-character transmissions. 

A block diagram of an ICU with an INTEL 8080 
microcomputer is shown in Figure 2. The hard-wired inter­
faces establish synchronization and transmit bytes after 
converting them to bit serial form. The receiver interface 
performs a serial to parallel conversion and performs byte 
synchronization. The functions of the 8080 CPU which are 
performed in software are: 

• Packet receive, which checks the header and text 
parity of an incoming packet 

• Parity generation, which generates parity for both the 
header and text of an outgoing packet 

• Packet transmit, which formats header, adds parity, 
sends the packet to the radio for transmission, and 
waits for ACK (acknowledgment) to be posted by the 
RCV (receive) routine. 

If POSACK is not received after a certain preset interval, 
it sends the same packet to the radio for retransmission. 
After "n" tries, the routine signals a "failure to transmit." 
The software also contains a CRT or TTY I/O routine. 
The state transition diagram of an ICU program is given 
in Figure 3. 

The evolutionary process of designing the various ver­
sions of the ALOHA TCUs has indicated that unless speed 
considerations dictate hard-wired logic, it is always 
preferable to use programmable logic. The added ad­
vantages of flexibility, ease of design, speed in imple­
mentation, and lower development costs that micro­
processors provide clearly outweigh the speed advantages 
of hard-wired logic. One particular exception to this rule is 

Figure 2-ICU block diagram 

Digital Terminals for Packet Broadcasting 255 

PACKJ;"]' TRANSMISSION PROCESS PACKET RECEPTION PROCESS 

Figure 3-State transition diagram 

the case of the parity. encoder / decoder which needs to be 
implemented in hardware because the present-day micro­
processors are not fast enough to meet the requirements. 

Suitcase packet radio terminal 

A different portable packet radio terminal (PRT) has 
been developed at SRI in conjunction with some experi-

BUS CONTROLLER 

CONTROL 
TIMING AND 

PRIORITY 

Figure 4-Terminal organization 



256 National Computer Conference, 1975 

mental traffic studies for a packet radio project. This ter­
minal is packaged in a small suitcase with RC, NL, and 
I/O integrated. Parts cost approximately $5,000. 

The general organization of the terminal is illustrated in 
Figure 4. Central to the terminal is the system data bus of 
the National IMP-16L Microprocessor. The CPU, pe­
ripheral controller, and modem controller all communi­
cate with each other and with. the main memory via the 
bus. The peripheral controller contains a buffer memory 
of 256 characters and controls operation of a 72-key ASCII 
encoded keyboard, an 80-character LED display organized 
in four 20-character rows, and a 20-character/line printer. 
The modem controller operates the modem and radio to 
receive and transmit packets. 

In use, the operator generates a message on the key­
board in a local mode. When the carriage return key is 
stroked, the CPU automatically formats the message into 
a packet, places the packet in a transmit buffer, and 
passes control to the modem controller. The modem con­
troller fetches the packet, generates parity bits, and 
transmits the packet. If the message is successfully 
received at the central computing facility, an ACK packet 
is transmitted to the terminal. The modem controller 
places the ACK, as well as all received traffic, in a receive 
buffer. The CPU analyzes the packet and takes the 
necessary action. It may retransmit when no ACK is 
received, or it may abort, depending on operator-specified 
parameters, and so forth. The user may specify whether 
received traffic is to be displayed, printed, or both. 

Several lessons have been learned in the development of 
this terminal. In particular, we found that off-the-shelf 
microprocessor systems are not densely packaged, do not 
use power conservatively, and are difficult to interface. 
Each observation suggests that off-the-shelf micro­
processor systems are not optimally suited for future ter­
minals so that the next generation should emphasize the 
use of arithmetic logic unit (ALU) chips combined with 
microcoded read only memory (ROM) chips to tailor a 
microprocessor to the packet terminal. 

As noted later, microprocessor technology is changing so 
rapidly that new devices better suited to the needs of a 
packet radio terminal may ultimately be available. At that 
time the flexibility of an off-the-shelf device may cause a 
change in design philosophy. 

We have found that the microprocessor component 
should have both a bit-serial interface to exchange packets 
with the RC component (and characters with standard 
TTY type I/O devices) and a byte-parallel interface to ex­
change characters with integrated I/O devices .. These two 
interfaces should be standardized for all broadcast packet 
networks so that terminals can be interoperated by chang­
ing the microcoded software and the RC component. 

PROTOCOL IMPLICATIONS 

Demands 

Communications protocols, which are essential for an 
orderly flow of information to and from the terminal, 

place a heavy burden on digital terminals. Introducing a 
digital radio broadcast system places even greater de­
mands on the logical capability of the terminal. This is 
primarily because terminals must accept traffic as it is of­
fered; that is, there is no significant memory capability in 
a radio channel. 

Because traffic must be accepted in an absolute on-line 
real-time sense, the terminal must be carefully designed 
around the network protocol. Thus, data rates and packet 
formats become crucial design elements. From a user 
point of view, it is essential that the radio system be 
transparent, that is, the user must view his terminal as a 
conventional time-sharing terminal. Thus, power / on­
power / off functions must automatically introduce the ter­
minal into the radio network and correspondingly indicate 
the terminal's departure. Acknowledgments, error control, 
retransmissions, and a host of other protocol issues must 
be imbedded in the terminal and invoked automatically. 

In a sense, the protocol issues pervade the entire design 
of the terminal. Because buffering is related to ac­
knowledgment procedures and utlimately to a display (or 
output) philosophy, it is apparent that protocol affects the 
organization and control of the terminal's peripherals. 
There are also impacts in the area of interrupt structure, 
keyboard interface, and so forth. 

Protocol 

The key protocol issues which must be addressed in a ter­
minal include: 

• Validation of ID 
• ACK/text discrimination 
• Duplicate packet rejection 
• Error control 
• Text handling (buffering) 
• Transmission and retransmission logic 
• Encrypting of text. 

The issues of packet routing through a network of radio 
relays have considerable impact on terminal logic;4 
however, these issues are considered outside the scope of 
this paper. 

To illustrate the protocol aspects of terminal organiza­
tion, it is useful to examine an exemplary digital packet 
radio format. Figure 5 represents a typical simplified 
ALOHA format. 

The ALOHA system staff have found that three general 

Propagation ---_-!~. 

TEXT I PARITY TEXT 

16 320 or 640 32 16 11 10 9 8 
(40 or 80 characters) 

14 ACK Packet 

Figure 5-Typical packet format 



packet formats meet their needs~ These include an ACK 
packet (header data only) and two text packets (either 40 
or 80 characters). 

Inasmuch as a radio transceiver has no way of deter­
mining a priori what type of packet is being received, it is 
clear that it must make such a determination on the fly. 
Therefore, certain fields in the packet header must be 
searched. 

The first logical check performed is to analyze the ID 
field to ascertain whether the terminal is the proper desti­
nation. Presuming the packet is directed to this terminal, 
the processsing continues. Otherwise, the receiver is reset. 
Parity checks are ordinarily conducted in hardware in 
parallel with the software-controlled tests of header fields. 
(This discussion assumes the packet was received with no 
errors.) 

Given a valid ID, the terminal must then check the type 
of packet. In our example, this means examining Bit No. 
10. If the bit is set, indicating an ACK packet, the ter­
minal must check its transmission buffer to verify whether 
a recently sent packet is awaiting acknowledgment. If so, 
the transmission buffer and the receive buffer occupied by 
the ACK are released. 

If the packet is not an ACK, it is assumed to be text (in 
our example). In this case, the ALT Bit (Bit No. 11) is 
checked to reduce the probability of receiving the same 
packet twice since this bit is complemented every time a 
new packet is sent to the terminal. If the terminal fails to 
acknowledge receipt (or the ACK is not received at the 
sender), the packet is resent with the AL T bit unchanged. 
In the case of a duplicate packet, it is ignored; the receive 
buffer is released, and the ACK transmission logic is 
exercised again. Note that this particular discussion is 
idealized-the ALOHA terminals do not currently ac­
knowledge received traffic and this discussion applies only 
to traffic ·received at the station. 

Assuming a valid text packet is arriving, the terminal 
then checks Bit No. 9 to determine whether it is a 40- or 
80-character packet. This usually requires setting a 
hardware counter in the modem interface so that text 
parity is checked properly. 

Presuming all of this logic is satisfied, the terminal is 
then free to output the packet at its leisure. 

In our particular example, it is possible for several er­
rors to occur. A packet may be received with parity errors 
in either the header, text, or both. These errors can be 
monitored or ignored since the terminal has the option of 
accepting the packet or immediately resetting. From .an 
experimental point of view, it makes sense to monitor er­
rors since the channel is effectively blocked for the packet 
duration. 

If errors are monitored, the station is frequently used to 
send control packets to each terminal for error counts to 
be broadcast back to the station. 

Transmission logic for a broadcast channel is limited 
but not particularly complex. Protocol demands that a 
transmitted packet be saved until an ACK is received 
from the destination. If an ACK is not received in a prede­
termined time, the typical protocol dictates retransmission 

Digital Terminals for Packet Broadcasting 257 

in a pseudo-random time interval. Pseudo-random times 
are selected to reduce the probability of several terminals 
jamming each other repeatedly while competing for the 
channel. In the ALOHA system, a packet may be 
retransmitted up to five to eight times before the terminal 
gives up and notifies the user. Inasmuch as most time­
sharing system users require their traffic to arrive in se­
quence, it is common to have only one or two transmission 
buffers and to lock the keyboard when the buffers are 
filled. 

Software 

Terminal control 

Terminal control is readily exercised through a micro­
processor supervisor or executive program. Because of 
the real-time demand of the radio channels and the less 
constrained output demands, it is convenient to think of 
the software as being organized in a foreground and back­
ground mode. 

In such a "multiprogrammed environment," the fore­
ground partition is interrupt driven to accommodate the 
modem interface and its real-time demands. Such a parti­
tion must have first priority and if the software is or­
ganized properly, the response time to interrupts can 
satisfy most data rate requirements. 

In our terminal, the data transfer between modem inter­
face and memory is performed under DMA control. Since 
data are transferred on a word by word basis, the 
processor has more time to react, and even slow micro­
processors can accommodate large rates (in excess of 100 
kbs). 

The foreground partition is generally devoted to the 
receive logic and receive buffer control. Certain modem­
dependent transmit code must also reside in the fore­
ground; however, the general transmit logic (e.g., retrans­
mission timing, and so on) is less time dependent and 
therefore can reside in the background partition. 

The background partition ordinarily contains the ter­
minal's peripheral control routines. Such activities as dis­
play, edit, format, print (if appropriate), keyboard inter­
face, and so forth, are monitored in the background. Data 
transfer between peripherals and the CPU is most con­
veniently handled under CPU control so that the 
hardware interface is simpler and standard programming 
techniques can be used. 

Interrupt polling 

The interrupt structures and options provided by micro­
processor vendors are varied. In the suitcase terminal we 
have used a National Semiconductor IMP l6/L CPU. 
This machine has four interrupt levels. One level is vec­
tored and is an obvious choice for responding to the 
modem interface. 



258 National Computer Conference, 1975 

Software development 

Software development for digital radio terminals is 
limited by the constraints inherent in microprocessors. 
There are not only limitations in the instruction sets but 
also memory problems, speed conflicts, and poor (in 
general) programming aids. 

Programming aids 

In practice, microprocessor vendors provide both 
resident-assemblers and cross-assemblers. In the IMP-16L 
case, National Semiconductor provides a cross-assembler 
for the IBM 360. INTEL provides an algebraic processor 
in addition to assemblers. 

The National Semiconductor resident-assembler is pro­
vided in object form on paper tape. Approximately 25 
minutes are required to load the assembler. As a three­
pass assembler, it requires entering the source code three 
times. An inherent disadvantage in the National Semicon­
ductor software is the inability to load the loader and 
assembler in memory simultaneously. Thus, the constant 
loading and reloading compounds the debugging problems 
considerably. 

However, the cross-assembler can be a significant 
program development tool. The National Semiconductor 
cross-assembler is supplied in source FORTRAN IV for an 
IBM 360. SRI modified this code extensively and imple­
mented it on a DEC PDP-ll/20 with 28K words and a 
Vector General Display System. This system provides 
high speed paper tape facilities and an extremely powerful 
editing system. In addition, it was very successful in pro­
viding hands-on debugging at the source level. An emula­
tor would be even more beneficial. 

Our software experiences with microprocessors were not 
surprising. They are, indeed, much less sophisticated than 
minicomputers and the software support from the vendor 
is limited-at best. Our experience with the IMP-16L 
software was very unsatisfactory as supplied; however, our 
investment in the cross-assembler was very worthwhile. 
Furthermore, we would expect similar quality in software 
supplied for any new digital processor-micro, mini, or 
large main frame. 

TECHNOLOGICAL CONSIDERATIONS 

Physical characteristics 

The natural evolution of packet broadcast terminals has 
been toward greater portability and lower cost. Initially, 
terminals packaged in Configuration (1) were not 
portable, and cost $8,000 to $10,000. Currently, the ICU 
occupies .6 cubic feet; weighs 15 lb without keyboard, dis­
play or battery; and costs $2,000 in parts. The battery 
pack, including charger, is the size and weight of an auto­
motive battery. Although the latter two terminals were 
developed with the intention of portability, little attempt 
has been made to minimize their size or weight. 

To realize the full potential of packet broadcasting, fu­
ture design efforts must concentrate on achieving a single 
physical package containing RC, NL, I/O, and power sup­
ply. The I/O must be engineered from a human factors 
viewpoint to be convenient, easily learned and operated, 
and must be designed to avoid operator fatigue. The self­
contained power supply should provide a minimum of four 
hours continuous operation and should be readily re­
charged or inexpensively replaced. Finally, the entire 
package should be as small and light as possible consistent 
with other objectives. In this section we discuss the possi­
bility of applying existing technology to achieve the goals 
and discuss where advances are needed. 

Input/Output 

The I/O elements interface the man to the network. If 
they are poorly conceived or implemented, the best 
technological design of all other network elements cannot 
compensate for these deficiencies. In this paper we assume 
that the input element is a keyboard, because that seems 
the most likely initial component. Subsequent study may 
show that some other forms of input (such as hand-written 
characters or spoken words) are preferable. Similarly, we 
have assumed an alphanumeric display as the most likely 
initial candidate, although subsequent study may not sup­
port this assumption. 

Displays 

The important physical characteristics of the display in­
clude character clarity, size, color, and contrast; display 
format; power consumption; and overall size. The trend of 
portable display technology seems to be toward 5 X 7 or 
7X9 dot matrix characters between 0.1 and 0.2 in. high, 
although nine and fourteen-segment displays are available. 
Most displays (LED or Plasma) are red on black with 
some yellow and green displays now on the market. Liquid 
crystal display color depends on ambient light, and vir­
tually any color is possible. Since character size will de­
termine the maximum total number of characters 
displayed, a determination of minimum acceptable 
character size is very important. A human factors study of 
character size, color, and contrast for portable terminals 
would help greatly in design of a suitable display; 
however, pending the results of such a study early termi­
nals will depend more on selections of available display 
devices. 

The display format most desirable is probably a 12- to 
16-line page with 72 or 80 characters per line. Such a dis­
play may eventually be possible with 0.1 in. characters on 
a 3X8 in. area; however, except for CRTdisplays,this 
density is not available today. If the maximum display di­
mension is limited to 8 in., then off-the-shelf technology of 
either LED or plasma displays limits the number of 
characters per line to 40. Using some advanced LED 
technology not yet in production, it would be possible to 
construct a display of twelve 40-character lines in an 8 X 3 



in. area; however, the cost and power consumption would 
be excessive. 

The normal dot on a standard LED matrix requires ap­
proximately 30 m W of input power. Assuming 20 active 
dots per character, a 40-character line would require 24 
watts. To be consistent with desired size and weight 
properties, the display should consume no more than one 
or two watts. Thus, a single-line 40-character dot matrix 
LED display would require a 24-fold improvement in effi­
ciency, and it is not likely that a multiple-line dot matrix 
LED display will ever be satisfactory. Other LED con­
figurations are possible, however, both 9-segment and 14-
segment character fonts are available. If an average of 5 
segments is needed to display a character, the power re­
quirement would be only ~ that of a dot-matrix. 

It is possible to use a CRT display as an interim solu­
tion. A 4 in. CRT will display 12 lines of 40 characters in 
very readable fashion. Such a display can be packaged in 
a 250 cubic in., 8 lb, 11 watts package. However, it is not 
likely that any significant size, weight, or power reductions 
are possible, so the CRT is not a promising solution. 

Liquid crystal matrix displays recently announced by 
Hughes7 and Hitachi8 will approach CRT dot density at 
low power-consumption, and may provide the desired full­
page display; however, these displays are not yet in 
production, and no detailed specifications have been 
published. 

A great deal of research effort is being directed toward 
alphanumeric displays, with goals of obtaining higher 
character density and lower power. This brief description. 
was not intended to be a survey, but to indicate that the 
display requirement for a packet broadcasting terminal, 
though severe, will soon be met. 

Keyboards 

In a sense, the keyboard is a more difficult problem 
than the display, since it must provide the ability to enter 
anyone of a large number of characters. Furthermore, it 
must be arranged so that alarge finger or fat thumb will 
depress only a single key. 

Many approaches are possible. Roberts proposed the 
use of a binary encoded 5-key device developed and used 
at SRI.9 Although this device may be operated almost as 
rapidly and mastered more quickly than touch-typing, it 
has the disadvantage of many specialized computer 
devices that must be learned. Uncoded keyboards (every 
key is a separate character) have the disadvantage that 
the number of keys must equal the size of the character 
set; however, a novice can use an uncoded keyboard with 
no instruction. A reasonable compromise is a partially 
encoded, or multifunction keyboard such as that used on 
most hand calculators. These keyboards can be made self­
explanatory so that a novice can use one by examining the 
labels of the keys. If at all possible, a standard TTY 
layout of the alphabetic keys should be used with the 
interkey spacing and switch "feel" as similar to TTY key­
boards as possible. A possible keyboard organization 

Digital Terminals for Packet Broadcasting 259 

would divide the character set into three subsets: up­
percase (standard data entry); number symbols; and con­
trol characters (TTY control set). Two shift keys, a space 
bar, and an "enter" key are also needed. Special functions 
such as character or line delete can be encoded as part of 
the number/symbol case. Such a keyboard, with standard 
spacing, will occupy only 8 X 4 in. and will be almost as 
easily used as the TTY or typewriter keyboard. An 
example of such a keyboard with a nine-segment, 32-
character LED display is a terminal manufactured by 
MICON Inc., for communications use by the deaf. 

To obtain suitable contact pressure and overtravel, a 
standard set of keyswitches could be used; however, many 
other technologies offer thinner keyboards with slight loss 
of "feel." Although these cannot all be reviewed here, the 
conductive elastomer keyboard can be considered as 
representative. Such a keyboard can be designed with 0.8 
in. travel and fitted with a silicon cover to provide an im­
pression of overtravel. It is only 0.25 in. thick (including 
the silicon), and has no holes or cracks for entry of dirt or 
water; this is a very desirable feature in a portable ter­
minal. 

Network control logic components 

An examination of the internal hardware design prob­
lems leads to the conclusion that to eliminate extra cir­
cuitry, all inputs and outputs to the network control logic 
should be handled in their natural form, and control func­
tions should be centralized in a microprocessor. 

A wide variety and number of microprocessors are 
available today, and technology is changing so rapidly that 
each month a number of new devices appear on the 
market. Although microprocessors were originally in­
troduced by semiconductor houses to help sell memory, 
they are also sold as complete systems, nominally for pro­
totyping new products. 

The microprocessors available vary greatly in speed, 
number of bits per CPU, number of chips per CPU, type 
of instruction set, and power requirements. Compared to 
minicomputers, today's MOS microprocessors are limited 
in all performance factors; however, recently announced 
or planned microprocessors which use SOS, IlL, bipolar, 
and low-power Schottky technology are rapidly approach­
ing minicomputer performance in all parameters. A 
sampling-by no means inclusive-of available and an­
nounced microprocessor chip-sets and chips is given in 
Table I. This table is not complete, but is provided only to 
show the wide variety of performance soon to be available. 
Reference 10 can be consulted for more complete informa­
tion. 

Since the radio I/O logic is naturally serial it should be 
handled by the central microprocessor in that form. The 
microprocessor definitely must have the power to do serial 
to parallel or parallel to serial conversion to satisfy other 
requirements so these functions should be centralized. 

Centralizing the conversion processes also allows the 
microprocessor to take on the burden of packet synchroni-



260 National Computer Conference, 1975 

TABLE I-Microprocessors 

Manufacturer and 
Identification 

Fairchild PPS-25 
RCA COSMAC 
Intel 8080 
Intersil 1M 6100 
T.!. 
Inselek 
Raytheon RP-16 
Monolithic Memories 

6701 
Intel 3000 Series 

Semiconductor 
Technology 

NMOS* 
CMOSt 
NMOS* 
CMOSt 
lIlt 
SOS§ 
Bipolar 
Lowpower Schottky** 

Bipolar 

* N-channel metal oxide silicon. 
t Complementary-metal oxide silicon. * Integrated injection logic. 
§ Silicon on sapphire. 
** Low-Power Schottky. 

Instruction 
Fetch Cycle Available 

(fJ-s) 1974 

62.5 
3.0 No 
0.5 Yes 
0.5 
0.5 
0.3 No 
0.2 

0.15 

0.12 Yes 

zation. All packet synchronization and parity checks 
should be accomplished in microcode. Bit synchronization 
must be accomplished in the modem. Encoding and decod­
ing processes are independent of other functions and 
should be incorporated in hybrid circuitry external to the 
microprocessor and modem modules. 

Other 110 functions should be accomplished in parallel 
to take advantage of their natural form. Data to be 
displayed should be output in parallel form. The display 
itself could be addressed as part of the microcode memory 
space or by a separate register and bus using the micro­
processor hardware. The data should be decoded from 
standard ASCII on the data bus through a row-column 
generator. The display itself should be refreshed by 
microcode during the idle state of the microprocessor. 
When the processor is busy checking parity or transmit­
ting, the display could probably be blanked for short time 
intervals without affecting the user. Blanking the screen 
could be used to notify the user that his packet had been 
transmitted or that a new packet had arrived and was in 
the terminal. Keyboard data should be encoded into an 8-
bit code and input in parallel, since the -keyboard lends it­
self to a parallel format and the data bus will be 8 bits 
wide. Assuming a 32-key multifunction keyboard, such as 
described in Section V, is used, 5 bits can be used for the 
32 keys, and the other three bits for the "enter" and 
"shift" keys. A sample coding format is shown in Figure 6. 

This formatting allows quick table lookup in microcode 
to translate to ASCII from keycode input using a 7-bit ad­
dress. 

An initial conservative estimate of memory size for the 
microprocessor is 256 bytes of read/ write RAM for buffer­
ing and 2K words of 16-bit ROM for microcode. These 
estimates are based on the memory requirements of the 
ICU modified to compensate for the microcode type of 
operation and a 128-character display size. For example, a 

pair of Intel 8316 MOS ROM may make an attractive cir­
cuit package for holding the microcode. The circuit, or­
ganized 2048X8 bits, has a low power dissipation of 10.7 
,u W Ibit and runs from a single 5 volt supply. This pair of 
ROM packages provides the required 2K words of 
microcode using two 24-pin spaces. Although the masking 
charges are expensive, a standard ROM package to hold 
microcode has advantages over a special CROM package. 
which contains control logic for the microprocessor. A 
writable microcode memory external to the package can 
be substituted for the ROM for testing and microprogram 
development. 

Judging by the current rate of change in the industry, 
suitable microprocessors will probably be available in a 
year or two; however, to meet the power and size require­
ments in the interim the microprocessor element probably 
must be custom designed. To restrict power consumption 
it will probably be necessary to construct the unit using 
hybrid techniques and low-power Schottky MSI devices. 
Speed is extremely important because of the serial inter­
face to the radio; however, fancy microinstructions are 
not. The microprocessor needs only the primitive opera­
tions, such as AND, OR, XOR, RIGHT-SHIFT, ADD, 
COMPLEMENT, and INCREMENT, plus a few positive 
and negative branch type instructions. It must also have 
some internal routing microinstructions. Experience with 
the ICV indicates that microinstructions should execute 
on the order of 200 ns/instruction. Typical power 
consumptions for AL V and microcomputer integrated cir­
cuits are shown in Table II. 

The complexity and speed vary quite drastically from 
the 74LS181 which can perform one of 32 operations on 
two 4-bit wide binary numbers in 25 ns to the 8008 Intel 
CPU which can perform an 8-bit ALV operation in 20 ,us. 
To achieve adequate speed performance, a low-power 
Schottky implementation is probably necessary. Such a 
unit with memory should consume no more than one watt. 

Radio communications components 

Transceiver technology is available to allow very small, 
low-power packages; however, it must be applied to the 
specific modulation and coding design for packet 
broadcasting. The Motorola Dynatacll terminal contains a 
transceiver and digital modem which would satisfy the 
ALOHA requirements as to bit rate and transmitter 
power. The Dynatac package occupies 60 cubic in. and 
includes touch-tone pad, headset, audio circuitry, con­
trol logic, and batteries. It seems likely that the 
transceiver and modem portion occupy no more than 10 
cubic in. Other efforts are under way to apply thin film 
hybrid technology to miniaturize packet broadcasting RF 

04------ 3 bits ----....... >---- 5 bits-s ----_ 

Enter 
Key 

SHF SHF 
Control Number Keycode 

Case Case 

Figure 6-A sample coding format 



TABLE II-Power Consumption 

Technology Integrated Circuit Power/Circuit 

MOS 4004 Intel CPU 4 bit 420mW 
MOS 8008 Intel CPU 8 bit 420 mW 
MOS 8080 Intel CPU 8 bit lW 
BIP 3001 Microprogram control 900mW 
BIP 3002 Central processing element 750 mW 
LS 74LS181 Arithmetic logic unit 125 mW 

and modem circuitry. These promise to achieve required 
performance in a 10 cubic in. package with receiver power 
consumption below one watt. 

Although the transmitter peak power is nominally 10 
watts, the duty cycle will be very slow so that the 
transmitter will require only a few milliwatts average 
power. The power source must be able to supply this low 
average power in short 10-watt bursts. 

Power source considerations 

The power source will most probably dominate the other 
components in determining the size and weight of a packet 
broadcast terminal. The ICU, containing no keyboard or 
display, requires 15 watts. The suitcase terminal, includ­
ing an 80-character display and full ASCII keyboard, re­
quires an additional 33 watts. Although components were 
carefully selected to conserve power, no attempt was made 
to go beyond components available off-the-shelf. 

As discussed above, it is probable that a terminal can be 
developed which will require no more than 5 to 10 watts, 
with the display being the unknown factor. 

Batteries are available in power densities varying from 
0.5 Whr/cubic in. and 10 Whr/lb to 5 Whr/cubic in. and 
100 Whr/lb. Assuming that inexpensive rechargeable bat­
teries will be used, a nominal density of 20 Whr /lb and 1 
Whr / cubic in. are possible, so that a 20 Whr battery pack 
will weigh one pound and occupy 20 cubic in. 

With this battery, the terminal will provide from two to 
seven hours continuous operation depending on the dis­
play power required. 

Regulation of battery-supplied power can be power 
consuming if close voltage tolerances are required. Selec­
tion of logic families and circuit design that are tolerant of 
voltage variation are major design considerations. 

CONCLUSION 

With today's technology, a small lightweight personal ter­
minal is within the state of the art. The display is the only 
unsolved problem; however, as the liquid crystal dot ma­
trix displays recently announced are brought to produc­
tion, that problem will disappear. Suitable efforts 
concentrated on developing an RF hybrid package, a 
microcoded microprocessor, and packaging the entire·unit 
should result in a terminal which occupies no more than 
100 cubic in., weighs less than 5 lb, and costs on the order 

Digital Terminals for Packet Broadcasting 261 

of $3,000. Quantity production can reduce this cost 
drastically. 

Although we have only discussed possible alphanumeric 
terminals, future technology will make other types 
possible. 

U sing packet broadcasting technology, it will be possible 
to make very simple one-way terminals to either send or 
receive messages. Transmit-only terminals may find ap­
plication in monitoring remote sensors such as weather 
metering instruments or the state of traffic at a busy 
intersection. Receive-only terminals may be used to 
change traffic signals or possibly to control remote ad­
vertising signs. 

Current efforts to digitize speech may result in very 
compact, low-power speech digitizers that could be 
combined with packet broadcasting technology to provide 
hand-held terminals with both direct voice communication 
and data I/O using remote word recognition at the central 
computing station. 

To understand the operational context under which the 
ALOHA and suitcase terminals were developed, please 
refer to the other papers on packet radio in these proceed­
ings. 

ACKNOWLEDGMENT 

The authors wish to thank the members of the Advanced 
Research Project Agency research team designated as the 
Packet Radio Working Group who have contributed ideas, 
concepts and specific design details to the work discussed 
in this paper. 

REFERENCES 

1. Roberts, L. G., "Extension of Packet Communication Technology to 
a Hand-Held Personal Terminal," Proceedings of AFIPS, 1972 
Spring Joint Computer Conference, Vol. 40, pp. 295-298. 

2. Abramson, N., The ALOHA System, "Another Alternative for Com­
puter Communications," Proceedings of AFIPS 1970 Fall Joint Com­
puter Conference, Vol. 37, pp. 281-285. 

3. Fralick, S. C. and J. C. Garrett, "Technological Considerations for 
Packet Radio Networks," National Computer Conference 1975, 
Anaheim, California, Proceedings of this conference. 

4. Frank, H., I. Gitman, and R. Van Slyke, "Packet Radio System: 
Network Considerations," National Computer Conference 1975, 
Anaheim, California, Proceedings of this conference. 

5. Burchfiel, J., R. Tomlinson, and M. Beeler, "Functions and Struc­
ture of a Packet Radio Station," National Computer Conference 
1975, Anaheim, California, Proceedings of this conference. 

6. Fralick, S., and D. Brandin, "The Role of Microprocessors in High 
Speed Portable Data Communications Terminals," Proceedings of 
Journees d'Electronique, Lausanne, SW, 1974. 

7. "Developments," Computer Design, March 1974, p. 42. 
8. "International Newsletter," Electronics, October 3, 1974. 
9. Engelbart, D. E. and W. K. English, "A Research Center for Aug­

menting Human Intellect," AFIPS Conference Proceedings, Vol. 33, 
p. 397, 1968. 

10. Schmid, Hermann, "Monolithic Processors," Computer Design; Vol. 
13, No. 10, October 1974. 

11. The Dynatac Concept and the 900 MHZ Mobile Radio Band, Mo­
torola Technical Report submitted to the FCC related to docket No. 
18262, April 1973. 





Software 

Area Director: 
Glyn H. Jones 
Burroughs Corporation 
Mission Viejo, California 

The software technical sessions were conceived and planned so that the 1975 
NCC sessions on software concentrate upon a number of fundamental issues re­
lated to software. The primary objective is to illustrate how systems designers 
can provide products that truly serve the needs of the people, and the emphasis 
is on people; we also wish to examine techniques which can yield a definitive 
measure of software quality, and to discuss some of the key issues involved in 
creating improved software and software development tools. 

We have acquired the services of many prominent leaders in the industry to 
act as session chairpersons. Together they formed a strong planning team. 

Research and development on computer software is presently concerned with 
the development of tools and techniques which can lead to the cost-effective 
specification and production of reliable computer programs, with the emphasis 
on reliable! All of the sessions are directed at the effective utilization of human 
resources; from the standpoint of overall system design, management of 
programming, the practice of programming. The sessions present many facets of 
the current research and development on computer software. 

The first panel discussion "Programming is an Act of Communication" will 
provide some thought-provoking ideas to be pondered during the following 
sessions. Some of the topics related to program portability, the principles of 
unique definition and software quality will be treated in sessions examining the 
need for precise thinking about system design. 

Techniques for formally verifying the proper operation of computer programs 
and the development of tools to evaluate the effectiveness with which computer 
programs utilize the available hardware resources will be highlighted in the 
session "Program Verification in 1980." 

Building on the work of others is the only way to make substantial progress in 
any field. Increased productivity of programming teams is achieved with the 
development of a better style in programming, effective use of modularization, 
by an understanding of the issues involved in designing new programming lan­
guages and consideration of language extensibility. These topics will be explored 
in the sessions "Issues in Programming Language Design" and "Program­
ming-Art, Science or Engineering?" 

263 



264 National Computer Conference, 1975 

The recent significant improvements in Program Management, particularly 
those concerning design reviews, obtaining and analyzing empirical data on 
software engineering and improving the support of existing program products 
will be discussed in the session "Software Engineering." 

The session "Operating Systems" shows the means by which innovative ad­
vances in modelling of systems and mechanisms for redefining virtual machines 
can lead to more powerful computing tools. 

Finally, a session on "COBOL 74" examines this new language in some detail, 
giving emphasis to its suitability for software engineering. 

The software sessions emphasize real problems and operational solutions to 
these problems so that attendees ~an learn about advances which will be useful 
to them in their current assignments. 



On the principle of unique definition 

by P. D. GRIEM, JR. 
The Foxboro Company 
Foxboro, Massachusetts 

THE PRINCIPLE 

The principle of Unique Definition can be stated as 
follows: "Unique definition of software constructs tends to 
increase software reliability." 

To many people, this principle will be so obvious that it 
hardly deserves a formal statement, much less an entire 
paper ~-Since a software construct can have only one correct 
definition, then if additional definitions exist, they must 
either be identical to the correct definition, and hence 
superfl uous, or different from the correct definition, and 
hence erroneous. 

Yet, as will be brought out later, current software is 
fraught with multiply-defined constructs. This paper dis­
cusses: 

• why multiple definitions of a construct decrease 
software reliability 

• tools which aid in constructing unique definitions 
• how UnIque Definition was applied to the design of a 

software system for industrial process control, and 
the resulting software modularity 

• some notes for applying the principle. 

DANGERS OF MULTIPLE DEFINITION 

As used in this paper, "programming" means all the 
work necessary to define software to a programming 
system so that it can produce machine-executable code. 
Thus "programming" is used very broadly, and includes 
not just the writing of source statements in a programming 
language such as Fortran, but also any necessary compiler 
directives, file definition statements, Linkage Editor com­
mands, Job Control Language, etc., as well as the 
mechanical processes for entering these definitions, into 
the programming system. These mechanical processes, 
especially where humans are involved, often provide more 
opportunities for error than the program-writing processes. 

When defining software (programming), the program­
mer employs various software constructs, e.g., program 
logic structures, data structures, overlays, syntax 
analyzers, etc. Some of these constructs may be well de­
fined within the programming system, and need only be 
referenced or invoked by the programmer for the program­
ming system to create the desired software result. Other 
constructs needed by the programmer may be partially or 
entirely undefined, thus requiring him to define them (and 

265 

giving rise to complaints about "reinventing the wheel," 
software "transportability," lack of "natural" languages). 

In the past, many, if not most, of the constructs em­
ployed and created by programmers were poorly under­
stood. Today, after many doses of the medicine prescribed 
by Dr. Dijkstra1 and others, we are beginning to ap­
preciate software structure and basic constructs. 

But recognizing software constructs is very difficult. 
Though programming systems may improve in this 
respect, they will never anticipate all the constructs 
needed to solve application problems; programmers will 
always be defining software constructs to programming 
systems. The errors in that process can be minimized by 
following the principle of Unique Definition: define the 
construct once, and thereafter reference that definition. 

If a programming system requires multiple definitions 
of some construct (or strongly discourages unique defini­
tions, which has the same effect), then the programmer is 
presented with multiple opportunities for error. The total 
possibility for error must be some function of: 

• the intellectual difficulty of formulating the defini­
tion, 

• the number of definitions required, 
• the number of different ways in which the definition 

must be stated, 
• the mechanics of entering the definition into the 

programming system, and 
• the number of people involved in the total program­

ming process. 

As the opportunities for error increase, it is not long 
before error is virtually guaranteed. ("To err is 
human ... ") 

At this point, it would probably be helpful to give a few 
current examples of multiple definition: 

A. A basic programming construct is the DO loop; some 
form of it is defined in many high-level languages. The 
programmer may invoke it by a simple statement, e.g., 

DO 10 1=1,15,2 (Fortran) 

However, the DO construct is absent from assembly 
language. The programmer must build (i.e., define) it 
himself each time from more primitive statements, 
choosing from a wide variety of possible ways. 

B. To use a COMMON block in Fortran, each program or 



266 National Computer Conference, 1975 

subprogram must contain a complete definition of its 
format. 

C. To create overlays, some prograIIlming systems require 
the programmer to state the association of a particular 
subprogram name and a particular overlay segment 
n~me on each call to that subprogram, in addition to a 
~eparate statement of that association in different lan­
guage to the Linkage Editor. 

D'. During the generation of the operating system software 
for some machines, it is necessary to state several 
times in several different ways that the machine has 
say, five tape drives. ' 

E. Most programming systems provide no way to define 
packed data. The programmer in effect defines the at­
tributes of a packed data field by the (different) code 
necessary to extract or insert a value.2 

F. On some programming systems, to generate machine­
executable code from program source statements re­
quires an operator at some terminal to invoke 
separately and give commands to a compiler 
assembler, link editor, and file utility program. Th~ 
~ntire process must be repeated whenever the program 
IS to be regenerated. On more sophisticated systems 
these invocations and commands can be entered into ~ 
file once, to be executed by a Job Processor whenever 
the file is referenced. 

G. Each. reent.rant program may require special coding, 
especIally If written in Assembler language, as com­
pared to a non-reentrant program.5 

Many other examples could be given, but it should be 
clear that just writing multiple definitions of the same 
construct affords multiple opportunities for error. Worse 
still, multiple definitions are also difficult to manage in­
tellectually, in the following ways: 

1. Creating multiple definitions of a construct is not an in­
tellectually stimulating task. 

2. If the multiple definitions are coded in different ways, 
the programmer in reading the various statements can­
not by simple comparison determine whether all the 
definitions are precisely equivalent-instead he must 
make an intellectual effort to translate the definitions 
into a common means of expression, and then compare 
them. 

3. Just keeping track of all the definitions is a 'significant 
mental effort. When the number of definitions of a 
construct is small, the programmer can feel confident 
and in control of the program. As the definitions (and 
particularly the opportunities for error) multiply, he 
becomes increasingly uneasy and unsure. Finally, at 
some point, he feels that he can never be certain that 
all definitions of the construct are correct. Some 
programmers cannot accommodate this final mental 
state, and must either reorganize the programs ("it's a 
complete mess-the whole thing will just have to be 
rewritten") or change job assignments. 

Another problem is establishing or changing all the 

definitions of a construct. Usually it is impossible to 
physically change all of them simultaneously, so during 
the time required to change the definitions the software 
must contain conflicting definitions. And there is always 
the danger that the process of change may not be carried 
out correctly, or that it may be interrupted and never com­
pleted. 

TOOLS FOR UNIQUE DEFINITION 

Since the programmer must define constructs and 
reference them, a programming system can be evaluated 
on the basis of the tools it provides for doing so. A few cur­
rent tools come to mind immediately: 

1. Subroutines or procedures allow the unique definition 
of programmed functions, and are a very common fea­
ture of programming languages. 

2. Macros allow the unique definition of coding structure, 
and could be used to create an assembler DO statement 
for Example A above. Macro capability is a common 
feature of assemblers, but strangely is seldom found in 
processors for high-level languages. Language-inde­
pendent macroprocessors exist,9,lO but are rarely 
available to, or understood by, the average program­
mer. 

3. The INCLUDE statement in the preprocessor of some 
PLjI compilers, copies the contents of a file (which can 
contain any arbitrary text) into the source text of a 
program being compiled. This allows the unique defini­
tion of statements which must appear identically in 
several programs, usually data and format declara­
tions; it would solve the Fortran COMMON problem of 
Example B above. The INCLUDE statement is a very 
powerful tool, occasionally present in programming 
systems for large machines. A related concept is 
COMPOOL.7 ' 

4. Libraries allow the unique storage and retrieval of, for 
example, subroutines, macros, source text, data files, 
etc., according to the type of library. 

5. Symbol cross-reference (concordance) listings show 
where definitions are made and referenced. A common 
feature of assemblers, it is rarely found in other 
programming tools, except sometimes in compilers for 
large machines. 

Such tools, while valuable, are not adequate to solve 
Examples C, D, E, and F above. More sophisticated text 
processing might be one general approach. In some cases, 
the best solution might be a basic modification to the 
programming system, which is clearly needed for Exam­
ples E and F, or to the operating system-virtual memory 
removes the concern for overlays in Example C. 

A REAL-LIFE PROBLEM 

Very briefly, I will try to describe how Unique Defini­
tion was used in the design of IMPAC, a large software 



system (>200K source statements) for industrial process 
control. 

Description 

IMP AC consists of program and data modules, mostly 
resident on bulk memory, which run under control of a 
real-time multiprogramming executive on the FOX 1 
process computer. Typical of such systems, IMPAC em­
ploys the concept of a Block (Figure 1). Each Block may 
receive one or more inputs from the process or other 
Blocks, calculate some simple algorithm, check values 
against alarm limits, and produce one or more outputs to 
the process or other Blocks. Blocks of various types may 
thus be connected to the process and other Blocks to form 
a control system, for example, for a petroleum distillation 
column. Hundreds of Blocks might be implemented on one 
computer. 

Process control software such as IMP AC must provide 
some means of generating Blocks to form a control system, 
"executing" the Blocks to operate the control system, and 
communicating between the control system and the plant 
operator, the plant engineer, and application software. A 
common approach has been to establish a Block File, with 
each record containing the information necessary to 
represent one Block. The record length and format varies 
according to the Block type; a record may consist of 10 to 
100 fields (mostly packed) which contain the description, 
parameters, status, working storage of the Block, often in 
coded form. Communication with the control system 
mainly consists of manipulating the values contained in 
the fields of its Blocks. 

At the time that the IMP AC software design was begun 
(1970), the- conventional design for this kind of software 
was to build, for each function mentioned above, a 
separate program which directly accessed the fields of the 
Block records,s as shown in Figure 2. Thus, each program 
in effect defined the fields of the Block records in detail 
by the coding which manipulated those fields. As a result: 
most fields were defined multiply and differently (because 
of different program designs). So it was difficult to write 
correct software initially, and harder still to modify it 
later for development or application purposes. 

It was clear early in the design of IMP AC that these 
problems could be reduced if the field definitions were 
uniquely defined, stored in a file, and consulted as re­
quired by the IMPAC or application programs through 
some convenient access mechanism (Figure 3). The access 
mechanism could also handle the transfer of data between 

I o f - -
0= f (I) 

-Figure I-A "block" 

I 
I 
I 
I 
I 
I 

r-.L--, 
I FIELD I 
I DEFINITION I 
L-__ ~ 

On the Principle of Unique Definition 267 

I 
I 
I 
I 

r-.J--, 
I FIELD I 
I DEFINITION I L ___ ....J 

l 
I 
I 
I 

r-..l--, 
I FIELD I 
I DEFINITION I L-__ ....I 

I 
I 
I 

r-J--, 
I FIELD I 
I DEFINITION I L ___ .....J 

Figure 2-Conventional software design 

I 
I 
I 
I 

r-..J--, 
I FIELD I 
I DEFINITION I L ___ ..J 

the Block File and any program as well as resolve any 
contention problems. To do this, the characteristics of the 
definition of a field of a Block record had to be de­
termined. These were found to be: 

Cl. The f~nction of the field in the calculations 
performed during the "execution" of the Block. 

C2. The location of the field within the Block record 
usually packed (Record format). ' 

C3. The unpacked form used for computation and 
manipulation by IMP AC and application programs 
(Internal format), i.e., the data type. 

C4. The ASCII form used for display on, or data entry 
from, devices external to the computer (External 
format). 

C5. The conditions under which the value in a field may 
be changed by programs other than the Execute 
program. 

A major problem was how to preserve unique definition 
and still allow software to be built for good efficiency 
when necessary. The Execute program is the major 

BLOr FILE 

FIELD DEFINITION FILE 

I I I I 

Figure 3-Ideal software design 



268 National Computer Conference, 1975 

GLOB FILE 

I I I I I 
........... ........... 

r-, 
...-! C4J ./ L_ 

............ 
.............. 

................ 
...... , 

I 
I 
I 

I 
I 

I 
I 
I 

----------------------~ 

\ 

r..i-, r.l., 
I C2 I I C3 I 
L_...J L.~ 

Figure 4-IMPAC design 

activity in the computer; it interpretively executes up to a 
few hundred Blocks per second, accessing dozens of fields 
per Block, so the run-time overhead of calling an access 
mechanism for each field would be intolerable. In general, 
for the other programs, references to the field definitions 
can be resolved at run-time, but in certain cases better 
operating efficiency is also needed for these programs. 

Examination showed that the Execute program had to 
reference only the definitions of characteristics C1-C3, and 
that these should be physically resident in the Execute 
program in the form of in-line code for best efficiency. All 
other programs had to reference definitions of characteris­
tics C2-C5; and these were encoded for each field into an 
information block called a GLOB, with all GLOBS stored 
in a file (see Appendix A for a more detailed description of 
a GLOB). A program called ACCESS provides functions 
to get the value(s) of the specified field(s) from a sp~cified 
Block record and return them to the calling program in 
Internal or External format by referencing the appropriate 
GLOB(s), and vice versa, to give new values in either 
format. Also, ACCESS resolves contention between pro­
grams which call it, and a submodule of ACCESS resolves 
contention between ACCESS and the Execute program for 
acquiring Block records. 

Since definitions of Record format (C2) and Internal 
format (C3) must physically reside in the coding of both 
the Execute program and the GLOBs, the definitions must 
be made external to both codings but referenceable by 
both. This was accomplished as shown in Figure 4, and as 
described below: 

a. The definitions of Record and Internal format are 
stated in a macro language. 

b. A macroprocessor, MAX, is used to create files of 
equivalent Fortran and Assembler language packed 
data definition statements.2 

c. The source code for the GLOBs and the Execute 
program references the files via INCLUDE direc­
tives; the language processors read the packed data 
definition statements and create the most efficient 
machine code possible whenever a conversion 
between Record and Internal format is necessary . 

As a result, the system provides three choices of operat­
ing efficiency for programs communicating with IMP AC 
Blocks: 

1. By calls to ACCESS, where ACCESS must fetch the re­
quired GLOB(s) from the GLOB file at run time. This 
method has the longest execution time (because of 
GLOB file accessing), but is the most strongly en­
couraged, since the field definitions (i.e., GLOBS) may 
be modified without modifying or regenerating the call­
ing programs. All IMPAC programs except the Execute 
program use this method. 

2. By calls to ACCESS, where ACCESS uses a GLOB in 
the calling program; the GLOB was extracted from the 
GLOB file and incorporated in the program load 
module at Link Edit time. This method is seldom used 
by IMP AC programs since they do not usually know 
until run time which GLOBs they may have to 
reference, but is widely used by application programs 
since they do. 

3. By in-line code which resulted from referencing the 
Assembler or Fortran definitions through INCLUDE 
statements. This method was intended for use by the 
Execute program only, but was found necessary in a 
few other IMP AC programs for basic fields such as 
Block name and Block record size. It is the most effi­
cient, since there are no ACCESS calls, but it is the 
least encouraged, since complete program regeneration 
is necessary if a referenced definition changes. 

This design approach has effectively decoupled data 
field properties from program logic. Modifying the defini­
tion of a field requires changing only the code which 
expresses that definition, followed by some amount of 
program regeneration. But it should be noted that to 
achieve this state requires a programming system contain­
ing language processors with somewhat unusual features 
(INCLUDE and packed data), a macroprocessor, and a 
file library system. 

It should also be noted that this system does not really 
provide unique definition of the data type (C3) of a field. 
Since Assembler and Fortran program coding is different 
for different data types, any program which deals with a 
field in Internal format must know (and thus carry a 
definition of) the data type of the field. Fortunately, it has 
never been necessary to change the data type of a field. 
Also, the function (C1) of a field can be uniquely defined 
to the IMP AC software only; an application program 
which references a particular field usually, but not always, 



knows (i.e., redefines) its function-this seems to be 
unavoidable. 

MODULARITY 

Software has many dimensions along which we might 
look for modularity. Some of these dimensions might be: 

a. program coding structure-blocks, statements, sub­
routines, etc. 

b. program properties-name, priority, resource re­
quirements, etc. 

c. data structure-arrays, Cartesian products, records, 
files, libraries, etc. 

d. data properties-function, formats, access condi­
tions, modification conditions, etc. 

e. physical representation-source files, object 
modules, load modules, overlay segments, headers, 
etc. 

f. reference binding time-run, load, request, link, 
compile, library entry, system generation, etc. 

g. physical location-in storage media with different ac­
cess times. 

The above list is not as complete or as sharply drawn as 
I would like, but the point is that there are multiple di­
mensions to software, and Unique Definition can be ap­
plied to all of them. The previous section looked at the 
design of IMPAC only in the dimension of data properties 
of a certain data structure, Block; other dimensions were 
not discussed. For example, the Operator "program" in 
Figure 4 is actually a system of program and data 
modules, generated from several types of source modules 
into several kinds of physical modules. 

It is very interesting to note that the IMP AC design as 
described above exhibits the kind of modularity proposed 
by Parnas,3 although the approach was slightly different. 
Instead of "information hiding,"4 the criterion was 
"Unique Definition." Information hiding seems to be the 
same kind of concept as Unique Definition, but stated in a 
negative way; for if the design decisions in a program 
module are hidden from other program modules, then 
those design decisions must be uniquely defined in that 
module. Improvements in changeability, independent 
development, comprehensibility, and reliability are 
achieved with either approach. Parnas also predicted that 
this kind of modularity could require unusual imple­
mentation methods,3 especially to achieve good efficiency, 
and this is also reflected in the FOX 1 programming 
system. 

However, Unique Definition of software constructs 
seems (to me, at least) to be a broader concept than in­
formation hiding, since it applies to the entire program­
ming process, not just program design. (Psychological 
note: I have met people who are quite reluctant to have in­
formation hidden from them, but who on the other hand 
are quite willing to reference unique definitions!) 

On the Principle of Unique Definition 269 

APPLICATION NOTES 

Applying the principle requires tools which facilitate 
defining, storing, and referencing Unique Definitions of 
software constructs. Some tools for these purposes were 
mentioned earlier. Programming systems can be graded 
by the tools they provide for Unique Definition,6 and the 
ease of constructing new tools. As a general guideline, tools 
should present as few opportunities for error as possible, 
which means mainly to eliminate human involvement as 
much as possible. 

Very often, referencing a unique physical definition at 
execution time is either impossible or too inefficient, so 
practical considerations force us to distribute copies 
and/ or transformations of a unique definition into 
multiple physical locations. For example, distribution of 
unique IMP AC Internal and Record format definitions to 
Execute program and GLOB coding was done to improve 
efficiency, while distribution of a new release of standard 
software modules by a computer manufacturer to his cus­
tomers is necessitated by the obvious impracticality of 
connecting all the computers to a common memory at the 
manufacturer's plant. But sooner or later it will be 
necessary to modify such a definition and reestablish all 
its physical forms, so a problem is to devise processes for 
doing this which offer the fewest opportunities for error. 
This involves: 

a. knowing all the physical locations of a definition, 
b. distributing the new definition, 
c. rendering the definition into the appropriate physical 

form(s), 
d. physically installing the new forms, 
e. detecting any errors, 
f. knowing when the process is complete. 

Ideally, such a process should be fast and easy to use. If 
it is instead slow and cumbersome, a person may be forced 
to devise an alternate process which is faster but less 
secure, e.g., "patching," especially if he is under heavy 
schedule pressures. 

Perhaps the most valuable tools are those which can 
find and list all the references to a definition. Examples: 

• which statements reference a given variable; which 
potentially modify it, 

• which programs INCLUDE a given file, 
• which programs OPEN a given file, 
• which job streams invoke a given utility program, 
• which load modules contain a given library sub­

routine. 

This problem can be quite severe on large, highly 
modular systems~but if we wish to practice modular 
design, we must face the problem of keeping track of all 
the modules. For IMPAC, this has meant maintaining a 
list of all modules, their types and connectivity. 

Unique Definition can also be applied to software speci­
fication, design, design review, manufacturing, testing, 



270 National Computer Conference, 1975 

maintenance, and (especially) documentation. Outside the 
area of software, Unique Definition, under other names, 
has long been used. For instance, custody of the unique 
definitions of physical measurements for the U.S.A. is the 
responsibility of the National Bureau of Standards; the 
process of referencing such a definition is called calibra­
tion. 

CONCLUSION 

Unique Definition of software constructs is proposed as a 
design approach to improve software reliability, by reduc­
ing the opportunities for error. It is a principle which can 
be applied to the entire programming process. The two 
continuing challenges in applying Unique Definition are 
recognizing software constructs and developing appro­
priate tools. 

REFERENCES 

1. Dahl, O. J., E. W. Dijkstra, C. A. R. Hoare, Structured Program­
ming, Academic Press, 1972, London. 

2. Griem, P. D., T. L. Willmott, Programming Packed Process Data, 
1975 IFAC/IFIP Workshop on Real-Time Programming, Boston, 
Mass. 

3. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems 
into Modules," Comm. ACM 15,12, December 1972, pp. 1053-1058. 

4. Parnas, D. L., "Information Distribution Aspects of Design 
Methodology," IFIP Congress 1971, Ljubljana, Yugoslavia. 

5. Griem, P. D., "A Reentrant Programming Model and Implementa­
tion Methods," 1974 IFAC/IFIP Workshop on Real-Time Program­
ming, Budapest. 

6. For example, a novel facility for uniquely defining new data types 
(e.g., complex numbers) and operations upon them is provided in: 
PEARL-A proposal for a process and experiment automation real­
time language KFK-PDV1, Gesellschaft fUr Kernforschung MBH, 
Karlsruhe, FRG, April 1973. 

7. Sammet, J. E., Programming Languages: History and Funda­
mentals, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969, P. 526. 

8. Willmott, T. L., "A Survey of Software for Direct Digital Control," 
1968 Instrument Society of America Annual Conference, New York 
City. Reprinted in Minicomputers: Hardware, Software, and Ap­
plications, edited by J. D. Schoeffler and R. H. Temple, IEEE Press, 
1972. 

9. Waite, W. M., "The Mobile Programming System: STAGE 2," 
Comm. ACM 13,7, July 1970, pp. 415-421. 

10. Brown, P. J., "The ML/I Macro Processor," Comm. ACM 10, 10, 
October 1967, pp. 61~623. 

APPENDIX A-GLOB CONTENTS 

Typical information which a GLOB may contain is 
given below. A GLOB may also contain Assembly code 
when necessary to define special External formats or 
Rules for change. 
General 

Field name (6 characters) 
Block types which have this field 

C2. Record format 
Starting word number 
Starting bit number 
Length in bits 
Signed/ unsigned 
Left / right justified 

C3. Internal format 
INTEGER 
REAL 
DOUBLE PRECISION 
character string (packed INTEGER array) 
bit string (packed LOGICAL array) 
Cartesian product 

C4. External format 
Fortran A, E, F, or I format 
Octal 
Binary 
Block name 
Process I/O addresses 
Index: one of a set of character strings, to which the 

Internal format value is an index, e.g., 
0/1/2/3= >OFF /LOW /OK/HI 

C5. Rules for change 
Changeable by 

• Execute program 
• Operator 
• Engineer 
• Application programs 
• Generator 

Range of acceptable values, where range limits are: 
• the capacity of the Record format 
• contained in the GLOB 
• values in other fields of the Block record 

Acceptable change from previous value 
Change is conditional on the state of the Block as indi­

cated by the values of other fields in the Block 
record. 

Change is conditional on the state of the IMP AC 
system. 



PDL-A tool for software design 

by STEPHEN H. CAINE and E. KENT GORDON 
Caine, Farber & Gordon, Inc. 
Pasadena, California 

INTRODUCTION 

During the past several years, industry has seen an explo­
sion in the cost of software production coupled with a de­
cline in the quality and reliability of the results. A realiza­
tion that structured programming, top-down design, and 
other changes in techniques can help has alerted the field 
to the importance of applying advanced design and 
programming methods to software production.1,2 

For the past four years, Caine, Farber & Gordon, Inc. 
has used such advanced techniques as structured program­
ming, top-down design and system implementation, 
centralized program production libraries, and egoless 
programming teams for all of its programming.3

-
s With 

these techniques we have achieved a level of productivity 
comparable to that recently reported by others employing 
similar techniques. 

However, within the last year, we greatly refined these 
techniques, applying them to design as well as to program­
ming. This has resulted in increased productivity, greatly 
decreased debugging effort, and clearly superior products. 
On recent complex projects we have achieved production 
rates, over the full development cycle, of 60-65 lines of 
finished code per man-day and computer utilization of less 
than 0.25 CPU hours per thousand lines of finished code. 
For comparison, these production rates are approximately 
half again better than our best efforts using just structured 
programming techniques and 4-6 times better than· 
average industrial experience using classical techniques. 
Computer usage· was four times smaller than our 
experience with just structured programming techniques 
and more than 10 times smaller than classical industrial 
averages. 

As an example, consider the two CFG projects shown in 
Table 1. Project "A" is a major component of a seismic 
data processing system for oil exploration. It was 
produced using "classical" structured programming tech­
niques and production rates compare favorably to other 
projects3 which used similar techniques. Project "B" is a 
system for the automatic restructuring of Fortran pro­
grams.9 It was developed using the latest CFG methods. 
Production rates were 50 percent better than for project 
"A" and the amount of computer time used in develop­
ment was approximately one quarter of that used for the 
first project. In each case, a "line" of code was taken to be 
one 80-column source card with common data definitions 

271 

counted only once. Both projects were developed using an 
IBM 370/158. 

In order to achieve the results that we are currently 
experiencing, we have developed a comprehensive 
software production methodology which places its greatest 
emphasis on design. Before any code is written, a complete 
design is produC"ed which contains: 

• all external and internal interface definitions 
• definitions of all error situations 
• identification of all procedures 
• identification of all procedure calls 
• definition of all global data 
• definition of all control blocks 
• specification of the processIng algorithms of all 

procedures 
The design is produced and presented top-down and is 
oriented toward understandability by people. While in no 
sense is our design process automated, it is supported by a 
series of tools-both computerized and procedural. 

This paper is not intended to present our complete 
design and implementation methodology. Rather, it dis­
cusses one of the design tools-the "Program Design Lan­
guage" (PDL) and its computerized processor. Both of 
these have been in extensive use since the autumn of 1973. 

THE PURPOSE OF PDL 

PDL is designed for the production of structured 
designs in a top-down manner. It is a "pidgin" language in 
that it uses the vocabulary of one language (i.e., English) 
and the overall syntax of another (Le., a structured 
programming language). In a sense, it can be thought of as 
"structured English." 

While the use of pidgin languages is also advocated by 
others, we have taken the additional steps of imposing a 
degree of formalism on the language and supplying a 
processor for it. Input to the processor consists of control 
information plus designs for procedures (called "seg­
ments" in PDL). The output is a working design docu­
ment which can, if desired, be photo-reduced and included 
in a project development workbook. 

The output of the processor completely replaces flow­
charts since PD L designs are easier to produce, easier to 
change, and easier to read than are designs presented in 
flowchart form. 



272 National Computer Conference, 1975 

TABLE I-Production Comparisons 

PROJECT "A" PROJECT "B" 

DEVELOPMENT METHOD 
PROGRAMMING LANGUAGE 
SIZE OF PROGRAM (LINES) 
SIZE OF TEAM 

CLASSICAL STRUCTURED 
PL/I DIALECT 

LATEST CFG 
PL/I 

ELAPSED TIME (MONTHS) 
LINES PER MAN-DAY 
CPU HOURS PER 1000 LINES (IBM 370/158) 

DESIGNING FOR PEOPLE IN PDL 

32,000 
3-6 
9 
40 
0.90 

Like a flowchart, and unlike a program, PDL can be 
written with whatever level of detail is appropriate to the 
problem at hand. A designer can start with a few pages 
giving the general structure of his system and finish, if 
necessary, with even more precision than would exist in 
the corresponding program. 

In our experience, the purpose of a design is to com­
municate the designer's idea to other people-not to a 
computer. Figure 1 shows a sample design "segment" for a 
simple exchange sort. Note that we are not attempting to 
illustrate efficient sorting methods. Rather, having de­
cided to use this particular sorting method, we wish to 
present the algorithrp. in a way that it can be easily 
comprehended. Given that the "DO UNTIL" construct 
represents a loop whose completion test occurs at the end 
of the loop, the operation of the algorithm is apparent. It is 
clearly better, from the viewpoint of understandability, 
than either the flowchart of Figure 2 or the translation of 
the algorithm into PLjI as shown in Figure 3. 

A virtue of PD L is that a rough outline of an entire 
problem solution can be quickly constructed. This level of 
design can be easily understood by people other than the 
designer. Thus, criticisms, suggestions, and modifications 
can be quickly incorporated into the design, possibly 
resulting in complete rewrites of major sections. When the 
design has stabilized at this level, more detail can be add­
ed in successive passes through the design with decisions 
at each point affecting smaller and smaller areas. 

SORT (TABLE, SIZE OF TABLE) 

IF SIZE OF TABLE > 1 
DO UNTIL NO ITEMS WERE INTERCHANGED 

DO FOR EACH PAIR OF ITEMS IN TABLE (1-2, 2-
3, 3-4, ETC.) 

IF FIRST ITEM OF PAIR > SECOND ITEM OF 
PAIR 

INTERCHANGE THE TWO ITEMS 
END IF 

ENDDO 
ENDDO 

END IF 

Figure 1-PDL design of a simple sorting algorithm 

27,000 
3-5 
6 
65 
0.16 

THE FORM OF A DESIGN IN PDL 

A design produced in PDL consists of a number of "flow 
segments," each corresponding roughly to a procedure in 
the final implementation. A sample of a high-level flow 
segment from a large design is shown in Figure 4. If a 
statement in a segment references another flow segment, 

TEMP ~ TAI?t..E(I) 
TABLe(I)t-TA8L£(L +1) 

TABLE (1+1) +- TEMP 

Figure 2-Flowchart for sorting algorithm of Figure 1 



SORT: 
PROCEDURE(TABLE); 
DECLARE TABLE(*) FIXED BIN; 
DECLARE INTERCHANGED BIT(l); 
DECLARE TEMP FIXED BIN; 
IF DIM(TABLE,l) > 1 THEN 

DO; 
INTERCHANGED = 'l'B; 
DO WHILE (INTERCHANGED); 

INTERCHANGED = 'O'B; 
DO I=LBOUND(TABLE,l) TO 
HBOUND(TABLE,l)-l; 

IF TABLE(I»TABLE(I+l) THEN 
DO; 

INTERCHANGED = 'l'B; 
TEMP=TABLE(I); 
TABLE(I)=TABLE(I+l); 
TABLE(I+l)=TEMP; 

END; 
END; 

END; 
END; 

END SORT; 

Figure 3-PL/I procedure for sorting algorithm 

the page number of the referenced segment is shown to the 
left of the referencing statement. A sample low-level seg­
ment is shown in Figure 5. 

The statements which compose a flow segment are 
entered in free form. The PDL processor automatically 
underlines keywords, indents statements to correspond to 
structure nesting levels, and provides automatic continua­
tion from line to line. 

Design information may also be entered in "text seg-

CFG, INC. All CE~ElGPHENT wORKBCCK (14.90) 
EXPRESSION AND REFeRE~CE PReCESSING 

PROCESS EXPRESSION 

REF 

PDL-A Tool for Software Design 273 

ments." These contain purely textual information such as 
commentary, data formats, assumptions, and constraints. 

The document output by the PDL processor is in a form 
ready for photo-reduction and publication. It contains: 

• a cover page giving the design title, data, and 
processor identification 

• a table of contents (Figure 6) 
• the body of the design, consisting of flow segments 

and text segments 
• a "reference tree" showing how segment references 

are nested (Figure 7) 
• a cross-reference listing showing the page and line 

number at which each segment is referenced (Figure 
8) 

DESIGN CONSTRUCTS 

What goes into a design segment is generally at the dis­
cretion of the designer. In choosing the form of presenta­
tion, he is guided by a compendium of style which has 
been developed through extensive experience. However, 
the language and the processor have been defined to en­
courage and support design constructs which relate 
directly to the constructs of structured coding. The two 
primary constructs are the IF and the DO. 

The IF construct 

The IF construct provides the means for indicating con­
ditional execution. It corresponds to the classical 
IF ... THEN ... ELSE construct of Algol-60 lO and PL/I, 

06 JlJl H PAGE 39 

PAGE ****************************************.* •• *.*.************************************************************ 
* * 1 

40 * 2 
* 3 
* 4 
* 

42 * 5 
* 6 
* 1 
* 8 
* 9 
* 10 
* 11 * 12 

40 * 13 
* 14 
* 15 

42 * 16 

* 17 
* 18 
* 19 
* 20 

PUSh "SeE" (START CF EXPPESSICN) (NTC CFER~TOR ST~CK 
PRGCESS OPERAND 
QC ~HllE NEXT TOKE~ IS ~N OPERATCR 

~O WHILE OPERATCR IS NOT SAME AS CPER~TCR CN TCF CF OPERATOR STACK AND ITS PRECEDE~CE 
THAN OR e'UAL TC PRECECENCE CF CPERATOR ON THE TOP OF THE OPERATOR STACK 

BUILD TOP NOCE 
PCP OPERATOR STACK 

fI!W.OO 
1£ NEW OPERATOR IS SA~E AS TCP OPERATCR CN OPERATCR STACK 

INCREMENT OPERAND CCL~T I~ TeF CF CPERATCR STACK ev CNE 
.fLSf 

PUSH NE~ OPERATOR AN[ OPERAND COUNT CF 2 (~TC OPERATCR STACK 
.fJ:Hllf 
PROCESS OPERAND 

.f&l.D.Q 
~O WHILE TCP OF OPERATOR SUCK IS NCT "SCE" 

BUILD TOP NODE 
POP OPERATOR STACK 

.f.tJD~.o 
POP OPERATOR STACK 
lTCF OF OPERANC STACK CCNTAINS TCP NCCE IN EXPRESSION) 

* 
* * 
* 

IS LE~S 1* 
* 
* 
* 
'" 
'" * 
* 
* 
* 
* 
* 
* 
'" * 
* 
* 
* 

* * **********************************************.***********************************************"'*****"''''****** 
Figure 4-Sample of a high-level PDL flow segment 



274 National Computer Conference, 1975 

CFG, INC. LOCOMOTOR DATA REDUCTION 
DATA COMPRESSION 

AVERAGE OVER POINTS (RADIUS) 

REF 

15 UCT 14 PAGE 21 

PAGE *************************************.********************************************************************** 
* * 
* 1 .If OEBUGGING '" 29 * 2 START LINf (CURRENT CYCLE) '" 28 * 3 PRINT POINTS IN BUfFER (CURKENT BUFFER) '" * 4 ~alf '" 
* 5 POINTS <- 0 * 
* 6 SX <- 0 '" * 1 SV <- 0 '" * 8 BUFFER <- PREVIOUS OF PREViOUS ~UFFER '" * 9 au FOR 5 SUFfERS '" 22 * 10 MOVE GOOD POINTS TO WO~K SUFFER , BUFFER,RADIUS) * 
* 11 If DEBUGGING * 

28 * 12 PRINT POINTS IN SUFFeR (WORK BUFFER) '" • 13 ~f '" 
* 14 IE POINT COUNT Of WORK SUFFER > 0 '" * 15 DO FOR POINTS IN .ORK SUFFER * 
* 16 ADD X TO SX * 
* 17 ADD V TO SY * 
* 18 fWlo * 
* 19 ADO POINT COUNT OF WURK SUffER TO POINTS * 
• 20 El:IDl.f '" * 21 SUFFER <- NEXT BUFFER * 
* 22 fWllJ * 
* 23 .I.E POINTS> 0 * 
* 24 AX <- SX/POINTS * 
* 25 A'f <- $V/POINTS * 
'" 26 ~ (NO. DATA fUR POINT) * 
* 27 AX <- NEGATIVE * 
* 28 AY <.;. 0 * 
* 29 ftlIlUE * 
* '" ******************** •• *************************.************************************************************ 

Figure 5-Sample low-level PDL flow segment 

augmented by the ELSEIF of languages such as Algol-68.1l 

The latter is used to prevent excessive indentation levels 
when cascaded tests are used. 

The general form -of the construct is shown in Figure 9. 
Any number (including zero) ELSEIF's are allowed and at 
most one ELSE is allowed. 

The DO construct 

This construct is used to indicate repeated execution 
and for case selection. The reasons for the dual use of this 
construct are historic in nature and closely map several of 
the in-house implementation languages we frequently use. 
It may be effectively argued that a separate construct for 
case selection would be better. 

The iterative DO is indicated by: 

DO iteration criteria 
one or more statements 

ENDDO 

The "iteration criteria" can be chosen to suit the problem. 
As always, bias toward human understandability is pre­
ferred. Statements such as: 

DO WHILE THERE ARE INPUT RECORDS 
DO UNTIL "END" STATEMENT HAS BEEN 

PROCESSED 
DO FOR EACH ITEM IN THE LIST EXCEPT 
THE LAST ONE 

occur frequently in actual designs. 
Our experience, and that of others,7 has shown that a 

provision for premature exit from a loop and premature 
repetition of a loop are frequently useful. To accomplish 
this, we take the statement 

UNDO 

to mean that control is to pass to the point following the 
ENDDO of the loop. Likewise, 

CYCLE 

is taken to mean that control is to pass to the loop termi­
nation test. 

Since we may wish that an UNDO or CYCLE apply to 
an outer loop in a nest of loops, any DO may be labelled 
and the label may be placed after the UNDO or CYCLE. 

Case selection is ind~cated by 

DO CASE selection criteria 

Again, we advocate the use of understandable selection cri-



teria such as 

DO CASE OF TRANSACTION TYPE 
DO CASE OPERATOR TYPE 
DO CASE OF CONTROL CARD VERB 

Generally, we use labels in the body of the DO to indicate 
where control passes for each case. This is illustrated in 
Figure 10. 

FUTURE DIRECTIONS 

The results we have achieved with PDL have exceeded 
our original expectations. However, it is clear that further 
development is both possible. and desirable. The areas 
which we are currently exploring include: 

• handling of data: The current PDL presents a proce­
dural design-a design of control flow and processing 
actions. It would be very desirable to have a similar 
mechanism for the design of data structures and data 
flow. A method for integrating the data and proce­
dural designs and performing mutual cross-referenc­
ing would be very powerful, indeed. 

• interactive versions: the current PDL processor is 

(;FG. INC. AIL CEVELOPMENT WORKBCCK (14.901 
TABLE (F ((HEr-TS 

TABLE UF CONTENTS 

INTROCUCTION 
PJRPOSE OF SECTICN. 

DICTIONARY ALGURITHMS ••• 
FIND C[CTlCNARY ENTRY 
SEARCH ONE BLOCK. 
SEE IF MATCH ••• 

TOKEN SCANN[NG ••• 
BACK UP SCANNER • 
SCAN ChE TCKEN. 
SKIP BLAliKS ••• 
SKIP COMf4ENT ••• 
SCAN IDE"TIFIER • • 
SCAN SPECIAL CH.ARACTER. 
GET NEXT CHARACTER ••• 

SOURCE [NPUT •••••••• 
REAO NEXT SOURCE CARD •• 
LIST SCURCE CARD •• 

MA[II PROCESSf.hG LCCP •••• 
I'AIN LOOP ••••••• 
PROCESS ONE STATEMENT • 
SeTUP STATEMENT ••••••• 
VER[FY STATEME,..T PLACEMH1. 
PROCESS [F STATEMENT ••••• 
PROCESS PROCEDURE SUTEME~T • 
PROCESS 00 STATEMENT ••• 
PROCESS END STATEMENT •• 
PROCESS END UF STATEMENT. 

DECLARATI(N PROCESSING ••• 
PROCESS DECLARATION LIST. 
SCAN DECLARATICIi LIST •••• 
SCAN DECLARATlCIi If EM •••• 
SCAN ATTR[BUTES ••••• 
[NSTALL DECLARATION ITEMS 
II'tSTALL EAS[C EIITRY ••• 
INSTALL STRUCTURE ENTRIES •••• 
[NSTALL CECLARATlCN ATTRIfUTES •• 

EXPRESSICN AND REFERENCE PROCESSI"G. 
PROCESS EXPRESSION. 
PROCESS OPERAND •• 
IlUllD UNARY NUDE •••• 
eu IlD TOP NODE. • • • • 
P~OCESS REfERENCE •••• 
PROCESS !ASIC REFERENCE. 
FORM PDSSIBli: <SR> NODE • 
PROCESS SINGLE REFERENCE. 

Figure 6-Sample table of contents from a PDL design 

8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
21 
28 

29 
30 
31 
32 
33 
34 
35 
36 
31 

38 
39 
40 
41 
42 
43 
44 
45 
46 

PDL-A Tool for Software Design 275 

CFG. INC. LOCOMOTUR DATA REDuCTION 
SEGMENT HF~RENCE TREES 

STOW 

LN DEF 

I 4 
2 1.1 
3 35 
4 b 
5 38 
6 19 
1 24 
8 31 
9 3'0-

10 30 
11 32 
12 20 
13 20 
14 21 
15 29 
16 28 
17 22 
18 28 
19 25 
20 31 
21 34 
22 36 
23 32 
24 26 
25 11 
26 10 
21 5 
28 6 
29 38 
30 19 
31 24 
32 31 
33 34 
34 36 
35 32 
36 26 
31 20 
38 21 
39 29 
40 28 
41 22 
42 28 
43 25 
44 31 
45 34 
4t: 3& 
41 32 
Its 26 

SEGMENT 

STUW 
SET Df;FAULfS 
FIND STARTING StCTOR 
WRITE uN TAPE 

CUNVERT TO TANK 10 
IIUILO PROCf;SSED DATA ARRAY 

INlTlALIlE INPUT BUFFERS 
GEl POINTS 

GET BATCH 
READ· DISK 

MOVE AND CUUNT POINTS 
MOVE TO BUFFER 

PROCESS A POI-NT 
AVERAGE OVER POINTS 

START LINE 
PRINT POINTS IN BUfFER 
MOVE GOOD POINTS TO WORK BUFFER 
PRINT POINTS IN BUFfEiIo 

ADVANCE [NPUT BUFFERS 
GET POINTS 

GET BATCH 
READ DISK 

MOVE AND COUNT POiNTS 
MOVE TO BUFFER 

BUILD COMPRESSEU OAT A ARRAY 
DISPLAY COMPRESSEO POINTS 

EXECUTE A COMMAND 
WRITE UN TAPE 

CONVERT TO TANK 10 
BUILD PROCESSED OATA ARRAY 

[NITIALIlE INPUT BUFFERS 
GET POINTS 

GE T BATCH 
READ OHK 

MOVE AND COUM POINTS 
MOVE TO BUFFER 

PROCESS- A POINT 
AVERAGE OVER POINTS 

START liNt: 
PRINT POINTS IN BUFFER 
MOVE GOOD POINT S TO WORK BUFFER 
PRINT POINTS IN BUFFER 

ADVANCE INPUT BUFFERS 
GET POINTS 

GET BATCIt 
READ 01:>1( 

MOVE AND COUNT POINTS 
MOVE TO BUFFER 

Figure 7 -Sample of a segment reference tree 

batch oriented. The ability to compose and, more im­
portantly, to modify a design on-line in a manner 
specifically planned for interactive use would be of 
great assistance. This would be particularly advanta­
geous during the early stages of a project when design 
changes are often frequent and extensive. 

• total design system: an integrated computer system 
for software design, such as the DES system of 
Professor R. M. Graham,12 is a natural outgrowth of 
our work with PDL. Such a system would act as an 
information management system maintaining a data 
base of designs. Designs could be entered and 
modified; questions about a design and the inter-rela­
tions of its parts could be asked and answered; 
reports on design status and completeness could be 
prepared. Provision for simulation of a design for 
performance estimation and a mechanism for transi­
tion from design to code are also important. 

CONCLUSIONS 

In the autumn of 1973, we integrated the use of PDL and 
its processor into our software design and implementation 
methodology. Since then, it has been used on a number of 



276 National Computer Conference, 1975 

CFv, INC. ~Il DEVELJPMcNl ",ORI<.BOOK 120.90) 
11IIOI:X T J ';,{UUP ~ ANO 5EGMENr S 

';P MAIN PHASE Flul/ 

SG MAKE SO(..C i:SSO" EDbE 
7:v8 7:11 7: 19 

31 SG MAKK LUliP ENTR Y BLOCKS 
3..1: 02 

39 SG MAil.K LUap MEMtI"RSIiIP 
37:13 

32 SG MARK uNE LUOP ENTRV BLOCK 
.H:13 

SG OPTIMIU 

54 SG Pe:RFORM IiACKWARO MOVEMENT 
:H:l7 

45 SG PeRFURM LOCAL eSE elIMINATION 
It4; 01 

36 SG PERFuKI'I TRANSFORMATIONS 
4:06 

't1 SG PROC"SS ASSIGI'oMENT FOR CSE 
45: 07 51: 10 52: 16 

Its SG PKOCESS CALL FOR CSE 
4~:09 51:12 52:18 

46 SG PROCeSS COMPUTATIONAL TRIPLI: fOR CSE 
45:05 

17 SG PROCESS FETCH INFORMATION 
16:05 16:08 16:10 16:12 16:13 16:15 16:18 

18 SG P"IJCi:SS STORE INFORMATION 
10:06 

56 SG Rt:DUC~ STRENGTH 
37:18 

65 SG "EDUCE STRENGTH OF ONE TRIPLE 
56:07 

27 SG RESOLVE TENTATIVE IIACK DOHINATORS 
2~:09 

55 GP STREN(..TH ReDUCTION PART UF TRANSfORHAT IONS SUBPHASE 

22 SG TRACE CALLS 
4'03 

23 SG Tf<ACE ONE NODE 

Figure 8-Part of an index to a design 

projects of varying sizes. The results have been com­
parable to those discussed earlier. 

PDL is not a "panacea" and it is certainly possible to 
produce bad designs using it. However, we have found that 
our designers and programmers quickly learn to use PDL 
effectively. Its emphasis on designing for people provides a 
high degree of confidence in the correctness of the design. 
In our experience, it is almost impossible to "wave your 
hands" in PDL. If a designer doesn't really yet see how to 
solve a particular problem, he can't just gloss over it 

IF condition 
one or more statements 

ELSEIF condition 
one or more statements 

ELSEIF condition 
one or more statements 

ELSE 
one or more statements 

ENDIF 

Figure 9-General form of IF construct 

DO CASE OF TRANSACTION TYPE 
ADD: 

CREATE INITIAL RECORD 
DELETE: 

IF DELETION IS AUTHORIZED 
CREATE DELETION RECORD 

ELSE 
ISSUE ERROR MESSAGE 

ENDIF 
CHANGE: 

INCREMENT CHANGE COUNT 
CREATE DELETION RECORD 

"OTHER": 
ISSUE ERROR MESSAGE 

END 0 

Figure 10-Example of DO CASE construct 

without the resulting design gap being readily apparent to 
a reader of the design. This, pI us the basic readability of a 
PDL design, means that clients, management, and team 
members can both understand the proposed solution and 
gauge its degree of completeness. 

We have also found that PDL works equally well for 
large and small projects. Because it is so easy to use, 
persons starting to work on even a "quick and dirty" 
utility will first sketch out a solution in PDL. In the past, 
such programs were usually written with little or no design 
preceding the actual coding. 

REFERENCES 

1. Boehm, B. W., "Software and its Impact: A Quantitative Assess­
ment," Datamation, May 1973, pp. 48-59. 

2. Goldberg, J., (editor), Proceedings of a Symposium on the High Cost 
of Software, Stanford Research Institute, 1973. 

3. Baker, F. T., "Chief Programmer Team Management of Production 
Programming," IBM Sys. J., Vol. 11, No.1, 1972, pp. 56-73. 

4. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines and 
Languages With Only Two Formation Rules," Comm. ACM, May 
1966, pp. 366-371. 

5. Dijkstra, E., "GO TO Statements Considered Harmful," Comm. 
ACM, March 1968, pp. 147-148. 

6. Mills, Harlan D., "On the Development of Large Reliable Pro­
grams," IEEE Symp. Computer Software Reliability, 1973, pp. 155-
159. 

7. Peterson, W. W., T. Kasami and N. Tokura, "On the Capabilities of 
WHILE, REPEAT and EXIT Statements," Comm. ACM, August 
1973, pp. 503-512. 

8. Stevens, W. P., G. J. Myers and L. L. Constantine, "Structured 
Design," IBM Sys. J., Vol. 13, No.2, 1974, pp. 115-139. 

9. De Balbine, G., Better Manpower Utilization Using Automatic 
Restructuring Caine, Farber & Gordon, Inc., 1974 (in publication). 

10. Naur, P. et aI., "Report on the Algorithmic Language ALGOL 60," 
Comm. ACM, May 1960, pp. 299-314. 

11. Van Wijngaarden, A. et aI., "Report on the Algorithmic Language 
ALGOL 68'," Numerische Mathematik, 14, 1969, pp. 79-218. 

12. Graham, R. M., G. J. Clancy and D. B. Devaney, "A Software Design 
and Evaluation System," Comm. ACM, February 1973, pp. 110-116. 



Structured programming and structured 
design as art forms 

by EDWARD YOURDON 
Yourdon Inc. 
New York, New York 

It is generally known that structured programming was 
initially promoted in Europe through the efforts of Edsger 
Dijkstra and others. However, its introduction to the USA 
is primarily due to the efforts of IBM; furthermore, much 
of the American programmer's knowledge of structured 
programming is based on such superficial discussions as 
the December 1973 Datamation articles. 

The consequences of this superficial exposure are begin­
ning to be realized: programming without the GO-TO still 
offers innumerable ways of writing incomprehensible pro­
grams. More important, it is now being realized that struc­
tured programming imposes a rigid discipline on the cod­
ing of a program, but leaves important design questions to 
the whim of the programmer. Thus, we see a number of 
"structured" programs whose modules share local working 
storage with one another, or whose code manages to 
ALTER the code in other modules; the result is that an in­
nocent change to one module causes unpredictable prob­
lems in another module. 

Because of these problems, there is growing interest in a 
related discipline known as "structured design." Based on 
work carried out by Larry Constantine in 1965-68, struc­
tured design concentrates on the relationships between 
modules; it introduces the concepts of "coupling" and "co­
hesiveness" to help quantify the "goodness" of a design. 
When carried out properly, a program implemented with 
structured design is substantially easier to maintain than 
a program implemented with either a "random-design" 
approach or even a "structured programming" approach. 
This is particularly interesting since structured design 
does not impose any rigid disciplines on the code within a 
module. Thus, structured design combined with structured 

277 

programming should be an almost unbeatable combina­
tion. 

Unfortunately, structured design is not yet a precise 
science. For example, coupling is easily understood by 
programmers; however the strategy of minimizing inter­
module coupling often contradicts the programmer's in­
stincts and habits: for reasons of efficiency or con­
venience, he is often unwilling to relinquish his use of 
global variables, COMMON data areas, and common con­
trol blocks. Cohesiveness is similarly misunderstood: the 
programmer learns that a module called EDIT-AND-UP­
DATE has "sequential" cohesiveness, and that EDIT­
ALL-TRANSACTIONS has "logical" cohesiveness-and 
that neither module is considered "good" when compared 
to the ideal moduie possessing "functional" cohesiveness. 
Since the programmer often doesn't understand the 
various levels of cohesiveness anyway, and since it may 
contradict design strategies he has employed for years, he 
may ignore the suggestions of structured design altogether. 

To summarize, programming has improved since the in­
troduction of structured programming and structured 
design. However, it is unreasonable to think that program­
ming has suddenly become a rigorous science-and it is 
foolish to think that the application of structured program­
ming is guaranteed to lead to "perfect" computer systems. 
Our programmers still need more education in the "art" of 
structured programming; they need more experience in 
the application of structured programming and structured 
design to real-world systems; and finally, they need 
"rules" of structured design that are as rigid as the "no­
GO-TO" rule is in the realm of coding. 





Modularization around a suitable abstraction 

by STEPHEN N. ZILLES 
IBM Research 
San Jose, California 

Suitable modularization is a good programming practice. 
It permits parallel development of modules, component 
testing as the pieces are completed, and simpler 
maintenance. Achieving these properties depends on defin­
ing clean interfaces and minimizing the dependencies 
between modules. 

Most methodologies for decomposing a program into 
modules place too much emphasis on control flow. Too lit­
tle attention is given to how data usage should affect the 
choice of modules. Such conventions as COBOL's separate 
data division (putting all working data at the top level of 
the module hierarchy, and passing all information in the 
parameter list) give modules access to data which they do 
not need, but which they might use to improve local effi­
ciency. This use of unneeded data produces dependencies 
among modules which logically should be unrelated. 

The data which might produce unwanted dependencies 
is not just data unrelated to the function of the module. 
The primary problem occurs with data items which 
describe or are part of the representation of the data struc­
tures to be processed by the module. As a simple example, 
consider the implementation of a relational data base. The 
data items being related are important to the processing 
programs. The data items used in representing the rela­
tions-field sizes, pointers-should not be used in the 
processing module because that module should be insensi­
tive to representational changes. 

By choosing a suitable abstraction of the data we can 
present only the functionally necessary aspects of the data 
representation and suppress implementation details. 
Procedural abstraction has been used to modularizea se-

279 

quence of simple actions and construct a higher level ac­
tion with a simpler interface, but little use has been made 
of abstractions built around data. A data abstraction 
consists of a set of abstract objects-a data base; a print 
spooler; models of machines in a machine shop-and the 
operations which can be performed on the objects. The 
operations manipulate the visible aspects of the abstrac­
tion-the items in the data base, print files, the parts of 
the machine-and suppress access to the implementation 
details-the representation of the relations, the number of 
printers, the representation of the parts. This allows some 
aspects of the data abstraction to be computed rather than 
represented directly, and, conversely, allows aspects, to be 
redundantly represented and insures the consistency of 
the representation. 

Since a data abstraction includes both data objects and 
the operations applicable to them, a suitable modulariza­
tion must include procedures for each of the operations. 
This multi procedure module encapsulates the representa­
tional information and makes it inaccessible outside the 
module. Hence, dependencies are kept within the module 
as desired. Because most existing languages do not support 
the construction of such modules, the ideal solution would 
be to design new languages which do. Practical considera­
tions, however, require that we also develop ways to use 
existing languages to implement multi-procedure modules. 
This can be done using preprocessors and management 
control techniques. The important thing is to recognize 
and consider data abstractions when the modularization is 
chosen, and thereby limit data access to relevant opera­
tions for manipulating it. 





Minicompilers, preprocessors and other tools 

by P. J. PLAUGER 
Bell Laboratories 
Murray Hill, New Jersey 

Building on the work of others is the only way to make 
substantial progress in any field. Yet computer program­
ming continues as a cottage industry because program­
mers insist on reinventing tools for each new application. 
What we must encourage is a way of packaging programs 
so that they can be perceived as standard tools, each 
performing its specialized task sufficiently well that there 
is seldom any need felt to duplicate its function. 

Many a computing task can take the form of a pre­
processor or filter through which one can pass a file to 
derive a useful variant. For example, string substitution 
(define) and library file inclusion (include) are useful 
operations on any source language; they provide a low 
level macro facility which is often all that is needed. A 
filter. Fortran is ugly but universal. We can still write in a 
"Rational Fortran" if we have a simple preprocessor that 
maps our pretty source into the standard language. 
Another filter. Even sorting can be performed as a filter, 
given sufficient scratch storage, in the guise of a stand 
alone process that reads all of its input once, then writes 
the sorted output in one swat. 

A program that produces pretty listings, with titled and 
numbered pages, can be designed to work well with a 
broad class of languages. Similarly, a universal cross­
referencer can be written (and has been, for the UNIX 
system! at Bell Labs). With tools like these, there is no 
longer a pressing need for large, multi-optioned compilers. 
Compiler writers can concentrate on the difficult enough 
task of mapping source code into object code (another 

281 

iilter!). And with the compiler-compilers available today 
to do the hard parts, there is no reason not to build a low­
level mini-language for each new mini- or micro-computer 
that comes along. (Assembly language is sufficiently un­
readable that it should be avoided whenever possible.) 
Indeed, a "Rational Fortran" preprocessor is just such a 
minicompiler. 

The UNIX operating system makes filters all the easier 
to use by providing pipes to connect the output of one 
process, through a buffer, to the input of another si­
multaneously operating process. While this is not vital to 
the use of preprocessors, it does save the user from typing 
JCL and it saves the computer from writing numerous 
intermediate files which must then be deleted. 

The important thing to observe is that each of the 
software tools mentioned here is a small coding project, 
ranging from a few man-months down to a matter of 
hours. Filters can be linked together in many useful ways, 
and some can be used for many different purposes, if they 
are designed from the start to interface to the world in 
standard ways. The programmer working this way be­
comes a tool builder, and his impact extends far beyond 
the task he may originally have set out to solve. 

REFERENCE 

1. Ritchie, D. M. and Ken L. Thompson, "The UNIX Time-Sharing 
System," CACM 17,7, July 1974, pp. 365-375. 





On b"eing one's own programming self 

by PETER J. DENNING 
Purdue University 
West Lafayette, Indiana 

"Structured programming" has become the name of a 
popular movement toward better programming in the past 
two years. 1

,2 Among the popular interpretations of the ad­
vice advanced by the masters, are many strong proclama­
tions that anyone, by following a few simple prescribed 
rules, can be transformed into a programmer of top grade, 
and the productivity of programming shops everywhere 
can be multiplied. Experience, particularly with students 
in programming courses, leads to the tentative conclusion 
that some (but not all) will be helped by the "rules of 
structured programming;" and that the quality of their 
products will rise, though not to the extent one might ex­
pect from the inflated claims of some structuralists. 

There is a striking similarity between writing good pro­
grams and writing good English.3 When translated into the 
context of English Style, the counterparts of some struc­
tured programming rules border on the absurd. As exam­
ples, consider two specific directives one hears: 

1. Construct all programs by. combining simpler ones 
using only the control structures of "sequencing," "if­
then-else," and "do-while." 

2. Program top-down, successively refining "stubs" 
"(unimplemented lower-level modules) until all 
modules are completed. 

The problem with the first directive is that it has lost 
sight of the objective: to confine oneself deliberately to a 
small set of esthetically pleasing forms that permit clear 
expression without loss of generality. Just as many more 
than three prose forms are in good taste, many more than 
three programming forms are in good taste.4

,5,6 The great 
novelists and journalists have often achieved their statures 
precisely because they created a new form or a new com­
bination of old forms. Even so in programming. 

The second directive is more deceptive than the first. 
Once again, it loses sight of the objective: to structure a 
complex work so that its important elements can quickly 
be grasped in relation to the whole, and that it may easily 
and convincingly be presented. A hierarchical structure is 
a pleasing and effective way of achieving this objective. 
But the structure of the product need not resemble that of 
the process that created it. Even as the successful authors 
of large books have deviated from the advice of grammar 
school composition teachers-write first all the chapter 

283 

titles, then all the section headings, then all the subsection 
headings, then all the topic sentences of paragraphs, then 
the paragraphs themselves-so the successful authors of 
large programs do not follow a particular, structured pat­
tern of creativity: however quintessential in hierarchical 
design be their products. That is, in fact, the crucial point: 
a work of skill is judged by the beauty of its structure, 
though no one really believes that the craftsman's creative 
impulses conformed to any predetermined pattern. Each 
writer has his own style of creating his work and will 
achieve success only to the extent that he is able to find 
and cultivate his own style. 

As you can see, the problem with both directives is their 
inflexibility. By saying, "Do it this way," they confine the 
individuality of the programmer and disallow the 
expression of his own creativity. Each writer-whether of 
prose or of program-has his own style of creating his 
works and will succeed only to the extent he is able to find 
and cultivate it. 

Let it be clearly understood that I am not downgrading 
the movement toward better style in programming. I am 
one of its strongest supporters. By imitating the style of 
the masters I am able to instill more pleasing forms into 
my own writing and programming, and certain of the 
forms suggested by the masters are unquestionably effec­
tive. I am suggesting only that you beware dogmatic 
insistence on a fixed set of rules about programming. It is 
like insisting that students of composition write only in 
one style: if heeded, this advice would lead to a dreadfully 
dull world. Let us translate our experience with prose style 
into the context of programming. It may help us approach 
programming with the same realism, maturity, and flexi­
bility as we approach prose. 

REFERENCES 

1. Dahl, O. J., E. W. Dijkstra and C. A. R. Hoare, Structured Program­
ming, Academic Press, 1972. 

2. Gries, D., "ACM Forum: On Structured Programming," Comm. 
ACM 17,11 November 1974, pp. 655-657. 

3. Kernighan, B. W. and P. J. PI auger, The Elements of Programming 
Style, McGraw-Hill, 1974. 

4. Knuth, D. E., "Computer Programming as an Art," Comm. ACM 17, 
12, December 1974, pp. 667-673. 

5. Knuth, D. E., "Structured Programming with Goto Statements," 
Computing Surveys 6, 4, December 1974. 

6. Strunk, W. and E. B. White, The Elements of Style, MacMillan, 
1959. 





Data types and program correctness* 

by BARBARA H. LISKOV 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

One of the most important current software issues is re­
liability, and accordingly, a major criterion of program­
ming language design must be that the language contribute 
to the production of reliable programs. Although there are 
other important aspects of software reliability (e.g., fault 
tolerance), the most fundamental is program correctness: 
does the program do what it is supposed to do? A language 
can contribute to this goal by enhancing the provability of 
its programs. This paper discusses the impact of user-de­
fined data types on program provability. 

The principal motivation for having a language support 
user-defined data types is that they contribute to software 
reliability by enhancing the programmer's ability to use 
abstraction in writing programs. Abstraction plays an 
extremely important role in programming because it is the 
main tool available for controlling the complexity of pro­
grams. Thus the process of structured programming! is 
based primarily on recognition of useful abstractions. The 
abstractions provide a basis for problem decomposition: 
The original problem is solved by a program which uses 
the abstractions, and each abstraction becomes a new 
problem to be solved. 

There are (at least) two kinds of abstractions used in 
programming: functional abstractions and data abstrac­
tions.2 User-defined data types support the latter; in the 
absence of a type-definition facility, the use of data 
abstractions is at least difficult, if not impossible. 
However, many languages which permit new data types to 
be defined view new types as a name for some selected 
storage representation (e.g., Pascal,3 Algol 684

). This is 
inadequate because it ignores the fundamental connection 
between a data type and a set of operations which are 
meaningful for that type. Instead the new type is manipu­
lated by the operations which are meaningful for its 
representation. This means that the new type is not being 
used abstractly. Of course, procedures may be written to 
provide the meaningful operations, but these are defined 
separately from the type definition, so the relationship 
between them is not apparent. 

The connection between data types and operations has 
been noted before, and recommended as a technique for 
treating types abstractly.5,6,7 However, most work in this 
area has been concerned with identifying a distinguished 

* This work was done with sUPI'')rt of IBM funds for Research in Com­
puter Science. 

285 

set of operations which must be defined for every new 
type. For example, Balzer proposed a set consisting of four 
operations to access, update, insert, and destroy abstract 
data collections: each new type definition must specify 
how each of these operations is to be implemented.6 

The problem with this approach is that there is no 
guarantee that the set of distinguished operations cor­
responds to the meaningful set of operations of the type. 
In fact, followers of this approach have noted that there 
are types which cannot be defined in terms of the distin­
guished set of operations.6,7 As before, the additional 
operations could be defined by procedures, requiring the 
use of two separate mechanisms. 

An approach which can handle any abstract data type 
by a single definition mechanism is to permit the program­
mer who identifies the data abstraction to define his own 
set of operations as part of the type definition. This re­
quires that the language provide the proper type-definition 
mechanism: a type definition will consist of a description 
of how objects of the new type are to be represented in 
storage, and algorithms, written in terms of the representa­
tion, for all the operations. 

One advantage of this approach is that all information 
about a type-definition is gathered in a single place and 
supported by a single construct (for example, the class 
construct of Simula 678

). This leads to simpler, more 
understandable programs. A more important advantage is 
that it is possible to encapsulate the type definition, so 
that users of the type can manipulate objects of that type 
only via the defined operations. In particular, the 
representation of objects is not visible outside the type 
definition. The type checking mechanism of the language 
can be used to enforce this. Languages containing such en­
capsulated mechanisms are under development.9

,lo 

Encapsulating a type definition enhances the 
provability of programs because it permits proofs to be de­
composed around the type definitions. * A single proof is 
given that the type definition implements the type cor­
rectly; this is the only proof in which implementation 
details must be considered. The proof of a program using 
the abstract type depends only on the abstract behavior of 
the type. 

Consider the proof that a type definition correctly im­
plements a type. This proof depends on the fact that en-

* Hoare makes this point and gives a sample of proof in Reference 11. 



286 National Computer Conference, 1975 

capsulation ensures that assumptions made by the opera­
tions about the meaning of the representation cannot be 
invalidated by actions outside the type definition. For 
example, the abstract data type, stack, with operations 
create, push, pop and empty, might be represented (in 
Pascal3

) by 

record top: integer, 
data:array [1..100] of integer 

end 

Note that not every possible configuration of this structure 
is a legitimate stack; in legitimate stack representations, 
for example, 0~top~100, and data [1]' ... , data[top] 
contain the pushed values, in the order in which they were 
pushed. The proof of the stack definition will consist of 
proofs that each operation behaves correctly, and each 
such proof assumes the operation is passed a legitimate 
stack object, and shows the operation returns a legitimate 
stack object. In the absence of encapsulation, proofs about 
the legitimacy of stack objects must be given in all pro­
grams using stacks, which is much more work. 

The interface between the type definition and the users 
of the type must be precisely specified if this proof tech­
nique is to be successful. The encapsulation of the type 
definition ensures that the behavior of a type can be 
specified without describing how objects of the type are 
represented. For example, statements about the legitimacy 
of stack objects need not be included in a specification of 
the abstract type, stack. Thus encapsulation leads to 
simpler and more understandable specifications by reduc­
ing the information which must be expressed.12 

The emphasis in the preceding paragraphs has been on 
program provability. Although this is interesting in its own 
right, it is also important because of its close relationship 
to program understandability. Understanding a program 

is the basis of an informal proof technique in which a 
programmer reasons about the meaning of a program 
(either his own or someone else's) in order to convince 
himself that it behaves correctly. The arguments advanced 
above concerning the relationship of data types to 
provability apply equally well to understandability. 

REFERENCES 

1. Dijkstra, E. W., "Notes on Structured Programming," in Structured 
Programming, ed. O.-J. Dahl, et al. A.P.I.C. Studies in Data Process­
ing, No.8. London, Academic Press, 1972, pp. 1-81. 

2. Liskov, B. H. and S. Zilles, "Programming with Abstract Data 
Types," ACM SIGPLAN Notices, Vol. 9, No.4, April 1974, pp. 50-
60. (Also available as MIT Project MAC Computation Structures 
Group Memo 99) 

3. Wirth, N. "The Programming Language PASCAL," Acta Infor­
matica, V.1, 1971, pp. 35-63. 

4. Van Wijngaarden, A., B. J. Mailloux, J. E. L. Peck and C. H. A. 
Koster, "Report on the Algorithmic Language ALGOL 68," Nume­
rische Mathematik, Vol. 14, 1969, pp. 79-218. 

5. Mealy, G., "Another Look at Data," Proc. AFIPS 1967 FJCC, Vol. 
31, pp. 525-534. 

6. Balzer, R. M., "Dataless Programming," Proc. AFIPS 1967 FJCC, 
Vol. 31, pp. 557-566. 

7. Earley, J., "Toward an Understanding of Data Structures," CACM, 
Vol. 14, No.4, October 1971, pp. 617-627. 

8. Dahl, O.-J., B. Myhrhaug and K. Nygaard. The SIMULA 67 Com­
mon Base Language, Publication ,S-22, Norwegian Computing 
Center, Oslo, 1970. 

9. Liskov, B., A Note on CLU, Computation Structures Group Memo 
112, MIT Project MAC, Cambridge, Ma., November 1974. 

10. Wulf, W., Alphard: Toward a Language to Support Structured Pro­
grams, Department of Computer Science Internal Report, Carnegie­
Mellon University, Pittsburgh, Pa., April 1974. 

11. Hoare, C. A. R., "Proofs of Correctness of Data Representations," 
Acta Informatica, Vol. 1, 1972, pp. 271-281. 

12. Liskov, B. and S. Zilles, "Specification Techniques for Data Abstrac­
tions," Proceedings of the 1975 International Conference on Reliable 
Software, Los Angeles, Ca., April 1975 (in press). 



Extensibility in programming language design 

by THOMAS A. STANDISH 
University of California at Irvine 
Irvine, California 

INTRODUCTION 

What is extensibility? What is it good for, if anything? Is it 
worth bothering about when designing a programming 
language? 

Simply put, extensibility permits programming language 
users to define new language features. Starting with a 
base language and using various definition facilities,! an 
extensible language user can create new notations, new data 
structures, new operations, and, sometimes, new regimes of 
control. To a certain extent, extensibility permits a user to 
modify the features of a language to suit his changing needs 
and purposes. Given enough insight and craftsmanship, the 
user can create language extensions which are well-adapted to 
given intended application areas, and are useful for writing 
concise, clear algorithms free from contamination with low­
level detail. However, ex:perience has revealed that this 
approach is not as promising as was first hoped because of 
certain practical limitations I shall try to expose in this 
paper. 

WHAT WERE THE EARLY ASPIRATIONS? 

One of the earliest expressions of an extensible language 
philosophy was given by Brooker and Morris in 1960 in their 
classical paper on the Compiler-Compiler:2 

The system is extendable and allows the user to define the 
meaning of new formats in terms of existing formats as well 
as in terms of basic assembly instructions (whose meaning 
is built in) . 

It is unlikely that every machine user will want to write 
his own autocode: what is more likely is that he may wish 
to extend one of the standard languages to include statements 
suited to his own problem area. 

McIlroy seems to have had much the same idea in mind in 
1960 when he explained his aim in introducing assembly 
language macros:3 

It is our aim to show a limited set of functions readily 
implemented for a wide variety of programming systems 
which constitute a powerful tool for extending source lan­
guages conveniently and at will. 

287 

In May of 1969, at the Extensible Languages Symposium, 
Christensen's chairman's introduction characterized the 
objectives of extensibility as follows:1 

The ultimate and idealized objective of extensible lan­
guages is simple and attractive. A single universal program­
ming system is postulated which is included in the software 
support for every general purpose computer. This program­
ming system is not limited to one particular programming 
language such as PLjI. Rather, it includes a base lan­
guage and a meta-language. A program in this system 
consists of, first, statements in the meta-language which 
expand, contract, or otherwise modify the definition of the 
base language to produce a derived language, and, second, 
statements in the derived language which constitute the 
executable part of the program. 

Thus the system includes facilities to define and then to 
program in a limitless variety of programming languages­
languages which are used for busin~ss, scientific, or systems 
applications, languages which may be simple or complex. 

It seems fair to state that some of us were gripped by a 
curious euphoria in those days. A number of us believed that 
users would be able to extend the base of an extensible 
language rapidly and cheaply to encompass the data, opera­
tions, notation, and control natural to many diverse applica­
tion areas. In short, we believed we could make it possible 
for unsophisticated users to manufacture personalized 
languages of reasonable efficiency and substantial utility 
with great ease just by applying some easily learned exten­
sion techniques. These beliefs were probably a bit over­
ambitious. 

EXTENSION TECHNIQUES-A BRIEF CATALOGUE 

There are apparently quite a few dimensions to exten­
sibility-more than we at first suspected. Let me give brief 
examples to illustrate the diversity. 

Paraphrase 

Paraphrase is a form of definition in which we define 
something new by showing how to exchange it for something 
whose meaning is known (or will become known after giving 



288 National Computer Conference, 1975 

further definitions). This is commonly used in natural 
language'to define the meaning of new words (e.g., thau­
matology = the study or lore of miracles). Paraphrase is used 
widely as an underlying technique in extensible languages, 
and it takes many forms. As examples, consider the following: 

(a) macros in assembly language. 3 E.g., 

MACDEF SUM A, B, C 
LOAD A 
ADD B 
STORE C 

ENDDEF 

(b) procedure definitions in algebraic languages. 4 E.g., 

integer procedure Factorial (N); integer N; 
Factorial : = if N = 0 then 1 else N*Factorial (N -1) 

(c) syntax macros,5 or grammatical extensions at the 
expression and statement level (as in Reference 2), 
E.g., 

smacro 
while (b:boolean expression) do (s:compound 
statement) = 

{create new label (LI) inC 
Ll: if b then begin s; go to Ll end]} 

(d) data definitions,6,7 Here the idea is to be able to 
define new sorts of composite structured data starting 
with atomic data (such as integers, characters, and 
reals) or previously defined composite data. E.g., 

Let a rational be a structure which has 
a numerator which is an integer and has 
a denominator which is an integer 

Let a Matrix be a rowel :N) with vector elements 

. (e) operator definitions,8,9 E.g., 

Let Max(A,B) = (if A>B then A else B) 
Let + + be a left associative, binary operator with 

meaning = Max and precedence> "+" 
(f) control structure extensions.10 ,l! Here one can use 

process definition facilities to confer attributes on 
processes at the time of their definition. This is useful 
for defining processes that act as co-routines, that 
backtrack, that execute concurrently, which monitor 
'for the occurrence of certain events and seize control 
when these events happen, and so forth. 

Orthophrase 

Orthophrase is a means of extension wherein we add 
"orthogonal" features to a language. An orthogonal feature 
is one which lies outside the space of features expressible by 
paraphrase. Its defining expression cannot be composed in 
the language. For example, suppose we are given a language 
L in which definition facilities (a)-(f) above are available 
but which lacks I/O device control primitives. We might 
not then be able to extend L by writing expressions in L 

itself to specify programs for reading disk files or printing on 
a line printer. Adding a file system, a real-time clock, a string 
valued function giving today's date, or adding call-by-refer­
ence parameter passing are four additional examples of the 
sort of features that cannot usually be defined by paraphrase 
if some basis for defining them is not already in the language. 
To add an orthogonal feature, one must normally perform 
surgery on the underlying guts of a language processor and 
patch it in. (The adjective "orthogonal" seems to have been 
borrowed by analogy to vector spaces, wherein a vector 
orthogonal to each of the vectors in a given basis set is one 
which can't be expressed as a linear combination of the basis 
set elements and which lies outside the space "spanned" by 
the basis elements). 

Thus, orthophrase seems to be defined relative to a given 
set of paraphrastic definition facilities. It is not an absolute 
notion. Paraphrase facilities and an associated base language 
have a "span", so to speak, which consists of all possible 
paraphrastic extensions of the base. Any feature lying outside 
this "span" must be added by orthophrase, but a feature one 
must add by orthophrase in one language may be reachable 
by paraphrase in some stronger extensible language. 

Metaphrase 

While paraphrase and orthophrase add new capabilities, 
they do not change what is there before. M eta phrase consists 
of altering the interpretation rules of a language so that it 
processes old expressions in new ways. Examples of meta­
phrase are changing scoping policies for lifetimes or bindings 
of variables, changing the meaning of parameter evaluation, 
and changing the meaning of assignment and go to statements 
to allow programs to run backwards (useful perhaps in 
debugging to locate the source of an error after noticing in­
correct program behavior) . 

WHAT HAVE WE LEARNED ABOUT 
EXTENSIBILITY? 

By my latest count, 27 extensible languages have been 
proposed by 55 people (see Reference 12 for examples). 
Some of these proposed languages were implemented and, 
in some cases, 13 ,14 considerable experience has accumulated. 
What did we learn? 

As you might expect, different categories of extensions 
can require widely different amounts of skill and labor. 
Some are hard and some are easy. Which kinds have which 
properties? 

Let's first discuss extensions that can be made with modest 
amounts of labor by unsophisticated users. For example, in 
a well-designed extensible language,15 it is straightforward 
to extend the real and integer arithmetic available in the 
base language to include rational, complex, or multi-pre­
cision arithmetic or to add matrix, vector, or formula manip­
ulation. While these feats are easy, there is more in them 
than at first meets the eye. 

For example, how do we arrange to share the syntax of 
arithmetic expressions among all these domains (so that 



A + B*C could be used to specify operations on integers, 
matrices or complex numbers where appropria.te)? How can 
we define arithmetic concisely on the huge space of mixed 
types (such as "a rational" + "a complex" or "a real" * "a 
matrix")? How do we augment the lexical analyzer to 
recognize and translate new expression forms for constants 
(such as "3+4i" for a complex constant)? Can we seal off 
the behaviors of underlying representations so users transact 
only with data types in the extension (such as preventing 
the user from tinkering with lower triangular arrays used as a 
substrate to represent symmetric matrices in the surface 
of the language)? . 

Other examples of extensions that can be done with a 
modest amount of labor include adding strings, lists, balanced 
binary trees and file records together with their appropriate 
operatioU:s, behaviors and notations. The extensible language 
experience 14 has revealed that not only must we be able to 
add typical combining, growth, and decay operators (such as 
concatenation, insertion, and deletion) and to express them 
using new or shared notations, we must also be able incre­
mentally to extend common background language functions 
such as printing, assignment, and selection to handle special 
behaviors required of each new type (e.g., reduction of 
rational numbers to "least common terms" each time they 
are assigned to variables, or printing balanced binary trees 
in two dimensions if they will fit on a printed page, etc.). 

In each of these extensions the "style" of the base language 
tends to be preserved unaltered. For example, none of these 
extensions affect conventions for the presence or absence of 
block structure, the presence or absence of declarations, or 
for the form of conditional and iterative expressions or for 
parameter evaluation. 

Examples of hard extensions are: trying to add block 
structure to a language which doesn't have it (as in attempt­
ing to extend BASIC or FORTRAN to become ALGOL 60), 
adding declarations if they aren't there beforehand, adding 
backtracking or concurrent processing to the control structure 
if they aren't there already, or adding a real-time clock or a 
file system if they weren't there previously. 

In oversimplified terms, the easy extensions seem to be 
those that use paraphrase to add new features, whereas the 
hard extensions seem to be those that use orthophrase or 
metaphrase to modify what was there before. 

More precisely, in the case of paraphrase, the space of 
definitions users can give has been provided for explicitly 
in the extensible language design. Such extensions often 
specify independent additions to the base language and leave 
all base language features constant. 

In the cases of orthophrase and metaphrase, one normally 
has to modify a description of the language processor. These 
descriptions are usually complex and considerable knowledge 
and sophistication are required of the user desirous of making 
alterations. It is often hard to add something new in an 
non-injurious way, so it blends smoothly and doesn't upset a 
collection of mutually dependent behaviors. 

Here the extensible language experience reinforces the 
familiar notion that complex systems are resistant to change. 
The more intricate they are, the less easy it is to find out how 
to alter them significantly. Not only does this seem character-

Extensibility in Programming Language Design 289 

istic of the use of orthophrase and metaphrase, it also seems 
characteristic of cascades of extensions constructed by 
paraphrase-the more the intracacy of a set of extensions the 
more the difficulty of further extension. 

These considerations seem to point to the conclusion that 
each extensible language is surrounded by an envelope of 
possible extensions reachable by modest amounts of labor 
by unsophisticated users. These easily reached extensions 
tend characteristically to be those which add one layer of new 
data and new operations and which perhaps make minor 
additions to notation while leaving the conventions of the 
base language invariant~ Beyond this envelope, lie hard 
extensions requiring surgery on the language processor, 
major deformations of its conventions or style, or careful 
consideration of how to modify collections of mutually 
dependent extensions previously constructed. These seem 
gener~lly to require a level of knowledge and sophistication 
beyond that of the casual user but perhaps attainable by the 
interested and committed professional. The unsophisticated 
user could no more likely add a file I/O facility to an ex­
tensible language not having one previously than he could 
add a date window to his wristwatch-both cases require 
a high level of investment in understanding complex de­
scriptions and learning to use intricate tools. For all practical 
purposes, then, extensible languages seem only mildly exten­
sible by unsophisticated users. 

A basic difficulty with the philosophy of extensible langua­
ges derives from the fact that it is basically a "do-it-yourself­
kit" philosophy. As a user, you may not want to build your 
own programming language any more than you may want 
to build your own car. Building your own car requires large 
investments of labor, knowledge, tools and time, and most 
home-builts are not very elegant. Unless you are a hobbiest, 
you are often willing to sacrifice control over form to obtain 
the benefits of prefabricated labor, especially when there is 
lots of choice in the marketplace. This is why most prefer 
to buy rather than build their cars. 

So it is with extensible languages. It takes a huge dose of 
labor to extend a simple base to the level of capability 
represented by a high content language. Are users the right 
people to make these extensions or can skilled professional 
craftsman do a better job? Starting with a simple base and 
powerful extension facilities one often leaves the labor of 
building advanced features to those most likely to do an 
unattractive and unskilled job of it-the users. 

A final difficulty revealed by the extensible language 
experience is that extending a simple base results often in 
long, thin extension cascades that are often ugly and in­
efficient. Look at how LISp16 gets extended. One starts 
with a diamond (EV ALQUOTE) and progressively corrupts 
it by adding warts (the PROG feature, SETQ, FUNARG, 
etc.). After you are finished, the extended LISP is far from 
simple and harmonious and you might have obtained better 
results by designing to meet the overall constraints all at once. 

WHAT THEN IS EXTENSIBILITY GOOD FOR? 

It should be obvious that the extensible language move­
ment has· succeeded only partially in meeting the objectives 



290 National Computer Conference, 1975 

stated by the early explorers and that it did not create a 
programming revolution. It probably did succeed in clarify­
ing for us the amounts of labor and knowledge required to 
produce several sorts of language variation, and in revealing 
what sorts of extensions are reasonable to expect of un­
sophisticated users. 

Irons 17 probably put the matter in reasonable perspective 
when he observed that extensibility bears the same relation 
to high level languages as macros do to assembly languages. 
Maybe you use macros, say, 10 percent of the time or less, but 
they can be very convenient when you need them. Not only 
can you use them to suppress low level detail and promote 
program conciseness and clarity-you can often use them 
to mask irritating features of a language someone else has 
supplied. Extensibility seems worthwhile for analagous 
reasons. If implementation resources and execution space 
permit, it is probably better to have extensibility thall. to do 
without it. 

REFERENCES 

1. Christensen, C. and C. J. Shaw, eds., Proceedings of the Extensible 
Languages Symposium, SIGPLAN Notices, August 1969. 

2. Brooker, R. A. and D. Morris, "A General Translation Program for 
Phrase Structure Languages," JACM, January 1962, pp. 1-10. 

3. McIlroy, M. D., "Macro Instruction Extensions of Compiler 
Languages," CACM, April 1960, pp. 214-220. 

4. Naur, P. et al., "Revised Report on the Algorithmic Language 
Algol 60," CACM, January 1963, pp. 1-17. 

5. Leavenworth, B. M., "Syntax Macros and Extended Translation," 
CACM, November 1966, pp. 790-793. 

6. van Wijngaarden, A. et al., "Report on the Algorithmic Language 
Algol 68," Num. Math., 14, 1969, pp. 29-218. 

7. Landin, P. J., "The Mechanical Evaluation of Expressions," 
Computer Journal, January 1964, pp. 308-320. 

8. Taft, E. A. and T. A. Standish, PPL User's Manual, Tech. Rept., 
Center for Research in Computing Technology, Harvard University, 
September 1970. 

9. Galler, B. A. and A. J. Perlis, "A Proposal for Definitions in Algol," 
CACM, April 1967, pp. 204-219. 

10. Fisher, D. A., Control Structures for Programming Languages, 
Ph.D. Thesis, Carnegie-Mellon University, Department of Com­
puter Science, May 1970. 

11. Prenner, C. J., Multi-Path Control Structures for Programming 
Languages, Ph.D. Thesis, Center for Research in Computing 
Technology, Harvard University, June 1972. 

12. Schuman, S., ed., Proceedings of the International Symposium on 
Extensible Languages, SIGPLAN Notices, December 1971. 

13. Irons, E. T., "Experience with an Extensible Language," CACM, 
January 1970, pp. 31-40. 

14. Cheatham, T. E. and J. A. Townley, Some Applications of ECL, 
Center for Research in Computing Technology, Harvard University, 
1973. 

15. Wegbreit, B., et al., ECL Programmer's Manual, Harvard Univ., 
1973. 

16. McCarthy, J., et al., "Lisp 1.5 Programmer's Manual," MIT Press, 
Cambridge, 1962. 

17. Irons, E. T., personnal communication, February 22, 1971. 



Structured languages 

by LEON PRESSER 
University of California 
Santa Barbara, California 

A design process is a highly creative undertaking that has 
been generally guided by personal experiences and gross 
rules of design. This fact has been made explicit and at 
present the essence of the process of design is under inves­
tigation. This important problem is receiving attention in 
Computer Science. In particular, disciplined program 
design and development is the center of much discussion. 

Conventionally a (software) design and development 
process commences with requirements analysis and 
proceeds through design, coding, testing, and finally the 
product moves into an operational environment and sub­
sequent maintenance. The problem of error isolation and 
correction (i.e., debugging) is ubiquitous and the overall 
process is characterized by multiple iterations through 
various parts of the sequence of steps outlined above. In 
addition, appropriate documentation is generated 
throughout the project. The evaluation of this overall 
process is a complex issue that requires that 'evaluation' 
be a key objective from the very inception of the project 
through at least the beginning period of its operational 
lifetime. Currently, evaluation of design and development 
methodology is starting to receive attention but it may be 
some time before any substantial results are obtained. 
However, it is generally believed! that coding itself 
accounts for a relatively small portion of the total 
effort (~?). 

Our objective here is to discuss structured (i.e., dis­
ciplined) languages and, with the context provided by the 
above paragraphs as a base, we can now proceed to high­
light some of the important issues. 

A structured language is one that, in addition to match­
ing the needs of an intended application area, is designed 
to satisfy some specific objectives. Popularly, the main ob­
jective has been to produce a language that forces code to 
be written in a manner that prevents errors. This in turn 
implies clear documentation with a static version (i.e., list­
ing) that resembles closely the dynamic behavior of the 
code. Another possible language design objective could be 
to have code written in such a manner that locality is ex­
plicit and performance in a virtual environment is 
improved. Still another goal might be to make testing 
more explicit. Let us concentrate on the error prevention 
objective. 

Any program can be constructed with the following two 
control structures (Figure 1): 

• goto (transfer of control forwards or backwards to 
any point) 

291 

• predicate (conditional transfer of control forwards 
or backwards to one of two possible points) 

These two control statements represent a complete set for 
a programming language. However, the freedom provided 
by the potential use of the goto in an undisciplined fashion 
defeats the objectives previously outlined; in particular, it 
conflicts with the desire to have static and dynamic ver­
sions that are close. Consequently, the following complete 
set of control structures2 is more appropriate for our pur­
poses (Figure 2): 

• sequence (transfer of control to next point in 
program sequence) 

• if-then-else* (conditional transfer of control to one 
of two operations which upon execution transfer con­
trol to next point following if-then-else in program 
sequence) 

• loop (transfer of control so as to repeat an operatIOn 
as long as some specified condition, which may be 
placed anywhere in the loop, is true; when the condi­
tion is no longer true control is transferred to next 
point following the loop in program sequence) 

It is important to note that with this trio of control struc­
tures transfer of control occurs only in a disciplined man­
ner. That is, with this set transfer of control always 
proceeds forwards in a strictly sequential fashion, possibly 
skipping the next operation. in the sequence. Transfe-r of 
control backwards takes place only within the loop 
construct. Furthermore, each one of these structures 
possesses a single entry and a single exit point as shown in 
Figure 2. It is common to extend the if-then-else construct, 
which is a two-way branch, to an n-way branch called 
case. 

We have thus far delineated the type of basic control 
structures that define a structured language. Additional 
discipline on the overall structure of programs, in order to 
facilitate readability and compile-time checks, may 
enforce the following format: 

<program> :: = <declarations> <executable code> 

Moreover, it is an objective of structured language design 

* In principle, this structure is redundant since it can be obtained from 
sequence and loop. (The author is grateful to his student, Bob Haas, for 
bringing this point to his attention.) 



292 National Computer Conference, 1975 

ENTRY ---..... -EXIT ~
EXIT 

ENTRY 

EXIT 

GOTO PREDICATE 

Figure 1 

to make basic programming language principles explicit. 
For example, scope and protection issues3 may lead to the 
following program format: 

<program> ::= <global declarations> 
<local declarations> 
< executable code> 

In addition, a very desirable data definition facility may 
lead to the following format: 

<program> :: = < definitions and declarations> 
< executable code> 

<definitions and declarations> :: = <global section> 
<local section> 

<global section> ::= <global new data structure 
definitions> 
<global declarations> 

<local section> :: = <local new data structure 
definitions> 
<local declarations> 

Furthermore, the important issue of attempting to enforce 
a design discipline through a structured programming lan­
guage impacts on the final format of programs. This point 
is discussed in detail by White and Presser.4 Hence, the 
overall structure of the programs produced with a struc­
tured language is shaped by the aggregate of objectives 
that determined the language design. In particular, it 
should be clear that a structured programming language 
may be used as a tool to enforce discipline that impacts 
well beyond the bounds of the coding phase. Let us now 
address the practical problem of obtaining a structured 
language. 

There are three ways to generate a 'structured lan­
guage', these are: 

1. Imitation-Through the use of appropriately placed 
comments an existing language (e.g., Fortran) may 
be made to look like a language 'designed' around the 
three basic control structures previously described. 

Figure 2 

2. Preprocessing-A structured language may be 
designed such that programs written in it may be 
translated into an existing language for subsequent 
compilation and execution. In some cases this ap­
proach may hamper the features possible in the 
structured language. 

3. Design-A structured language is obtained through 
design and direct implementation. 

The last approach mentioned above is the most attractive 
one, however, as is commonly the case with any new 
programming language, vested interests are extremely dif­
ficult to overcome. On the other hand the importance of 
the issues under discussion is becoming clearer and the 
impact may be felt with some strength in the years ahead. 

Finally, I would like to end by mentioning a couple of 
points of interest based on my personal experience in the 
direct design of a structured language. First, a program­
ming language designed with objectives of structure tends 
to be almost free of ambiguities; this is due to the explicit 
treatment of principles and the inherent redundancies. 
Second, in the past I have used as a metric of the 'smooth­
ness' of a programming language a count of the number of 
words like 'except', 'but', etc., present in the manual that 
describes how to use the language. The smoothness of a 
language appears to be indirectly proportional to this 
number, and a structured language tends to be quite 
smooth! 

REFERENCES 

1. Brooks, F. P., Jr., "The Mythical Man-Month," Datamation, 20, 12, 
December 1974. 

2. Bohm, C., and G. Jacopini, "Flow Diagrams, Turing Machines and 
Languages with Only Two Formation Rules," Comm. ACM 9, 5, 
May 1966. 

3. Presser, L., and J. White, "Making Global Variables Beneficial," 
Proceedings IFIPS, August 1974. 

4. White, J., and L. Presser, "A Tool for Enforcing System Structure," 
Proceedings ACM National Conference, August 1973. 



Structured control in programming 
languages* 

by CHARLES T. ZAHN, JR. 
Stanford Linear Accelerator Center 
Stanford, California 

CONCEPTUAL DISTANCE 

Solving a problem with the aid of a computer involves 
the construction and execution ofa program described by 
a linear piece of text. First, the problem-solver (program­
mer) translates his problem into a procedural solution 
embodied in a static program text, written in a program­
ming language. Then a computer is caused to perform a 
dynamic sequence of actions in accordance with the com­
mands in the program text. The reliability of this two­
stage problem solution (i.e., the likelihood that the actions 
performed really provide a solution of the problem) de­
pends on the degree to which the program text mirrors the 
possible action sequences that it causes, l as well as the 
problem solution that it purports to implement. It is use­
ful to speak of the "conceptual distance" between program 
text and action sequences or between problem definition 
and program text. The programmer who wants some 
measure of confidence in the reliability of his program 
must bridge both these conceptual distances. It follows 
that a major goal of programming language design should 
be to help reduce both these distances. 

STRUCTURED CONTROL 

Structured programming1 is a systematic step-wise 
method of program composition which can be used to con­
quer the distance between problem and program by chop­
ping it into bite-sized pieces and employing abstraction as 
a mental aid to control the problem of complexity. It 
reduces the distance between program text and action se­
quence by employing in the program text only those forms 
of sequence control which allow an easy visualization of 
the possible action sequences from an inspection of the 
static linear program text. The control structure includes 
sequential grouping of commands as well as command se­
lection (if statements and case statements) and repetition 
(while and repeat statements). Enumerative reasoning and 
mathematical induction are available mental aids for 
understanding the action sequences evoked by programs 
restricted to these forms of sequence control. These 

* This work supported by the u.s. Atomic Energy Commission under 
contract AT(043)515. 

293 

considerations suggest a control structure limited to 
sequential grouping, selection and repetition. 

PROBLEM-ORIENTED CONTROL 

Unfortunately, the story doesn't end there because, in 
spite of the immense advantages of the restricted control, 
it is still not adequately problem-oriented. This is true 
even when the control structure is extended by a simple 
for statement and recursive procedures and functions. One 
of the commonest situations in programming is the need to 
select one of a finite set of commands, using some selection 
mechanism, each of whose outcomes corresponds to a 
unique command from the set. The following general flow­
chart models the control: 

r 
I 
I 
I 
I 
I 
I 
L 

- - - - --, 
I 

I 
I 
I 
I 
l 

------' 
In this flowchart, C1,C2 , ••• ,CN are constants of some 
finite type, each 81l is a command (statement), and T is a 
"test" or inspection of program variables whose execution 
terminates by selection of one of the CIl as its outcome. 

The special case (N=2, C1 = true, C2 =false and T 
evaluates a logical expression B) represents the familiar 
control form if B then 8 1 else 8 2 • The case (ell = k for 
ls;,ks;,N and T selects that constant CIl equal to the value 
of an integer expression E) represents Hoare's integer case 
statement with the syntax case E of (81;82 ; ••• ;8N ). This 
expression-driven case statement has been generalized2 

and implemented in PASCAL.3 By allowing constants CIl 

and expression E to correspond to any finite type (espe-



294 National Computer Conference, 1975 

cially programmer defined types like Color whose 4 
constant values might be Green, Blue, Red, Black), the 
conceptual distance between problem and program can be 
greatly reduced. 

There remain situations in which the selection is not 
conveniently reduced to an expression evaluation, and T 
must be a compound command which returns a value Ck • 

It also naturally occurs that at certain places within T, it 
becomes clear which value should be selected and an im­
mediate termination of. T is entirely appropriate. Recent) 
versions4 of the programming language BLISS5 extend the 
restricted control by allowing any compound statement to 
be labeled; then a statement of the form leave L with E, 
causes immediate termination of the enclosing statement 
labeled L and returns E as its value. It is, therefore, easy 
to implement the more general selection mechanism T 
within BLISS. A more recent proposal6

,7 for extending the 
control is an event-driven case statement of the form 

until C1 or C2 ••• or CN do T then case 
(C1:S1; ... ;CN:SN) 

with event statements Ck within T, causing immediate 
termination of T and selection of Ck • Each Ck is an 
identifier or name created by the programmer to provide a 
problem-oriented description of what the program is doing. 
The syntax for this generalized case statement was moti­
vated by considerations of writing and reading programs 
in a top-down fashion. The number of similar proposals 
for a termination mechanism (see the survey by Knuth7

) 

shows the universal need for such a programming device. 
Other common situations requiring an explicit termination 
mechanism are repetitions of a command sequence where 
the detection of the termination condition naturally occurs 
midway through the sequence and the handling of error 
conditions which have various degrees of severity. 

REPETITIONS WITH A CONTROL VALUE 

It is a common need in programming to repeat a given 
compound command once for each of a well-defined finite 
sequence of values, where that value is accessible (but not 
changeable) within the repeated command. When the 
programmer's intent is exactly reflected in this special 
form of repetition, there is a great gain in clarity when the 
program text employs a special syntax to indicate the 
repetitive pattern. Certainly, there should be a repetition 
like 

repeat for V from E l lupthru/downthrulE2 do S(V) 

where V is a variable of ordered finite type and EloE2 are 
expressions of that type. This is the form (with slight dif­
ferences in syntax) of for statement implemented in 
PASCAL.3,8 

Serious consideration should be given to extensions of 
the for statement to cater for progressions of values de­
fined by more general successor functions. For example, 
the programmer who builds sequences using records and 

references is helped immensely by statements like 

repeat for R from Start by Next upto null do S(R) 

where R is a reference variable whose values are Start, 
Next (Start), Next (Next(Start», etc., up to but not 
including null. The use of words upthru, downthru, upto is 
an attempt to reduce the ambiguity that results from not 
making explicit the distinction between inclusion or exclu­
sion of the final item. 

PROCEDURAL MECHANISMS 

Procedures and functions, with carefully designed 
parameter mechanisms, are now more widely appreciated 
as beneficial tools for program decomposition and the em­
bodiment of problem-oriented abstractions. They are thus 
helpful to the programmer in his task of bridging the con­
ceptual distance between problem and program; that is, 
when their use is not discouraged by considerations of effi­
ciency. The programmer should be allowed to attach the 
macro option to any procedure or function invocation, and 
thereby feel free to use them as purely structuring tools 
without the run-time overhead often implied by the closed 
subroutine. 

The main difficulty in the use of procedures and func­
tions is that the conceptual distance between program text 
and dynamic actions is often increased by mysterious 
parameter mechanisms and side-effects.9 The axiomatic 
definition of procedures and functions in P ASCAL8 can be 
interpreted as a suggestion that procedure parameters be 
classified as constant or as update, while function 
parameters are restricted to constant. A constant 
parameter represents a constant value determined by an 
actual parameter expression at the time the procedure or 
function is invoked. This value may not be altered by the 
procedure or function. This has usually been referred to as 
"call by value". An update parameter represents a 
program variable whose value can be altered or inspected 
by the procedure. The actual variable being inspected and 
altered is the one whose name is given as the actual 
parameter in the procedure invocation. It would probably 
be an aid to program clarity to distinguish a third class of 
result parameters which may not be inspected (since they 
are presumably as yet undefined!), but which are expected 
to be assigned values by the procedure. Of course, result 
parameters would not be allowed for functions. 

The program text of a procedure or function should indi­
cate all those global (i.e., non-local, non-parameter) 
variables which are referenced within it with a textually 
clear distinction of those which are potentially alterable 
by the procedure. No functions should alter any globals. 
Whether this additional program documentation is made 
the responsibility of the programmer or a helpful com­
piler-in either case it provides crucial textual evidence to 
aid the programmer in visualizing the possible dynamic 
actions caused by a given invocation of the procedure or 
function. Another important restriction8 is the disjointness 



of the set of alterable parameters and global variables. 
Failure to comply with this restriction may cause very 
nasty and subtle errors. 

It has recently been proposed by Hardgrave lO that a 
keyword, * rather than positional notation for the cor­
respondence between formal and actual parameters, 
would have several nice advantages, one of which is the 
obvious textual clarity of the programmer's intent. In the 
case of procedures and functions with long parameter lists, 
there is a disturbing potential for erroneous parameter 
communication even in a highly typed language. By allow­
ing default actual parameters lO for certain formal 
parameters to be explicitly given within the procedure dec­
laration, the textual length of the invocation can often be 
kept reasonably small in spite of the apparent verbosity of 
the keyword notation. It is also possible to add a new 
parameter without altering previously written invocations 
of the procedure-a potentially non-trivial advantage in a 
large software project requiring modifications through 
time. 

Recursive procedures and functions should be allowed 
since they reflect problem solutions whose reprogramming 
without recursion involves considerable conceptual distor­
tion and, therefore, increases the conceptual distance 
between problem and program. In a similar way, there are 
certain problems which are most naturally solved by two 
or more procedures whose relationships to one another are 
more symmetric than the normal hierarchical procedure 
relationships.ll Such procedures are known as coroutines 
or semi-coroutines and they differ from normal procedures 
in that each time they are invoked from another coroutine 
they resume execution where they last left off. Their· 
cooperative behavior is understandable in terms of an 
anthropomorphic model in which each coroutine is exe­
cuted by a different person who simply goes to sleep when 
he res·urnes one of the other coroutines, but when his own 
coroutine is resumed again he awakens in the same state 
as before he went to sleep. Coroutines can be used to ob­
tain the conceptual advantages of a multi-pass algorithm 
without the actual need for secondary storage and data 
format specifications usually implied by a literal imple­
mentation of the separate passes.12 Especially compelling 

* The correspondence between an actual and formal parameter is indi­
cated textually by <formal parameter> = <actual parameter>. 

Structured Control in Programming Languages 295 

examples of the conceptual correctness of coroutines are to 
be found in Dahl. 11 The coroutines discussed here are 
never in simultaneous or interleaved execution so their 
correct behavior doesn't involve the deeper problems of 
mutual exclusion, deadlock, etc. 

CONCLUSION 

An attempt has been made to discuss various issues in­
volved in the design of control for a programming language 
by relating these design issues to the goal of reducing "con­
ceptual distance". A slight compromise to the strict struc­
tured control seems justifiable to obtain a more problem­
oriented control. More research would be worthwhile in 
the area of "safe" iterations, parameter mechanisms and 
coroutines. 

REFERENCES 

1. Dijkstra, E. W., "Notes on Structured Programming," in Structured 
Programming by O. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, 
1972, Academic Press, London and New York. 

2. Hoare, C. A. R., "Notes on Data Structuring," in Structured 
Programming (see 1). 

3. Wirth, N., "The Programming Language PASCAL," Acta Infor­
matica, Vol. 1, No.1, pp. 35-63. 

4. Wulf, W. A., "A Case Against the goto," Proc. ACM National 
Conference, 1972, pp. 791-797. 

5. Wulf, W. A., D. B. Russell and A. N. Haberman, "BLISS: A Lan­
guage for Systems Programming," CACM, Dec. 1971, pp. 780-790. 

6. Zahn, C. T., "A Control Statement for Natural Top-down Structured 
Programming," presented at Symposium on Programming Lan­
guages, Paris, 1974, Springer-Verlag. 

7. Knuth, D. E., "Structured Programming with goto Statements," 
ACM Computing Surveys, December 1974. 

8. Hoare, C. A. R. and N. Wirth, "An Axiomatic Definition of the 
Programming Language PASCAL," Acta Informatica, 1973, pp. 335-
355. 

9. Hoare, C. A. R., Hints on Programming Language Design, Stanford 
University Computer Science Department Report No. CS-403, 
October 1973. 

10. Hardgrave, W. T., Positional versus Keyword Parameter Communi­
cation in Programming Languages, Report of the Institute for Com­
puter Applications in Science and Engineering (lCASE), NASA Lan­
gley Research Center, Hampton, Virginia, September 1974. 

11. Dahl, O. J., "Hierarchical Program Structures," in Structured 
Programming (see 1). 

12. Knuth, D. E., The Art of Computer Programming, Volume 1, 
Chapter 2, 1968. 





Issues in programming language design­
An overview* 

by ANTHONY I. WASSERMAN 
University of California at San Francisco** 
San Francisco, California 

The past few years have witnessed an increased under­
standing of the relationship between programming lan­
guages and problem solving. Programming is now under­
stood to be a rather difficult task which requires the si­
multaneous application of principles, skills, and art.1,2,3 
Computer scientists have recognized that the features of a 
programming language can have a significant effect upon 
the ease with which reliable programs can be developed. It 
has also been observed that certain languages and lan­
guage features are particularly well suited for the use of 
systematic programming techniques, while others hinder 
or discourage such discipline.4,5,6 Of course, it is possible to 
write well-structured, clearly organized programs in any 
programming language, but such programs have often been 
the exception rather than the rule. 

As a result of this work, there have been numerous 
developments in. the general area of programming lan­
guages. Among these are the following: 

(1) a significant number of new programming languages 
have been designed and/ or implemented,1 with 
several developed principally to promote proper 
programming practices;8,9,lo 

(2) the general features of existing and proposed lan­
guages have been analyzed in an attempt to identify 
desirable characteristics of programming lan­
guages;1l,12,13,14 strong criticism has been directed at 
those languages which do not appear to contain the 
requisite features for the systematic development of 
reliable software;15,16 

(3) preprocessors have been implemented for several 
programming languages, thereby allowing program­
mers to use "structured programming" techniques; 

(4) direct modifications have been designed and/ or im­
plemented for several programming languages, in 
order to enhance their suitability for program 
development; 

(5)· general design criteria for programming languages 
have been advanced, with attention focused on the 
need for a language to have a sound theoretical 
basis;17,18 

* This work was supported in part by the Commonwealth Fund. 
** Graduate Program in Medical InfOrmation Science. The author is also 
affiliated with the Computer Science Division, University of California 
at Berkeley. 

297 

Although the design goals for the individual language 
modifications and language developments vary 
considerably, there are a number of common objectives 
which can be identified. First, the value of linear flow of 
control was recognized, primarily for its value in program 
debugging and verification, and powerful control struc­
tures were proposed and added to promote such a 
flOW. 19,20,21,22 Second, the value of abstraction was 
recognized as a way to develop a representation of in­
formation which is more closely related to the application 
being programmed than exists in any programming lan­
guage with a fixed number of data types.23,24 Third, the 
scope and binding of variables was studied as a technique 
which simplifies program verification and which reduces 
programming errors caused by side effects.25,26 Fourth, it 
was recognized that a language must be comprehensible, 
so that programs written in the language can be read and 
maintained. Fifth, efforts were made to limit the size of 
languages, in order to make them easier to implement and 
to make it possible for a programmer to thoroughly under­
stand the tool. Finally, modular program structures were 
observed to make an important contribution to the 
production of large software systems. 

These design objectives are reflected in a variety of deci­
sions which are made in designing programming lan­
guages. Since the universe of design objectives is 
somewhat self-contradictory, as is immediately evident 
from a comparative analysis of languages, the language 
designer must consider the tradeoffs among the various 
possible features for a language, and give more emphasis 
to some of these objectives than others. It is agreed, 
however, that the language designer must have a thorough 
understanding of the goals of the language prior to com­
mencing a specification of the syntax and semantics of the 
language. 

Although there are a large number of closely related 
issues involved in the design of a language, much of the 
current work in language design is focused on three areas: 
language extensibility, data types and abstraction, and 
control structures. 

Language extensibility refers to the ability of the 
programmer to modify the language being used, with the 
intent of extending the power of the language.23,27,28 A rela­
tively small "base" language is defined, along with ca­
pabilities to add features such as new data types, new 



298 National Computer Conference, 1975 

operators, new syntax, and new control structures in order. 
to enable the program to more closely correspond to the 
problem domain.29 The derived language or "task lan­
guage" which thereby results can allow programs to be 
written in such a way that they are comprehensible to al­
most anyone familiar with the application area of the 
program. Persons working on the development of exten­
sible languages foresee the establishment of a higher level 
language which could evolve gracefully via packages of 
definitions. The availability of such packages for 
particular task areas could then greatly increase program­
mer productivity. 

Data types and abstraction refers to the number of 
predefined data types which are available in a languag~, 
the means available for combining the primitive types to 
create more complex types, and the way in which new 
abstractions may be introduced into the language.24 The 
notion of an abstract data type has been advanced to 
define a class of abstract objects which is completely 
characterized by the operations available on those ob­
jects.30 The means by which a variable takes on a given 
type and has a value assigned to it are extremely im­
portant issues in language design.31,32 

Control structures are the means by which the order 
of execution of statements in a program is determined. 
While it has been formally shown that only sequential con­
trol, a conditional statement, and iterative control are 
necessary to describe any computation,20 it is also under­
stood that restricted use of the go to statement may result 
in greater program clarity.33 Much of the work in control 
structures has dealt with the definition of mechanisms for 
conditional testing and i~eration which reduce the need for 
the go to statement, and which produce dynamic program 
behavior closely resembling the static program structure. 
Because of the need to permit communication among 
tasks, various control structures have been proposed which 
permit coroutines,34 parallel processing, synchronization, 
and monitoring.35 ,36,37 A wide variety of proposals for im­
proving control structures of existing and new languages 
have been suggested, including forms of nondeterministic 
control,38,39 and the relative power and merits of these al­
ternatives have been discussed extensively. 

Although these three issues are at the heart of much of 
the work on programming language design, there are a 
number of other issues which have received attention. 
First, the rapid growth of interactive systems :md their use 
by non-programmers has identified a need for string 
processing facilities and exception handling ca­
pabilities.4o,41 Second, the development of conversational 
programs for access to large data bases has focused atten­
tion on the need for capabilities in the area of data 
management and the need for more powerful input/ output 
facilities.42 Third, there are standardization efforts in 
progress for a number of programming languages in order 
to improve program transferability. Fourth, research into 
program proving and verification has led to additional pro­
posals for programming languages.43 Finally, there is also a 
need to simplify the task of program documentation, so 
that one can easily understand how a program works. 

The language designer must then be able to synthesize 
all of these various concepts in such a way as to produce a 
language which is defined in a uniform way, which has a 
logical relationship between the syntax and the semantics, 
which allows an efficiently executing program to be 
produced, and which permits programmers to concep­
tualize a solution to a problem in a straightforward man­
ner. The interrelationships among these design criteria are 
extremely complex, and it appears that it will be some 
time before a language emerges which can satisfy all of the 
needs of a broad class of programming applications. 

Beyond that point, there are a number of political and 
economic issues which will affect the eventual acceptance 
of such a language. The primary determinants appear to 
be the support given to the language through implementa­
tion by major vendors of computer hardware and 
software, and the ease by which programmers and 
programming management can be attracted away from 
their present language and trained in the new language. 
Until then, most programmers will be left to work with 
tools which are now recognized to be somewhat inadequate 
for the effective solution of programming problems. 

In conclusion, then, several key questions can be raised 
concerning the design of programming languages. How do 
we develop a programming mechanism which can ac­
curately mirror logical thinking?44 Furthermore, how do 
we develop a tool which is suitable for stepwise refinement 
of the problem from its abstract form to its "elaborated" 
form in a "natural" way? Last, how then does such a lan­
guage get introduced and accepted by the general 
programming community so that it raises the quality of 
software production? These are the main questions which 
underlie present research and development in the field of 
programming languages. 

REFERENCES 

1. Dijkstra, E. W., "The Humble Programmer," CACM, Vol. 15, No. 
10, October 1972, pp. 859-866. 

2. Knuth, D. E., "Computer Programming as an Art," CACM, Vol. 17, 
No. 12, December 1974, pp. 667-673. 

3. Dennis, J. B., "The Design and Construction of Software Systems," 
in Advanced Course on Software Engineering, ed. M. Beckmann et 
al. Berlin: Springer Verlag, 1973, pp. 12-28. 

4. Dahl, O-J., E. W. Dijkstra and C. A. R. Hoare, Structured Program­
ming, London: Academic Press, 1972. 

5. Dijkstra, E. W., "GOTO Statement Considered Harmful," CACM, 
Vol. 11, No.3, March 1968, pp. 147-8. 

6. Wulf, W. A., "A Case Against the GOTO," ACM SIGPLAN Notices, 
Vol. 7, No. 11, November 1972, pp. 63-69. 

7. Sammet, J., "Roster of Programming Languages for 1973," Comput­
ing Reviews, Vol. 15, No.4, April 1974, pp. 147-160. 

8. Wirth, N., "The Programming Language PASCAL (Revised 
Report)," Berichte der Fachgruppe Computer-Wissenschaften, Eid­
genossische Technische Hochschule, Zurich, 1973. 

9. Wulf, W. A., "BLISS: A Language for Systems Programming," 
CACM, Vol. 14, No. 12, December 1971, pp. 780-790. 

10. Liskov, B., "A Note on CLU," Computation Structures Group Memo 
112, MIT Project MAC, 1974. 

11. Cheatham, T. E., Jr., "The Recent Evolution of Programming Lan­
guages," Proceedings IFIP Congress 71, Amsterdam: North-Holland, 
1972, pp. 298-313. 



Issues in Programming Language Design-An Overview 299 

12. Elson, M., Concepts of Programming Languages, Palo Alto: Science 
Research Associates, 1973. 

13. Ledgard, H. F., "Ten Mini-Languages: a Study of Topical Issues in 
Programming Languages," Computing Surveys, Vol. 3, No.3, Sep­
tember 1971, pp. 115-146. 

14. Wasserman, A. 1., "Online Programming Systems and Languages: a 
History and Appraisal," University of California at San Francisco 
Laboratory of Medical Information Science Technical Report No.6, 
July 1974. 

15. Aiello, J. M., "An Investigation of Current Language Support for. the 
Data Requirements of Structured Programming," MAC Technical 
Memorandum 51, MIT Project MAC, 1974. 

16. Sherertz, D. D., A. 1. Wasserman and D. R. Allison, "Some Critical 
Comments Concerning MUMPS," Proceedings 1974 MUMPS Users' 
Group Meeting, St. Louis: MUMPS Users' Group, Biomedical 
Computing Laboratory, Washington University, pp. 173-190. 

17. Wirth, N., "On the Design of Programming Languages," Information 
Processing 74. Amsterdam: North Holland, 1974, pp. 386-393 (pre­
prints). 

18. Hoare, C. A. R., "Hints on Programming Language Design, " Stanford 
University Computer Science Department Technical Report CS-73-
403, December 1973. 

19. Fisher, D. A., "A Survey of Control Structures in Programming Lan­
guages," ACM SIGPLAN Notices, Vol. 7, No. 11, November 1972, 
pp.1-13. 

20. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines, and 
Languages with only Two Formation Rules," CACM, Vol. 9, No.5, 
May 1966, pp. 366-371. 

21. Herriot, R., "A Uniform View of Control Structures in Programming 
Languages," Information Processing 74, Amsterdam: North Holland, 
1974, pp. 331-335 (preprints). 

22. Zahn, C. T., "A Control Statement for Natural Top-Down Structured 
Programming," in Programming Symposium: Proceedings, Colloque 
sur la Programmation, ed. B. Robinet. Berlin: Springer-Verlag, 1974, 
pp. 170-180. 

23. Cheatham, T. E., Jr., "Motivation for Extensible Languages," ACM 
SIGPLAN Notices, Vol. 4, No.8, August 1969, pp. 45-48. 

24. Flon, L., "A Survey of Some Issues Concerning Abstract Data Types," 
Carnegie-Mellon University, Department of Computer Science 
Technical Report, September 1974. 

25. George,. J. E. and G. R. Sager, "Variables-Bindings and Protec­
tion," ACM SIGPLAN Notices, Vol. 8, No. 12, December 1973, pp. 
18-29. 

26. Presser, L. and J. R. White, "Making Global Variables Beneficial," 
Information Processing 74, Amsterdam: North-Holland, 1974, pp. 
413-418 (preprints). 

27. Galler, B., "Extensible Languages," Information Processing 74, Am­
sterdam: North Holland, 1974, pp. 313-316 (preprints). 

28. Schuman, S., (ed.) Proceedings of the International Symposium on 
Extensible Languages, ACM SIGPLAN Notices, Vol. 6, No. 12, 
December 1971. 

29. Wegbreit, B., "The ECL Programming System," Proceedings AFIPS 
1971 FJCC, Vol. 39, pp. 253-262. 

30. Liskov, B. and S. Zilles, "Programming with Abstract Data Types," 
ACM SIGPLAN Notices, Vol. 9, No.4, April 1974, pp. 50-60. 

31. Morris, J. H., Jr., "Types are not Sets," Conference Record of ACM 
Symposium on Principles of Programming Languages, 1973, pp. 120-
124. 

32. Wegbreit, B., "The Treatment of Data Types in ELI," CACM, Vol. 
17, No.5, May 1974, pp. 251-264. 

33. Knuth, D. E., "Structured Programming with GOTO Statements," 
Computing Surveys, Vol. 6, No.4, December 1974, pp. 261-301. 

34. Conway, M. E., "Design of a Separable Transition-Diagram Com­
piler," CACM, Vol. 6, No.7, July 1963, pp. 396-408. 

35. Brinch Hansen, P., Operating System Principles, Englewood Cliffs, 
Prentice-Hall, In<:., 1973. 

36. Dijkstra, E. W., "Hierarchical Ordering of Sequential Processes," in 
Operating System Techniques, ed. Hoare and Perrott, London: 
Academic Press, 1973, pp. 72-93. 

37. Hoare, C. A. R., "Monitors: an Operating System Structuring Con­
cept," CACM Vol. 17, No. 10, October 1974, pp. 549-557. 

38. Floyd, R. W., "Nondeterministic Algorithms," JACM, Vol. 14, No.4, 
October 1967, pp. 636-644. 

39. Dijkstra, E. W., "Guarded Commands, non-determinacy, and a Cal­
culus for the Derivation of Programs," Report EWD418, Burroughs, 
Nuenen, the Netherlands, 1974. 

40. Wasserman, A. 1., "Some Principles of User Software Engineering 
for Information Systems," IEEE COMPCON Spring 75 Conference 
Digest (in press). 

41. Goodenough, J. B., "Structured Exception Handling," Conference 
Record of the Second ACM Symposium on Principles of Program­
ming Languages, 1975, pp. 204-224. 

42. Codd, E. F., "Recent Investigations in Relational Data Base 
Systems," Information Processing 74, Amsterdam: North-Holland 
Publishing Co, 1974, pp. 1017-1021 (preprints). 

43. Kosy, D. K., "Approaches to Improved Program Validation through 
Programming Language Design," in Program Test Methods, ed. W. 
Hetzel. Englewood Cliffs: Prentice-Hall, Inc., 1973, pp. 75-92. 

44. Wirth, N., "On the Composition of Well-Structured Programs," 
Computing Surveys, Vol. 6, No.4, December 1974, pp. 247-260. 





An overview of the 1974 COBOL standard 

by MARGARET M. COOK, GEORGE N. BAIRD, WILLIAM M. HOLMES, 
PATRICK M. HOYT, L. ARNOLD JOHNSON and PAUL OLIVER 
Department of the Navy 
Washington, D.C. 

INTRODUCTION 

Since 1 luly 1972, all COBOL compilers brought into the 
Federal Government have to be identified as implementing 
one of the levels of the Federal COBOL Standard. The 
National Bureau of Standards, which has the responsibility 
for the development and maintenance of Federal ADP 
Standards, has delegated to the Department of Defense the 
responsibility for the operation of a Government-wide 
COBOL Compiler Testing Service. This responsibility is 
discharged by the Federal COBOL Compiler Testing 
Service (FCCTS), an activity of the Department of the 
Navy's Automatic Data Processing Equipment Selection 
Office Software Development Division, through the imple­
mentation and maintenance of the COBOL Compiler 
Validation System (CCVS),l a comprehensive set of com­
puter programs used to test COBOL compilers for compli­
ance with the Federal COBOL Standard. 

In May 1974, the American National Standards Institute 
approved ANS Programming Language COBOL, X3.23-
19742 as the national standard for the COBOL language 
replacing USA Standard COBOL, X3.23-1968.3 Federal 
Information Processing Standards Publication 21-14 adopts 
X3.23-1974 (minus the Report Writer module) as the 
Federal COBOL Standard. As a result of these actions, 
the Testing Service is engaged in the development of a 
new COBOL Compiler Validation System, incorporating 
tests for the revised language. This paper presents an 
overview of COBOL 74, highlighting the new features in 
the language, major language deficiencies, and important 
contributions to the programming discipline. All comments 
made with regard to COBOL 68 or COBOL 74 will be 
based on the language as defined in References 3 and 2, 
respectively. 

REVISIONS TO THE COBOL 68 MODULES 

The Nucleus, Sequential 1-0 and Library modules of 
COBOL 68 have undergone major revisions. The Table 
Handling and Segmentation modules are essentially the 
same modules as appeared in the 1968 COBOL Standard. 
The Random Access module has been replaced by the new 
modules, Relative 1-0 and Indexed 1-0, and the specifica­
tions for the Report Writer module have been rewritten. 

301 

The Sort module has been expanded into the Sort-Merge 
module by the addition of the MERGE verb. 

The Table Handling module in COBOL 74 consists of 
two levels instead of the previous three levels, and the 
punctuation changes in the 74 Standard have relaxed the 
rigid rules for the use of parentheses and commas in 
referencing table items. Literals and index-names may be 
mixed when referencing a table item, and an index may be 
incremented or decremented by a negative value. 

In the remainder of this section we concentrate on the 
new features of the Nucleus and Library modules. The 1-0 
modules will be covered in a later section, and we ignore 
the Report Writer as being beyond the scope of the 
Federal Standard. 

Section 2.3 of Appendix B of the X3.23-1974 Standard2 

documents in greater detail the modifications made to the 
1968 Standard and the additional language features added 
for the 1974 Standard. 

Nucleus 

Three new verbs have been added to the Procedure 
Division of the Nucleus module; INSPECT, STRING and 
UNSTRING. The INSPECT verb replaces the old EXAM­
INE verb and provides expanded editing capabilities. With 
an INSPECT statement one can count, and replace 
occurrences of either single characters or groups of 
characters in a data item. For each of these INSPECT 
functions, the BEFORE or AFTER phrase allows one to 
specify that the function begins or ends upon encountering 
a given character or group of characters. 

As an example of the INSPECT statement, consider the 
following source code. (Coding examples in this paper will 
contain formatting errors due to the typesetting require­
ments.) 

DATA DIVISION entries 
01 ID-1 PIC X(54) VALUE jS))DEFEAT)))))))S)S)S 

D ED U CT~JS)S)S)S)))))))))))S 
D EFEN SF)S)S)S)))))))))S)S)SD ET AIL' . 

PROCEDURE DIVISION entries 
INSPECT ID-1 REPLACING ALL jS))DE' by 'THFJS', 

FIRST 'A' BY 'E', 
FIRST jS)S))J)' BY jS OF)) , , 
FIRST 'T' BY 'K' AFTER INITIAL 'UC', 
~IRST jS)S)SJ))))S)S)S)S' BY jSGO)SOVERJ}', 



302 National Computer Conference, 1975 

FIRST'S' BY 'C', 
FIRST $MJSJSJSJSJS' BY $BEFORFJS' AFTER INITIAL 
'EN'. 

After executing the above INSPECT statement ID-l would 
contain 

'THFJSFEETJSOFJSTHFJSDUCIq)GOJS 
OVEIU>THFJSFENCFJSBEFORFJSTHFJSTAIL' . 

This example points out one of the limitations on the use 
of INSPECT; the number of characters being replaced 
must equal the number of characters by which they are 
replaced. Thus, 'DE' cannot be replaced by 'THFJS' but 
the characters $JSDE' can be replaced by 'THFJS'. 

With the 1974 Standard, the COBOL language has the 
features necessary for manipulation of character strings 
without each individual character string beginning in the 
leftmost character position of a data item. The STRING 
statement allows a user to build a single data item from 
two or more data items. The sending data items may be 
delimited by one or more character(s), or the entire 
sending item can be part of the receiving item. A user can 
also indicate the relative starting position in the receiving 
item for the STRING operation. 

The following example illustrates the use of the STRING 
statement. 

DATA DIVISION Entries 
01 WISH-LIST. 

02 FILLER PIC X(4) VALUE 'GEFJS'. 
02 FILLER PIC X(33) VALUE SPACES. 

01 REL-POSITION PIC 99 VALUE 5. 
01 STRING-VALUES. 

02 FIELDl PIC X(13) VALUE 'ij)WISEUSI,t})YOU'. 
02 FIELD2 PIC X(24) VALUE 

'WASJSMFORTRAN,lSPROGRAMMER' . 

PROCEDURE DIVISION Entries 
P ARAGRAPH-l. 

STRING FIELDl DELIMITED BY', " 
SPACES, FIELD2 DELIMITED BY SIZE 
INTO WISH-LIST WITH POINTER REL-PO­
SITION, 
ON OVERFLOW GO TO P ARAGRAPH-2. 

P ARAGRAPH-2. 
After the execution of the STRING statement, the data 

item WISH-LIST contains 
'GEElSij)WISEUSij)WASJSMFORTRANJSPROGRAMMER' . 

The opposite is achieved by the UNSTRING statement 
which causes data in a sending field to be separated based 
on one or more delimiters, and placed into multiple 
receiving fields. A delimiter may be a single character or a 
combination of characters. 

The SIGN clause allows a user to specify whether a 
separate character position is used for the sign in numeric 

items and to indicate whether the position of the sign is 
leading or trailing. 

The PROGRAM COLLATING SEQUENCE clause per­
mits one to specify ASCII, or some other collating 
sequence. However, changing the collating sequence for a 
program will necessarily require consideration of all state­
ments which depend upon a character's relative position in 
a given collating sequence; for example, the SEARCH 
statement, the SORT/MERGE statement, or alphanumeric 
comparisons in an IF statement. 

Library 

Several major changes have been made to the Library 
module. There are now no restrictions on where a COpy 
statement may appear in a COBOL program. A COPY 
sentence may appear anywhere that a COBOL word may 
appear. As a result, rather strange looking source code can 
be produced, e.g., 

ADD COpy XX. TO B. 

If the content of the library text XX contains the single 
identifier A, the results after the COpy takes place are: 

ADD A TO B. 

There can be more than one library available at compile 
time. In this case the COPY sentence must contain the 
name of the library in which the text resides. The 
presence of the REPLACING phrase in a COpy sentence 
causes the library text being copied to be edited prior to 
being inserted in the program. There are several levels of 
editing that can be used. Words, literals, identifiers and 
pseudo-text can be replaced by like or different types of 
operators. 

Pseudo-text is bounded by pseudo-text delimiters, which 
are matching sets of double equal signs (= =), much like a 
nonnumeric literal which is delimited by sets of matching 
quotation marks. The replacement of pseudo-text is based 
on finding a matching set of character-string(s) contained 
in the library text. The replacement string may be longer 
or shorter than the characters replaced. 

The following COpy statement illustrates the use of 
pseudo-text to edit a library entry. 

User's COBOL Library LIBRARY-TEXT 
01 IDl PIC X(54) VALUE IS 

$DEFEATJSDEDUCTJSDEFENSFJS 
D ET AIUJSJSJSJSJSJSJSJSJSJSJSJSJSJS 
JSJSJSJSJSJSMJSJS' . 
COBOL Source Statement: 

COpy LIBRARY-TEXT REPLACING 
= =JSDE= = BY = =THFJS= = 
= =AT= = BY = =ETJSOFJS= = 
= =CT= = BY = =CIQSGOJSOVER,1S= 
= =SE= = BY = =CFJSBEFORFJS= = 



The compiled results of a program with the above COpy 
statement are the same as a program in which the 
following source code appeared: 

01 ID1 PIC X(54) VALUE IS 
"THFJSFEET»OF»THFJSDU CIQSGO»OVERlS 

THFJSFENCFJSBEFORFJSTHFJSTAIL" . 

THE DEBUG MODULE 

In the 1968 Standard there were no explicit proce­
dures for specifying what debugging actions, if any, would 
take place during the execution of a COBOL program. The 
DEBUG module for the 1974 Standard includes language 
elements which are designed for debugging COBOL pro­
grams. Their inclusion in the COBOL language permits a 
user to consider the debugging of source programs in the 
design of an application, not as an afterthought when 
problems are encountered. 

The USE FOR DEBUGGING statement identifies the 
user items that can be monitored by the associated 
debugging section. The debugging algorithm which is 
defined in the debugging section can be controlled by both 
a compile time switch and an execution time switch. 
Debug lines are source statements whose inclusion or 
omission from an object program is controlled by a compile 
time switch. There is a special register called DEBUG­
ITEM which can be accessed in debugging sections. This 
special register contains information relative to the source 
code which causes the execution of a debugging section. 

INTER-PROGRAM COMMUNICATION 

The Inter-Program Communication module provides a 
means· for a program to transfer control to one or more 
subprograms and the sharing of data among these pro­
grams. The action which is taken when there is not enough 
object time memory can be specified and the memory 
areas occupied by called programs can be released and 
made available to the operating system. 

Features 

The CALL statement causes control to be transferred 
from one object program to another object program in the 
same run unit. If the subprogram name is known at 
compile time, the CALL statement operand is a nonnu­
meric literal. The subprogram name can also be specified 
dynamically as the contents of a data-name. 

The data items which are shared with the called 
program are specified in the USING phrase of the CALL 
statement. In the subprogram, the shared items are 
specified in the USING phrase of the PROCEDURE 
DIVISION header and defined as data descriptions in the 
LINKAGE SECTION. There must be a one-to-one corre­
spondence between the operands in the CALL statement 

An Overview of the 1974 COBOL Standard 303 

and the operands in the PROCEDURE DIVISION header 
of the called program. The data descriptions for corre­
sponding operands must define an equal number of 
character positions but the data descriptions do not have 
to be identical. No space is allocated in the called program 
for items defined in the LINKAGE SECTION, and refer­
ences to items in the LINKAGE SECTION are resolved at 
object time. 

The CALL statement also permits the user to specify 
the action to be taken when there is not enough memory 
available for a subprogram. This is done in the imperative­
statement of the ON OVERFLOW phrase of the CALL 
statement. 

The CANCEL statement releases the memory area 
occupied by the program referred to in the CANCEL 
statement. A CALL to a program that has been cancelled 
causes that program to be loaded and executed in its initial 
state. 

The EXIT PROGRAM statement marks the logical end 
of a called program. Control is returned to the calling 
program when this statement is executed. More than one 
EXIT PROGRAM can appear in a subprogram, but the 
EXIT PROGRAM statement must be the only sentence in 
a paragraph. 

Inadequacies 

The INTER-PROGRAM COMMUNICATION module 
restricts the possible operands which may appear in the 
USING phrases. The operands must refer to 77 or 01 level­
number items and may not be defined in the REPORT 
SECTION of the calling program. 

There are implementor-defined areas in the Inter­
Program Communication module which could cause prob­
lems in program portability between systems. The relation­
ship between the operand in the CALL/CANCEL state­
ment and the referenced program is implementor-defined. 
This means that even though the program-name is a user­
defined word and thus could be 30 characters, the 
implementor may limit the actual number of characters 
which are used to establish linkage between the called and 
calling programs. If a user has subprograms on a system 
which recognizes the first 10 characters of the program­
name and moves to an implementation which recognizes 
the first six, then any referenced program-names with the 
first six characters identical would be treated as referenc­
ing the same subprograms. 

The action to be taken when there is not enough 
memory available for a called program can be specified in 
the ON OVERFLOW phrase of the CALL statement. If 
this phrase is not specified, the effects of the CALL 
statement are defined by the implementor. 

THE INPUT-OUTPUT MODULES 

The major enhancement of COBOL 74 over COBOL 68 
is in the revision to the input/output modules. The 



304 National Computer Conference, 1975 

Sequential 1-0 module has been revised, and the Random 
Access module has been replaced by two new ones; 
Relative 1-0 and Indexed 1-0, with some degree of 
functional and syntactic similarity existing between the 
new Relative 1-0 module and the old Random Access 
module. Taken as a group, the three 1-0 modules provide 
the COBOL programmer with the file handling capabilities 
which are well beyond what has been possible previously. 

Sequential 1-0 

The Sequential 1-0 module for the 1974 Standard has all 
the features of the 1968 Standard with the exception of 
user defined labels and declarative label processing sec­
tions, which are no longer supported by the COBOL 
language. The data-name option of the LABEL RECORDS 
clause and the USE statement option for label record 
processing were deleted. 

A major new feature in the 1974 Standard allows a user 
to process character code sets other than the system's 
native character code set on input and output operations. 
The CODE-SET clause of the File Description entry 
specifies the character code set which is used to represent 
the data on the external media. When this clause is 
included in a File Description entry, characters are 
converted to the native character set on input or converted 
from the native set to the code specified on output. The 
CODE-SET clause can only be used in File Descriptions 
which are not mass storage files and the external code 
representations are limited to the ASCII code set, the 
native character code set or other character code sets 
supported by the implementation. 

The Sequential 1-0 module provides the capability to 
add records to the end of an existing sequential file. 
Execution of an OPEN EXTEND statement positions a file 
immediately following the last logical record of the file. 
Subsequent WRITE statements for that file add records to 
the end of the file as if the file had been opened in the 
OUTPUT mode. 

The FILE STATUS clause of the File-Control entry and 
the REWRITE statement are also elements of the Relative 
1-0 and Indexed 1-0 modules and these two new features 
are discussed later. 

In the Sequential 1-0 module for the 1974 Standard one 
can describe the logical page format for a printer-destined 
file through the LINAGE clause in the File Description 
entry. The LINAGE clause specifies the size of the top 
and bottom margins for a logical page, the number of lines 
comprising the page body, and the line number within the 
page body where the footing area begins. The values given 
in the LINAGE clause may be specified as integer 
constants or the contents of data-names. If the values are 
integer constants each page has the same format through­
out execution of the programs. If the values are the 
contents of data-names, the values at the time the file is 
opened specify the first logical page. Each time a new 
page is started, the values of the data items are examined 
to determine the values for the current page. Thus the 

logical format and size oLa page can be changed for each 
new page in a file designated for printer output. 

New Input-Output Modules 

The INDEXED 1-0 and RELATIVE 1-0 are new 
modules in the 1974 Standard. Because the Indexed 1-0 
module is the most complex and important of the two, we 
will concentrate our remarks on it, mentioning important 
features of the Relative 1-0 module where appropriate. 

Features 

The INDEXED 1-0 and RELATIVE 1-0 modules pro­
vide the capabilities for accessing a file in a predefined 
mode. INDEXED 1-0 also provides the capability of 
defining several paths of information retrieval. 

In a Relative file, records may be stored "randomly", 
but are identified by a relative record number on which 
record storage and retrieval is based. The record number, 
or key, must be unique, and is the only means by which 
the file may be accessed. The record storage relationship 
for an Indexed file however is based upon one or more 
indexes associated with the file. Thus, an Indexed file may 
be accessed through one or more record keys. 

The prime and alternate keys are defined within the 
SELECT clause of the FILE-CONTROL paragraph for 
Indexed files. The contents of the prime key must be 
unique for each record in the file. This is the base key 
from which the file is constructed, and is used for 
inserting, updating, and deleting records. The user may 
specify one or more alternate keys for the file. Unlike the 
prime record key, alternate keys may be non-unique. 

The content of the keys which are used to retrieve 
records are considerably more flexible in the Indexed 1-0 
module than in the Relative 1-0 module. Under the 
Relative 1-0 file organization the record reference key 
must be an unsigned integer and is defined outside the 
record description entries for the file. In the Indexed 1-0 
organization the record reference key must be an alphanu­
meric data item which can contain any combination of 
characters in the computer's character set, and must be 
defined within a record description entry for the file. 

The language specification for COBOL 74 allows for 
sequential, random or dynamic access within both Relative 
1-0 and Indexed 1-0 modules. The access mode for a 
given file is indicated by use of the ACCESS MODE IS 
RANDOM or ACCESS MODE IS SEQUENTIAL clause. 
When the ACCESS MODE IS DYNAMIC is specified, 
records may be processed either randomly or sequentially 
through use of the appropriate 1-0 statement. The access 
mode for a file need not be the same as the mode in which 
the file was created. When accessing the file sequentially, 
the records are retrieved in ascending order based on the 
key cont~nts. The START statement provides positioning 
within an indexed or relative file for subsequent sequential 
retrieval of records. When processing the file randomly, 



records are stored or retrieved based on the data contents 
of the record key. Records are accessed based on the 
current key of reference. The key of reference, prime 
record key or alternate record key, is established at the 
COBOL instruction level. The default key of reference is 
the prime record key, but an alternate key of reference 
may be specified in a random READ statement. Any 
subsequent sequential read uses the key of reference 
established by the last random read or START statement. 

File maintenance 

The means of maintaining mass-storage files, i.e., record 
insertion, record deletion and record updating is accom­
plished through the use of the verbs DELETE, WRITE 
and REWRITE. Only the prime record key associated with 
the file is used in providing all file maintenance func­
tions, i.e., RELATIVE KEY for Relative I-a and RE­
CORD KEY for Indexed I-a. 

The DELETE verb logically removes a record from the 
file. Once the statement has been executed, the record 
cannot be accessed again. The WRITE and REWRITE 
verbs insert and update, respectively, the records in the 
file. Any file maintenance key associated with the file 
must be unique within all the records for the file. The 
previous input-output statement for the file must have 
been a READ statement. The REWRITE statement causes 
the last record READ. by the program to be logically 
replaced by the specified record. The number of character 
positions in the record being rewritten and the record 
being replaced must be equal. The WRITE statement 
causes a record to be inserted assuming the key does not 
already exist. 

An important addition to the 1974 language specification 
for all I-a modules is the FILE STATUS data item which 
contains information as to the success (or failure) of an I-a 
operation. The FILE STATUS clause, located in the FILE­
CONTROL entry for a file, specifies a two character 
alphanumeric data item and contains values which indicate 
the results of every statement which references that file 
explicitly or implicitly. The operating system moves the 
values into the file status data item upon the completion of 
any statement which references the file. 

The new I-a modules provide the user greater flexibility 
and a wider range of functions than have been previously 
available. The Indexed I-a module in particular gives the 
user the ability to implement multi-key retrieval functions 
and provide a closer relationship of the capabilities of data 
base management systems entirely within the scope of the 
COBOL Language. 

THE COMMUNICATION MODULE 

The motivating factor behind including a "Communica­
tion Module" in COBOL 1974 was the advent within the 
past decade of computer systems using remote terminals 
and the use of these terminals for message processing 

An Overview of the 1974 COBOL Standard 305 

applications. Heretofore, the COBOL user has been un­
able to perform this class of interactive operations without 
resorting to system dependent facilities such as assembly 
language support routines. Many implementations of 
COBOL permitted limited degree of access to remote 
terminals via the ACCEPT and DISPLAY verbs, but 
obviously these posed serious limitations on capabilities by 
limiting transmission to an "on demand" basis and in no 
case could a program be notified of unsolicited input from 
a terminal. 

The Communication module in COBOL 1974 attempts to 
solve these deficiencies by providing four new 110 verbs 
(RECEIVE, SEND, ENABLE, DISABLE) and interfacing 
COBOL programs to any configuration of remote terminals 
via a set of message queues. The operation of the message 
queues and the remote terminals is handled by a Message 
Control System (MCS), a "black box" software package 
which is largely implementor defined and by its very 
nature is system-dependent. The MCS must provide the 
logical interface between the COBOL communication 
object program and the systems network of communication 
devices by performing line discipline, including such tasks 
as dial-up, polling, and synchronization, and by performing 
device-dependent tasks such as character translation and 
insertion of control characters. The COBOL programs 
interface with the MCS through the programs' Communi­
cation Descriptions or CD's. CD's are placed in the 
Communication Section which follows the File, W orking­
Storage, and Linkage Sections in the Data Division. The 
CD establishes either an input or an output path for 
messages, and provides parameter fields for passing 
information between the program and the MCS. 

Features 

For the Procedure Division, the Communication Module 
introduces four new verbs; RECEIVE, SEND, ENABLE, 
and DISABLE; plus a new variation for an old one, 
ACCEPT. The following paragraphs summarize these 
statements as presented in the formal language specifica­
tion for the Communication module. 

"The RECEIVE statement makes available to the 
COBOL program, a message, message segment, or a 
portion of a message or segment." Prior to executing a 
RECEIVE the user must specify in his input CD record 
area, the name of the queue or subqueue he wishes to 
address. Executing the RECEIVE then effects dequeuing 
of a message from the appropriate queue and placing of 
that message into the field designated by the user. If the 
addressed queue is empty, then at the user's option, the 
program can be forced to wait until a message becomes 
available, or it can be directed to proceed immediately 
with execution of the next sequential statement. During 
the RECEIVE operation, all data items in the input CD 
record are updated by the MCS. 

"The SEND statement causes a message, a message 
segment, or a portion of a message or segment to be 



306 National Computer Conference, 1975 

released to one or more output queues maintained by the 
MCS." 

Prior to executing a SEND, the user must specify in his 
output CD record area, the number and names of the 
destinations to which the data is to be sent, plus the length 
of the text in characters. In the SEND statement itself, the 
user specifies which transmission sentinel is to be used, 
end-of-message, end-of-group, or end-of-segment. When a 
SEND is executed, the MCS must enqueue the data on the 
appropriate queue(s) and return the operation status to the 
CD for use by the program. Line and page control may be 
exercised on line oriented devices. 

A variation of the ACCEPT statement enables the user 
to determine the number of messages currently enqueued 
in any particular queue. Prior to executing the ACCEPT 
statement, the user must specify in his input CD, the 
name of the queue or subqueue whose size is to be 
returned. The MCS will return to the CD in the appropri­
ate parameter fields, the message count and the status of 
the operation. Only input queues may be measured in this 
way. 

The ENABLE and DISABLE statements direct the MCS 
to allow and inhibit respectively, data transfer between 
specified output queues and destinati"ons for output, or 
between specified sources and input queues for input. The 
queues or destinations involved must be named in the 
appropriate CD before execution of the statement. These 
statements make and break the logical connections be­
tween the queues managed by the MCS and the network 
of communication devices, but they do not affect the 
logical connections between the various queues and the 
program itself. The specification of a key or system 
password is required in both statements "in order to 
prevent indiscriminate use of the facility by a COBOL user 
who is not aware of the total network environment, and 
who may therefore disrupt system functions by the un­
timely issuance of ENABLE and DISABLE statements". 

A special option permits the user to specify the symbolic 
name of a specific device in his input CD, and then 
request enabling or disabling of the logical paths between 
that device and all queues and subqueues linked to it. 

Finally, there is the added capability to designate in a 
COBOL communication program that it is to be scheduled 
for execution automatically by the MCS whenever the 
MCS determines that there is message processing to be 
done. This is accomplished by specifying an option in 
one input CD i~ the program. Subsequently, when the 
MCS invokes the program, it will place the name of the 
queue or subqueue, which prompted the action, in the 
appropriate parameter fields of the input CD. There are 
means to test within the program whether the program was 
invoked by the MCS or scheduled through job control 
language. 

Inadequacies 

The basic problem with the Communication module as it 
now stands is the fact that the MCS and its interface to 

the network of peripheral devices is so ill-defined. Al­
though the concept of the MCS is never formally intro­
duced except in Appendix C of the Standard, its existence 
is implied throughout the specification for the Communica­
tion module by frequent references to it (the MCS) by 
name. Unfortunately, the appendices are not considered a 
part of the formal COBOL language specification; and thus 
they are in no way binding. At best, the appendix can be 
considered a suggested guideline for implementation. In 
other words, it can only serve to enlighten the reader as to 
what the Programming Language Committee (PLC) of the 
Conference on Data Systems Language (CODASYL) might 
have had in mind when they designed the specification for 
the Communication module. 

Contributions 

It is not really possible to assess the usefulness of the 
new Communication module. Such an assessment must 
await the use of the features in a communication environ­
ment. The features themselves are not extensive, and the 
heart of the system, the MCS, is not well defined. These 
considerations suggest a degree of skepticism vis-a-vis the 
degree of applicability of the Communication module. 
Despite this skepticism, it must be admitted that some 
capability is now available for message handling. 

RECOMMENDATION 

COBOL 74 is in many ways a vast improvement over 
COBOL 68. New features have been added which contrib­
ute to the capability of the language (the new 1-0 
modules), enlarge its ,scope (the Communication Module), 
and enable the programmer to produce a better product 
(the Inter-program Communication and Debug modules). 
Furthermore, old modules have been enlarged and im­
proved. We believe the efforts of the standardizing body, 
ANSC X3J4 (COBOL) should now be directed toward 
producing a more complete and precise definition of the 
language. 

The procedures of the American National Standards 
Institute require that action be taken to reaffirm, review, 
or withdraw the standard no later than five years following 
the publication of the current standard. X3J4 should 
seriously consider a radical rewrite of the standard in an 
effort to make it more a standard and less a generalized 
user's manual. A "standard" is supposed to be an 
authoritative measure by which correctness of other things 
may be determined (condensed from Websters'), but it is a 
difficult task to measure correctness against a standard 
which is ambiguous and subject to interpretation. Both the 
syntax and semantics of the language should be expressed 
as formal grammars and defined in an appropriate meta­
language. The efforts of ANSC X3Jl to so define the PLil 



language is an admirable example of what can be done. 
When a language is well defined, there can be no 
ambiguities and no doubt as to what is valid and what is 
not. There is seldom a need for interpretation. Such 
definitions are also of significant value when a compiler 
implementor chooses to use a syntax-directed or other 
automated parsing technique. Finally, a precise definition 
would make much simpler the task of determining the 
degree to which COBOL compilers conform, in their 
translation of COBOL programs, to the Standard. 

An Overview of the 1974 COBOL Standard 307 

REFERENCES 

1. Baird, G. N., "The DOD Compiler Validation System," Proc. 1972 
FlCC, AFIPS Press, Volume 41, pp. 819-827. 

2. American National Standard Programming Language COBOL, X3.23-
1974, American National Standards Institute Incorporated, New York 
1974. 

3. American National Standard COBOL X3.23-1968. American Na­
tional Standard Institute Incorporated, N ew York 1968. 

4. Federal In/ormation Processing Standards, Publication 21-1, U. S. 
Government Printing Office, Washington, D. c., (pending). 





COBOL '74-Contributions to structured 
programming 

by PAUL OLIVER 
Department of the Navy 
Washington, D.C. 

INTRODUCTION AND SCOPE 

Gerald Weinberg, in his book The Psychology of Computer 
Programming! suggests that we cannot really measure the 
goodness of programs on an absolute scale, and that we 
generally cannot even measure them on a relative scale. 
There is indeed evidence that rapid quantification of soft­
ware quality is not really feasible,2 because simple formulas 
can often be misleading and hence not very credible. One 
could, for example, measure program complexity in terms of 
the fraction of program statements which are branch state­
ments. Consider however two programs, one with 10 decision 
points leading to 10 different tasks, each consisting of one 
instruction, and one with 3 decision points leading to 3 tasks, 
each consisting of 30 instructions. The "complexity" rating 
of the first would be 0.50, while that of the second would be 
0.09. Surely two such programs would not differ so greatly 
in complexity. 

Thus, we are led to less quantifiable measures of software 
quality, and a cursory glance at recent literature indicates 
that "simplicity" is a most desirable characteristic. The 
simplification of a complex task can be achieved by modular­
izing it into separate, smaller tasks. We further require that 
each task be discrete and visible, that it be self-contained 
(thus constraining the assumptions it makes regarding the 
implementation of other tasks), that it have a single entry 
point and a single exit, and that when invoked by another 
task or module it returns to a standard point. 3 

One way of enhancing the simplicity of a program is 
through structured modularity, which is achieved through the 
separation, within a module, of data, processing code, and 
control, and through the maintenance of a simple, visible, 
control structure. 

This paper concerns itself with how this can be accom­
plished using the COBOL language as defined in the 1974 
COBOL Standard. 4 We will look at how structured constructs 
can be simulated using standard COBOL verbs, and discuss 
the micro-efficiency of using these constructs versus less dis­
ciplined techniques. We also will point out certain deficiencies 
in COBOL 74 which can impair program clarity, and make 
suggestions on future improvements. 

309 

IMPLEMENTATION OF STRUCTURED 
CONSTRUCTS 

Structured programming may be viewed as a set of rules 
designed to enhance a program's readability, thereby reduc­
ing stylistic differences between programs written by differ­
ent individuals, and improving a programmer's ability to 
understand and modify existing programs. The rules are, by 
now, well known: 

(a) Use of code formatting conventions (e.g., indentation) 
to typographically represent control logic. 

(b) Limit subroutine size (e.g., to the number of lines 
that can fit on a listing page) . 

(c) Have but a single entry and a single exit per sub­
program. 

(d) Limit the control forms to three basic structures, 

(S=statement, P=predicate) 
o Sequence: S I S2. 
o If-then-else: If P then S1 else S2. 
o Do-while: While P do S. 

The basic tool in COBOL for implementing structured 
programming is the PERFORM verb. Experience has indi­
cated that it is wise to use the THRU option to define the 
scope of the PERFORMed code, since there is a tendency to 
neglect definition of the scope of a SECTION. In the follow­
ing discussion, some familiarity with structured programming 
and CO BO L is assumed. 

If-then-else 

The if-then-else construct can be implemented in three 
different ways. The most common is 

IF condition 
statement-l 
statement-2 

statement-n 



310 National Computer Conference, 1975 

ELSE Indexed looping is implemented by: 
statement-n + 1 
statement-n + 2 

statement-n + m. 

If the condition is "true" control passes to statement-I, 
and at the completion of statement-n, control is given to the 
statement following statement-n+m. Note that COBOL 
does not explicitly express the "thru" (perhaps it should be 
included as a noise word in future specifications) . 

If nand m are large, a clearer form of the construct is 

IF condition 
PERFORM paragraph-I THRU paragraph-I-exit 

ELSE 
PERFORM paragraph-2 THRU paragraph-2-exit. 

An additional variation must be introduced if either the 
IF or ELSE clause include a nested IF, followed by one or 
more statements which must be executed regardless of the 
result of the nested IF. In such cases, the nested IF must be 
PERFORMed: 

IF condition-l 

ELSE 

PERFORM nested-if-test 
statement-2 

statement-3 

nested-if -tebt. 
IF condition-2 

statement-I 

In this example, statement-2 should be executed without 
regard to the evaluation of the inner IF test. This particular 
variation could be avoided if COBOL had a DO ... END 
type of "vertical parentheses" as in PL/ I, which allow the 
statements between the DO and the END to be treated as a 
single syntactical unit by the compiler. 

Do-while 

The do-while construct must be "simulated" in COBOL 
by the use of PERFORM verb with the UNTIL option. 
The UNTIL option is similar to the WHILE construct in 
that testing of the condition predicate occurs prior to any 
code being executed, but differs from WHILE in that termi­
nation occurs when the condition is "true" rather than 
"false." Thus, the do-while construct is: 

PERFORM paragraph-name THRU paragraph-name­
exit UNTIL (NOT P). 

The negation of P is necessitated by the aforementioned 
difference in the termination condition between UNTIL 
and WHILE. 

PERFORM paragraph-name THRU paragraph-name-exit 
VARYING iden-I FROM iden-2 
BY iden-3 
UNTIL (NOT P). 

Do-until and case 

Two additional constructs can be included for the sake of 
convenience. These are do-until and case. 

Do-until is essentially an iterative' DO-loop. It differs 
from do-while in two ways: 

(a) The predicate is tested after each execution of a state­
ment sequence, not before, so that the statement 
sequence is executed at least once. 

(b) The test on the predicate is reversed, so that the 
do-until terminates when the predicate is "true". 

In COBOL, do-until is implemented by: 

PERFORM paragraph-name THRU paragraph-name-exit. 
PERFORM paragraph-name THRU paragraph-name-exit 

UNTIL P. 

Note that the first execution of the PERFORMed paragraph 
must be forced artificially. 

The case construct is a multi-way switch, and is imple­
mented in COBOL by using PERFORM, and GO TO ... 
DEPENDING ON, i.e., 

PERFORM case-paragraph THRU case-end. 

case-paragraph. 
GO TO case-I, ... , case-n 

DEPENDING ON integer. 
GO TO case-end. 

case-I. 
(code for case-I) 
GO TO case-end. 

case-no 
(code for case-n) 
GO TO case-end. 

case-end. 
EXIT. 

The multi-way switch may also be implemented using the 
ALTER statement: 

IF input-type = I 
ALTER case-edit to case-I. 

IF input-type=N 
ALTER case-edit to case-no 

case-edit. 
GO TO case-i-fix. 



This implementation is not recommended, for reasons which 
will be discussed in a later section. 

Micro-efficiency of the structured constructs 

Many COBOL users have expressed the concern that the 
extensive use of structured constructs (i.e., avoiding the 
GO TO) may create inefficiencies in terms of execution time 
and memory utilization. Our experience indicates that some 
degradation may indeed occur, but its degree is slight. 

Consider for example the use of PERFORM ... THRU 
versus GO TO. On the IB]\i S/360 V4 COBOL Compiler a 
GO TO translates to a conditional branch. Thus, execution 
of a paragraph requires 2 instructions (one to go, one to 
return), there is less flexibility (the paragraph cannot be 
"executed through"), and the control structure is hidden~ 
Execution of PERFORM ... THRU requires five instruc­
tions, the PERFORMed paragraph can be executed in-line, 
and the control structure is clear. 

Looping is accomplished by using the do-until construct. 
This requires 18 machine instructions for one compiler we 
have examined. Consider,however the alternative (by using 
GO TO). This would require the programmer to: 

• Set lower and upper bounds, and the increment. 
• Increment the index. 
• Test the condition and branch. 
• Reset the index. 

These tasks require 14 machine instructions on the same 
compiler. The resultant saving of 4 machine instructions 
hardly warrants the loss of control logic visibility. 

Finally, consider the use of GO TO ... DEPENDING 
ON versus ALTER as a means of implementing the case 
construct. A 4-case example required 15 instructions on an 
HIS 6050 using the GO TO ... DEPENDING ON instruc­
tion. A series of 4 IF . . . ALTER . . . statements required 
32 instructions. Not only does ALTER obscure a program's 
control structure, but in fact is not a very efficient verb. 

We have found that attempts to recode existing programs 
so as to delete GO TO's can result in confusion. The use of 
structured programming as a discipline must be approached 
at the level of program formulation if it is to be successful. 
The Federal COBOL Compiler Testing Service recently re­
coded the executive program for the COBOL Compiler 
Validation System. 5 This program is about 3000 COBOL 
instructions in size and is quite complex. By reformulating 
the system we were able to recode it at the cost of some 5 
compilations. Of three severe errors that we encountered, 
2 were caused by GO TO's which had been retained in the 
program. 

The inter-program communication module 

Modularity is a byproduct of structured programming. 
Modularity in large programming systems is difficult to 
achieve without a true subroutine capability. This capability 
is provided in COBOL 74 through the interprogram com-

COBOL '74 311 

munication (IPC) module. It allows the transfer of control 
from one program to another within the same run unit 
(through the CALL statement) and fo'r sharing of data, or 
parameter passing (through the USING option). Addi­
tionally, programs whose name is not known at compile time 
may be invoked at execute time, and the availability of 
memory for a called program may be determined at execute 
time. While these features have been present in some COBOL 
implementations, they now have been placed within the 
standard· for the first time. This is surely one instance in 
which COBOL 74 is a major improvement over COBOL 68. 
This capability not only enhances modularity, but allows 
for truly reusable code by providing the means for easily 
detaching and reattaching subprograms. The presence of the 
LINKAGE section allows for the grouping of passed param­
eters, thereby providing good interface visibility as well as 
some "locality" of data. 

DEFICIENCIES AND FUTURE REQUIREMENTS 

The revised COBOL language possesses many features 
which make a positive contribution to the writing of clear, 
simple, and therefore (hopefully) reliable programs. Re­
grettably, the language also has many deficiencies which 
tend to inhibit good programming. 

Perhaps the most serious of these is the sheer size of the 
language. Ideally, a programmer using COBOL for a particu­
lar class of applications should have to understand only 
those features of the language pertinent to that application; 
while the programmer using COBOL in a broader way should 
be able to use and understa1J.d all of its features. This re­
quires modularity of design, but also smooth integration of 
the modules. Yet, someone wishing to use the RELATIVE 
I/O module of the current standard (Reference 4) needs to 
know many of the details of the NUCLEUS, SEQUENTIAL 
I/O, and TABLE HANDLING. It should be noted in pass­
ing that the 1974 Standard document is over 500 pages long. 
Jean Sammet required but 16 pages to describe the basic 
elements of COBOL 61 (Reference 6). One wonders if the 
two documents are really describing the same language. Even 
a simple verb such as DIVIDE has five formats in COBOL 
74, with a minimal compiler implementation requiring three 
of them. Further aggravating the feasibility of a user know­
ing only part of the language is the large number of reserved 
words (keywords) in COBOL 74-over 300 of them! 

C. A. R. Hoare7 cites simplicity of design as a necessary 
condition if a language is to assist the programmer in pro­
gram design, documentation, and debugging. The designers 
of COBOL appear to have replaced the objective of sim­
plicity with that of modularity, but as the above example 
suggests, the result has been a "modular" language which is 
nevertheless quite complex. 

Lack of rigor in the COBOL language specification (i.e., 
Reference 4) is a particularly troublesome shortcoming. An 
instance of this is the large number of "undefined" results. 
The specifications for the ENABLE verb in COBOL 74, for 
example, are not explicit as to what is to occur if an EN­
ABLE is issued with respect to a device that is already 



312 National Computer Conference, 1975 

ENABLEd. Clearly something must take place. This means 
that the language specified by a given COBOL implementa':' 
tion will differ from that specified by the standard. This same 
problem is also caused by the many instances in COBOL 
where the specifications are "implementor defined," as is the 
case with the COMPUTE verb. 

It has been pointed out in an earlier section that a form 
of "structured" programming is possible using COBOL. 
This does however require a "simulation" of the structured 
constructs (as in the do-until case). Use of the substitutes 
may indeed enhance control logic visibility, but they are 
more awkward to use than would be the unencumbered con­
structs. (It should be noted that there are several commer­
cially available "pre-compilers" which allow the use of the 
simple structured constructs.) Furthermore, complete 
"structuredness" is precluded by a lack of vertical paren­
theses (or block structure) and an absence of "local" data. 
The former shortcoming can be particularly annoying where 
IF ... THEN ... ELSE cases are nested. 

Finally, there are features in COBOL 74 whose use tends 
to obscure a program's control structure beyond normal 
bounds of good taste. The possibility of asynchronous exits 
(e.g., the AT END clause of the READ verb) will obviously 
alter the control sequence of a program. This "flaw" is not, 
of course, peculiar to COBOL. One way of alleviating the 
problem is to test for a "flag" in the program control flow, 
and to set the flag upon the occurrence of an asynchronous 
interrupt. 

Consider, for example, use of the ADD statement with the 
ON SIZE ERROR option. If the ADD takes place in the 
control sequence of statements, the usual GO TO upon an 
occurrence of the sum interrupt would disrupt this sequence. 
One could however PERFORM the code which includes the 
ADD statement. The ON SIZE ERROR option would be 
used to set a flag upon the occurrence of an overflow. The 
statement following the PERFORM could then test the flag 
for a given v'alue, and perform the test appropriate to that 
value. This would of course be done using the if-then-else 
construct. 

The ALTER verb is a particularly offensive weapon in the 
hands of anyone wishing to obscure a program's control 
logic. Briefly, the ALTER statement causes the modification 
of the destination paragraph of a given GO TO statement 
(see Reference 4 for a complete and precise definition). The 
very fact that the ALTER verb modifies a predetermined 
sequence of operations inhibits good programming practice. 

The control sequence may furthermore be additionally ob­
scm'ed by the fact that GO TO statements which have been 
modified by an ALTER statement, and which are contained 
in independent program segments may, in some instances, 
be returned to their initial states. 

CONCLUSION 

The modules which have been added to COBOL 68 resulting 
in COBOL 74 have increased the language's generality to a 
level which is at least comparable to PLjl. One may argue 
that it still falls short of true generality, since its applica­
bility in areas such as simulation, list structure processing, 
graphics and even numerical computations is less than self­
evident. Still, it is as "general" as one may reasonably 
expect at this time. This trend away from the purely commer­
cial applicability is welcomed. The need to have easily trans­
portable programs is increasingly pervasive, and is more 
easily accomplished in an environment where one general 
purpose language is used. Furthermore, today's programming 
problems seldom can be neatly classified under a single appli­
cation field, and this is certainly true in "commercial" 
environments. 

Included in this expanded language are several features 
which encourage good programming practices. One hopes 
that further improvements will be made, and that those 
features detrimental to good programming will be deleted 
from COBOL. 

REFERENCES 

1. Weinberg, G. M., The Psychology of Computer Programming, Van 
Norstrand Reinhold, 1971. 

2. Boehm, B. W., et aI., Characteristics of Software Quality, TRW-SS-
73-09, December, 1973. 

3. Armstrong, R. M., Modular Programming in COBOL, John Wiley 
and Sons, 1973. 

4. American National Standard Programming Language COBOL, 
X3.23-1974, American National Standards Institute, Inc., 1974. 

5. Baird, G. N., "The DOD COBOL Compiler Validation System," 
Proceedings of the Fall Joint Computer Conference, 1972. 

6. Sammet, J. E., "Basic Elements of COBOL 61," Communications 
of the ACM, Volume 5, No.5, May 1962, pp. 237-253. 

7. Hoare, C. A. R., Hints on Programming Language Design, Stanford 
Artificial Intelligence Laboratory, Memo AIM 224, STAN-CS-73-
403, December, 1973. 



Program debugging using COBOL '74 

by GEORGE N. BAIRD 
Department of the Navy 
Washington, D.C. 

INTRODUCTION 

The testing and checkout of production software often con­
sumes upwards of 50 percent of the effort that goes into the 
development of the system. 1 The absence in most program­
ming languages of language elements specifically defined for 
debugging programs contributes to the time and effort in­
volved in the checkout of systems due to programmers hav­
ing to use various techniques to improvise debugging code. 
This was especially true of the 1968 COBOL Standard2 in 
that there were no language elements dedicated to the de­
bugging and proving correctness of programs. 

The purpose of this paper is to explore the concepts and 
language constructs introduced into the 1974 COBOL Stand­
ard 3 as the Debug Module. What this module has done for 
the revised COBOL Standard is to provide a means by which 
the user can describe his debugging algorithm at the source 
level. This includes the conditions under which data items 
and procedures are to be monitored during execution of an 
object program. 

For the purposes of this paper, implementor provided 
techniques will be for the most part ignored. This is due to 
the wide number of verbs and the various techniques which 
have emerged as a result of a lack of any formal definition 
for debugging source statements. The specifications presented 
in X3.23-19743 should provide in a form of standard syntax 
a semantic composite of implementor debugging techniques. 
The new debugging module permits the user to determine 
what to monitor and what information should be provided 
to the programmer for the actual debugging of the program. 

COBOL DEBUGGING WITH X3.23-1968 
(AMERICAN NATIONAL STANDARD COBOL) 

Prior to the revised COBOL Standard, there were no ex­
plicit procedures for specifying what debugging, if any, 
would take place during the execution of a COBOL program. 
Although not designated as such, there are language elements 
in X3.23-1968 that can be used for debugging. The DIS­
PLAY statement, for example, causes low volume data to be 
transferred to a specific output device. By strategically 

313 

placing DISPLAY statements in a source program the user 
could attempt to follow the logic of the program as execution 
took place. This could be accomplished by DISPLAYing a 
procedure-name, or a data-name and its contents. 

PROCEDURE-NAME-1. 
DISPLAY "PROCEDURE-NAME-1" UPON 
PRINTER. 
NOTE: THE ABOVE STATEMENT INDICATES 
THAT THIS PROCEDURE WAS EXECUTED. 
MOVE 000000 TO COUNT-B 
ADD 1 TO COUNT-B. 
DISPLAY "COUNT-B=" COUNT-B UPON 
PRINTER. 

The above sequence of statements would show, in the 
form of output to the printer, that PROCEDURE-NAME-1 
was executed each time control was passed to that set of 
procedures. A few statements later the contents of the data­
item COUNT-B would be provided. Execution of the DIS­
PLAY statements would result in the following printed 
output: 

PROCEDURE-NAME-1 
COUNT-B = 000001 

This method of tracing a program's execution is crude at 
best, and prone to error. For example, once a program has 
been debugged and is ready to be placed in a production 
mode, one hardly wants either the debugging information 
provided or the overhead in the form of the object code 
generated due to the presence of the debugging statements. 
Therefore the source code used for debugging the program 
must be removed. This change in the source program could 
result in errors being introduced into the program (either 
syntax or logic) which could necessitate additional testing. 

Another consideration in the discarding of debugging 
statements is the maintenance which might be required dur­
ing the life of the program. If the requirements for the pro-



314 National Computer Conference, 1975 

gram change, the source program will have to be modified 
and the need for debugging and testing arises again. The 
reintroduction of the source statements necessary to accom­
plish the debugging of the program once again could intro­
duce syntax and/or logic errors. One solution to the problem 
is to controi the execution of the source code for debugging 
sessions by the use of conditional statements associated with 
each debugging statement: 

IF DEBUG-REQUIREMENT EQUAL TO "YES" 
DISPLAY "COUNT-B=" COUNT-B UPON 
PRINTER. 

The debugging code thus could be executed when needed, 
and once the program was ready for production the execu­
tion of the debugging code could be suppressed. (The control 
could be in the form of a switch setting, parameter card, 
value in the Working-Storage.) However, the overhead 
problems would still exist; the larger program size due to the 
debugging object code being present, and additional execu­
tion time required for testing the debugging requests. 

IMPLEMENTOR EXTENSIONS FOR 
DEBUGGING 

The need for debugging functions was satisfied partially 
by implementors providing language extensions, in their 
compilers, which were designed for use in debugging the 
programs, (i.e., TRACE, EXHIBIT, MONITOR state­
ments etc.). The results were inconsistent among imple­
mentations as to the name of the verb used and the amount 
of external control that was available relative to the execu­
tion of the debugging statements. These inconsistencies in 
control included (1) whether the debugging code had to be 
removed for production runs or the execution of the code 
could be controlled at execution time, as well as (2) whether 
the generation of object code could be suppressed if the de­
bugging statements were not removed. The innovative ability 
of the implementor was certainly the determining factor in 
this situation as to whether the implementation was an 
"intelligent" implementation or something with less sophis­
tication. 

COBOL DEBUGGING BASED ON X3.23-1974, 
THE REVISED COBOL STANDARD 

The revision to X3.23-1968 has, for the most part, solved 
the above shortcomings by more realistically providing the 
tools in COBOL for accomplishing debugging in a reasonable 
fashion. 

The ideal solution, it appears, would be the ability to con­
trol, in a way external to the object program, whether the 
debugging code would be executed. Also, the ability of hav­
ing the debugging source code remain in the source program 
and only be compiled when requested would eliminate the 
problem of source code changes merely for debugging 
purposes. 

A brief description of the capabilities of the debugging 
module follows: 

1. A compile time switch determines whether the de­
bugging source code will be used to generate object 
code. 

2 An object time switch determines, (if the compile 
time switch caused the debugging statements to be 
compiled) whether the debugging object code will be 
executed. 

3. Debugging lines are source statements tliat take on 
either the characteristics of debugging statements, or 
comment lines dep~nding on the setting of the compile 
time switch. 

4. The USE FOR DEBUGGING statement specifies 
the user defined items that are to be monitored by the 
associated debugging section. The procedural state­
ments in the debugging section define the algorithm 
by which debugging will take place. 

5. A special register called DEBUG-ITEM can be ac­
cessed in the debugging Rections. This special register 
contains the source program sequence number of the 
line in the source program that triggered the execu­
tion of the debugging section, the name of the data or 
procedure or file name involved, and other informa­
tion relative to the referenced item. 

DEBUG MODULE FUNCTIONAL 
CAP ABILITIES 

The language elements in the Debug Module of the revised 
national COBOL standard provide a means by which the 
user may describe his algorithm to suit his needs. This in­
cludes controlling the conditions under which data items or 
procedures are to be monitored during the execution of the 
object program. The decision of what to monitor and what 
information to capture are explicitly in the domain of the 
user. The introduction of the debug facility merely provides a 
convenient access to the information pertinent to debugging. 

The compile time switch 

The capability exists to control, from within the source 
program, whether debugging source statements are to be 
compiled or treated simply as comments. The WITH DE­
BUGGING MODE clause is written as part of the SOURCE­
COMPUTER paragraph and serves as the compile time 
switch over the debugging statements: 

SOURCE-COMPUTER. Computer-name 
[WITH DEBUGGING MODEJ. 

When the optional WITH DEBUGGING MODE clause is 
specified in a source program, all debugging sections and . 
debugging lines are compiled as regular source statements. 
The absence of the WITH DEBUGGING MODE clause 



causes all debugging lines and debugging sections to be 
compiled as though they were comment lines. 

The compile time switch permits all debugging source code 
to remain intact in the source program and only be compiled 
when requested. This satisfies the option of being able to 
retain all debugging source code in the program for future 
testing or debugging without having to suffer the overhead 
that would result from merely suppressing the execution of 
the object code produced, as discussed earlier. 

The object time switch 

The object time switch dynamically activates or deacti­
vates the debugging code inserted by the compiler based on 
the debugging sections described in the declarative portion 
of the Procedure Division. The accessing of this switch, al­
though dynamic, cannot be accomplished from within the 
program, i.e., set by a COBOL statement, but is controlled 
outside the COBOL environment. This will most likely be 
accomplished through the use of a parameter specified in the 
operating system control language. 

If the switch is 'on' then execution of the program includes 
the execution of all debugging sections and as a result any 
output generated by the debugging algorithm specified in the 
program. The switch can activate the debugging code only if 
the compile time switch was 'on' (WITH DEBUGGING 
MODE clause specified in the Source-Computer paragraph) 
when the program was compiled. Had the compile time 
switch not been 'on' then no debuggir~~ code would have 
been generated and therefore could not be activated. The 
ability to control the activation of the debugging code at 
object time permits the running of the program (if desired) 
with the debugging code present but dormant. If a problem 
occurs or spot checking is needed, the program could be run 
with the object switch 'on' and debugging could continue. 

Debugging lines 

A debugging line is any line with a 'D' in the indicator 
area (column 7) of a source line. Depending on the presence 
01' absence of the WITH DEBUGGING MODE clause in 
the Source-Computer paragraph, the line would be compiled 
either as part of the source program or as a comment line. 
(A comment line is defined as any line with an '*' in the indi­
cator area and is ignored by the compiler except for present­
ing it as part of the source listing.) It should be noted that 
the object time switch has no effect on debugging lines. 

The contents of a debugging line must be such that a syn­
tactically correct program is formed with or without the 
debugging lines being considered as comment lines. Successive 
debugging lines are permitted and a statement can be con­
tinued on successive debugging lines as long as it results in a 
syntactically correct source program at compile time. Due to 
the requirement of the 'D' being present in the indicator 
area, character-strings may not be broken across two or 
more debugging lines. 

Debugging lines can appear anywhere in a source program 

Program Debugging Using COBOL '74 315 

after the Source-Computer paragraph. An example of de­
bugging lines follows: 

COL 7 
t 

001400 
001500D 
001510D 
001600 
001700 
001800D 
001810D 

PROCEDURE-NAME-1. 
DISPLAY "PROCEDURE-NAME-1" 
UPON PRINTER. 
MOVE 000000 TO COUNT-B. 
ADD 1 TO COUNT-B. 
DISPLAY "COUNT-B=" COUNT-B 
UPON PRINTER. 

This is the same debugging example illustrated previously 
for the 1968 COBOL Standard using the DISPLAY state­
ment, but here control is achieved over whether the coding 
will be considered for compilation (compile time switch). 

Since debug lines can appear in both the Environment and 
Data Division, as well as the Procedure Division, not only 
procedural statements can be associated with debugging, 
but data and files as welL For example if the output from the 
debugging session were to be sent to a temporary file and 
examined later for some reason, the file itself could be de­
scribed in such a manner that it would only be compiled into 
the program when the compile time switch was on. 

002000 

003000 
003100D 

003200 

004000 
004100 
004200D 
004210D 
004300D 
004400 
004500 

005000 
005100 
005200 
005300D 
005400 

006000D 

007000D 

ENVIRONMENT DIVISION. 

INPUT-OUTPUT SECTION. 
SELECT DEBUG-FILE ASSIGN TO 
TAPE. 
SELECT PAYROLL-FILE ASSIGN 
TO DISK. 

DATA DIVISION 
FILE SECTION 
FD DEBUG-FILE LABEL RECORDS 
OMITTED. 
01 DEBUG-REC PIC X(200). 
FD PAYROLL-FILE 

LABEL RECORDS STANDARD. 

PROCEDURE DIVISION 
INITIALIZATION SECTION 
HOUSE-KEEPING 

OPEN OUTPUT DEBUG-FILE. 
OPEN INPUT PAYROLL-FILE. 

WRITE DEBUG-REC. 

CLOSE DEBUG-FILE. 

In the above example a file which is to contain debugging 
information, and all of the references to it are defined as D 
lines, and their presence or absence is controlled through the 
compile time switch. 



316 National Computer Conference, 1975 

The USE FOR DEBUGGING statement 

For tracing procedure-names and the activity of data items, 
the debug line would be woefully inadequate or at best 
pedestrian in nature. The extensive tracing of procedures and 
contents of data items is accomplished through the use of 
debugging sections. 

The USE FOR DEBUGGING statement is a declarative 
statement and defines a debugging section. This permits the 
programmer to establish a debugging section and to identify 
items that are to be monitored by the associated debugging 
section. The rest of the declarative procedures in the section 
define the algorith~ by which debugging will take place: 

DECLARATIVES 
DEB-1 SECTION. USE FOR DEBUGGING ON 

ALL PROCEDURES. 
PARAG-I. 

DEB-2 SECTION. USE FOR DEBUGGING ON 
DATA-NAME-I. 

END DECLARATIVES. 

A debugging section is executed each time, as appropriate, 
that the named item(s) (whether named implicitly or ex­
plicitly) are referenced elsewhere in the Procedure Division. 
A debugging section allows the user to provide a set of pro­
cedures for acting on the data provided in DEBUG-ITEM. 
The contents of the DEBUG-ITEM are updated by the 
debug system each time a reference is made to an item for 
which debugging has been requested. 

The COBOL debugging statements themselves produce no 
debugging output. The debugging section permits the user 
to analyze what is taking place and selectively take any 
necessary action which may include producing printed out­
put. This is opposed to the 'shotgun' approach of producing 
all data provided by the debugging system. It also provides 
an advantage over the TRACE, MONITOR, EXHIBIT, 
... statements in that not only is more information available, 
but it is provided to the user in the debugging section rather 
than being sent to a printer-destined file. The user has the 
ultimate decision as to what, if anything, is to be printed. 
The TRACE statement could be simulated very simply: 

DEB-1 SECTION. USE FOR DEBUGGING ALL 
PROCEDURES. 

DEB-PARA-I. 
DISPLAY DEBUG-ITEM. 

The reference to the special register 'DEBUG-ITEM' is 
the method of accessing the data that is provided to the user 
by the debug system. The contents of this data item will be 
covered fully later, it is sufficient to note that one of the 
fields contains the name of the procedure that was just 
referenced/entered/altered. 

There are basically four options or types of references that 
can act as triggers in a debugging section. The following 

discussion shows the various forms of the USE FOR DE­
BUGGING statement that can be used and the effect of 
using each. 

The first option of the USE FOR DEBUGGING state­
ment allows for the tracing of the execution of the various 
sets of procedures in the procedure division (paragraph 
trace) : 

USE FOR DEBUGGING ON {ALL PROCEDURES} 
procedure-name-1 ... 

There are two methods of specifying the procedures on 
which to trap, as is shown in the above USE statement. 
When the procedure-name-1 phrase is chosen, the debugging 
section is executed immediately before each execution of the 
named procedure and immediately after the execution of any 
ALTER statement which references procedure-name-l. In 
this case, each procedure-name on which debugging will 
take place must be specified in a USE statement. (A USE 
statement may contain a reference to more than one pro­
cedure-name.) On the other hand, if the ALL PROCE­
DURES phrase is specified, then the above described action 
takes place for each procedure-name in the program; the 
only exception would be procedure-names specified in de­
bugging sections. 

The second option of the USE FOR DEBUGGING 
STATEMENT is for monitoring the activity of data items 
referenced in the Procedure Division. This includes monitor­
ing a data item either when its contents have been modified 
or each time it is referenced. (For the purposes of this dis­
cussion the term "identifier" represents a data-name in a 
COBOL program including all qualifiers necessary to make 
it unique and all subscripts/indexes required to reference it.) 

USE FOR DEBUGGING ON 
[ALL REFERENCES OF] identifier-I. 

If the optional ALL REFERENCES phrase is specified, 
the debugging section is executed for every statement that 
explicitly or implicitly referenoe$ identifier-I. The absence of 
the ALL REFERENCES phrase causes the debugging sec­
tion to be executed immediately after the execution of any 
COBOL statement that references identifier-1 and causes 
the contents of the data item referenced by identifier-1 to be 
changed. 

There are a few isolated cases in which an implicit refer­
ence to an identifier can cause a debugging section to be exe­
cuted. A case in point is the WRITE statement where the 
FRO M phrase is used: 

WRITE record-name FROM identifier 

results in implicit referen,ce to identifier in that it is moved 
to record-name prior to the record actually being written as 
though a MOVE statement had been used. This results in 
an implicit reference to an identifier causing a debugging 
section to be executed. 

The third form of the USE FOR DEBUGGING state-



ment is for referencing file-names: 

USE FOR DEBUGGING ON file-name-l ... 

This debugging section would be executed after any ex­
plicit reference to the named file, (e.g., OPEN, CLOSE, 
READ, DELETE, START). There is a mild inconsistency 
here due to the syntax and structure of the COBOL lan­
guage. This statement will not cause the monitoring of all of 
the activity of the file due to the WRITE and REWRITE 
statements. With the exception of the WRITE and RE­
WRITE statements, all other statements that are used in 
file processing explicitly reference the file-name (i.e., READ 
-file-name, OPEN 1-0 file-name, etc.). The WRITE and 
REWRITE statements reference the record-name for the 
file which is an identifier. Therefore, in order to trace all of 
the activity of a file, each of the records associated with 
that file must also be referenced in a USE for debugging. 
This could be done by using one or more USE statements. 

There is a fourth option of the USE FOR DEBUGGING 
statement which is for use in debugging programs utilizing 
the COBOL teleprocessing capability; it will not be discussed 
in this paper. 

DEBUG-ITEM 

The previous paragraphs described the method of estab­
lishing a· debugging section for procedure-names, identifiers, 
and file-names. When a debugging section is executed (i.e., 
the item being monitored is appropriately affected) the de­
bugging system must provide the information necessary for 
the programmer to debug the program. This is done through 
a special register generated by the compiler when the compile 
time debugging switch is 'on'. This special register is acces­
sible in the debugging section by the name of DEBUG­
ITEM. 

There are six fields subordinate to DEBUG-ITEM which 
provide the debugging information: 

1. DEBUG-LINE-Contains the line number of the 
source line which caused the debugging section to be 
executed. 

2. DEBUG-NAME-Contains the first thirty char­
acters of the name that caused the debugging section 
to be executed, e.g., procedure-name-l, identifier-I, or 
file-name-1. This would include qualifiers and/or 
subscripts if present but truncated at thirty char­
acters. 

3. DEBUG-SUB-l, DEBUG-SUB-2, DEBUG-SUB-3-
There are three occurrences of this item which, and in 
the case of a data-name which was subscripted/ 
indexed, will contain the occurr~nce number of each 
level of the referenced table. 

4. DEBUG-CONTENTS-Contains information rela­
tive to the name that caused the debugging section to 
be executed. 

• Identifiers-contains the contents of the identifier. 

Program Debugging Using COBOL '74 317 

• File-name-contains spaces except that after a READ 
statement it contains the contents of the record read . 

• Procedure-names-contains a variety of information in­
dicating for the most part how con­
trol was passed to the procedure­
name contained in DEBUG-ITEM: 
START PROGRAM 

(first paragraph). 
SORT INPUT 
SORT OUTPUT 
MERGE OUTPUT 
PERFORM LOOP 
FALL THROUGH 
GO TO 
USE PROCEDURE 

(other than debugging). 

The COBOL description of DEBUG-ITEM could be pre­
sented as follows: 

01 DEBUG-ITEM. 
02 DEBUG-LINE PIC X(6). 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-NAME PIC X(30). 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-SUB-1 PIC S9(4) SIGN IS LEADING 

SEPARATE CHARACTER. 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-SUB-2 PIC S9(4) SIGN IS LEADING 

SEPARATE CHARACTER. 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-SUB-3 PIC S9(4) SIGN IS LEADING 

SEPARATE CHARACTER. 
02 FILLER PIC X VALUE SPACE. 
02 DEBUG-CONTENTS PIC X(n). 

The X(n) described in the Picture for DEBUG­
CONTENTS is the same length as the identifier being de­
bugged or in the case of the procedure-name the length neces­
sary to hold the content of the information placed there by 
the debugging system. 

The following example demonstrates the use of debugging 
sections for procedure-names and identifiers as well as the 
results that could be expected. 

EXAMPLE: 
089000 PROCEDURE DIVISION 
090000 DECLARATIVES. 
090100 SECT1 SECTION. 
090200 USE FOR DEBUGGING ON 

PARAGRAPH-X. 
090300 DEB-I. 
090400 DISPLAY DEBUG-ITEM. 
090500 SECT2 SECTION. 
090600 USE FOR DEBUGGING ON COUNT-B. 
090700 DEB-2. 
090800 DISPLAY DEBUG-ITEM. 
090900 END DECLARATIVES . 
091000 FIRSTSECT SECTION. 



318 National Computer Conference, 1975 

091100 PARAGRAPH-I. 
091200 OPEN OUTPUT PRINT-FILE. 

101100 MOVE 000000 TO COUNT-B. 
101200 PARAGRAPH-X. 
101300 ADD 000001 TO COUNT-B. 

102100 IF COUNT-B LESS THAN 2 GO TO 
PARAGRAPH-X. 

102200 
102300 

CLOSE PRINT-FILE. 
STOP RUN. 

The results of the above execution of coding would be: 

DEBUG DEBUG-NAME 
LINE 
101100 COUNT-B 
101200 PARAGRAPH-X 
101300 COUNT-B 
102100 PARAGRAPH-X 
101300 COUNT-B 

DEBUG-CONTENTS 

000000 
FALL THROUGH 
000001 
GO TO 
000002 

In the previous example, had the USE FOR DEBUG­
GING ON PARAGRAPH-X statement contained the ALL 
PROCEDURES phrase and the USE FOR DEBUGGING 
ON COUNT-B statement contained the ALL REFER­
ENCES phrase then the appropriate debugging section 
would have been executed each time COUNT-B was refer­
enced and for each procedure-name referenced in the pro­
gram. The following would have been produced: 

DEBUG DEBUG-NAME 
LINE 
091100 PARAGRAPH-1 
101100 COUNT-B 
101200 PARAGRAPH-X 
101300 COUNT-B 
102100 COUNT-B 

DEBUG-CONTENTS 

START PROGRAM 
000000 
FALL THROUGH 
000001 
000001 

102100 PARAGRAPH-X 
101300 COUNT-B 
102100 COUNT-B 

CONCLUSION 

GO TO 
000002 
000002 

We conclude this discussion by offering several thoughts with 
regard to improved 'software reliability and increased pro­
grammer productivity. 

1. The advent of new language elements which are de­
signed for debugging in COBOL will permit consider­
ation for the debugging of source prbgrams to be in­
cluded in the design and programming of an applica­
tion-not as an afterthought. For knowledge of 
potential problem areas would permit the inclusion of 
both debugging sections and debug lines which could 
provide ample information for producing an ade­
quately "debugged" program. 

2. The use of source program preprocessors and assorted 
post processors including "core dumps" should be for 
the most part eliminated from the list of tools neces­
sary for the debugging of COBOL programs now that 
a high level of control can be accomplished through 
the use of COBOL source statement elements. 

REFERENCES 

1. Boehm, Barry \"1., Some Information Processing Implications of Air 
Force Space Missions: 1970-1980, The Rand Corporation, RM-
6213-PR, January 1970. 

2. X3.23-1968 American National Standard COBOL, American 
National Standards Institute, Inc., 10 East 40th Street, New York, 
New York, 10016. 

3. X3.23-1974 American National Standard Programming Language 
COBOL, American National Standards Institute, Inc., 10 East 40th 
Street, New York, New York, 10016. 



Better manpower utilization using automatic 
restructuring 

by GUY de BALBINE 
Caine, Farber and Gordon, Inc. 
Pasadena, California 

INTRODUCTION 

Our intent is to introduce the concept of automatic 
restructuring as a powerful method for improving the 
quality of software developed before the advent of struc­
tured programming. The quality improvements we are 
concerned with are neither execution time efficiency nor 
core size requirements but, rather, higher readability and 
clear structured code. These, in turn, should improve the 
reliability and reduce the maintenance costs by making 
human verification more efficient. 

The fact that arbitrary flow diagrams can be mapped 
into equivalent structured flow diagrams by introducing 
new Boolean variables has been established by Bohm and 
J acopini2 (see Reference 1 for an example of a program 
that cannot be restructured without additional Boolean 
variables). The first steps toward systematizing this map­
ping are taken in Reference 9. 

In practice, however, we have found that adding Boolean 
variables (whose names are meaningless since they would 
have Jo be program generated) makes the code often 
harder to read. Thus Djikstra's comment4 that "the 
exercise to translate an arbitrary flow diagram more or 
less mechanically into a jumpless one is not to be recom­
mended" because "the resulting flow diagram cannot be 
expected to be more transparent than the original one." 

On the other hand, if we allow certain constrained forms 
of the GO TO statement, many of the difficulties vanish 
and readability can be enhanced. One form of the 
constrained GO TO, which we call UNDO is used to exit 
from nested structures when necessary, the jump always 
being a forward jump to the end of a DO group. This is 
similar to the LEAVE statement in BLISS.10 

Figure 1 shows an example derived from Reference 1. 
With the UNDO construct, a natural straightforward 
representation can be obtained. 

Based on the hypothesis that the restructuring process 
could be applied systematically to existing unstructured 
programs and enhance their clarity, we have designed and 
implemented a software tool known as the "structuring 
engine." We shall now describe in more detail some of our 
motivations and the experimental results that we have olr 
tained while using the "structuring engine." 

319 

IMPROVING THE HUMAN+->SOFTWARE 
INTERFACE 

Most production software in existence today was 
developed using no precise design methodology. The 
programming languages generally used (FORTRAN, 
COBOL) were invented over a decade ago and have hardly 
evolved due to the severe binds imposed by upward com­
patibility. Maintaining and extending the huge software 
inventory is a difficult and inefficient task which is be­
coming even more so year by year. The software docu­
mentation is poor, the logic is often obscure, and the 
authors are most likely to be gone or assigned to other 
projects. Operational programs still break down with bugs 
that have managed to escape the most careful scrutiny. 
Modifications and extensions are dreaded and postponed 
since they are likely to cause perturbations whose far rang­
ing effects cannot be easily and reliably assessed. 

We do not claim to have a panacea that can cure all of 
these problems instantly. However, the experience gained 
while developing large scale software using structured 
programming has shown some of the important factors 
that influence software reliability and maintenance costs. 
In our experience, the quality of the human+->software in­
terface is one such factor since it influences the efficiency 
of all manhours invested at the program level, both during 
development and maintenance. 

To benefit from a better human - software interface ap­
plicable to future software development, as well as to cur­
rent software, we suggest extending commonly available 
programming languages, imposing some constraints to 
ensure proper language usage, emphasizing the need for 
visual improvement of programs, and providing transi­
tional tools to assist in the conversion of existing software 
to meet the new interface specifications. 

Language extensions 

The only precise, and by definition up-to-date, source of 
internal documentation for most software in existence 
today lies in the programs themselves. Understanding 
what programs accomplish implies an understanding in 



320 National Computer Conference, 1975 

DO FOREVER 

DO WHILE (Cll 

51 

END DO WHILE 

IF (C2l 

ELSE 

UNDO 
;----

ENDIF 

ENDIF 

END 00 FOREVER 

Figure I-Example of UNDO usage 

the formalism and at the level of detail imposed by the 
programming language used as a vehicle for implementa­
tion. Thus, any shortcomings of the implementation lan­
guage have a direct impact on the effort needed to under­
stand what the programs do and to modify and extend 
them successfully. 

The two most widespread programming languages, 
FORTRAN and COBOL, do not contain adequate 
mechanisms to support structured coding. The limited 
facilities they provide can be exploited very cleverly to 
look somewhat like structured code. However, a 
substantial effort is needed to maintain proper indentation 
and the legibility is never as good as that obtainable with a 
structured language. 

The obvious step is to build preprocessors to provide the 
necessary syntactic extensions and perform some of the 
manual chores such as automatic indentation. Several 
dozen preprocessors have already been built to translate 
various brands of structured FORTRAN into pure 
FORTRAN.7 Our effort along these lines has led to the 
design and implementation of the S-FORTRAN language 
and translator. S-FORTRAN embodies a small but power­
ful set of structured constructs. S-FORTRAN was 
designed to serve both as a target language for restruc­
tured programs and as an implementation language for 
new programs. It is not only simple but easy to remember 
unambiguously. The S-FORTRAN language is succinctly 
described in the Appendix. 

We do not wish at this point to discuss at length the in­
dividual merits of each S-FORTRAN feature and whether 
LOOP is a better term than DO FOREVER or should DO 
UNTIL test first rather than execute first. These decisions 
are mostly conventions. Let us simply express the hope 
that a consensus will soon develop so that a "de facto" 
standard will prevail. Structured FORTRAN programs 
will then be unambiguously understood by all. 

Language usage 

Providing extended languages to permit structured cod­
ing is not sufficient to guarantee software clarity. 
Programmers can still misuse structured languages to 
follow their traditional thought processes, the result being 
obscure programs under the guise of structured code. 

Rather than resort to building enforcement tools, it is 
our belief that the simplicity and intellectual appeal of a 
well formed program will generate the necessary motiva­
tion among programmers to adopt a new standard of 
quality. 

Visual improvement 

Structured coding techniques require that programs be 
systematically indented to stress the relationships b~tween 
code segments. This hierarchical arrangement allows a 
quick grasp of the global as well as the local structure of 
the code. Understanding the code no longer requires keep­
ing track of many scattered items such as labels and 
transfers. Rather, it means perceiving visual patterns that 
can be precisely mapped into our analytical understand­
ing of the solution. Each part and subpart corresponds to a 
block of code, carefully delimited to facilitate its verifica­
tion. Systematic indentation makes it easy to collect the 
conditions controlling the execution of each indentation 
level down to the code segment being examined. 

The power of visual perception can be readily tapped by 
developing patterns whenever feasible. Symmetry, lack of 
symmetry, block indentation, regularity, recurring pat­
terns, aligned similar items, ... are characteristics that 
can be detected at a glance by the eye. Interestingly 
enough, these are characteristics whose global nature is 
usually hard to detect and utilize automatically with 
software tools. 

HOW TO BENEFIT FROM THE NEW 
INTERFACE 

Formulating a better human~software interface is 
clearly valuable for software that has not yet been written. 
The important point is that such an improvement can also 
be applied to a large part of the software inventory in 
existence today. It is our belief that this should lead to a 

. significant reduction in the maintenance effort by better 
utilizing the available manpower. 

Until very recently, the main route for modernizing 
existing unstructured software was to start over with a 
clean top-down design and structured implementation. 
Needless to say, such complete manual reprogramming 
should not be undertaken without a very careful evalua­
tion of the potential gain versus the effort involved. We 
have found that the major obstacles to manual reprogram­
ming are the need for top talent during the redesign phase, 
the manpower expenditure, the elapsed time before a new 



~ 10 --

5 

• 

'7 

·!O-_ 

Better Manpower Utilization Using Automatic Restructuring 321 

CFG, Hie. PROGRAM FeRIT PAGE - 13 

CORDEspn~DING LI~E 

____ FOKTRAf\:_ll_N_E ______ M.lMJlEB __ 

************************ FORIT E NTR-V ************************** 

2 C****************** M 5 INC 12 ************************************ 
2 ____________________ ~ ______ S!J!3RQJ.lJJN!= __ f.Q~H ___ lftH_~!Il_,~, _hilt 
3 4 IMPLICIT REAL*8 (A-H,O-ZI 

___________ L ______ C __ 
(; DIMENSION FNTlll,AIM),8(MI 

C ************************** LOGIC START *************************** 

8 
q ----ii------------To---

9 11 
10 12 

__ D_ 13 
12 14 

_________ U_ 15 14 ---- -------:U;-------
1" 17 
16 18 

__ .LL_ _ __ !', 
20 

21 
22 

C 
C -- -- ---COEF;="(;;O/(N+o~5-i --- --­

CQNST=~.141593*CCEF 

51-OS HdCONST) 
__________ Ll,.Qr;CHcQ~_SlJ 

C=I.0 
5=0.0 
f:NTi;;;F~Tnl 
J= 1 
"'1=M+l 
N2=N+N+l ---.- ---UEtiiif·- "A FR PR-cfcEDuR-E-oo-ii-----· 

--t---------------------------~-----------------------------------, 
100 W~!H*~~~~:~) .Ll. 0) ---------------\--" 

30 
31 

_~_2 

33 
_ J."_ 

__ n 
24 
2~ 
26 
27 

__ _ _ _ _ _ _ J __ 5_=(:1*_S_.+_S.l*_C I 

--1"6-
~T __ 

I c=c: I 
J _____ .,!~ __ .,J+_l___ _ I 
I .f.Ht1!If. (AFR PROCEDUREOOll I 
I END 00 WHILE _ ________________ I 1_____________________ _ __________________________ 1 

---i-e-- ~ (jr;;;ATjj*o.~ 

_ _____ ?_(~______ RETURt.; --(.;::.:.:::.:.::.:.:.:.:.:.:--- -

30 

31 EECCfuuaf CAFR PROCECURE001J 
32 C -------------.-- 33'--- . -t- - -~~-~-tt"'PutE F6URIER-CbEFF-Iti~NTS RECURSiVELY 

20 
--2C 
22 

-27-
23 --""l,,----
25 
26 

2S 
29 

PRCCEfJlJl:!E 

-~-1-

38 ----:3"9--
40 
41 
42 

45 

46 

47 

48 

c 

U2=0.0 
ui;o~6-

I=N2 

,------------------------------------------------------------------------------------, 
------Hllr".iJ!tlll-nf-..:l.r~lE.-O-J . I 

I UO=FNTCIJ+Z.O*C*UI-U2 I -- ---r-------uz-;;Ui------------- -------- T 
I Ul=UO I 
I I: I-I I 
'.E1l0 OJ: Uf:U1L I . 1=~:... ..... ~~ ..... :..:.::.:..:~ .......... ______ ~ ______________ ' ___________________________ 1 

- ATJ}=ttEF-.(FNT i+C*IJl:"U;() 
B(J I-CDEF*S*Ul 

-----_._-------_ .. _---------_._-------------_.-
*********************** FORMAT STATEMENTS ************************ 

************************ END PROGRAM UNIT ************************ 

END 

PROCEDURE CReSS_REFERENCE TABLE 

LQCAI ION _REFERENCES 

31 - -20 

Figure 2-Sample program FORIT before and after restructuring 



322 National Computer Conference, 1975 

F~CGPAM 

LINE 
NU~RER 

18:03:30 CI DEC 74 PAGE 

FORTRAN PROGRA~ INPUT 

INPUT F'lRTPAN STATEMENT 

. c****** •• ********** ~ SIN C 12 ********.*** .... * •• ************.***** 
SURROUTINE FORIT IFNT.N.M.A.BI 
I~PLlClT RfAL*R IA H.O-ZI 

CI~ENS!rN <NTlll.AIMI.BI~1 

q 

IC 
11 
12 
13 
14 
I ~ 
16 
17 
IE 

••• SET CC~STAMS 
C(lEF=I.OICN+O.~1 
COST=3.1415B*COEF 
51=051 NI CO~STI 
CI=~COSICnNSTI 

C=I.O 
5=0.0 
FNTZ=<NT III 
J=I 
loll I ='-'+1 
N2=N+N+1 

19 ••• COMPUTE FOURIER COEFFICIENTS RECURSIVELY 
-----~~O~I __ --'-'70~~~=:~"-':"'-~ ______________________ _ 

22 I=N2 
23 75 UO=FNTC!l+2.0*C*UI-LJ2 
24 L2=UI 
2~ UI=LO 
26 1= I-I -----2i-----------iTfI=lf-lic.80 .75 --------------------------

2e AD AIJI=COEF*IFI'HZ+C"UI-U21 
20 B I J I=CCEF.S*U I 
30 IF I J-~II ~O.lOO.I(;O 

31 °0 (=(I*C-SI*S 
_____ -:3~2 S=Cl*,-"-S",,,+S--,-,I*:.>.C __ _ 

_ _ C=C 
34 J=J+I 
35 Gr TO 70 
36 10C AIII=AIII"C.S 
37 RETI'~N 

38 __ E~~~D ___ ~~ 

system is up and running and the penalty for having to go 
through a full testing and debugging period again. 

As an alternative, we have _developed a method which is 
much easier to apply in practice. It consists in keeping the 
global design as is, in particular the data structures, and 
in automatically transforming every program into an 
equivalent structured program, visually improved to make 
its reading easier and its understanding more thorough. 
This method is supported by a software tool known as the 
"structuring engine." We have applied this tool to a va­
riety of FORTRAN programs. We shall now describe the 
characteristics of the tool and some of the experimental 
results that we have obtained so far. 

THE "STRUCTURING ENGINE" 

Capabilities 

The "structuring engine," as it now exists, is a large task 
running on an IBMj370 under VS. It consists of over 
30,000 lines of structured PLj 1 code. It will restructure 
programs written in FORTRAN including --any language 
extensions acceptable by IBM, Univac, CDC and 
Honeywell compilers. 

Each program or subprogram is restructured inde­
pendently. The complete flow graph of each program or 
subprogram is analyzed to determine the best strategy for 
obtaining a well structured program. Machine de­
pendencies are taken into account when building the flow 
graph because the interpretation of some statements de­
pends on the particular compiler that the program was 
intended for. For instance, values outside the range of a 
computed GO TO can be handled in three distinct ways 

depending upon the particular compiler implementation. 
Such variations are taken into account by the "structuring 
engine" which generates the necessary statements to 
guarantee consistency in the restructured output. 

In general, the restructured programs will bear little re­
semblance to the original unstructured ones, particularly 
if the logic was complex and somewhat twisted to start 
with. In the output, the logic flows from top to bottom, 
from the single entry to the single exit. 

Figure 2 is an example of a simple program before and 
after restructuring. Similarly, Figure 3 shows what hap­
pens in the case of a heavily folded program. 

The restructured programs are equivalent to those from 
which they are derived in the sense that they behave 
identically at run time. That is, they carry out the same 
sequence of operations on the data structures, great care 
being taken that the ordering of operations not be 
modified. For instance, a three way arithmetic IF cannot 
be simply converted into two nested S-FORTRAN IF 
statements because the arithmetic expression would then 
be evaluated twice. In that case, incorrect results might be 
obtained if the arithmetic expression contains calls to aIr 
normal functions i.e., functions which do not always 
produce the same results from a given set of inputs. 

One of the basic processes used in restructuring is 
known as node splitting. If a node of the subgraph can be 
reached from two different paths that must be separated, 
the node is split into two identical nodes so that each path 
can have its own copy of the node. 

If the node splitting operations were carried out indis­
criminately, the resulting S-FORTRAN programs would 
often become so large as to be virtually useless. Not only 
would clarity be lost but the object program would be 
likely not to fit in the target machine. To circumvent that 



Better Manpower Utilization Using Automatic Restructuring 323 

difficulty, the "structuring engine" tries recognizing 
proper subgraphs that can be turned into procedures 
instead of being duplicated in line. A procedure is simply 
a section of code with one entry and one exit. This concept 
corresponds to the PERFORMed group in COBOL, but 
with additional constraints to guarantee a clean invocation 
and a clean return. Once a procedure has been extracted 
and given a name, it can be referenced from many loca­
tions within the restructured program, including from 
other procedures. The example in Figure 2 contains one 
procedure, the one in Figure 3 contains two. The decision 
whether to expand code in line or create procedures can be 
externally controlled using a threshold which indicates 
how complex a subgraph must be before it becomes a 
procedure. Procedures are not separate subprograms. 
Rather, they are segments of code that can be executed 
from various locations within a particular program or 
subprogram. The EXECUTE command hides the 
ASSIGNed GO TO linkage that a FORTRAN programmer 
would have to set up otherwise. 

To visually improve the resulting code, every statement 
is laid out according to its logical indentation level. This 
stresses its relationship with other statements in the same 
program unit. A box is built around each complete DO 
group to enhance the scope of the DO statements. State­
ments such as UNDO, CYCLE, and RETURN are 
followed by an arrow that attracts the attention of the 
reader and shows him immediately what implications 
tnese statements have on the logic flow. Consecutive com­
ment cards are right adjusted by block in order to make 
them as unobtrusive as possible. 

Of course, if the modules to be restructured contain 
logic errors, the same errors will be found in the structured 
output. In general, the "structuring engine" is incapable of 
detecting errors except for some obvious language viola­
tions. The input programs are supposed to have compiled 
correctly so that the errors we are really trying to 
eliminate are errors in the logic that cannot be identified 
without an intimate understanding of the problem. Only a 
programmer aware of the problem being solved can dis­
cover and correct these errors. 

Emphasis in building the "structuring engine" has been 
on reliability rather than efficiency. This has been 
achieved through a combination of structured design tech­
niques, self identifiable data structures and dynamic 
assertion verification at run time i.e., the constant verifica­
tion that the assumptions underlying the design are never 
violated during production runs. 

Experimental results 

We are currently applying the "structuring engine" to a 
wide variety of unstructured FORTRAN code. Although 
our analysis is far from complete, we would like to com­
ment on some of the experimental results that we have ob­
tained so far. 

CFG. INC. PROGRAM 31 JAN 75 PAGE 

FORTRAN PROliRAM INPUT 

LINE 
NU~BER INPUT FORTRAN STATEMENT 

1 C •••••• REF: LSTAT ALIAS URDB 
2 ,* ••••• ELEHENT NAME: OR[)S ••••••••••••••••••••••••• OROB 0 
3 INTEGER FUNCTION LSTATILlNE.FLAGI OR~8 1 
4 IMPLICIT INTEGER I A-YI ORDB 2 
5 DATA NIV/5/ O~OB 3 
6 COMMON/ARRAY/C.lINOWN. (.L:AROIBOI,PICTURI 13201, BUfHR1l5.2001 ORUb 4 
7 COMMON/DEBUG/DEBUG D~OB 5 
8 COHMON /EfNARR/LENGTH,NREf,REfHAX,MAXLlN.EfNLISIl507I,CREF130001 ORDB 6 
9 CQHMON/RANGE/Kl.K2 OROB 7 

10 LUGI(.AL HAG 01<08 8 
11 L=L1 NE ORDB 9 
12 TARGET=L INE ORDS 10 
13 SwiTCH=1 O~DB 11 
14 65 KOUNT=1 OROB 12 
15 70 L-HDDIL -1.LENGTHI+l ORDB 13 
16 L1NOLD=fLDIO,1B.EfNLlSILIl O~DB 14 
17 IF ILiNOLD.EU. TARliET IGD TOI1l5,IBO.140,1501. SwITCH OR Db 15 
lB If ILiNOLD.EQ.OIGO TJ 255 OR OS 16 
19 IF lKOUNT.EQ.LENGTHIGli TO 255 OROB 17 
20 IF lKOUNT .EQ.1IL1NC-MJDlL-I,LENGTH-1I+1 Of<OB 18 
21 L=L+L1NC DRDS 19 
22 KOUNT=KDUHT+l DROS 20 
23 GO TO 70 OROB 21 
24 115 L1NEW-FLDIlB.IB.EFNLlSIl.1I OROB 22 
25 LTEHP-Kl*LINEW+K2 OROB 2~ 
26 FLAG I S TRUE IF LINE IS A S UTEHENT EfN OROB 24 
27 FALSE IF LINE IS A REFeRENCE TO AN eFN OROB 25 
2B If IFLAG.OR.NREF.LT.OIGD TO 260 OR DB 26 
29 C SUlLO CROSS REF LIST OROS 27 
30 If lNREF.EQ.REFNAXIGO TO 235 OROS 28 
31 IF ILiNOWN.GE.MAXLlNIGO TO 195 OROS 29 
32 OLD EFN FOR CURRENT LINE IS LINOWN DRDS 30 
33 IF ISWITCH.LT .4ISWITCri-SWITCH+l DROB 31 
34 TARGET -L I NDWN DROS 32 
35 L-L1 NDWN DROB 33 
36 GO TO 65 OROS 34 
37 lBO CURLIN-FLOIlB.1B.EFNLISI1i1 DRDB 35 
3B CURNEW-KI*CURLlN+K2 DROB 36 
39 GO TO 200 OROB 37 
40 195 CURNEW=KI*ILlNOWN-HAXLlNI+K2 D~OB 3B 
41 200 NREF-NREF+l DROB 39 
42 FLOlO.18,CREFINREfli -LTEMP OROB 40 
43 H0I1B.18.CREFINREFII-CURNEW DRDB 41 
44 IFlDEBUG.GT .NIVIPUNT UO.NIV.L.TEHP.CURNEw,NREF,CREFINREfI DRDB "2 
45 220 FOR.HATC· NIV·.13.': ORoa LTEMP··,[S,· c.URNe .. ··,ls, DRoa 43 
46 l' CREFP,JIt,q"",ulzt DROB Itlt 
47 GO TO 260 ORDB 45 
48 235 PRj NT 240 DRDB "6 
49 240 FDRMATllx.10IlH*"28H CROSS REFERENCE TABLE FULL ,9011H*1I ORDB 47 
50 NREF--NREF OROB 48 
51 GO TO 260 DR DB 49 
5Z 1"0 CURNEW-CURLlN+K2 DRD8 50 
53 GO TO ZOO DROB 51 
54 150 CURLIN-HDllB.18.EFNLISILII D~D8 5Z 
55 GO TO 140 DRD8 53 
56 255 LTEMP-O ORDB 54 
57 260 LSTU=UEMP DRDB 55 
58 IflDEBUG.GT .NIVIPRINT ~70.Nlv.LlNE.FLAG.LTEHP ORDB 51> 
59 210 FORKAT(' H[ V'. [3,'': DRoa LINE-', 15,' FLAG&' .Ll.' LSTAT-', '5. DROS 57 
60 RETURN OR DB 58 
61 END OR08 59 

Figure 3-Sample program ORDB unstructured (Part I) 

Clarity of the restructured programs 

A reliable assessment of clarity improvements is ob­
viously quite difficult to obtain until we get some figures 
on maintenance costs. The familiarity of the end user with 
structured code is a factor as noted in Reference 6. The 
cleverness of the "structuring engine" in making the right 
choices is obviously another important factor since there 
are not one but many solutions to the restructuring 
problem. So far, we have found that: 

• the majority of the programs (about 90 percent) will 
come out extremely clear, at least in our opinion and 
in that· of end users that have worked with restruc­
tured programs. 

• the rest (about 10 percent) will either remain complex 
or become lengthy or both. In this group, we find a 
number of programs that could be handled more 
cleverly by the "structuring engine" and, therefore, 
move into the above category. We are obviously build­
ing the necessary improvements into the "structuring 
engine." Still, there are some programs that will 
probably never look very good. They are ill-designed. 
The problem that they are supposed to solve should 
be reexamined and a complete redesign and 
reprogramming of these programs may be necessary. 



324 National C~mputer Conference, 1975 

CFG, [~C. 

[~PUT CLTPuT r~~ST 
LlNF LINe LEVE:L 

9 
10 

11 
12 
13 
14 

15 
16 
17 
18 
56 

19 
5b 

17 

24 
25 

28 

30 
48 
50 

31 
40 

33 
33 

34 
35 
14 

37 
38 

52 

54 
52 

18 
56 

[ 9 

5b 

8 
9 

10 
II 
12 

14 
15 
Ib 
17 

18 
1~ 

20 
21 
22 
23 
24 

25 
2b 
27 

28 
29 
3u 

31 

32 
33 
3't 
35 
36 
37 
38 

39 
4U 
41 
42 
43 

4 .. 
45 
4b 
41 

4~ 4, 
50 
51 
52 
')3 
54 
5, 

5b 
57 
58 
59 
60 

61 
62 
63 
64 

65 
66 
67 
68 
6'; 

70 
71 
7L 
73 

74 
75 
70 

77 
70 
N 

03:50:54 .. 1 JAfIo 15 PAGE 

, TI<l.I~ T URt:D SFOR TRAN PkUukAM 

JUT~uT ,FORTRAN STATlMt~T 

************** •• ** •••••• L!) TA T ENTRY •••• * ••••••••••••••••••••• 

c •••••• RtF: LSTAT ALIAS URDS 
c****** t:LEME:I .... r ,~AME :UROd .................. **.* •••• 

[IIoTE(,tR FJNCT ION LSTAHlINi:,flAGI 
[MPLlC iT [NTl:ul:l\ l .. -YI 
UATA NIV/5/ 
CCMM IN / ARRAY II. ,lI NU.N ,('LCARDI 80 I, PIC T Ukl 1 .;>LUI ,oUFf cKI 15,2 Jill 
LuM~UN /DtoU(;/DEoUu 
~ "MMUN / EFNARi<1 L EN"T H, Nil.cF, REF MAX, MAXL IN, EFNLI S I l:;b 71 ,,,,KeF I 

301.101 
COMMON IRANC,E/K1,KL 
LJG Il:AL fL AG 

•••• ** ••••••• * •••••••••••• luG Ie STAR T ••••••••••••••••••••••••••• 

L =Ll IIoE 
TARGET=lINE 
owl TeH=1 
"uUNT= 1 

,---------------------------------------------------------------------------------T 
18 liIJJ EllI1£ua I 

I L=MOiH L -I,LENGTHI +1 I 
I LlNULD=FLUludd,HNlISILlI I 
I J.t . I Ll NULL/.Ne. T ARC,ET I I 
I II ILlNuL".~~.UI I 
I LTEMI'=U I 
I Utli.lU 18 I 
(------------ I 
I fWiUt IKUUNT .E'-I.LENGTH! I 
I LT E:MP=U I 
I UtiilU 18 I 
<------------ I 
I ~ll I 
I f.llfC.UU. IM~ PkuClDURt002! I 
I Ull I 
\ ,--------------------------------------------------------------------------, : 
I IUU i.A.:if ,,,1 TCti I I 
I I I I 
I I (.AS.t. 1 I I 
I I lINI:,,·FUI 18.18, EFNLlSILlI I I 
I I LT tMI'=Kl*L INE~+K2 I I 
I I FLAu IS TRUE IF LINE I, A HATEMHH EFN I I 
I I FALSE IF LINE IS A kHERtNCi: TlI AN EFN I I 
I I it IfLA".UR.NREF.LT.OI I I 
I I UWl.J 18 I I 
(-------------------- I I 
I I BUILD CROSS REf- LIST I I 
I I tL.llJ.E 1;~REF.EfJ.REFMAXI I I 
I I P~INT 9002u I I 
I I NREf=-NREF I 

~-------~------------ "~u.J 18 : 

I I fLHU ILlNO~N.GE.MAXLlNI I 
I I CURNi:~aKl. III NOwN-MAXLI NI +K2 I 
I I f.l>~I~ IAFR PROCEUURt:OOll I 

~-------~------------UWlU 18 J 
I I fll!Ul.f I 
I I OLD EFN FOR I.UKRE:NT LINt: IS L1NO~N I 
I I J.t IS,dH.H.LT.41 I 
I I ~w1TCH·S~ITCH+1 I 
I I ftiI.! II I 
I I TA~"ET=L1NOWN I 
I I L=lINO~N I 
I I ~UU"T=1 I 
I I I 
I I .c.AS,f. l I 
I I LUKLlN=FlDIl8.ld,EFNLI~ILlI I 

: : ~~~~~K~:~~R~!~~~~URE(lO!J I 

~ _______ ~ ________ UtiUU 18 ! 
J I I 

: : C.A~t I.~RNEW=CURL IN+K2 : 

I I f.l>f.\.Ulf I AFR PROCEDURI:Jul1 I 
~ _______ ~ ________ UtillU Iii : 

: : (.A.>.J; 4 : 
I I ~UKLlN=FLDIUj.18,HNUSI1I1 I 
J I ~URi'<l:w=CURLlN+K2 \ I 
I I fU(;UI~ I AFR PROCEDUREuUd I I 

~-------~--------UtillQ 1 d : 

: : (.II~~ iJTHER : 
I I if ILIJIIOlD.EU.OI I 
I I LTEMP=O I ! _______ ~ ____________ UtiUIl 18 I 

I I tl.llJ.t IKUUNT.EQ.LENGTHI : 

:: ~~~8P~~ I 
(-------------------- : 
I I ttlD lE I 

I fl>fLUH I AFR PRUCEOURdiOd I 
IliBi Il.! ('AU I 
1 _____________________________________________________ ----------------_____________ 1 

.f;tli:l II 
I.t.tllo! J.!ll f.LLIi.t.llE.t1 I 
1 _____________________________________________________ --------------------------_______________ 1 

<---------

L:>TAT=L TEMP 
1.t. lDdUG.GT ."IV! 

PRINT ~vO.;>v, IIolV,ll"c,fLAG,LTI:MP 
.f;tlU J.t 
KE TUKi'< 

Figure 3-Sample program ORDB restructured (Parts II and III) 



Better Manpower Utilization Using Automatic Restructuring 325 

Execution characteristics of the restructured 
programs 

Let us now try to answer some of the most common 
questions regarding this automatic restructuring process. 
What price do we pay for the improved clarity of the 
restructured programs? In particular, how do the restruc­
tured programs execute compared to the original ones? 

To answer these questions, we must first examine the 
various components in the processing chain as shown in 
Figure 4. The "structuring engine" transforms unstruc­
tured FORTRAN into structured S-FORTRAN. The 
resulting S-FORTRAN programs are then translated back 
into FORTRAN using the S-FORTRAN to FORTRAN 
translator. At that point, we have pure FORTRAN source 
code again which can be compiled, loaded and executed. 
Thus, the characteristics that we are reporting on involve 
not only the "structuring engine" but also the translator 
and a compiler. 

The core size of the object modules produced from the 
restructured programs has been found to always be larger 
than that of the original modules, typically by about 20 
percent. 

We know from Reference 9 that arbitrary programs can­
not be restructured without increasing their running time 

CfG, 

INPUT 
LINE 

41 
42 
43 .. .. 

20 
20 

21 
22 

INC. 

OUTPUT 
LINE 

8a 
89 
90 
91 
92 
93 
9. 
95 

97 
<a 
.9 

100 
101 
102 
103 

105 
106 

AFR PROCEDlIREOOl 
AFR PROCEDUREOOl 

NEST 
LEI/EL 

FOflMAT STATEMENT 
NUMBER 

9COIO 
90020 
90030 

31 "JA.N 75 

STkUCTUREO SFORTRAN PI\Ol;kAI'I 

JUTPUT SF OR fRAN SYA TE:.HENT 

................... Afk PRQCEOURfOOl PROCEOUkE: •••••••••••••••••••• 

eaQk.t~ lAfk PROCi;uuRl::uOLJ 
NREf~NREF+l 

FlOIO,lB.CREf(HREfJJ :&lll:HP 
FLO' 18, 18, CREF CHRff J J*CURNEW 
.1f COEtiUG.GT.N1VJ 

PRINT 90010. NIV,LTEI1P,CURNEW,NREF,CREfiNREFJ 
Ull J.E 

tWl fJWr.tllll&f 

•••••••••••••••••• AFIC. f'KuCEDURf002 PRoe EOUKE: •••••••••••••••••••• 

~ CUR PRUC£;OIJReIlOZJ 
lE (KOUHT .. EQ.1) 

l INC:&/ilOOCl-l ,U;NuTH-ll +l 
tWIll 
l-l+lIf04C 
KOUNTsl<.OUNT + 1 

fWl f.IIJlUQU&f 

........................ fORHAT STATEMENTS •••••••••••••••••••••••• 

90U10 fORMAT ,. NIV',IJ,': UROti LH:MP=',15,' CUkNfW .. ',15, I CREFI',IIt,'j 
1:::' ,Oll) 

90Q20 FORHAT llX,lOIlH."2tUi CkOSS REFERENCE TA6L~ fULL ,9QIlH*JJ 

•••••••••••••••••••••••• END PROGRAM UN! T •••••••••••••••••••••••• 

PRu~t;DiJRE CROSS_REFERENce TAblE 

lOC.ATlON RfFERI:NCeS 

88 
97 

1.,5 
107 
108 

4b 59 
29 10 

FORHAT CkOSS_REFERENC.1: TAbU 

REFERENCE~ 

OJ 
41 
a4 

Figure 3-Continued 

FORTRAN 

STRUCTURING 

ENGINE 

UNSTRUCTURED '----.... 

ONE TI ME TRANSLATION 

I 
I 
I 
I 
I 
I 

"". 

STRUCTURED 

$-FORTRAN 

COMPILER 

MAl NTENANCE AND/OR DEVELOPMENT OF 

RESTRUCTURED PROGRAMS 

Figure 4-The restructuring chain 

OBJECT 

MODULES 

or their core size. In the present case, we have chosen to 
accept a limited increase in memory size. The creation of 
internal procedures is our method for preventing a 
program from growing beyond an acceptable point. 

Figure 5 shows a typical distribution of core size expan­
sion ratios (1 would mean no increase) as a function of the 
size of the object module for the unstructured program 
when compiled with IBM's FORTRAN G compiler. The 
circled data point corresponds to a program that the 
"structuring engine" could not structure without produc­
ing three times as many S-FORTRAN cards as there were 
FORTRAN cards. This "abnormal" expansion factor was 
caused by a deeply nested section of code that could not 
be turned into procedure because it would then have 
contained an UNDO outside its scope. Such an UNDO 
outside the scope of a procedure is not permitted in S­
FORTRAN. Consequently, the same section of code was 
duplicated 18 times throughout the program. 

Data on the execution speed of the restructured pro­
grams has been harder to get because most of the pro­
grams we have restructured so far were components of 
much larger systems which we could not run ourselves. 
Preliminary results show that we should expect slight 
variations in the running time with a trend toward a re-

Object size ratil) (G) 

o 

.. 
"...., 

k bytes 

Figure 5-Core size expansion ratios 



326 National Computer Conference, 1975 

duction rather than an increase. This may' seem para­
doxical at first but can be explained as follows. There are 
two major factors that influence the running time in op­
posite ways: 

(i) the size of the basic block: the restructuring process 
cannot decrease the average size of the basic block 
and in general will increase it. Thus, an optimizing 
compiler should generate better code within each 
basic block of the restructured programs. 

(ii) the control flow statements produced by the transla- . 
tor to support branching, looping and procedure 
referencing: These require, in general, more 
instructions than needed to implement the original 
control logic. 

The first factor tends to make restructured programs 
run faster whereas the latter tends to slow them down. 
This means that with a translator generating very good 
code we should be able to have programs run faster 
restructured than unstructured. In fact, we have now built 
more sophistication into the translator than had been 
originally planned in order to make full use of the capabil­
ities of optimizing compilers. For instance, with IBM's 
FORTRAN H (OPT=2) compiler, changes in the transla­
tion of IF statements have reduced in one instance the 
core size by 12 percent and the running time by 8 percent 
when compared with earlier versions of the translator. 

CONCLUSIONS 

Automatic restructuring as implemented by the "structur­
ing engine" is proposed as a method to modernize existing 
programs. It should prove much more practical than 
manual reprogramming, particularly with regards to man­
power requirements, conversion time and the reliability of 
the conversion process itself. 

Manpower requirements are reduced since no major 
human effort is invested redoing what already exists. On 
the contrary, programmer time is devoted to perusing 
restructured programs, implementing improvements 
wherever deficiencies show up, and correcting errors. In 
particular, any program which still appears to be overly 
complex after restructuring compared to what it is sup­
posed to accomplish, becomes a good candidate for an in­
depth investigation of the reasons underlying its apparent 
complexity. Poor algorithms may be pinned down fast and 
replaced accordingly. The overall result is that the 
programmer understands the structured code more 
rapidly and can, therefore, allocate more time to difficult 
areas. Consequently, his error detection rate increases, 
thus justifying our claim to improved software reliability. 

Conversion time is negligible compared to that required 
for manual reprogramming. In particular, the project's 
clock is not set back since the restructuring process does 
not introduce any new errors. 

Of course, there may still be cases where complete 

redesign and reprogramming appear to be absolutely 
necessary. Under those circumstances, the "structuring 
engine" can still play an important role. Indeed, no matter 
how unstructured and clumsy the original software may 
be, it represents an approximate solution to the problem, 
correct in most if not all of the cases. As such, it acts as a 
repository for a wealth of details that were added 
throughout the life cycle of the software to handle unusual 
and certainly unforeseen cases. Starting from this rich 
data, the "structuring engine" becomes a very valuable 
tool since it produces an up-to-date structured picture of 
the solution currently implemented. This picture may 
then be used to base a thorough evaluation of the status of 
the project, including any needs for manual redesign and 
reprogramming. 

APPENDIX 

The main characteristics of S-FORTRAN are: 

(a) S-FORTRAN is a superset of FORTRAN (including 
the FORTRAN language extensions provided by 
various manufacturers). 

(b) Any construct with a scope has both an opening and a 
closing delimiter. If the opening statement is XXX, 
the ending statement is of the form END XXX. (e.g., 
IF ... END IF, DO WHILE ... END DO WHILE). 

(c) The IF includes any number of ELSEIF clauses and 
an optional ELSE clause. ELSEIF's are often con­
venient to prevent very deep indentation levels (and 
the so-called "wall to wall" ENDIF's). 

(d) Repetitive DO groups include a DO FOR analogous to 
the FORTRAN DO loop, a DO WHILE, a DO 
UNTIL (which is in fact a DO AT LEAST ONCE 
UNTIL), and a DO FOREVER (an infinite loop). 

(e) Non repetitive DO groups include a DO for bracketing 
statements, a powerful DO CASE, a DO CASE SIGN 
OF which is the equivalent of a three way arithmetic 
IF, and a DO LABEL to handle abnormal returns 
from subroutines and functions and end and error 
exits from 110 statements. 

(f) UNDO is a mechanism to exit from a DO group pre­
maturely. We have found this multilevel exit 
mechanism to be superior to introducing switch 
variables which tend to clutter the program and make 
its logic harder to follow. UNDO is applicable to any 
DO group, repetitive or not. It can be followed by a 
label if another DO group besides the innermost one is 
to be exited from. 

(g) CYCLE is similar to UNDO but implies skipping any 
statement until the closing delimiter of a DO group is 
found. The test controlling the repeated execution of 
the DO group is then performed to determine whether 
to exit or repeat. CYCLE is only applicable to repeti­
tive~DO groups. 

(h) Internal parameterless procedures can be defined us­
ing PROCEDURE ... END PROCEDURE. Their 
execution can only be triggered by an EXECUTE 



Better Manpower Utilization Using Automatic Restructuring 327 

(proc-name) statement. Premature termination of a 
procedure can be accomplished by an EXIT state­
ment. Procedures share the same data space as the 
program in which they are contained. 

REFERENCES 

1. Ashcroft, E. A., Z. Manna, "The Translation of 'GOTO' Programs to 
'WHILE' programs," Proc. IFIP Congress 71, Ljubljana, Aug. 1971. 

2. Bohm, C., G. Jacopini, "Flow Diagrams, Turing Machines and Lan­
guages with Only Two Formation Rules," Comm. ACM, May 1966, 
pp. 366-371. 

3. Caine, Stephen H., Reference Guide to the XXX Language, CFG 70-
8-001, Feb. 1971. 

4. Dijkstra, E., "GO TO Statements Considered Harmful," Comm. 
ACM, March 1968, pp. 147-148. 

5. Donaldson, James R., "Structured Programming," Datamation, Dec. 
1973, pp. 52-54. 

6. Holmes, Charles E. and Leslie W. Miller, "Chief Programmer 
Experience," GUIDE 37, Nov. 1973. 

7. Miller, E. F., Extensions to FORTRAN and Structured Program­
ming-An Experiment General Research Corp., RM-1608, Feb. 1972. 

8. Mills, Harlan D., "On the Development of Large Reliable Pro­
grams," IEEE Symp. Computer Software Reliability, 1973, pp. 155-
159. 

9. Peterson, W. W., T. Kasami and N. Tokura, "On the Capabilities of 
WHILE, REPEAT and EXIT Statements," Comm. ACM, Aug. 
1973, pp. 503-512. 

10. Wulf, William A., "A case against the GO TO," SIGPLAN Notice, 
Nov. 1972, pp. 63-69. 





Toward improved review of software designs* 

by PETER FREEMAN 
University of California, Irvine 
Irvine, California 

INTRODUCTION 

A good deal of effort has been invested in recent years to 
improve both the form of programs and the processes used 
to create them.2

,9,lo As the payoffs from this work become 
apparent and more widespread,3 attention is turning to the 
form of designs and the processes used to create them. l

,5 

One aspect of software design, reviewability, has 
received scant attention. In this paper, we want to stress 
the importance of making designs reviewable and suggest 
an operational technique for aiding in their review. Un­
derlying our discussions is the principle (perhaps obvious) 
that designs which can be easily reviewed have a better 
chance of meeting the expectations of their purchasers and 
users. 

A methodology being developed by the author, design 
rationalization, provides a means for making software 
designs more reviewable before they are actually imple­
mented. The body of this paper develops this idea. 

Before we begin, three important points must be made. 
First, what we are proposing here is an approach to the 
improvement of design practice. It is not an algorithm. It 
cannot be applied to a situation without some thought and 
study. It certainly cannot be guaranteed to work in all 
situations. If you demand instant success, then look 
elsewhere! But, if you are concerned with improving 
design practice in your organization, especially with 
respect to reviewability, then we believe the idea 
presented here merits your study and experimentation. 

Second, we must stress that there are already well­
specified procedures for reviewing designs, but that in 
spite of their good intentions, they fail in some important 
respects. Much of the procurement of software by the 
government is now controlled by standards (promulgated 
by the Defense Department and other parts of the govern­
ment) that spell out elaborate review procedures that must 
be carried out during the design phase (for example, 
Reference 11). Additionally, some organizations are ex­
perimenting with their own review standards aimed at im­
proving the reviewability of software designs. (For 
example, good success has been informally reported by 
TRW at recent technical meetings with their usage of 

* This work was supported by National Science Foundation Grant GJ-
36414. 

329 

"unit development folders.") What these standards do not 
stress and what we consider essential to good review, is the 
recording of the reasoning behind design decisions, both 
local and global. It is this fact that our technique ad­
dresses most strongly and which we will stress in this 
paper. 

The third point is that not all design situations are 
equal. We differentiate between discovery design and 
routine design. In the former, a great deal of creativity is 
required since the right structure (and even functions) for 
the software must be discovered during the course of the 
design. In the latter, the system being designed is similar 
to others which are well understood; thus routine design is 
more a process of choosing the right values for a set of 
parameters. Design of a program to prepare the payroll for 
an organization is clearly routine design. Design of a com­
plex system to provide managers with real-time summary 
information automatically is discovery design, given our 
current understanding of such systems. In this paper we 
restrict ourselves to consideration of routine design situa­
tions. 

We will describe and illustrate the design rationalization 
methodology and then show how it can be used to improve 
the reviewability of software designs. Because new 
methods are usually adopted slowly (and rightfully so), we 
close with some suggestions for experimentation with this 
technique. 

DESIGN REVIEWS 

Routine software designs are typically reviewed several 
times in different ways. Before we propose a way of im­
proving design reviews, we want to consider some of their 
characteristics. 

First, look at the range of review formats. An important 
part of the design process is a constant, but informal, 
review and iteration of the design by the designers 
themselves. When the preparation of a design is a large 
undertaking and/ or is supported by a highly structured or­
ganization (such as the Federal government), formal 
design reviews are often specified (as in Reference 11) at 
which people other than the designers determine if the 
proposed design is acceptable (by whatever standards 
have been set up). Finally, the ultimate user of the 



330 National Computer Conference, 1975 

software will review the design informally through usage 
and sometimes formally in preparation for requesting 
changes or a new design. 

Our concern in this paper is the reviewability of a 
design-that is, the ease with which it can be compared to 
objectives. Designs cannot be executed directly as can pro­
grams, but it is still essential to compare them to desired 
criteria as early as possible in the development process. 

While review of a design must necessarily mean dif­
ferent things to different people (depending on the 
methodology used, what is expected of the reviews, the 
stage of the process at which it is performed, and so on), 
let us be more explicit. 

We see four possible components of any design review: 

• checking for functional completeness; 
• comparison of the design to operational goals and 

constraints; 
• comparison of the design to non-operational goals and 

constraints; 
• performance prediction. 

"Operational" goals clearly and unambiguously spell 
out what is desired, while "non-operational" goals do not. 
For example, 

Operational: "The system should provide a distinct er­
ror code for each error discovered." 

Non-operational: "The system should handle errors 
cleanly." 
It may be possible to characterize design reviews dif­
ferently, but these four aspects capture most of what we 
see happening in the review of a software design. 

The most prevalent question asked in a review is, "Will 
the system do what it is supposed to do?" The normal 
techniques of reading a design, perhaps aided by a struc­
tured walkthrough,S will generally suffice for answering 
this question. Because a design is typically stated in func­
tional terms, most of it speaks directly to the question of 
what the system will do. While existing techniques do 
permit review for the completeness of major functions, it 
is still difficult to ascertain from a design whether small or 
unwanted functions are present. 

Likewise, for explicitly stated structural goals or 
constraints, existing design formats permit at least a 
passable review. For example, if certain data structures or 
interfaces are part of the design requirements, then it is 
usually possible to determine if these requirements have 
been met by inspecting the design. 

It is when we come to the last two components of a 
design review-comparison to non-operational require­
ments and performance prediction-that the need for 
improvement becomes most apparent. Even though it may 
be possible to make some design goals more operational 
(that is, detailed and open to objective evaluation), review­
ers will still be asked to evaluate designs with respect to 
non-operational goals. For instance, consider the following 
design goals: 

"The system should be tolerant of user mistakes." 

"Only state-of-the-art techniques should be used." 
"Output formats should be neat and readable." 
"The system should be maintainable." 

Determining whether these goals have been met or not re­
quires the reviewer to interpret or infer information from 
the design and to provide a good deal of external informa­
tion. Typically, the information provided in a design docu­
ment is not the right type and/ or is in the wrong form to 
permit such goals to be evaluated directly (if at all). The 
reviewer usually must proceed unaided. 

Finally, designs provide almost no help at all for per­
formance prediction. Ad hoc comparisons of parts of the 
design to previous designs (for which performance is 
known) may provide some meaningful predictions of 
resource usage. But even if the parts can be identified 
from the design, determining which are critical to perform­
ance and what the interactions between parts will be is 
very difficult. The information needed is simply not 
present in most designs. 

Cutting across all aspects of design reviewing is the need 
for knowing the reasoning behind decisions. Rarely, if 
ever, in current practice does design documentation record 
the alternatives that were considered and the reasons for 
rejecting some of them. Yet, this information can greatly 
aid the reviewer in understanding the design and in 
evaluating it against stated objectives. 

This brief look at the nature of design reviews certainly 
does not exhaust what can be said about them, but it 
should set the stage for considering how to improve them. 

DESIGN RATIONALIZATION 

There is no argument that software designs should be 
more reviewable and that if they were the resulting imple­
mentations could be improved. This is especially true in 
the case of routine designs where the form of the result is 
pretty well known in advance. We will outline below how 
design rationalization can be used to improve the 

DESIGN PROBLEM 3: How should an error detected in a command str­
ing be handled? 

ALTERNATIVE 3-1: Abort the program when an error is found. 
EVALUATION 3-1: Easy to implement. 

Provides the user very little information. 
Wastes resources if the error occurs after much processing. 

ALTERNATIVE 3-2: Ask the user to re-enter the command string. 
EV ALU ATION 3-2: Must reset the state of the program. 

Makes the system "softer" on the user. 
Takes more processing time, even if no error encountered. 
May prevent waste of resources if trivial error. 

ALTERNATIVE 3-3: Try to correct the user's mistake. 
EVALUATION 3-3: Maximally useful to user. 

Substantial resources needed to try correction. 
Interaction with user more complex (must specify correction and 
allow override). 

DECISION 3: Alternative 3-2, because it provides a balance between our 
goal to make the system easy on the user and the constraint that it be 
fast. 

Figure I-Information contained in a typical rationalization 



reviewability of designs, especially in the area of recording 
the rationale for decisions. 

The basis for design rationalization is the belief that 
designs can be improved by making them more rational. 
That is, design decisions should be based on logical reason­
ing, be supported by facts, and be recorded. The 
cornerstone of this technique is the explicit recording of 
design information in the form of design problems, al­
ternative solutions, and the evaluations or arguments lead­
ing to the choice of a particular alternative. 

The basic operation is the identification and recording 
of the information essential to a rational design. While 
variation in format is appropriate, the information shown 
in Figure 1 is fundamentally what goes into a rationalized 
design. The example shown there involves a single, rather 
low-level decision. In an actual rationalization we would 
record information pertaining to the entire design, both 
locally and globally. 

If the information is collected and recorded as the 
design decisions are being made, we are doing a synthesis 
rationalization. If the information is primarily recorded 
after the design decisions are made, then we are doing an 
analysis rationalization. In either case, there are several 
important parameters: what features or decisions of the 
design shall be rationalized, how do we generate alterna­
tives, what criteria shall be used for evaluating them, and 
on what basis should a decision be made. 

Note that this methodology does not specify in what 
order decisions should be made. Neither does it spell out 
criteria for making decisions, except to specify that they 
should be made by considering alternatives and presenting 
evidence for and against each alternative. In this sense, 
design rationalization is more of a framework or forcing 
function within which particular decision strategies such 
as top-down or bottom-up can be used. 

We must stress that the important aspect of design ra­
tionalization is its insistence on the explicit capture and 
recording of design information including the reasoning 
used. Without this, we have nothing but motherhoods 
about the importance of making rational decisions-which 
everyone already believes. With the explicit recording of 
information underlying decisions, however, we have a 
technique for increasing the rationality of designs. 

With this brief introduction, let us look at how design 
rationalization can be used to improve the reviewability of 
designs. 

A SCENARIO 

The characteristics of a design review discussed above 
can be observed whenever a design is evaluated. For 
definiteness, though, let us focus here on the use of ra­
tionalization to improve formal reviews of routine designs. 

Consider the following scenario: 

1. Initial specifications are prepared. Assuming the 
specs are at a functional level, they are rationalized 
by providing explicit alternatives for critical specifi-

Toward Improved Review of Software Designs 331 

cations. Reasoning, based on facts is then spelled out 
for choosing a particular set of specifications. 

2. Specifications review. The rationalizations permit the 
potential designers to understand more readily some 
of the specifications. They also permit those with 
funding responsibility to consider alternative forms 
of the system and to evaluate whether the system be­
ing specified is what is needed. 

3. Initial Design. Once the specifications are finalized, 
an initial design is prepared, using the synthesis ra­
tionalization technique. Design decisions to be ra­
tionalized will include the overall organization of the 
system (control and data), choice of implementation 
language, choice of hardware, and other high-level de­
cisions made at this stage. In addition, more detailed 
considerations of internal structure of the system 
may be documented by explicit lists of alternatives 
and evaluations. 

4. Internal Review. When a design phase is completed, 
an internal review (such as the design walk throughs 
practiced by some organizations) and an analysis ra­
tionalization is performed by the designers and 
others in their immediate organization. This review 
may prompt changes to the design. The system's fea­
tures are more thoroughly explained, additional al­
ternatives are provided, and the evaluations of al­
ternatives are strengthened. Some evaluations can 
only be made on the basis of global considerations 
after the entire design has taken shape. For example, 
choice of a data structure may depend on its usage 
by several different modules. This internal review 
has the effect of catching some design errors in-house 
while at the same time improving the explicitness of 
the rationalization. 

5. External review. The initial design, augmented by 
the rationalization, is thoroughly reviewed by 
whatever outside agency has been designated to 
monitor progress. Rejected choices are explicitly 
spelled out in the rationalization along with the rea­
soning used to reject them. This permits reviewers to 
assess better the quality of the design and its fit to 
the specifications. Rejected alternatives may be 
recognized by the reviewers as important to some of 
the goals even though the designers felt they were 
not. 

6. Iteration and design refinement. After any design 
review, changes to the design may be needed. After 
these have been made the design process continues 
by refining the design (or extending it, depending on 
the approach being used). Using the techniques out­
lined in 3, 4, and 5, the design and review iterative 
cycle will continue until a complete design ready for 
implementation is obtained. 

7. Implementation. It is rare that the implementors of a 
system can proceed without making any changes or 
additions to a design. Typically, many decisions 
(hopefully, low-level) concerning the structure of the 
programs being built must still be made. The ra­
tionalizations. now play a role in a different form of 



332 National Computer Conference, 1975 

design review. As the implementors seek to carry out 
the design, they must review it from the standpoint 
of understanding the intent of the designers when 
that is not clear and of making sure that decisions be­
ing made during implementation are not changing 
critical features of the design. The rationalization 
contains much of the reasoning information needed 
for this type of review. 

8. Redesign. After a system is in use, more information 
is available on how well it fulfills its intended pur­
pose. If the need for an improved system becomes 
clear then a major modification of the existing 
system or specification of a new system may become 
necessary. In this case, review of the design of the 
existing system to determine how it can be improved 
will be an important part of the design of the new 
system. This redesign process can profit from the ra­
tionalization by recovering rejected alternatives from 
the initial design. 

This scenario illustrates the more important forms of 
formal design reviews often called for in the context of 
routine software design projects in large organizations. 
The use of design rationalization in these different review 
situations has been informally indicated, but the crux of 
the method-the explicit capture of design information 
otherwise lost and its presentation in a form convenient 
for review and comparison to goals-should be clear. 

As a limited example of the usage of design rationaliza­
tion, we performed a rather thorough analysis rationaliza­
tion on a small system which had been designed and im­
plemented as an improvement on an earlier system. The 
new system had several stated goals, including making it 
maintainable. The language used in the new system and 
some of the obvious features of the new design indicated 
that indeed this goal might have been achieved. The ra­
tionalization we produced, however, indicated that most of 
the effort in the redesign had been spent on local reorgani­
zations of the system, with little thought given to overall 
control and code organization of the system. The careful 
analysis of the system that the rationalization supported 
convinced us that maintainability had been improved only 
marginally because of the lack of attention to overall 
structure. We were thus able to assess more accurately 
both the system and the techniques used to design it. This 
is illustrative of one type of benefit we would expect to 
reap from using design rationalization. 

DISCUSSION 

Our interest is in seeing design rationalization used to 
improve the practice of software design. To facilitate this, 
we will discuss some of its advantages and disadvantages 
in this section. 

Advantages 

One advantage comes from helping a reviewer identify 
alternatives. If one is knowledgeable in the area 9f the 

design, then alternatives may spring to mind easily. 
However, many reviewers will not be experts and will have 
difficulty knowing what alternatives (if any) might have 
been chosen for the design. Even for the expert, generating 
alternatives is often not easy. 

The value of a rationalization in this respect is twofold. 
First, actual alternatives that have been rejected will be 
readily available for the reviewer to consider. Information 
that has been generated during the course of the design 
will not have been lost, but will be available for the re­
viewer. Perhaps even more importantly, the rationaliza­
tion can serve as a pump-primer to get the reviewer 
started to thinking about feasible alternatives for the ques­
tion at hand. 

We are all familiar with the effect of being presented 
with a problem situation and of seeing at first only one so­
l ution. Unless one is familiar with the content area and 
has thought about the problem previously, it takes some 
effort to seek out alternatives. However, if someone sug­
gests an alternative, even if it is not a good one, then we 
often can come up with additional suggestions much more 
easily. This is similar to one of the techniques suggested 
by De Bon04 for facilitating lateral thinking-that is, of 
finding new ways of looking at an old situation. 

Fundamentally, a reviewer is asked to certify that the 
decisions made by the designer are good decisions with 
respect to the goals and constraints of the design task. If 
the reviewer knows only the results of the designer's rea­
soning and not the steps by which the decisions were 
made, then the biases and knowledge limitations of the re­
vie\Ver may seriously affect his or her judgments as to the 
quality of the design decisions. If the design is supported 
by explicit information in the form of a rationalization, 
however, then the reviewer can assess more easily the 
factual evidence and logical reasoning used by the 
designer. 

This situation has an analogy in mathematics. If one is 
presented with a theorem, the truth or falsity of it may not 
be immediately evident and we mayor may not be pre­
pared to accept it as true. Given a step-by-step proof of the 
theorem, however, we can convince ourselves not only of 
its truth but also of why it is true (in terms of axioms and 
reasoning) . 

While the evaluations in a design rationalization are 
nowhere near as orderly as a mathematical proof, they do 
present the reasoning that has been used so that others can 
decide for themselves whether that reasoning is complete 
and valid. In addition, where the reasoning used to make a 
decision involves assumptions, exposing this reasoning will 
permit the reviewers to discover and assess the validity of 
the assumptions (since many of them may be related to 
the user environment which the reviewer knows more 
about anyway). 

The advantages discussed here have touched on what we 
believe to be the basic advantage of design rationalization 
for improving reviewability: It forces the explicit record­
ing of decision reasoning information which is otherwise 
lost. 



Disadvantages 

It should be clear that producing a rationalized design 
will, in general, take more effort than producing an ra­
tionalized design. At a minimum, the effort needed to 
record alternatives and evaluations, even if otherwise 
generated, is added effort. However, we have typically 
found that generating the explicit lists of alternatives and 
evaluations also requires a good deal of effort. Finding 
meaningful evaluations, that relate the decision under 
consideration to the goals and constraints of the problem, 
is often difficult in the absence of an underlying 
theoretical basis or quantitative evaluation technique. The 
advantages of design rationalization (both for 
reviewability and quality of a design) must be weighed 
against this added cost. 

At present we cannot offer explicit suggestions for choos­
ing the design problems/features to rationalize nor sure­
fire methods of generating alternatives and evaluations. It 
is clear that one cannot rationalize every single decision in 
a program of any significant size. Further, important deci­
sions in one design may have no major role ·in another. 
Choosing the important ones (those for which the choice of 
a solution has some definite effect on the resulting design 
or its use) is difficult. 

A more subtle problem that may not be immediately 
evident concerns the level at which decisions are made. 
The thrust of design rationalization as we have presented 
it above is to make decisions at a local level. Basically, the 
question asked is, "What is the best alternative, and why, 
for this particular decision?" This leads to local optimiza­
tion, which in many cases will not be optimal. That is, 
sometimes we must make decisions taking into account 
the alternatives for other decisions which have not yet 
been resolved. It is to help alleviate this concentration on 
the local context that we have suggested in the scenario 
above that some rationalization be done after the initial 
design is completed. 

Research 

We are continuing our investigations of design ra­
tionalization both to provide additional evidence of its ad­
vantages and to find ways of reducing its disadvantages. 
Included in this work are some informal investigations of 
design situations in which some designers use rationaliza­
tion and others do not, development of techniques to make 
easier the choice of problems and generation of alterna­
tives and evaluations, and the construction of tools to help 
in recording the information. These studies are described 
in References 6 and 7 and other working papers available 
from the author. 

SOME SUGGESTIONS FOR USING DESIGN 
RATIONALIZATION 

Any methodology not based on formal techniques is 
open to interpretation by those using it. Such interpreta-

Toward Improved Review of Software Designs 333 

tions are, in fact, required in most cases to make 
methodology useful in the context of a particular organiza­
tion or a particular type of task. 

Thus, we understand that design rationalization must be 
adapted to your particular organizational task context. 
While it is difficult to predict the difficulties you will en­
counter, our limited experience with helping others use it 
does suggest some guidelines. 

Remembering that we are concerned here with formal 
reviews of routine designs, we suggest the following: 

1. Choose a small, but realistic design problem on 
which to tryout the technique. Make sure the design 
is of a system of which the designer has some 
knowledge. 

2. Use a design project that is "real" (not done just for 
experimentation) . 

3. Make sure sufficient time and resources are allocated 
to the project so that the designers are not under 
pressure. 

4. Use at least two designers (but probably not more 
than three) so that they can work as a group when 
generating alternatives and evaluations. 

5. Use your normal design techniques augmented by 
the use of rationalizations as suggested in the 
scenario above. 

6. Carefully choose some criteria by which you can 
judge whether the rationalization assists in design 
review. Some suggestions are: number of design flaws 
discovered relative to similar projects, level of detail 
of design flaws discovered, perceived ease of review 
by reviewers, time taken to review design documents. 

7. Maintain careful observations of the use of ra­
tionalization to permit later analysis of the trial. 

8. Assess the trial when completed. If rationalization 
seems to help in your situation, even a little, try to 
find ways to improve the technique for your situa­
tion. 

9. Try it again. 

These suggestions can be boiled down to a simple state­
ment: Approach the use of design rationalization from the 
standpoint of an experimental fitting of an idea to your 
situation and expect to make changes. 

CONCLUSION 

Development of techniques for the review of software 
designs has been largely neglected. We have described a 
methodology, design rationalization, which has charac­
teristics that will help improve the reviewability of 
designs. We have given a scenario for its usage and dis­
cussed some of its advantages and disadvantages. Sug­
gested guidelines for trying it out were given. 

We have stressed that the strength of design rationaliza­
tion lies in its forcing explicit recording of design informa­
tion, especially that which explains the reasons behind fea-



334 National Computer Conference, 1975 

tures of the design. The existence of this information in a 
form that permits independent review of design choices 
and the reasoning leading up to them should assist in most 
situations. 

We have not spelled out an explicit technique for one to 
follow. Rather, we have described an idea, assessed its use 
for improving the current practice of design review, and 
suggested ways in which it can be adapted to varied orga­
nizational settings. As with much of software engineering 
today, the application of this idea in large-scale situations 
must ultimately be carried out by those with software 
creation problems to solve. 

While our research continues into the ramifications of 
this idea and the techniques for using it, others can profit 
from trying it in their contexts. We recognize the difficulty 
of changing one's patterns of doing something and the dif­
ficulties in forcing oneself into the discipline of design ra­
tionalization. Yet, only through trial and error usage of 
this and other proposed methodologies can we gradually 
develop the tools necessary for the routine design of large 
and important classes of software. 

REFERENCES 

1. Brown, R. R., "1974 Lake Arrowhead Workshop on Structured 
Programming," Computer, October, 1974, pp. 61-63. 

2. Dahl, O. J., E. W. Dijkstra, and C. A. R. Hoare, Structured Program­
ming, Academic Press, 1973. 

3. Datamation, special issue on structured programming, December 
1973. 

4. De Bono, Edward, New Think, Basic Books, 1972. 
5. Freeman, Peter, "Automating Software Design," Computer, April 

1974. 
6. Freeman, Peter, Reliable Software Through Rational Design, ICS 

Technical Report #55, University of California, Irvine, October 1974. 
7. Freeman, Peter, Design Rationalization, ICS Technical Report #57, 

University of California, Irvine, November 1974. 
8. IBM, Structured Walkthroughs, training brochure. 
9. Mills, H. D., "Top Down Programming in Large Systems," in 

Debugging Techniques in Large Systems, R. Rustin (ed.), Prentice­
Hall, 1971. 

10. Parnas, D. L., "On the Criteria to the Used in Decomposing Systems 
into Modules," Comm. ACM, December 1972. 

11. U.S. Air Force MIL-STD 1521, Technical Reviews and Audits for 
Systems Engineering and Computer Programming, available from 
National Technical Information Service, Springfield, VA., Sep­
tember 1972. 



Understanding software through empirical 
reliability analysis* 

by T. A. THAYER 
TR W Systems Group 
Redondo Beach, California 

INTRODUCTION 

The need for improving the reliability of delivered software 
is becoming increasingly obvious to both the purchasers and 
producers of today's software systems. As noted by Boehm,l 
the records show many examples of software systems which, 
when delivered for operational use, either performed in a 
degraded fashion or failed to perform at all. The results are 
higher software costs and delays in operational usage. 

Purchasers of software are demanding more reliability 
but are not presently sure how to specify what they want in 
the form of written requirements. Producers of software, in 
an effort to provide this increased reliability, are imposing 
new controls on the software development process. These 
new controls are both managerial (chief programmer teams, 
independent test and audit groups, etc.) and technological 
in nature (structured programming, coding standards, test 
tools, etc.). Although these controls are intuitively beneficial, 
little hard data exist to support claims of benefit. There is 
even less information on the benefits of these controls in 
specific software applications; e.g., batch versus real time 
software, OS versus applications software, programs written 
in assembly language versus higher order language. 

Assuming that information is collected and available, 
what can we expect to gain from its analysis? The long range 
benefits are the most obvious. We will learn, for example, 
how large a software module can be without affecting under­
standability and how small it can be before partitioning 
problems are encountered. Specific tools and techniques to 
improve the development process will also be identified. 
These are all things that can be applied in the future, to the 
next project. But, what about the near term payoff for the 
project supplying the data? A project manager, when asked 
to contribute to data collection and analysis activities, will 
invariably ask if there will be a benefit to his project. The 
benefit to the on-going project comes from increased aware­
ness of problems and better control over the development 
process, both contributory to production of more reliable 
software. Adequate data on software reliability can thus aid 
both current and future development projects-if methods 
for analyzing and understanding these data are developed. 

* Portions of the work presented in this paper are sponsored by Rome 
Air Development Center under Air Force Contract F30602-74-C-0036. 

335 

In a study* being performed by TRW for the Rome Air 
Development Center, data from four large software systems 
are being analyzed to determine the types of errors found in 
software during testing. The objective is principally to recom­
mend new development or test techniques for the detection 
and prevention of software errors, but we are also attempting 
to model software reliability. In the course of supplying 
real** data descriptive of software reliability and for model 
evaluation, we have had to determine (1) what data are 
generally available, (2) methods for collecting and storing 
these data, (3) methods for describing software errors, (4) 
methods for characterizing the software, and the develop­
ment and test processes in quantitative terms, and finally (5) 
methods of analysis. Although the projects studied have 
varied greatly in size, language, operating mode, and struc­
ture, the data available during the development process 
were similar for each project: error data, recorded in various 
forms of software problem reports (SPR) and ancillary pro­
ject data needed to understand and support analysis of the 
error data. Although the data were not generated specifically 
for the study, we found that we could do much to quantify 
software reliability and the characteristics of the software 
itself, as well as improving our understanding of both the 
software and the development process.' Some results of the 
Software Reliability Study will be presented to illustrate 
the benefits of software reliability data collection and 
analysis. Also presented are some recommendations for 
identifying data that need collecting. 

SOFTWARE RELIABILITY 

As the reader will note, the term "software reliability" 
has been used several times in the foregoing paragraphs 
without definition. Although the term is defined in a number 
of references,2.;{ generally in conjunction with modeling work, 

, the following definition is taken and offered as a background 
for the empirical approach to characterizing reliable software: 

Software possesses reliability to the extent that it can be 
expected to perform its intended functions satisfactorily. 4 

* The Software Reliability Study. 
** A key study feature. 



336 National Computer Conference, 1975 

PROJECT 2 
CATEGORY PROJECT PROJECT 

10 CATEGORIES MOD1A MOD1B MOD1BR MOD2 TOTAL 3 4 

AAOOO COMPUTATIONAL ERRORS 0 0 0 0 0 0 0 

AA010 Total number of entries computed incorrectly 0 0 0 0 0 19 0 
AA020 Physical or logical entry number computed incorrectly 8 6 2 21 37 27 0 
AA030 Index computation error 2 7 1 17 27 31 4 

AA040 Wrong equation or convention used 3 6 4 11 24 57 0 
AA041 Mathematical modeling problem 0' 0 0 1 1 7 0 

AA050 Results of arithmetic calculation inaccurate/not as expected 0 0 2 5 7 74 0 
AA060 Mixed mode arithmetic error 0 0 0 0 0 0 2 
AA070 Time calculation error 2 1 5 13 21 36 0 

AA071 Time conversion error 0 0 0 0 0 7 0 
AA072 Time truncation/rounding error 1 0 1 2 4 2 0 

AA080 Sign convention error 0 2 0 5 7 16 0 
AA090 Units conversion error 1 0 2 15 18 28 1 
AA100 Vector calculation error 1 0 0 0 1 13 0 
AAll0 Calculation fails to converge 0 0 3 2 5 4 0 
AA120 Quantization/truncation error 1 4 1 4 10 32 0 

TOTALS 19 26 21 96 162 353 7 

BBOOO LOGIC ERRORS 0 0 0 0 0 0 0 
B8010 Limit determination error 2 5 4 5 16 37 1 
BB020 Wrong logic branch taken 1 4 1 5 11 49 0 
B8030 Loop exited on wrong cycle ,0 0 0 0 0 0 2 
BB040 Incomplete processing 4 2 4 10 20 58 0 
BB050 Endless loop during routine operation 1 4 1 0 6 35 0 
8B060 Missing logic or condition test 6 9 8 26 49 233 72 

B8061 Index not checked 2 0 0 1 3 59 0 
B8062 Flag or specific data value not tested 5 4 8 34 51 139 0 

B8070 Incorrect logic 0 0 0 0 0 0 57 
BB080 Sequence of activities wrong 4 7 2 18 31 57 3 
B8090 Filtering error 1 3 0 4 8 7 1 
BB100 Status check/propogation error 6 3 1 2 12 103 0 
B8110 Iteration step size incorrectly determined 0 0 0 0 0 0 1 
8B12O Logical code produced wrong results 3 4 1 19 27 39 0 
BBl30 Logic on wrong routine 0 0 0 2 2 6 0 
BB140 Physical characteristics of problem to be solved, overlooked, or misunderstood 1 1 0 0 2 64 2 
BBl50 Logic needlessly complex 0 0 0 0 0 5 0 
8Bl60 Inefficient logic 0 2 0 2 4 26 1 
B8170 Excmive logic 1 3 1 9 14 18 0 
88180 Storage reference error (software problem I 0 0 0 0 0 2 0 

TOTALS 37 51 31 137 256 937 14U 

Figure I-Sample error category list 

Assuming that documented errors represent an inability to 
perform intended functions satisfactorily, error-free soft­
ware would be reliable software. This assumption is one that 
is made here. 

In the definition above, the word "satisfactorily" also begs 
definition. A universally applicable quantitative definition 
does not presently exist; however, in the world of software 
problem reports mere creation of the report registers some 
dissatisfaction with performance, whether the report docu­
ments a real problem, a need for software enhancement, or 
what turns out to be no problem at all. 

Using the definition given above, the number of errors 
documented on problem reports can be used as an indicator 
of software reliability. However, raw counts of error8 don't 
tell the whole story and can be misleading. Therefore, fur­
ther analysis is necessary to determine the types of errors, 
when and where they were introduced, how they were de­
tected, and their impact on the operation of the software 
system. 

It is possible to categorize software problem reports symp­
tomatically, at the user level, and according to cause, at the 
code level. Symptomatic categories describe the failure, and 
causative categories describe the error. These are often quite 
different. Attempts to establish software error category lists 
for multi-project applications have met with some success. 

The principal findings being that errors are repeated and tend 
to fall into common categories, that lists have to provide a 
fair amount of detail to yield useful information, and that 
they also have to be short and comprehensive so that the 
fixer* of the problem can be encouraged to provide the analy­
sis. A portion of an error category list is given in Figure 1 
along with empirical data from three software projects. This 
list presents data generated during development of a new 
software system (Project 3), during development of four up­
dates to an operational system (Project 2), and during opera­
tional usage (Project 4). 

SOFTWARE CHARACTERIZATION 

In order to better understand why elements of the soft­
ware have high or low error frequencies, it is necessary to 
collect data on the software itself. Two types of software 
characteristics were defined in the Software Reliability 
Study, structural and subjective characteristics. Structural 
characteristics are those that can be obtained from the source 
code, where the errors are ultimately found. These character-

* He alone is close enough to the actual error to assign a causative error 
category and he must make the assignment while the solution is fresh in 
his mind. 



Understanding Software Through Empirical Reliability Analysis 337 

TABLE I-Routine Structural Characteristics 

• Routine size (source statements and machine instructions) 
• Number of branches 
• Branch statements and nesting levels 
• Entry/exit points 
• Routine interfaces 
• Data base interfaces 
• Calling sequence arguments 
• Code type 

-computational 
-data handling 
-logical 
-I/O 

• Comments 

istics (a typical list is presented in Table I) can (or should) 
be collected automatically at the routine level with what is 
commonly called a static language analyzer. 

Subjective characteristics are those that are obtained from 
the people who produced the software; the programmers, the 
design engineers, the testers, and their managers. Although 
methods for quantifying these subjective characteristics are 
not well established, this information can add insight to the 
error history data that is not evidenced by the more accu­
rately measured structural characteristics. However simple a 
routine might be structurally, if it was felt that the routine 
was (or would be) a problem for some other reason, the error 
history can be affected by this feeling. A typical example 
concerns the software that has been produced previously for 
another project. The initial feeling is that it should be an 
easy task to convert an existing routine for use in a similar 
(but not identical) software system. This situation invariably 
receives less attention than the newer software and just as 
invariably represents more work than was originally con­
ceived. On the other hand, portions of the software thought 
to represent potential problems are given much attention, 
and this can be seen in the error history data. 

Subjective characteristics dealt with in the Software Re­
liability Study were difficulty and software type. Difficulty 
was assigned to each of five development disciplines: design, 
code, debug/test, implementation, and documentation. There 
were five routine types* considered, too: executive or con­
trol, setup, computational, data handling, and input or out­
put. These data were very helpful in understanding error 
histories. 

Attributes and metrics 

Attributes identify specific software characteristics. These 
might involve such things as difficulty, complexity, and 
readability. Metrics quantify attributes. They can range 
from simple counts of source statements, logic branches, and 
routine interfaces to calculated values of difficulty, com-

* This was considered a subjective characteristic because routines 
labeled as one type by a programmer often were characterized structur­
ally by a different type of code (e.g., I/O routines tended to be 
predominantly made up of logical code). 

TABLE II-Sample Metrics* 

Logical Complexity 

LS 
MLOGl=TS 

where: LS=Number of logical (branch creating) statements 
TS = Total statements in routine 

Logical Statement Complexity 

TB 
M LOG2 = LS 

where: TB=Total branches in the rountine 
LS = Number of logical statements 

Loop Nesting Complexity** 

M LOOP = LmiWi 

where: i=nesting level (1st is non-nested) 
m = number of loops 

* Note that these metrics are, by design, relatively simple and 
incorporate parameters which are thought to be available from 
almost any software system. 
** This particular form of the equation resulted from a combina­
tion of intuition about loop complexity and evaluation with real 
data where nesting reached the tenth level in some instances. 

plexity, test sufficiency, and readability, these latter calcu­
lated metrics requmng mathematical expressions of 
definition. Metrics are being used in understanding and 
explaining error histories, and it is hoped that they will 
eventually provide means for comparing varying and unre­
lated software projects. Table II presents several examples 
of metrics considered in the Software Reliability Study. 

Of course, the definition of such things as complexity is 
judgmental on the part of the analyst and not altogether 
independent of what data are available. Some metrics have 
shown nothing when an attempt is made to correlate them 
with error frequencies; others can't be supported with real 
data for lack of collection tools. We are forced to admit that 
evaluation of metrics is part of the study process, and it will 
take several iterations on a number of differing software 
systems to identify the more universally applicable metrics. 
One point that should be made, however, is that every at­
tempt to define metrics, even if unsuccessful, adds to the 
analyst's understanding of the software under study. Every 
attempt to understand what makes software complex, more 
readable, easier to test, or easier to maintain aids in the 
understanding of software errors and provides. a potential 
for uncovering improved development or test techniques. 

RESULTS FROM SOFTWARE RELIABILITY 
ANALYSIS 

Four examples are given below to indicate ways in which 
understanding of software and the development process can 
be improved through analysis of empirical reliability data. 



338 National Computer Conference, 1975 

Detecting on-going problems 

During the formal test period for one of the projects ex­
amined in the Software Reliability Study, it was discovered 
that a portion of the software system was judged to be very 
error prone. Using a simple count of errors discovered as a 
guage this software looked no worse than other software in 
the system. However, by also considering the criticality and 
type of the relatively few errors being encountered, the sys­
tem engineering group would have been able to identify a 
problem traceable to rapidly changing requirements and the 
need for substantial redesign and test prior to delivery. The 
symptoms of the problem were present throughout the de­
velopment cycle (even as early as preliminary design), but 
there was no effort to create an historical dossier of all avail­
able data and tie it to the offending software. As a result, 
the severity of the problem was not realized and the soft­
ware continued to be a problem even after delivery. 

Benefits of new software development techniques 

One of the projects analyzed in the Software Reliability 
Study utilized a number of advanced development and test 
techniques and tools. Among these were structured pro­
gramming, a 100 executable statement limit on routine size, 
programming standards enforced by audit tools, and rig­
orous development testing requirements, including a re­
quirement to execute all code at the routine level. Test tools 
include a dynamic test monitor to track the amount of code 
exercised. Preliminary results* of a comparison of this and 
other projects show a tendency for errors to be found sooner 
and for the total error count to be lower. Figure 2 depicts an 
actual cumulative error history (solid curve) of a project 
using only standard development techniques and the sus­
pected results of using new development and test techniques 
(dashed curve). 

DEVELOPMENT 
TESTING 

PREOPERATIONS 
EXERCISE 

OPERA­
TIONS 

7~r-~T~~~AL~E~~I~MA~TE~D~ER~RO~RS~t-____ r-~ ________ -=~~~ 

1000 

.5 .6 
PROJECT DURATION 

NEW TECHNIQUES WILL: 

• GREATLY REDUCE ERROR RATES 
DURING USAGE 

• LOWER COSTS FOR DETECTING 
AND FIXING ERRORS 

• SIGNIFICANTLY IMPRove 
SCHEDULE PERFORMANCE 

Figure 2-Benefits of new development techniques 

* Results are considered preliminary because, at the time of writing, 
the project was still under development and the total error history was 
not complete. We eagerly await completion of this project when our 
hypothesis testing can be completed. 

Other preliminary results of error analysis show a lower 
percentage of the total data processing errors* using newer 
techniques, presumably because of the smaller, better struc­
tured, and easier to test routines. On the other hand, the 
percentage of interface errors is greater for the system with 
many smaller routines. 

Understanding error rates 

Hopefully, a few (ideally one) independent variables cor­
relate well with the number of errors in the software and 
enable us to use the independent variables values to under­
stand ultimate reliability. Our approach has been to use a 
large sample of real instances to compute the correlation 
between metrics characterizing the software and the num­
ber of errors in the software. The metric that correlated best 
with the occurrence of actual software errors was the simple 
measure of size in source statements. (Routine complexity 
expressed as a count of logic branches showed similar trends.) 

Although correlation for all routines in the software system 
taken together was poor (correlation coefficient = 0.304), 
selected groupings of routines within the system, specifically 
routines which function together to form parts of each soft­
ware subsystem, correlated very well. The highest correlation 
coeffiCient encountered was 0.910 for a straight line curve fit 
of 25 routines ranging in size from 10 to 2300 source state­
ments, but the bulk of the correlation coefficients were on the 
order of 0.7. Although slopes varied from group to group and 
the best fit was not always linear, a typical data point was 
20 errors/1000 source statements. 

Results from other metric analyses, aside from providing 
insight on what makes software complex and how to measure 
this complexity, tend to show that such things as schedule 
pressures, the availability of needed resources, and require­
ments have as much or more to do with the eventual quality 
of the software as do the structural characteristics of the 
system. For instance, routines which exhibited similar error 
histories but were quite different in structure and software 
type were subject to the same external influences (e.g., they 
were produced by the same developers, suffered from poorly 
defined or rapidly changing requirements, lacked realistic 
data base values for testing, etc.). Unfortunately, these in­
fluences are not easily quantifiable through present tech­
niques, but their effects are seen in the data. 

Error sources 

One of the most enlightening results of the Software Re­
liability Study has centered on where errors were introduced. 
Although all errors detected past the design phase are found 
in the code during some form of checkout or testing, these 
errors need not originate from the coding phase. That is, 
they may be due to design or even requirements definition 
errors. For one of the systems analyzed. in the Software 
Reliabili~y Study (a command and control system) accurate 

* For example, iterative procedure, bit manipulation, and indexing 
errors. 



Understanding Software Through Empirical-Reliability Analysis 339 

TABLE III-Relative Frequency of Design and Coding Errors 

No. of Source 
Statements 
in Modifica- Total Errors % Design % Coding 

Modification tion Encountered Errors Errors 

--------------------------

A 1253 152 73.6 26.4 
B 9880 156 73.7 26.3 
C 779 73 35.6 64.4 
D 9631 419 51.6 48.4 
E 4575 199 58.8 41.2 
F - * 113 61.9 38.1 
G - * 120 65.8 34.2 

* Size data not accurate. 

data was available which identified a failure as due to either 
a design or coding error. No data were available to identify 
those errors stemming from poor requirements, but these 
errors were considered to be negligible. Data accumulated 
over a three year period in seven modifications to the system 
is summarized in Table III. 

This preponderance of design errors is supported by data 
from the three other systems also, although percentage break­
downs are not so easily obtainable due to inaccuracies i!l the 
data collection process. Among the more common errors were 
those where the design did not take into account certain 
aspects of the physical problem to be solved. Software fail­
ures, in this case, manifested themselves in a number of 
ways; the error was in the design in the form of missing logic 
or condition tests. In one system analyzed, where approxi­
mately 40 percent of the budget was spent on design, 9.7 
percent of a total of 4439 reported errors were of the type 
described above (i.e., the approved design was missing some 
necessary logic). Two other systems exhibited 6.8 percent 
(out of a total of 1498) and 13.4 percent (out of a total of 
539) for the same type of error. Typically it is this type of 
error, a fundamental design error, that is most difficult (and 
costly) to fix. The cost involved in diagnosing and correcting 
design and coding errors has been quantified by Shooman 
and Bolsky.5 In their paper the effort in manhours to diagnose 
and correct design and coding errors were compared.. Results 
showed that design errors required an average of 3.1 man­
hours to diagnose and 4.0 manhours to correct. Coding errors 
required an average of 2.2 manhours to diagnose and 0.8 
manhours to correct. 

With design errors being more costly and more frequent 
than coding errors, the conclusion is that improvements in 
design technique and design aids or tools are needed. The 
coder has the compiler to help him, and the tester, in recent 
years, has had automated test tools. The designer presently 
has only his wits to help him. 

NEEDED DATA 

Key to the empirical approach of determining software re­
liabilityjs the existance of good (well organized and defined) 

data. Presently data collection schemes don't provide enough 
of the right kind of data, nor are the data collected at the 
right time. 

Figure 3 illustrates a typical software development project 
by phase and points out when various types of data can be­
come available. Ovals indicate error or problem data that 
can be produced and collected. Ancillary data, shown below 
the phases of the development cycle, become available 
roughly at the times indicated, are absolutely necessary to 
the understanding of the error histories, and can be extremely 
useful in assessing on-going project performance. Triangles 
along the base of Figure 3 denote points at which snapshots 
of the software structural characteristics can be taken to gain 
a picture of the volume of change. 

Individual data items will vary from project to project, 
and most projects have a potential for creating a tremendous 
amount of data. From our work in collecting and analyzing 
these data, three general categories appear to be most im­
portant in answering both reliability and status related 
questions. These, along with needed data within each cate­
gory, are given below. 

Error data 

Information concerning errors is generated throughout the 
development cycle of the project. No matter which phase in 
the cycle provides this information, data should be recorded 
on collection forms tailored to the data and should be col­
lected as near the identification date as possible. Further­
more, categorization of errors by type should be performed 
by the problem fixer, if at. all possible. Questions that should 
be addressed in the collection process are the following: 

I • 

• When was the error introduced ? Was the error made 
during requirements definition, software design, coding, 
testing or operational maintenance? 

• How critical to successful operation of the software sys­
tem is the error? This amounts to a priority on the need 

I • TEST DATA---.... ·~I 
, • PRODUCTIVITY OATA • I 
I • SOFTWARE CHARACTERISTICS ---"-II 

PROJECT CHARACTER 1ST ICS •• I 
PERSONNEL DATA 

A A A A 
CONFIGURATION SNAPSHOTS 

\. 

Figure 3-Software development and reliability data 



340 National Computer Conference, 1975 

for corrective action and is useful as a normalizing factor 
in comparing data from different projects. 

• How and when was the error found? This is useful in 
evaluating the software development and test processes. 

• What test "stress" was applied to produce the failure? 
This is important to answering the question "How much 
testing was done?" 

• Was the error independent of other errors or the result 
of a previous fix? This information is important in assess­
ing the quality of software maintenance activities. 

• What was the resource expenditure in manhours and 
machine time to diagnose and correct an error? 

Characteristics of te~ting 

It is testing that produces the bulk of the software problem 
reports which ser~e as the basis for analysis. The number of 
problems documented will depend to a great degree on the 
formality of testing and when this formality is initiated. 
Regardless of when this control is imposed, it is important 
to be able to relate software failure data to specific dynamic 
executions of specific test procedures. If these test procedures 
are then evaluated according to the amount of stress they 
place on the software, an attempt can be made to determine 
when enough testing has been done and when the quality of 
the software is resulting from a particular test program. 
Measures of stress vary from CPU time per test execution to 
the number of program segments exercised and the repre­
sentativeness of the input data base, and the worth of any 
of these measures depends upon who you talk to. The im­
portant point here is to know how much testing, according 
to some measure, produced a particular error history. Test 
stress has been and remains to be difficult data to collect. 
Both the tools and the methodology for collection are in their 
infancy, but recent work in software reliability modeling 
offe~s promise in this area. 6-8 

Characteristics of the development cycle 

These characteristics will vary from project to project but 
can generally be grouped according to schedules, resources, 
and personnel. Although important to the understanding of 
error trends and reliability related data, it is the character-

TABLE IV-Development Cycle Characteristics 

• Resource Availability 
-Machine time 
-Software tools 
-Externally acquired resources 

• Schedule Data 
-Behind, on, or ahead throughout the development cycle 
-Planning 

• Personnel Data 
-Number of programmers 
-Load factor on each programmer 
-Supervisor's rating of programmer 

istics of the development cycle itself that often point to 
problems that are documented on error reports later in the 
project. Project resource availability can be a powerful tool 
in identifying problems. For example, unavailability of com­
puter time during the compilation and debug phase may, to 
meet schedules, force reduction of the amount of detailed 
development testing a critical routine undergoes prior to 
formal testing or delivery to a customer. Early identification 
of this situation could allow additional preliminary testing 
steps to be taken prior to beginning of the more formal test­
ing involving that routine. Parameters useful in characteriz­
ing the development cycle are given in Table IV below. 

CONCLUSION 

Data collection and analysis represent an added workload 
for the project providing the data; however, the yield of use­
ful information for both technical and management control 
will be increased. Done properly, manpower would be pro­
vided for collection of data throughout the life of the project; 
much of the useful data is perishable and must be collected 
as it is created. Further project involvement is required in 
the analysis of the data because individual performers alone 
are able to provide some of the data with sufficient accuracy 
(e.g., causative error data). Access to project experience is 
essential to accurate interpretation, especially if the analysis 
is done independently by other than project performers. 

Collecting and analyzing data makes it possible to answer 
questions concerning software reliability with something 
other than philosophy and speculation. Increased awareness 
of the types of errors encountered, the characteristics of the 
development process that produced them, and the conditions 
under which they occurred is the first step in quantitatively 
specifying measures of quality to be used by purchasers and 
producers of software alike. 

BIBLIOGRAPHY 

1. Boehm, B. W., "Software and Its Impact: A Quantitative Assess­
ment," Datamation, Volume 19, No.5, May 1973. 

2. Shick, G. J. and R. W. Wolverton, Assessment of Software Reli­
ability, TRW Software Series Report TRW-SS-72-04, September 
1972. 

3. Wagoner, W. L., The Final Report on a Software Reliability Measure­
ment Study, Aerospace Report No. TOR-0074 (4112)-1, 15 August 
1973. 

4. Merritt, M. J., et. aI., Characteristics of Software Quality, TRW 
Software Series Report TRW-SS-73-09, 28 December 1973. 

5. Shooman, M. L., and M. I. Bolsky, "Software Errors: Types, 
Distribution, Test, and Correction Times," Proceedings of 1975 
International Conference on Software Reliability, April 1975. 

6. Shooman, M. L., "Operational Testing and Software Reliability 
Estimation During Program Development," Proceedings of IEEE 
Symposium on Computer Software Reliability, 1973. 

7. Jelinski, Z. and P. B. Moranda, "Applications of a Probability­
Based Model to a Code Reading Experiment," Proceedings of IEEE 
Symposium on Computer Software Reliability, 1973. 

8. Nelson, E. C., A Statistical Basis for Software Reliability Assessment, 
TRW Software Series Report TRW-SS-73-03, March 1973. 

9. Clapp, J. A. and J. E. Sullivan, "Automated Monitoring of 



Understanding Software Through Empirical Reliability Analysis 341 

Software Quality," 1974, AFIPS Conference Proceedings, pp. 
337-342. 

10. Brown, J. R., et. aI., The Quantitative Measure of Software Safety and 
Reliability, TRW Software Series Report TRW-SS-73-06, 24 
August 1973. 

11. Amory, W. and J. A. Clapp, A Software Error Classification Meth­
odology, MITRE Technical Report No. MTR-2648, Volume VII, 
30 June 1973. 

12. Youngs, E. A., Error-Proneness in Programming, Doctoral Thesis in 
Computer Science, University of North Carolina 1970. 





Dynamic dispatching in job class scheduled 
systems* 

by JON C. STRAUSS 
University of Pennsylvania 
Philadelphia, Pennsylvania 

INTRODUCTION 

Many different approaches have been attempted to the 
problem of controlling the processing of a mUltiprogramming 
computer system so as to improve performance. In Reference 
1, Bowdon, et al.. simulate an IBM 360/75 under OS with 
HASP and adjust job initiation priority based on estimates 
of processing time to effect a shortest-processing-time disci­
pline. Their simulation demonstrates a dramatic increase in 
thruput and decrease in turnaround as a result of this job 
scheduling modification. 

In Reference 2, Wulf avoids potential problems of schedul­
ing based on poor a priori knowledge of job characteristics 
by dynamically controlling individual job execution based on 
measured use of system resources by the jobs. In attempting 
to balance system resource utilization however, Wulf's 
controller removes jobs from competition for system re­
sources in favor of other jobs that better contribute to 
current system balance. In so doing the controller may be 
obtaining good current performance, but because this alter­
ation is done independent of the relative number of jobs of 
different types waiting to be processed poor overall per­
formance could result. N orthouse and Fu3 describe a sched­
uling system that automatically classifies jobs based on re­
source requirements and then runs combinations of jobs 
from the classes to maximize a performance index subject 
to meeting preset constraints on numbers of jobs run .. Their 
approach, like that of Bowdon, et al./ appears to be sensitive 
to poor information on job characteristics, but their problem 
definition admits to optimizing performance in terms of the 
presented workload. 

One other work on scheduling is relevant to the thrust of 
this paper. In Reference 4, BrinchHansen develops an in­
teresting compromise between the attractive short job 
response of shortest-processing-time scheduling and the 
good long job response of first-come-first-served (FCFS) 
scheduling. This alternative, response ratio scheduling, 
schedules the job for next initiation that has the highest 
ratio of response time to service time. This scheduling clearly 
favors short jobs, but it also limits the waiting time of 
longer jobs. 

The referenced worksl - 4 are not oriented toward the job 

* This work was performed at Washington University, St. Louis Mo. 
under support of NSF Grant GJ-33764X. 

343 

class scheduling characteristic of IBM OS systems. Classes 
of jobs are automatically identified in Reference 3 and 
Reference 1 deals with the IBM environment, but neither of 
these papers makes use of the additional information con­
cerning job characteristics that presumably is present in 
some, if not all, job class scheduled systems. For those 
systems where user jobs are placed in classes on the basis of 
type of user (e.g., academic, administrative, etc.) or char­
acteristic resource demands (e.g., multi tape jobs), or both, 
knowledge of the characteristics of the currently processing 
job in a class provides a good first approximation of the 
characteristics of other jobs in that class. 

Typically in a job class system, jobs are scheduled for 
initiation from within classes and in many systems jobs are 
multiprogrammed one from each class. This paper restricts 
its scope to such systems and investigates algorithms for 
dynamically altering the relative preemptive CPU priority 
of the different classes so as to improve overall system 
performance. No attention is paid to the response time of 
individual jobs within classes (it would be possible for ex­
ample to impose shortest-processing-time job initiation 
scheduling within a class and still have the general properties 
presented here). 

A recent paper by the author and A. Chiang5 defines and 
solves a maximum thruPVt problem for an idealized job class 
system similar to OS/360. A dynamic control algorithm is 
developed that maximizes average system thruput while 
providing equal average turnaround to the different job classes. 
The control algorithm is shown to be a variation of the HASP 
Execution Task Monitor (HETM) dynamic dispatching 
algorithm6 the performance effects of which are investigated 
in Reference 7. 

The most important contribution of Reference 5 is not the 
specific solution to the defined problem. Rather, the paper 
stresses two main points: (1) the performance of a system 
must be defined in terms of the work to be done, and (2) 
the desired system operation should be specified explicitly 
in terms of performance and not in terms of a means of ob­
taining performance. 

The next section reviews the properties of the HASP 
dynamic dispatching algorithm, presents the equal job class 
turnaround algorithm, and develops the equal job class re­
sponse ratio algorithm. A simple two job class problem is then 
solved analytically and the performance of the system for 
'four dispatching algorithms (class priority, HETM, equal 



344 National Computer Conference, 1975 

JOB CLASSES 

There are Nit jobs 
in class i at time to 

Jobs are classed based 
on resource and other 
requirements and may 
only be mul tiprogramrned 
between classes. 

COMPUTER SYSTEM ACHIEVED PERFORMANCE 

Mul tiprogramrned 

at degree Mc 

System operates in 
priority mapping j 
for period 6. 

A mapping consists of 
each job class having a 
unique ordered priority 
between 1 and Me or zero. 
Classes of priority zero 
don I t execute. 

For the jth pri­

ority mapping. 
the system achieves 
an average CPU 
usage for the i th 

job class of Cij . 

Figure 1-Pictorial representation of job class orientea 
computer system 

job class turnaround, and equal job class response ratio) is 
compared for different system loading conditions. The Con­
clusions section summarizes the main results. 

THREE DYNAMIC DISPATCHING ALGORITHMS 

The HETM and equal average job class turnaround 
dynamic dispatching algorithms are reviewed and the equal 
job class response ratio algorithm is developed. 

The job class scheduled computer system of concern is 
depicted in Figure 1. Jobs are multiprogrammed one from 
each of Me job classes. Jobs from class i require an average 
C i units of CPU time to complete. At time tz (= If:,.), there 
are Nil jobs in the ith input job class (queue). Jobs are 
classed on the basis of resource requirements and it is as­
sumed initially that the classes are equally worthy of system 
attention. (External specification of priority may be used to 
order jobs within classes, but not the relative worth of one 
class with respect to another.) 

The system control mechanism, which is similar to that 
available in OS/360, involves the specification of the unique 
internal preemptive CPU priority to be given to a single 
task from each of the Me classes over a control interval f:,.. 

This priority ordering is specified every f:,. time units on the 
basis of the observed performance of the system. The specifi­
cation of the ordered priorities of the Me classes is termed a 
priority mapping. There are M p priority mappings. The 
system behavior is observed through the job CPU usage Cij 
attained for a task from the ith job class when it is multi­
programmed in priority mapping j. 

In a standard OS/360 job class scheduled system, there is 
no dynamic dispatching. A fixed relationship exists between 
the job class and the preemptive CPU dispatching priority of 
tasks from jobs in that class. (This statement must be quali­
fied to the extent that dispatching priority goes with the 
partition or region and several classes may feed the same 

partition or region). The intent of this fixed dispatching 
scheme is to allow the installation to class jobs based on 
knowledge of CPU/I-O characteristics and thereby obtain 
high thruput operation. This intent ignores two very impor­
tant problems: (1) the characteristics of many jobs are not 
known and (2) the characteristics of many jobs change 
dramatically during execution. These problems prompted the 
development of HETM to provide a dynamic dispatching 
capability while still retaining other good user oriented 
features of job class scheduling. 

HETM dynamic dispatching 

HETM periodically rearranges the preemptive CPU 
dispatching priority of specified tasks in an attempt to more 
equitably distribute CPU service and maintain system thru­
put. The set of tasks monitored by HETM (the dynamic 
priority group) is specified by the installation as is the 
monitoring period (the control interval). The equation 
employed to determine the CPU utilization history (hi,z) 
of the ith task at control intervall is: 

(1) 

where: 

I 

Hz= 2: (CPUi,z+hi,z-l) 
i=l 

I = number of tasks in dynamic priority group 

CPUi,z=CPU usage of the ith task during the lth control 
interval. 

Low h values indicate that the task has not utilized the 
CPU either because it was blocked by I/O or waiting, but not 
activated. High h values indicate that a task has had the 
opportunity and has utilized the CPU. 

HETM is activated every control interval. The CPU 
utilization history values (hi,z) of all tasks in the dynamic 
priority group are computed and the OS dispatching chain 
is reordered in inverse order of the value ranked history 
values. 

Reference 7 establishes that the behavioral character­
istics of the HETM algorithm for a system in statistical 
equilibrium may be described in terms of repeated 
patterns of priority mappings A probability of occurrence 
P j may then be associated with the jth mapping. For a 
system in statistical equilibrium, the standard HETM 
algorithm will attempt to cause equal average CPU usage 
by each class as described by equation (2): 

Mp Mp 

2:P j Cij= 2:P j Ckj (2) 
j=l j=l 

Vi, kE [1, Me] 

(It is possible that the different job class CPU usage char­
acteristics will not permit satisfaction of equation (2). For 
example, in a two class system, the CPU usage of one job in 
highest priority could be lower than the CPU usage of the 
other job in lowest priority. Under such conditions HETM 



Dynamic Dispatching in Job Class Scheduled Systems 345 

would always give the lower CPU usage job highest priority, 
but equation (2) would not be satisfied). It can be seen from 
equation (2), that HETM attempts to cause the control 
variable of equation (1), CPUi,l, to have the same average 
value for all job classes. 

Reference 7 establishes that HETM dynamic dispatching 
can have a marked effect on performance measures related to 
thruput and turnaround. Heuristically, it is certainly appeal­
ing in a rich I/O resource environment to give higher CPU 
priority to low CPU usage tasks so as to maintain I/O 
resource utilization without seriously degrading system 
CPU utilization. Reference 7 notes, however, that since the 
desired performance is not specified a priori for HETM, 
it is difficult to comment meaningfully on the real value of 
HETM. 

It is also the case that HETM dispatching like that pro­
posed by WUlf,2 is based solely on the behavior of the 
current active jobs and is not influenced by the workload 
waiting to be processed. 

Equal job class turnaround dispatching 

Reference 5 points out that thruput should be defined not 
solely on the capabilities of a particular computer system, 
but rather on the ability of that system to process the given 
workload. For a given set of jobs, the average rate at which 
the system completes the jobs is an appropriate thruput 
measure. An appropriate definition of thruput for an equal 
worth, job class scheduled system is the time average rate of 
job completion requiring equal average turnaround for all 
job classes. For optimization purposes, the equal turnaround 
restriction can be posed as the constraint that jobs from 
different classes are processed at average rates proportional 
to the number of jobs waiting execution in the different 
class queues. 

A maximum thruput problem constrained to equal average 
job class turnaround is posed and solved in Reference 5 and 
it is found that a full mUltiprogramming degree solution is 
optimal for an interesting range of relative class workload. 

If P j denotes the probability of the system operating in 
priority mapping j, the equal job class processing rate con­
straint is expressed in equation (3): 

(3) 

where: Ni is the number of jobs of class i to be completed 
Ci is the aver:age CPU time of a class i job 
Cij is the average CPU usage of a class i job when 
run in priority mapping j. 

As indicated previously, the effect of the HETM dynamic 
dispatching algorithm is to provide constant time average 
values of its control variable over the classes, if this is possible. 
Equation (3) describes a situation where it is desired that 
the class proportional CPU usage have constant average 
value for all job classes. Therefore, if the class proportional 

CPU usage (CPCi,l) defined in equation (4) 

CPUi,l 
CPCi,l= N· C· 

<,1 < 

(4) 

is employed as the control variable in the HETM algorithm 
of equation (1), equal average job class turnarounq will be 
achieved where possible. Implementation of this algorithm 
could obtain the job class i queue lengths, N i , from HASP 
and estimate the classi average CPU usage, Ci by a running 
average over completing jobs. 

The assertion that the developed algorithm provides 
maximum thruput in addition to equal average job class 
turnaround must be qualified as follows: 

(1) The developed algorithm requires multiprogramming 
of all available job classes (i.e., multiprogramming of 
degree Me) and, .as established in Reference 5, there 
are combinations of job class resource requirements 
where the optimal solution to the maximum thruput 
problem will not always multiprogram to the highest 
degree possible. 

(2) Reference 5 only establishes the optimality of the 
developed algorithm (as qualified in (1) above) for 
the two job class case. Optimality may be inferred 
for a larger number of job classes, but it has not 
been formally established. 

The developed algorithm is a good solution to the posed 
problem. The question naturally arises as to the generality 
of the problem. For a dynamic, development oriented com­
puting environment such as found in an academic institution 
where good thruput could be strongly dependent on the 
number of small jobs done, the posed problem might not be 
appropriate; i.e., the control algorithm would delay process­
ing a class of small jobs in favor of a class of many large jobs. 
For production data processing however, jobs are often 
classed to avoid resource conflicts and classes are considered 
to be equally worthy of system attention. The posed problem 
well describes such an environment. 

Equal job class response ratio dynamic dispatching 

The previous section indicates that while the requirement 
for equal average class turnaround deals with the question of 
processing the given workload, it may not be realistic. This 
would particularly be the case for large imbalances in the 
numbers of jobs in the class queues. This is the same sort of 
motivation that prompted the development of highest re­
sponse ratio job initiation4 and warrants the investigation 
of a possible extension to dynamic dispatching. 

It is straightforward to define the concept of average job 
class response ratio as the ratio of the average class turn­
around to the average class uniprogramming processing time. 
If /'i is the average ratio of the CPU time, Ci, to the up.i­
programming elapsed time of a class i job, the average uni­
programming elapsed time of a class i job is Ci/'i-1• To 
specify an equal average class response ratio constraint, the 
denominators of the terms in equation (3) need only be divided 



346 National Computer Conference, 1975 

Na 

r - ---- - - ----.------ -. 
I 

I 

a Queue 
CONTROLLER 

kth 

Arriving Jobs dispatching 
I 
I 
I 
I 
I 
I 
I 

A 
8 

I I '- ____________ 4 

B Queue N 

8 

I 

: 
I L ___________________________ .J 
: b 
I 
I 
I L ________ _ 

(1, B Job Completion 

Job Flow 

Performance 
observa tion 
and control 

Figure 2-Two job class system with dynamic dispatching 

by the appropriate class uniprogramming elapsed times. 
Therefore if the class proportional response ratio (CPRi,l) 
defined in equation (5): 

(5) 

is employed as the control variable in the HETM algorithm 
of equation (1), equal average class response ratio will be 
achieved where possible. 

The algorithm is direct to implement. Given an existing 
HETM implementation as defined in equation (1), all that 
remains is to substitute the CPRi,1 of equation (5), for the 
CPUi,1 in equation (1). To compute CPR it is necessary to 
obtain the job class queue lengths which are known to 
HASP and "ii, the ratio of average class i job CPU time to 
uniprogramming elapsed time which can be given a priori. 
(This ratio should be reasonably constant for jobs classed on 
the basis of user type or resource usage.) 

The presented class response ratio dynamic dispatching 
does not satisfy the previously stated objective of control 
based on performance improvement rather than a means to 
performance improvement. It does however provide an 
intuitively appealing strategy that is workload dependent. 
All other things equal, response ratio dynamic dispatching 
will promote the execution of classes of short jobs over classes 
of long jobs, but it will not allow a class of long jobs to grow 
indefinitely because of a large influx of short jobs. 

The following section demonstrates the relative per­
formance of the presented dispatching algorithms for a simple 
two class example. 

TWO JOB CLASS EXAMPLE 

A two job class example is presented and solved analytically, 
and the relative performance of the four dispatching al­
gorithms is compared. 

The dispatching algorithms of the preceding section were 
developed primarily for heavily loaded systems (i.e., sys­
tems with low probability of empty job class queues). The 
queueing theory approach employed in this example facili-

tates the investigation of relative performance over a wide 
range of system loading conditions. 

Figure 2 presents a schematic of the general two class 
model. Jobs of type i (i is a or (3) arrive from a Poisson source 
at average rate Ai to the class i queue. Jobs of type i are 
characterized by: 

Ai Average arrival rate 
/1-i Average service rate in preemptive exponential 

CPU (Central Processing Unit) service. 
Oi Average service rate in FCFS exponential DTU 

(Data Transfer Unit) service 
Pi Probability of completion of job after DTU service. 

(Completed job is immediately replaced by another 
job if queue is non-empty.) 

Internal to the system a higher preemptive CPU priority 
job denoted as job aand a lower priority job b compete for 
service from the CPU and the DTU. The CPU is modeled 
as an exponential server with service rate /1-i. Following 
completion of CPU service, a job either begins DTU service 
immediately or waits in the DTU queue for completion of 
the other job being processed by the DTU. The DTU is 
modeled as an exponential server with service rate Oi. Follow­
ing completion of DTU service, with probability Pi job i 
completes and leaves the system. It is immediately replaced 
by another type i job if there is one waiting for service. 

This model is extremely simple. Recent workS has estab­
lished, however, that the model predicts relative task re­
source utilization behavior with good fidelity. On this basis, it 
is argued that this simple model will indi<;ate relative dis-
patching algorithm performance. ' 

A controller (the kth dynamic dispatching algorithm) 
observes the behavior of the system through the CPU 
usage of the two jobs and the length of the two job queues. 
At each control interval d, the controller may change the 
relationship (mapping) between the external job types 
(a, (3) and the internal priority designations (a and 
b). The standard H ET M controller for example will reorder 
the mapping every d time units so the job with the lowest 
CPU utilization history is given the highest priority (i.e., 
corresponds to job a). 

This section analyzes system performance for four different 
dispatching algorithms: (1) as job class priority, (2) 
HETM, (3) equal average job class turnaround, and (4) 
equal average job class response ratio. The performance 
effects of these algorithms are discussed following develop­
ment of the general model. 

General model 

The general system model is developed as two constituent 
models: (1) a model for multiprogramming of both a and 
{3 jobs, and (2) a model for uniprogramming of either type 
job when there are no jobs of the other type to process. In the 
sequel, these individual models are developed and a compos­
ite model is then synthesized. 



Multiprogramming model 

This model assumes that jobs of both types are present. A 
job in the system can be in one of four possible positions: (0) 
waiting for CPU service, (1) receiving CPU service, (2) 
waiting for DTU service, or (3) receiving DTU service. The 
contents (a, b, or x) of the last three positions are used to 
represent the state of the system (an x denotes the position 
being vacant). In this notation for example, state bxa is 
the state of job b being processed by the CPU and job a 
being processed by the DTU. 

The states are related to each other by the possible state 
transitions caused by completion of service. For example 
if Pbxa denotes the steady state probability of being in state 
bxa, the rate of transition to state xba is PbxaJl.b caused by b 
completing CPU service and the rate of transition to state 
axx is Pbxaoa caused by a completing DTU service and pre­
empting b from CPU service. 

The condition that the state transition rates be balanced 
for steady state plus the requirement that the sum of the 
state probabilities equal 1.0 leads to the following equations: 

(6) 

Paxx+Pbxa+P~ba+Paxb+Pxab= 1.0 

These equations are directly solved for the state probabilities. 
The system can operate in two possible mappings as noted 

in Table 1. 
The mapping probability Pi will be established by the long 
term effect of the controller (dispatching algorithm). 

The job CPU utilization and effective service rate are 
useful measures of performance for each mapping j. \ 

CPU Utilization: 

CPUai=Paxxi+Paxbi 

(7) 

Effective Service Rate: 

The effective service rate Reii of job i in mapping j is the 
rate at which it is processed by the CPU (CPU/Jl./) times 
the probability of completing after CPU service (Pii) or: 

Reai= CPUaiJl.aiPai 

Rebi = CPUbiJl.biPbi (8) 

TABLE I -System Mappings 

Mappingj Priority Relationship Mapping Probability 

1 a = Ol, b = (:J P 1 

2 a = (:J, b = Ol P2 (= 1 - P 1) 

Dynamic Dispatching in Job Class Scheduled Systems 347 

Example 

1 
2 

TABLE II-Two Examples 

10 
10 

20 
20 

Pa 

.5 

.5 
15 
15 

10 
10 

.5 

.3 

When the system is operating under the kth dynamic dis­
patching algorithm, the algorithm will establish a steady 
state probability of operating in the jth mapping of Pl. 
Given the Pl, it is possible to develop system performance 
measures in terms of the external job types a and (3 for the 
kth algorithm as follows: 

Job Multiprogramming CPU utilization: 

CPUmak=PlkCPUal+P,iCPUb2 

CPUml=P1kCPUbl+PlCPUa2 

Job Multiprogramming Service Rates: 

Rmak = plkReal+ PlReb2 

Rml = P1k Rebl + Pl Rea2 

U niprogramming models 

(9) 

(10) 

These models assume there is only one type of job, i 
(either a or (3), to be processed. There is no waiting in the 
CPU or DTU queues and the job uniprogramming CPU 
utilization and uniprogramming job service rates are as 
follows: 

Job Uniprogramming CPU Utilization: 

-- Oi . 
CPUui = -- for ~=a, (3 

Jl.i+Oi 

Job Uniprogramming Service Rates: 

Composite model 

(11) 

(12) 

The composite model is to account for the effects of empty 
job queues. It is composed of combinations of results from 

TABLE III-Uniprogramming Class Characteristics 

CPUu CPUc Ru 

Example Aa AfJ Ol (:J Ol (:J Ol (:J 

2.2 1.9 .667 .400 .440 .253 3.33 3.00 
2.0 1.0 .667 .400 .400 .133 3.33 3.00 
1.0 2.0 .667 .400 .200 .266 3.33 3.00 

2 2.5 1.0 .667 .400 .500 .222 3.33 1.8 
2.1 1.2 .667 .400 .420 .266 3.33 1.8 
1.0 1.0 .667 .400 .200 .222 3.33 1.8 



348 National Computer Conference, 1975 

TABLE IV-Standard as Fixed Priority Dispatching (k = 1) 

EXAMPLE He Pc We RRe 
Aa Af3 Pi a ~ a ~ a ~ a ~ 

2.2 1.9 1.0 2.85 1.65 .771 1.15 1.53 5.1 
0.0 2.03 2.80 1.08 .677 1.11 3.32 

2.0 1.0 1.0 3.11 1.87 .643 .533 .900 1.14 3.00 3.43 
0.0 2.66 2.86 .751 .349 1.51 .536 5.04 1.61 

1.0 2.0 1.0 2.99 2.41 .335 .828 .503 2.41 1.68 7.24 
0.0 2.01 2.91 .497 .687 .989 1.10 3.30 3.30 

2 2.5 1.0 1.0 2.86 .883 .874 1.13 2.76 9.23 
0.0 2.18 1.68 1.14 .597 1.48 2.66 

2.1 1.2 1.0 2.84 1.03 .738 1.17 1.34 4.47 
0.0 1.96 1.68 1.07 .713 2.07 3.72 

1.0 1.0 1.0 3.05 1.45 .328 .687 .489 2.20 1.63 3.95 
0.0 2.23 1. 75 .447 .571 .810 1.33 2.70 2.40 

TABLE V-HETM Dynamic Dispatching (k = 2) 

EXAMPLE He Pc We RRe 
A" Af3 P a ~ a ~ a ~ a ~ 

2.2 1.9 .184 2.08 2.50 1.06 .754 1.66 4.97 
2.0 1.0 .184 2.71 2.65 .737 .377 1.40 .605 4.68 1.81 
1.0 2.0 .184 2.15 2.78 .465 .719 .870 1.28 2.90 2.84 

2 2.5 1.0 .184 2.22 1.48 1.12 .674 2.07 3.73 
2.1 1.2 .184 2.02 1.51 1.04 .796 3.25 5.86 
1.0 1.0 .184 2.35 1.68 .425 .595 .739 1.47 2.46 2.65 

TABLE VI-Equal Job Class Turnaround (k = 3) 

EXAMPLE It Pc We RRe 
A" Af3 Pi a ~ a ~ a ~ a ~ 

2.2 1.9 .556 2.30 1.99 .958 .954 10.3 10.9 34.4 32.8 
2.0 1.0 .783 2.97 2.05 .673 .488 1.03 .952 3.43 2.86 
1.0 2.0 .133 2.11 2.82 .474 .710 .902 1.23 3.06 3.68 

2 2.5 1.0 .728 2.52 1.01 .994 .989 65.0 89.8 217. 162. 
2.1 1.2 .483 2.20 1.26 .957 .951 10.5 16.3 35.1 29.4 
1.0 1.0 .115 2.31 1.71 .433 .586 .765 1.42 2.55 2.55 

TABLE VII-Equal Job Class Response Ratio (k = 4) 

EXAMPLE He Pc We RRe 
A" A{J Pi a ~ a ~ a ~ a ~ 

2.2 1.9 .557 2.30 1.99 .957 .955 10.2 11.2 33.9 33.5 
2.0 1.0 .803 2.98 2.03 .671 .492 1.02 .968 3.39 2.90 
1.0 2.0 .154 2.13 2.80 .471 .714 .889 1.25 2.96 3.74 

2 2.5 1.0 .729 2.52 1.01 .993 .990 58.8 99.0 196 178 
2.1 L2 .492 2.20 1.25 .953 .956 9.72 18.3 32.4 33.0 
1.0 1.0 .268 2.41 1.65 .415 .606 .708 1.54 2.36 2.77 



the multiprogramming and uniprogramming models. The 
basic idea is that the external behavior of the cyclic server, 
two queue, service process can be represented as two compos­
ite single server, single queue; queueing processes. It is 
recognized that the density functions characterizing these 
equivalent service processes are more nearly hyperexpo­
nential than exponential, but for a first approximation it is 
assumed that the equivalent service processes are exponential 
with average service rates Rca k and Rel for the kth dispatch­
ing algorithm. 

Queueing theory gives the utilizations of the two composite 
servers as: 

AfJ 
Pel= R- k efJ 

and the average composite class turnaround as: 

(13) 

Weak = (Reak- Aa)-1Wel = (Rel- AfJ)-1 (14) 

The composite server utilizations of equation (13) facili­
tate the computation of the composite service rates in terms 
of the multiprogramming model rates of equation (10) and 
the uniprogramming model rates of equation (12) as follows: 

Reak=PelRmak+ (I-Pel)Rua 

Rel = PeakRml+ (1- Peak)RufJ (15) 

In order to evaluate the effect of the equal job class re­
sponse ratio dispatching algorithm it is useful to define 
composite class response ratios as in equation (16): 

RReak= WeakRua 

(16) 

The sequel develops the mapping probabilities Pl for 
each of the four dispatching algorithms. The performance 
measures of equations (13-16) are tabulated for the two ex­
amples of Table II for several arrival rates. 

Table III presents performance results for the two ex­
amples that are independent of the dispatching algorithm. 

as job class priority (k= 1) 

Under standard as Job Class Priority there is no dynamic 
dispatching, CPU priority is directly determined by job type 
and the system operates in one mapping or the other. Thus if 
a has highest priority P 11 = 1, P 21 = ° and if {3 has highest 
priority P l 1 = 0, P 21 = 1. Table IV contains performance re­
sults for both these cases obtained by using the above map­
ping probabilities in evaluating equations (13-16). 

HETM priority control (k=2) 

As presented in equation (2), standard HETM forces the 
average CPU utilization of the two job classes to be equal 
(if possible) while the system is multiprogramming. By 
setting the CPUma2 and CPUmi of equation (9) equal, the 
mapping probabilities P12 and P22 can be easily determined. 

Dynamic Dispatching in Job Class Scheduled Systems 349 

Use of these probabilities in equations (13-16) yields the 
performance results presented in Table V. 

Equal job class turnaround (k=3) 

As presented in equation (3), this dispatching algorithm 
forces, if possible, equal average job class turnaround while 
the system is multiprogramming. Equation (14) presents 
average composite class .turnaround. This dispatching 
algorithm, however, forces equal average job class turn­
around only during periods of multiprogra!llming. It is 
therefore necessary to determine P l 3 and P23 that cause equal 
average job class turnaround in the multiprogramming 
model only. The class multiprogramming turnaround is 
siven in the equation (17). 

(17) 

The P l 3 and P23 are determined that cause W ma3 and 
W mi to be equal. Use of these probabilities in equations 
(13-16) yield the performance results presented in Table 
VI. 

Equal job class response ratio (k = 4) 

As indicated in equation (5), equal job class response 
ratio dispatching forces, if possible, the ratio of average job 
class turnaround to average class uniprogramming processing 
time to be equal across classes while the system is multi­
programming .. For the cyclic server ,model, the uniprogram­
ming processing time of a type i job is the reciprocal of the 
rate given in equation (12). Thus the mapping probabilities 
P l 4 and P 24 can be determined by setting equal the products 
of class multiprogramming turnaround from equation (17) 
and uniprogramming class rate from equation (12) as in 
equation (18) 

(18) 

and solving for P l 4 and P24. Use of these probabilities in 
equations (13-16) yield the performance results presented in 
Table VII. 

Comparison of performance 

Comparison of relative performance of the four dispatch­
ing algorithms presented in Tables IV-VII offers few sur­
prises. As might be e~pected for the similar job types of both 
examples, the HETM algorithm gives well balanced per­
formance against both the composite class turnaround 
(We) and composite class response ratio (RRc) indicators. 
The equal multiprogramming job class turnaround algorithm 
gives nearly equal composite class turnaround for high 
system utilization (i.e., as Pe~1.0), but for low system utili­
zation it appears to do little better than HETM. The equal 
multiprogramming job class response ratio algorithm also 
gives more nearly equal composite class response ratios for 
high system utilization than for lower utilization. It should 
be noted that the ranges of job class behavior over which both 



350 National Computer Conference, 1975 

equal multiprogramming class turnaround and equal multi­
programming class response ratio can be achieved is limited 
not only by the relative class characteristics (Ili, Oi, and Pi) 
as with HETM, but also by the relative class arrival rates 
(Ai) . 

CONCLUSIONS 

Three dynamic dispatching algorithms are presented and re-. 
lated to a simple representation of a job class scheduled 
multiprogramming system similar to OS/360. These three 
algorithms are applied to a simple two job class example and 
relative system performance is compared. 

As expected, the standard HETM algorithm insures good 
system performance as compared to no dynamic dispatching 
with poor information on workload characteristics. The equal 
job class turnaround algorithm better balances response to 
actual workload for heavily loaded systems. The equal job 
class response ratio algorithm offers an interesting compro­
mise between the HETM and equal turnaround algorithms 
while still allowing relative class response to be influenced 
by the relative class workload demands. 

The analytic model results have been verified by recent 
descriptive simulation modeling of Chiang. 9 

REFERENCES 

1. Bowdon, E. K. Sr., S. K. Mamrak, and R. R. Salz, "Performance 
Evaluation in Network Computer," Proceedings of the Symposium 
on the Simulation cof Computer System, June 1973. 

2. Wulf, W. A., "Performance Monitors for Multiprogrammed 
Systems," Proceedings of the Second Symposium on Operating 
Systems Principles, ACM, New York, pp. 175-181, 1969. 

3. Northouse, R. A., and K. S. Fu, "Dynamic Scheduling of Large 
Digital Computer Systems Using Adaptive Control and Clustering 
Techniques," IEEE Transactions on Systems, Man and Cybernetics, 
Vol. SMC-3, No.3, pp. 225-234, May 1973. 

4. Brinch Hansen, P., "An Analysis of Response Ratio Scheduling," 
Proceedings of IFIP Congress 71, Ljubljana, Yugoslavia, August 
1971. 

5. Chiang, A. T., and J. C. Strauss, "Priority Control For Maximum 
Thruput With Equal Job Class Turnaround," Proceedings of 
Computer Science and Statistics Symp., Iowa State University, 
October 1973. 

6. The HASP System Documentation for IBM Type 3 Program, 
HASP II, Version 3.0, No. 360-D-05.104., IBM Corporation, 
February 26, 1971. 

7. Strauss, J. C., "An Analytic Model of the HASP Execution Task 
Monitor," Communications of the ACM, Vol. 17, No. 12, December 
1974. 

8. Wong, K., and J. C. Strauss, "Use of a Software Monitor in the 
Validation of an Analytic Computer System Model," Software, 
Practice and Experience, Vol. 4, No.3, (1974). 

9. Chiang, A. T., A Simulation Study of Dynamic Dispatching, Masters 
Thesis, Computer Science Dept., Washington University, St. Louis, 
Mo., May 1974. 



JSYS Traps-A TENEX mechanism for 
encapsulation of user processes* 

by ROBERT H. THOMAS 
Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

The JSYS Trap mechanism is an extension to the TENEX 
operating system1

,2 which enables a process** to define and 
control the virtual machine seen by other processes. Using 
the mechanism, a process can control the execution envi­
ronment of other processes by providing them with a vir­
tual machine that enlarges, restricts or completely 
redefines the "standard" virtual machine provided by 
TENEX. 

The controlling process does this by declaring that it 
wishes to "monitor" (trap) selected system calls (JSYS's) 
when executed by other (inferior) processes. When a moni­
tored process attempts to execute one of the calls specified 
it is suspended and the monitoring process is notified. 
After gaining control, the monitoring process may take 
whatever action it finds necessary. For example, it may 
choose to perform the call itself on behalf of the trapped 
process. Alternatively, it may allow the trapped process to 
perform the call itself, or it may first modify the call 
parameters and then allow the trapped process to resume 
normal execution of the system call. 

Mechanisms similar to JSYS traps have been proposed 
in the context of TENEX and elsewhere.3

,4 The motivating 
forces that transformed the JSYS trap mechanism from 
an idea to a design and implementation for TENEX were 
the requirements placed on TENEX by the Resource 
Sharing Executive (RSEXEC) system.s The RSEXEC 
system is being developed as part of a research projeCt in 
distributed computation. 

One of the goals of RSEXEC is to enable the various 
TENEX Host computerst on the ARPA Computer Net­
work6

,7 to function together as a single, multi-host TENEX 
system. RSEXEC provides an environment within which 
the resources available to a user are enlarged to include 
those beyond the boundaries of his local TENEX Host. It 

* This work was supported by the Advanced Research Projects Agency of 
the Department of Defense under Contract No. DAHC15-71-C-0088. 
** Almost any of the common definitions for the term process is adequate 
for the needs of this section. TENEX supports the concept of a tree struc­
tured process hierarchy described more fully in subsequent sections. 
With the exception of when it interacts with other processes, a TENEX 
process proceeds asynchronously as if executing on its own machine. 
t There were thirteen TEXEX Hosts on the ARPA:-mT as of October 
1974. 

351 

does this in a way that removes the logical distinction 
between resources which are "local" and those which are 
"remote". This applies to both the user at the "command 
language" level and his programs at the "executing 
process" level. 

An important part of the RSEXEC environment is a 
distributed, multi-Host file system which allows files to be 
referenced without requiring Host specification. That is, a 
process need not be aware of the location within the net­
work of files it uses in order to access them. Whenever a 
process attempts an operation involving a non-local file, 
the operation is' dispatched across the network to a 
cooperating process running on the appropriate remote 
Host. As a result, existing "subsystems", such as text edi­
tors, assemblers and compilers, need not be rewritten to 
operate in the multi-Host environment. 

We initially conceived of RSEXEC as an evolutionary 
system whose development would require considerable ex­
perimentation. Consequently, we decided that, at least 
initially, the RSEXEC environment would not be imple­
mented as part of the normal TENEX operating system. 
Rather it would be provided by "ordinary user" processes 
which would act on behalf of processes attempting to ac­
cess non-local resources. To provide the environment in 
this way it is necessary that ordinary user processes be 
able to intercept system calls made by other processes 
before the operating system itself acts upon them. JSYS 
traps were implemented to provide such an encapsulation 
mechanism. 

Although the JSYS trap mechanism was strongly moti­
vated by the RSEXEC application, it represents an im­
portant and powerful addition to the TENEX operating 
system which is useful in a general manner in applications 
requiring a controlled execution environment. This paper 
describes the trapping mechanism and records design and 
implementation decisions that were made in adding it to 
the existing TENEX operating system. In doing so, the 
paper describes some aspects of TENEX not previously 
reported. 

The next section is a brief sketch of the TENEX virtual 
machine. Following that, the JSYS trap mechanism is 
described in more detail. First, it is described in terms of 
the properties we wanted it to exhibit and the constraints 
that consistency with the existing TENEX virtual ma­
chine placed upon it. Next, we describe the user's view of 



352 National Computer Conference, 1975 

JSYS traps. Finally, we view its implementation. The 
paper concludes by comparing the trapping mechanism 
with similar features in other operating systems. 

THE TENEX VIRTUAL MACHINE 

TENEX is a time-shared operating system developed by 
BBN to run on the DEC PDP-I0 processor augmented 
with paging hardware. TENEX provides a multi-process 
job structure with software program interrupt capabilities, 
advanced file handling features and an interactive and 
carefully human-engineered command language. At 
present (October 1974) there are fourteen TENEX 
systems. This section focuses on the system call and multi­
process facilities of the TENEX virtual machine. Readers 
interested in other aspects of TENEX are referred to the 
literature,I,2,8,9,10 

A user process running under TENEX executes on a vir­
tual machine similar to a PDP-I0 processorll with 256 K 
words of virtual memory. The direct input/ output instruc­
tions of the PDP-I0 are not available to user processes. 
Rather, the virtual machine provides input/ output 
facilities which are considerably more powerful and so­
phisticated. 

All of the virtual machine facilities* are accessed via a 
system call machine instruction, JSYS,** which was add­
ed to the PDP-I0 processor for TENEX. The JSYS 
instruction accomplishes a transfer of control from a user 
process to the monitor routine that implements a 
particular system call in a single instruction time. The 
hardware interprets the address field of the JSYS instruc­
tion as an index into a transfer vector called the JSYS dis­
patch vector. The JSYS dispatch vector occupies exactly 1 
page (512 words) in the monitor address space. *** 
TENEX users have come to regard the different system 
calls supported by the JSYS instruction as separate 
instructions. Thus, one speaks of the "Byte In" JSYS and 
the "Open File" JSYS, etc. This convention is used 
throughout the remainder of this paper. 

When a user logs into TENEX a job consisting of a 
single process is created for him. By using appropriate 
system calls that process may create other processes which 
themselves may create further processes, etc. TENEX 
provides a separate virtual machine with its own address 
space for each such process. Each process has exactly one 
immediate superior (its creator) and may have any 
number of immediate inferiors (processes it has created). 
Thus the process hierarchy is tree-structured; the root of 
the tree being the process created at login time. 

TENEX currently provides three mechanisms for inter-

* With the exception of the pager trapping facilities that implement the 
virtual memory and which are invisible to user processes. 
** pronounced JA Y-sys 
*** For addresses greater than 511, the address is interpreted as an index 
into the user process address space and the process is dispatched to a 
routine in its own address space. 

process communication: 

1. Communication by direct process control whereby 
one process modifies the state of another. 
The state of a process includes its execution status 
(i.e., running, suspended by another process, blocked 
for input/ output, etc.), program counter (PC), active 
registers (ACs) and the contents of its address space. 
A process can modify the PC and ACs of other 
processes and can start, stop and destroy them. The 
capability for direct process control is defined by the 
process hierarchy; processes may directly control 
only their inferiors. 

2. Communication by pseudo-interrupt whereby one 
process transmits an interrupt signal to another. 
The signalling process specifies the target process 
and an interrupt channel. To receive the signal 
properly, the receiving process must have previously 
"armed" the specified interrupt channel by activat­
ing it, assigning it a priority, and specifying a routine 
to be executed whenever a signal for the channel oc­
curs. The identity of the signalling process is not 
conveyed as part of the interrupt signal. In addition 
to other processes, a process may receive pseudo­
interrupt signals from devices such as terminals and 
as a result of its own execution (e.g., arithmetic 
register overflow). 

3. Communication through shared memory whereby 
communicating processes read and write from the 
same memory. 
The paging hardware partitions memory into pages 
of 512 words each. Each process sees a linearly ad­
dressable virtual memory of 512 pages which is de­
fined by a memory map with an entry for each page. 
Each map entry describes a page in the process ad­
dress space: an indication of whether the page exists, 
its physical location (i.e., current location in core or 
secondary storage) and the type of access the process 
has to the page. Processes can arrange to share por­
tions of their address spaces by system calls that 
manipulate memory maps. For example, process A 
can share page 3 of its address space with page 5 of 
process B; any change to the shared page made by 
either process will be seen by both. 

The multi-process features play an important role in 
standard TENEX operation. The process created for the 
user at login time runs the TENEX command language in­
terpreter (EXEC). When a user invokes a subsystem (e.g., 
text editor) or a program of his own, the EXEC creates a 
process, whose initial virtual memory contains the 
program. After starting it, the EXEC blocks until the 
process terminates (see Figure 1). One interesting 
subsystem is IDDT, an interactive, "invisible" debugger,12 
which runs in a process inferior to the EXEC and superior 
to the process(es) being debugged. IDDT uses TENEX 
facilities for memory sharing and direct process control to 
enable a user to monitor (examine registers, address space, 



etc.) and control (start, stop, place "breakpoints", modify 
address space, etc.) the execution of a process in a manner 
that is transparent to the process. 

DESIGN CONSIDERATIONS 

Our goal was to add to TENEX a facility enabling one 
process to control the execution environment of another. 
The mechanism we chose was one in which the process be­
ing controlled is suspended whenever it attempts to exe­
cute JSYS's (system calls) previously specified by the con­
trolling process to which control is then passed. The major 
constraint in designing the trapping mechanism was that it 
be done within the context of the existing operating 
system. Specifically, the mechanism had to be compatible 
with the TENEX virtual machine and its implementation 
could not require radical departure from the approach 
taken to the rest of TENEX. Of course, its implementation 
should not require excessive per process storage, should in­
volve minimal overhead to processes not using it, and 
should not be excessively costly to those that do use it. 

The following summarizes the major considerations that 
influenced definition of the JSYS trap mechanism: 

1. The capability of a process for setting JSYS traps 
should be limited to processes inferior to it in order 
to provide a measure of protection that is consistent 
with the TENEX process hierarchy. 

2. A process setting traps for another should be able to 
specify an arbitrary subset of JSYS's to be trapped 
rather than being required to specify only all or no 
JSYS's. This enables the inferior process to execute 
efficiently, incurring the overhead of being trapped 
only for those system calls the superior is interested 
in intercepting. In addition, it provides a measure of 
convenience for the trapping process; it need be 
programmed only to handle those JSYS's it is 
interested in. Furthermore, to allow for generality 
and flexibility a process should be able to dy­
namically remove traps it has set. It should not, of 
course, be able to remove traps set by other 
processes. 

FINISH DEBUG 

~a~ ~8P:1:M 
~ EXEC EXEC EXEC 

RUN 
PROGRAM 

~~ 

Figure 1-The process structure for a user job changes throughout the 
course of a TENEX session. The TENEX EXEC (command language 

interpreter), which resides in the top process in the job process ~ierarchy, 
creates and manages other processes as the user's requests dIctate 

JSYS Traps 353 

3. The traps set for a process should be inherited by its 
inferiors. That is, when a process is created, it should 
be subject to the same traps as its creator. Addi­
tionally, when traps are set for a process, they should 
also be set for all existing processes inferior to it. This 
ability to set traps indirectly allows a process to con­
trol the virtual machine seen by all its inferiors 
without requiring that it know the details of the infe­
riors' process structure. In addition, it prevents a 
trapped process from using inferior processes to exe­
cute (trapped) system calls on its behalf in order to 
bypass the trapping mechanism. 

4. A trapping process should be able to allow a process 
that has been suspended as a result of executing a 
trapped JSYS to resume "normal" execution of the 
JSYS that caused the trap. This is useful in situa­
tions in which one process is monitoring another. For 
example, a process which may not be completely 
trustworthy could be encapsulated by a monitoring 
process which would trap operations that are 
potential security violations in order to prevent it 
from writing "private" data to a "public" or non­
secure "area". The monitoring process would allow 
the inferior to resume execution of such an operation 
only after checking the call parameters to ascertain 
that the operation is "safe". 

5. Control should propagate up the process hierarchy 
from controlling process to controlling process. When 
a process attempting to execute a particular JSYS is 
suspended, control should be passed to the nearest 
superior in the hierarchy that requested to trap that 
JSYS. If that process resumes the suspended process 
without changing its PC and execution status, control 
should pass to the next superior in the hierarchy han­
dling that JSYS. Should each controlling process in 
the hierarchy resume the trapped process without 
resetting its PC, "normal" execution of the JSYS 
should be resumed. This insures that each process in 
the hierarchy wishing to trap the JSYS has a chance 
to handle it. Additionally, it prevents a process from 
bypassing the trapping mechanism by creating infe­
riors and then trapping and immediately resuming 
their calls executed on its behalf. 

6. The trapping mechanism should be transparent to 
the trapped process. In particular, the execution of a 
given JSYS should· appear to be the "same" to the 
executing process whether or not the JSYS is trapped 
by a superior process. This permits existing programs 
to run in a trapping environment without requiring 
that they be rewritten. 

7. To allow for flexibility and generality, a process 
should be able to use JSYS traps to control its 
various inferior processes differently. That is, it 
should be able to specify a different set of JSYS's to 
be trapped for each inferior. 

The transfer of control from the trapped process to the 
trapping process involves suspension of the former and no-



354 National Computer Conference, 1975 

Figure 2-Process A may not directly set traps for Process C. However, 
process C inherits any traps set by process A for process B 

tification of the latter. We chose to have notification of the 
trapping process occur via a pseudo-interrupt signal. Two 
other approaches suggested themselves: 

1. The trapping process could use a periodic polling 
procedure to look for processes suspended as the 
resuit of traps it had set; or 

2. The trapping process could execute a system call 
causing it to block until the "next" trap occurred. 

The first alternative was rejected immediately on effi­
ciency grounds because it requires a "busy wait" by the 
trapping process. The second was judged to be less flexible 
than the pseudo-interrupt approach because it requires the 
trapped process to relinquish control and therefore to 
remain idle while awaiting the next trap. If this effect is 
desired, a user can achieve it in a straightforward way us­
ing existing system calls in conjunction with the trap 
pseudo-interrupt. Furthermore, since the implementation 
would be virtually identical for both the pseudo-interrupt 
and blocking approaches, we selected the more flexible 
pseudo-interrupt approach. 

As an implementation consideration, we restricted the 
ability of a process to set traps beyond that suggested in 
consideration (1) above. A process can directly set and 
remove traps only for processes that are immediately infe­
rior to it. To allow a process to set traps for non-immediate 
inferiors would not violate the TENEX process hierarchy. 
However, it would require a considerably more complex 
implementation, particularly in terms of maintaining the 
data base required to describe the trapping situation (see 
"Implementation" Section below). Because traps are 
inherited by inferiors in the process hierarchy (considera­
tion (3) above) this is not a severe restriction. For 
example, for the situation in Figure 2, process A may 
directly set traps for process B but not for process C; 
however, any traps set for B are inherited by C. This 
restriction also prevents a process from trapping its own 
execution of JSYS's. While there are situations in which 
this would be useful, we felt that the additional imple-

mentation complexity required to support the capability 
was unjustified. 

USERS VIEW OF THE TRAPPING MECHANISM 

The trapping mechanism was made available to user 
processes by augmenting the virtual machine with several 
new JSYS's (system calls). The basic calls are sum­
marized below in an informal notation that conveys their 
meaning while avoiding the details of TENEX program­
ming. Values returned by a call are indicated on the left 
side of an "=" sign. 

To set or remove JSYS traps the following calls are 
used. 

set-traps (proc, trap-spec) 
remove-traps (proc, trap-spec) 

Proc is the process ID of an immediately inferior process 
and trap-spec is the address of a table specifying the 
JSYS's for which traps are to be set or removed. A process 
can declare the channel on which it wishes to receive 
pseudo-interrupt signals resulting from JSYS traps by the 
call: 

set-trap-channel (chn) 

where chn is a channel number for the interrupt channel. 
The call to determine the source of a trap pseudo-inter­

rupt is: 

proc, call = trap-data 0 

Proc is the ID of the process that was suspended attempt­
ing to execute the JSYS call. Before such a pseudo-inter­
rupt can occur, the trapping process must have previously 
set a trap for the call JSYS in proc and declared a channel 
for trap interrupts. To respond to a trap, the trapping 
process may use any of the operations normally available 
for direct process control: it can read the parameters sup­
plied by the trapped process, set the value (if any) to be 
returned to the trapped process, change its PC, modify its 
address space, change its execution status, etc. After the 
trap has been handled, the trapped process may be 
allowed to resume execution using the call: 

resume-trapped-proc (proc) 

where proc is the process to be resumed. 
A process may use the call 

t=test-trap 0 

where the value returned is either true or false, to· de­
termine whether traps have been set for it by a superior 
process. Since all JSYS's including those for managing 
traps may be trapped by superiors, this call need not vio­
late the transparency property (6 above) desired for the 
trapping mechanism: A process could prevent inferiors 
from determining whether they are being trapped by trap­
ping their execution of test-trap and always returning the 
value false. 



An example should clarify how the trapping mechanism 
can be used. Consider the simple task of generating a fre­
quency histogram of system calls made by an arbitrary 
program. A process Q can do this by creating another 
process P to run the program and then trapping and re­
cording the JSYS's P executes. The following annotated 
program fragment describes Q: 

(enable pseudo-interrupt-system) 
set-trap-channel(n) 

P=create-proc(file) 

set-traps(P ,ALL) 

start-proc(P) 
wait-proc(P) 
output(Histogram) 

PSI-Handler-n: 

R,i=trap-dataO 
Histogram(i) = Histogram(i) + 1 

resume-trapped-proc(R) 

break 

/ I Assign n as channel for trap 
I I pseudo-interrupts. 
I I Create P initializing its address 
/ I space to the program stored as 
I I file 
I ISet traps for ALL JSYS's 
I I executed by P. 
I I Start program execution by P. 
I IWait until P terminates. 
I IOutput the Histogram array. 

/ / JSYS trap interrupt handling 
/Iroutine 
/ IRead trap data. 
1/ Account for JSYS in Histogram 
I I array. 
I I Allow P to resume normal 
I I execution of JSYS i. 
I I Break from the trap interrupt. 

Use of the trapping mechanism in this example is rela­
tively simple: process Q merely resumes P after recording 
the trap. In the distributed file system application 
described earlier, the process running RSEXEC uses trap­
ping to extend the TENEX virtual machine to support ac­
cess to files remote from the local TENEX Host. It traps 
file operations made by processes inferior to it (e.g., text 
editors, compilers, etc.). Whenever a file operation is 
initiated that requires access to a remote file,· RSEXEC 
sends a request across the network to a cooperating 
"service" process at the proper Host instructing it to exe­
cute the operation on behalf of the inferior process (See 
Figure 3). Operations that can be handled locally are 
passed directly to the local operating system by RSEXEC. 
After the operation has been performed RSEXEC resumes 
the inferior process, by properly incrementing its PC and 
providing return parameters (if any). Because the trap­
ping activity is transparent, the inferior process can uni­
formly access all files, both local and remote, without 
regard for their location within the network. 

Other applications for the trapping mechanism readily 
suggest themselves. JSYS traps have proven to be a power­
ful debugging aid. For example, a complex program, which 
was believed to have been debugged and which is run 
continuously on TENEX as a service "demon" process, 
began to malfunction by closing a critical data file for no 
apparent reason on the order of once a day. After unsuc­
cessfully studying program listings and using conventional 
debugging techniques for several days, the programmer 

JSYS Traps 355 

• P INITIATES FILE OPERATION 

• OPERATION TRAPPED 

• P SUSPENDED 

• CONTROL PASSED TO RSEXEC 

• RSEXEC AND REMOTE SERVICE 
PROCESS COMPLETE OPERATION 

• PRESUMED 

Figure 3-RSEXEC uses the JSYS trap mechanism to support uniform 
access by a user program (process P) to local and remote files. Access to 
remote files is accomplished by interacting with a remote service process 

built a simple process to trap and examine all operations 
that could possibly result in closing the file. He then ran 
the malfunctioning service process as an inferior to the 
trapping process and was able to intercept the operation 
that caused the malfunction the first time it occurred (ap­
proximately ten hours after the program was placed in 
execution). We plan to add this debugging technique to the 
repertoire of IDDT, the invisible debuJ{ger, &uch that auser 
can cause a program being debugged to "break" on certain 
system calls. This technique would enable the user to gain 
control on, for example, all file output operations without 
requiring that he remember and specify the program loca­
tion of each. When the program breaks he could inspect 
the parameters, perhaps request IDDT to execute the call 
and inspect the result, and then allow his program to 
proceed to the next breakpoint. 

A somewhat different use of the trap mechanism would 
enable a user to use programs written by others with the 
assurance that doing so would not compromise the se­
curity of his data. For example, he could encapsulate such 
programs in a controlled environment which selectively in­
hibits output operations by trapping them and allowing 
only those directed to "legitimate" destinations to 
continue. He could even intercept and prevent use of more 
subtle techniques for leaking information such as those 
recently noted by Lampson.13 

IMPLEMENTATION 

The implementation of the JSYS trap mechanism is 
described in this section with the focus on approach rather 
than detail. The result is a simplified sketch of the imple­
mentation. First, it is necessary to present as background 



356 National Computer Conference, 1975 

) 
JSYS X- 7 

USER 
ADDRESS 
SPACE 

- ~ 

---r:-

i--::: 1-

----..... ---- -- ~ -

JSYS 
DISPATCH 
VECTOR 

--- -------
.X.~ 

MONITOR 
ADDRESS 
SPACE 

Figure 4-The JSYS instruction uses the JSYS dispatch vector to 
accomplish a transfer from user to monitor address space 

some facts about the JSYS instruction and the structure of 
TENEX. 

A TENEX process has two address spaces: A user ad­
dress space where the process executes the instructions of 
the user program; and, a monitor address space that is in­
visible to the user program where the process executes 
monitor routines in response to system calls initiated by 
execution in the user address space. Transfer from user to 
monitor address space is accomplished by execution of a 
JSYS instruction with an effective address of less than 512 
(see Figure 4). The processor enters "monitor mode" and 
uses the effective address as an index into the JSYS dis­
patch vector to fetch two pointers; it store,s the user 
process PC and processor flags through one of the pointers 
and resumes execution in monitor address space at the lo­
cation specified by the other. 

Like the user address space, the monitor space for a 
process is a paged, 256K word linearly addressable space. 
Unlike the user space, the monitor space is partitioned 
into several areas (see Figure 5). These areas are: 

1. a process private area that holds process state in­
formation (PC, ACS, user address space map, etc.); 

2. a job private area, shared by all processes in a job, 
used for job wide data (the structure of the job 
process hierarchy, data about files open by processes 
in the job, etc.); 

3. a "public" area, shared by every process in the 
system, that contains monitor routines and various 
system wide data bases. 

The public area is further subdivided into in core resident 
and swapp able regions. Both the process and job private 
areas are swappable. 

The hardware paging device is aware of the organization 
of the monitor 'address space and, depending upon the 
area being referenced, takes different actions to complete 
a memory reference. References to the resident area are 
generally direct and bypass the page mapping operation 

'although the pager can be instructed to "map the resident 
monitor" (see below); references to the public swappable 

area are mapped via a resident monitor page map; 
references to the job and process private areas are mapped 
via a page map for the process private area. 

Implementation of the trapping mechanism specified in 
the previous section was feasible for TENEX because only 
a finite number of system calls (512) are possible* and all 
system calls "pass through" a single point in the system: 
the JSYS dispatch vector. 

To implement JSYS traps, the dispatch vector, formerly 
a page shared by all processes in the system, was made 
process private. Trapped processes have a modified dis­
patch vector. Entries corresponding to trapped JSYS's 
point to a "trap and interrupt" routine and those for un­
trapped JSYS's point to the standard monitor routines for 
those calls. We saw two ways to make the dispatch vector 
private: 

1. Make a minor (hardware) modification to the JSYS 
instruction so that it uses as its dispatch vector, a 
page in the process private area rather than one in 
the public area. 

2. Leave the JSYS instruction unmodified. When a 
trapped process is running, set up the monitor map 
entry for the JSYS dispatch vector to point to a page 
in the per process area (the modified dispatch vector) 
and cause the pager to map references to the resident 
monitor (see above). 

The primary advantage of the second approach is that it 
allows the trapping software to run on the existing 
hardware at all TENEX installations. Its disadvantages 
are two: slightly slower execution for trapped processes 
resulting from mapping each reference to the resident 
monitor; and severe constraints on' the software for 
(planned) dual processor configurations resulting from 
limitations of both the paging device and PDP-10 
processor. The current implementation provides for both 
alternatives, allowing each installation to choose one at 
"system generation time". 

SWAPPABLE \~~ ~~_ 
RESIDENT L ___ 0 

PER JOB 
REGION 

-------

j"PUBLlC
I 

REGION 

PER 
PROCESS 
REGION 

Figure 5-Schematic of the TENEX monitor address space 

* The TENEX operating system, of course, can (and does) support more 
than 512 system operations. This is accomplished by multiplexing 
similar operations on a given JSYS by using call parameters to indicate 
the desired operation. 



The "trap and interrupt" routine executed when a JSYS 
is trapped, suspends the trapped process and interrupts 
the proper process in the hierarchy. Should the suspended 
process be resumed without modification to its PC, the 
routine continues by searching the hierarchy for addi­
tional processes to interrupt. The situation in Figure 6 
illustrates that the immediate monitor of a trapped 
process (i.e., the nearest superior process trapping its 
JSYS's) is not necessarily the correct process to interrupt. 
Consider the proper sequence of events for execution of 
JSYS's 1,2,3 and 4 by process E, assuming that all 
processes respond to the trap interrupt merely by resum­
ingE: 

JSYS 1: trap to A 
(note bypass of immediate monitor D and inter­
mediate monitor C) 

JSYS 2: trap to D, then trap to C, then trap to A 
(all monitors in hierarchy receive interrupt) 

JSYS 3: trap to C, then trap to A 
(note bypass of immediate monitor D) 

JSYS 4: trap to D, then trap to A 
(note bypass of intermediate monitor C) 

The point here is that the immediate monitor may not 
have set the trap for the particular JSYS executed. The 
modified dispatch vector (JDVEC) is sufficient to initiate 
trap action but is insufficient, by itself, to specify the 
proper process(es) to be notified. To enable the "trap and 
interrupt" routine to complete the trap action properly, 
additional information is associated with each process: 

1. The name of the process which is its immediate 
monitor (1M); 

2. A list of the JSYS's for which its immediate monitor 
has set traps (TTBL). 

E 

~ TRAPPING 3 

F 

Figure 6-The immediate monitor of a trapped process is not necessarily 
the correct process to handle a JSYS trap. For example, execution of 

JSYS 1 by process E should initiate a trap to process A, bypassing 
intermediate monitors D and C 

JDVEC 

JSYS Traps 357 

JDVEC 
1,2,3,4 

TRAPPED 

JDVEC 
1,2,3,4 
TRAPPED 

1,2,3,4 
TRAPPED 

Figure 7-When a process attempts to execute a trapped JSYS, a "trap 
and interrupt" routine makes use of the modified JSYS dispatch vector 
(JDVEC), the name of the immediate monitor of the process (1M) and a 
list of JSYS's being trapped by the process (TTBL) to determine which 

process to interrupt 

The situation in Figure 6 is redrawn in Figure 7 to 
illustrate how JDVEC, 1M and TTBL are used when a 
process executes a trapped JSYS. Assume process E 
initiates JSYS 3 and, as before, assume that all processes 
receiving trap interrupts respond by resuming E. The 
following sequence of events occurs (refer to Figure 7): 

1. E is dispatched through its JDVEC to the "trap and 
interrupt" routine. 

2. 1M of E is process D; D is not trapping E's execution 
of JSYS 3 (from E's TTBL); bypass D. 

3. 1M of D is C; C is trapping JSYS 3; interrupt C and 
suspend E; 

4. C resumes E; 
5. 1M of C is A; A is trapping JSYS 3; interrupt A and 

suspend E; 
6. A resumes E; 
7. 1M of A is null; dispatch E to standard monitor 

routine for JSYS. 

Setting and removing traps for a process is accom­
plished by a recursive routine that "walks" over the 
process hierarchy appropriately updating JDVEC, 1M and 
TTBL for the process and its inferiors. Reconsider the 
situation of Figure 7; the effect of 

set-traps (C, JSYS-2-and-5) 

executed by process B is shown in Figure 8. Removing 
traps is the trickier of the operations, as care must be 



358 National Computer Conference, 1975 

JDVEC 
1,2,3,4,5 
TRAPPED 

JDVEC 
1,2,3,4 

TRAPPED 

Figure 8-Note the changes in IM, JDVEC, and TTBL for processes C, 
D, and E resulting from process B setting traps for JSYS's 2 and 5 for 

process C 

taken to restore to JDVEC the normal dispatches for only 
those JSYS's no longer trapped by any process in the 
hierarchy. The following cases (refer to Figure 7) illustrate 
the nature of the problem: 

1. remove-traps (B, JSYS-1) executed by A: 
Restore the normal dispatch for JSYS 1 to JDVEC of 
B,C,D,E; 
Remove JSYS 1 from TTBL of Band C 

2. remove-traps (B, JSYS-2) executed by A: 
Restore the normal dispatch for JSYS 2 to JDVEC 
for Band C; 
C and D trap JSYS 2, hence do not modify JDVEC 
ofD andE; 
Remove JSYS 2 from TTBL of Band C 

3. remove-traps (E, JSYS-2) executed by D: 
E's execution of JSYS 2 is trapped by A and C, 
hence do not modify JDVEC C of E; 
Remove JSYS 2 from TTBL of E. 

Moving the JSYS dispatch vector from a resident page 
shared by all processes to a swappable page in the process 
private region adds to system memory management 
overhead by: 

a. increasing paging activity-modified dispatch vec­
tors must be swapped into core as the corresponding 
trapped processes execute; and 

b. placing increased demand for storage on the swap­
ping medium to hold the numerous dispatch vectors. 

To reduce this overhead, the implementation mmImIzes 
the" number of dispatch vectors the system must maintain 
by sharing them among processes whenever possible. * All 
untrapped processes share the same modified dispatch 
vector which is a page in the resident region. Furthermore, 
the routine that sets and removes traps is careful to insure 
that a process and all of its inferiors having the same im­
mediate monitor share the same dispatch vector. Figure 9 
shows how dispatch vector sharing relations change as 
traps are set and removed. 

As we have described the implementation, a process 
whose execution of certain JSYS's is trapped can execute 
untrapped JSYS's without incurring overhead due to the 
trapping mechanism. Because the overhead resulting from 
execution ofa trapped JSYS strongly depends upon the 
situation, * * it is impossible to give a single, simple 
measure of how expensive trapping is. However, a com­
parison of the times required for a process to execute a 
given (nontrapped) JSYS and to execute the same JSYS 
for a well-defined, "best case" trapping situation 
represents a useful measure of the trapping overhead. 

The time required to execute JSYS X is: 

2 f.lsec (=time to accomplish transfer from user to 
monitor space; usually insignificant) 

+CPU time to execute system routines that implement 
call X 

The time required when JSYS X is trapped by only a 

B REMOVES 
ALL TRAPS 
FOR 0 --.-.. 

A SETS 
TRAPS 
FOR B -. 

Figure 9-To minimize the number of JSYS dispatch vectors that must 
be maintained, TENEX insures that processes share dispatch vectors 

whenever possible 

* Two processes can be made to share a page by setting the correspond­
ing map entries in their memory maps to point to the same physical page 
of memory. 
** i.e., the number of superior processes trapping the JSYS, the actions 
they take in response to the trap interrupt, and "unrelated" factors such 
as how heavily loaded the system is when the trap occurs. 



single process that eventually returns control to the trap­
ped process is: 

2 J.,Lsec (insignificant here) 
+CPU time to execute system routines that implement 

call X 
+ 1. 7 msec ( = CPU time required to pass control from 

trapped to trapping process and back; determined by 
counting instructions making "best case" assump­
tions) 

+CPU time trapping process uses in response to trap 
+2 process wakeups* 

It is clear that the (percentage) overhead incurred by trap­
ping JSYS X is a strong function of the complexity of 
JSYS X. Measurements made for the "Byte IN" JSYS (a 
moderately "quick" call that reads the "next" byte from 
an open file) for the situation in which the trapping 
process immediately resumes the trapped process shows 
the untrapped operation to be 3 to 10 times faster than the 
trapped one.** By using highly tuned, tightly coded 
routines rather than the existing, "general purpose" moni­
tor routines to transfer control among the processes, we 
estimate that the 1.7 msec figure could be halved. This 
would result in halving the overhead in trapping the "Byte 
IN" operation. Our experience with the trapping 
mechanism has shown that the delay resulting from the 
two process wake ups is the most significant component of 
the overhead. This component is largely due to the current 
TENEX . scheduling algorithms which treat the two 
processes as independent, whereas, in reality, they operate 
in a tightly coupled, coroutine-like fashion. We feel that a 
significant reduction in trapping overhead would result by 
modifying the TENEX scheduler to support coroutine-like 
transfer of control between processes whereby one process 
could relinquish the processor (i.e., its remaining CPU 
quantum) and its memory resources (used to hold its 
working set) to another process without invoking the 
"normal" processor and memory management operations. 

DISCUSSION 

The features we are familiar with in other systems that 
most closely approximate the JSYS trap mechanism are 
"dynamic linking" in MULTICS14,15 and "facility calls" in 
the operating system being developed by Project SUE.16,17 
The intended uses of these features are somewhat dif­
ferent from those of JSYS traps and of each other; thus 
the capabilities they provide, while similar in some 
respects, exhibit significant differences. 

In MUL TICS all "system calls" are made by invoking 

* Time for TEN EX to "notice" that the trapping process has been inter­
rupted, should be awakened and given the CPU and, later, that the 
trapped process has been resumed and should be awakened. 
** The large variance is due to the fact that it is sometimes necessary to 
read a file page from secondary storage into the monitor file buffer to 
complete the read operation. 

JSYS Traps 359 

subroutines. The "linkage" to an "external" subroutine, 
such as one implementing a MULTICS "system function" 
is not established until the routine is called for the first 
time during program execution. At the first call a "fault" 
occurs that activates a dynamic linking procedure. As a 
result, various "system" and "user" file directories are 
searched for the routine. When (if) the routine is found, 
the linkage is made such that subsequent calls of the 
routine do not cause a "fault" and then normal execution 
of the subroutine call is resumed. Dynamic linking is moti­
vated largely by the desire to support and encourage 
modular programming. 

The dynamic linking mechanism of MULTICS can be 
used to substitute "non-standard" routines for the "stan­
dard system" routines by placing such routines in the file 
directories that are searched and (or) by specifying al­
ternative directory "search paths". Use of dynamic link­
ing in this way could approximate some capabilities JSYS 
traps offer. However, there are significant differences that 
should be noted. First, the "set-up" procedure is different 
and, in practice, would probably deter use of linking in 
this way. The set up involves storing a file for each call to 
be intercepted in an appropriate "user" file directory. The 
MULTICS system provides many ways of accomplishing 
a given function. As a result, in order to provide an execu­
tion environment for a given program it is necessary to 
know which of the many possible routines the program, 
uses for each of the functions to be controlled. This, 
together with the potential for file naming conflicts, sug­
gests that implementation of software to provide a con­
trolled environment within which arbitrary users may run 
programs of their choice would be decidedly non-trivial. 

Secondly, the linking activity takes place within the 
context of a single process. The multiple process nature of 
the trapping mechanism makes hierarchies of execution 
environments relatively easy to implement. Consider, as 
an example, the situation of a debugging environment 
(such as IDDT provides) existing within a multi-host file 
system environment (such as RSEXEC provides); system 
calls would be interpreted first by the process implement­
ing the debugging environment and then by the process 
implementing the file system environment. It is difficult 
to see how dynamic linking could be used to implement 
such a hierarchy of execution environments. Finally, the 
linking mechanism is designed to serve as a subroutine 
linkage mechanism. The kind of "controlling" actions a 
"substitute" routine can take are constrained to be 
consistent with the subroutine discipline. Furthermore, 
once a link is established it generally exists for the dura­
tion of the computation. In this sense, JSYS traps are 
more "dynamic" in that they may be set and removed 
repeatedly. 

Project SUE at the University of Toronto is developing 
an operating system in which system resources and 
services are provided by dedicated "system" processes. 
The "facility call" concept was developed to meet the in­
terprocess communication requirements presented by 
such a system organization. To request a service a process 



360 National Computer Conference, 1975 

issues a facility call. As a result it is blocked until the 
process responsible for the service completes the request. 
Thus, the virtual machine seen by a process is defined by 
the processes which respond to the facility calls it makes. 
Because facility calls can be used by all processes for in­
terprocess communication the distinction between "user" 
and "system" processes is a weak one. That is, a so called 
"user" process could provide service for another user 
process in much the same way a TENEX process can use 
JSYS traps to provide services for another process that are 
not directly supported by the operating system. Unlike 
JSYS traps, facility calls (as described in References 16 
and 17) cannot be used to redefine existing system calls. 
Therefore the approach one would take to provide a con­
trolled execution environment would be somewhat dif­
ferent than that using JSYS traps. It would involve 
reprogramming the processes that provide the functions to 
be controlled. The extent to which this is feasible would 
depend upon where the functions of interest are provided: 
at a low level by "standard" system processes, or at a high 
level by user processes. As noted earlier, a requirement of 
the JSYS trap mechanism was that it enable all standard 
system functions to be intercepted without modifying the 
way the operating system itself provides them. Because 
there is no obvious analogy in facility calls to the way a 
trap for a particular JSYS can be passed from process to 
process, hierarchies of controlled environments would be 
difficult to implement. 

CONCLUDING REMARKS 

Our experience with using the trapping mechanism has, to 
date, been somewhat limited. However, we feel that it 
represents an extremely powerful operating system 
facility. Although we have discussed trapping in the 
context of its realization in the TENEX operating system, 
we feel that the trapping concept is a general one which is 
consistent with a variety of operating system philosophies 
and should appear in some form in every "general pur­
pose" operating system. We recommend that system 
designers seriously consider providing similar, user ac­
cessible mechanisms for program encapsulation in future 
operating systems. 

ACKNOWLEDGMENTS 

The author wishes to thank a number of colleagues for 
their contributions to the work presented above, especially 

R. S. Tomlinson and J. D. Burchfiel who constructively 
commented on the JSYS trap design and on the imple­
mentation approach; D. C. Allen and R. S. Tomlinson 
whose knowledge of the TENEX monitor was invaluable 
during the debugging phase; and R. E. Schantz, T. A. 
Standish, and W. R. Sutherland who constructively com­
mented on the presentation of this paper. 

REFERENCES 

1. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson, 
"TENEX, a Paged Time-Sharing System for the PDP-10," Com­
munications of the ACM 15,3, pp. 135-143, March 1972. 

2. Murphy, D. L., "Storage Organization and Management in 
TENEX," AFIPS Conference Proceedings, Vol. 41, 1972 AFIPS 
Press, Montvale, New Jersey, pp. 23-32. 

3. Thomas, R. H., A Model for Process Representation and Synthesis, 
Ph.D. Thesis, Department of Electrical Engineering, M.LT., June 
1971. (Also available as Project MAC Technical Report TR-87.) 

4. Bernstein, A. J. and P. Siegel, Hardware for Level Structure Operat­
ing Systems, Technical Report 21, State University of New York at 
Stony Brook, Department of Computer Science, October 1973. 

5. Thomas, R. H., "A Resource Sharing Executive for the ARPANET," 
AFIPS Conference Proceedings, Vol. 42, 1973, AFIPS Press, Mont­
vale, New Jersey, pp. 155-163. 

'6. Roberts, L. G. and B. D. Wessler, "Computer Network Development 
to Achieve Resource Sharing," AFIPS Conference Proceedings, Vol. 
36, 1970, pp. 543-549. 

7. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther and D. C. 
Walden, "The Interface Message Processor for the ARPA Computer 
Network," AFIPS Conference Proceedings, Vol. 36, 1970. 

8. TENEX JSYS Manual-A Manual of TENEX Monitor Calls, 
BBN-Computer Science Division, BBN, Cambridge, Massachusetts, 
September 1973. 

9. Myer, T. H., J. R. Barnaby and W. W. Plummer, TENEX Executive 
Language Manual for Users, BBN Computer Science Division, BBN, 
Cambridge, Massachusetts, April 1973. 

10. TENEX User's Guide, BBN Computer Science Division, BBN, 
Cambridge, Massachusetts, January 1973. 

11. Digital Equipment Corporation, PDP-10 Reference Handbook, 
December 1971. 

12. Plummer, W. W., IDDT User Manual, BBN Computer Science Divi­
sion, BBN, Cambridge, Massachusetts, 1973. 

13. Lampson, B. W., "A Note on the Confinement Problem," Communi­
cations of the ACM, 16,10, October 1973, pp. 613-615. 

14. Organick, E. 1., The MULTICS System: An Examination of its 
Structure, M.LT. Press, 1972. 

15. Vyssotsky, V. A., F. J. Corbato and R. M. Graham, "Structure of the 
MULTICS Supervisor," AFIPS Conference Proceedings, Vol. 27, 
1965. 

16. Sevcik, J. W., J. W. Atwood, M. S. Grushcow, R. C. Holt, J. J. Horn­
ing, and D. Tsichritzis, "Project SUE as a Learning Experience," 
AFIPS Conference Proceedings, Vol. 41, 1972, pp. 331-338. 

17. Holt, R. C. and M. S. Gruschow, "A Short Discussion of Interprocess 
Communication in the SUEj360j370 Operating System," Proceed­
ings ACM SIGPLAN jSIGOPS Interface Meeting, April 1973. 



Operating system penetration 

by RICHARD R. LINDE 
System Development Corporation 
Santa Monica, California 

INTRODUCTION 

One of the favorite diversions of university students 
involves "beating" the system. In the case of operating 
systems, this has been a remarkably easy accomplishment. 
An extensive lore of operating system penetration, ranging 
from anecdotes describing students who have outsmarted 
the teacher's grading program to students who captured 
the system's password list and posted it on one of the 
bulletin boards,l has been collected on college campuses. 
Private industry has been victimized much more seriously. 
Here the lore of "system" penetrations contains scenarios 
involving the loss of tens of thousands of dollars. 2 

The Research and Development organization at SDC has 
been seriously involved with legitimate operating system 
penetration efforts. Under contract to government agencies 
and industry, SDC has assessed the secure-worthiness of 
their systems by attempts to gain illegal access to their 
operating systems. As of this date, seven operating 
systems have been studied. This paper examines the 
successful penetration methodology employed, and the 
generic operating system functional weaknesses that have 
been found. Recommendations are made for improvement 
that can strengthen the penetration methodology. 

THE SDC FLAW HYPOTHESIS METHODOLOGY 

In the absence of more formal correctness proof tech­
niques,3 penetrations are the most cost effective method 
for assessing vulnerabilities. Exhaustive testing of an 
operating system's security controls is different than 
subjecting these controls to a penetration attack. System 
testing exercises are used to examine a system for 
implementation errors; whereas, penetration tests are used 
to examine an implementation, and from these analyses 
infer areas of possible design weakness. 

Peterson and Turn have defined comprehensive system 
attack strategies, and have proposed a set of countermea­
sures. 4 This paper focuses more on software attack 
strategies with respect to generic operating system weak­
nesses than on countermeasures. In this case, countermea­
sures entail good system design practices. SDC has 
formalized a strategy, the Flaw Hypothesis Methodology, 

361 

based on our experience with operating system penetra­
tions. 5 

Comprehensive flaw finding requires four stages: knowl­
edge of the system control structure; the generation of an 
inventory of suspected flaws; i.e., "flaw hypotheses"; 
confirmation of the hypotheses; and making generalizations 
regarding the underlying system weakness for which the 
flaw represents a specific instance. 

Knowledge of system control structure 

Knowledge of the system control structure is an obvious 
prerequisite to the penetration effort. It is necessary for 
the penetration analysts to understand how users interact 
with the system, what services are provided to them, and 
what constraints are placed on them. In order to gain this 
familiarity, penetration analysts must read the system 
manuals pertaining to command language, system debug­
ging, editing, operator's instructions, terminal user's in­
structions, and the introductory manuals pertaining to 
system overview and generation. Hence, the penetration 
analysts are able to list the security objects-i.e., file data, 
password lists, disk volumes-that are protected by system 
control objects-i. e., the file cataloger, installation man­
agement techniques, and label checking of disk volumes, 
respectively. Sometimes an object may be both a security 
object to be protected and a control object that protects 
other objects. For example, a password list may be viewed 
as a control object when it is protecting access to files, or 
it may be viewed as a security object protected recursively 
by itself, by installation management techniques guaran­
teeing password integrity, by password changeability, etc. 

Security weaknesses found in operating systems contrib­
ute to the formulation of a control object hierarchy for a 
hypothetically "secure" system. This hierarchy of control 
objects can be represented in graphical form; graphical 
templates have been produced for each functional area of 
the hypothetical system (see Figure 1; the arrows between 
each node reflect a logical dependency). As more "live" 
systems are studied, each template is changed to reflect 
more "adequate" controls for the hypothetical system. The 
templates are applied to the "live" system under analysis 
by using them to produce graphs for the system. Flaws are 
postulated based upon control objects that mayor may not 
be present. "Templates" or sequences of faulty generic 



362 National Computer Conference, 1975 

code derived from past system studies are used as search 
parameters when perusing system listings. Cross reference 
programs for searching a data base of system symbols 
would be an excellent analytic tool at this phase of the 
methodology. 6 Conceptually, the hierarchical dependency 
graph is a representation standing between a protection 
matrix modeF and a flow chart of the operating system. In 
order to understand an operating system well enough to 
comprehensively penetrate it, one must view the operating 
system from an abstract level as well as from an imple­
mentation level, e.g., the following levels: 

• Inter-Module Design: Schematics of operating system 
modules and layers. 8 ,9 

• Access Control Mechanism: For example, set theoretic 
descriptions of the access matrix. 10 

• Control Object Hierarchy: Hierarchical dependency 
graphs (see Figure 1). 

• Intra-Module Design: System flow charts and Logic 
manuals. 

• Implementation: Symbolic listings of system code. 

A penetration consists of an interloper capturing a control 
object, sometimes starting with a low-valued object on the 
hierarchical dependency graph and working his way up to 
complete omniscience-the supervisor bit (i.e., supervisor 
state). Graphs with badly designed control objects, such as 
faulty 110 control design decisions, are classified as 

FUNCTIONAL AREA' ACCESS CONTROL 
SYSTEM MODULE, LOGON 

Figure l-Security Control Object Dependency Graph: A Generic Tem­
plate to be Applied to the System Under Investigation 

TABLE I-Flaw Hypotheses Generators 

FLAW HYPOTHESES GENERA'l'ORS 

HISTORICAL GENERIC SYSTEM WEAKNESSES (SEE APPENDIX A) 

SYSTEM PROHIBITIONS AND WARNINGS 

Timing Dependencies 

INTERFACES 

Man-Man (Operator Messages) 
Man-System (Commands) 

SELDOM USED OR UNUSUAL FUNCTIONS OR COMMANDS 

Read Backward 

CONTROL OBJECT DEPENDENCY GRAPH TEMPLATES 

HISTORICAL ATTACK STRATEGIES 

(See Appendix B) 

SYSTEM LISTINGS I LOGIC MANUALS I USERS' GUIDES 

COLLECTION OF USER AND SYSTEM PROGRAMMER EXPERIENCES 
WITH THE SYSTEM UNDER ANALYSIS 

generic functional weaknesses when they can be pene­
trated at many nodes. 

Flaw hypothesis generation 

The security control object dependency graph is a useful 
heuristic in that it gives the penetration analysts a visual 
representation of potential operating system attack points. 
Many of the flaw hypotheses that are generated result from 
such graphs. Once a hypothesis is formulated, it is written 
onto a form that contains a cross reference to the security 
control object dependency, a priority of investigation based 
upon the nature of the object and the probability of 
exploiting it, an attack strategy, and an evaluation sum­
mary. System code is also studied and used to generate 
flaw hypotheses. Specific areas of the operating system are 
analyzed from different points of view, and kinds of 
possible security weaknesses are generated for each area. 
The result is the generation of the flaw hypothesis form. 
Table I contains a list of flaw hypotheses generators. 

Flaw hypothesis confirmation 

"Gedanken" (thought) experiments and desk-checking 
are employed, using existing doCmmentation, program logic 
manuals, and symbolic listings of the system, to determine 
the validity of a flaw hypothesis. The Gedanken experi-



ment is the most important phase of the penetration study. 
This is attested to by the fact that most uncovered flaws 
are found by "thought" testing. 

The intent of live tests is to ascertain that a flaw exists 
and a penetration is pos-sible. A penetration program 
involves a minimum amount of thought once the flaw is 
proved. It does require large, straightforward programs to 
perform input/output, timing, initialization, set-up, etc. 
(programs written to prove flaws because thought testing 
has proven inconclusive, can be quite complex, however). 
-So~etimes programs are produced to perform a permuta­
tion of all possible operation codes in an attempt to 
uncover instructions not contained in the System's Princi­
ples of Operation. This is an example of where a 
penetration tool, i.e., a program, can be produced to look 
for potential flaws, testing for flaws in the absence of the 
appropriate documentation. 

Flaw generalization 

It is important for a penetration team to analyze an 
operating system's security strengths and weaknesses 
thoroughly, and to delineate the generic weaknesses of the 
system. In order to describe these weaknesses, the 
penetration analysts devise a categorization based on 
families of errors for the study. When one functional area 
begins to yield a few penetrations, the investigators meet 
to discuss the nature of the penetration attempts, and to 
explore other areas of the system, e.g., access control in 
lieu of I/O control. 

GENERIC OPERATING SYSTEM FUNCTIONAL 
WEAKNESSES: WHICH MODULES TO STUDY 
FIRST? 

Security Control design and implementation weaknesses 
occurring repeatedly in computer systems can be grouped 
into a common class based on functionality. This may be a 
software, hardware, or physical function that is being 
provided. If it is a software function, the protection 
mechanism associated with it is usually distributed through 
more than one layer of system control, and the function 
itself is generally divided into multiple modules. Often 
each module is produced by different groups of people. 
For example, the generic function, physical resource 
sharing, may be distributed among the Scheduler, Cata­
loger, Di:::;patcher, Input/Output Supervisor, Terminal 
Read/Write Controller, etc. Each module may be part of a 
different control layer, implementing both security policy 
and protection mechanism decisions in the system. Sys­
tems designed in such a manner are vulnerable to a 
number of penetration attacks since security design deci­
sions related to a common function have been distributed 
among several system building teams. 

The following describes a set of common operating 
system functional weaknesses based upon the seven 
systems that have been studied: 

Operating System Penetration 363 

I/O control 

Most operating systems allow input/output channel pro­
gramming in some form. This is a prime target area for 
potential system penetrators. The complexities of I/O code 
alone can be a significant factor. Logical errors, inconsis­
tencies, and omissions can often be found by detailed 
examination of the I/O code. Even where checked it may 
still be possible for a channel program to modify itself, 
loop back, and then execute the newly modified code. 
Also, I/O channels usually act as irldependent processors 
and because of this may have unlimited access to memory. 
The dangers here are that critical code in the system could 
be modified in an unauthorized manner. Additionally, if an 
infinite loop can be executed, service to the other users 
can be intentionally degraded or stopped. This, of course, 
can be a very dangerous security threat. If a system can 
be selectively overloaded at critical (real) time periods, the 
loss of command and control could be severe. This would 
especially be true in tactical systems, air traffic control 
systems, or a Navy sea plot environment. 

Program and data sharing 

Typically operating systems attempt to isolate a user's 
process and its data from other users' processes and their 
data. This involves the protection of a number of security 
objects: hardware resources, files, password lists, operat­
ing system routines, etc. However, since dedicated ma­
chines or dedicated classified periods of processing are not 
cost effective to provide computing resources and software 
services in a completely isolable manner to a community of 
users, some form of multiprogramming with controlled 
sharing must take place. These sharing mechanisms 
involve program and data sharing as well as physical 
resource sharing, and because of faulty operating system 
design and implementation techniques, they are prime 
penetration targets. Incongruously, the operating system 
must isolate its users from one another yet provide them 
with controlled communication paths. 

Access control 

In order to permit sharing of resources, data, and 
programs, the users must be identified and authenticated 
by the operating system and the operating system must be 
identified by the user. To permit this "handshake proto­
col," a Send/Receive relationship is established between 
the user and the operating system. Failure to handle this 
interface communication function correctly provides the 
opportunity for a user process to masquerade as an 
operating system process, and for a user to obtain 
password information through "piece-wise decomposition" 
and "permutation" type programs (see Appendix B). Less 
sophisticated but effective penetration techniques involve 
permuting easy-to-guess passwords, operator spoofs, 
browsing for poor password overstrike capability, etc. 



364 National Computer Conference, 1975 

Installation management/operational control 

In a temporal sense, operating system controls are only 
effective during the period of system execution and must 
be augmented by static procedural controls such as: 

directory maintenance 
password assignment 
system generation parameters 
system changes 
building of software utilities 
system checkout 
enforcing. system prohibitions 
period processing requirements 
disk and tape degaussing, labeling, inventory 

Because control of this function is apart from the operating 
system in a temporal and physical sense, it is particularly 
vulnerable to interdiction and corruption of system code by 
planting trap doors and Trojan Horse routines. Personnel 
inefficiency and inadequate procedural controls account 
for this susceptibility. 

Auditing and surveillance 

There is a need to insure that system security controls 
are working properly. An audit mechanism can be built to 
record all security transactions, such as file OPEN re­
quests, LOGON requests, resource expenditures, and 
other security related events. Surveillance can take place 
dynamically within the operating system through the 
monitoring of well-designed thresholds. Also, "friendly" 
programs can be built to periodically assault the system's 
security controls to insure that they are working prop­
erly.l0,11,12 Unfortunately, many systems lack a comprehen­
sive audit and surveillance capability, employing an ac­
counting mechanism instead. 

Externally, a security officer introduces a human deci­
sion-making capability into the surveillance mechanism. 
The security officer's function can include the ability to 
log-off suspicious users and to monitor the security 
safeguards to insure they are functioning as intended. 11,12 
Penetrator entrapment (also called counter-intelligence) 
can be used with respect to the security officer. Bogus 
listings with "magic passwords" inside can be used to trap 
a penetrator using those passwords. 

In part, the value of audit and surveillance mechanisms 
must be weighed against the skill of the penetrator. 
Clearly, the more skilled penetrator will disable these 
mechanisms first in order to work undetected. These 
mechanisms work best against the casual attack by the 
less skilled penetrator who confronts the system protection 
matrix attempting to acquire "booty." 

As system protection mechanisms are improved, the 
"penetration work factor" -the amount of effort and 
resources expended to gain unauthorized access to data, 
procedure, or machine resources-could become so great 
that other methods, such as buying off an employee with 

access to the information will be less expensive. 13 Audit 
and surveillance mechanisms increase the "penetration 
work factor" for the skilled penetrator. Penetration studies 
may be used to quantify this work factor. 

Non-software weaknesses 

The security aspects of hardware and physical constraints 
on the computer system have received less attention in our 
analysis of operating systems than have the software and 
administrative protection mechanisms. A list of hardware 
and physical threats have been compiled and have been 
reported by other studies. 14,15,16 

GENERIC SYSTEM FLAWS 

Operating system functional areas are vulnerable to 
attack strategies because they contain specific flaws. 
Flaws that repeatedly occur in Computer Systems may be 
grouped into common classes. These flaws are described 
more fully in Appendix A. Because of these weaknesses, 
the capture of design control objects (i.e., a password list) 
is possible. Conceptually, generic flaws may exist at the 
nodes of the generic functional dependency graph tem­
plates (see Figure I). 

GENERIC ATTACKS 

A generic attack is a hostile action that is found to have 
been repeatedly successful in penetrating operating sys­
tems. Typically a security control object (i.e., the storage 
protection bit) is attacked and captured because an 
operating system design or implementation mechanism is 
flawed in a specific functional area. The primary attack 
may lead to secondary attacks aimed at higher security 
control objects until a security object (i. e. , Top Secret File) 
is captured. 

ATTACK SCENARIOS 

In order to illustrate the relationship between generic 
functional flaws and their proneness to an Appendix B 
penetration attack, a few representative attack scenarios 
are presented. One or more of the generic system flaws 
described in Appendix A provide a focal point for each 
attack: 

Input/output control 

• In a so-called chained command, the data channel 
interprets the address and count fields but discards 
the operation code and performs the operation defined 
in the predecessor command. On the hardware, any 
bit pattern can be formed in the ignored field. Place a 
branch in such a program attempting to reuse the 
formerly chained command in an unchained mode. 17 



Program and data sharing 

• Transfer a copy of one's own EDIT to the private files 
belonging to User A. If private files are searched 
before public files, pseudo-EDIT will be loaded for 
User A.1s 

• Take advantage of the system's failure to validate 
user-supplied addresses to where a store or fetch is to 
be executed, compromising the system's and user's 
address spaces. For example, the location for storing 
return parameters from a service call may not be 
validated. 

• A borrowed service routine sends data from the 
address space of the borrower to the address space of 
the service routine's owner, using the system's inter­
process communication facilities. 

• If the system has interlocks that prevent files from 
being opened for reading and writing at the same time, 
the service can leak data if it is allowed to read files 
which can be written by its owner. The interlocks 
allow a file to simulate a shared Boolean variable 
which one program can set and the other can test. 19 

Or eight files can be used simultaneously for ASCII 
encoding of short character messages. 

• Place a program in a loop that continually requests 
spooling or terminal read/write buffers. 

• Although memory is cleared prior to use, the system 
fails to clear the state vector general registers until a 
program has been loaded. Execute a dump routine 
prior to loading a program and browse for residue. 

Access control 

• Have one's LOGON routine masquerading as the 
system's at a hard wired terminal. Simulate a system 
crash after capturing the password. 

• Divert operator's attention with a MOUNT message. 
Imbed multiple line feeds in a message buffer followed 
by the system prefix character with a simulated 
system message comprising the text. 

Installation management/operational control 

• Although User's Guides, etc., warn against operating 
self-modifying channel programs, the installation fails 
to restrict their use. Write a self-modifying channel 
program and penetrate address boundaries. 

Audit and surveillance 

• One "secure" system places too much reliance on 
audit and surveillance not realizing it will be the first 
mechanism disabled by the interloper. Disable the 
mechanism and proceed in undetected fashion with 
another penetration attack. 

Operating System Penetration 365 

Physical/hardware 

• Tap a minicomputer into a communications line to 
masquerade as a legitimate central system. This is a 
method used to acquire user ID's and passwords. 

SUMMARY AND OBSERVATIONS 

SDC's operating system penetration methodology con­
sists of: 

(1) Knowledge of System Control Structure 
(2) Flaw Hypothesis Generation 
(3) Flaw Hypothesis Confirmation 
(4) Flaw Generalization 

This methodology is useful in providing a formal strategy 
for penetrating an operating system, as well as for isolating 
generic system functional flaws that can be used for 
determining functional areas of operating system design 
that need strengthening. * Seven systems were penetrated 
during the study and the results of these penetrations were 
used to strengthen this methodology and to isolate specific 
areas of operating system weakness. 

One of the last operating systems that was studied had a 
high exposure rate (65 percent) with respect to flaw 
hypotheses generated, indicating the effectiveness of the 
penetration method and team. 110 control and Installation 
Management/Operational Control were the system func­
tional targets for the most penetrations; "Unexpected 
Parameters" and "Denial of Access Programming" were 
the most frequently used penetration attack strategies. 

The penetration methodology will be strengthened by 
collecting, analyzing, and classifying more contemporary 
system functional design weaknesses, by developing ana­
lytic tools for locating security control objects in system 
listings,6 and by producing more permutation type pro­
grams. The next class of tools that need to be developed 
are programs that search for security flaws in the symbolic 
listings of the operating system.6.22 The construction of 
such programs will be guided by collecting more generic 
code templates or signatures common to the generic 
functional weaknesses of contemporary operating systems. 

ACKNOWLEDGMENT 

The author wishes to acknowledge the valuable editorial 
assistance provided by Clark Weissman, who originated 
the idea for the Flaw Hypothesis Methodology, and to Dr. 
R. Stockton Gaines for his most helpful critique. It is next 
to impossible to provide proper attribution for a specific 

* A contemporary solution to the design of secure operating systems 
exists with respect to secure kernels and virtual machine monitor 
architecture studies.17.18.20.21 



366 National Computer Conference, 1975 

attack; however, I would like to acknowledge the fact that 
Richard Bisbee, Dan Edwards, and several of the Multics 
people, whom I have not referenced herein, should be 
given credit for devising a number of the penetration 
attacks. To all others whom I have not referenced or 
acknowledged, please forgive me. 

REFERENCES 

1. Organick, Elliott I., The MULTICS System: An Examination of Its 
Structure, the MIT Press, Cambridge, Massachusetts, 1972. 

2. Palme, Jacob, "Software Security," Datamation, Vol. 20, No.1, 
January 1974, pp. 51-55. 

3. Linden, T. A., "A Summary of Progress Toward Proving Program 
Correctness," AFIPS Conference Proceedings, 1972 Fall Joint Com­
puter Conference, Vol. 41, pp. 201-211. 

4. Peterson, H. E., and R. Turn, "System Implications of Information 
Privacy," Spring Joint Computer Conference Proceedings, 1967, 
AFIPS Press, pp. 291-300. 

5. Weissman, C., System Security Analysis/Certification Methodology 
and Results, SDC SP-3728, 8 October 1973. 

6. Webb, Douglas A., Analytic Tools for the Examination of Security 
Aspects of Operating Systems, Lawrence Livermore Laboratory, 
UCRL-76016, September 1974. 

7. Lampson, B. W., "Protection," Proceedings Fifth Annual Princeton 
Conference on Information Sciences and Systems, Department of 
Electrical Engineering. Princeton University, Princeton, New Jersey, 
March 1971, pp. 437-443. 

8. Dijkstra, E. W., "The Structure of THE~Multiprogramming Sys­
tem," Comm. ACM, II, 5, May 1968, pp. 341-346. 

9. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems 
into Modules," Comm. ACM, Vol. 15, No. 12, December 1972, pp. 
1053-1058. 

10. Weissman, C., "Security Controls in the ADEPT-50 Time-Sharing 
System," Fall Joint Computer Conference Proceedings, 1969, pp. 119-
134. 

11. Linde, R. R., C. Weissman, and C. E. Fox, "The ADEPT-50 Time­
Sharing System," Fall Joint Computer Conference Proceedings, 1969, 
pp. 39-50,· AFIPS Press. 

12. Linde, R. R., "Operational Management of Time-Sharing Systems, 
Proceedings 1966 National ACM Conference, pp. 149-159. 

13. Lackey, R. D., "Penetration of Computer Systems-An Overview," 
Honeywell Computer Journal, pp. 81-85, September 1974, Vol. 8, No. 
2. 

14. Molho, Lee M., "Hardware Aspects of Secure Computing," Spring 
Joint Computer Conference Proceedings, 1970, AFIPS Press. 

15. Van Tassel, Dennis, Computer Security Management, Prentice-Hall, 
Inc., 1972. 

16. Hollingworth, D., Enhancing Computer System Security, P-5064, The 
Rand Corporation, August 1973. 

17. Belady, L. A., and C. Weissman, Experiments with Secure Resource 
Sharing for Virtual Machines, SDC SP-3769, 15 May 1974. 

18. Popek, G. J., and C. S. Kline, "Verifiable Secure Operating System 
Software," AFIPS Conference Proceedings, 1974, National Computer 
Conference, Vol. 43, pp. 145-151. 

19. Lampson, Butler W., "A Note on the Confinement Problem," Comm. 
ACM, Vol. 16, No. 10, October 1973, pp. 613-615. 

20. Weissman, C., S~cure Computer Operation with Virtual Machine 
Partitioning, SDC SP-3790, 6 September 1974. 

21. Attanasio, C. R., "Virtual Machines and Data Security," Proceedings 
ACM SIGOPS/SIGARCM Workshop on Virtual Computer Systems, 
Cambridge, Massachusetts, 1973. 

22. Hollingworth, D., S. Gl11seman, M. Hopwood, "Security Test and 
Evaluation Tools: An Approach to Operating System Security Analy­
sis, P-5298, The Rand Corporation, September 1974. 

23. Brinch Hansen, Per, "The Nucleus of a Multiprogramming System," 
Comm. ACM, 13,4, April 1970, pp. 238-241. 

24. Branstad, Dennis K., "Privacy and Protection in Operating Sys­
tems," IEEE Computer, January 1973, pp. 43-46. 

APPENDIX A-GENERIC SYSTEM FUNCTIONAL 
FLAWS 

• Authentication-It is important for the user to be able 
to authenticate that the operating system and hard­
ware he is executing on is what they purport to be. 
Little attention has been paid to the software identifi­
cation of software modules. This becomes more impor­
tant in a shared segmented system because of the ease 
with which a module can be substituted or replaced. 
Systemwide schemes are lacking, whereby major 
hardware components (Le., storage controllers, pro­
cessors, peripheral controllers, communication con­
trollers, and remote terminals), can be identified by 
each other. 

• Documentation-Security documentation may be writ­
ten in a complex manner or be deficient in several 
areas. 

• Encryption-Communication lines must be encrypted 
if shielding is inadequate. Passwords stored in mem­
ory are not encrypted in many systems. 

• Error Detection-Protection mechanisms may be dis­
abled or modified as a result of an error, and after 
subsequent return to the routine causing the error, 
they may not be reset. 

• Implementation-All the well thought out design re­
quirements may be reversed by a bad implementation. 
Condition codes may be tested improperly, etc. More 
importantly, implementation in many systems means 
that more definitive design decisions are to be made 
by the implementor. 

• Implicit Trust-Routine B assumes routine A's param­
eters are correct because Routine A is a system 
process. 

• Implied Sharing-The system stores its data or refer­
ences user parameters in the user's address space 
because memory is in critical demand. 

• Interprocess Communication-To facilitate sharing, 
users are permitted to request hardware and software 
resources from the operating system using a SEND/ 
RECEIVE type mechanism. 23 Various return condi­
tions (password OK, segment error, illegal parameter, 
etc.) may give the penetrator "significant" informa­
tion, especially when this design weakness is com­
bined with others such as Implied Sharing. 

• Legality Checking-User parameters may not be 
checked adequately; addresses may overlap each other 
or refer to system areas; condition code checks may 
be omitted; and unusual or extraordinary parameters 
may not be anticipated by the designer or implemen­
tor. 

• Line Disconnect-The operating system hardware 
must make the system cognizant of line disconnects 
prompting an automatic logout or a RELOG request 
(i.e., RELOG with correct password). 

• Modularity-Many systems were designed so that 
different groups of people were responsible for the 
design of various modules embodying common func­
tions at the same system level (e.g., channel command 



translation and execution; spooling simulation). Thus, 
when design changes were necessary, they were made 
by different, isolated system designers. 9 

• Operator Carelessness-Operators may be tricked into 
mounting bogus operating system packs for the pene­
trator. Many systems do not adequately perform label 
checks and provide correct warning and error mes­
sages to the operator. 

• Parameter Passing by Reference vs. Passing by 
Value-It's much safer to pass parameters in general 
registers than to use the registers to point to the 
parameter's location. Passing by Reference can lead to 
an Implied Sharing design weakness through careless 
implementation since the parameters may not be 
moved out of the user address space before legality 
checking occurs. 

• Passwords-Passwords for operating system, terminal, 
and file access that are supplied by users may be easy 
to guess. Passwords that are made up of a limited set 
of characters or syntax rules (e.g., digits 0 to 9 only or 
A to Z only) are subject to permutation attempts. 

• Penetrator Entrapment-This design practice some­
times called Counter Intelligence is useful for the 
capture of the unskilled penetrator. Generally, pseudo­
system weaknesses are implemented in the system 
code to bait the would-be interloper; they rely on the 
premise that more subtle recording/parameter check­
ing techniques (the trap) will escape his attention. 
Many systems have inadequate penetrator entrapment 
and audit and surveillance mechanisms; others employ 
none of these mechanisms. 

• Personnel Inefficiency-The operational management 
of operating systems (storage volume control, pass­
word assignment, virtual memory allocation, etc.) is 
dependent upon the care and competence of the 
people operating and maintaining the system. Redun­
dancy checks, etc., to check the accuracy of the 
operational manager are lacking in most systems. 

• Privity-This is a potential design weakness in many 
systems. Too many system programs and subsystems 
are given supervisor privileges to facilitate access to 
certain system tables. The more modules that operate 
in a supervisor state, the greater the chance for a 
serious penetration. Moreover, the hardware is inade­
quate; lacking descriptor based hardware, multiple 
execution states, and ring structures. 1 

• Program Confinement-Borrowed programs can act as 
Trojan Horses in that the borrower's files may be 
pilfered and his programs altered. Alternately, the 
borrower may copy a proprietary program for his own 
use. Lampson19 has shown that borrowed programs 
may leak information through subtle "communication" 
channels. 

• Prohibitions-System precautionary measures or pro­
hibitions contained in User's Guides and other docu­
mentation may lead to system penetrations if the 
personnel responsible for operational management 
have not been fully cognizant of the prohibition's 
potential. For the penetrator, this weakness can 

Operating System Penetration 367 

become an easy exposure vehicle since the potential 
weaknesses are readily advertised by the manufacturer 
in the form of "Prohibitions", etc. 

• Residue-Residue refers to unauthorized information 
that has been made available to the penetrator through 
poor housekeeping practices and system design care­
lessness. Trash baskets may be searched for log-on 
password or user identification. Trash also yields lists, 
notes, discarded teleprinter ribbons or platens, and 
data on paper, magnetic tapes, or disc packs which 
can be searched for sensitive information. In short, 
anything not erased or overwritten before being dis­
carded is of potential use to a penetrator. 

• Magnetic tape, disc space, and core residue can often 
be easily read and searched for sensitive information; 
temporary files and buffers are the most common 
sources. 

• Security Design Omissions-If the security design is 
so complex, that many design decisions must be left to 
the implementor, the chances for a security design 
omission in the form of inadequate legality checking 
are enhanced. 

• Shielding-In the absence of encryption techniques, 
computer rooms are shielded to counteract electro­
magnetic pickup. 

• Threshold Values-Many internal surveillance checks 
in the form of threshold values leading to the entrap­
ment of a penetrator are not present in many systems. 
For example, after a user has attempted to use a 
password that has failed N times, he should be locked 
from the system and the security officer should be 
notified. 12 

• Use of Test and Set-Many system designers wer~ not 
cognizant in their design of an asynchronous attack 
potential by another processor. Hence, critical region 
parameters can be checked, then changed prior to the 
systems use by a concurrent process. 

• Utilities-The operational management and control of 
system utilities is often neglected by the system 
manager. This area is fraught with Trojan Horse 
attack potential. Frequently, utility designers are not 
aware of security design issues. For example, inade­
quate boundary checking at compile time may allow a 
user to execute machine code disguised as data in a 
data area. 

APPENDIX B-GENERIC OPERATING SYSTEM 
ATTACKS 

• Asynchronous-Multiple processes overlapping each 
other's execution; one process attempts to change the 
parameters that the other process has legally checked 
but has not yet used. 

• Browsing-A search by an authorized/unauthorized 
user for privileged or classified information in the 
computer system. 

• Between Lines-To employ a special terminal tapped 
into the communication channels to affect "between 



368 National Computer Conference, 1975 

lines" entry to the system when a legitimate user is 
inactive but still holds the communications channel. 

• Clandestine Code-The submission of "patch" code 
containing trap doors used to repair an operating 
system or utility program error, allowing the repairman 
to subsequently enter the computer system in an 
unauthorized fashion. 

• Denial of Access-A program written to usurp a 
preponderant share of the system's physical resources 
or written to cause a system crash, the ultimate goal 
being the denial of legitimate users access to the 
computer system's resources in a timely manner. 

• Error Inducement-A program written to cause errors 
within itself so that its subsequent state vector may 
contain information altered by the systems error 
recovery routine. 

• Interacting Synchronized Processes-Processes that 
synchronize their execution through the system's syn­
chronization primitives, sharing and passing informa­
tion to each other through a common data base or 
subtle communication channel. 19 

• Line Disconnect-The attempt to gain access to 
another user's job subsequent to his disconnect but 
prior to hardware or software acknowledgment. 

• Masquerade-To assume the identity of a legitimate 
user or process after having obtained proper identifi­
cation through wiretapping or other means. 

• "NAK" attack-This probabilistic attack exercises 
operating system weaknesses for not properly handling 
user generated asynchronous interrupts. The name 
comes from a user interrupt being commonly gener­
ated with the teletypewriter NAK (Negative Acknowl­
edge) key. A system is often designed so that a user 
can interrupt a process, perform an operation, and 
then either return to continue the process or begin 
another. Poor designs often leave the system in an 
unprotected state during these times: partially written 
files left open, improper writing of a protection 

infraction message, etc. All possible situations of 
asynchronous interrupts are very difficult to analyze. 24 

• Operator Spoof-The attempt to circumvent installa­
tion management procedures by "spoofing" the com­
puter system operator into an action that compromises 
the security of the system. 

• Permutation Programming-A program written to 
process the total number of changes in position or 
order possible within a group. For example, to search 
for "new and useful" operation code. 

• Piecewise Decomposition-A technique for cracking 
password and other Secret character strings by de­
composing the string into its constituent characters 
and testing each in turn. 

• Piggy Back-To employ a special terminal tapped into 
a communication channel to effect "piggy back" entry 
into the system by selective interception of communi­
cations between a user and the processor, and then 
releasing these with modifications or substituting en­
tirely new messages while returning an "error" mes­
sage. 

• Trojan Horse-This term-first coined by Dan Ed­
wards-refers to planting an entry point or "trap door" 
in the computer system to allow subsequent unauthor­
ized access to the system. The Trojan Horse may be 
planted on a temporary or permanent basis. Trojan 
Horse also refers to any unexpected and malicious 
side effect, i.e., a program which executes a desired 
function correctly, but has illegitimate side effects. 

• Unexpected Operations-To invoke seldom used sys­
tem primitives or macros in an unusual manner taking 
advantage of the system's design and implementation 
weaknesses. 

• Unexpected Parameters-To submit unusual or illegal 
parameters in a supervisor call attempting to circum­
vent or capitalize on the system's legality checking 
procedures. 

• Wire Tapping-To cut in one or tap a communication 
channel to intercept a message. 



A synthesizer of inductive assertions 

by STEVEN M. GERMAN and BEN WEGBREIT 
Xerox Palo Alto Research Center 
Palo Alto, California 

INTRODUCTION 

Mechanical verification of program correctness is desirable 
and possible.6 Given a program with complete, correct 
predicate specifications* on the input, output, and each loop, 
verification of the output predicate is a mechanical process 
(cf. References 5 and 15 for surveys). 
It is necessary and natural for a programmer to supply 

input and output assertions. However, completely specified 
inductive assertions on loops are redundant. Writing such 
redundant loop assertions is a tedious and error-prone task 
for the programmer, and is therefore an obstacle to the 
practical use of program verifiers. This paper describes a 
prototype system, Vista, which provides assistance in 
synthesizing correct inductive assertions. Given only the 
source program and input/output assertions, it is able to 
generate a useful class of assertions totally automatically. 
For a larger class, it is able to extend partial inductive asser­
tions to form complete assertions, from which it proves 
program correctness. ** 

There has been a substantial amount of work on program 
verifiers (e.g., References 3, 8, 11, 14, 16, 19) and the syn­
thesis of inductive assertions (e.g., References 2, 4, 9, 12, 13, 
18, 21). Vista is one of the first implementations of tech­
niques for assertion synthesis. This is an interim report on 
the current state of the system. In the course of the imple­
mentation, several new techniques were conceived and a 
number of previously published methods21 were better 
understood. The second section of this paper presents a set 
of examples showing the range of Vista and the techniques it 
employs. The third section discusses its implementation and 
current limitations. Throughout, we place particular em­
phasis on general methods which may be of interest to re­
searchers constructing similar systems. 

Before turning to specifics, three general comments seem 
in order. 

* The predicate specification is correct if each assertion is a valid 
consequence of the input assertion and processing done by the program. 
The specification is complete if each assertion can be proved true given 
that all immediately preceding assertions are true. 
** Throughout this paper and throughout the system we tacitly assume 
that the program does conform to its specifications and that formal 
verification of this conformation is the only issue at hand. The case of 
incorrect programs which must be debugged from the specifications, or 
the case of correct programs in which some of the internal inductive 
assertions are wrong, present additional problems. We would contend 
that these problems are best addressed after the simpler case of correct 
programs is better understood. 

369 

(1) Even in the current prototype state, the power of 
individual modules is somewhat impressive. For 
example, Vista can generate the inductive assertions 
for the first seven examples used by King14 given only 
the input/output assertions, while it can take the 
incomplete inductive assertion supplied for Example 
9 in Reference 14 and extend it to the complete 
assertion from which it proves program correctness. 
Similarly, Vista can generate about half of the in­
ductive assertions needed to verify the median­
finding program Find. tO 

(2) The power of Vista is due in no small measure to the 
theorem prover it employs. This is a component of 
the program verifier Pivot3 which is the work of 
L. P. Deutsch. Vista is built on Pivot, employing 
Pivot's internal routines to carry out theorem prov­
ing, derive logical consequences, maintain data bases, 
and a variety of similar tasks. Salient points of this 
relationship are discussed in the section on implemen­
tation. 

(3) Vista is not yet a complete, integrated, or fully auto­
matic system. It presently consists of a number of 
loosely-coupled specialist modules each of which 
applies a particular technique of assertion synthesis 
and operates completely automatically once invoked. 
The specialist modules communicate by storing and 
retrieving information from a global data base associ­
ated with the program being verified. A control 
program invokes the specialist modules as required. 
However, this is the weakest portion of the current 
system: While the control program is currently able 
to automatically handle simple cases such as the 
first seven examples of Reference 14, more complex 
examples are done in interactive mode in which the 
user invokes the specialist modules. The shortcoming 
of the control program range from straightforward 
issues in programming to some ill-understood problems 
of heuristic control. The overall control structure, both 
present and planned, is discussed in a later section. 

EXAMPLES 

Vista uses four principal methods to obtain inductive 
assertions: 

(1) symbolic evaluation in a weak interpretation, 



370 National Computer Conference, 1975 

1/1 = {-o-p,q(1";;p";;F";;q";;NN-+ 
B [p] ";;B [F]";; B [q])} 

Figure I-FIND 

(2) combining output assertions with loop exit informa­
tion to obtain trial loop assertions, and generalizing 
these where necessary, 

(3) propagating valid assertions forward through the 
program, modifying them as required by the program 
transformations, producing assertions ,downstream, 

(4) extracting information from proofs that fail in order to 
determine how assertions should be strengthened. 

The first attempts to pick up obvious simple facts totally 
automatically. The others attempt to extend existing asser­
tions-either to some other part of the program or by find­
ing supporting lemmas needed to establish their correctness. 
We assume here that the programmer has supplied the 
essential ideas but may have omitted supporting details. 

The extent to which these details can be numerous, complex, 
and even subtle will be evident in the examples which follow. 

We discuss these methods in turn, beginning each dis­
cussion with an explanation of the idea followed by an 
example to show how it is used in practice. Each example 
thus illustrates an invocation of one or more of Vista's 
specialist modules. 

Notation. Throughout, a simple flowchart language is 
used. The input predicate is denoted by <I>; the output 
predicate by 'l1. Predicate Pi holds at arc Ai. To abbreviate 
a commonly used phrase, we sayan assertion is valid if 
its verification conditions can be proved using assertions 
known to be correct. 

Weak interpretation 

In many programs, there is a useful amount of information 
that is obvious upon inspection. For example, suppose I and 
J are two integer variables. I is initialized to J -1 on entry 
to some loop, I is decremented on each path through the 
loop, J is unchanged, and the loop is exited when I turns 
negative. It follows that inside* the loop O~I <J. As a 
second example, consider what would occur if the body of the 
loop were modified by the addition of a conditionally exe­
cuted branch containing the assignment J ~b-J - I; in this 
case, O~I ~J would hold on the modified loop. As a third 
example, suppose the assignment K~B[IJ was added to 
the body of the loop; in this case, it would follow that 
K =B[IJ and that assignments to B[J +1J cannot affect 
this relation. 

Weak interpretation attempts to derive simple facts of 
this sort; specifically, it considers only simple linear equalities 
or inequalities relating two variables. Its operation entails 
executing the computation steps symbolically, keeping track 
of the symbolic values of variables and of simple relations 
between them. When going repeatedly around a loop on 
which values are changed, it attempts to find a general 
expression which subsumes the particular cases. Thus, if an 
arc is reached with 1= N and then with 1= N -1, the simple 
relation I ~N is tried. The outcome of weak interpretation is 
almost never enough to fully verify the program, but it does 
provide a set of valid relations which therefore need not be 
explicitly specified by the programmer. 

For example, Figure 1 shows a program due to HoarelO 

for finding that element of an array B[1 :NNJ whose value is 
F - th in order of magnitude. Weak interpretation results 
in the following valid assertions: 

at arc AI: 1~M~F~N~NN 

at arc Ali: M~I &J~N & 1~M~F~N~NN 

at arc A21 : B[JJ~R~B[IJ & M~.I & J ~N 
& 1-::;'M~F~N~NN 

at arc A 24 : B[IJ~R~B[JJ & M ~I & J ~N 
& 1~M~F~N~NN 

* In this and in subsequent examples, we are deliberately informal, in 
order to present the main ideas as directly as possible. A precise 
statement would take into account the relative locations of the arc at 
which the assertion is formed and the points at which I is decremented. 



Note the interdependence between the asignment J~N at 
A3/ A 4, the decrementing of J, the assertion J 5:N at A 5, 

the test F5:J, the assignment N~J, and the assertion 
F5:N at AI. Note also how B[JJ5:R5:B[IJ becomes 
B[IJ5:R5:B[JJ after the exchange. 

Using loop exit tests and generalization 

Suppose a loop is exited when some test D is true and that 
outside the loop some assertion P is to hold. Since P is to 
hold outside the loop, the assertion {D ~ P} must be true 
inside the loop, just before the exit test. {D ~ P} is the 
weakest inductive assertion at this point, in that any complete 
assertion must imply it. It may itself be a complete inductive 
assertion, in which case the theorem prover 'finds* it to be 
valid; or it may be incomplete, in which case it is found to be 
unprovable. If incomplete, it must be strengthened. Often, 
the forms of P and D suggest appropriate generalizations. ** 
Suppose P asserts that some predicate Q is true of each j in 
the range 15:j 5: Nand D asserts that the loop is exited 
when I ~ N; one might hypothesize that inside the loop Q 
is true of each j in the sub-range from 1 to I, e.g., because the 
loop is counting up on I. This generalization, Vj(15:j5:1 
~ Q (j)) is therefore tried as an inductive assertion. 

As an example, consider the program in Figure 2 which 
tests whether X is prime. It sets the flag J to 0 if X is prime 
and to 1 otherwise. Vista can verify the program given only 
the input, <P, and output, '1', assertions as shown. Combining 
'I' with the loop exit information and simplifying, it obtains 
the weakest loop assertion: {I < X v Vk (25: k < X ~ X 
MOD k~O)}. This is tested for validity, found to be un­
provable, and then strengthened. The result, { Vk (2 5: k < 
I ~ X MOD k ~ 0 } , is found to be a valid assertion. Further 
it validates the output assertion, thus proving the progra~ 
correct. 

Predicate propagation 

Whenever an assertion is known to be valid, it is useful to 
propagate it forward in the program, deriving the strongest 
consequences of the assertion downstream. Note that the 
verification condition6 for a path deals only with the path's 
processing and the assertions at the head and end of the path, 
totally ignoring the rest of the program. Consequences of a 
valid predicate propagated downstream to a cutpoint may 
add new information which is absent in the inductive as­
sertion at that cutpoint. On the path for which the cutpoint 
is the head, the new information may render valid a veri­
fication condition which would be invalid without the new 
information. Predicate propagation has three levels of so­
phistication. 

Assertions which continue to hold, e.g., because they 

* Throughout this paper, we assume that the theorem prover is able to 
?onfirm all valid theorems presented to it by Vista. The theorem prover 
IS, of course, not complete over the integers with exponentiation-that is 
impossible by undecidability arguments. However, in practice, it turns 
out that the theorem prover can handle all the theorems we require. 
** This is discussed in more detail in References 7 and 21. 

A Synthesizer of Inductive Assertions 371 

1/1 = { [J = 0 -+ 'v'k (2 ~ k < X -+ X MOD k * 0)] A 

[J = 1 -+ X MOD I = 0 A I < Xl } 

Figure 2-Testing for prime 

involve variables unchanged on some path, are discovered. 
This is primarily a notational convenience: an assertion 
which holds over some large program region and is needed as a 
lemma in many loop verifications need be stated only once, at 
the head of the region. 

Assertions are modified on passing through decisions and 
assignments to produce their consequences. On passing 
through a decision D in the Yes direction the clause D is 
added, and conversly for the No direction. On passing 
through an assignment V ~E, the clause V = E is added and 
all uses of the old value of V are systematically eliminated. 
For example, if B[JJ5:R is an assertion, then after passing 
through the test R5:S, we have {B[JJ5:R5:S}; after the 
assignment R+-C, we have {B[JJ5:S & R=C}; further, 
after the assignment J~J-1, we have {B[J+1J5:S & 
R=C.} 

When a junction is encountered, the assertion becomes a 
trial assertion for testing on the junction output arc. If it is 
valid there, a possibly useful new fact has been discovered. 
It may be unprovable, in which case a generally weaker 
assertion is formed by taking the disjunction of known 
assertions on all inputs to the junction and tested as a new 
trial assertion on the junction output arc. 

A complete example of predicate propagation may be help­
ful. Figure 3 shows a simple sort program, Example 9 of 
Reference 14. Arc A5 is tagged by hand with an incomplete 
~ssertion: that the portion of the array from B[1J to B[IJ 
IS sorted and that X is no larger than any element in the 
portion of B from B[IJ to B[J -lJ. A complete assertion 



372 National Computer Conference, 1975 

if; ={VQ(2';;;Q';;;N->B [Q-11';;;B[Qll} 

YES 

Figure 3-Sort by successively finding the smallest 

would also include the key fact that no element in the sorted 
portion exceeds any element in the unsorted portion; lacking 
this, verification cannot proceed. Vista discovers the in­
completeness when checking the inductive assertions for 
validity. The assertion that B[1 :IJ is sorted is found to be 
initially true but not provable for subsequent passes around 
the loop AoA6 ... A4As. However, the second assertion, 
Vm(I~m5J-1 ~ X~B[mJ) is found to be valid and is 
so recorded; Vista then propagates this valid assertion 
forward. The path which turns out to be interesting is 
AoA6A7AIA3A4AS. Going along it produces the valid assertion 
at arc A4: {I = 1 v Vm(l -ls.m~N ~ B[I -lJ~B[mJ)} 
which may be read as: either this is the first time through 
the loop or B[l -lJ is the smallest element in the sub array 
between B[l -lJ and B[NJ. This is the missing key fact. 
It is propagated forward to arc As where it becomes a trial 
assertion, is checked for validity, and is found to be valid. 
Using weak interpretation as discussed previously, Vista also 
generates the additional assertions at As: {I ~ K <J ~ N + 1 
& 1 < N & X = B[ KJ}. With these two sets of auxiliary as­
sertions, the output predicate is then validated, thus proving 
the program correct. 

Extracting information from unsuccessful proofs 

When proving mathematical theorems, if some approach 
fails it is often useful to analyze the cause of failure and 

modify the approach to fix up the fault. This idea carries 
over to program verification. Suppose a loop* contains a trial 
assertion P - either specified by the programmer or generated 
as a trial assertion by one of the methods discussed previ­
ously-which cannot be verified around the loop. More 
precisely, let D be the set of conjuncts added because of 
decisions and let F (~) be the transformation to the state 
vector ~ caused by loop assignments; loop verification re­
quires that {V~ (P (0 & D (0 ~ P (F (~) ) } and this may be 
unprovable. Under the assumption that P is correct but 
incomplete, it follows that P (F (~)) must be true; hence, it is 
necessary to find an additional condition C such that {C (~) & 
P (~) & D(~)} imply {C (F (0) & P (F (0) }. Often it turns 
out that the verification condition fails only for certain 
identifiable cases and these cases may be used to construct 
the additional condition C. An example will best explain 
this. 

Consider the program of Figure 4 which sorts an array 
B by straight insertion. At the start of the J-th pass, the 

W +- B [I] 
B [I] +- B [I + 1] 
B[I+1] +-W 

Figure 4-Straight insertion sort 

* We discuss the application of assertion correction to a closed path; 
however, the idea can be used on any path. 



sub array B[1 :JJ has been sorted; the J-th pass inserts the 
element B[J + 1J in its correct position within the sorted 
subarray, thus sorting the subarray B[1:J + 1J. Suppose 
cp and 'IF are supplied as shown, along with the partial in­
ductive assertion on arc As, that Ps = {Yk (1 ~ k ~J & 
k~l ~ B[kJ~B[k+1J)}. Weak interpretation as discussed 
earlier adds {l~l~J<N}. Vista attempts to prove P s 
is valid and finds that the proof fails for only one special case 
on the loop AsA6A7AsA9As: if B[lJ>B[l+lJ then after the 
exchange of B[lJ with B[l + 1J there is no way to show. that 
B[kJ~B[k+l] when k=l+1. This would be true if and 
only if B[lJ~B[I +2J before the exchange and this'has not 
yet been asserted. However, if Ps is correct, this must be 
valid. Further, since 1 ~k~J it follows that I +1 = k~J, 

i.e., I <J. This fact is included as part of the case information, 
resulting in a condition. Vista's analysis continues with path 
AsA6A7AsAIOAl2Al3A2 on which the proof fails in two cases, 
yielding other conditions. The conjunction of the conditions 
simplifies to {l <J & B[IJ>B[I +lJ ~ B[JJ~B[I +2J}. 
This may be read as: even if B[IJ is out of order, it is still 
smaller than B[J +2J. With this conjoined, Ps is valid and 
validates 'IF, thus proving the program correct. 

IMPLEMENTATION 

In the interest of brevity, we confine our discussion to a 
few major points of the implementation. Further detail, 
treatment of other points and discussions of certain aspects 
of the overall organization can be found in References 7, 
20 and 21. In particular, the reader will find there discussions 
of the theory and logical basis of the techniques presented 
below. 

System structure 

The major modules of Vista are (1) the weak interpreter, 
(2) trial generalization generator, (3) predicate propagator 
and (4) assertion correction and predicate initialization 
mechanism. Thus the example in the section weak interpreta­
tion represents a single call to the weak interpreter. The 
section using loop exit tests is handled by the control program, 
using the predicate initialization mechanism and the gen­
eralization generator. The section predicate propagation 
represents manualinvocation of the weak interpreter followed 
by the predicate propagation mechanism. The section 
extracting information from unsuccessful proofs describes a 
manual invocation of the assertion corrector. It is indicative 
of the current status of Vista that when modules are in­
voked manually on the program in Figure 4. the complete 
assertions as both A2 and As are produced without any 
programmer-supplied inductive assertions, but that the 
control program is currently unable to duplicate this. 

The current control program is applicable only to simple 
programs. We now describe a more general control strategy, 
which at present, would have to be executed interactively. 
The first step in assertion synthesis is to evaluate the entire 
program with the weak interpreter. This is a good start, 

A Synthesizer of Inductive Assertions 373 

because the weak interpreter produces assertions of guaran­
teed correctness that are useful during later phases of 
assertion synthesis and it does not itself require information 
other than the input assertion. Next, the strategy is to work 
on one cutpoint at a time, starting from those closest to the 
output assertion and working backwards. At each cutpoint, 
we attempt to convert the information available from weak 
interpretation and programmer-supplied assertions into a 
complete assertion. The predicate initialization mechariism 
is used to generate the weakest possible assertion. Then, as in 
the example involving loop exit tests, a number of possible 
generalizations of the weakest assertion are formed and 
tested for validity. Note that in multiple-loop programs, it is 
not possible to test for correctness until all cutpoints have 
complete assertions; at intermediate phases of assertion 
synthesis, loops without assertions are approximated by finite 
expansions of their bodies. If none of the trial assertions are 
correct and complete, the theorem prover is used to discard 
non-invariant clauses and form the strongest correct but 
incomplete assertion from the trial assertions. This predicate 
is propagated along closed paths back to the cutpoint. The 
result of predicate propagation is tested for new invariants 
and, if any are discovered, new generalizations are formed 
and tested. The discovery of a new invariant is a valuable 
gain in information. Therefore, we employ the new fact as 
quickly as possible. Otherwise the assertion correction 
mechanism is used to produce a new predicate to generalize 
and test. Synthesis proceeds in this fashion until a complete 
assertion is found. 

Weak interpretation and predicate propagation 

Weak interpretation and predicate propagation both 
attempt to derive assertions directly from the program 
structure, using similar processing steps. We discuss predicate 
propagation first and then explain how weak interpretation 
differs. 

Predicate propagation starts with a known valid assertion 
Po. Following the flowchart, processing at each node trans­
forms a predicate P at the node input arc to obtain conse­
quent predicate (s) at the output arc (s). Predicates are 
always expressed using current values of variables. 

A decision node D conjoins to P the clauses D and r-...JD 
on its Yes and No output arcs respectively. It is frequently 
the 'case that the new clause could, if we wished, be combined 
with existing clauses of P to generate additional clauses. 
For example, after adding S ~ T to {R ~ S & T ~ U} we 
could obtain the logically valid additional clauses {R ~ T & 
R ~ U & S ~ U}. The set of such additional clauses can, in 
general, be large-filled with redundant information. Hence, 
it is not a good practice to carry out the expansion. Instead, 
only simplification is performed. For example, if PI = 
{A~B & C=D+1 & F[BJ~E} is the predicate on the 
input arc, then the predicate on the Yes output arc of the 
decision B=C is P2= {A~B & C=D+1 & F[BJ~E & 
B=C}. 

Next, consider an assignment X~G(X, Y) where R(X, Y) 
is the known predicate before the assignment. The strongest 



374 National Computer Conference, 1975 

predicate after the assignment is: {3Xo(R(Xo, Y) & X = 
G (Xo, Y»}. However, this is too strong. Since it contains a 
new variable Xo and since predicates are always expressed 
using current values of variables, this is unsuited to further 
propagation. Instead of using it directly, an attempt is made 
to find a logical consequent in which Xo does not appear. 
This may be done in one of two ways depending on the form 
of the right hand side of the assignment: 

(1) An invertible assignment is one which may be inverted 
to obtain the old value of the assigned variable as a 
function of its new value, i.e., Xo=H (X, Y) for some 
appropriate function H. Using this, Xo may be directly 
eliminated from the strongest predicate, resulting in 
{R(H(X, Y), Y)}. For example, consider the above 
P2 followed by the assignment B+-B+2·E. This 
may be inverted to obtain the old value of B as a 
function of its new value, i.e., BOld=Bnew-2·E. 
Substituting the right hand side, B-2·E, for the 
left, B, in P2 expreses the relations using the new 
value of B. Thus, the predicate on the output arc of 
the assignment is Pa= {A~B-2·E & C=D+l & 
F[B-2·E]~E & B-2 o E=C}. 

(2) A non-invertible assignment is more complex. Clauses 
which depend on the changed variable are deleted. 
However, the consequences of these clauses may not 
depend on the changed variable and these conse­
quences may be invariants; hence, these consequences 
are derived and added to the data base before deletion. 
For example, if the above P2 were followed by B+­
F[D], then the clauses A~B, F[B]~E, and B=C 
would not be valid on the output arc; however, A ~ C, 
and F[ C] ~ E which are consequences are still valid, 
so these are generated and kept. As a final step, an 
equality expressing the new value of the changed vari­
able is conjoined. For this example, the result is 
P4 = {A~C & F[C]~E & C=D+l & B=F[D]}. 

A junction node is the critical step in predicate propaga­
tion since it causes confluence of control and with it the need 
to find an assertion on the output that is valid for each of 
several paths leading to it. Consider a junction with n input 
arcs on which prior processing has resulted in the valid 
assertions PI, ... , P n. Let P n+1 be the valid assertion ob­
tained on the output arc from prior processing (e.g., the 
starting predicate) . 

From PI, ... , P n+l, a new assertion on the output arc, 
Pout, is obtained. Each Pi is written as a set of clauses 
Pi= Cil & Ci2 & ... & Ciki and each conjunct Cil is tested on 
the implication (Plv ... v P n+l ~ C ii) . If this is provable, then 
Cil is a conjunct of Pout. Clauses which fail this simple test 
are tried as loop assertions and tested for validity on entry to 
and around the loop. Clauses which prove to be valid are 
added to Pout. Let P / be the residue after removing from Pi 
the clauses thus found to be in Pout. To propagate this residue, 
(P/v . .. V Pn+t') is formed and added as a conjunct of Pout. 
Finally, the new output assertion, Pout, is compared with the 
previous output assertion, P n+l. Any clause in Pout not in 
P n+1 represents a new valid assertion and may be propagated 
forward. 

Weak interpretation differs from predicate propagation 
in two respects. First, there is no known valid assertion to 
start with. We take as starting predicate Po on a loop the 
disjunction of the results of propagating the input assertion 
along all acyclic paths from the start node to the entrance of 
the loop. This is usually not a loop invariant; however, it can 
be used as a trial predicate and from it the weak interpreter 
attempts to construct a suitable generalization which is an 
invariant. Only simple linear relations between two variables 
are considered; hence, finding suitable generalizations by us­
ing domain-specific heuristics is often possible. * Secondly, the 
implementation differs in that weak interpretation requires 
only very simple deductions, rather than the full power of the 
theorem prover required for predicate propagation. 

With the understanding that only those clauses expressing 
simple linear relations are carried, decision and assignment 
nodes are treated as in predicate propagation. When process­
ing a junction, the first step is as in predicate propagation: 
Each conjunct C / of each Pi is tested in (Plv . .. v P n+l ~ 
C ii) and successful conjuncts are included in the output 
predicate Pout. Generalization occurs when handling the 
conjuncts which fail this test. For example, suppose n = 2, 
PI includes I =J, and P2 includes I =J + 1. The disjunction 
{I =J v I =J + I} would be a logical consequence but prob­
ably not a loop invariant. Weak interpretation forms {I ~J + 
1 & I?:.J} which is logically equivalent but is in a form more 
suggestive of generalization. This is in conjunctive form and is 
propagated around the loop again. If one of these conjuncts 
is an invariant then it will be implied by the result of further 
propagation and so it is kept, while the non-invariant 
conjunct is not thus implied and so is dropped. In this way, 
special cases comprising the starting trial predicate are 
progressively replaced with trial generalizations, some of 
which fail and are dropped while others are invariants and 
remain. 

Constructing and correcting inductive assertions 

Vista's abilities to construct inductive assertions from out­
put predicates and to correct assertions from proofs that fail 
both depend heavily on a close working relationship between 
the trial assertion generator and Pivot, the theorem prover. 
In particular, Pivot's theorem proving process is structured 
to leave a record of the proof that is meaningful in relation 
to the program. At all major steps, Pivot records what 
actions it is taking and its reasons for taking them. Thus, 
when a proof fails, a body of useful information is produced 
for analysis by the trial assertion generator. 

Vista's predicate construction mechanism forms the initial 
trial assertion inside a loop. Assume that a predicate Plj 
must be shown to hold outside a loop, that PI is known to be 
true inside (e.g., from weak interpretation), and that C is 
the computation in exiting the loop. Vista proceeds by asking 
Pivot to prove (PI & C ~ Po). Usually, PI will be insufficient 

* In order to keep this discussion reasonably short, we are somewhat -
imprecise in several places. In particular, the method is only correct 
under suitable restrictions. See [20, 21] for a discussion of these restric­
tions and proofs of correctness. 



for the proof to succeed; however, in the process of theorem 
proving, Pivot will find (implicitly) and simplify the ad­
ditional facts that are needed inside the loop. For example, 
consider a loop with exit test D = {A [IJ ~ Y} for which the 
assertion Po= {3v(Y~v~A[IJ) & Q(v)} must hold after 
exit. Assume the path that exits from the loop contains the 
assignment A[J}-X. Then if it is known by weak interpre­
tation that {I =J} inside the loop, Vista will form the trial 
assertion {A[IJ~ Y~[3v(Y ~v~X) & Q (v) J} because 
{A [IJ ~ Y} is the exit condition and after the assignment 
4.[J}-X the value of A[IJ in Po will be X. 

When correcting assertions after proofs which fail, Vista's 
methods are similar but include special procedures for proofs 
involving simple arithmetic relations. One very useful 
method is to deduce a new invariant equality when the proof 
of a trial equality fails. For example, if Vista is considering the 
trial assertion {X = AN & N ~ 0 & M ~ O} on a loop with the 
assignments Xf-X·B, Nf-N+M, then the clauses N~O, 
M ~ 0 may be proved invariant, while X = AN will be found 
to be unprovable. Vista substitutes the values of variables 
after following the path around the loop into X =AN, 
producing X . B = A N+M. It then uses a simple equation solver 
to find that this new equality would be satisfied if AN. B = 

A N+M. If this new condition is satisfied upon entrance to the 
loop, it will be an invariant, and will allow X =A N to be 
proven invariant. Hence, it is conjoined to the trial assertion 
and a new invariant assertion is produced. 

Vista's method for deducing a new invariant equality 
takes the original clause that could not be proven (e=O), 
and the value of the clause at the ene of the path (e' =0) 
and ,gives them to a simple equation solver which forms new 
equations by eliminating variables. If either equation allows 
direct solution for a variable, the value is substituted in the 
other equation yielding a new equality. A variable V which 
cannot be solved directly may sometimes be eliminated by 
finding a pair of arithmetic terms a, f3 such that all terms in 
ae+f3e' =0 which contain V are cancelled. All new equations 
formed by elimination of one or more variables are then 
tested for validity. 

We now consider the example of an earlier section in more 
detail to show how Pivot is used to determine exactly why a 
trial assertion is insufficient. The path around the inner loop 
of Figure 4 switches B[IJ with B[I +lJ and decrements I. 
Consider the steps involved in trying to validate the partial 
inductive assertion {Vk(l~k~J & k:;6.I ~ B[kJ~B[k+ 
IJ)}, specifically in trying to show that if the assertion is 
true on one pass through the inner loop then it 'will still 
be true on the next pass. Pivot forms cases by considering 
the possible values for k. For values of k other than I-I, 
I, and 1+1, B[kJ and B[k+lJ are unchanged. With k= 
I -1 the assertion will be vacuously satisfied on the next 
pass through the loop. When k = I the goal is established 
directly. The only remaining value of k is 1+1. Pivot de­
cides to prove the path by forming two cases: k:;6.I +1 and 
k = 1+ 1. The proof of the first case succeeds. The second 
proof fails, leaving a record that when B[IJ>B[I +lJ 
and I~2 (so that the inner loop will be followed) and 
1 ~ k ~J (so that k is the domain of the goal quantifier) 

A Synthesizer of Inductive Assertions 375 

and k=I +1 (for a case restriction) then the goal clause 
B[IJ~B[I +2J cannot be established. 

Vista's assertion correcting mechanism examines Pivot's 
records and finds that the goal was created by instantiating 
the quantified trial assertion with k = 1+1. Vista then forms 
a new universally quantified assertion in which the body is 
the original goal clause, in which k is the bound variable 
and in which the domain is the conjunction of the old domain 
and case restrictions on k. This quantifier is then simplified 
by Pivot's expression routines. Since the bound variable can 
be eliminated, the new quantifier reduces to I <J ~ B[IJ ~ 
B[I +2J. Finally, Vista retrieves' the decision information 
I~ 2 and B[IJ> B[I + IJ and forms the additional condition 
{I~2 & B[IJ>B[I +lJ & I <J ~ B[lJ~B[I +2J}. Anal­
ysis of the other path that fails produces similar results 
applicable to that path. Together with the loop-path result, 
these simplify to produce the new assertion {I ~ 1 & I <J & 
B[IJ>BU+l] ~B[IJ~B[I+2J} and allow the program 
to be proven correct. 

CONCLUSION 

Where do we go from here? Given the current state of,Vista, 
what steps should be taken next and what prospects can be 
seen for production program verifiers in day-to-day use 
carrying out assertion synthesis? 

There is currently substantial research, ongoing at various 
laboratories, investigating other methods for synthesizing 
inductive assertions. Particularly promising is the use of dif­
ference equations relating the values of program loop vari­
ables, whose solution may be used to obtain invariants.4 ,l2,l3 

We have implemented a package which finds inductive as­
sertions in this way and are currently integrating it into 
Vista. Symbolic evaluation of the program with simplifica­
tion and pattern matching has been studied2 ,9,l8 as another 
means for finding invariants. The system of Boyer and Moore l 

for proving theorems about pure Lisp functions tries to 
generalize theorems containing common sub expressions ; 
in so doing, it uses methods related to the idea of strengthen­
ing partially specified assertions. 

We suggest that an intermediate-to-expert level of compe­
tence is necessary if a verifier is to be of real use in verifying 
production programs. In particular, the assertions supplied 
by the programmer should be no more extensive than those 
used to explain the workings of a program to an experienced 
programmer. To achieve this level of competence, all the 
above methods are required. To a large extent, these methods 
are both non-overlapping and complementary. For example: 
difference equations are a well-understood means for obtain­
ing equality invariants, but relatively useless for inequalities 
and disequalities (e.g., a:;6.b); weak interpretation is well~ 
suited for simple relations (both equalities and inequalities) 
but unable to produce bounded universally quantified 
assertions; examining the causes of failure in order to patch 
up an assertion which fails is very powerful, but only for trial 
assertions which are sufficiently close to the final invariant. 
Further, it is frequently the case that a relatively simple 
fact found by one method unblocks some other methods, 



376 National Computer Conference, 1975 

allowing a powerful line of attack to proceed. For these 
reasons, it seems most profitable to couple several good 
limited approaches of problem solution, rather than attempt­
ing to rely exclusively on one. 

It must be emphasized that research in assertion synthesis 
is still in its infancy. Assertion synthesis at the level we 
believe desirable is still a distant goal. Programs of realistic 
size and complexity present a range of problems for which we 
have, as yet, no good solutions. Programs containing errors 
and the attendant problems of reconciling programs with 
their specifications offer further, and still harder, challenges. 

Two related issues requiring further investigation are 
worth noting: 

(1) The language for specifying assertions should be im­
proved to facilitate specification of necessary asser­
tions by the programmer (e.g., c.f. Reference 17). 
With the exception of Reference 1, there has been 
little work involving verification of programs contain­
ing assertions with programmer-defined recursive 
predicates. Also, it is difficult to express assertions 
about programs which manipulate list structure de­
structively. Studies in these area are being carried out 
and progress may be expected. It is then necessary 
to discover associated techniques for understanding, 
generalizing, and synthesizing assertions in these 
richer linguistic spaces. 

(2) The theorem prover remains a fundamental module of 
any assertion synthesizing system. Improvements in 
domain-oriented theorem proving are therefore es­
sential. A particular need which arises in assertion 
synthesis is the ability to efficiently check the valid­
ity of a formula and a number of slightly varied 
formulas (e.g., obtained by the deletion of conjuncts 
in the hypothesis of an implication). One would like a 
theorem prover to be able to simply extend, where 
possible, its proof of one formula when trying to prove 
a variant. 

Substantial progress has been made in recent years toward 
the construction of production program verifiers; much re­
mains to be done. The synthesis of inductive assertions is 
only one component, but an important one. Vista demon­
strates that assertion synthesis is possible and can achieve 
significant performance. 

ACKNOWLEDGMENTS 

We wish to thank L. Peter Deutsch for his assistance in the 
use of his program verifier Pivot. 

REFERENCES 

1. Boyer, R. and J. Moore, "Proving Theorems about LISP functions," 
Proc. 3rd Internat. Joint Conf. on Artificial Intelligence, Aug. 1973, 
pp. 486-493. 

2. Cooper, D. C., "Programs for Mechanical Program Verification," in 
Machine Intelligence 6, B. Meltzer and D. Michie (Eds.), American 
Elsevier, New York, 1971, pp. 43-59. 

3. Deutsch, L. P., An Interactive Program Verifier, Ph.D. Thesis, Dept. 
of Computer Science, U. of California at Berkeley, 1973. 

4. Elspas, B., The Semiautomatic Generaton of Indltctive Assertions for 
Proving Program Correctness, SRI Project 2686, Stanford Research 
Institute, July 1974. 

5. Elspas, B., K. L. Levitt, R. J. Waldinger, and A. Waksman, "An 
Assessment of Techniques for Proving Programs Correct," 
Computing Surveys, 4, 2, June 1972, pp. 97-147. 

6. Floyd, R., "Assigning Meanings to Programs," in Proc. of a 
Symposium in Applied Mathematics, Vol. 19, J. T. Schwartz (Ed.) 
AMS, 1967, pp. 19-32. 

7. German, S. M.,'A Program Verifier that Generates Inductive Asser­
tions, Technical Report TR 19-74, Centerfor Research in Computing 
Technology, Harvard U., Aug. 1974. 

8. Good, D. I., "Provable Programs and Processors," AFIPS Confer­
ence Proceedings, Vol. 43, 1974 National Computer Conf., pp. 
357-363. 

9. Greif, I. and R. Waldinger, "A More Mechanical Heuristic Approach 
to Program Verification," in Internat. Symp. on Programming, 
Paris, April, 1974, pp. 83-90. 

10. Hoare, C. A. R., Proof of a Program: FIND," C. ACM, 14, 1, Jan. 
1971, pp. 39-45. 

11. Igarashi, S., R. L. London, and D. C. Luckham, Automatic Program 
Verification I: AIM-200, CS-73-365, Computer Science Dept., 
Stanford U., May 1973. 

12. Katz, S. M. and Z. Manna, "A Heuristic Approach to Program 
Verification," Proc. 3rd Internat. Joint Conf. on Artificial Intell., 
Aug. 1973, pp. 500-512. 

13. Katz, S. and Z. Manna, Logical Analysis of Programs, Dept. of 
Applied Mathematics, Weizmann Inst. of Science, Rehovot, Israel, 
July 1974. 

14. King, J., A Program Verifier, Ph.D. Thesis, Computer Science Dept., 
Carnegie-Mellon U., 1969. 

15. London, R. L., "The Current State of Proving Programs Correct," 
Proc. ACM 25th Ann. Conf., 1972, pp. 39-46. 

16. London, R. L. and D. R. Musser, "The Application of a Symbolic 
Mathematical System to Program Verification," to appear in 
ACM7J,.. 

17. Marmier, E., "A program verifier for PASCAL," Proc. IF!P 
Congress 7J,., North-Holland Publishing Co., pp. 177-181. 

18. Moriconi, M., Semiautomatic Synthesis of Inductive Predicates, 
ATP-16, Depts. of Mathematics and Computer Sciences, U. of Texas 
at Austin, June 1974. 

19. Waldinger, R. J. and K. N. Levitt, Reasoning About Programs, 
Artificial Intell. Center, Technical Note 86, Stanford Research Inst., 
Oct. 1973. 

20. Wegbreit, B., Property Extraction in Well-Founded Property Sets, 
Center for Research in Computing Technology, Harvard U., Feb. 
1973. 

21. Wegbreit, B., "The Synthesis of Loop Predicates," C. ACM, 17, 2 
(Feb. 1974), pp. 102-112. 



Data base management 

Area Director: 
E. F. Codd 
IBM Research Laboratory 
San Jose, California 

Data base management is in a state of ferment due to the emergence within 
the past few years of many new requirements. Amongst these requirements are 
the need to make application programs and terminal activities much more inde­
pendent of the internal representation of data in storage, and the need to sup­
port: 

1. many different kinds of end users at terminals (some interactions being of 
unpredictable scope and complexity); 

2. greatly enhanced data security and privacy; 
3. increased dynamic sharing of data (including concurrent update and 

enquiry); 
4. networks of mutually remote data bases (including very high level data 

sublanguages for low bandwidth communication of requests). 

In· the data base management sessions of this year's conference there is a 
strong emphasis on relational data base management. There are three reasons 
for this: first, this approach appears to be the most advanced in attempting to 
meet all these new requirements; second, the overwhelming majority of data 
management papers submitted to NCC 75 were concerned with implementing 
this approach; third, there has been almost no exposure of this approach before 
in this forum, even though the ideas have gained a solid acceptance in Europe 
and have spawned a pronounced surge in data base oriented research in nu­
merous universities in North America (notably M.I.T., Toronto, Berkeley, 
Florida, and Utah). 

What then are the distinctive features of this approach? This topic will be 
covered by Christopher J. Date in a tutorial to be presented in the first half of 
session Ll. Mr. Date is the author of "An Introduction to Database Systems" 
just published by Addison Wesley. This book contains a thoughtful and very 
clear comparison of the hierarchic, network, and relational approaches. The 
second half of session Ll consists of a panel discussion on the two questions: 

1. What are the major problems in implementing relational data base 
management systems? 

377 



378 National Computer Conference, 1975 

2. Is there any necessary loss of performance if performance-oriented access 
paths are known to the system but not to the application programmer? 

Each panel member has been directly involved in implementing a relational 
data base management system. 

The remaining sessions L2 through L 7 are based entirely upon submitted 
papers. Session L2 provides a striking contrast between two data base ma­
chines: one based upon hierarchic data structures, the other based upon non­
hierarchic relations. Three more relational implementations are described in 
session L3. These implementations differ markedly in scope and style. 

Session L4 deals with relational data base technology. A data base manage­
ment system based upon the relational model must support a user view that is 
devoid of performance considerations. Since the problem of selecting efficient 
retrieval algorithms is removed from the user, this burden must fall upon the 
system itself. One of the papers in session L4 describes an unusual technique 
for efficient interpretation of data selection expressions which involve inter­
entry relationships. A second paper in L4 introduces an important unifying 
mechanism for the services of concurrency locking, authorization, and support 
of multiple tabular views of data. 

Session L5 is concerned with the human factors aspects of query languages 
and with attempts to develop objective experiments for evaluating these lan­
guages. The first paper in this session introduces a novel approach to querying a 
relational data base using a terminal display and employing a technique of 
specification by example. Then follows a psychological study in which human 
subjects (all non-programmers) were taught this technique and tested for speed 
and accuracy in formulating sample queries of various complexities given infor­
mally in English. The third paper reports on a human factors experiment 
designed to evaluate and compare two high level data base query languages in 
use by a sample of programmers and a sample of non-programmers. These re­
search efforts can be expected to trigger many similar investigations in the fu­
ture. 

Session L6 deals with more traditional topics in data management. The three 
papers have as their topics data compression (a useful survey is provided), bi­
nary search trees (which are important for directories and certain kinds of 
indexes), and performance evaluation (a large scale simulation model is 
described). 

The final session L 7 deals with distributed data bases and two important ap­
plication areas-the medical field and urban management. The paper on dis­
tributed data bases provides a framework in which to tackle the problem of allo­
cating files and programs to the nodes of the network. A second paper describes 
a clinical data base system that attempts to cope with the multiple user and 
data entry problems. The urban management paper suggests that totally in­
tegrated on-line data bases for urban problem solving and decision making are 
not yet practical, but that the employment of data files extracted from a com­
mon base for various specialized uses represents a feasible approach. 



RAP-An associative processor for data base 
management 

by E. A. OZKARAHAN, S. A. SCHUSTER and K. C. SMITH 
University of Toronto 
Toronto, Ontario 

INTRODUCTION 

Problems with DBMS on conventional machines 

Recent concepts in data base management systems 
(DBMS) necessitate making the logical view and the 
physical representation of data distinct from each other. 
Currently, this requirement has to be realized in the 
environment of conventional Von Neumann architecture. 
This creates the need for several levels of indirection for 
mapping one structure into the other. Also, efficient 
search mechanisms are needed to handle large data bases 
within concurrent processing and on-line response limits. 
The implementation of these requirements results in 
software complexities and inefficiencies in the following 
way. Pointer mechanisms for mapping structures and 
providing fast access paths have to be implemented by 
software and data. These pointers are extra data requiring 
extensive overhead in storage, access time, and mainte­
nance. 

Recent approaches to hardware support for nonnumeric 
processing 

The limitations of conventional processors prompted the 
design of unorthodox architectures which could distribute 
processing by using parallel hardware configurations. The 
early trends were to use associative search hardware as 
subsystems within the central processor and the operations 
of these subsystems were closely associated with the 
operations of the central processor. 1 These systems, 
however, were restricted to small data bases because of 
their high cost. It is also evident that, with the present 
technology and the foreseeable future, it will not be 
feasible to build large scale pure associative memories as 
required by DBMS. 

The desirable features sought in DBMS environment 
are: 

(a) A large capacity and modular storage medium with 
low cost per bit, 

(b) Ability to directly map logical data structures into 
physical data structures without using auxiliary 
structures, 

379 

(c) Variable length data formats, 
(d) Fast retrieval and update of sets of data with 

respect to the requirements of on-line concurrent 
environments, 

(e) Context (Boolean combinations of content) search 
operations assisted by total associativity, 

(f) Complete instruction sets. 

The solution to the cost limitations of associative 
,memories in view of the desirable features of the DBMS 
environment was the introduction of the idea of using 
distributed logic in inexpensive large capacity circulating 
memory devices. Slotnick was the first to propose an 
associative file processor using a logic head per track 
device. 2 Healy and Parhami studied possible architectures 
which combined logic with a rotating bulk memory to 
achieve string and template matches in a context ad­
dressed manner. 3 ,4 Minsky proposed a scheme which 
involved an arrangement of the key items and data items 
grouped separately using the cylinder concept of a disk 
memory.5 Parker partially designed a device that combined 
each head of a fixed head rotating memory with a single 
IC logic chip.6 The studies mentioned thus far achieve 
only partial associativity and most of the fundamental 
DBMS operations had to be accomplished by the outside 
processor. Su, Copeland, and Lipovski were the first to 
study the design of a cellular processor on a rotating 
device to support the general data structures and require­
ments of DBMS.7,8,9 

The overall design of the data structure, instruction set, 
and hardware architecture for RAP is presented. This 
design has been specified to the gate level. A discussion of 
cost and space estimates is presented in the conclusion. 
Details of this design can be found in a technical report. 10 

RAP ARCHITECTURE 

Basic organization 

An overall configuration of an operational .HAP environ­
ment is given in Figure 1. RAP is an autonomous 
processor which communicates with an outside general 
purpose computer (GPC) only to receive its data base 
contents, to receive its compiled programs, and to send 
back the results of a user's requests. 



380 National Computer Conference, 1975 

RAP 

controller 

set 
function 

unit 

Figure I-Overview of RAP architecture 

The design is composed of a controller, an arithmetic set 
function unit, and a parallel organization of cells. A cell 
consists of a memory component and a logic component. 
The memory unit is one track of a rotating device such as 
a disk, drum, circular shift register, etc. The logic 
component is a microp~ocessor which acts as a "sea~ch 
machine" on data, directs data manipulation, and performs 
limited numeric computations required by data base 
processing. The set function unit is used to combine cell 
results to obtain a value computed over the total memory 
contents. The controller is responsible for overall coordina­
tion and sends control sequences to the cells, controls the 
set function unit, and executes decision commands and 
other RAP primitives that can be accomplished directly in 
itself. 

The logical RAP data structure is stored directly so that 
no transformations are required. Data base contents are 
manipulated directly on their storage by their processors. 
The search criteria are transmitted to all of the cells 
simultaneously. It is evaluated as the memory contents 
"pass by" and the qualified contents are immediately 
manipulated or read out. Because the entire memory is 
processed for each instruction, inverted lists and other 
search aids would not enhance processing speed. More 
important, their absence necessarily eliminates the over­
head of their maintenance. Since RAP has a parallel 
organization and its memory is associative, the response 
time is usually independent of data base size or content 
but does depend on query complexity. A query can be 
made up of one or more assembler instructions. Most 
instructions are executed within one rotation of the entire 
RAP memory contents. 

Since data base management operates mostly in a 
concurrent environment, means must be provided to 
release the device as soon as possible from one operation 
to start another. It cannot tolerate excessive delays or 
overhead. The overall design philosophy is based on this 
principle. There are several hardware provisions through­
out the design to achieve this principle. 

Cell organization 

Each cell consists of a rotating memory, a buffer, an 
information search and ml;lnipulation unit (ISMU), and an 

arithmetic logic unit (ALU). The basic logic blocks are 
displayed in Figure 2. Each cell lies on a serial communi­
cation path and receives status signals from its predeces­
sor and sends signals to its successor. The cell also has 
connections for I/O and signals that are exchanged with 
the controller and set function unit. 

Rotating memory 

Data is read or written via fixed heads---one set for each 
cell-while the memory rotates under these heads. It takes 
one revolution of the store for its contents to be read from 
one end to the other. This time is called the latency. The 
associated memory with each cell is called a track. RAP 
memory space is the sum of the individual cell tracks. 

A rotating bulk memory with high track capacity should 
be selected to achieve low ~cost per bit of storage. 
However, there is an upper limit on bit density ·since there 
is a processor associated with each cell. Equivalently, we 
require a lower limit on bit time-the time between two 
consecutively stored bits. It cannot be lower than a value 
determined by the speed of the processor circuits because 
logic and data/signal transmission must be completed in 
the time elapsed between two bits. A lower limit of 100 
nanoseconds has been achieved as the bit time supported 
by the cell logic if implemented with the current Ie 
technology. 

Buffer 

As the memory rotates under the heads, it is read, 
circulated through logic, and written back after a time 
delay. This delay is proportional to the length of a shift 
register buffer placed between read and write heads. This 
buffer has been designed to have a length of 1024 bits 
which holds a sufficient amount of data exposed to the cell 
logic to support the logical data structure. 

CELLi-1 

contrdler I 
S 
M 

SFU U 

CELLi+1 

A 
L 
U 

data to \/Obus 
and cells 

Figure 2-0verview of cell architecture 



Data structure 

A general data structure called RAP relations (similar to 
normalized relations as defined by Coddll) are stored with 
respect to a fixed track format., Details of the data 
structure and track format are given in the following 
sections. It suffices to say that a relation can be viewed as 
a "table" of data whose rows will make up the blocks of 
data stored on a track. Rows are called tuples because 
they represent a p-tuple of values. Both the ISMU and 
ALU circuits are designed to function on variable length 
data fields within the data blocks. 

Contents of the memory are composed of blocks of data 
and/or garbage. The functions of storage allocation and 
garbage collection are accomplished directly in the hard­
ware. Each cell uses the buffer to pack the data on the 
track toward the beginning of the track by "short circuit­
ing" unwanted items. This accumulates the garbage at the 
end of the data. New data is first inserted at the garbage 
space of related tracks and, if more space is required, a 
new track is initialized and used to store the rest of the 
data. Garbage collection takes place in parallel with other 
operations without the need of user control or intervention. 

InforDlation search and manipulation unit 

This unit is responsible for inter-cell communication, 
decoding of the commands sent from the controller, 
evaluation of data search criteria, I/O data transfers, and 
control of the ALU for data modifications. 

Arithmetic logic unit 

This unit contains a serial adder, multiplier, control 
counters, and logic for arithmetic computations and modi­
fications. Logic for intermediate set function calculations 
(e.g., summation, maximum, etc.) are also present. 

Concurrency facility 

The RAP concurrency facility employs a foreground­
background principle implemented in hardware so that 
long programs can be run on preemptive basis. 

Set function unit 

The set function unit (SFU) provides the logic to 
calculate the set functions count, sum, maximum, mini­
mum, and average over the entire cell memory. Intermedi­
ate results are stored in individual ALU registers of the 
cells. Arithmetic is accomplished 'through a serial adder 
and a serial divider which work on the intermediate results 
as they are collected from the cells. Also provided are. 
counters for control sequencing as well as data gathering 
from the cell units and for transmitting the SFU result to 
the controller. 

RAP 381 

Controller 

The controller is responsible for the overall coordination 
of the cell processors. It loads the search criteria units of 
ISMUs, energizes opcode and mode lines, senses the end 
of an operation, and repeats the cycle for the next 
primitive. The micro-orders cause stack buffer contents 
associated with instructions to be popped off and bussed 
onto cell lines during data block gap intervals. The 
controller also executes certain primitives that can be 
accomplished directly in itself by making use of the 
contents of registers whose values have been stored from 
previous operations. 

Other operations, such as data transfers to and from the 
GPC, parity bit generation, serial-parallel conversion, and 
error checking procedures, which are common routines 
that exist in present devices, will be incorporated into the 
final design. 

Role of the general purpose computer 

A GPC to be chosen for interfacing with the RAP device 
should provide the following main functions: 

(a) Support a data communication environment for 
users with proper I/O facilities, 

(b) Compile user queries expressed in a high level 
query language into RAP primitives, 

(c) Transfer compiled RAP primitives to the RAP 
controller with associated data used as operands in 
the format required by the RAP controller, 

(d) Transfer data to cell storage for data base creation 
and expansion, 

(e) Support a concurrent processing environment and 
thereby administer scheduling of RAP program 
entry queues, 

(f) Control data base security and integrity, 
(g) Maintain relation names, domain names, and data 

value encoding tables. 

RAP DATA STRUCTURE 

The data structure chosen for RAP is a modified 
version of the relational model introduced by Codd. 11 This 
model has been proven to be general enough to build other 
known useful data structures and, more important, present 
the same information conveyed as other data structures in 
a way that achieves a high degree of data independence. 

RAP relational structure 

We can view a normalized relation as a table of data 
about a set of similar entities. The table heading is the 
relation name, the column headings are the entity's 
attributes which are called the domain names, and a row 
represents a p-tuple, or simply a tuple, of values-one for 
each domain-which describes an entity. A relation con-



382 National Computer Conference, 1975 

tains a varying number of tuples and a relational data base 
contains several interrelated relations through common 
domains. 

A candidate key of a relation is a minimal combination 
of domains whose elements (values) uniquely identify every 
tuple in that relation. A primary key is one of the 
candidate keys with which the unique tuple identification 
is based for implementation. 

A RAP relation is a normalized relation of the type 
described above except that duplicate tuples are allowed. 
One restriction is that the degree cannot be higher than a 
number pmax depending on the size of the values ofa 
domain. This limitation is imposed by hardware considera­
tions. It would suffice to state here that due to variable 
word length representation of RAP domains, the range for 
a RAP relation's maximum degree is 29 :::::; pmax :::::; lOI. 
We expect this to he sufficiently high enough for most 
applications. If this is not the case, then two or more 
relations can be made from the larger one. This is 
accomplished by partitioning the domains and repeating 
the primary key with each subrelation. 

Track format 

Since RAP eliminates intermediate mapping structures, 
a method of representing the data structure directly on the 
storage had to be found. Due to the linear nature of a 
memory track, a direct mapping of data structure would 
require it to be linearized. The relational structure lends 
itself to linear form easily as shown in Figure 3. The tuples 
of the relation, which are themselves linear representations 
of domain values, can be stored one after the other on a 

a) track structure 

lnameitem I 
I...--hw ----I 

b)relation name block 

c)domain name block 

¥~value1 item I 2 3 I ~ ) 
deere mark d)tuple block 
flag bits 

encoded name, value, 
or delimiter 

Figure 3-Track format 

track. This structure is similar to a file on a conventional 
disk. The first two data blocks contain relation and domain 
names respectively and act as "header" blocks. Each 
succeeding block contains the concatenated value items in 
a tuple. The order of ·domain names determines the order 
of the values in each tuple. If a relation has too many 
tuples to be stored on one track, then several cell tracks 
are used. The hardware requires the relation and domain 
names to be repeated once on each track of a relation and 
that no cell can have tuples from more than one relation. 

All names, values, and delimiters are items of encoded 
bit patterns. The relation name block is made up of one 
fixed length item. Domain and tuple blocks can have a 
variable number of items in different relations but not 
within the same relation. The end of these blocks is 
indicated by a delimiter item (DL). Blocks are separated 
by fixed length interrecord gaps. The beginning of a track 
is indicated by a marker which is detected electronically. 
This marker also implies the physical end of a track. The 
logical end of a track is indicated by a tuple block which 
carries a delimiting "track end" (TKE) item stored in the 
first value item's position. Items that make up domain and 
value blocks can also be variable length. However, these 
lengths must either be 32, 16, or 8 bit encodings. Each 
item is preceded by a two bit code to indicate the item's 
length. The fourth code is used to specify DL or TKE 
items which are distinguished from each other by the 
following bit. There is an upper bound on the length of a 
RAP relation tuple which is determined by the length of 
the cell buffer (1024 'bits). 

Tracks for a relation are allocated one track at a time as 
needed. Relation tracks are not required to follow sequen­
tial or contiguous track addresses since each relation track 
is identified separately. This results in different relation 
tracks intermixed with each other. By making each track a 
separate entity by itself and spreading the relations across 
noncontiguous cells, output efficiency is greatly increased. 
This is because several contiguous tracks are serviced as 
one channel group. Output occurs from one qualified cell 
in each channel group and outputs from these groups are 
interleaved to achieve a piped transmission. 

There are five control bit positions at the beginning of 
each tuple. The first bit is the delete flag (DF). If this bit 
is on, it indicates that tuple is deleted and garbage 
collection hardware can "erase" the tuple. Garbage collec­
tion on each track is handled dynamically. The data is 
packed toward the beginning of a track. In case of 
insertions, all of the relation tracks are examined and their 
available garbage tuples are filled with incoming tuples. If 
still more insertions are to be made, a new cell and its 
relation track can be allocated automatically. 

The A, B, C, and D are mark positions composed of one 
bit each. If a tuple is T-marked, T being any combination 
of these 4 bits, the corresponding mark bits are turned on. 
Likewise, a tuple is said to be T -unmarked if the T 
combination of bits are turned off. There are several 
instructions for marking tuples and/or using the markings 
as extra data values for qualifying sets of tuples. These 



bits allow the results of one instruction to be used by 
another. This greatly extends the associative capability of 
RAP. 

A fixed length gap is required between every two blocks. 
The lengths of these gaps are proportional to the amount 
and speed of logic required between block operations. 

Preformatting of a track involves writing of all the 
control information of the block types on a track and 
separating the blocks by gaps. Relation and domain blocks 
must be filled in by their names. Tuple blocks are written 
until the physical end of the track. Their DL identifiers 
and the length codes in the first two bit positions of each 
item must also be filled in. The data portion of value items 
does not contain any information at that time. The logical 
track end is indicated by writing the identifier TKE in the 
first value item position of the very first tuple block. The 
first value item position of each tuple block starts at the 
sixth bit position leaving room for the delete flag and mark 
bit positions. Care is taken to make all of these five bit 
positions zero while preformatting each tuple block. 

RAP INSTRUCTION SET 

Basic relational operations 

The RAP instruction set is designed to construct the 
basic operations necessary to support relational data bases 
and, at the same time, to be feasible for hardware 
implementation. 

These basic operations are: 

(a) Selection, 
(b) Implicit join, 
(c) Set operations, 
(d) Projection, 
(e) Free variables, 
(f) Arithmetic set functions, 
(g) Simple arithmetic update. 

Selection is performed by applying a Boolean search 
predicate to each tuple of a relation and "marking" or 
reading the tuples satisfying the predicate. The implicit 
join operation allows values retrieved from one relation to 
be used as the retrieval criterion on another relation. The 
assocIatIOn is made through domains common to both 
relations. The set operations of union, intersection, com­
plement, and difference can be done on the selected 
subsets of a relation. Projection is the act of selecting a 
subset of domains to be retrieved and eliminating duplicate 
values after a possible selection has occurred. A "free 
variable" is the term given to an implementation of the 
following capability. 12 It involves the selection of tuples 
based on the values of domains which occur in other 
tuples of the same relation. RAP programs which accom­
plish projection and free variables require explicit itera­
tion. 

RAP 383 

Structure and· operation of the instructions 

Many RAP primitives reflect in their structure the basic 
characteristics of a DBMS query. These primitives specify 
an operation to be performed, a data specification section 
indicating what data is to be operated upon, and a 
qualification section specifying what conditions must be 
met before the operation can be fulfilled. The general 
format of these primitives is: 

(LABEL) (OPCODE) [(SPECIFICATION): 
(QUALIFICATION) ] 

The label is an optional symbolic address of an instruction. 
The opcode specifies the operation. A specification has the 
format: 

RN(DNI, DN2, ... , DNK) 

where RN is a relation name and DNI, DN2, ... , DNK is 
an optional domain list. There is a hardware limit k on the 
number of K domains that can be included for any 
specification. A qualification is a Boolean expression of 
conditions on the values of the domains of a relation and 
on the mark bit values of the tuples in which the domain 
values are stored. It can take one of the following forms: 

(a) Null (a qualification which does not specify any 
condition), every tuple of the relation is considered 
to satisfy the qualification, 

(b) QI/\Q2/\·· '/\QK, denoting conjunction, 
(c) QlvQ2v ... vQK, denoting disjunction. 

where K must be less than or equal to k-the hardware 
limit of the number of parallel comparators-and Qi is one 
of the following: 

(1) (RN)' (DN) (COMPARATOR) (OPERAND), 
-where DN is a domain name in relation RN, 
-COMPARATOR is one of =, :/-, <, ~, >, ~, 
-OPERAND is one of: 

e (REG) (a register), 
einteger, 
eliteral (characters bounded by quotation 

marks), 
ea GPC program variable name (enclosed in 

parentheses ), 

(2) RN .MKED(T), 
(3) RN.UNMKED(T), 

where T is replaced by one of the following mark bit 
combinations: 

A,B,C,D,AB,AC,AD,BC,BD,CD,ABC,ABD, 
ACD, BCD, ABCD. 

Permutations are considered to be identical, 
(4) CELL (I), where I is the integer identification of a 

cell. 



384 National Computer Conference, 1975 

Consider the following example. Assume a ternary RAP 
relation EMPLOYEEwith domains NAME, NCHILDREN, 
and SALARY and further assume that one of its tuples is 
stored in track format with the values shown below. 

(a) DF=O 
A=l 
B=O 
C=l 
D=O 

(b) NAME=CLARK 
(c) NCHILDREN =3 
(d) SALARY=9500 

Some of the qualifications that this specific tuple satisfies 
are: 

(a) NULL 
(b) EMPLOYEE.MKED(A) 
(c) EMPLOYEE. UNMKED(BD) 
(d) (EMPLOYEE.NAME= 'CLARK') 

(EMPLOYEE. MKED (AC)) 
(e) (EMPLOYEE.NCHILDREN =I 5) 

(EMPLOYEE. SALARY > 5000) 
(EMPLOYEE. MKED(A)-

/\ 

v 
v 

At this stage, even without seeing the details of the 
instructions, it is possible to show how set operations can 
be implemented by using marking qualification logic. 
Assume that at one instance tuples of a relation are A and 
B-marked by criteria-l and criteria-2 respectively. We 
denote the subset of tuples A-marked by criteria-l by 
"SETA" and those B-marked by criteria-2 by "SETB". 
The following qualification statements can be written for 
the set operations: 

(a) SET An SETB (intersection) qualification: 
RN.MKED(AB) 

(b) SETAUSETB (union) qualification: 
(RN.MKED(A))V(RN.MKED(B)) 

(c) SETA-SETB (difference) qualification: 
(RN.MKED(A))A(RN.UNMKED(B)) 

(d) --, SETA (complement) qualification: 
RN. UNMKED(A) 

Each command is formulated as an assembler language 
instruction for the RAP machine. One assembler instruc­
tion is implemented as one controller micro-code sequence 
which activates the hardwired logic in the cell circuits. 
The opcodes for each instruction will be given followed by 
a brief explanation. Instruction timings are given in the 
following section. 

Retrieval commands 

These commands are used in the process of locating the 
qualified rows of relations, and, if required, outputting 
them to the GPC. The commands included in this group 

are: 

(a) MARK(T»): Indicates the tuples of a relation which 
satisfy a Boolean condition on its values by setting 
"marking" bits, 

(b) RESET(T»): Resets marks, 
(c) READ: Transfers fields of data from qualified and/ 

or marked tuples, 
(d) READ_REG: Transfers the contents of registers 

from the controller, 
(e) CROSS_MARK(T»): Marks a second relation 

based on the values of a previously marked relation 
(i.e., a hardware implementation of the implicit join 
operation), 

(f) CRS_COND_MARK(TH (Tl)]): 
A variation of CROSS_MARK; used for cross 
marking several relations into a single relation, 

(g) GET_FIRST_MARK(T»): Used for queries which 
involve the selection of tuples based on values 
which occur in other tuples of the same relation 
(e.g., used within a program implementation of the 
free variable and projection operations). It finds the 
first marked tuple of a relation, resets it, and takes 
the value of a domain from that tuple and marks 
other tuples in the same relation whose same or 
other compatible domain satisfy a comparison on 
that value. It can also store value items of a tuple 
into the controller registers to be used as arguments 
in subsequent operations. 

(h) GET_FIRST: Places the specified values of the first 
marked tuple found into controller registers and 
resets the mark, 

(i) SAVE: Stores values from a single tuple into 
controller registers. 

Update commands 

These commands provide value replacement by direct 
insertion or after arithmetic operations. The updated 
values are written back immediately so that a separate 
rewrite command is not required. The commands in this 
group are: 

(a) REPLACE(T»): Replaces the value of a domain of 
a set of qualified tuples with a new value, 

(b) ADD(T»): Adds a constant, contents of a controller 
register, or contents of another numeric domain to a 
domain of a set of qualified tuples, 

(c) SUB(T»): etc., 
(d) MUL(T»): etc., 
(e) DIV(T»): etc .. 

The optional marking capability of these instructions is 
used for recovery from device or software crashes. As 
each update takes place, the combinations of T -mark bits 
are set. If a crash occurs, the operations can be resumed 
on tuples with T -markings still off. 



Set function commands 

These commands compute functions over qualified sets 
of data. Similar to update commands the memory contents 
are evaluated "in place" so that transportation of large 
amounts of data is eliminated for simple computations. 
The commands included in this group are: 

(a) SUM: Sums the values of a set of qualified tuples, 
(b) COUNT: etc., 
(c) AVERAGE: etc., 
(d) MAX: etc., 
(e) MIN: etc .. 

Insertion and deletion commands 

The commands are: 

(a) INSERT: Inserts a new tuple into a relation, 
(b) DELETE: Deletes qualified tuples of a relation, 
(c) DROP_DOMAIN: Deletes a domain from a relation. 

Data base creation and destruction commands 

The commands are: 

(a) CREATE: Preformats a cell so that it may be used 
to store and manipulate tuples of a relation, 

(b) DESTROY: Removes all formats and data from a 
single cell or all cells containing data from a 
specified relation. 

Decision and transfer commands 

As in any programming language, certain instructions 
are required for testing system indicators, providing condi­
tional and unconditional transfers within a program, and 
indicating termination. The following instructions provide 
these functions: 

(a) TEST: Sets the contents of a status register based 
on the contents of markings, 

(b) BC: Transfers control to another instruction if a 
condition is met, 

(c) EOQ: Signals the end of a query. 

SUMMARY OF INSTRUCTION TIMINGS 

Table I gives the time required for the execution of each 
of the RAP instructions. 

SELECTED SAMPLE QUERIES 

Some sample queries will be programmed with the RAP 
instruction set. The samples are similar to those described 
in the literature for languages SQUARE,t2 SEQUEL,13 and 

RAP 385 

Table I-Instruction Timing 

TYPE OF OPERA- INSTRUCTION 
TION 

Retrieval commands MARK 
RESET 
READ 

READTREG 
CROSS_MARK 

GETTFIRSLMARK 
GETTFIRST 
SAVE 

Update commands ADD 
SUB 
MUL 
DIV 
REPLACE 

Set function commands COUNT 
MAX 

Insertion and deletion 

MIN 
SUM 
AVERAGE 

commands DELETE 
INSERT 

DROPTDOMAIN 

Data base creation and DESTROY 
destruction com- CREATE 
mands 

Decision and transfer TEST 
commands BC 

EOQ 

EXECUTION TIME 
IN NUMBER OF 
REVOLUTIONS 
UNLESS OTHER-
WISE SPECIFIED 

Minimum=1I2 on aver­
age, 

Maximum=Number of 
qualified tracks oc­
cupied by the rela­
tion 

Negligible 
Depends on data base 

and k (Reference 10) 
Same as CROSS­

_MARK +1 
1 +Fraction 

1 +Fraction 
1 +Fraction 
1 +Fraction 
1 +Fraction 
2 +Fraction 

Minimum = 1, Maxi­
mum = 2 

Maximum number of 
relation tuples per 
track 

Fraction 

Negligible 
Negligible 
Negligible 

ALPHA 14 which were proposed as high level query lan­
guages for relational data· bases. These languages have 
been proven to be complete in the sense that they are at 
least as powerful with respect to query formulation as the 
relational calculus. The RAP instruction set includes all 
the capabilities of these languages. All of the queries used 
as examples in the above languages have been pro­
grammed in RAP. 

The data base used for the following examples consists 
of the following relations: 

EMP(NAME, DEPT, MGR, SAL) 
LOC(DEPT, FLOOR) 
SALES(DEPT, ITEM, VOL) 

The employee relation has a tuple for every employee 
giving his name, department, manager's name, and salary. 



386 National Computer Conference, 1975 

The location relation LOC gives the floor on which each 
department is located, that is, it has a tuple for each 
department floor pair. The SALES relation has a tuple 
indicating the yearly volume sold for an item in each 
department. 
Q.I Find the employee whose salary is greater than that of 
any employee in the SHOE department. 

The RAP program is: 

(a) MAX [EMP(SAL):EMP.DEPT = 'SHOE'], 
(b) MARK(A) [EMP:EMP.SAL ) (REGF_I)], 
(c) EOQ 

Q.2 List the names and managers of employees in the 
SHOE department with salaries greater than 10,000. 

The RAP program is: 

(a) READ [EMP(NAME,MGR):(EMP.DEPT = 'SHOE') 
(EMP.SAL ) 10000)] [WORKAREA], 

(b) EOQ 

Q.3 Move the location of the TOY department to the 
second floor. 

The RAP program is: 

(a) REPLACE 
[LOC(FLOOR):LOC.DEPT = 'TOY'] [2], 

(b) EOQ 

Q.4 Find the items sold by departments on the second 
floor. 

The RAP program is: 

(a) MARK(A) [LOC:LOC.FLOOR = 2] Mark depart­
ments on floor 2, 

(b) CROSS_MARK(C) 
[SALES:SALES.DEPT = LOC.DEPT: 
LOC .MKED(A)] 
Cross mark into SALES tuples the matching depart­
ments in the marked LOC tuples 

(c) READ [SALES(ITEM):SALES.MKED(C)] 
[WORK-AREA] 
Read items sold by departments on the second floor 
or 

(b l ) CROSS_MARK(BC [SALES:SALES.DEPT 
=LOC.DEPT: LOC.MKED(A)] 

(2) 

(3) 
(4) 

(5) 

GET_FIRST_MARK(A) [SALES:SALES. 
ITEM= SALES.ITEM:SALES.MKED(b)] 
RESET(ABC) [SALES: SALES.MKED 
(ABC)] 
TEST B-RAIL 
BC LI,RAILTSTAT(B) 
(1) through (4) is a projection 
operation on the answer found in b l 

READ [SALES(ITEM): SALES.MKED(C)] 
[WORKAREA] 
read projected results that are 
C-marked 

(d) RESET(C) [SALES] 
(e) EOQ 

TABLE II-Cost and space estimates for a single cell 

Device complexity 
Catalogued SSI+MSI 

components 
All MSI (some to be 

made specially) 
MSI + LSI (some MSI 

and all LSI to be 
made specially) 

CHIP COUNT/TOTAL COST (INCLUDING 
MULTI WIRE TMWIRING AND CIRCUIT 

BOARDS) 

k=l k=5 k=5 & Concurrency 
300/$425 399/$575 458/$657 

70/E$156 10 1/E $224 114/E$253 

28/E$124 40/E$180 42/E$190 

COST AND SPACE ESTIMATES 

A preliminary logic design of the cell hardware has been 
completed to the gate level. This design has provided 
estimates for the cost and space requirements of the RAP 
hardware. The number of parallel comparator units k must 
be considered in terms of software implications and 
hardware costs. At this stage an intuitive value of 5 
appears to satisfy a wide range of software applications. 
Table-2 presents the space and cost figures. E$ denotes 
estimated costs. 

The relationship between the k values is linear. The RI 
W buffer is an existing LSI component. All components 
other than the LSI are constructed from T2L some of 
which are Schottky and high speed types. The power 
dissipation for an implementation at the MSI scale would 
be 17, 25, and 29 watts per cell for k=I, k=5, and k=5 & 
concurrency respectively and a lower dissipation will result 
with LSI implementation. 

The costs in the table are given for the full capabilities 
of the system, that is, all of the instructions are included. 
The first row gives the catalogued small quantity figures 
which can be used for the construction of an initial 
prototype. The controller circuitry dealing with the RAP 
functions is about the size of one cell. This excludes the 
read only and other buffer and stack memories as well as 
the circuits in the controller 110 function unit. 

A review of current industrial technology indicates that 
disk memories could contain a track capacity of 0.5*106 

bits with a latency less than 50 milliseconds. Two hundred 
cells with this track capacity can accommodate a large 
data base on the order of 108 bits of compressed data. For 
very large data bases RAP can be used as an intelligent 
virtual memory to be backed up by conventional large bulk 
memories. 

ACKNOWLEDGMENT 

This research was supported in part by the National 
Research Council of Canada. 

REFERENCES 

1. Dugan, J. A., R. J. Green, J. Minker, "A Study of the Utility of 
Associative Memory Processors," Proceedings of the ACM National 
Conference, 1966. 



2. Slotnick, D. L., "Logic Per Track Devices," Advances in Computers, 
Academic press, 1970. 

3. Healy, L. D., K. L, Doty, G. J. Lipovski, "The Architecture of a 
Content Addressed Segment Sequential Storage," Proceedings of 
FlCC, 1972. 

4. Parhami, B., "A Highly Parallel Computer System for Information 
Retrieval," Proceedings ofF lCC, 1972. 

5. Minsky, N., "Rotating Storage Devices as Partially Associative 
Memories," Proceedings of the ACM SIGFIDET Workshop on Data 
Description, Access, and Control, 1972. 

6. Parker, J. L., "A Logic Per Track Retrieval System," IFIP Congress, 
1971. 

7. Su, S. Y. W., G. P. Copeland, G. J. Lipovski, "Retrieval Operations 
and Data Representations in a Context Addressed Disk System," 
Proceedings of ACM Programming Languages and Information Re­
trieval Interface Meeting, 1973. 

8. Copeland, G. P., G. J. Lipovski, S. Y. W. Su, "The Architecture of 
CASSM: A Cellular System for Non-numeric Processing," First 
Annual Symposium on Computer Architecture, 1973. 

RAP 387 

9. Copeland, G. P., S. Y. W. Su, "A High Level Data Sublanguage for 
Context Addressed Segment Sequential Memory," Proceedings of the 
ACM SIGFIDET Workshop on Data Description, Access, and Control, 
1974. 

10. Ozkarahan, E. A., S. A. Schuster, K. C. Smith, A Data Base 
Processor, Computer Systems Research Group TR-43 , Univer.sity of 
Toronto, September 1974. 

11. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," CACM, 13,6, 1970. 

12. Boyce, R. F., D. D. Chamberlin, W. F.King III, M. M. Hammer, 
Specifying Queries as Relational Expressions: SQUARE, IBM Techni­
cal Report RJ 1291, IBM Research Laboratory, San Jose, California, 
October 1973. 

13. Chamberlin, D. D., R. F. Boyce, "SEQUEL: A Structured English 
Query Language," Proceedings of ACM SIGFIDET Workshop on Data 
Description, Access, and Control, May 1974. 

14. Codd, E. F., "A Data Base Sublanguage Founded on the Relational 
Calculus," Proceedings of ACM SIGFIDET Workshop on Data 
Description, Access, and Control, 1971. 





The datacomputer-A network data utility* 

by THOMAS MARILL and DALE STERN 
Computer Corporation of America 
Cambridge, Massachusetts 

OVERVIEW 

The Datacomputer is a large-scale data management and 
storage utility for use by a network of computers. The 
system is designed to provide facilities for data sharing 
among dissimilar machines, rapid access to large on-line 
files, storage economy through shared use of a trillion-bit 
store, and improved access control. 

The present paper provides a conceptual overview of the 
system. Detailed treatment of the access language, 
software architecture, and relation to other developments 
in the database field4,5,7,8,9 will be taken up in subsequent 
papers. 

NETWORKS AND UTILITIES 

Starting in the early 1960s, the idea that stand-alone 
computers could cooperate through communication 
facilities began to be explored, 1 and. the concept of the 
resource-sharing network evolved.2 In such a network, 
each computer draws on the others to supplement its own 
resources of hardware, software, and data. Today, the 
best-known network of this type is the Arpanet,3 which ties 
together some forty-odd computers of different types. 

Within a resource-sharing network, there is a natural 
tendency toward specialization of network nodes. Thus, 
for example, medium-scale machines with good time-shar­
ing facilities will be used for interactive processes, but 
heavy scientific computation will tend to be passed to 
other machines that are particularly adept at such tasks. 
The factoring of problems into their constituents, the 
assignment of these constituents to the appropriate ma­
chines, and the recombination of results will tend to be­
come an automatic process. 

In the limit, specialized network nodes become what 
may be termed "utilities", that is, machines which 
perform a restricted range of functions solely for the 
benefit of the other machines. The Datacomputer is a net­
work utility in this sense. It is entirely specialized for the 
performance of data management and storage functions. It 
offers resources to other machines on the net but does not 
draw on the resources of these machines. 

One may speculate that the trend toward specialized 

* Work supported by the Advanced Research Projects Agency, Depart­
ment of Defense. 

389 

network utilities will continue, and that the traditional 
stand-alone general-purpose machine will eventually 
disappear from the scene. The computer world envisioned 
in such a speculation might consist of a network contain­
ing a few very large Datacomputer-like systems, a few 
very large computational utilities ("number crunchers"), 
and a large number of small human-interaction units 
(such as intelligent terminals), having limited computa­
tional power and local storage. It is not clear that anything 
else is needed. 

The justification of network utilities must primarily, of 
course, be made on economic grounds, by demonstrating 
that economies of scale and economies of specialization 
can be realized. In the case, specifically, of a data utility, 
there is an added justification: centralization reduces the 
severity of the technical problems of data sharing and may 
also alleviate some of the problems associated with pri­
vacy. If all data is kept in one box, one knows where to go 
look for it; by the same token, one knows where the con­
trol and protection procedures must be applied. 

DESIGN CONCEPTS 

Logically, the Datacomputer system can be viewed as a 
box which is shared by a variety of external processors, 
and which is accessed in a standard notation called "data­
language." (See Figure 1.) The present section discusses 
the principal concepts underlying the design of the system. 

Network data sharing 

The Datacomputer provides data sharing services 
within a network environment. There are three principal 
design implications of this fact. 

Data conversion 

A database stored on the Datacomputer is sharable by 
all computers having access to the system. Thus, a single 
database is shared not only among users of different 
interests, but among users of different hardware. 
Character codes, floating point number representations, 
and word sizes vary from user to user; so do the 
representations of variable length and variable structure, 
as well as high level data structure attributes. The 



390 National Computer Conference, 1975 

DATACOMPUTER 

Figure I-Logical view of datacomputer 

Datacomputer system is required to perform translations 
between various hardware representations and data 
structuring concepts. 

Characters, bytes, and numbers are stored under the 
control of the machine storing the data. The machine read­
ing the data specifies the format it requires. As data is 
output, the indicated data conversions are performed. 

Self-contained requests 

In most approaches to data management (for example, 
the CODASYL approach4) the assumption is made that 
the data management system is in close contact with the 
application program. Thus the data management system 
can rely on the full capabilities of an application language 
(for example, COBOL) as being immediately available for 
processing the data. 

This is not the case in a network environment, where the 
bandwidth between the application program and the data 
management system is relatively low. Thus, datalanguage 
must be designed to allow self-contained requests to be 
shipped to the Datacomputer to be executed there in toto. 

Consider, for example, the problem of updating a large 
personnel file to reflect an across-the-board salary increase 
of 5 percent. In a conventional approach, the application 
program would sequentially obtain every record by mak­
ing appropriate calls to the data management system, up­
date the salary field, and replace the record (or build a 
new file) by calls to the data management system. 

In a network, such an approach would be undesirable 
for large files, since it would require the entire file to be 
shipped twice, once to the application program, and once 
again back into storage. Accordingly, datalanguage is 
designed so that self-contained requests may be shipped to 
the Datacomputer from the application program. The 
Datacomputer itself performs the indicated function and 
signals the application program that the job has been com­
pleted, without requiring the records to be shipped to the 
application program. 

Datalanguage does not, however, prevent the user 
program from generating a request which would cause the 

Datacomputer to ship an entire file to the requesting com­
puter. That is, the Datacomputer can be used as a "file 
manager" in the style of the TABLON system,s as well as 
a data management system. For small files, this may be 
the preferred mode of use. For example, a short document 
that needs to be edited might best be shipped as a unit to 
the machine on which the editing will be performed, and 
then shipped back for storage. 

Computer-oriented 

The Datacomputer communicates with programs that 
run on remote machines. The fact of remoteness precludes 
the use of simple subroutine calls or similar means of com­
munication conventionally used within a single machine. 
The communication, furthermore, is not with people at 
terminals, who can be expected to make intelligent 
responses when failures or unusual circumstances occur, 
but with programs. Hence, all synchronization messages, 
error messages, language statements, and file descriptions 
must be creatable and readable by programs; likewise, a 
facility for checkpointing by user programs is required. 

Large on-line files 

The Datacomputer is designed to have an on-line 
storage capacity of a trillion bits and to accommodate a 
wide variety of file sizes. In particular, the system handles 
files whose size approaches the total available space, that 
is, files in the trillion-bit range. To achieve efficient access 
to such files, two special facilities are included. 

Inverted file structure 

No adequate large file system can be designed without 
providing some mechanism for calculating the location of 
data in storage, given the attributes of the data to be 
retrieved. In the Datacomputer, this capability is achieved 
through a system of inverted files. * 

At the user's option, files stored at the Datacomputer 
are totally or partially inverted. Once the file has been 
loaded, the inversion tables are maintained automatically 
by the system and need not be of concern to the user. 
Requests against a file may be composed without 
knowledge of the inversion options that have been selected 
for that file. The system will use the inversions, to the 
extent that they apply in a particular request, to limit the 
amount of sequential search that must be performed, 
thereby speeding up its retrieval process. 

Multiple staging strategies 

Internally to the Datacomputer, all data is physically 
organized into pages. which move among the three levels of 

* In a direct file one lists, for each entity, the properties of that entity. In 
an inverted file (also called inversion) one lists, for each property, the 
entities (or the location of the entities) having that property. 



storage: primary (core), secondary (disk), and tertiary 
(mass store). The movement of pages is dictated by 
various staging strategies. The particular strategy used is 
selected by the system to optimize the requests currently 
being executed. The fact that the Datacomputer can itself 
select among the available strategies hinges on the fact 
that entire requests are transmitted to the system, inform­
ing the system at one time of the user's intent with respect 
to a given file. 

Examples of staging strategies are as follows: 
(i) Move the whole file to disk and work from disk. This 

strategy is applicable to small files that easily fit into the 
available secondary storage buffer area. 

(ii) Move pages from tertiary store to core, process the 
pages, and output directly from core, bypassing disk. This 
strategy is applicable, for example, in the case where only 
a small portion of the data read from tertiary storage is to 
be sent to the user. 

(iii) Break the request down so as to operate on seg­
ments of a file, and stage to disk one segment at a time. 
This strategy becomes particularly effective when in­
formation is available (from the inversion tables, for 
example) to indicate that some segments are not needed to 
fulfill the request, and can therefore be skipped. 

Access regulation 

The problem of controlling the access of programs to 
data in a general-purpose machine is notoriously difficult. 
By definition, a general-purpose environment allows the 
programs within it enormous latitude in the functions they 
can perform, and it appears that programs can often be 
written to circumvent existing access regulation 
procedures by taking advantage of coding errors in the 
operating system, hardware bugs, momentary malfunc­
tions, or operational errors that arise in unexpected cir­
cumstances. Such hostile programs are sometimes able, 
without authority, to access data, delete data, or crash the 
system and prevent other users from legitimately access­
ing data. 

In the environment of the Datacomputer, the situation 
is quite different, since the system is logically a closed, 
dedicated, special-purpose box, which responds only to a 
limited set of commands and does not provide a general­
purpose computing facility. A hostile user program cannot 
be run on the box because the box does not run user pro­
grams. The approach can inherently provide stronger 
guarantees that programs without proper access authority 
will not be able to access or damage data contained in the 
Datacomputer. It is possible-though this needs to be ex­
plored further-that the Datacomputer approach lends it­
self to a proof that unauthorized access cannot occur. 

Economy of scale and specialization 

A variety of mass storage devices are coming on the 
market. These devices-the Ampex TBM, IBM 3850, 
Precision Instrument 190, among others-all have very 

The Datacomputer 391 

PRIMARY 
STORAGE 

1 MEMORY BUS 

r I 
SECONDARY SYSTEM TERTIARY 
STORAGE PROCESSOR STORAGE 

1 110 BUS I 
1 

IMP 
PERIPHERALS 

INTERFACE 

IMP 

I 
ARPANET 

Figure 2-Hardware overview of system 

high price tags, ranging from several hundred thousand to 
several million dollars, depending on configuration. They 
all, however, provide very low per-bit unit cost, with the 
lowest per-bit cost occurring in the largest configurations. 
Thus, while few stand-alone installations could afford the 
entry price, by pooling many users' requirements into a 
shared Datacomputer facility, the low per-bit cost of the 
mass store can be passed on to the users. 

The savings can be substantial. Disk storage equipment 
(at the low end of the currently-available price-range) 
costs about $20 per megabit of storage. Mass stores cost 
about $1 per megabit, some twenty times less. All of these 
prices may be expected to decrease as technology 
improves, but there is no reason to suppose that the rela­
tive advantage of the economy of scale will not remain. 

Certain additional economies can also be realized 
through specialization. In designing a specialized system it 
is possible to choose hardware and implement software in 
such a way as to optimize for the particular ap.plication, 
since there is no requirement to provide general-purpose 
services. In the particular case of the Datacomputer, it is 
possible to take advantage of new technologies as they be­
come available, by making internal modifications and ad­
ditions to the hardware and software of the system. This 
can always be done so long as datalanguage remains in­
variant, since the user program does not "see" the 
hardware or software of the system. 

HARDWARE OVERVIEW 

The architecture of the system is shown in Figure 2. The 
system processor is a DEC System-10 (PDP-10). Memory 
is present at .three levels: core, disk, and TBM.6 Pe­
ripherals are used for software development and for input 



392 National Computer Conference, 1975 

DATA 

DATA 
CHANNELS 

'--.,---;r--,----r----r--r---.----r----.--.----' (SWITCH) 

CONTROL 

Figure 3-Ampex TBM configuration 

(SWITCH) 

TRANSPORT 
DRIVERS 

of data from tape. The system is interfaced to the Arpanet 
IMP,a which in turn interfaces to two 50 kilobit/ second 
telephone lines into the network. 

Figure 3 shows in greater detail the configuration of the 
Ampex TBM tertiary storage subsystem. The system 
consists of three types of components, interconnected by 
two banks of switches. Channels are subdivided into two 
half-channels, one for reading and one for writing, each 
with a 6 megabit/ second bandwidth. Each tape transport 
has two tapes, with a combined capacity of about 1011 bits; 
the maximum configuration has 64 tape transports. The 
transport drivers, or controllers, are switchable to any of 
the transports. In operation, a transport driver is switched 
to a tape transport, which is in turn switched to a data 
channel. Control information is passed to the transport 
driver, and data flows through the data channel. Data is 
written redundantly on the tape in a helical video scan 
with a density of 1 megabit/ square inch. The average ac­
cess time is 15 seconds. 

DATALANGUAGE 

Datalanguage is the language in which all requests to 
the Datacomputer are stated. Datalanguage includes 
facilities for data description, for database creation and 
maintenance, for selective retrieval of data, and for access 
to a variety of auxiliary facilities and services. 

Datalanguage is a high-level language, which presents 
the user with a view of data which is independent of 
considerations of the physical devices on which the data is 
stored. The end user need not concern himself with search 
and scheduling techniques that are device-dependent. 

Data representations are a special concern, because of 

the diversity of the user community. Data attributes 
which are ignored in other systems must be specified in 
this environment. The user must be able to map the data 
representations and data structuring concepts of his own 
machine onto those of the Datacomputer. 

A basic characteristic of datalanguage is that all data is 
described. Descriptions are stored in the Datacomputer di­
rectory and are available to the user program in machine­
readable format. A description contains the information 
needed to interpret the data, that is, information on data 
representations and structure. 

An I/O transaction requires two descriptions: one for 
the data as it is stored-the "file description"-and one 
for the data as it comes in or goes out over the net­
work-the "port description." Through the file descrip­
tion, the data administrator has control of how his data 
will be formatted on the Datacomputer. He can choose the 
representation that corresponds to the way the data will be 
accessed most frequently. In this way, the computation 
needed for reformatting is minimized, and higher 
bandwidths in and out can be. achieved. Through the port 
description, the end user controls how the data as he sees 
it on his machine is formatted. 

The data description facilities for ports and files are 
identical. In moving data between a file and a port, the 
Datacomputer performs the necessary reconfigurations of 
the data, including conversion from one elementary data 
type to another and pruning and reordering of branches in 
a hierarchical data structure. 

Figures 4 and 5 show a port and file description, respec­
tively, for a file of weather data. The port, called 
RESULTLIST, contains a list of "structs", called 
RESULT. Each RESULT has a city, date, and a 
minimum and maximum temperature. In this particular 
example, all of the data elements are fixed-length ASCII 
strings. 

The file, called WEATHER, is tree-structured. Each of 
the 5,000 stations has some identifying information about 
the station and then a list of 31 weather observations. 
I = D indicates that the inversion option is being chosen 
for BSN, CITY, and REGION. This will cause the 
Datacomputer automatically to build inversion tables, 
which allow for content-based retrieval without sequential 
search of the data base. 

Figure 6 shows a retrieval request that selects and 
outputs data based on the value of REGION and the 

CREATE RESULTLIST PORT LIST 
RESULT STRUCT, P=EOR 

CITY STR (22) 
DATE STR (3) 
TEMPERATURE STRUCT 

END 

MIN STR (4) 
MAX STR (4) 
END 

Figure 4-Sample datalanguage port descriptioH 



maximum temperature. * The for-loop selects those sta­
tions with REGION equal to Massachusetts. Since the 
inversion option was chosen for REGION in the file 
description, the Datacomputer does not actually look at 
each station, but uses the inversion to find the selected sta­
tions. However, the user program submitting the retrieval 
request need not know that REGION is inverted; the 
request could be executed in any case. 

For each ·of the selected stations, the second for-loop 
retrieves observations with TEMPERATURE.MAX 
greater than 300 (degrees Kelvin). Transmittal of data is 
indicated by assignment. Each RESULT record has four 
values: CITY, DATE, TEMPERATURE.MAX, and 
TEMPERATURE.MIN. 

This example maps data from a 2-level tree-structured 
file to a I-level tree-structured port. The observations in 
the port, unlike the ones in the file, are not organized by 
station; rather, the CITY is repeated for each output 
record. 

In order for a request submitted by another machine to 
be executed, the Datacomputer must synchronize with 
external processes. Figure 7 shows the same request as 
above, along with the messages needed for synchronization 
of the Datacomputer and the other process. The first five 
characters are coded to be machine-processable. For 
example, the .1200 message indicates that the Datacom­
puter is ready for more datalanguage. Other messages 
direct the user program to send data, to send a new 
request, to close out the transactions, etc. 

CREATE WEATHER FILE LIST(O,5000), P=EOF 
STATION STRUCT 

END 

BSN STR(6), 1=0 
CITY STR(22), 1=0 
REGION STR(22), 1=0 
WORLD STR(22) 
OBS LIST (31) 

OBSERVATION STRUCT 
DATE STR(3) 
TEl1PERATURE 

MIN STR(4) 
MAX STR(4) 

PRECIP STR(4) 
WINDS STRUCT 

SPEED 
GUSTS 
DIRECTION 

VISIBILITY 
CLOUDS STR(4) 
GENERAL STR(4) 
PRESSURE 

STRUCT 

END 

STR(4) 
STR(4) 
STR(4) 
STR(4) 

STR(4) 

Figure 5-Sample datalanguage file description 

* The symbols "j*" and ,,* j" are delimiters for comments. 

END 

END 

OPEN RESULTLIST j 
OPEN WEATHER j 

The Datacomputer 393 

FOR WEATHER.STATION liITH REGION EQ 'MASSACHUSETTS 
FOR RESULTLIST.RESULT, OBSERVATION WITH TEMPERATURE. MAX GT ' 300' 

/* 300 KELVIN IS 80 FAHRENHEIT. THAT IS HOT 
IN OCTOBER IN MASSACHUSETTS */ 

RESULT. CITY = STATION. CITY j 

RESULT. DATE = OBSERVATION. DATE j 

RESULT.TEMPERATURE = OBSERVATION.TEMPERATURE 
END j 

END j 

Figure 6-Sample datalanguage retrieval request 

STATUS OF DEVELOPMENT 

The Datacomputer has been offering service on the Ar­
panet since late 1973, using disk-storage only. Installation 
of the TBM tertiary store is scheduled for 1975. 

The system is undergoing a phased development; suc­
cessive versions offer increased capabilities to users by 
providing increasingly larger subsets of datalanguage. 
Thus, the development proceeds in an operational setting 
in which design errors and implementation bugs can be 
discovered early through feedback from actual users. 

The version of the system currently offering service on 
the Arpanet (Version 0/11) is an intermediate version 
which provides adequate facilities for many applications, 
such as the ones described below, but by no means for all 
applications. An enhanced version is scheduled for mid­
'75, with additional capabilities planned beyond that date. 

As successive versions extend the range of datalanguage, 
previously written user programs incorporating datal an­
guage can either remain invariant or may require small 
modifications. Changes to Datacomputer hardware, such 
as the installation of TBM, are not reflected in datalan­
guage, and therefore require no change to user programs. 

APPLICATIONS 

In this section three representative applications of the 
Datacomputer are discussed. The first two are in opera­
tion, and the third is currently being developed. 

On-line information retrieval 

As a service to the Arpanet community, a program at 
MIT Project MAC automatically surveys the status of all 
Arpanet hosts three times per hour around the clock. At 
each run, the SURVEY program attempts to connect up to 
each host, and stores the data, time, status, and response 
time. The data is automatically passed to the Datacom­
puter, where the historical SURVEY file is then updated 
by the current data. 

As a companion to the data-collection facility, SURVEY 
provides on-line user functions that allow the database to 
be interrogated. A user on the network logs into MIT and 
composes his request for information in the on-line lan­
guage supplied as part of the SURVEY application. The 
SURVEY program translates these requests into datal an-



394 National Computer Conference, 1975 

;J200 11-11-74 1201:53 
.1210 11-11-74 1207:53 

OPEN RESULTLIST ; 
;UOOO 11-11-74 1208:09 
;J209 11-11-14 1208:09 
;J200 11-11-14 1208:09 
.1210 11-11-14 1208:09 

OPEN WEATHER ; 
;J209 11-11-74 1208:12 
;J200 11-11-74 1208:12 
.1210 11-11-74 1208:12 

RHRUN: READY FOR REQUEST 
LAGC: READING NEW DL BUFFER 

DHKD: ADDING PUN£TUATION 
RHRUN: EXECUTION COMPLETE 
RHRUN: READY FOR REQUEST 
LAGC: READING NEW DL BUFFER 

RHRUN: EXECUTION COMPLETE 
RHRUN: READY FOR REQUEST 
LAGC: READING NEW DL BUFFER 

.1210 11-11-74 1208:12 LAGC: READING NEW DL BUFFER 
FOR WEATHER.STATION WITH REGION EQ 'MASSACHUSETTS 

.1210 11-11-74 1208:14 LAGC: READING NEW DL BUFFER 
FOR RESULTLIST.RESULT, OBSERVATION WITH TEMPERATURE.MAX GT ' 300' 

.1210 11-11-14 1208:14 LAGC: READING NEW DL BUFFER 

.1210 

.1210 

.1210 

11-11-14 1208:14 
1* 300 KELVIN IS 

11-11-74 1208:15 
IN OCTOBER IN 

11-11-74 1208:15 

LAGC: READING NEW DL BUFFER 
80 FAHRENHEIT. THAT IS HOT 
LAGC: READING NEW DL BUFFER 

MASSACHUSETTS *1 
LAGC: READING NEW DL BUFFER 

.1210 11-11-74 1208:16 LAGC: READING NEW DL BUFFER 
RESULT.CITY = STATION. CITY ; 

.1210 11-11-74 1208:18 LAGC: READING NEW DL BUFFER 
RESULT.DATE = OBSERVATION. DATE ; 

.1210 11-11-74 1208: 18 LAGC: READING NEW DL BUFl-'ER 
RESULT.TEMPERATURE = OBSERVATION. TEMPERATURE 

.121011-11-741208:19 LAGC: READING NEW DL BUFFER 
END ; 

.1210 11-11-74 1208:20 LAGC: READING NEW DL BUFFER 
END ; 

; J205 11-11-74 
.1241 11-11-74 
SOUTH ~IEYMOUTH 

SOUTH WEYMOUTH 
NORWOOD 
.1261 11-11-74 
; J209 11-11-74 
; J200 11-11-74 
.1210 11-11-74 

1208:23 RHRUN: SUCCESSFUL COMPILATION 
1208:26 OCPOO: (DEFAULT) OUTPUT PORT OPENED 

283 281 320 
287 279 320 
288 271 326 

1208:29 OCPOC: (DEFAULT) OUTPUT PORT CLOSED 
1208:30 RHRUN: EXECUTION COMPLETE 
1208:30 RHRUN: READY FOR REQUEST 
1208:31 LAGC: READING NEW DL BUFFER 

Figure 7-Sample datacomputer output and protocol messages 

guage, sends the datalanguage to the Datacomputer, 
receives output from the Datacomputer, and presents the 
output to the user at his on-line terminal. The database 
management functions are all performed at the Datacom­
puter. 

plication, by means of a program called Datacomputer 
File Transfer Program (DFTP), which runs at the com­
puter center. This program allows a local user program to 
store a file on the Datacomputer, retrieve a file, and add 
and delete a directory node. All DFTP-Datacomputer dia­
logue (datalanguage and protocol messages) is invisible to 
the user; the operation is automatic; access control 
mechanisms are provided. DFTP is particularly useful in 
this situation because the computer center is short of on­
line storage· for its users, and alternative solutions would 
involve magnetic tape and manual intervention. 

File management 

A university computer center on the Arpanet routinely 
uses the Datacomputer system in a file management ap-



Large shared file with multi-host access 

In an application under development, the Datacom­
puter will be used as a central storage location and dis­
tribution point for a large database of seismic data 
collected from around the world in real time. Data will 
flow through the Arpanet to the Datacomputer, where it 
will be stored on-line. The data rate into the Datacom­
puter will grow over time, reaching a maximum of about 
20 kilo bits per second, 24 hours per day (6.3 Xl 011 

bits/year). Users of the data will be able to access the 
central database from any host machine in the Arpanet. 
By sending proper datalanguage requests to the Datacom­
puter, the host machine will be able to select arbitrary 
subsets of the large file and have these subsets shipped 
back in formats suitable for the particular host. 

ACKNOWLEDGMENTS 

Many people in the Datacomputer group at CCA have 
contributed to the development of the system, and their 
contribution is gratefully acknowledged. Special thanks 
are due to Richard A. Winter, HallamG. Murray, David 
W. Shipman and Jeffrey M. Hill. 

The Datacomputer 395 

REFERENCES 

1. Marill, T. and L. G. Roberts, "Toward a Cooperative Network of 
Time-Shared Computers," Proceedings AFIPS Fall Joint Computer 
Conference, 1966, pp. 425-431. 

2. Roberts, L. G. and B. D. Wessler, "Computer Network Development 
to Achieve Resource Sharing," Proceedings AFIPS Spring Joint 
Computer Conference, 1970, pp. 543-549. 

3. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C. 
Walden, "The Interface Message Processor for the ARPA Computer 
Network," Proceedings AFIPS Spring Joint Computer Conference, 
1970, pp. 551-567. 

4. CODASYL-Data Base Task Group Report, ACM, New York, 
October 1969 and April 1971. 

5. Gentile, R. B. and J. R. Lucas, "The TABLON Mass Storage Net­
work," Proceedings AFIPS Spring Joint Computer Conference, 1971, 
pp. 345-356. 

6. Damron, S., J. R. Lucas, J. Miller, E. Salbu, and M. Wildman, "A 
Random Access Terabit Magnetic Memory," Proceedings AFIPS 
Fall Joint Computer Conference, 1968, pp. 1381-1387. 

7. Codd, E. F., "Recent Investigations in Relational Data Base 
Systems," IBM RJ, 1385, April 1974. 

8. Model 204 Database Management Software System-User Language 
Reference Manual, Computer Corporation of America, September 
1974. 

9. Canaday, R. H., R. D. Harrison, L. L. Ivie, J. L. Ryder, L. A. Wehr, 
"A Back-End Computer for Data Base Management," Communica­
tions ACM, 1974, pp. 575-582. 





RISS-A generalized minicomputer relational 
data base management system 

by DENNIS McLEOD 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

and 

MONTE MELDMAN 
Forest Hospital 
Des Plaines, Illinois 

INTRODUCTION 

With the recent growth in popularity of low cost, relatively 
powerful minicomputers, it is clear that associated data 
base management systems are required. Nearly all of the 
minicomputer systems that are currently available com­
mercially have at most rudimentary data base manage­
ment capabilities. Consequently, in this paper we discuss 
the design and implementation of a minicomputer rela­
tional data base management system: the Relational In­
quiry and Storage System (RISS). RISS provides a 
"naive" user interface, to allow nonprogrammers to deal 
routinely with a data base without the aid of a program­
mer, as well as an applications program interface. These 
interfaces facilitate data base access, modification, and 
restructure. RISS is a generalized and context-adaptable 
system, but it maintains a degree of efficiency 
guaranteeing cost-effective operation. 

Minicomputer data base management 

In this paper we are concerned with describing effective 
data base management facilities for computers used by or­
ganizations that have small scale needs and a small 
budget. There are many organizations which have applica­
tion environments that require data base management ca­
pabilities, but which cannot justify a large expenditure of 
funds on a computer system. Minicomputers go a long way 
toward solving the hardware cost problem. But, more sig­
nificantly, it is clear that such an organization cannot af­
ford to develop the required computer system software de 
novo. Unlike the approach of Taylor and Lloyd l (for 
example), in which a complete minicomputer information 
system is developed, we will assume that a presupplied 
operating system and language translator (or translators). 
will be used. An example of such a system, which we will 
use in this paper, is the Resource Time-Sharing System 
(RSTS-ll) for the PDP-11 computer supplied by the 
Digital Equipment Corporation. 

397 

In addition, it would be extremely desirable to permit 
an organization to obtain (e.g., purchase) a generalized 
data base management system which "fits neatly on top 
of' the operating system. Whitney2 refers to this type of 
data base management facility as a fourth generation data 
management system. Some general considerations appro­
priate to the development of such a system have been re­
viewed by McLeod.3 Since it is probably not possible to 
construct a generalized data base management system 
which can adapt to every aspect of a particular applica­
tion environment, it is necessary to provide an effective in­
terface between the data base management system and ap­
plications programs. But, whenever possible, the data base 
management system should allow nonprogrammers to deal 
directly with the data base. A large percentage of a user's 
needs should be satisified without the need to consult a 
programmer. Therefore, it is necessary to develop a very 
high level (nonprocedural) language to allow the "naive" 
user to deal effectively directly with the data base. 

Approaches to data base management 

As pointed out by Codd and Date/ there are two major 
approaches to data base management: 

1. The network approach, as proposed by the 
CODASYL Data Base Task Group5 

2. The relational approach, as proposed by Codd,6 
among others 

A continuing controversy exists between the proponents of 
the network approach (e.g., Bachman7

) and the 
proponents of the relational approach (e.g. Codd). A 
detailed analysis and comparison of these two approaches 
is presented by Codd and Date.4

,8 We believe that the rela­
tional approach is best suited to our goals and require­
ments. In support of the relational approach, Boyce, 
Chamberlin, King, and Hammer9 state that "Tradi­
tionally, files are structured to optimize a particular ap-



398 National Computer Conference, 1975 

plication program .... A modern data base management 
system should be capable of responding to any new unan­
ticipated query in uniform time without requiring a 
restructuring of the data and without impacting previously 
written queries." Specifically, for our purposes some of the 
most relevant advantages of the relational approach over 
the network approach are: 

1. It provides a simpler and more unified user data 
model, resulting in systems that are easier to use and 
maintain. 

2. It is much more data independent, and consequently 
results in systems that are more generalized. In addi­
tion, relational data bases are easier to alter, e.g., 
when new data relationships are discovered. 

3. It is much easier to express data integrity constraints 
(limitations on the permissible data in a data base) 
in a generalized manner. 

4. Data retrieval and modification requests are easier to 
express (in a generalized manner). These requests 
may be expressed in a way that is much less proce­
dural. 

5. The emphasis is on the use of sets (in the 
mathematical sense, not the CODASYL Data Base 
Task Group sense), rather than on handling one 
record at a time. 

6. Sharing and protection requirements are more easily 
satisfied, due primarily to the simplicity of the un­
derlying data base model and absence of highly dis­
tributed access paths. 

7. Implementation issues are isolated from the logical 
data base model. This results in increased in­
tersystem compatibility and, most significantly, 
allows a structured approach to implementation. 

THE RELATIONAL APPROACH 

Codd6 introduced the relational model of data "which 
appears to be the simplest possible data structure 
consistent with the semantics of information and which 
provides a maximum degree of data independence."9 As 
very concisely stated by Codd: 10 "In the relational ap­
proach there exists an interface at which the totality of 
formatted data in a data base can be viewed as a collec­
tion of nonhierarchic relations of assorted degrees defined 
on a given collection of simple domains {domains whose 
elements are not decomposable as' far as the data base 
management system is concerned)." 

In an attempt to apply some of the recent developments 
in the area of relational data bases to the minicomputer 
environment, it was decided to design a minicomputer 
relational data base management system. We have also 
implemented this system, calling it the Relational Inquiry 
and Storage System (RISS). 

For any particular computer installation, RISS may be 
used to support one or more data bases. As an example, let 
us focus on one data bas,e in the system, called "personnel 
information." A data base consists of relations and 

domains. One of the relations in this particular data base 
is called "employee," and is described below by a table 
representation: 

Name 

K. Smith 
N. Greenberg 
R. Jones 

Number 

11135 
11136 
1125 

Department 

Research 
Research 
Data Processing 

Sex 

f 
f 
m 

The rows of the table correspond to tuples of the relation 
(records), and the columns correspond to instances of 
particular domains of the data base. A domain is a 
particular class of data values (objects). More than one 
column of a relation may have the same domain. A useful 
representation of a domain is a datatype. A datatype may 
be viewed as a specification of the class of objects a 
domain may contain. For example, the datatype "Sex" 
may be specified by stating that there are three possible 
values: "f" (or "female"), "m" (or "male"), and null (un­
known). Of course, a datatype specification will often be 
more complicated than this. 

The "employee" relation above has four columns. Each 
column is a distinct domain in this case. Each of the three 
tuples in this relation contains one data item (possibly 
null) for each column of the relation. Implicit here is the 
fact that tuples may be added to and deleted from the 
relation as "employees" are added or deleted. Also, the 
value of any column for a given tuple may be altered at any 
time. The structure of a relation may also be changed, e.g. 
by adding a new column; in some sense this results in a 
substantial change in the meaning of the relation. 

RISS employs, without loss of generality, normalized 
relations,l1 so that they may be represented by a table. 
The table representation of a relation should not contain 
essential ordering information.6 The table may be ordered 
in a useful manner, but the order should be re­
constructable from data in the relation. Each tuple of the 
relation may be distinguished by its primary key, that is, 
by one or more columns which uniquely specify that tuple. 
In the "employee" relation, either "Name" or "Number" 
may be used as a primary key. 

INTERFACE LEVELS 

Liskov and Zilles12 have discussed the use of abstract 
data types (levels of abstraction), and Aiello13 has re­
viewed the support provided for this by existing program-

. ming languages. We believe that this approach to data 
management is one that has great potential value in con­
junction with data base management systems. In addition, 
it seems advantageous to provide a structured (layered) 
approach to the data base management system interface. 
In this approach, each type of user is allowed to approach 
the system at a level consistent with his current needs. 

In RISS, there are two interface levels. First, the 
"naive" user interface level is for routine (trained) users of 
the system, such as data clerks, as well as for managers 
and researchers who use the system occasionally. This in-



terface level is based on a set of commands and command 
groups (cohesive sets of commands) which enable the 
"naive" user to access and modify the contents of a data 
base. Second, the (applications) program interface level 
allows programs to access and modify a data base by call­
ing upon a set of primitive functions. Let us now examine 
the two interface levels in more detail. (Additional details 
may be found in the current RISS documentation.14.15 ) 

RISS functions 

The RISS functions are a set of callable routines which 
may return information to the caller. These functions are 
callable from programs written in the language used to im­
plement RISS, which is the same language that is used to 
write RISS applications programs. In effect, these func­
tions define an extension of the (host) language. Functions 
are provided to facilitate the creation and deletion of rela­
tions to / from a data base, the addition and deletion of 
columns to/from a relation, the return of information 
about the columns (domains) of a relation, and the return 
or alteration of the value of a specified column for a 
particular tuple in a relation. 

At this point, it is important to observe that in RISS we 
have not dealt with domains in the general sense that is 
most desirable. That is, we have not permitted the user to 
express a variety of types of integrity constraints. The 
ways in which the user may specify and/ or restrict the 
permissible objects in a given domain are indeed very 
limited. The only type of constraint allowed is the specifi­
cation of the storage representation, such as an integer or a 
varying length character string. We believe that it would 
be extremely advantageous to allow many other types of 
constraints such as "all the values of a column must be 
selected from a prespecified finite set of objects", or "all 
values in the 'name' column of relation 'employee' must 
exist in the 'person' column of relation 'master list.' " We 
are currently investigating the needs of the users of RISS 
in this area, as well as the applicability of abstract data 
types to the handling of domains. 

Data base query languages 

At this point, we should note that Codd10 identifies five 
types of languages which have been developed for the 
query and modification of relational data bases: 

1. element-by-element 
In this type of language only one tuple of a relation 
may be referenced at a time. The RISS (applica­
tions) program interface level is an example of this 
type of language. 

2. algebraic 
These types of languages, such as MACaims16 and 
the Multics RDMS17 involve operations on entire 
relations. 

RISS 399 

3. relational calculus 
Codd's ALPHA/8 the primary example here, is a lan­
guage based on the calculus of relations. 

4. mapping oriented 
SQUARE by Boyce, Chamberlin, King, and Ham­
met' provides an example of this type of language. In 
SQUARE the user learns a simple query specifica­
tion format which is powerful and concise. An 
English language oriented version of SQUARE has 
been implemented by Boyce and Chamberlin. 19 

Query by Example by Zloof!° is another rather in­
genious example of this type of language. The RISS 
"naive" user interface level is related to these lan­
guages, although it is certainly less general. 

5. natural language 
Codd's RENDEZVOUS21 can truly deal with 
"casual" users (users who have little knowledge of 
the data base management system), by allowing 
them to express queries in natural language. The 
system will ask the user for help if it cannot com­
pletely understand the query. Clearly this type of 
language is extremely desirable, but nontrivial to im­
plement. 

As mentioned previously, we believe that it is advanta­
geous to utilize a structured approach to the relational 
data base management system interface. A good approach 
might be a four level system, such as: 

1. a set of element-by-element primitives (lowest level), 
such as the RISS primitive functions 

2. a set of operations based on the relational calculus, 
such as ALPHA 

3. a language, such as SQUARE, for "naive" users (or 
the RISS "naive" user interface level) 

4. a natural language based level for "casual" users, 
such as RENDEZVOUS 

As a compromise, RISS has levels of the first and third 
types only. 

RISS "naive" user interface level 

The RISS "naive" user interface level has three basic 
components, which we will discuss in some detail: a rela­
tion editor, a retrieval package, and a data base manipula­
tion and maintenance package. 

The editor 

It seems very important that users who perform editing 
operations on relations (such as creating and updating 
tuples) be provided with a cohesive package which sup­
ports their needs but isolates them from unnecessary 
details. RISS provides such a package: the RISS editor. 
The user enters the editor, specifying the relation to be 
edited, and may then use the editor commands to examine 
and modify the relation. 



400 National Computer Conference, 1975 

The editor design is based on that of the Multics editor 
"edm."22 A relation is viewed as an ordered list of tuples. 
There is a "current tuple pointer", which points to the 
first tuple in the relation when the editor is entered, and 
may be moved by editor commands so that it points to any 
tuple in the relation. The editor contains commands that 
allow the user to: 

1. move the pointer an integer number of tuples for­
ward or backward 

2. move the pointer by searching a column for a 
specified value (e.g. for character strings an "exact 
match" or "substring" search) 

3. delete one or more tuples after (including) the cur­
rent tuple 

4. create a new tuple after the current tuple 
5. display or change the value of a column of the cur­

rent tuple (several ways are provided), or of all 
tuples in the relation 

6. provide descriptive information about the relation 
(e.g. the (domain) name of a column) 

The retrieval package 

The RISS retrieval package is designed to allow the user 
to retrieve and analyze the data in RISS relations. It 
provides commands which facilitate: 

1. selection of a set of retrieved tuples (retrieved set) on 
the basis of a column value comparator (e.g. 
sex= "male", age> 18) 

2. modification of the retrieved set by forming the 
union or intersection of the retrieved set with a new 
set of tuples selected by a column value comparator 

3. extraction of a subset of the columns of the tuples of 
the retrieved set 

4. printing a tabular or other type of report based on 
the retrieved set 

5. printing simple statistical information (e.g. mean, 
median, for numerical data) for the retrieved set 

6. forming several groups of the data in a particular 
column by specifying a range of values for each 
group, and obtaining a list of how many tuples of the 
retrieved set fall into each group 

7. producing a list of all the distinct values of a 
particular column for the retrieved set and the fre­
quency of occurrence of each distinct value. 

Of course, complex combinations of the above operations 
are also possible. 

The maintenance and manipulation package 

The RISS data base maintenance and manipulation 
package allows the user to perform various operations 
necessary for the maintenance and routine use of a data 
base. Not all of these operations need be accessible to all 

users. They include facilities for relation creation and de­
letion, relation copying, sorting, and merging ("joining"), 
adding and deleting columns to/from a relation, etc. 

IMPLEMENTATION 

An implementation of RISS has been completed using 
the RSTS-11 computer system at Forest Hospital in Des 
Plaines, Illinois. The language used, both to implement 
RISS and to allow applications programs to access RISS 
(the host language), is called Basic-Plus. A relatively 
powerful translator for this high level language is supplied 
with the RSTS-11 system. 

Although implemented in a high level language via a 
translator which is not a strict compiler but is partially in­
terpretive, the RSTS-ll implementation of RISS is suffi­
ciently efficient. The basis for this statement is the general 
opinion of the RISS users that the system is very respon­
sive. This is not to say that there are not some "bottle­
necks" in the initial version of RISS, but that in general 
these appear not to be serious with respect to the context 
of the minicomputer environment. 

It may be interesting to mention that the RSTS-ll RISS 
implementation was accomplished in less than .4 man­
years. Work began in February, 1974 and the initial ver­
sion was completed and released for general use in August, 
1974. Since its release, RISS has run with no modifica­
tions to the software. We believe that this satisfying result 
is due to the structured approach taken in the design and 
implementation (such as the structured interface). In ad­
dition, a surprisingly small amount of data base main­
tenance (by programmers or experts) has been required. 
That is, "naive" users have been able to maintain their 
own data bases for the most part. 

Storage of information 

All information necessary to support RISS data bases is 
stored in files provided by the RSTS-11 file system. The 
scheme adopted for RISS is to use three files for each rela­
tion. First, the relation descriptor file contains a descrip­
tion of the relation, including the number of tuples cur­
rently in the relation, along with a description of each 
column of the relation and the corresponding domain. 
Second, the tuple file contains an entry for each tuple in 
the relation. Each entry is a list of pointers (possibly null), 
one for each column of the relation. These entries are 
stored sequentially as fixed-length blocks in the current 
implementation. The pointers in the tuple file point to the 
actual data items, which are stored in the third file, the 
column value file. Actually, if the data item is capable of 
being stored in a space smaller than that occupied by a 
pointer (three words), then it is stored in place of the 
pointer. Additionally, there is a file that contains the 
names of all relations and domains in a data base (a data 
base "directory"). 

All files are accessed via the RSTS-11 mechanism which 



operates on a standard buffered file mechanism, with 
blocks of 512 bytes (ASCII characters). However, a 
method has been developed to allow the RISS functions 
(applications programs interface level) to deal with four 
datatypes: pointers, integers, floating point numbers, and 
variable length character strings. This was accomplished 
by constructing a set of file system interface functions 
which convert these four datatypes into a form compatible 
with the basic RSTS-11 file mechanism. 

RISS functions 

As discussed previously, the RISS functions operate on 
a low level, and unlike the "naive" user interface level, 
their basic structure is implementation dependent. Specifi­
cally, this is because they actually manipulate the relation 
representation. The standard set of RISS functions present 
in the RSTS-11 implementation deals with the relation file 
representation described in the previous section (above). In 
this scheme, tuples are referenced by their index (row 
number in the table representation), and columns in a 
similar manner (column number). If another relation 
representation is desired, or a modification of the simple 
table representation is desired, ~uch as inverting one or 
more columns (e.g., the primary key), then a modified set 
of functions can be constructed. Such a method for invert­
ing columns in RISS relations is currently under develop­
ment. 

It is important to note that, due to the limitations in the 
facilities for modular programming in RSTS-ll, it was 
necessary to design a "preprocessor" for all RISS pro­
grams. This preprocessor scans a program for references to 
RISS functions, and inserts the code for the functions 
used to a temporary module, which is then compiled. 
Thus, a compiled module that performs no external calls 
(to access RISS functions) is produced. 

Limitations 

At this point, it seems appropriate to mention what ap­
pear to be some of the most significant limitations of the 
RISS system (Forest Hospital implementation): 

1. The handling of domains is insufficient. Specifically, 
no general method has been provided for expressing 
domain integrity constraints, i.e., limitations on the 
types of admissible values (objects) in a domain. 

2. Concurrent access to relations in a data base is 
limited, since the implementation thereof is based on 
the scheme provided by the host operating system. 
Many users are allowed to examine a relation si­
multaneously, but only one user may update that 
relation (a standard locking mechanism is em­
ployed). 

3. Column naming may be ambiguous. Only one name 
is assigned to each column of a relation: the name of 
the underlying domain. Thus if two columns in a 

RISS 401 

relation have the same name, they must be 
referenced by their column number. A unique name 
for each column in .a relation should be added, and 
users should not have to remember column numbers. 

4. Retrieval involving more than one relation is not 
simple. In order to formulate a query that involves 
more than one relation, it is necessary to explicitly 
create a temporary relation (via one or more joins) 
using all the relations involved in the query. 

5. Protection is based on the limited scheme provided 
by the host operating system. Read and/ or write per­
mission may be given to groups of users, but further 
refinement of protection constraints (e.g., to columns 
of a relation) is not possible. 

6. Since joins are represented as "snapshots" of a data 
base, it is possible for inconsistencies to arise 
between the relations and the (implicit) joins when 
updates occur. Consequently, a type of data base in­
tegrity is not strictly enforced. 

Other limitations exist, but in the interest of brevity they 
will not be discussed here. In addition, a survey of the 
users of RISS is being made to determine what modifica­
tions to RISS are necessary and/ or desirable. 

CONCLUSIONS 

It has been shown that a relational data base management 
system is practical in the minicomputer environment. Al­
though some compromises in power and generality were 
necessary, a useful and cost-effective implementation has 
been produced. The implementation has been produced in 
a rather short amount of time and is surprisingly "self­
maintaining". In addition, the implementation was accom­
plished using an existing minicomputer operating system 
and host language, and at a low development cost. 

ACKNOWLEDGMENTS 

The authors would like to thank Robert Pellicore of Forest 
Hospital for his helpful suggestions concerning the RISS 
applications program interface (level). Professors Michael 
Hammer and Barbara Liskov of Project MAC at the 
Massachusetts Institute of Technology have been helpful 
in providing useful comments on the subject matter of this 
paper. The referees have also made many useful com­
ments on the content of the paper. Kathy Vick, Nancy 
Wingren, and Edie Johnson of Forest Hospital have pro­
vided many helpful comments on the RISS "naive" user 
interface level. Marsha BakeJ; of the Department of 
Electrical Engineering at M.LT. assisted in the prepara­
tion of the manuscript. 



402 National Computer Conference, 1975 

REFERENCES 

1. Taylor, B. J. and S. C. Lloyd, "DUCHESS-A High Level Informa­
tion System," 1974 National Computer Conference Proceedings, 
Volume 43, AFIPS Press, Montvale, NJ, May, 1974, pages 35-40. 

2. Whitney, K. M., "Fourth Generation Data Management Systems," 
1973 National Computer Conference Proceedings, Volume 42, 
AFIPS Press, Montvale, NJ, June 1973, pages 239-244. 

3. McLeod, D. J., Relational Data Management in Minicomputers, 
M.I.T. Department of Electrical Engineering, S.B. Thesis, 
Cambridge, MA, February, 1974. 

4. Codd, E. F. and C. J. Date, "The Relational and Network Ap­
proaches: Comparison of the Application Programming Interfaces," 
Proceedings of 1974 ACM-SIGFIDET Workshop on Data Descrip­
tion, Access, and Control, Ann Arbor, MI, May, 1974. 

5. CODASYL Data Base Task Group Report, ACM, New York, NY, 
April, 1971. . 

6. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," Communications of the ACM, Volume 13, Number 6, June, 
1970, pages 377-387. 

7. Bachman, C. W., "The Programmer as Navigator," Communications 
of the ACM, Volume 16, Number 11, November 1973, pages 653-658. 

8. Codd, E. F. and C. J. Date, "Interactive Support for Non-program­
mers: The Relational and Network Approaches," Proceedings of 
1974 ACM-SIGFIDET Workshop on Data Description, Access, and 
Control, Ann Arbor, MI, May, 1974. 

9. Boyce, R. F., D. D. Chamberlin, W. F. King, III and M. M. Ham­
mer, "Specifying Queries as Relational Expressions: SQUARE," 
Proceedings of ACM SIGPLAN-SIGIR Interface Meeting, Gai­
thersburg, MD, November 1973. 

10. Codd, E. F., "Recent Investigations in Data Base Systems," In­
formation Processing '74, North-Holland, Amsterdam, 1974. 

11. Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial," 

Proceedings of 1971 ACM-SIGFIDET Workshop on Data Descrip­
tion, Access, and Control, San Diego, CA, 1971. 

12. Liskov, B. and S. Zilles, "Programming with Abstract Data Types," 
Proceedings of a Symposium on Very High Level Languages, Santa 
Monica, CA, March, 1974. 

13. Aiello, J. M., An Investigation of Current Language Support for the 
Data Requirements of Structured Programming, MAC TM-51, 
Project MAC, M.LT., Cambridge, MA, September, 1974. 

14. McLeod, D. J., RISS Programmer's Guide, Forest Hospital, Des 
Plaines, IL, August, 1974. 

15. McLeod, D. J., RISS User's Guide, Forest Hospital, Des Plaines, IL, 
November, 1974. 

16. Goldstein, R. and A. Strnad, "The MACaims Data Management 
System," Proceedings of 1970 ACM-SIGFIDET Workshop on Data 
Description and Access, Houston, TX, November, 1970. 

17. Goldman, J., The Use of Computed Relations in a Set Theoretic 
Data Base, M.LT. Department of Electrical Engineering, S. M. 
Thesis, Cambridge, MA, June, 1973. 

18. Codd, E. F., "A Data Base Sublanguage Founded on the Relational 
Calculus," Proceedings of 1971 ACM-SIGFIDET Workshop on Data 
Description, Access, and Control, San Diego, CA, 1971. 

19. Boyce, R. F. and D. D. Chamberlin, Using a Structured English 
Query Language as a Data Definition Facility, IBM Research Labo­
ratory, San Jose, CA, RJ1318-#20559, 10 December, 1973. 

20. Zloof, M. M., Query by Example, IBM Thomas J. Watson Research 
Center, Yorktown Heights, NY, RC4917-#21862, 2 July, 1974. 

21. Codd, E. F., "Seven Steps to Rendezvous with the Casual Users," 
IFIP TC-2 Working Conference on Data Base Management Systems, 
April, 1974 (published as Data Base Management, Amsterdam, 
1974). 

22. Project MAC, M.LT., and Honeywell Information Systems, The 
Multiplexed Information and Computing System: Programmer's 
Manual, Cambridge, MA, 9 September, 1973. 



A multi-level relational system 

by J. MYLOPOULOS, S. SCHUSTER and D. TSICHRITZIS 
University of Toronto 
Toronto, Ontario 

INTRODUCTION 

A relation can be conceptually viewed as a table of data. 1 

The table's heading defines the relation's name, the 
column headings are the attribute names, and each row 
corresponds to an n-tuple of data values describing a single 
entity. The set of values which can be used in a column is 
called a domain. A relational data base is composed of a 
set of time varying relations inter-related through common 
domains. 

The relational model of data has been proposed as a 
flexible user interface to a data base management system 
(DBMS). Data languages based on relations are less proce­
dural and more powerful than their existing counterparts 
in currently available systems. However, they leave 
optimization and access path decisions to the system. For 
example, the DBMS must decide how to best use many 
common mechanisms like pointer arrays, data pools, in­
verted files, and semantic networks in a manner 
transparent to the user. 

We describe in this paper the mechanisms used in the 
development of a prototype system called ZETA/TORUS. 
We present in a hierarchical fashion a set of facilities 
which ultimately lead to the implementation of the com­
plete system. Most of the techniques used are present in 
other systems. The important consideration is to isolate 
and outline their role in implementing relations. 

This system is composed of three principal levels. The 
low level system implements elementary relational opera­
tions, inverted files, and the ability to "mark" subsets of 
relations. The intermediate level implements derived rela­
tions. It also has the ability to combine elementary queries 
of the lower system into high level relation operations. Fi­
nally the high level uses a compiler-compiler for query 
language generation, a preprocessor/compiler for a host 
language system, and a semantic network for a natural 
language understanding system. 

THE PRIMITIVE RELATIONAL LEVEL 

At this level the system provides a basic facility to 
manipulate relations.2 An "actual" relation can be created 
and is stored in a basic direct access file. Each tuple of the 
relation corresponds to a record of the file. Names of the 
relations and their domains and other characteristics are 
stored in system tables. Each one of the created relations 

403 

has independent existence and it can be queried or 
updated through commands. All commands are procedure 
calls to this level of system. The format of the commands 
is very strict and users must abide by many conventions. 
The main purpose of this level is to implement some im­
portant mechanisms and not to provide a user interface. 

The system provides a complete set of commands to 
deal with tuples within named relations. Namely the user 
has commands to: 

(a) Create and destroy relations, 
(b) Lock and unlock relations, 
(c) Insert and delete tuples, 
(d) Get and update data elements within a single tuple, 
(e) Mark relations. 

There are no commands applying to more than one rela­
tion at this level. 

The system also provides a primitive data definition 
language. In addition, users are able to query, but not up­
date, the schema tables and get the proper names for 
domains, relations, etc. This facility provides an ele­
mentary form of data dictionary. 

The most interesting command of this level is the mark­
ing operation. A "mark" corresponds to a unary relation 
which stores indices of tuples of an actual relation which 
satisfy a Boolean qualification. We use this facility as a 
tool for the construction of more complex operations.3 

The unary relation is simply an array of indices related 
in two ways: 

(a) The indices point to tuples of the same "actual" 
relation, 

(b) The tuples referenced satisfy the same qualifica­
tion. 

These unary relations are implemented using a header 
and a body. The header contains control information while 
the body contains the indices. 

Several basic operations are implemented to manipulate 
these structures. The user may create or destroy marks. 
He can retrieve tuples of the marked relation. At this 
point, modification of marks by the user is not allowed. 
Future extensions will incorporate such facilities in order 
to provide some of the proposed functions of higher levels. 

The mark operation provides a tool which can be used 



404 National Computer Conference, 1975 

by the higher levels of the system to implement complex 
relational operations (e.g., joins). A mark operation on a 
mark is also allowed. This results in the creation of a 
subset of indices of a first mark according to a second 
qualification. A mark on the schema is also allowed where 
the schema is viewed as a relation. This way the users can 
isolate the parts of the schema for high level security or for 
data dictionary queries. 

The qualification for a mark is passed as a binary tree 
of a Boolean expression of basic domain-comparitor-value 
triplets. A method for efficiently executing Boolean quali­
fications on partially inverted relations has been studied 
and is being incorporated into the system.4 

THE INTERMEDIATE RELATIONAL LEVEL 

This level is concerned with supporting high level rela­
tional data base structures. Two important functions are 
provided at this level: derived relations and multi-relation 
queries.5 It provides the higher language level an interface 
which is suited to its user's goals and interfaces with the 
basic level in order to accomplish its tasks. The interface 
to this level is through a rigid data structure so that in­
terpretation is straightforward. 

The execution portion of this level must concern itself 
with the semantics of user requests with respect to the 
method used to implement relations. Relations that have 
been implemented as virtual constructs require different 
algorithms for executing the various types of operations 
that can be performed on them. Also, high-level optimiza­
tion can occur whenever an operation or relation imple­
mentation can be accomplished by more than one method. 
The intermediate level is responsible for these decisions. 

Derived relations 

A primary relation is one that has been created by the 
data base administrator. A derived relation is a relation 
that is formed as the result of a join of two or more 
derived or primary relations or the result of a qualification 
giving a subset of a single relation's domains and tuples. 
Derived relations are an important component of a DBMS 
because users often need focus on a subset of the data 
base. More important, the re-execution of similar queries 
causing extensive retrievals are very expensive. ZETA 
allows a user to name and define a new relation with the 
same constructs used for qualifying and retrieving from an 

; existing relation. Two types of derived relations play an 
important role in this system: snapshots and automatic der­
ivations. 

A snapshot is a time invariant "picture" of a portion of 
the data base at a particular instance. The resulting rela­
tion is no longer dependent on changes made to any of the 
relations involved in its creation. Such derivations are im­
portant as a journaling facility or because a stable envi­
ronment is required. Such is required by programmable 
DBMS where operations tangential to retrievals are occur­
ring to the data of a relation. If a snapshot were not 

created, then the original relation would have to be locked 
from updates perhaps for an uncomfortable amount of 
time. 

Several implementation schemes have been considered 
for snapshots which define a subset of a single existing 
relation. It became clear that an optimal one depends 
upon the type of system usage that is encountered. 

In a retrieval oriented environment (i.e., update is 
batched and performed when no retrieval is occurring), the 
marking scheme presented by the primitive level is 
perfectly adequate. An access to a derived relation in this 
configuration would require the indirect access through a 
pointer to a tuple. Since the relation is not stored as an 
"actual" relation it is called "virtual". 

In a very active update environment, the great amount 
of overhead incurred by updating a pure marking scheme 
would make it prohibitive. Instead a snapshot could be 
formed by creating a separate actual relation-one whose 
tuples are the records of a separate file. This is accom­
plished by first locking update access to the relation, then 
by forming a marking on the qualified tuples of that rela­
tion, and finally by retrieving and copying the required 
domain values to the snapshot. 

Both of the above schemes are being implemented. 
However, since a straight marking is not adequate in an 
update environment and because complete actual im­
plementation is costly in terms of storage, a partially vir­
tual compromise is proposed. A snapshot is originally im­
plemented as a marking. Each time a change occurs to a 
tuple of the original relation, the old tuple is copied and 
logged into a separate section of the primary relations file. 
The mark that originally pointed to the actual tuple now 
points to its new location and the original tuple is updated. 
When the number of marks which points to the aug­
mented primary relation reaches a threshold, then the 
snapshot is converted to an actual representation and the 
marks are destroyed. 

An automatic derivation is a time-dependent relation 
which reflects the changes that have occurred to each of its 
ancestors. A snapshot would have to be re-created each 
time a user wants an updated version while an automatic 
relation remains "up-to-date". Several schemes have been 
proposed.2 

An automatic relation is equivalent to a snapshot in a 
retrieval-oriented environment. Because of this, a marking 
is completely adequate. However, in this case the problem 
is of no interest because, by definition, updates are why 
we consider automatic derivations. 

One simple scheme would be to save only the definition 
of the relation. When a query involving the derived rela­
tion is initiated, the relation is locked against other distur­
bances, the derived relation is formed from the stored 
definition, and then the relation is destroyed. This is, of 
course, an expensive procedure but may prove adequate in 
an environment where automatic relations are required 
only once in a while. 

A third, intermediate scheme, conforms to the same 
philosophy as the partially virtual scheme presented for 
snapshots.2 At first, the derived relation is formed as a 



marking and its definition is saved. This time, changes are 
logged by storing the new tuples as part of an augmented 
primary relation and marks pointing to the old tuples are 
made to point to the new tuples. These changes must be 
time stamped. The next time the derived relation is ac­
cessed, the definition is re-executed only on the tuples not 
checked since the last access. 

It is clear from this discussion that derived relations 
must be used carefully. Snapshots must not be kept too 
long and automatic relations must not be used too often. 
Also, the incorporation of derivation schemes requires the 
formation of an intermediate level schema for the transla­
tion between logical operations and virtual implementa­
tions. 

Multi-relation queries 

A multi-relation operation or query requires the 
manipulation of data from two or more relations which 
can be implemented either as primary or derived rela­
tions. Two types of multi-relation queries arise in this 
system: join and composite. 

The join operation creates a new relation by combining 
two existing relations. This is accomplished by comparing 
the relations on one or more domains that are common to 
each relation and by forming the new tuples by associating 
a tuple from one relation with one or more tuples of the 
other. 

The composite operation (also called an implicit join or 
restriction) extends the qualification capability for select­
ing subsets of tuples of a relation. It allows the results or 
values retrieved from one relation to be used as qualifica­
tion for the retrieval over a second relation. 

System structure 

The intermediate level system is composed of three 
principal components: the interpreter, a set of inter­
mediate level schema procedures, and a set of utilities. All 
three components are embedded within a single external 
procedure in which the intermediate level schema tables 
and interface command data structures are global. This 
system is invoked by a call from the higher level system 
passing the command data structure as a parameter. The 
interpreter breaks the command down into a sequence of 
utility operations. The utility procedures interface with 
the primitive level system. Schema procedures are in­
voked by the interpreter whenever data pertaining to 
derived or primary relations are to be stored or retrieved. 

THE USER INTERFACE LEVEL 

Three major classes of users requiring access to DBMS 
can be described: application programmers, technical 
personnel, and casual users. 

An application programmer requires a programmable 
DBMS language in order to access data to formulate com-

A Multi-Level Relational System 405 

plex queries, special reports, or perform atypical computa­
tion not provided by other interfaces. He must understand 
the organization of data but can often ignore the meaning 
of the data being processed. 

A technical user is a person who specializes in the se­
mantics of the data and does not want to concern himself 
with computer system details. Examples of such users are 
urban planners, doctors, administrators, management 
scientists, engineers, etc. Query languages have evolved to 
provide these technical users with an English-like language 
for interactive communication with a DBMS. The power 
of this type of interface is that the user does not have to 
seek an application programmer for most of his data 
processing and that he can "browse" through his data base 
by reformulating queries based on data just received. 

The casual user is a person who either requires access to 
a DBMS so infrequently as not to warrant learning a high 
or low level programming language or who refuses to learn 
the discipline of a query language. The only dialogue ac­
ceptable is some form of natural language. 

All three types of interfaces have been investigated for 
interacting with the lower levels of the relational DBMS. 

A programming language interface 

A programmable interface to this relational DBMS is 
being implemented by embedding a set of data manipula­
tion language (DML) subroutines within a PLj 1 host lan­
guage environment.5 The syntax for a qualification is a 
modified subset of SEQUEL.6 Commands to the DBMS 
are passed as structured English-like character strings 
within a procedure call. A preprocessor has been designed 
so that a "cleaner" interface can be effected and so that 
syntactic errors can be flagged before execution of the 
PLjl program. 

The DML embodies the capabilities of the intermediate 
level system, thus making the translation process straight­
forward. Its capabilities provide: 

(a) Multi-relation qualifications, 
(b) Derived relations based on qualifications,. 
(c) Updates based on qualifications, 
(d) Interaction with host program variables in order to 

express complex queries by: 

(i) passing "generated" values for dynamic qualifi­
cations, 

(ii) passing "generated" requests. 

Since this language has all the capabilities of PLjl, it 
could potentially serve as a system implementation lan­
guage for the development of language processors of the 
following two types. 

A query language facility 

The most important characteristic of a query language 
is how well it is tailored to its problem area. General pur-



406 National Computer Conference, 1975 

pose languages often force users to think in terms of un­
natural logical data structures and syntax. The goal of this 
work is to construct an environment in which problem­
oriented query language generation could be readily ac­
complished. 

An existing syntax-table-driven compiler-compiler was 
modified to support a query language development 
facility.7,s This system allows users to easily specify the 
syntax of their language and to connect it to a set of 
modular semantic routines. The semantic routines utilize 
the intermediate level (which is accessible through PL/1) 
as a semantic language. This all.ows the symbol table and 
other system tables (which could include the tables of the 
syntactic network used by the fixed parser) to be stored, 
retrieved, and maintained by the DBMS. 

Because the syntax of a users source language is 
specified in a table, subsets of a language can easily be 
generated by eliminating parts of the table. This provides 
several benefits: 

(a) A customized user view; unused capabilities may be 
omitted, 

(b) Security; e.g., by eliminating the UPDATE key­
word for a specific user, the associated capability is 
unaccessible, 

(c) Reduced compilation time; the number of optional 
syntactic constructs are reduced so that parsing 
time is shortened. 

A special facility for macro definition and expansion 
was also added to the generator. The use of macros in a 
query language can provide the powerful capability of 
allowing one user to specify a complex query and have 
another utilize it easily. It also provides a much needed 
abbreviation facility for teletype terminal environments. 

Because a specific application data base has not yet 
been explored, a general purpose relational query language 
was built using the facility. It embodied all the features of 
the intermediate level system and added: 

(a) A sequence of language subsets, 

(b) User macro definition, 

(c) Report generation: 

(i) sorting, 
(ii) output device choice, 

(iii) titles and headings, 
(iv) position and type formatting, 

(d) Data dictionary. 

An intelligent natural language interface 

The expected increase in the use of DBMSs will cause 
an ever increasing need for making DBMSs more readily 
available to the casual user. The aim of the TORUS (To­
ronto Understanding System) project is to achieve this 

goal by: 

c(a) Eliminating the need for the user to know how in­
formation is stored in the DBMS and only expecting 
him to know what is stored, 

(b) Enabling him to communicate with the DBMS in 
simple English and without the arbitrary restric­
tions of programming languages. 

The methodology we have chosen in order to achieve the 
TORUS aim is different from that of earlier attempts to 
provide a natural language interface with the user.9

,10,l1 

TORUS extensively uses semantic networks as a basis for 
"understanding" the ongoing dialog with a user as well as 
the information stored in the DBMS. This methodology 
was chosen because it is compatible with the philosophy 
that there are no shortcuts to the problem of making a 
system appear intelligent to a user who lacks the training 
and/ or the time to program it. This intelligence can only 
be realized by a system which has and can use the 
knowledge relevant to the universe of discourse-in this 
case a data base-in ways which, at least abstractly, are 
similar to those used by humans. It follqws from these 
premises that the representation and use of knowledge 
about a particular data base stored in a relational manner 
is the most important problem to be tackled in designing a 
natural language front end to a DBMS. 

TORUS consists of four basic modules: 

(a) INPUT: The input module accepts a sentence in 
English, performs a syntactic analysis, and outputs 
a tree structure which describes the sentence's un­
derlying syntax.12 This structure is then passed to 
the SEMANTICS modules. 

(b) SEMANTICS: This module is responsible for 
"making sense" out of the structure passed by 
INPUT. This is achieved by using a semantic net­
work and associated procedures, and results in a I 

complete integration of the input sentence with the 
semantic network. If the input structure does not 
make sense, another parse is requested from 
INPUT. If there is a need for use of the DBMS, ap­
propriate commands are passed to the INTER­
F ACE module and execution of SEMANTICS is 
suspended until a message is returned by the inter­
face. It is then decided what should be output and a 
structure similar to that constructed by INPUT is 
sent to the OUTPUT module. 

(c) OUTPUT: The structure received from SEMAN­
TICS is mapped on to a sentence,i3 using some pre­
viously explored ideas.14

,15 

(d) INTERFACE: This module receives lists of com':' 
mands to update, retrieve, or test the validity of in­
formation in the data base. These lists are trans­
lated into sequences of commands for the DBMS 
and its responses are passed back to SEMANTICS. 

The system is currently being tested with a data base 
involving student records. Each record stores general in-



formation about a student (place and date of birth, 
student number, marital status, etc.), his/her academic 
background (universities attended, courses completed, 
degrees obtained) and his/her record in the Department of 
Computer Science at the University of Toronto. 

The functions of the system's modules will be illustrated 
by considering a simple sentence like "What is John 
Smith's address?" and describing how it will be handled by 
the TORUS system. 

When INPUT is presented with the sentence, it first 
performs a lexical analysis of the words present. 'John' 
and 'Smith' have to be marked as proper nouns by the 
user who types in the question. The sentence is then 
passed to an augmented transition network parser which 
attempts to find a parse. It must be noted that the parser 
will not attempt to resolve semantic ambiguity problems 
(e.g., reference of prepositional phrases, selection of a 
word sense when there are several candidates in the same 
syntactic class as in "I took a course" and "I took a 
book", etc.). ' 

The structure constructed by INPUT is then passed to 
the semantic module, which first attempts to construct a 
graph representing the meaning of the input sentence. 
This is done by first using "case frames"17 which check 
whether the semantic relationships implied by the parsed 
structure are meaningful. Several "mapping functions" 
are then used to obtain a deeper representation of the 
meaning of the input sentence, e.g., 'take' may have a 
mapping function which will map the structure described 
by: 

Itak~: agent = student, object = course, 
source = professor I 

which may have been obtained from 
"The student took a course from the professor" 

into the semantically deeper structure 
Iteach: agent = professor, object = course I 

enrol: agent = student, destination = course I 

There is no need for mapping functions for the sample 
sentence. 

Anaphoric reference problems are also treated at this 
point. The function which attempt to solve such problems 
will take into account semantic properties of the object 
referred to and will attempt to identify it on that basis. 

Another job that has to be done at this time is to de­
termine the type of action (i.e., retrieval, update, count, 
test-for-validity) that will have to be performed by the 
system. In this case the action is 'retrieve'. Note that the 
sentence "Give me John Smith's address" will be mapped 
into the same graph as that of our current example, 'give' 
serving only as an indicator that it is the 'retrieval' com­
mand that is applicable here. 

The next step involves "fitting" the constructed graph to 
the semantic network which stores general knowledge the 
system has about student records as well as specific in­
formation it has obtained during the current conversation 
either from the data base or the user. In the network there 
will be nodes (concepts) which correspond to our general 

A Multi-Level Relational System 407 

notion of 'address' (it is something that can characterize a 
person or an organization) as well as that of 'current-ad­
dress'. Moreover, 'current-address' will be represented as a 
sub-concept of 'address' and it will be associated with an 
attribute of the relational data base named CURRENT­
ADDRESS where a student's current address is stored. 
Thus the semantics of the attribute CURRENT-AD­
DRESS of the relational data base is defined by the 
properties of the concept 'current-address' of the semantic 
network. 

During the fitting of the graph, "recognition functions" 
are often used to determine whether a node of that graph 
represents an instantiation of a generic concept on the se­
mantic network. A recognition function can use common­
sense knowledge about a generic concept which might help 
it decide that 'abc def is not an address, but it may also 
check the input sentence and the semantic network to 
make inferences about which nodes of the input graph are 
instantiations of a particular generic concept. 

Once the graph has been fitted on the network, the 
system knows that something must be retrieved from the 
data base (since a 'retrieve' command was generated) and 
where to find it (since the 'address' node of the input 
graph was found to be an instantiation of the 'current~ad­
dress' concept to which the attribute CURRENT-AD­
DRESS is associated). A message is therefore passed to 
the INTERFACE. 

(GET 1; ADDRESS=?; NAME=John Smith) 

which asks for the retrieval of a single item from the data 
base that is consistent with the information given (the 
name) and includes the missing information (the address). 
The interface will return . 

(ADDRESS =65 Charles St., Toronto; 
NAME = John Smith) 

and SEMANTICS will then place this information on the 
semantic network. 

Finally, SEMANTICS decides what portion of the se­
mantic network should be output by taking into account 
the input sentence and the information that was retrieved 
from the data base. The structure constructed is quite 
similar to that created by INPUT, except that the ques­
tion mark has been replaced by '65 Charles St., Toronto'. 
Several "inverse-mapping functions" may be used during 
the construction of this structure, mapping the deeper 
representation of the sentence to be output into a more 
surface form. The OUTPUT module now constructs a 
string by using an augmented transition network. 

Several features we consider important have been im­
plemented superficially in the current version, and others 
are missing completely. Thus the system only handles 
simple cases of conjunction, disjunction and quantifica­
tion. Moreover, it has limited inference capabilities and its 
"understanding" of the ongoing dialog is accordingly 
restricted. 



408 National Computer Conference, f975 

CONCLUSION 

The ZETA data base management system is implemented 
in PL/1. The primitive level is completely designed, im­
plemented and tested. The intermediate level and query 
system level has been designed and partially imple­
mented. We are finishing implementation and integration 
at this point. A report with the status of the project is 
forthcoming. 

A first version of TORUS, which handles simple 
sentences and contains only a few mapping, inverse map­
ping, and recognition functions has been implemented and 
is currently being tested. The languages used for the im­
plementation are SPITBOL20 and loP AK an AI language 
offering directed labelled graphs and graph pattern match­
ing.21 The details of the current version can be found in a 
technical report. 22 

ACKNOWLEDGMENT 

We would like to acknowledge the contributions of the 
following students and colleagues who made the 
ZETA/TORUS project a reality: Michael Brodie, Simone 
Chan, Bryon Czarnik, Gilles Farley, Jack Klebanoff, 
Edwin Leong, Ellen Poon, Olga Puchmajerova, Dick 
Swenson, AIda Usas for ZETA; Alex Borgida, Phil Cohen, 
Nick Roussopoulos, John Tsotsos, Lindsay Watt and 
Harry Wong for TORUS. 

This research was supported in part by the National Re­
search Council of Canada, the Department of Communi­
cations of Canada, and by IBM Canada Ltd. 

REFERENCES 

1. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," CACM, June 1970. 

2. Czarnik, B., A Primitive Relational Data Base Management System, 
M.Sc. Thesis, Department of Computer Science, University of To­
ronto, October 1974. 

3. Tsichritzis, D. C., "On Implementation of Relations," Proceedings of 
the ACM SIGFIDET Workshop, Ann Arbor, Michigan, May 1974. 

4. Farley, J. H. G., Query Evaluation on Partially Inverted Relations, 
M.Sc. Thesis, Department of Computer Science, University of To­
ronto, September 1974. 

5. Leong, E., A Host Language Relational Data Base Management 
System, M.Sc. Thesis, Department of Computer Science, University 
of Toronto, September 1974. 

6. Chamberlin, D. and R. Boyce, "SEQUEL: A Structured English 
Query Language," Proceedings of the ACM SIGFIDET Workshop, 
Ann Arbor, Michigan, May 1974. 

7. Gaffney, J., TACOS: A Table Driven Compiler-Compiler System, 
Department of Computer Science Report 325, University of Illinois, 
June 1969. 

8. Chan, S., QLS: A Query Language Generator System, M.Sc. Thesis, 
Department of Computer Science, University of Toronto, October 
1974. 

9. Woods, W. A., "Progress in Natural Language Understanding-An 
Application to Lunar Geology," Proceedings NCC, November 1973, 
pp. 441-449. 

10. Kellogg, C., J. Burger, T. Diller, K. Fogt, "The CONVERSE Natural 
Language Data Management System: Current Status and Plans," 
Proceedings of the Symposium on Infor. Storage and Retrieval, 1971, 
pp.33-46. 

11. Codd, E. F., "Seven Steps to Rendezvous with the Casual User," 
Proceedings IFIP TC-2 Working Conference on Data Base Manage­
ment Systems, Cargese, Corsica, April 1974. 

12. Borgida, A., Topics in the Understanding of English Sentences by 
Computer, M.Sc. Thesis, Department of Computer Science 
University of Toronto, November 1974. 

13. Wong, H., Generating English Sentences from Semantic Structures, 
M.Sc. Thesis, Department of Computer Science, University of To­
ronto, January 1975. 

14. Simmons, R. F., "Semantic Networks: Their Computation and Use 
in Understanding English Sentences," in Schank, R. C. and Colby, 
K. M. (Eds.) Computer Models of Thought and Language, Freeman 
and Co., 1973. 

15. Simmons, R. F., J. Slocum, "Generating English Discourse from Se­
mantic Networks," Comm. ACM, Vol. 15, 10. 

16. Woods, W. A., "Transition Network Grammars for Natural Lan­
guage Analysis," Comm. ACM, Vol. 13, 10, pp. 591-606. 

17. Bruce, B., "Case Structure Systems," Proceedings Third Interna­
tional Joint Conference on Artificial Intelligence, August 1973, pp. 
364-371. 

18. Rumelhart, D., P. Lindsay, D. Norman, "A Process Model for Long 
Term Memory," in Tulving, E., Donalson, W. Organization of 
Memory, Academic Press, 1972. 

19. Martin, W. A., Memos 6, 8, 11, 12, 13, Automatic Programming 
Group, MIT. 

20. Dewar, R., SPITBOL Illinois Institute of Technology February 1971. 
21. Mylopoulos, J., N. Badler, L. Melli, N. Roussopoulos, "1.PAK: A 

SNOBOL-based programming language for AI applications," 
Proceedings Third International Joint Conference on AI, August 
1973, pp. 591-596. 

22. Mylopoulos, J., A. Borgida, P. Cohen, N. Roussopoulos, J. Tsotsos, 
H. Wong, The TORUS Project: A Progress Report, Technical 
Report, Department of Computer Science, University of Toronto (To 
appear). 



INGRES-A relational data base system* 

by G. D. HELD, M. R. STONEBRAKER and E. WONG 
University of California 
Berkeley, California 

INTRODUCTION 

INGRES (Interactive Graphics and Retrieval System) is a 
relational data base and graphics system which is being 
implemented on a PDP-ll/40 based hardware configuration 
at Berkeley. INGRES runs as a normal user job on top of 
the UNIXl operating system developed at the Bell Telephone 
Laboratories. The only significant modification to UNIX 
that INGRES requires is a substantial increase in the maxi­
mum file size allowed. This change was implemented by the 
UNIX designers. The implementation of INGRES is pri­
marily programmed in "C", a high level language in which 
UNIX itself is written. Parsing is done with the assistance 
of YACC,2 a compiler-compiler available on UNIX. 

The advantages of a relational model for data base man­
agement systems have been eloquently detailed in the liter­
ature,3,4,5 and hardly require further elaboration. In choosing 
the relational model, we were particularly motivated by 
(a) the high degree of data independence that such a model 
affords, and (b) the possibility of providing a high level and 
entirely procedure free facility for data definition, retrieval, 
update, access control, support of views, and integrity 
verification. 

In this paper we shall describe most of the principal com­
ponents of INGRES. These include: the query language 
QUEL, an algorithm for processing interactions based on the 
principle of "decomposition," the access methods supported, 
and an approach to access control, views, and integrity 
preservation via query modification. Not described in this 
paper are: control of concurrent updates, the graphics facili­
ties, the system utility commands, and a more "friendly" 
graphics oriented user interface. These topics are presented 
respectively in References 6, 7, 8 and 9. 

BASIC CONCEPTS AND DEFINITIONS 

Let D1, D2, ... , Dn be nonempty sets, not necessarily 
distinct. A subset R of the product D1XD2X'" XDn is 
called a relation, and Di are called the domains of R. Let r be 
an element of R, then r is an n-tuple (rt, ... , rn) where ri 
belongs to Di. It is convenient to introduce the notation 

* Research sponsored by the National Science Foundation Grant 
GK-43024x, U.S. Army Research Office-Durham Contract DAHC04-
74-G0087, the Naval Electronic Systems Command Contract N00039-
71-C-0255, and a Grant from the Sloan Foundation. 

409 

r[Di]=ri in terms of which the projection of R on Di is 
defined as R[Di] = {r[DiJ: r in R} where it is understood 
that any duplicate values are eliminated. If one visualizes 
R as a table with its elements appearing as rows, then R[Di] 
is just the column corresponding to Di. 

We have found it convenient to distinguish the projection 
R[D] from the domain D itself, i.e., to distinguish a column 
from the set of its possible values. To do this, we have intro­
duced the term attribute to stand for R[D]. An attribute 
can be viewed as a function on R taking values in D and its 
alternative notation {r[DiJ: r in R} makes this clear. This 
point of view is important in understanding the syntax of 
QUEL. 

QUEL: A RELATIONAL QUERY LANGUAGE 

QUEL is a calculus based language. Though closely 
modeled after the data-sublanguage ALPHA of Codd,1O it 
has some significant differences. Among these are the fol­
lowing: 

(a) Rather than relying on a host language for arith­
metical operations,. QUEL is closed under such 
operations. 

(b) QUEL is free of all quantifiers. 
(c) Aggregation operations such as SUM and MAX are 

treated with much greater generality. 

An initial version of QUEL became operational in October, 
1974 which used punctuation as delimiters.7 The system 
implementors found this unnatural and the delimiters were 
changed to keywords. Since the parsing of QUEL is done by 
YACC, this modification was easily implemented. The de­
signers of SEQUELll are to be credited with emphasizing 
the desirability of keywords in relational languages. Our ex­
perience has confirmed that keywords are nearly universally 
preferred over alternative delimiters. 

Each query of QUEL contains one or more Range-State­
ments and one or more Retrieve-Statements. We shall use 
{ } to denote" one or more" and [ ] to denote" zero or more" . 
With these conventions the form of a query in QUEL can 
be expressed as 

Query 

= {Range-Statement} {Retrieve-Statement} 



410 National Computer Conference, 1975 

Range-Statement 

=RANGE of {Variable} IS Relation 

Retrieve-Statement 

=RETRIEVE INTO Result-name (Target-List) 
WHERE Qualific~tion 

Target-List = {Result-Domain = Function} 

The goal of a query is to create a new relation for each 
Retrieve-Statement. The relation so created is named by the 
"Result-N arne" clause and the domains in that relation are 
named by the "Result-Domain" names given in the Target­
List. In the frequent case where the Function is simply 
Variable. Domain-Name, the Result-Domain name may be 
omitted and is then taken to be the same as the Domain­
N arne in the Function. Also, if the "Result-Name" is 
TERM IN AL then the result of the query is displayed on the 
user's terminal. To create the desired relation, first consider 
the product of the ranges of all variables which appear in the 
Target-List and the Qualification of the Retrieve-Statement. 
Each term in the Target-List is a function and the Qualifica­
tion is a truth function, i.e., a function with values true or 
false, on the product space. The desired relation is created by 
evaluating the Target-List on the subset of the product space 
for which the Qualification is true, and eliminating duplicate 
tuples. 

Example: CITY (CN AME,STATE,POPULATION ,AREA) 
"Find the population density of all cities in California 
with population greater than 50k" 

RANGE OF C IS CITY 
RETRIEVE INTO W(C.CNAME, 

DENSITY = C.POPULATION IC.AREA) 
WHERE C.STATE='California' 
AND C.POPULATION>50K 

(note the default used for CNAME= C.CNAME and that 
the result of the query is a relation 
W(CNAME,DENSITY)) . 

It is clear from the above discussion that the basic quanti­
ties used in QUEL are functions on products of relations. 
The allowed functions can be exceedingly complex and fall 
into three categories: (a) Functions resulting from arith­
metical combinations of attributes. (b) Set valued functions 
such as "the set of cities for each state". (c) Aggregate func­
tions obtained by aggregating set functions, e.g., "total 
population of the cities of each state." The precise definition 
of the allowed classes of functions will be given recursively 
as follows: Consider a nested sequence of sublanguages of 
QUEL 

QUELO, QUELl, ... , QUELn, ... 

Let Ci denote the class of all functions and Qi the class of 
all qualifications allowed in QUELL We first define CO and 
QO. 

CO 

(a) Any constant is in CO. 
(b) Any attribute is in CO. 
(c) If f ~nd g are in CO thenf+g, f-g, f*g, fig, f**g and 

log (I) g are in CO. 

(Note: The functions being combined need not have 
identical arguments. The resulting function is a func­
tion of the union of the variables.) 

QO 

(a) An atomic formula in QO has the form f(comp)g, 
where comp is any of the comparison operators: <, ~, 
=, ~, and f and g are in CO. 

(b) QO consists of all sentences made up of atomic form­
ulas connected by the Boolean connectives: NOT, 
AND, OR. 

Comment: A function in CO will be referred to as an 
attribute-function. The value of an attribute function for a 
tuple depends only on the data contained in that tuple. This is 
not true for functions in Ci for i>O. A similar comment ap­
plies to QO as well. 

We now proceed to define QUELn recursively. Suppose 
X = (Xl, X2, ... , Xm) are the declared tuple variables 
with range R=RIXR2X···XRm. Let X.f and X.qual be 
respectively a function and a qualification allowed in QUEL 
(n-l). We define SET(X.f WHERE X.qual) as the set of 
f-values obtained by evaluating f on the subset of R for 
which X.qual is true, ie., 

SET (X.f WHERE X.qual) 

= {X.f: X is in RAND X.qual=true} 

Example: 

X CNAME STATE POPU 

rl SF CAL 1M 
r2 NYC NY 8M 
r3 CHI ILL 4M 
r4 LA CAL 3M 

SET (X.POPU WHERE X.STATE=CAL) = {1M, 3M} 

SET (X.POPU WHERE X.POPU> 3M) = {4M, 8M I 

Comment: By definition a set contains no duplicate values. 
However, it is useful to define SET' as the collection ob­
tained by retaining duplicates, for example, 

SET' (X.STATE WHERE X.POPU < 4M) = {CAL, CAL} 

The aggregation operators COUNT, SUM, AVG, MAX, 
MIN have an obvious meaning when they operate on sets. 
If AGG is any of these operators, we shall adopt the notation 

AGG(X.f WHERE X.qual) 

=AGG(SET(X.f WHERE X.qual)) 

and AGG' will denote AGG (SET'). 
We shall refer to quantities of the form AGG (X.f WHERE 



X.qual) as aggregates. An aggregate depends on the data 
contained in the range R but does not vary as X varies. The 
appearance of X merely serves to indicate the range. In this 
way, it acts as a dummy variable not unlike that in a definite 
integral. To put it more precisely, denote a function in Cn by 
F(X, R) to indicate the fact that in general it depends on 
both the tuple X and on R overall. Then, we can say that 
constants depend on neither X nor R, functions in CO de­
pend on X but not on R, aggregates depend on R but not X. 

N ow suppose that j and g are in C (n -1) and qual is in 
Q(n-1). Define 

SET (X.f BY X.g WHERE X.qual) 

as a set valued function of X such that it is constant on any 
set of X for which g is constant and on such a set it is given 
by 

SET(X.f BY X.g WHERE X.qual) (X.g = alpha) 

=SET(X.f WHERE (X.g=alpha) AND X.qual) 

Example: 

X X.STATE SET (X.CNAME BY X.STATE 
WHERE X.POPU <5M) 

r1 CAL {SF, LA} 
r2 NY empty 
r3 ILL {CHI} 
r4 CAL {SF, LA} 

The notation AGG (X.f BY X.g WHERE X.qual) is now 
self-explanatory, and so are the notations SET' (X.f BY X.g 
WHERE X.qual) and AGG' (X.f BY X.g WHERE X.qual). 

Example: 

X X.STATE MAX(X.POPU BY X. STATE 
WHERE X.POPU <5M) 

r1 CAL 3M 
r2 NY 0 
r3 ILL 4M 
r4 CAL 3M 

Note that AGG(X.f BY X.g WHERE X.qual), unlike ag­
gregates, is a function of both X and R and will be called an 
aggregate-junction. It is a function of X through· X.g and. 
only through X.g. Thus, the three appearances of X play a 
mixture of roles. This is an objectionable syntactic feature, 
which however cannot be repaired by using a dummy vari­
able for the first and last term. AGG(X'.f BY X.g WHERE 
X'.qual) involves aggregation on the product of the ranges 
of X' and X and means something quite different from 
AGG (X.f BY X.g WHERE X.qual). Several possible solu­
tions have been considered but rejected for one reason or 
another. In particular, if X is restricted to be a single vari­
able, then its presence can be suppressed in the first and 
third term. For the time being we have chosen not to impose 
such a restriction. 

Set functions of the form SET (X.f BY X.g WHERE 
X.qual) can be combined by union, intersection, and relative 

INGRES-A Relational Data Base System 411 

complement. We can define the class of set functions allowed 
in QUELn as follows: 

Sn 

(a) SO contains all constant sets. 
(b) Sn includes S(n-1). 
( c ) If f and g are in C (n - 1) and qual is in Q ( n - 1) then 

SET (X.f BY X.g WHERE X.qual) 
and SET (X.f WHERE X.qual) 
are in Sn as are SET' (X.f BY X.g WHERE X.qual) 
and SET' (X.f WHERE X.qual) 

(d) Sn is closed under union, intersection and relative 
complement. 

The classes Cn and Qn can now be defined as follows: 

Cn 

(a) Cn includes C (n-1) 
(b) If s is in Sn then AGG(s) and AGG'(s) are in en. 
( c) If f and g are in C (n -1) and qual in Q (n -1) then 

AGG (X.f BY X.g WHERE X.qual) 
and AGG' (X.f BY X.g WHERE X.qual) are in Cn. 

(d) Ifjand gare in Cn, then j+g,j-g,j*g,j/g,j**g and 
log (f) g are in Cn. 

Qn 

(a) Qn contains Q(n-1) 
(b) If j and g are in· Cn, then j( comp) g is in Qn, where 

comp is any of the operators <, ::::;, =, ~. 
( c) If u and v are in Sn then u (set-comp) v is in Sn where 

set-comp is any of the set-comparison operators: in­
clusion, strict inclusion, equality, and inequality. 

(d) If s is in Sn and alpha is a value, then (alpha belongs 
to s) is in Qn. 

(e) Qn is closed under Boolean combinations. 

Example: 

SUPPLY (S#,P#,PRICE) 

Query: Find those suppliers whose price for every part 
that he supplies is greater than the average price for 
that part. 

RANGE OF S IS SUPPLY 
RETRIEVE INTO W (S.S#) 
WHERE COUNT (S.P# BY S.S# WHERE S.PRICE 

> 
A VG' (S.PRICE BY S.P#) ) 

= COUNT (S.P# BY S.S#) 

Comments: 

(a) It is clear that the Qualification of the Retrieve­
Statement is in Q2. 

(b) Instead of using COUNT, we could also have used 
the operator SET. In terms of processing efficiency, 
COUNT is preferrable. 



412 National Computer Conference, 1975 

UPDATE COMMANDS 

In addition to RETRIEVE, QUEL permits three com­
mands; REPLACE, DELETE, and APPEND, which are 
update operations. The syntax of the update statements is 
nearly identical to that of queries. Range statements have 
the same form and interpretation. The update statements 
have the same basic form as Retrieve-Statements: 

Command Result-Name(Target-List) WHERE 
Qualification 

For the APPEND Command, "Result-Name" must be the 
name of some existing relation, onto which qualifying tuples 
will be appended. 
For the REPLACE (and DELETE) Command, "Result­
Name" must be a tuple variable which, through the qualifi­
cation, indentifies the tuples to be modified (or deleted). 
The Target-List must contain explicitly (or by default) the 
existing Domain-Names for the relation being changed (the 
DELETE Command has no Target-List). 
A few examples will indicate the usage of the Update­
Commands. All of the examples will use the following rela­
tions and RANGE statements 

EMP(NAME,SAL,BDATE,MGR) 
NEWEMP (N AM'E,AGE,SALARY) 
RANGE OF E IS EMP 
RANGE OF N IS NE"WEMP 

Example: 

All new employees over 35 are to work for SMITH 

APPEND TO EMP(N.NAME,SAL=N.SALARY, 
BDATE=1975-N.AGE,MGR='SMITH') WHERE 
N.AGE>35 

Example: 

Give all employees a ten percent raise who work for Jones 

REPLACE E(SAL=1.1*E.SALARY) WHERE 
MGR='JONES' 

Note: The keywords BY and IS may be used interchange­
ably with' =' anywhere in INGRES to improve read­
ability. 

Example: 

Remove all employees who are in the EMP relation from 
the NEWEMP relation. 

DELETE N WHERE N.NAME=E.NAME 

DECOMPOSITION 

QUEL is obviously a very high level language and the 
success of system implementation depends critically on how 

the commands are processed. Palermo12 and Rothnie13 have 
considered the problem of query-processing in a relational 
data base system and have offered interesting suggestions on 
its solution. Neither, however, has provided an algorithm 
which is adequately general to process QUEL in its present 
form. Our approach is both more general and simpler. For 
the time being, we have opted for a uniform algorithm to 
deal with all queries rather than special strategies for special 
situations .. How the algorithm can be tuned for each query 
is a problem that must be addressed at a later date. 

Our "Overall strategy can be simply stated. Rather than 
compiling QUEL into a lower level language, we shall de­
compose an arbitrary QUEL-query into a series of one­
variable QUEL-l queries, at which point most of the difficult 
problems will have disappeared. Thus, for QUEL the "op­
timization" which is necessary for all high level languages 
lies nearly entirely in the decomposition. How "optimiza­
tion" can be achieved is a problem still very far from a 
satisfactory solution. In the first version of our implementa­
tion, nothing more than some common sense rules of thumb 
are being used in selecting alternative paths at each stage 
of the decomposition. 

Decomposition of QUEL queries is made difficult by an 
inconsistency in the language, viz., set-valued functions are 
allowed in the Qualification but not in the Target List. The 
role of set functions in the Qualification is to take the place 
of the universal quantifier. They are not allowed in the Target 
List because the result would be a relation with set-valued 
elements, i.e., an unnormalized relation. For example, the 
query 

RANGE OF X IS CITY 
RETRIEVE INTO W(X.STATE,CITIES-OF-STATE 
=SET(X.CNAME BY X.STATE» 

is an illegal QUEL query because it would result in an un­
normalized relation 

STATE 
W CAL 

ILL 
NY 

CITIES-OF -STATE 
{SF, LA} 
{CHI} 
{NYC} 

The only way of processing set functions which is consistent 
with the restrictions of QUEL is to substitute specific values 
one at a time for the conditioning function (i.e., the middle 
argument). For example, SET(X.CNAME BY X.STATE) 
becomes successively SET(X.CNAME WHERE X.STATE 
=CAL), SET(X.CNAME WHERE X.STATE=ILL) , 
etc. This strategy, when carried out on a multivariable query, 
can result in a combinatorial explosion in complexity. At the 
present time the use of set functions in QUEL statements is 
permitted but discouraged. Fortunately, a query involving 
set functions can often be replaced by one without them. The 
following example illustrates this point. 



Query: which states have only cities with population less 
than 4M? 

RANGE OF X IS CITY 
RETRIEVE INTO W(X.STATE) 

WHERE SET (X.CNAME BY X.STATE 
WHERE X.POPU <4M) 
= SET (X.CNAME BY X.STATE) 

The Qualificationin the above query can be replaced by 
COUNT (X.CNAME BY X.STATE WHERE 

X.POPU <4M) = COUNT (X.CNAME BY X.STATE) 

For the remainder of this section we shall outline a gen­
eral decomposition algorithm for those queries in QUEL 
which do not contain set functions. Sets, however, will be 
allowed. The overall strategy has two parts: (a) A QUELn 
query will be replaced by a series of QUEL(n-l) queries 
and one-variable QUELl queries. (b) A multivariable 
QUELO query will be decomposed into a series of one­
variable QUELO queries. Thus, repeated applications of the 
algorithm will decompose any QUELn query into a series of 
one-variable queries in QUELl or QUELO. 

(a) QUELn~QUEL(n-l) 

Consider a query involving one or more tuple variables 
X= (Xl, X2, ... , Xm) with range R=R1XR2X··· XRm. 
Let its Qualification be denoted by Q(X). Suppose the query 
contains (either in its Target List or in its Qualification) an 
aggregate function AGG(X.f BY X.g WHERE X.qual) 
where f and g belong to C (n - l) and qual belongs to 
Q(n-l). 

(i) RANGE OF Y IS R 

RETRIEVE INTO TEMPO(A=Y.f,B=Y.g) 
WHERE Y.qual 

Comment: The purpose of this statement is twofold: 
to convert the multivariable range R into a single 
relation TEMPO and to delineate the tuples which 
satisfy qual. 

(ii) RANGE OF Yl IS TEMPO 

RETRIEVE INTO TEMPI 
(Y1.B,C=AGG(Y1.A BY Y1.B» 

Comment: Thus far, we have created the portion of 
AGG(X.f BY X.g WHERE X.qual) , for X.g belong 
to SET (Z.g WHERE Z.qual). 

(iii) RANGE OF Y IS R 

RANGE OF Z IS TEMPO 
RETRIEVE INTO TEMP2 (B ::::; Y.g,C = AGG (c/J) ) 
WHERE Y.g does not belong to SET(Z.B) 

Comment.: AGG(c/J) means AGG operating on an 

INGRES-A Relational Data Base System 413 

empty set. We shall adopt the following convention: 

SUM(c/J) =O=SUM'(c/J) 
COUNT(c/J) =O=COUNT'(c/J) 

AVG(c/J) = undefined = AVG' (c/J) 
(error if occurs) 

MAX(c/J) = - 00 (i.e., the smallest possible value 
for that domain) 

MIN(c/J) = 00 (i.e., the largest possible value 
for that domain) 

(iv) RANGE OF Z2 IS TEMP2 

APPEND TO TEMPl(Z2.B,Z2.C) 

Comment: 'N e have finally created the desired ag­
gregate function 

(v) In the original query we add RANGE OF Z IS 
TEMPl, add the clause "AND (X.g=Z.B)" to the 
Qualification and substitute Z.C. for AGG (X.f BY 
X.g WHERE X.qual) . 

Comment: (iii) and (iv) are omitted if either X.g or 
X.qual is absent in the aggregate function. 

(b) Multivariable QUELO~One-Variable QUELO 

Suppose that the Qualification is expanded in a conjunc­
tive normal form so that it consists of clauses connected by 
AND with each clause containing atomic formulas or their 
negation connected by OR. 

(0) Stop if already one-variable. 

(i) For each variable, say Xl with range Rl, collect all 
the attributes which depend on Xl and all the clauses 
in the Qualification which depend only on Xl. Say 
Dl, D2, ... , Dk are the attributes,. and the clauses 
put together yield Ql (Xl). Issue the query. 

RANGE OF Xl IS Rl 
RETRIEVE INTO Rl' (Xt:Dl,X1.D2, ... , 
X1.Dk) WHERE Ql(Xl) 

(ii) Replace the range Rl of Xl in the original query by 
Rl' 

Comment: The purpose of (i) and (ii) is to limit the 
range of each variable in the original query to as small 
a relation as possible by projecting and by enforcing 
the part of the Qualification which operates only on 
this variable. 

(iii) Take the variable with the fewest tuples in its range 
and substitute in turn the actual values of its tuples. 
This reduces the number of variables by 1. After each 
substitution, repeat (0), (i), (ii) and (iii). 

Comment: Step (iii) will be referred to as tuple­
substitution and represents the most time consuming 



414 National Computer Conference, 1975 

step in the overall algorithm. The choice of which 
variable to substitute for is critical. Our criterion of 
choosing the variable with the fewest values is by no 
means optimal in general. 

This concludes the discussion of decomposition of queries. 
Update statements are transformed into queries followed 
(perhaps) by a sequence of insertions and deletions of 
tuples.6 

ACCESS METHODS 

As a result of the steps in the preceding section a sequence 
of one-variable QUELO and QUELl queries are generated. 
These queries can be executed directly (in the worst case by 
a sequential scan of the relation tuple by tuple). Often the 
relation will be stored in such a way that a complete scan is 
not required. Also secondary indices can be declared and are 
used if possible to limit the number of tuples examined. Cur­
rently there are five modes of relation storage and more can 
be added easily by implementing a common set of access 
calls (get next tuple, get unique tuple with equality on 
offered key, find starting point of a scan, etc.). These con­
ventions are further discussed in Reference 14. Currently, a 
relation owner can decide both the relation storage and what 
secondary indices (if any) to construct. Soon both decisions 
will be done automatically by the system. 

The current access methods are 

( 1) Unsorted Tables. This access method is supported for 
ease of entering relations into the system and is used 
for temporary relations (workspaces). 

(2) Hashed Tables. 15 ,16 These are used when interactions 
almost always specify equality on a given domain or 
set of domains. A division algorithm is used, bucket­
size is the page size used by UNIX and overflows are 
handled by chaining. 

(3) Order Preserving Address Computation with a vari­
able number of parameters. This access method is 

. useful when scans over portions of a relation must be 
performed and the order preserving nature of the 
function can be used to limit the scan. The number of 
parameters is data dependent and ranges from none to 
the number of data pages used by the relation. With 
no parameters it resembles the computed functions of 
RothnieI7 and Rivest,lS With a maximum number of 
parameters it resembles VSAM.19 This function and 
the choice of the number 'of parameters is discussed 
in Reference 14. 

(4) Compressed Access. Access methods 2) and 3) can 
& optionally (and transparently to higher level soft­
(5) ware) apply a compression scheme to each data page. 

Currently only front compression is used but the 
scheme will become more sophisticated in· the future. 
These two access methods are useful when a large 
space saving will result in decreased I/O activity. Of 

course, the price paid is coding and decoding tuples 
at each access. 

QUERY MODIFICATION 

A high-level and nonprocedural language has benefits be­
yond its power and ease of use. For our purposes a major 
benefit will be the possibility of solving a number of system 
problems in a unified way, viz., by query modification. Here 
"query" is to be interpreted broadly to include the update 
commands as well. The specific problem areas to be ad­
dressed are: access control, integrity verification, and the 
support of "views." A suggestion along similar lines was 
made by Boyce and Chamberlin.20 Since the details of our 
approach to these problems are being reported elsewhere,21 ,22 
we shall confine ourselves to a brief account of the basic 
ideas here. 

Access control 

Problem : We wish to provide a means whereby the access 
of each user to the database can be selectively restricted. 

Solution: We define a pseudo QUEL command called 
RESTRICT which has a syntax nearly identical to that of 
RETRIEVE. The access control for each user is specified by a 
set of RESTRICT statements. For example, suppose EM­
PLOYEE(NAME,DEPT,SALARY,MANAGER) is a rela­
tion, and the restriction on SMITH is given by 

RANGE OF E IS EMPLOYEE 
RESTRICT ACCESS FOR 'SMITH' TO EMPLOYEE 

WHERE E.NAME = 'SMITH' OR E.MANAGER= 
'SMITH' 

The interpretation here is that SMITH can retrieve only 
the data on himself and on anyone whom he manages. Differ­
ent restrictions may be in force for the update commands, 
for example, 

RANGE OF E IS EMPLOYEE 
RESTRICT UPDATE FOR 'SMITH' TO EMPLOYEE 

Execution: The Qualification of every RESTRICT state­
ment for a given user is appended to the Qualification of 
everyone of his interactions by conjunction (i.e., AND). 
For example, if SMITH issues the query 

RANGE OF E IS EMPLOYEE 
RETRIEVE INTO W(E.SALARY) 

WHERE E.NAME = 'JONES' 

it is automatically executed as 

RETRIEVE INTO W(E.SALARY) 
WHERE E.NAME = 'JONES' 
AND (E.N AME = 'SMITH' OR 
E.MAN AGER = 'SMITH') 

Comment: Queries involving aggregation are naturally 



more difficult to handle, but nevertheless can be handled in 
a similar way.21 

Integrity assurance 

Problem: We want to provide a means for maintaining 
certain constraints or consistency conditions on the data in 
the face of updates. For example, suppose we require that 
the data satisfy the constraints: "no employee can earn more 
than 21K" which may well be violated by the update opera­
tion "give everyone earning less than 20K a 10 percent 
raise". 

Solution: Introduce a QUEL command, called INTEG­
RITY which expresses the constraint in the form of a QUEL 
qualifica tion, e.g., 

RANGE OF F IS EMPLOYEE 
INTEGRITY CONSTRAINT IS E.SALARY~21K 

Execution: Each update command which potentially vio­
lates the integrity constraint will be filtered by the INTEG­
RITY statement. This is done by appending qualification 
from the INTEGRITY Statement. The algorithms become 
somewhat complicated when the INTEGRITY Statement 
involves more than one tuple variable or aggregation. 6 Here, 
we confine ourselves to an illustrative example. Suppose that 
a command to "give everyone earning less than 20K a 10 
percent raise" is issued. In QUEL this takes the form 

RANGE OF E IS EMPLOYEE 
REPLACE E(SALARY BY 1.1 *E.SALARY) 

WHERE E.SALARY < 20K 

This statement upon modification becomes: 

RANGE OF E IS EMPLOYEE 
REPLACE E(SALARY BY 1.1 *E.SALARY) 

WHERE E.SALARY <20K 
AND 1.1*E.SALARY~21K 

Views 

Problem: We wish to accommodate queries referencing 
relations which do not exist but can be derived from existing 
relations. Due to reorganization of the database, existing 
programs may have obsolete "views" that need to be sup­
ported. 

Solution: We introduce a QUEL command called DE­
FINE, which relates a "view" of the database to reality. 
For example: Suppose that at one time the database con­
tained a relation EMPLOYEE (E#,NAME,DEPT,SAL­
ARY,SPOUSE,#CHILD). After reorganization, this rela­
tion becomes two relations. JOB (E#,DEPT,SAL) and 
FAMILY(E#,NAME,SPOUSE,#CHILD). The DEFINE 

INGRES-A Relational Data Base System 415 

statement is given by 

RANGE OF J IS JOB 
RANGE OF F IS FAMILY 
DEFINE EMPLOYEE (J.E#,J.DEPT,SALARY = 

J.SAL,F.NAME,F.SPOUSE,F.#CHILD) 

Execution: Any interaction referencing a relation which is 
the "Result" of a DEFINE statement is translated into an 
interaction referencing the relatioQ.s declared in the RANGE 
of the DEFINE statement. For example, consider the 
statement 

RANGE OF E IS EMPLOYEE 
REPLACE E(SALARY BY 1.1 *E.SALARY) 

WHERE E.NAME='JONES' 

Upon modification, it becomes 

RANGE OF J IS JOB 
RANGE OF F IS FAMILY 
REPLACE J(SAL BY 1.1 *J.SAL) 

WHERE F.NAME='JONES' 
AND F.E#=J.E# 

CONCLUSION 

The first, and a very primitive, version of our system is now 
implemented. At the time of writing of this paper only 
QUELO queries are permitted. A complete, but relatively 
unclever, implementation for QUEL, is expected by April, 
1975. Access control is the first of the query-modification 
features to be implemented, and is now working. Other 
query-modification features and strategies for greater effi­
ciency in processing are on the more distant horizon. 

ACKNOWLEDGMENT 

Implementation of INGRES is being undertaken by Jim 
Ford, Peter Kreps, Nancy McDonald, Carol Williams, 
Karel Youssefi and Bill Zook. Their dedication and resource­
fulness never cease to amaze us. 

REFERENCES 

1. Ritchie, E. and K. Thompson, "The UNIX Time-Sharing System," 
CACM, 17, 1974, pp. 365-375. 

2. Johnson, S. C., YACC-Yel Another Compiler-Compiler, Bell 
Telephone Laboratory, Murray Hill, N.J. 

3. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," CACM, 13 (1970), pp. 377-387. 

4. Codd, E. F. and C. J. Date, "Interactive Support for Non-Pro­
grammers: the Relational and Network Approaches," Proc. of the 
1974 ACM-SIGFIDET Workshop on Data Description, Access and 
Control, Ann Arbor, Mich., May 1974. 

5. Date, C. J. and E. F. Codd,· "The Relational and Network 
Approach: Comparison of the Application Programming Inter-



416 National Computer Conference, 1975 

faces," Proc. of the 1974 ACM-SIGFIDET Workshop on Data 
Description, Access and Control, Ann Arbor, Mich., May 1974. 

6. Stonebraker, M., High Level Integrity Assurance in Relational Data 
Base Management Systems, University of California, Electronics 
Research Laboratory, Memorandum ERL-M473, August 1974. 

7. McDonald, N., M. Stonebraker, M. and E. Wong, Preliminary 
Design of INGRES, University of California, Electronics Research 
Laboratory, Memorandum ERL-435-436, April, 1974. 

8. Stonebraker, M. and E. Wong, INGRES-A Relational Data Bas.e 
System, University of California, Electronics Research Laboratory, 
Memorandum ERL-M477, November, 1974. 

9. McDonald, N. and M. Stonebraker, CUPID-The Friendly Query 
Language, University of California, Electronics Research Labora­
tory, Memorandum ERL-M483, December, 1974. 

10. Codd, E. F., "A Data Base Sublanguage Founded on the Relational 
Calculus," Proc. of the 1971 ACM-SIGFIDET Workshop on Data 
Description, Access and Control, San Diego, Calif., November 1971. 

11. Boyce, R. and D. Chamberlin, "SEQUEL-A structured English 
query language," Proc. of the 197J,. ACM-SIGFIDE7' Workshop on 
Data Description, Access and Control, Ann Arbor, Michigan, May, 
1974. 

12. Palermo, E. P., "A Data Base Search Problem," Proc. 4th Inter­
national Symposium on Computers and Information Science, Miami 
Beach, December 1972. 

13. Rothnie, J. B., "A-Approach to Implementing a Relational Data 
Management Data Management System," Proc. of the 1974 ACM-

SIGFIDET Workshop on Data Description, Access and Control, 
Ann Arbor, Mich., May 1974. 

14. Held, G. and M. Stonebraker, "Access Methods in the Relational 
Data Base Management System-INGRES," Proceedings of ACM­
PACIFIC-75, San Francisco, Ca., April, 1975. 

15. Morris, R., "Scatter Storage Techniques," CACM, 11, 1968, 
pp.35-38. 

16. Lum, V., "General Performance Analysis of Key-to-Address 
Transformation Methods Using an Abstract File Concept," CACM, 
16, (1973,) pp. 603-612. 

17. Rothnie, J. B., Jr. and T. Lozano, "Attribute Based File Organiza­
tion in a Paged Memory Environment," CACM, 17, 1974, pp. 63-69. 

18. Rivest, R., Analysis of Associative Retrieval Algorithms, Institute 
de Recherche d'Informatique et d' Automatique (IRIA), Rapport 
de· Recherche No. 54, February, 1974. 

19. Keehn, D. and J. Lacy, "VSAM Data Set Design Parameters," 
IBM Systems Journal, Vol. 13, No.3, 1974. 

20. Boyce, R. F. and D. D. Chamberlin, "Using a Structured English 
Query Language as a Data Definition Facility," IBM Research 
Report RJ1318, December, 1973. 

21. Stonebraker, M. and E. Wong, "Access Control in a Relational 
Data Base Management System by Query Modification," Proc. 1974 
ACM National Conference, San Diego, Calif., November 1974. 

22. Stonebraker, M., Implementation of Views and Integrity Constraints 
in Relational Data Base Systems by Query Modification, to be 
published. 



Evaluating inter-entry retrieval expressions 
in a relational data base management system 

by JAMES B. ROTHNIE, JR. 
Department of Defense Computer Institute 
Washington, D.C. 

INTRODUCTION 

Among the most important current concepts in data base 
technology is the relational model of data base manage­
ment. The theory was introduced by Codd l in 1970 and 
has since been expanded in a large number of articles b} 
Codd,2,3,4 and other authors, for example.5 ,6,7,8,9 The rela-
tional concept models the user view of a data base. As a 
user view it offers many applications significant ad­
vantages over more traditional approaches such as that 
proposed by the CODASYL Data Base Task Group.IO,n 
Unfortunately some of the desirable properties of the rela­
tional model, and in particular the very important at­
tribute called data independence, make the concept dif­
Ecult to implement efficiently. This paper will describe an 
approach to solving one of the key implementation prob­
lems. The concepts discussed here have been embodied in 
an experimental system called DAMAS developed at the 
Massachusetts Institute of Technology. A complete dis­
cussion of DAMAS can be found in Reference 12. 

A brief review of relational concepts 

It will be assumed in this paper that the reader is fa­
miliar with the basic relational concepts but the termi­
nology and notation will be very briefly reviewed. 

In the relational user view a data base consists of a set 
of named relations. Each relation can be viewed as a 
simple table, a construct approximately equivalent to the 
more traditional idea of a file. With the tabular picture in 
mind, each row of a relation is called a tuple, where a 
tuple corresponds to a file entry or record in more familiar 
terminology. A relation is a set of tuples and, hence, no 

\ two tuples in a relation are identical. Each column is given 
an attribute name. A tuple contains one value (possibly 
null) for each attribute defined for the relation of which 
that tuple is a member. A relation called "employee", for 
example, can be defined having the attributes "name", 
"salary", and "department". A tuple of "employee" would 
provide a description of an individual in terms of those 
three attributes, for example, (John Jones, 12000, Sales). 

The data structure in the relational model, then, is very 
simple. A data base consists essentially of a set of tables. 
The power of the relational model is derived from the 

417 

mechanisms a user has available to extract information 
from this simple data structure. Codd has specified a lan­
guage called DSLj ALPHA2 which can be used to express 
operations on a relational data base. This language is 
somewhat awkward syntactically and other authors have 
defined more congenial versions based on this original, for 
example.13 DSLI ALPHA, however, remains the most com­
monly known and we will use it to express retrieval prob­
lems in this paper. Two example expressions will ade­
quately illustrate the relevant DSLI ALPHA constructs. 

To extract from the "employee" relation the names and 
salaries of all employees earning more than $10,000 and 
place these names in a new working relation called WI we 
would use the following expression: 

RANGE EMPLOYEE E 
GET WI E. NAME, E. SALARY: 
E. SALARY> 10000 

The phrase "E. NAME, E. SALARY" is called the target 
list and it identifies those attribute values in selected 
entries which will be included in the new relation. "E. 
SALARY> 10000" is the qualification and it describes the 
condition which tuples must satisfy to be selected for the 
new relation. "RANGE EMPLOYEE E" is the range dec­
laration. It defines E to be a tuple variable which ranges 
over the EMPLOYEE relation. The role of a tuple 
variable is essentially that of a bound variable in a set 
definition. For example, the following definition indicates 
which EMPLOYEE tuples would be selected for WI and 
illustrates the role of E: 
WI = IE where E is a tuple of EMPLOYEE and the 
SALARY attribute of E is greater than 10000.1 Retrieval 
expressions, like this one, which contain only a single tuple 
variable play an important role in the implementation 
method to be presented and they are termed primitive 
Boolean conditions (PBC). The real usefulness of the tuple 
variable concept, however, arises only in expressions 
where more than one tuple variable is required in the 
qualification. Consider, for example, the following 
problem. 

Suppose we add to the EMPLOYEE relation a new at­
tribute, MANAGER, which indicates each employee's 
manager. If a tuple has the NAME attribute John Jones 
and MANAGER attribute Jack Smith, then Jack Smith is 



418 National Computer Conference, 1975 

John J ones' manager~ To create a relation W2 containing 
the names of all employees who earn more than their 
managers, we use the following expression: 

RANGE EMPLOYEE E 
RANGE EMPLOYEE M SOME 
GET W2 E. NAME: E. MANAGER=M. NAME 

AND E. SALARY>M. SALARY 

In the qualification, "E. MANAGER=M. NAME" es­
tablishes the required managee / manager relationship 
between E and M while "E. SALARY>M. SALARY" 
expresses the requested salary relationship. The range dec­
larations indicate that both tuple variables E and M range 
over EMPLOYEE. The key word SOME in the declara­
tion for M indicates that M is existentially quantified. 
That is, to select a tuple for E to include in W2 we need to 
establish the existence of a pair (E,M) which will make 
the qualification true. We need not draw any data from 
M; we need only establish its existence. 

DSL/ ALPHA permits the use of any number of tuple 
variables, each of which can be unquantified, existentially 
quantified or universally quantified. The language sup­
ports standard retrieval and maintenance operations and 
offers a number of other features. For the purposes of this 
paper, however, we will confine our discussion to retrieval 
(GET) expressions involving two tuple variables, one 
unquantified and one existentially quantified. 

The implementation problem 

A key goal of the relational model is to facilitate data in­
dependence in a data base management system. Generally 
a system can be said to be data independent if users and 
application programs are unaffected by changes in the 
physical storage of the data base and by certain types of 
changes in the user view. 

The relational model encourages a system architecture 
possessing this characteristic by offering a high level user 
view which is quite divorced from storage structure and 
search algorithm concepts. This gives a well conceived 
relational system flexibility in electing a physical 
representation and search procedures, based on perfor­
mance considerations, and in changing those choices as re­
quired. This is in contrast to systems, typified by the 
DBTG proposal, which depend upon user procedures to 
identify desired data objects. The greater level of detail in 
the DBTG user view restricts the system's opportunity to 
make or change representational choices. Substantial 
changes on the physical side will almost certainly involve 
changes to user decisions and hence will require user in­
volvement. 

The challenge to the implementor of a dat:;l independent 
system is to achieve efficient execution in the absence of 
the detailed user guidance available to DBTG-like 
systems. This is particularly a problem for relational 
systems since their powerful user languages permit users 
to request complex computations very simply. It is critical 

that the system be able to handle such requests efficiently 
or execution times are likely to exceed practical limits. 
The problem primarily arises for retrieval requests involv­
ing multiple tuple variables. To see this, note that for the 
most simple-minded implementation technique, exhaus­
tive search, the execution time for handling a one tuple 
variable request is proportional to N, the number of tuples 
in the relation. The similar measure for a selection 
expression involving M tuple variables, each ranging over 
the N tuple relation, is NM, the number of unique ordered 
collections of N tuples taken M at a time. This, of course, 
is a very crude bound and it is easy to construct al­
gorithms which can improve upon it. However, this simple 
analysis does illustrate the danger of an exponential explo­
sion in computation for this type of query, a danger which 
does not exist in a PBC. The remaining sections of this 
paper will be devoted to the description of a technique for 
handling two tuple variable queries, a technique which of­
fers a far better performance than the brute force bound. 

AN APPROACH TO IMPLEMENTATION 

The system macro-organization 

The algorithms we will be discussing for evaluating two 
entry variable retrieval expressions can be conceptually 
partitioned into two major modules. One, called the 
storage module, is responsible for the physical representa­
tion of relations and for responding to certain types of 
requests from the second module, called the multi-tuple 
variable module (MTVM). These requests take the form 
of subroutine calls and they require the storage module to 
perform certain operations on the stored relations, includ­
ing: 

• returning a sequence of tuples satisfying some qualifi­
cation; 

• determining the existence of a tuple satisfying some 
qualification; 

• eliminating from further consideration in the current 
computation all those tuples which satisfy some quali­
fication. 

The key to the organization of this technique is in the 
nature of the qualifications which the tuples to be 
identified by the storage module must satisfy. In each 
case, this qualification is a PBC, i.e., a one tuple variable 
qualification. The storage module appears to the MTVM 
as a set of rather powerful primitives for operating on rela­
tions given a PBC to identify the tuples of interest. It is 
the responsibility of the MTVM to use these PBC han­
dling primitives as a part of an algorithm which is capable 
of handling more than one tuple variable. The main thrust 
of this paper is to describe how the MTVM accomplishes 
this for two tuple variable expressions. 

There are in fact a variety of techniques available for 
handling PBC's (e.g., inverted files,l4 multi-list files,t5 and 
multiple key hashing. l6

) Each of these methods offers ad-



vantages over the others in certain situations, so that a 
system with important claims to generality should not 
depend on a single one of these alternatives for all rela­
tions. To deal with this problem the DAMAS implementa­
tion was designed to operate with an unlimited number of 
storage modules, all with identical Interfaces to the 
MTVM but each offering a different means of storing rela­
tions and handling PBC's. The organization is sketched in 
Figure 1. 

In this paper we will be focusing attention on the 
MTVM; the internal structure of storage modules will not 
be further considered. We will view each storage module 
as a. collection of PBC handling primitives. Even the 
details of these primitive calls will be sU)lpressed here; the 
missing details can be found in References 12 and 17. Our 
approach in this paper will be to follow the operation of 
the MTVM on an example problem and to suggest the 
associated storage module operations as appropriate. 

The example multi-tuple variable module operation 

Figure 2 shows three example relations and a GET 
statement in DSLj ALPHA. The GET statement contains 
two tuple variables T1 and T2 which range over the pic­
tured relations R1 and R2 respectively. T2 is existentially 
quantified. The result of processing the statement is R3 
and it contains the A4 and A5 attribute values from tuples 
R1 which satisfy the rather complicated qualification. The 
reader should examine this qualification and understand 
its logic. A tuple T1 of relation R1 will be selected if: 

1. Its own attributes satisfy the condition (T1.A1<3 OR 
Tl.A3= 1) and T1.A2>6 

and 
2. There exists a tuple T2 is R2 such that the pair of 

tuples (T1, T2) have attributes which satisfy the con­
dition T1.A4~T2.A3 and T2.A1 =T1.A1 

The details of this qualification are not important of 

QUALIFICATION 

MUL TI-TUPLE 
VARIABLE 
MODULE 

Figure I-System macro-organization 

Evaluating Inter-entry Retrieval Expressions 419 

(1) 
(2) 
(3) 
(4) 
(S) 
(6) 
(7) 
(8) 
(9) 

(10) 

(11) 
(12) 
(13) 
(14) 
(IS) 
(16) 

Relation RI 
Al A2 A3 A4 AS 

7 
7 
8 

1 6 
2 2 
2 8 
2 7 
2 7 
2 8 
2 8 
3 3 
3 4 
3 6 
3 8 
4 1 
4 8 

1 3 
2 4 1 
2 4 3 
222 
2 3 1 
242 

6 2 
7 2 
6 2 
7 2 
3 

1 2 
2 2 

3 
2 S 2 
242 

RANGE RI Tl 
RANGE R2 T2 SOME 
GET R3 Tl.A4, Tl.AS: 
(Tl.Al < 3 OR Tl.A3= 1) 

Relation R2 
Al A2 A3 

(1) 3 S 4 
(2) 3 6 3 
(3) 2 2 
(4) S 

Relation R3 

A4 AS 

(1) 3 
(2) 4 1 
(3) 4 3 

AND (Tl.A2 > 6 AND Tl.A4 < T2.A3 AND T2.Al= Tl.Al) 

Figure 2-Example two-tuple variable selection 

A4 AS 

3 7 
2 

1 S 
2 

themselves, but it is helpful to understand them in 
considering the operation of the MTVM in evaluating this 
expression. 

The mission of the MTVM is to evaluate the complete 
tuple selection expression. It accomplishes this by decom­
posing the expression into PBC's (one tuple variable quali­
fications) for evaluation by the storage modules. PBC's 
are derived from the original GET statement, possibly in 
combination with data retrieved from the relations during 
the course of the evaluation. The philosophy which guides 
the construction of PBC's and calls to the storage modules 
is an effort to derive as much information as possible from 
each access of the data base. Assuming that these accesses 
are the most expensive operations performed in the 
evaluation process, this is an attempt to gain maximum 
benefit for the cost. 

The first action which the MTVM takes on encountering 
our example expression is to construct a PBC which 
eliminates from further consideration any tuple of R1 
which can be discarded on the basis of its own attributes. 
For example, any tuple with attribute A1 greater than 2 
and A3 not equal to 1 can be eliminated in this way. The 
MTVM implements this concept by constructing a PBC, 
called PBC1, which identifies that subset of R1 which can­
not be eliminated in this way. The tuples satisfying PBC1 
will then be subjected to further analysis. For this qualifi­
cation, PBC1 is: 

(T LA 1 <3 OR T1.A3=1) and T1.A2>6 

In general PBC1 can, be constructed by setting all condi­
tions involving T2 in the original qualification to TRUE 
and simplifying. The MTVM asks the storage module han­
dling R1 to restrict its attention to the subset identified by 
PBC1 for all subsequent operations on the tuple variable. 



420 National Computer Conference, 1975 

Note that in the. example relation this subset consists of 
the tuples identified by the numbers 1,2,3,6,7,8,9,10 and 
14. Then the MTVM asks the module to return one tuple 
from this subset. Let this tuple be called El. 

Suppose that El is the tuple (1,7,1,3,1). The next task of 
the MTVM is to determine if this tuple satisfies the com­
plete qualification. This involves ascertaining whether or 
not there exists a tuple in R2 which when paired with El 
satisfies the complete qualification. 

To accomplish this the MTVM constructs a new PBC, 
called PBC2. PBC2 has the property that, if there exists a 
tuple in R2 for which PBC2 is true, then the tuple El 
satisfies the complete qualification. In general, PBC2 is 
derived by substituting the attribute values of El for the 
attributes associated with the tuple variable Tl and sim­
plifying. For this particular qualification and choice of El, 
PBC2 is: 

3S::T2.A3 AND T2.Al = 1 

As it happens, there is a tuple (1,1,5,2,1) in R2 which 
satisfies PBC2 so the target list from El, (3,1), is included 
in the new relation R3. 

At this point, it is possible to repeat the cycle by draw­
ing a new value from the PBCl subset, constructing a new 
PBC2, checking for qualified tuples in R2 and so forth. 
However, in this and many other cases, it is possible to 
gain additional benefits from the initial iteration. Specifi­
cally, given the existence of the tuple (1,1,5,2,1) in the 
relation R2, the MTVM can construct a PBC, called 
PBC3, which will identify additional tuples in Rl which 
fully satisfy the qualification because of the existence of 
this tuple in R2. 

In general, PBC3 is constructed by replacing the T2 at­
tributes in the original qualification with the contents of 
some tuple in R2 which satisfies PBC2, and simplifying. 
PBC3 in this case is: 

(Tl.Al<3 OR Tl.A3= 1) AND 
Tl.A2 >6 AND Tl.A4s..5 AND 1 =Tl.Al) 

Since PBC3is constructed from a known tuple of R2, any 
tuple of Rl which satisfies it will pass the complete quali­
fication. In this instance when PBC3 is applied to Rl, the 
additional tuples 2 and 3 are selected and their target lists 
are added to R3. 

At this point, then, the MTVM returns to the storage 
module handling Rl and asks for another tuple El from 
the PBCl subset. Suppose that this time El is (2,8,2,4,2). 
Again PBC2 is constructed, and for this tuple substitution 
we derive: 

4~T2.A3 AND T2.Al=2 

However, an examination of R2 will reveal that there is no 
tuple which satisfies this qualification. Hence El is not 
selected and its target list is not added to R3. 

From here the MTVM can simply conclude the iteration 
and return for another tuple of the PBCl subset. However, 
even the failure of a tuple to satisfy the qualification 
provides important information about the relations in-

volved, and the system can take advantage of this in­
formation to avoid some later searching. Specifically, this 
failure indicates that there does not exist any tuple in R2 
whose attributes satisfy the conditions in PBC2. Hence we 
can· eliminate from further consideration any tuple in Rl 
whose attribute values will generate the same PBC2. 
Furthermore, if no tuple in R2 satisfies PBC2 then, 
clearly, no tuple exists which satisfies a qualification 
which is the same as PBC2 except that 4 is replaced by a 
larger value. An examination of the full qualification indi­
cates that any tuple having a 4 or greater in attribute A4 
and a 2 in attribute A2 will generate such a PBC2. The 
MTVM constructs a new PBC, called PBC4, to identify 
such tuples and it requests the storage module for Rl to 
eliminate these tuples from the PBCl subset. In this case 
PBC4 is: 

4:s:Tl.A4 AND Tl.Al=2 

Tuples 7,8,9, and 10 are thereby discarded from the sub­
sequent search. 

After two complete iterations, then, we are left with only 
one tuple from the original PBCl subset remaining to be 
considered. This is tuple #14 (3,8,1,3,1). However, this 
tuple need not be processed because its target list (3,1) is 
identical to a tuple already present in R3, Since a relation 
is a set it can have no two identical members and a second 
insertion of (3,1) will have no effect on the relation. Hence 
there is no reason to proc-ess the tuple. In order to recog­
nize such situations, whenever a new tuple is added to R3 
the MTVM can construct a PBC, called PBC5, which 
identifies all other tuples with identical target lists. The 
storage module for Rl is then asked to eliminate such 
tuples from the PBCl subset. In this case, PBC5 is: 

T2.A4=3 AND Tl.A5=1 

If tuples satisfying PBC5 had been discarded when tuple 
#1 was selected for inclusion in R3, then at this point all 
tuples would have been handled and the algorithm com­
plete. 

An example performance analysis 

This contrived example has illustrated the approach 
taken in the DAMAS implementation. While it was 
possible to construct a situation in which this specific al­
gorithm was effective, it is equally possible to cite exam­
ples in which a simpler algorithm would be more effective. 
This is true because the use of the procedure steps 
associated with PBC3, PBC4 and PBC5 will not always 
identify enough tuples to justify their overhead. For this 
reason, each of these mechanisms is treated as an option 
to be employed or not depending on the situation. 

Experimentation with DAMAS verified speculation that 
the decision to employ each option or not would have an 
important impact on performance and the optimal choices 
would vary from query to query. The following example 
from the experimental results will illustrate that point. 



A relation called R1 was defined and loaded with 640 
synthetically constructed tuples. The relation was assigned 
ten attributes named Al through A10. Attribute values 
were randomly generated integers with all values, except 
those for A4, uniformly distributed from 1 through 16. 
The values for A4 were uniformly distributed integers 
ranging from 1 through 400. The storage module for R1 
used a technique called multiple key hashing. 16 The 
details of this method ar€' not relevant to an understanding 
of the example results. However, it is useful to know that 
the technique as applied here was most effective at identi­
fying tuples with a given value for AI, somewhat less effec­
tive for A2 and A3, and still less effective for the other at­
tributes. 

The objective function used in comparing the various 
combinations of options available in DAMAS was the 
minimization of page accesses. The rationale for this 
choice was based on the observation that in the DAMAS 
computer system environment (MULTICS)/8 page ac­
cesses account for an overwhelming fraction of the total 
cost of querying a data base. Since a paged memory can 
serve as a gross model of any large data base environment, 
the results should be roughly extendable to other com­
puter systems. 

The first example query we will consider is the follow­
ing: 

RANGE R1 T1 
RANGE R1 T2 SOME 
GET WI Tl. all attributes: Tl.A2=5 AND 

Tl.Als::T2.A5 AND T2.A2=5 AND T2.A3=5 

When this retrieval expression was evaluated without us­
ing any of the special options, PBC3, PBC4 and PBC5, 
DAMAS performed 304 data page accesses. Of these, 248 
occurred while searching R1 for a tuple satisfying 
PBC2-and failing to find one. A look at PBC2 will reveal 
generally the reason for this performance. PBC2 was of 
the form: 

C.s;:T2.A5 AND T2.A2=5 AND T2.A3=5 

where C was replaced by the specific value drawn from at­
tribute Al of the tuple E1 used to generate PBC2. Because 
of the way that the storage module handled R1, a tuple 
satisfying this PBC might have occurred on eight different 
pages for any value of C. When there was no tuple in R1 
which satisfied PBC2 the storage module searched all of 
these pages. As it happened there were 31 tuples in the 
PBC1 subset which failed to satisfy PBC2. Since each of 
these incurred eight accesses, the total of 248 for this por­
tion of the algorithm resulted. 

The relatively high cost of handling the case of negative 
results of PBC2 suggests that the use of PBC4 might have 
been fruitful. Recall that PBC4 provides a means of 
identifying some tuples which will fail PBC2 without 
performing a complete iteration for each of them. PBC4 in 
this case would be of the form: 

Evaluating Inter-entry Retrieval Expressions 421 

with C replaced by the Al attribute of a tuple which failed 
on PBC2. As mentioned above, the storage module was ef­
fective in handling PBC's involving Al so that processing 
of this PBC would not be excessively costly. Furthermore, 
the nature of this PBC suggests that a large fraction of the 
tuples which would fail PBC2 might be identified by 
processing PBC4. 

When the experiment was actually performed, the first 
PBC4 constructed was: 

Tl.AL2:.6 

Processing this expression required 12 page accesses and 
the result was the elimination of all remaining tuples 
which would fail PBC2. Hence at a cost of 12 page ac­
cesses required for PBC4, 248 page accesses were avoided. 
It might be argued that this substantial success was a 
fortunate accident. It is true that some other choices for 
E1 would produce less effective results. However, for this 
problem the highest cost possible for using PBC4 was 72 
page accesses, still a substantial reduction from 248. In 
any case, the point that significant savings can be 
achieved with this option is clearly demonstrated. 

The use of PBC3 in this case saved only 5 page accesses. 
This option was less effective than PBC4 because there 
were fewer tuples in the PBC1 subset which satisfied 
PBC2 and because the cost of handling each of them was 
less than the cost for those which fail PBC2. The use of 
PBC5 was clearly precluded because the target list 
contained all of the attributes of Rl. Since relations are 
defined to contain no duplicates, searching for an identical 
target list was certain to be fruitless. If, however, the 
target list had been a single attribute, AI, then the use of 
PBC5 would have been valuable because of the high 
probability of identifying duplicates. 

While PBC4 was effective in this example there are 
many instances in which it will be useless and, in fact, 
costly to employ. Consider, for example, the following 
retrieval expression: 

RANGE R1 T1 
RANGE R1 T2 SOME 
GET W2 Tl. all attributes: 
T1.A3<3 AND (Tl.A2=T2.A1 AND T2.A4<5) 
OR (Tl.A3=T2.A1 AND T2.A4>395) 

For this problem PBC4 is of the form: 

T1.A2=C1 AND Tl.A3=C2 

where C1 and C2 are replaced by attribute values drawn 
from tuples which fail PBC2. The probability that a 
random tuple will satisfy PBC4 is, 1/256. Hence the use of 
PBC4 in this example is very unlikely to yield results 
which justify its overhead. 

Strategy selection 

The above performance analysis should clearly 
illustrate the following important point. For this approach 



422 National Computer Conference, 1975 

to handling multi-tuple variable expressions to be effec­
tive, it is essential to employ an adequate method of decid­
ing which options should be used in a particular situation. 
DAMAS did not include a facility for automatic strategy 
selection; users were asked to indicate which options they 
wished to employ. In the long run, however, it is clearly 
desirable, in the interest of data independence, user sim­
plicity, and optimal choices, for the system to make this 
determination. The discussions in the last section which 
examined why the use of a certain option was effective in 
a given situation suggest a methodology for predicting 
which options will be hopeful. This section further ex­
plores that notion. A more detailed consideration of this 
topic can be found in Reference 19. 

The MTVM selects a strategy by making a yes-no deci­
sion on the use of each of the special options PBC3, PBC4, 
and PBC5. Each of these decisions is based on an approxi­
mate calculation designed to indicate whether the costs 
avoided in using an option exceed the costs incurred in us­
ing it. The information concerning page accessing costs 
and numbers of tuples identified is obtained from the 
storage modules via special calls available to the MTVM. 
A sample decision on the use of PBC4 will illustrate the 
types of data obtained from the storage module and the 
calculations based on these data. 

The MTVM requests the storage module to provide 
three items of information: 

1) The expected number of tuples in the PBCI subset 
which will be identified by one application of PBC4. This 
is obtained from the product of the probability that a 
random tuple will satisfy both PBCI and PBC4 and the 
number of tuples in the relation. The call to the storage 
module includes PBCI and PBC4 as arguments. The 
returned value is called N4. 
2) The expected cost in page accesses of processing PBC2 
when the result is false. Call this result C2. 
3) The expected cost in page accesses of processing PBC4. 
Call this result C4. 

Given these values the cost avoidance can be simply 
computed as N4*C2, the number of tuples identified times 
the cost of processing PBC2 for each one. If this value is 
greater than the cost incurred, C4, then PBC4 is used. 

The same type of calculation can be performed for 
PBC3 and PBC5. Intuitively the approach seems likely to 
make reasonable choices in most situations but it has not 
been implemented and tested experimentally. Further ex­
ploration into the problems of strategy selection are 
clearly required. 

SUMMARY 

This paper has described via example a methodology for 
handling relational data base expressions involving two 
tuple variables. Somewhat in the manner of McDonald et 
al.,9 this technique assumes the existence of one or more 

mechanisms for handling one tuple variable expressions 
(PBC's) and employs these as primitives in handling 
higher level expressions. The technique therefore is not 
concerned, at this level, with the detailed list manipulating 
operations by which the DIAM approach20 handles inter­
tuple associations. Such machinations might occur within 
the storage modules but they are invisible at the level of 
the MTVM where this paper was centered. 

Unlike the McDonald approach, the technique 
described here does not involve a fixed sequence used in a 
largely identical way for all queries. Instead, this ap­
proach offers the possibility of using three options which 
in some situations can yield very substantial performance 
efficiencies. These options attempt to utilize the increasing 
information about the data base which is acquired with 
each access to a relation. Experimentation has verified 
that significant cost savings are possible when the appro­
priate combinations of these options are employed. An im­
portant difficulty, however, is the process of deciding 
which options to employ. A simple approach to automat­
ing these decisions was briefly discussed. 

ACKNOWLEDGMENTS 

The work was supported in part by the Cambridge Project 
under contract DAHCl5 69 C 0347 of the Advanced Re­
search Projects Agency and in part by the MIT Civil 
Engineering Systems Laboratory. Their support is grate­
fully acknowledged. Special thanks to Mr. John Rothnie 
for his able graphics assistance. 

REFERENCES 

1. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," Comm. ACM13 No.6, June 1970, pp. 377-387. 

2. Codd, E. F., "A Data Base Sublanguage Founded on the Relational 
Calculus," Proc. 1971 ACM-SIGFIDET Workshop on Data Descrip­
tion, Access, and Control, San Diego, November 1971. 

3. Codd, E. F., "Further Normalization of the Data Base Relational 
Model," Courant Computer Science Symposia 6, "Data Base 
Systems", New York, May 1971, Prentice-Hall. 

4. Codd, E. F., "Recent Investigations in Relational Data Base 
Systems," Information Processing '74, North Holland 1974. 

5. Date, C. J. and P. Hopewell, "File Definition and Logical Data Inde­
pendence," Proc. 1971 ACM-SIGFIDET Workshop on Data Descrip­
tion, Access, and Control, San Diego, November 1971. 

6. Heath, 1. J., "Unacceptable File Operations in Relational Data 
Base," Proc. 1971 ACM-SIGFIDET Workshop on Data Description, 
Access, and Control, San Diego, November 1971. 

7. Palermo, F. P., "A Data Base Search Problem," Fourth Interna­
tional Symposium on Computer and Information Science, Miami 
Beach, December 1972. 

8. Date, C. J. and E. F. Codd, "The Relational and Network Ap­
proaches: Comparison of the Application Programming Interfaces," 
Proc. 1974 ACM-SIGFIDET Workshop on Data Description, Access, 
and Control, Ann Arbor, May 1974. 

9. McDonald, N., M. Stonebraker and E. Wong, Preliminary Design of 
INGRES: Part I, Electronics Research Lab. Univ. of Cal., Berkeley, 
ERL-M438, May 1974. 



10. CODASYL Data Base Task Group-April 71 Report. 
11. "CODASYL Data Description Language," Journal of Development 

June 1973, NBS Handbook 113. 
12. Rothnie, J. B., The Design of Generalized Data Management 

Systems, Ph.D. Dissertation, Dept. of Civil Engineering, Mass. In­
stitute of Technology, September 1972. 

13. Chamberlin, D. D. and R. F. Boyce, "SEQUEL: A Structured 
English Query Language," Proc. 1974 ACM-SIGFIDET Workshop 
on Data Description, Access, and Control, Ann Arbor, May 1974. 

14. Lefkovitz, D., File Structures for On-line Systems, Washington, D.C., 
Spartan Press, 1969, pp. 126-129. 

15. Martin, L. D., "A Model for File Structure Determination for Large 
On-line Data Files," File Organization, Selected Papers from File 68-
Ah DAG Conference, Amsterdam Swetsand Zeiglinger, New York 
(1969), pp. 223-245. 

Evaluating Inter-entry Retrieval Expressions 423 

16. Rothnie, J. B. and T. Lozano, "Attribute Based File Organization in 
a Paged Memory Environment," Comm. ACM 17 No.2, February 
1974, pp. 63-69. 

17. Rothnie, J. B., "An Approach to Implementing a Relational Data 
Base Management System," Proc. 1974 ACM-SIGFIDET Workshop 
on Data Description, Access, and Control, Ann Arbor, May 1974. 

18. Corbato, F. J. and V. A. Vyssotsky, "Introduction and Overview of 
the MULTICS System," Proc. AFIPS 1965 FJCC, Vol. 27, AFIPS 
Press, Montvale, N.J. pp. 185-196. 

19. Rothnie, J. B., The Design of Generalized Data Management 
Systems, Ph.D. Dissertation, Dept. of Civil Engineering, Mass. In­
stitute of Technology, September 1972, pp. 355-367. 

20. Senko, M. E., E. B. Altman, M. M. Astrahan and P. L. Fehder, 
"Data Structures and Accessing in Data Base System," IBM 
Systems Journal, Vol. 12, No. 11973, pp. 30-93. 





Views, authorization, and locking in a 
relational data base system 

by D. D. CHAMBERLIN, J. N. GRAY and 1. L. TRAIGER 
IBM Research Laboratory 
San Jose, California 

INTRODUCTION 

In the interest of brevity we assume that the reader is 
familiar with the notion of a relational data base. In 
particular, we assume a familiarity with the work of 
Codd1,2,3,4,5 or Boyce and Chamberlin.6 ,7,s The examples in 
this paper will be drawn from a data base which describes 
a department store and consists of three relations: 

EMP(NAME,SAL,MGR,DEPT) 
SALES(DEPT,ITEM, VOL) 
LOC(DEPT,FLOOR) 

The EMP relation has a row for each employee, giving his 
name, salary, manager's name, and department. The 
SALES relation gives the dollar volume of each item sold 
by each department. The LOC relation gives the floor on 
which each department is located. 

In References 6 and 7, Boyce and Chamberlin in­
troduced SEQUEL, a data sublanguage based on English 
keywords and intended for interactive problem-solving by 
users who are not computer specialists. SEQUEL is a 
unified data definition and data manipulation language, 
based on the concept of a mapping, which allows users to 
select certain attributes from those rows of a table which 
satisfy some criterion. For example, the user may request 
the names and salaries of all employees in the shoe depart­
ment: 

SELECT NAME,SAL 
FROM EMP 
WHERE DEPT = 'shoe'; 

SEQUEL also allows attributes to be selected from two or 
more tabl0s which have been joined together according to 
some stated criterion. For example: 

SELECT NAME,FLOOR 
FROM EMP,LOC 
WHERE EMP.DEPT=LOC.DEPT; 

produces a table of the names and floors of each employee 
by joining EMP and LOC on the DEPT column. (For a 
more complete treatment of joins, see References 4 and 6.) 

425 

This paper may be viewed as an extension of the ideas 
in Reference 7, which developed the concept of view and 
showed its applicability to extensible data structures, au­
thorization, and integrity constraints, and Reference 15, 
which discussed the problems of locking relations and con­
cluded that one must lock logical subsets of relations. 

RELATIONS AND VIEWS 

Defining relations 

The SEQUEL system postulates a finite collection of 
base relations. The description of a relation includes a list 
of named columns. Each column (e.g., SAL) has the at­
tributes scope (e.g., positive~nteger), comparability (e.g., 
money /time), units (e.g., dollars/year), representation 
(e.g., DECIMAL (6)) and role description (e.g., "yearly 
compensation for services rendered"). 

The formal definition of EMP might be: 

DEFINE EMP TABLE AS: 
NAME(SCOPE =ALPHA(* ),DOMAIN = NAME, 
REPR = CHAR(*)), 
SAL(SCOPE=POS_INT,DOMAIN =MONEY, 
UNITS=DOLLARS,REPR=DEC(6)), 
MGR LIKE NAME, 
DEPT LIKE NAME EXCEPT (DOMAIN = 
DEPARTMENT), 
KEY=NAME, 
ORDER=ASCENDING NAME, 
INDEX NAME; 

where the expressions to handle NAME, MONEY, 
POS_INT and DOLLARS have been previously defined. 

Defining views 

Simple variations of base relations may be obtained by: 
(a) Renaming or permuting columns; 
(b) Converting units or representation of a column; 
(c) Selecting that subset of the rows of a relation which 

satisfy some predicate; 
(d) Projecting out some columns of a relation 



426 National Computer Conference, 1975 

(e) Linking existing relations together into joins which 
can then be viewed as a single larger table. 

Such variations can be obtained using the data definition 
facility. For example, 

DEFINE ITALIAN--EMP VIEW AS: 
LIKE EMP EXCEPT (SAL.UNITS = LIRA, 
SAL.REP=DEC(9)); 

defines a view of employees paid in lira and expands the 
representation field appropriately. Thereafter, 
ITALIAN-EMP may be used as a relation. It may be 
placed anywhere in a SEQUEL statement that one could 
place the base relation EMP. All fetches from 
ITALIAN-EMP will have the salary field converted 
from dollars to lira. All stores into IT ALIAN--EMP will 
store tuples into EMP with the salary field converted from 
lira to dollars. 

To give a more sophisticated example, the table of em­
ployees and their locations is defined by: 

DEFINE EMP _LaC VIEW AS: 
SELECT EMP,LOC 
WHERE EMP.DEPT=LOC.DEPT; 

This statement defines the view: 

EMP -LOC(NAME,SAL,MGR,DEPT ,FLOOR). 

Any SEQUEL query evaluates to a virtual relation which 
may be displayed on the user's screen, fed to a further 
query, deleted from an existing relation, inserted into an 
existing relation, or copied to form a new base relation. 
More importantly for this discussion, the query definition 
may be stored as a named view. The principal difference 
between a copy and a view is that updates to the original 
relations which produced the virtual relation will be 
reflected in a view but will not affect a copy. A view is a 
dynamic picture of a query, whereas a copy is a static pic­
ture. 

There is a need for both views and copies. Someone 
wanting to record the monthly sales volume of each de­
partment might run the following transaction at the end of 
each month: 

MONTHLY _ VOLUME(DEPT,VOL) = 
SELECT DEPT,SUM(VOL) FROM SALES 
GROUPED BY DEPT; 

The new base relation MONTHLY_VOLUME is defined 
to hold the answer, and its columns inherit the attributes 
of the SALES relation (e.g., the DEPT of 
MONTHLY_VOLUME inherits the scope, units, com­
parability, etc. of the DEPT in SALES). On the other 
hand, the current volume can be gotten by the view: 

DEFINE CURRENT_VOLUME (DEPT,VOL) 
VIEW AS: 

SELECT DEPT,SUM(VOL) 
FROM SALES GROUPED BY DEPT; 

Thereafter, any updates to SALES will be reflected in the 
CURRENT_VOLUME view. Again, CUR­
RENT_VOLUME may be used in the same ways base 
relations can be used. For example one can compute the 
difference between the current and monthly volume. 

The semantics of views are quite simple. Views in SE­
QUEL can be supported by a process of substitution in the 
abstract syntax (parse tree) of the statement. Each time a 
view is mentioned, it is replaced by its definition. This fits 
well with the notion of nested mappings. Thereafter, the 
SEQUEL compiler and interprete,r can treat views and 
nested mappings in a uniform way. 

To summarize then, any query evaluates to a virtual re­
lation. Naming this virtual relation makes it a view. 
Thereafter, this view can be used as a relation. This allows 
views to be defined as row and column subsets of relations, 
statistical summaries of relations and named joins. This 
mechanism contributes to: 

(a) Data independence: giving programs a logical view 
of data, thereby isolating them from data reorgani­
zation. 

(b) Data isolation: giving the program exactly that 
subset of the data it needs, thereby minimizing er­
ror propagation. 

Views and update 

Any view can support read operations; however, since 
only base relations are actually stored, only base relations 
can be physically updated. To make an update via a view, 
it must be possible to propagate the updates down to the 
underlying base relations. 

If the view is very simple (e.g., ITALIAN-EMP above) 
then this propagation is straightforward. If the view is a 
one-to-one mapping of tuples in some base relation but 
some columns of the base are missing from the view, then 
update and delete present no problem but insert requires 
that the unspecified ("invisible") fields of the new tuples 
in the base relation be filled in with the "undefined" 
value. This mayor may not be allowed by the integrity 
constraints on the base relation. 

Beyond these very simple rules, propagation of updates 
from views to base relations becomes complicated, dan­
gerous, and sometimes impossible.5 Views derived from 
joins are not necessarily third normal form relations,3 and 
hence may have unpleasant update properties. The types of 
updates which can be supported for various types of view 
will be discussed in a forthcoming paper. The following 
basic principles underlie our approach to the problem: 
uniqueness rule: An insertion, deletion, or update to a 

view is permitted only if there is a unique operation 
which can be applied to the underlying base relations 
and which will result in exactly the specified changes to 
the user's view. 

rectangle rule: An insertion, deletion, or update via a view 
must affect only information visible within the rectangle 
of the view. 



Views, Authorization, and Locking in a Relational Data Base System 427 

These rules are illustrated by the following examples: 

DEFINE MY~EPT VIEW AS: 
SELECT EMP,LOC 
WHERE EMP.DEPT=LOC.DEPT 
AND EMP.MGR=USER; 

where USER is a variable selected from the profile of the 
user of this program. This view is built from the join of the 
two base relations EMP and LOC. It allows one to see the 
name, salary, manager, department and floor' of each em­
ployee who reports directly to the user of the view. If the 
user's name is Smith, it defines the rectangle: NAMEx­
SALx('Smith')xDEPARTMENTxFLOOR which is a 
subset of the cartesian product which underlies the 
EMP ~OC relation defined previously. No actions using 
the MY~EPT view can affect a tuple outside this rec­
tangle. The SEQUEL statement: 

DELETE MY~EPT 
WHERE SAL> 15000; 

would not delete all over-paid employees; it would only 
delete those overpaid employees who work for Smith. It 
really translates into the statement: 

DELETE EMP 
WHERE SAL> 15000 
AND MGR='Smith'; 

Since NAME is a key for EMP and DEPT is a key for 
LaC, MY ~EPT is a simple view which supports up­
date, delete and insert. Of course, any tuple Smith updates 
via MY ~MP must have manager Smith before and 
after the update. Similarly, any tuple he inserts must have 
manager Smith, and he can only delete tuples with 
manager Smith. Each of these restrictions derive from the 
rectangle rule. 

To give an example of the uniqueness rule, imagine 
that there is an employee who works in a department not 
listed in the LOC relation. For example, suppose the tuple 
(SCOTT,14000,SMITH,BOOK) appears in the EMP rela­
tion but that there is no book department in the LOC rela­
tion. Because of this, SCOTT will not appear in the join 
(in the virtual EMP ~OC relation defined previously) 
and so SCOTT will not appear in Smith's view 
MY -DEPT (which is a row subset of the EMP ~OC 
relation). Now if Smith inserts the tuple 
(FITZGERALD, 13000,SMITH,BOOK,5) into his 
MY_DEPT view, this would propagate to inserting 
(FITZGERALD,13000,SMITH,BOOK) into EMP and 
(BOOK,5) into LOC. These inserts would add both 
Fitzgerald and Scott to Smith's view since they would add 
both to the join. This "side effect" is in violation of the 
uniqueness rule. Because of the possibility of such side ef­
fects, the MY ~EPT view cannot support insertions. 

Another application of the uniqueness rule disallows 
support of insert or update to the CURRENT_VOLUME 
view defined previously, because there is not a unique way 

of propagating an updated SUM (VOL) to updates on the 
individual VOL entries in the base SALES relation. 

AUTHORIZATION 

If only one user has access to a data base, there seems 
little point in having any authorization mechanism beyond 
authentication on entry, although one still wants views for 
the reasons of conversion, isolation, etc., listed above. 
However, if several people expect to selectively share data 
then there must be some mechanism to protect and autho­
rize access. Since one of the merits of a relational data 
base system is simplicity, we want a simple mechanism to 
dynamically create and share relations. This simplicity is 
important for a community of individuals who control 
their own data, as well as for a more centrally controlled 
system where authorization is handled by a (human) data 
base administrator. Following standard practice/,9,1O,1l we 
use the view mechanism as the basis of the authorization 
mechanism (see Reference 12 or 13 for alternative ap­
proaches). The user has a catalog of named (base and vir­
tual) relations. These give his only access to the data base. 
Each time a user defines a new base relation, a fully au­
thorized view of it is placed in his catalog. The kinds of au­
thorization we recognize are: 
GRANT: the ability to grant this view to someone else or 

define a view on top of this view. 
REVOKE: the ability to selectively reduce or revoke au-

thorizations to this view. 
DESTROY: the ability to destroy this view. 
INSERT: the ability to insert into this view. 
DELETE: the ability to delete tuples in the view. 
And for each column of the view: 
UPDATE: the ability to update values in this column. 

We do not distinguish read access because read restric­
tion can be gotten by eliminating columns from a view. All 
columns in a view are readable. Also, we do not distin­
guish "statistical'"' access or "manipulative" access. All 
known proposals for such access control are complicated 
to understand and easy to subvert. Owens14 and Stone­
braker and Wong12 all present a convincing case against 
distinguishing statistical access. Our approach to statis­
tical access is to use the view mechanism. For example, 
the CURRENT_VOLUME view described above gives 
only statistical access to the SALES relation in a very 
simple and understandable way. 

Some fields (columns) within a tuple are more sensitive 
than others and therefore, update authorization is at­
tached to the column of a view rather than to the entire 
view. Since relational operators distribute over a view, 
touching each tuple, it makes sense to authorize each 
visible tuple uniformly. For example, a manager may be 
authorized only to read the name and salary and to update 
the floor of any employee in the MY ~EPT view. 

So each column of a relation or view has the attributes: 
scope, comparability, units, representation, role descrip­
tion, and update authorization. The view as a whole carries 
the authorizations for grant, revoke, destroy, insert, and 
delete. 



428 National Computer Conference, 1975 

Base relations when created have all fields updatable 
and are fully authorized for all operations. The creator 
may immediately define a view with non-updatable keys 
by (for example): 

DEFINE EMPLOYEE VIEW AS: 
LIKE EMP EXCEPT (NAME.UPDATE='NO'); 

A derived view never has greater authorization than its 
parent view. If the view is not simple, then it auto­
matically loses insert, delete, and update authorization. 
This is a good example of the interplay between authoriza­
tion and views. 

Granting and revoking authorization 

Granting. a view to Jones conceptually places a copy of 
the view definition into Jones' catalog of relations. Any 
user having grant authority to EMPLOYEE can grant it to 
ano.ther user with the same or reduced authority. For 
example: 

GRANT EMPLOYEE TO JONES: 
(GRANT = 'NO',REVOKE= 'NO',DESTROY= 'NO'); 

This allows Jones to. use EMPLOYEE, inserting in it, de­
leting from it, updating it, but prevents him from destroy­
ing the view or revo.king it fro.m so.meone else. Also it 
prevents him from granting the view to. another or defining 
a view on top of EMPLOYEE. (Otherwise Jones Co.uld 
define an identical view and grant that view.) If J o.nes al­
ready has a relatio.n· named EMPLOYEE, the grant will 
fail. 

Since Jones probably does no.t have the relation EMP in 
his catalo.g and since EMPLOYEE is defined in terms o.f 
EMP, the view must be interpreted in the context o.f the 
definer. On the other hand, the variable USER in the 
definitio.n of MY ~EPT is local to the user of the view. 
Standard mechanisms are used to distinguish the definer's 
context from the user's co.ntext. 

A second issue is revocation. When a view is destroyed, 
it is deleted from the catalog of all users to. whom it was 
granted. This also invalidates all views which derive from 
that view. When anyone with revoke authority modifies 
the authorization of a view, that modification is again 
propagated to all views derived from that view. Further, 
anyo.ne with revoke authority far the view may selectively 
revoke access to the view. For example: 

REVOKE EMPLOYEE FROM JONES; 

revokes Jones' access to EMPLOYEE. One may imagine 
base relatio.ns and views o.rganized into a hierarchy. If one 
view is defined in terms of another, then changes in the 
parent view will affect the child and all its descendants. 

Checking authorization 

When a transactio.n is "compiled" one may tell by the 
syntax of the statement which views are used by the 
transaction and fo.r each view one can establish whether it 
is being granted, revoked, read, inserted into., deleted from 
or updated. We believe that much authorization will be 
value dependent and therefo.re must be checked at the 
time the transaction is run. Fo.r example, if a view is 
qualified by a selectio.n criterio.n then each tuple which is 
inserted, deleted or updated must satisfy this criterion. 
Fo.r example all tuples entering and leaving MY ~EPT 
must be checked to see that the value of the MGR field is 
the name of the person running the transaction. 

The entire SEQUEL system is carefully co.nstructed so 
that mappings can be easily and unifo.rmly compo.sed. 
Once the update, insert, or delete is resolved to the un­
derlying views and base relations, the translated tuples are 
tested against the selection criteria for the rectangles o.f 
those views. This pro.cess co.ntinues recursively until only 
base relations remain. If authorizatio.n, the uniqueness 
rule or the rectangle rule is compro.mised at any step, the 
operation faults. If a transaction tries to store outside its 
view, it is given a pro.tectionexception. If it tries to read 
outside its view, it is given the empty set as a respo.nse. 

LOCKING 

If several co.ncurrent transactions access common data 
then there must be some protocol to synchronize their ac­
cesses. This protocol should be invisible to the user. The 
system is responsible for deciding what Io.cksare required 
and whether they should be shared or exclusive locks 
(read or write access). Usually, a SEQUEL statement is 
the unit o.f co.nsistency and Io.cks are released at the end o.f 
a statement. To get consistency that spans multiple SE­
QUEL statements, the user may bracket the sequence of 
statements by the verbs: BEGIN_TRANSACTION and 
END_TRANSACTION. If two users each want to change 
the same data, one must wait for the other to. finish. Under 
certain circumstances, one user may be forced to back up 
to the beginning o.f his transaction. If the transactio.n has 
no.t done any terminal input-output this is invisible to the 
user (except that the transactio.n takes a long time). If the 
transaction has done some I/O then backup will be auto.­
matic but visible. The issues of deadlo.ck detection, 
preemptio.n, and backup are resolved by the SEQUEL 
system using a prio.rity-seniority scheduling scheme and a 
transaction log for backup. 

In Reference 15 it is shown that if each transaction 
wants to see a consistent view o.f the data base, then locks 
must be held to. the end of the transaction. It is further 
shown that the use o.f indices requires that transactions 
lock entire relatio.ns or that they lock logical subsets of 
relations. 

To see that transactions must lock logical rather than 
physical subsets o.f a relation, imagine that Smith wanted 



Views, Authorization, and Locking in a Relational Data Base System 429 

to lock for read access all members of his MY-DEPT 
view. Scanning the EMP relation and locking all tuples 
with manager Smith would not prevent a new tuple with 
manager Smith from entering the EMP relation. For 
example, if Smith made a list of all his employees who 
make less than 15000 dollars and then made a list of all 
his employees who make less than 10000 dollars, the 
second set might not be a subset of the first! This problem 
of phantom tuples requires that Smith either lock the 
entire relation or that he lock the log' -:al subset of tuples 
such. that MGR = 'Smith'. This suggests the concept of 
predicate locks described as: 

(RELATION,PREDICATE,((F1,A1), ... (Fn,An») 

where PREDICATE is a selection criterion giving a row 
subset of the RELATION and the lock requests access of 
type Ai to field Fi. The kinds of access are read (shared) 
and write (exclusive). So for example, 

(MY -DEPT, (MGR= 'SMITH' &SAL<lOOOO), 
((NAME,read),(MGR,read),(SAL,write))), 

is a lock appropriate to the transaction: 

UPDATE MY-DEPT SET SAL=1.10*SAL 
WHERE SAL<10000; 

which gives a 10 percent raise to each underpaid employee 
in Smith's view. The reason for sp€cifying the kind of ac­
cess to each column is to allow greater concurrency. 
Reference 15 contains a deeper discussion of the resolution 
of such locks. However their similarity to views should be 
obvious. Each view describes a rectangle of a (virtual or 
base) relation. Similarly, a predicate lock describes a rec­
tangle of a relation and the access attributes of that rec­
tangle. The view, authorization and lock mechanisms must 
each translate operations on a view to operations on base 
relations .. Also, the view, authorization and the lock 

BASE: EMP 
'--NAME---l---SAL---t---~U~~--DEPT--I 
, _________ 1 _________ 1 ________ 1 __ ~ _____ 1 

, , I I t 
1 SAM 1 13000 I JOE 1 pupeH 1 
, 1 til 

==================================================== I 
"AUTHCRIZED VIEW: I CARMEN 9000 SMITH I" GUN 1 
" ~Y DEPT I TED 12000· SMITH I" CAR 1 

(MGR=' SMITH') t SUE 10000 SMITH I" GLASS 1 
I MEFT 1 11000 I SMITE '" TOY I 

"*************************************************1" I 
""'LOCK: ,MAX 1 1700'0 I SMITE *1" FURN 1 

(SAL>15000& I JENNY 1 16000 1 SMITH *1" SPORTS 1 
MGR='SMITH') I GUS 1 45000 1 SMITH *1" DRUG 1 

1 GUIDO 1 15500 1 SMITH *'" 1'OY 1 
"*************************R*********U********F****I" 1 
==========================U=======~==U========R===== 1 

I ••••• 1 1 1 I 
I ALlAN 1 2~000 I MP.RY I HAT 1 

----U----------u--------u-------u----

Figure 1-Base relation EMP, viewed from authorized view MY~EPT 
and locked with respect to 'SAL> 15000' in that view. The capital letters 
at the base of each rectangle give the' authorization of that rectangle for 

that column 

mechanisms each need to check that each tuple falls. 
within the rectangles prescribed by the views and locks. 

In most cases, locks will be finer than views (will be 
subrectangles of views) but in some complex cases the 
locks may extend to the entire base relation because the 
software is not smart enough to deduce the minimal lock 
predicate. Figure 1 illustrates the relationship between 
predicate locks, authorized views, and the base relation. 

SUMMARY 

Views- prescribe what can be seen. Authorization 
prescribes what can be done to what is seen. Locks are a 
dynamic kind of authorization which prescribe what can 
be done to what is seen at this instant. Each of these con­
cepts is an extension of its predecessor and all of them can 
be based on the concept of a defined relation with a qualify­
ing predicate (a subrectangle of a virtual relation), where 
each column is tagged with read or write access and the 
whole view has authority qualifiers such as insert and 
delete. 

STATUS OF IMPLEMENTATION 

A single user SEQUEL system with SELECT, INSERT, 
DELETE, DEFINE, integrity constraints, and very so­
phisticated index selection has been operational since 
June 1974 at IBM's San Jose Research Laboratory. It is 
being experimented with at various locations within IBM. 
Current work is focused on a concurrent user system 
which will incorporate support for multiple views, locking, 
recovery and an advanced operating system interface. 

ACKNOWLEDGMENTS 

We have benefited from stimulating discussions with Ted 
Codd and Frank King on update propagation and with 
Kapali Eswaran and Raymond Lorie on the locking 
problem. Implementors of the SEQUEL system include: 
Morton Astrahan, Raymond Boyce, Don Chamberlin, 
Kapali Eswaran, Paul Fehder, Frank King, Raymond 
Lorie, and Jim Mehl. 

REFERENCES 

1. Codd, E. F., "A Relational Model for Large Shared Data Banks," 
CACM, Vol. 13, No.6, June 1970, pp. 377-387. 

2. Codd,E. F., "A Data Base Sublanguage Founded on the Relational 
Calculus," Proceedings of 1971 ACM SIGFIDET Workshop on Data 
Description, Access, and Control, San Diego, California, November 
1971. 

3. Codd, E. F., "Further Normalization of the Data Base Relational 
Model," Courant Computer Science Symposia, Vol. 6, Data Base 
Systems, Prentice Hall, New York, May 1971. 

4. Codd, E. F., "Relational Completeness of Data Base Sublanguages," 
Courant Computer Science Symposia, Vol. 6, Data Base Systems, 
Prentice Hall, New York, May 1971. 

5. Codd, E. F., "Recent Investigations in Relational Data Base 



430 National Computer Conference, 1975 

Systems," Proceedings of IFIP Congress 74; Stockholm, Sweden, 
August 1974. 

6. Boyce, R. F., D. D. Chamberlin, "A Structured English Query Lan­
guage," Proceedings of ACM SIGFIDET Workshop, Ann Arbor, 
Michigan, May 1974. 

7. Boyce, R. F., D. D. Chamberlin, Using a Structured English Query 
Language as a Data Definition Facility, IBM Research report: RJ 
1318, San Jose, California, December 1973. 

8. Boyce, R. F., D. D. Chamberlin, W. F. King III, M. M. Hammer, 
"Specifying Queries as Relational Expressions," Proceedings of ACM 
SIGPLAN/SIGIR Interface Meeting on Programming Languages 
and Information Retrieval, Gaithersburg, Md., November 1973. 

9. Anonymous, Information Management System Virtual Storage 
System (IMS/VS)-SystemjApplication Design Guide, IBM form 
No: SH20-9025, pp. 3.72-3.73, IBM Corporation, Palo Alto' 
California, 1971. 

10. CODASYL, "Data Base task group report," ACM, New York, 1971. 

11. Summers, R. C., C. D. Coleman, E. B. Fernandez, A Programming 
Language Approach to Secure Data Bases, IBM Los Angeles Sci­
entific Center Technical Report: G320-2662, Los Angeles California, 
May 1974. 

12. Stonebraker, M., E. Wong, Access Control in a Relational Data Base 
Management System by Query Modification, Electronics Research 
Laboratory memorandum: ERL-M438, DC Berkeley, California, 
May 1974. 

13. Minsky, N., Protection of Data-Bases, and the Process of Data-Base 
Interaction, Computer Science Department, Rutgers, New Bruns­
wick, N.J., September 1974. 

14. Owens, R., Primary Access Control in Large Scale Time-Shared De­
cision Systems, Project MAC report TR-89, MIT, Cambridge, Mass., 
July 1971. 

15. Eswaran, K. E., J. N. Gray, R. A. Lorie, I. L. Traiger, The Notions of 
Consistency and Predicate Locks, IBM Research report: RJ 1487, 
San Jose, California, December 1974. 



Query by Example 

by MOSHE M. ZLOOF 
IBM T. J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

In the last few years we have witnessed a trend to appeal to 
the non-professional user who has little or virtually no com­
puter or mathematical background. 

The 'Query by Example' Language is an attempt in that 
direction. It operates on a relational Model of data as was 
introduced by Codd [1-5]. 

In,-this paper we deal only with normalized relations [1]. 
A relation is normalized if each of its domains is simple, i.e., 
no domain is itself a relation. 

A normalized relation can be viewed as a table of n col­
umns and a varying number of rows as illustrated in Figure 1. 
Three properties of normalized relations are noteworthy to 
mention: 

1. ALL rows of the table are distinct. 
2. The ordering of the rows is immaterial. 
3. The ordering of the columns is immaterial provided 

each has a distinct name. 

EMP NAME SALARY f.1ANAGER DEPARTMENT 

ANDERSON 8K SIUTH TOY 

HORGAN 10K LEE COSMETICS 

Figure I-Employee relation 

In THE LANGUAGE FACILITIES we introduce the 
concepts of the Language. ADDITIONAL EXAMPLES 
deals with additional examples. In GROUPING we intro­
duce the concept of grouping. CONCLUSION deals with 
conclusions and remarks. 

In addition a sample data base is available in the Appendix 
so that hopefully the user will refer to it in the course of 
learning the concepts of the Language. 

THE LANGUAGE FACILITIES 

In this section we introduce the Query by Example com­
ponents. The concepts are described primarily through illus-

431 

trations of queries and their answers, each illustration 
followed by a discussion to point out major features. The 
illustrations get progressively more complex until the whole 
scope of the Language is covered. In so doing, a user dealing 
with "simple" queries needs to study the system only to that 
point of complexity which is compatible with the level of 
sophistication required within the domain of those queries. 

Furthermore, although the introduction of the concepts 
through illustrative examples reduces somewhat from the 
rigor of mathematical formulation through definitions, it is­
in our opinion-more appealing to the casual user, which is 
one of the major aspects of Query by Example. 

Most of the queries are drawn from the following tables 
(relations), which are part of a department store data base. 

EMP (NAME, SAL, MGR, DEPT) 
SALES (DEPT, ITEM) 
SUPPLY (SUPPLIER, ITEM) 
TYPE (ITEM, COLOR, SIZE) 

-The EMP Table specifies the name, salary, manager and 
department of each employee. 

-The SALES Table is a listing of the items sold by depart­
ments. 

-The SUPPLY Table is a listing of the items supplied by 
suppliers. 

-The TYPE Table describes each item by color and size. 

At this point ,ye are assuming that these tables are made 
available to the user upon calling them by na~e. In a sub­
sequent paper, the creation, deletion, insertion and updating 
of these tables will be discussed in detail. 

In this system the user basically formulates his query by 
filling in the appropriate table rows with an example of a 
possible answer. In fact for a large class of "simple" queries 
the user need only distinguish between -the following two 
entities: 

1. The 'example element' (variable) which must be 
underlined and 

2. The 'constant element' which should not be under­
lined. I 

In addition the function 'P.' stands for 'print'. The user 
inserts a 'P.' before any data he wishes to be outputted. 



432 National Computer Conference, 1975 

Examples: Here the user fills in both the SALES and the SUPPLY 

Q1. Print the red items: 

The user fills in the TYPE Table in the following manner. 

------.------,-------,--------------
TYPE ITEM COLOR ~IZE_ 

P.PEN RED 

Since the query is concerned with red items, RED is a 'con­
stant element' and is, therefore, not underlined. On the other 
hand, the underlined element PEN referred to as an 'ex­
ample element' is entered as an example of a possible answer. 
Actually a pen may not necessarily be an element of the data 
base and can be substituted by DRESS, WATER or a vari­
able ~ without altering the meaning of the query. 

One of the reasons we are using an example element in­
stead of a variable is that it gives us the freedom to use an 
entity which is partly variable and partly constant (see 
GROUPING). The SIZE Column can either remain blank or 
can be filled with an example element as well. 

Considering the sample data base at the end of the paper 
the answer to this query is: 

ITEM 

LIPSTICK 

PENCIL 

For those users interested in the mathematical formulation 
of the queries, each query will be reformulated in predicate 
calculus 

Q1. {x:3y(x, RED, y)ETYPE} 

Q2. What colors of ink are available? 

TYPE ITEM COLOR 

INK P.BLACK 

In this case the 'P.' is in the color column since we want a 
listing of the colors of ink. BLACK is the example element. 

ANS: COLOR 

GREEN 

BLUE 

Q2. {x:3y(INK, x, y)ETYPE} 

Q3. Find the department(s) that sells an item(s) supplied 
by the supplier Parker. 

Tables as follows. 

SALES 
ITEM I =S=UP=P=L=Y=f:=====f:=,S~U~P~PLIER-r 

PARKER 

ANS: DEPI:] 

HOUSEHOLD 

TOY 

STATIONARY 

HARDWARE 

Note: The example element ROD (linking variable) is in­
cluded in both tables, implying if an item is sold by 
the department in question that same item has to be 
supplied by Parker. (Pretty much the same way one 
would scan the data base manually to find the an­
swers.) 

Q3. {x:3y((x, y)ESALES A(y, PARKER) ESUPPLY)} 

Q4. Find the supplier(s) that supplies an item(s) sold by the 
TOY Department. 

SALES SUPPLY 

ANS: SUPPLIER 

PARKER 

BIC 

REVLON 

Q4. {x:3y((TOY, y)ESALES A(y, x) ESUPPLY)} 

Q5. List the names, salaries, and managers of employees in 
the TOY Department. 

DEPT
1 

EMP 

TOY 

NAME SAL MGR 

P.ICK P.JONES P.SHITH 

ANS: NAME SAL MGR 

ANDERSON 6K MURPHY 

NELSON 6K HURPHY 

HENRY 9K SMITH 

Here the multiple output was achieved simply by inserting P. 
in the NAME, SAL, and l\1GR columns. The only constant 
element is TOY. 

At this point we should mention that as long as an example 
element is not used for linkage purposes one can write just 



the function P. leaving blank space in place of the element. 
Thus in Q5. one can dispose of JONES, 10K, and SMITH. 

Q5. {(x, y, z) :(x, y, z, TOY) E EMP} 

The following additional types of operators and functions 
are part of the system; 

numeric comparisons: = ~ < S > ~ 
negation operator: .. 
the operators JOIN, ALL & ALL D. (explained later) 
and built in functions; SUM, COUNT, AVE, :MAX, 
MIN, etc. 

Q6. PJjint out a list of all the departments, the items they 
sell and the suppliers that supply these items. 

In this case we must first join the SALES Table with the 
SUPPLY Table on the common attribute ITEl\f and then 
apply the function P. as follows. 

SALES 

The JOIN operator specifies joining the SALES and the 
SUPPLY Tables. The example element PEN appears in 
both tables to indicate a natural join on the common attri­
bute ITEM. 

ANS: DEPT ITEM SUPPLIEF 

~TATIONARY DISH DUPONT 

HOUSEHOLD PEN PARKER 

COSMETICS LIPSTICK REVLON 

TOY PEN PARKER 

Q6. {(x, y, z):3u(x, y)ESALES A(u, z)ESUPPLY Ay=u} 

Note: if the example element PEN does not appear in both 
tables, i.e., y~u, the join of these tables clearlv be-
comes a Cartesian product. v 

Q7. Find the name(s) of any employee(s) who earns more 
than his (their) manager (s). 

EMP NAME SAL MGR DEPT 

P.JONES >10K PETER --
PETER 10K 

ANS: NAME 

LEWIS 

HOFFMAN 

Query by Example 433 

If PETER is an example of such a manager and if PETER 
earns 10K (as an example) then JONES is an example of an 
employee who earns more than 10K (indicated by the > 
operator) and, therefore, more than his manager. It should 
be noted that the order of the rows is immaterial. 

Q7. {x:3y3z3u3w3l3m( (x, y, z, u) E EMP 

A(z, w, l, m)EEMP Ay>w)} 

Q8. Find the department(s) that sells Pens and Pencils. 

------------~----------~----------
SALES DEPT ITEM 

P.TOY PEN 

TOY PENCIL 

ANS: I====D::E:=P:::T====t-

STATIONARY 

TOY 

Here, in order to account for the AND, the same example 
element TOY is used in both rows since the same department 
has to sell both items. 

Q8. {x:(x, PEN) E DEPT A(x, PENCIL)EDEPT} 

Q9. Find the department(s) that sells Pens or Pencils. 

SALES DEPT ITEM 

P.TOY PEN 

P . HARD~\TARE PENCIL 

ANS: DEPT 

HOUSEHOLD 

STATIONARY 

TOY 

Here two different example elements are used to account for 
the OR since a department that sells pens does not neces­
sarily have to sell pencils. 

Q9. {x:(x, PEN)EDEPTV (x, PENCIL)EDEPT} 

QlO. Find the department(s) that sells all the items sup­
plied by the supplier Parker. 



434 National Computer Conference, 1975 

SALES DEPT ITEM SUPPLY 

P.HOUSEHOLD lLL, PElj 
ANS: DEPT 

STATIONARY 

TOY 

ALL PEN is defined to be the set of all the items supplied by 
Parker. The dot ('.') under ALL PEN in the SALES Table 
indicates that the department (s) in question may sell more 
than all the items supplied by Parker. On the other hand, if 
we wish to indicate that the department(s) in question has 
to strictly sell more than ALL PEN, it will be written as 

ALL PEN 

PENCIL (*) 

• 
The brackets in the ITEl\1 column have no meaning other than 
grouping the dot with ALL PEN. 

QlO. {x:Vy((y, PARKER)ESUPPLY~(x, y)ESALES)} 

(* ) Formally ALL PEN C rLL. PEN] 

and ALL PEN C [ALL PEN] 
PENCIL 

• 

Ql1. Find the department(s) such that all their items are 
supplied by Parker. 

SUPPLY ITEM SUPPLIER 

PARKER 

ANS: DEPT 

HARDv-1ARE 

TOY 

Here the dot is under the ITEM column in the SUPPL Y 
Table meaning that the Supplier Parker may supply more 
than all the items sold by the department in question. 

Ql1. {x:Vy((x, y)ESALES~(y, PARKER)ESUPPLY)} 

Q12. Find the department(s) which sell only all the items 
supplied by Parker. 

SALES 

ANS: I DEPT I 
TOY 

Here the sets on both sides have to be equal thus there is no 
dot. 

Q12. {x:Vy((x, y)ESALES~(y, PARKER)ESUPPLY)} 

When a function such as P. SUM. COUNT. etc., precedes 
the operator ALL, the set ALL X (where X is any example 
element) retains its duplicate elements (*). This is necessary 
for the many instances when the duplicate elements are to be 
included in the count. This is illustrated in the next query. 

Q13. Find the total salaries of the employees in the TOY 
Department . 

Et-1P NAJ.1E SAL I J.1GR DEPT I 

P. SU1'1.ALL 10K I TOY I 
ANS: SAL SUM 

21K 

.. In this case the elements 6, 9, and the duplicate element 6 
are summed. On the other hand if one wishes to exclude 
duplicate elements, the operator ALL D. is used where the 
'D.' stands for differen~ or distinct. This is again illustrated 
in the next example. 

(*) Actually ALL X becomes a multi-set or a 'Bag' (in 
computer science terminology) where mapped duplicate 
elements are retained. 

Q13. SUl\:I *{x:3y3z(y, x, z, TOY) E EMP} 

wher'e the asterisk indicates that it is an operation on a 
multi-set. 

Q14. How many colors of pencils are there? 

TYPE COLOR 

P.COUNT.ALL D.~ 

ANS:ICOLOR

2

COUNT = 
(namely: red, blue) 

Had we used the operators P.COUNT. ALL GREEN, the 
eolor blue would have been eounted twice and the ans'wer 
would have been '3'. 

Q14. COUNT{x: y(PENCIL, x, y)ETYPE} 

Q15. Among all departments with total salaries greater than 
22K, find those departments 'which sell pens. 



El1P 

>22K 

SALES 

ANS: 

Q15. {x:(x, PEN)ESALES ASUM 

* {y:3z3'l1.(z, 1/, u, x)EEMP} >22k} 

Note: Again the asterisk indicates the summation is per­
formed over a multi-set. 

Q16. Find item(s) that come in colors other than green. 

TYPE ITEM COLOR SIZE 

P. ROD .., GREEN --
ANS: The whole column of items except PEN will be 

printed. INK will be printed even though it comes in 
green, because it also comes in blue, thus satisfying 
the stipulation in the query. 

Q16. {x:3y3z(y~GREEN A(x, y, z)ETYPE)} 

Q17. List all the items except the ones which come in green. 

TYPE ITEM COLOR SIZE 

ROD GREEN --
P . .., ROD 

ANS: The whole column of items except PEN and INK 
will be printed. 

Unlike Q16, Q17 requires the elimination of any item that 
comes in green, even if the same item comes in other colors. 
In other words, the green items are sorted out and subtracted 
from the set of all items, leaving the complement set of non­
green items. This complement set in our sample data base is 
the set of all the items except PEN and INK. 

Q17. {x:'v'y'v'z( (x, y, z) E TYPE--7y~GREEN)} 

We must point out that if the data to satisfy the query are 
insufficient, the system prints 'NONE' in the appropriate 
column. 

In addition, the system can .be used as a verifier by com­
pleting the applicable columns with constant elements. If 
the element relations presented is positive, the system veri-

Query by Example 435 

fies that by printing the same constant elements. Otherwise, 
'NONE' is printed in the column where the relation fails. 

ADDITIONAL EXAMPLES 

In this section we will formulate a collection of queries 
taken from various papers [5, 6, 7, 9J to illustrate major 
differences. No new features are introduced in this section. 

Consider the following data base: 

SUPPLY (SUPPLIER, PART NAME, JOB NAME) 
PART (PART NAME, TYPE) 
JOB (JOB NAME, LOCATION) 

Q18. Find the names of suppliers who supply a job located 
in New York with all parts of Type A. 

PART 

Consider the follmving data base: 

EMP (NAME, SAL, MGR, DEPT) 
SALES (DEPT, ITElVI, VOL) 
SUPPLY (C01VIP, DEPT, ITEM, VOL) 
LOC (DEPT, FLOOR) 
CLASS (ITEM, TYPE) 

Q19. Find companies, each of which supplies every item of 
type A to some department on the second floor. 

Note: We can start formulating the query in any table, 
since the order is immaterial. 

Consider the following data base: 

EMP (MAN #, NAME, JOB CODE, SAL, DEPT #) 
DEPT (DEPT #, NAME, l\1GR) 

Q20. Find the information contained in the department 
record concerning departments having more than 20 
employees whose job code is 802. 

EMP 

DEPT 



436 National Computer Conference, 1975 

GROUPING 

In THE LANGUAGE FACILITIES we mentioned that 
the reason we chose to underline an element to make it a 
variable is to enable us to have an entity that is partly vari­
able and partly constant. 

Example: the number 560 is read 56X, and the name JIM 
is read JXY, where X and Yare variables. 

This concept of creating a variable by underlining is ex­
tended to a second line to group equivalence classes of a set. 

Example: I DEPT I 
780 where the second line indicates 

grouping by departments. 

For ease of reference we change the EMP Table to 
EMP (NAME, DEPT). 

Q21. Count the employees by departments. 

EMP NAHE DEPT 

ANS: 

P. COUNT. ALL JIM P. TOY === 
NAME COUNT= DEPT 

2 HOUSEHOLD 

3 TOY 

3 COSMETICS 

2 STATIONARY 

Q21. {COUNT{ (x, Yl)EEMP}, 

COUNT { (x, Y2)EEMP} ... , 

COUNT { (x, Yn)EEMP} :{Yl ... Yn} = DEPT A 

:i~j~Yi~yj} 

Q22. Count the employees by departments that have the 
same first letter on the left. 

EMP NAME 

P. COUNT. ALL JIM 

DEPT 

P. TOY 
=--

The answer is the same as in the case of Q21. However, if 
there are two departments with the same first letter, their 
employees will be counted together. 

Q23. Count employees by departments and managers. 

EJllP NAHE DEPT MGR 

\P. COUNT ALL JIM P. TOY P. SrHTH 

CONCLUSION 

In this paper we presented the data access portion of the 
Query by Example Language. We conclude that the unique 
features of this language are as follows: 

1. The user has the perception of manual table manipu­
lation. 

2. The user has a pre-established frame of reference, i.e., 
the tables. 

3. The user can easily pre-identify the relations to be 
used, resulting in an early reduction in the scope of 
the data base. 

4. As opposed to linear-type languages where the user 
is constrained to one degree of freedom, here the user 
has multi-degrees of freedom in that the sequence of 
filling in the tables and the rows within the tables is 
immaterial. This implies that given a data base the 
system does not constrain the user's thinking process 
in any way while he/she is formulating the query. 
Take Q7 as an example. If the user's thinking process 
wishes to first choose a manager and then compare 
his/her salary to the salary of his/her employees, the 
query would be the same whatever the row order is, 
thus the system is capable of capturing the different 
ways different users approach the problem. 

5. The sequence of the following steps is also imma­
terial. 

a) filling in the constant elements, 
b) linking the variables, 
c) specifying the output by the P. function (pro­

jection), and 
d) grouping. 

6. It follows from 4 and 5 that Query by Example 
allows the user to divide the query into decoupled seg­
ments, making it declarative and highly non-proce­
dural. In contrast, most linear-type and other lan­
guages require the user to first specify the information 
to be outputted and then structure the query ac­
cordingly. 

7. Due to the decoupling features inherent in Query by 
Example, it can handle rather complicated queries 
without relinquishing its simplicity. This is in con­
trast to other languages where a lengthy and compli­
cated query has to be artificially divided into multiple 
steps and then taken one at a time. 

REMARKS 

1. "Relational Completeness" and arithmetic operations 
will be covered in subsequent papers. 



2. Papers related to Query by Example are listed in the 
References 10 and 11. 

ACKNOWLEDGMENTS 

To Peter de Jong I am most grateful for his helpful sugges­
tions and general encouragement throughout the develop­
ment of this work. 

For their helpful discussions, I wish to thank John Gould 
and John Thomas of the Behavioral Science Group who are 
currently testing the system on subjects through a display. 
Also,. I wish to thank Ashok Chandra, Ron Fagin, Pat 
Goldberg, and Irving Wladawsky of IBM· Research Y ork­
town for their useful discussions. 

REFERENCES 

1. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," Comm. ACM, Vol. 13·, No.6, June 1970, pp. 377-387. 

2. Codd, E. F., "Further Normalization of the Data Base Relational 
Model," Courant Computer Science Symposia, Vol. 6, Data Base 
Systems, Prentice-Hall, New York, May 1971. 

Query by Example 437 

3. Codd, E. F., "Relational Completeness of Data Base Sublanguages," 
Courant Computer Science Symposia, Vol. 6, Data Base Systems, 
Prentice-Hall, New York, May 1971. 

4. Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial," 
Proc. 1971 ACM SIGFIDET Workshop on Data Description, 
Access and Control, San Diego, November 1971. 

5. Codd, E. F., ItA Data Base Sublanguage Founded on the Relational 
Calculus," Proc.1971 ACM SIGFIDET Workshop on Data Descrip­
tion, Access and Control, San Diego, November 1971. 

6. Boyce, R. F., D. D. Chamberlin, W. F. King III, and M. M. 
Hammer, "Specifying Queries as Relational Expressions," Proceed­
ings of ACM SIGPLAN /SIGIR Interface Meeting on Programming 
Languages and Information Retrieval, Gaithersburg, Maryland, 
November 1973. 

7. Astrahan, M. M., E. B. Altman, P. L. Fehder and M. F.Senko, 
"Concepts of a Data Independent Accessing Model," Proc. 1972 
ACM SIGFIDET Conference, Denver, Colorado, November 29-30, 
1972. 

8. Interactive Query Facility (lFQ) for IMS/360, Publication No. 
GH 20-1074, IBM Corporation, White Plains, New York. 

9. Chamberlin, D. D., and R. F. Boyce, SEQUEL: A Structured 
English Query Language, IBM Report, No. RJ1394. 

10. Zloof, M. M., Query by Example: The Invocation and Definition of 
Tables and Forms, IBM Research Report, No. RC5115, February 
1975. 

11. Zloof, M. M., Query by Example: Operations on the Transitive 
Closure, IBM Report in preparation. 



438 National Computer Conference, 1975 

APPENDIX 

SAMPLE DATA BASE 

EMP NAME SALARY HGR DEPT 

JONES BK SHITH HOUSEHOLD 
ANDERSON 6K MURPHY TOY 
HORGAN 10K LEE COSMETICS 
LEWIS 12K LONG STATIONARY 
NELSON 6K HURPHY TOY 
HOFFMAN ·16K MORGAN COSMETICS 
LONG 7K MORGAN COSMETICS 
MURPHY. BK SHITH HOUSEHOLD 
SMITH 12K HOFFMAN STATIONARY 
HENRY 9K SI1ITH TOY 

SALES DEPARTNENT ITEH SUPPLY ITEM SUPPLIER 

STATIONARY DISH PEN PARKER 
HOUSEHOLD PEN PENCIL BIC 
STATIONARY PENCIL INK PARKER 
COSMETICS LIPSTICK. PERFUME REV LON 
TOY PEN INK BIC 
TOY PENCIL DISH DUPONT 
TOY INK LIPSTICK REV LON 
COSI1ETICS PERFUME DISH BIC 
STATIONARY INK PEN REVLON 
HOUSEHOLD DISH PENCIL PARKER 
STATIONARY PEN 
HARDWARE INK 

TYPE ITEM COLOR SIZE 

DISH WHITE M 
LIPSTICK RED L 
PERFUME WHITE L 
PEN GREEN S 
PENCIL BLUE 1'1 
INK GREEN L 
INK BLUE S 
PENCIL RED L 
PENCIL BLUE L 



A psychological study of query by example 

by JOHN C. THOMAS and JOHN D. GOULD 
IBM T. J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

Many different query systems have been proposed. 1 One 
way to partition extant and hypothetical query. systems is 
on the basis of how English-like they are. One approach 
for an easy-to-use query system is to allow the user to state 
a question in natural English. The system may then 
disambiguate the possible interpretations of this question 
on the basis of context2 or on the basis of feedback ques­
tions to the user.3 A second approach is to require the user 
to state his question in a formal language system, but one 
that uses an English-like grammar and vocabulary. IBM's 
Interactive Query Facility4 (IQF) and SEQUEL5 exem­
plify this type of approach. A third approach is to require 
the user to state his question in a formal language system 
that does not attempt to appear "English-like." Zloofs 
Query By Example language6 is best described by this 
third approach. In this paper we demonstrate experi­
mentally the ease and accuracy with which nonprogram­
mers learned and used this powerful Query By Example 
language. 

It may seem that the first approach mentioned above, 
viz., allowing the user to state his question in natural 
English, must necessarily be the best approach and the 
one we should study. There are several reasons why this is 
not so. First, any natural English system in the foreseeable 
future is likely to place serious restrictions on the vocabu­
lary and syntax of allowable, or at least useful, user inputs 
to the system. It may be difficult for the user to keep in 
mind such restrictions since daily conversation may tend 
to provide strong interference with the rules of such a 
system, and hence produce considerable forgetting. In this 
experiment, we provide evidence that Query By Example 
may be robust against such forgetting. Second, as a user 
becomes more familiar with a system, particularly if his 
job involves some percentage of fairly routine question 
asking, lengthy feedback dialogues may come to be 
perceived as a waste of time. Third, the need for this dia­
logue will increase the cost of the computer system. A 
fourth factor relates to data representation. Should the 
system represent data relations in natural English or in a 
more formal representation? Although it might be 
assumed that natural English would be the optimal way to 
represent data to users, studies of problem solving provide 
evidence that sentential representations are often non­
optimal for humans.7 ,8,9 Providing the user with a formal 

439 

representation, such as Query By Example does with 
tables that implicitly supply relations among the data, 
may better help the user formulate and solve his problem. 

Our primary purpose was to conduct an exploratory 
evaluation of a powerful query language that seemed 
promising for non-programmers to learn and use. Of 
specific interest were the time to learn the language, and 
the time, accuracy, and subjects' confidence in translating 
test questions stated in English into Query by Example. 
These test questions were selected from disparate regions 
of the space of potential questions, making sure to include 
some that required each of the features of the language. 
This was done to determine the factors that made this 
translation process difficult. We included some questions 
that involved concepts that previous work had shown are 
difficult for most people (e.g., conjunction vs. disjunction 
constructions and universal quantificationpo,l1 and some 
questions studied with other query languages.12 

METHOD 

Subjects 

Subjects were run in four successive groups; these 
consisted of four college students, 11 college students and 
recent graduates, and two groups of 12 high school 
students. Data on class standing and IQ were available for 
23 of the 24 high school students. The mean class standing 
was 44/197 and the median IQ13 was 115. There were 15 
males and 24 females. The subjects ranged in age from 16 
to 24 years. Four of the college students had some minor 
programming in school courses. Aside from this, none of 
the subjects had any experience in using computers. 

Design and procedure 

Subjects received about one hour and 45 minutes train­
ing on the major features of Query By Example. They 
then wrote translations of 20 test questions; this took 
about·40 minutes. After a short break, subjects received 
another 70 minutes of instruction, followed by another 20-
question test, which took about an hour. The second test 
contained some questions designed to assess understand­
ing of the concepts presented during the second training 
period, and it also contained some questions similar to 



440 National Computer Conference, 1975 

T ABLE I-Sample Questions inQuery by Example 

NAME SALARY AGE MANAGER DEPARTMENT 

p. Jones p. 23K Sports 

p. Smith '!:2E. 
Riley Toys 

p. Scholz Come.uters 

SUPPLY FILE SALES FILE 

COMPANY ITEM # RECEIVED DEPARTMENT ITEM # SOLD 

IBM 12!1. Computers lQQ.. 

SUPPLIER DATA FILE 

COMPANY LOCATION 

IBM Mass. 

those on the first test. The purpose of these latter ques­
tions was to measure the effect of adding other features 
(for example, set inclusion) to a subject's understanding of 
the "easier" part of the language. Two weeks after initial 
learning, six college students were available for retest. 
These students were given a test of 20 questions without 
any retraining. They were then given an hour refresher 
and given another test of 20 questions. 

During testing, subjects were not given feedback about 
the correctness of their answers. If they had been given 
such feedback after writing each query, they would un­
doubtedly have written a higher percentage of queries cor­
rectly. They also could not refer to instructional material 
or notes used in training. However, subjects were provided 
a list of abbreviations and operators in the front of the test 
booklet. The order of questions within a test was rotated in 
five different sequences among subjects so that fatigue or 
practice effects would not systematically affect the esti­
mates of question difficulty. 

Query by example language 

The Query By Example language that subjects were 
taught is described in detail elsewhere.6 In this experiment 
subjects were given empty tables, containing only the 
table names and column names. Subjects wrote a query 
by filling in some of the columns in one or more of the 
tables with examples (variables), with constants, and with 
operators. Table I illustrates some of the features of the 
language. 

The first query in the table represents the question 
"Print the names and salaries of the people in the sports 
department." The "p." in the columns labelled NAME 

SIZE PRESIDENT 

and SALARY shows that those are the items to be printed 
out. "Jones" and "23K" are examples. They are un­
derlined because they are examples. "Sports" is not un­
derlined because it is a constant. 

The second query in Table I represents the question 
"Print out the names of those people who work in the 
same department as Riley." "Toys" is underlined to indi­
cate that it is a variable, in this case a linking variable. It 
links "Riley" to the people that will be printed out. These 
two lines could be interchanged. 

The last line in the top table combined with the bottom 
three tables is the query for "Who are the people who 
work in a department that sells items supplied by com­
panies located in Massachusetts." This problem requires 
the use of four tables, and it illustrates how tables are 
linked together. Note that Massachusetts is the only 
constant in this question; the other words are examples 
(variables) and hence are underlined. 

Training 

Subjects were trained in groups. Training was based pri­
marily upon a lecture during which subjects were shown, 
via an overhead projector, a series of examples of about 
100 queries written in Query By Example. Each example 
was explained in the lecture, and subjects were required 
throughout training to code many English questions into 
Query By Example. To do this, they were given forms that 
contained outlines of the data tables on which the training 
queries were based. Besides the lecturer, there was a 
second instructor present, and throughout training both 
instructors continuously checked on the accuracy of the 
students' queries. In this way both the students and the 



A Psychological Study of Query by Example 441 

T ABLE II-Example Queries Used in Evaluation 

1. Print the names of employees whose salary is less than $12,000, are over 28 years old, and are managed by White. 
2. I think there must be about 30 people managed by White, who make $12,000. So ... list the people over 28 who are managed by White. Of course, 

I'm only talking about those who make less than $12,000. 
3. I'm thinking about a raise for someone from White's group. I want only older people who are' underpaid. For starters, find the people who work for 

White, are over 28, and make less than $12,000. 
4. Who else works in the same department as Riley? 
5. List the names of employees who are younger than Anders' manager. 
6. List people who work in departments that sell at least one item supplied by a company located in Massachusetts. 
7. Print the names of anyone who makes more than Anders' manager and is youO,ger than Smith's manager. 
8. The accounting people need to know how many married women over 30, with no dependents, work in Dept. 300; and how many single employees 

who have at most a Junior College df;gree have worked for us for more than 5 years and are employed in St. Louis, in Dept. 400. 

teachers had feedback while each concept of the language 
was being taught. 

Task 

Following training, each subject's task was to translate 
40 questions stated in English into Query By Example. 
Table II provides some examples. These questions varied 
in several ways. Most were stated in a straightforward 
way. In some cases, formally identical problems were also 
stated in both a poorly expressed manner and in a way 
which included a rationale for asking the question. The 
first three examples provide examples of these variations. 
Queries also varied in the number of linking variables re­
quired: 0, 1, 2, 3, or 4. Sometimes these links were within 
a single table and sometimes between tables. Examples of 
queries requiring one linking variable within a table, two 
linking variables within a table, three linking variables 
among tables, and four linking variables within a single 
table are given as examples 4 through,7 in Table II. Ques­
tions also varied in the number of conjunctive constraints, 
the number of disjunctive sets, and in the number of 
operators used to compute quantities from a subset. 
Example 8 in Table II illustrates a questions with two dis­
junctive "sets", with each set requiring five conjunctive 
constraints. In addition, the question asks for an operation 
of counting to be performed. 

Subjects were also required to write the time that they 
started reading each English question and the time that 
they completed writing each query. In addition, 35 sub­
jects gave a confidence rating between'l and 5 to indicate 
how sure they were that each query was correct. A "I" cor­
responded to "very sure correct", a "2" corresponded to 
"fairly sure correct", a "3" corresponded to "50-50 
chance", a "4" corresponded to "fairly sure incorrect", 
and a "5" corresponded to "very sure it's incorrect. n 

Error analyses 

The correctness of the queries that the subjects wrote 
was assessed by two people familiar with the syntax of the 
Query By Example system. 

RESULTS 

Overall 

Mean training times varied between two hours and two 
hours and 55 minutes for the four groups. The proportion 
of correct queries was 0.67; mean time to complete a 
query was 1.6 minutes overall (s.d. = 1.09); mean confi­
dence rating was 1.8 (s.d.=0.82). 

Individual differences 

All subjects were able to learn the language and com­
plete the experiment. The performance of the college 
students and high school students was nearly identical on 
the above four measures, and there also were no 
sex differences. The range of individual differences was 
0.33 to 0.93 on proportion of queries correct 
(F(38,I482)=5.24;p<0.001); and 1 to 2.3 on confidence 
ratings (F(34,I326) = 12.12) ;p<O.OOl). Thirty-four of the 
39 subjects were correct on over 50 percent of the ques­
tions. Subjects who were confident also were relatively ac­
curate (r= - 0.63;p<0.00I). Subjects who were relatively 
fast in writing queries were not significantly more con­
fident (r= 0.23;p > 0.05) or more accurate 
(r= -0.I9;p>0.05). The correlation between Otis13 IQ and 
accuracy on the first 20-question test was 0.60 (p<O.OI) 
and 0.50 (p<0.05) on the second 20-question test. 

Problems 

The proportion of subjects writing correct queries for 
each of the 40 questions varied from 0.26 to 1.0 
(F(39,1482) = 12.59;p <0.001). Twenty-six of the 40 ques­
tions were done correctly by the majority of subjects. 
The mean time to write queries varied from 0.83 min­
utes for the fastest problem to 3.64 minutes for the 
slowest problem (F(39,I482)=26.12;p<0.00l). The mean 
confidence ratings varied from 1.3 to 2.5 
(F(39,I326) = IO.24;p<0.001). The correlation on the first 
20-question test between mean accuracy and mean time to 
write a query for that question was - 0.70 (p<O.OOl). On 
that same test, problems on which people were accurate 
were problems which they were also confident about 



442 National Computer Conference, 1975 

TABLE III-Proportion of Queries Correct for Various Confidence Rating" 

Proportion Correct 
Total N 

Very Sure Correct 

0.83 
581 

Fairly Sure Correct 

0.62 
585 

(r= - 0.92;p<0.001); problems which they did quickly 
also were associated with high confidence ratings 
(r=0.78;p<0.001). These correlations were significant 
(p<O.OI) but lower on the second 20-question test. 

Table III shows the probability of a problem being cor­
rect, given a particular confidence rating. As is clear from 
the table, a computer system could make a useful predic­
tion about the correctness of a particular query by asking 
a user how likely he thinks it is that the query is correct. 

Accuracy predictions 

Three types of measures were used to predict the pro­
portion of correctly written queries. 

First, a linear multiple regression based on four 
parameters of the correct answer, viz., the number of 
columns required by a correct answer, the number of dif­
ferent operators, the number of rows, the number of link­
ing variables, produced an R of 0.74 (p<O.OOI). Addition 
of more Query By Example parameters would probably 
not increase the proportion of variance accounted for (54 
percent) dramatically. 

The second type of measure was the mean confidence 
rating of the subject on a question. This correlated with 
proportion correct (r=0.86;p<0.001). When combined 
with the above four parameters, R reached 0.92 
(p<0.001). 

Third, two simple measures that reflected the particular 
English formulation of the question were calculated. One 
was simply the number of words in the English question. 
The other was the number of occasions in which an opera­
tor necessary in Query By Example was only implicit in 
the English phrasing of the question. For simplicity, 
this variable will be called "mismatches". If these pre­
dictors are included, then R reached 0.95 
(F(9,29) = 26.98;p <0.001). 

Comparative data 

Seven questions used by Gould and Ascher12 in a be­
havioral evaluation of an IQF-like language were also used 
in the current experiment. These questions differed in the 
number of sets of records that were required to be 
retrieved (1, 2, or 3) and in the number of conjunctive 
modifiers required for each set (1, 3, or 5). Mean propor­
tion correct for these questions was 0.54 for Query By 
Example and 0.30 for Gould and Ascher. The mean total 
time for these seven queries was 2.1 minutes in Query By 
Example and 7.7 minutes in the Gould and Ascher experi-

CONFIDENCE RATINGS 

50-50 Chance 

0.44 
187 

Fairly Sure Incorrect 

0.17 
36 

Very Sure Incorrect 

0.20 
10 

ment. Subjects in the latter experiment were required to 
write a formulation and a plan prior to coding a query, 
and this coding time was 3.6 minutes. Times to write 
queries in the two systems were highly correlated 
(r=0.98;p<0.001). The correlation between the total 
number of modifiers and the time to write a query was sig­
nificant both for the Gould and Ascher study 
(r=0.99;F(I,7)=251.5;p<0.001) and for Query By 
Example (r=0.99;F(I,5)=235.7;p<0.001). 

Particular English wording 

In order to assess the effects of the particular English 
wording of a question, three special sets of questions were 
used. Each set consisted of three different English 
formulations ("straight", "poorly expressed", and "ra­
tionale") that were intended to map into the same formal 
Query by Example. Providing subjects with a rationale 
did not have any apparent effect on time or accuracy. The 
irrelevant information in the "poorly expressed" questions 
produced some reduction in accuracy for all three ques­
tion sets, but in no case were these differences statistically 
significant. Confidence ratings and times were also not 
consistently affected by wording of the question. In one 
problem, subjects took twice as long (2.2 minutes) for the 
"poorly expressed" question as for the "straight" version. 
In this case, the difference was significant 
(t(76) =4.23;p<0.001). It should be noted, however, that 
variance for the "poorly expressed" question was 15 times 
the variance for the "straight" version. It would seem that 
the inclusion of irrelevant material In a question to be 
translated has a large effect, but only on a subset of the 
population. 

Interference effects 

Three pairs of questions of identical objective com­
plexity and equally well-stated wer.e included in the ex­
periment. For each pair, one question was included on the 
first 20-question test and one on the second 20-question 
test. The purpose of these pairs was to assess the effects of 
the second training sesssion (primarily how to specify 
universal quantification) on the ability of subjects to 
retain what they had learned during the first training 
session. There were no major differences in proportion cor­
rect, mean time, or mean confidence rating on these pairs 
of questions. These findings demonstrate that net fatigue, 
practice or interference effects were minor. However, dur­
ing the second test, there were 18 cases in which universal 



quantification constructions were used when they were not 
needed. 

Output classification 

The output that would have resulted from each query, if 
an implemented system had been used, was divided into 
several categories (not mutually exclusive); e.g., exact 
output, no output, wrong output, superfluous output. The 
main result was that 18 percent of the 33 percent incorrect 
queries would produce no output. Eighty-two percent of 
the time that a subject made an error, some set of records 
would have been returned. 

Error types 

An incorrect query could contain more than one error. 
Table IV indicates the relative proportion of occasions 
when a particular Query By Example construction was re­
quired but was either omitted or used incorrectly. The 
data indicated, for example, that subjects made mistakes 
one-fourth of the time when they needed to use a universal 
quantification operator. Subjects also made mistakes on 
one-fourth of the occasions when they needed to use 
COUNT, SUM, AVERAGE, 'Or COMPACT-COUNT 
operators. Overall, subjects made errors on 3 percent of 
the occasions in which comparison operators (e.g., >, <, 
?, .;::;;;) were needed. Subjects made underlining mistakes 
on 1 percent of the occasions that they needed to decide 
whether to underline. The subjects made accurate deci­
sions about "and/ or" constructions and seldom used the 
wrong value. A common source of error not shown in the 
table were "mismatches" between Query By Example and 
English. For example, an English question might ask for 
the "people who have worked for us for more than five 
years." The tables used had an attribute labelled "Year of 
Hire." This question, therefore, required subjects to 
translate the English phrase "more than five" into 
"<1969" . 

Although not counted as an error, subjects many times 
left off the periods that were meant to terminate operators. 
Subjects were not penalized because a well-engineered im­
plementation would include buttons that would auto­
matically add terminators. An interesting type of error 
that arose on some problems was labelled "sexist syntax." 
For example, some subjects did not specify sex when 
asked to retrieve records for female secretaries. 

TABLE IV-Probabilities of Various Types of Errors 

Error Type 

Quan tification 
Count/Sum/C-Cnt. 
><;:.~ 

Underlining 
And vs. Or 
Wrong value 

Error Probability 

0.25 
0.25 
0.03 
0.01 
0.003 
0.002 

A Psychological Study of Query by Example 443 

Retest data 

One group of 11 subjects was asked to return after a 
two-week interval and six of them did. On their original 
tests these six subjects were slightly above average. (Their 
mean accuracy was 75 percent correct.) On an im­
mediately given 20-question retest, (consisting of 10 ques­
tions from the original tests and 10 new but comparable 
questions) they were 53 percent correct. One subject wrote 
no correct queries because she forgot to underline 
variables. A second subject reversed the sense of '<' and 
'>' and wrote only 25 percent correct queries. The other 
four subjects were as accurate on the fourteenth day after 
training as they were on the first day. After an hour review 
of Query By Example, these six subjects wrote correctly 66 
percent of their queries on a different (equally difficult) 
20-question test. 

DISCUSSION 

Comparative data 

The results indicate Query By Example is easy to learn 
and use in a relative sense and perhaps in an absolute 
sense also. Compared to the Gould and Ascher data on an 
IQF-like language, subjects using Query By Example re­
quired about one-third the training time, were about twice 
as accurate in writing queries, and were somewhat faster. 
Compared with Reisner's pilot data14 on two new query 
languages called SEQUEL and SQUARE, our subjects re­
quired about one-third the training time and appear to be 
about equally accurate as those using SEQUEL or 
SQUARE. No subjects failed to complete training in 
Query By Example, unlike with these other three lan­
guages. Of course, these comparisons are only approximate 
because the separate experiments differed in several ways, 
e.g., training techniques, subject populations, test ques­
tions, stringency of scoring errors. 

Absolute considerations 

In an absolute sense, it is hard to imagine a powerful 
formal language system which could be learned much 
more rapidly than Query By Example. Indeed, even a 
"natural English" query system, which at first blush 
might seem to require no training time, would in fact re­
quire considerable time for subjects to learn the many ex­
ceptions and restrictions that any foreseeable "natural 
language" system will require. Also, the time to write a 
"natural language" query, and then have a computer 
system, through interaction with the user, disambiguate it, 
would probably exceed the time to write in Query By 
Example. There are no solid reasons for believing that ac­
curacy in writing ~'natural langUage" queries would be 
substantially higher than that found here for Query By 
Example. Further, the fact that subjects returned in two 
weeks and wrote queries nearly as correctly as they did 
when they initially learned the language suggests that 



444 National Computer Conference, 1975 

people will retain Query By Example better than they 
would retain a "natural language" system. 

Predicting errors 

The probability of a subject's making an error in writing 
a query is largely predictable from four parameters of 
Query By Example (the number of different columns 
used, the number of different operators, the number of 
rows, and the number of comparison operators) and from 
how confident a subject was about his query being correct. 
These five predictors accounted for 84 percent of the ac­
curacy variance, but this would somewhat overstate the 
case in real life due to "shrinkage" .15 It should be noted 
that these predictions are not based upon the actual 
parameters of the queries that subjects wrote, but rather 
upon those of a correctly written query. While we have not 
done the former analysis, informal inspection indicates 
that about the same predictive accuracy would result. 
When the SEQUEL experiment is complete, it will be 
interesting to learn whether the probability of an error on 
a particular test question translated into SEQUEL could 
also be predicted from the parameters required for that 
question if it were translated into Query By Example. 

Feedback 

The practical significance of predicting an erroneous 
query is that a computer system can make a useful predic­
tion on whether a user's query is in fact the one he 
intended. If there is a high probability of his making an 
error, then this prediction can trigger various kinds of 
feedback to the user that might help him catch his error. 
This is particularly important in view of the finding that a 
syntactic check would have only stopped 18 percent of the 
incorrectly written queries in this experiment. This feed­
back could be tailored to the type of likely error. For 
example, the computer might restate the user's question in 
another form. Or, the computer might produce alternative, 
but similar, queries and the user would then verify 
whether the one he wrote was in fact the one he intended. 
Or, the computer might display a small data table. Selec­
tion of particular cases within the table, either by the user 
or by the computer, might help in distinguishing between 
an intended query and an unintended one. 

Weak points 

Subjects made two major types of errors. First, they 
frequently confused SUM, COUNT, and COMPACT­
COUNT operators. Presumably this error can be reduced 
through system constraints, feedback, and modification of 
the names of the operators. Second, they had difficulty in 
correctly specifying universal quantification when it was 
required. For example, subjects might render the question 
"List companies whose entire line of items is sold by 

Toys" into formal queries that really meant "List com­
panies which have an item sold by Toys" or "List com­
panies which supply the entire line of items sold by Toys". 

The possible reasons for quantification errors are nu­
merous, and include the possibility that subjects did ndt 
have sufficient conceptual abilities to use quantification 
constructions, that they were not taught that part of Query 
By Example well, or that they did not understand those 
test question statements. Alternatively, perhaps they 
understood the test questions and knew the language well 
enough, but they could· not "put it all together". Perhaps 
they knew how to use the quantification constructions, but 
they did not know when to use them. 

The subjects' task in translating from English into a 
formal language depended upon the number of "mis­
matches" between the particular English formulation of 
the question and the exact way it needed to be stated in 
Query By Example with the particular data tables used. 
This indicates that in real world settings two considera­
tions would reduce errors. First, the data tables should be 
labelled to reflect the way people think about and express 
a subject area, and, second, the person who formulates the 
question in English should write. the query himself or at 
least be aware of the ways of expressing it in the formal 
language. Since Query By Example can be learned so 
easily and queries written so quickly, it is hoped that the 
person formulating the question will enter his own query 
directly. 

Good language features 

1n Query By Example, subjects rarely confused disjunc­
tive and conjunctive queries, and they had little trouble 
linking attributes within a single table or linking multiple 
tables together. We observed during training that subjects 
sometimes seemed to understand a complex English ques­
tion more easily if it were shown in Query By Example 
than when it was stated in English. 

Positive characteristics 

What are the characteristics that make Query By 
Example good? We are not sure, but we believe the follow­
ing to be important. First, the user is given an explicit 
representation in which to formulate his query; he does 
not have to generate it free style. While this may be 
particularly true for the small tables (few columns) used 
in this experiment, it may not be true for much larger 
tables. (ZI00f16 has designed an extension of Query By 
Example to allow the user to select certain portions of a 
large data base which would then be queried.) Second, the 
particular type of representation given, i.e., tabular, may 
be especially helpful (compared with, for example, a 
hierarchical or set representation). Third, the system is 
nearly wordless. This prevents many natural language 
confusions, e.g., the use of an "and" in specifying disjunc-



tive concepts ("all the physicists and children"). Fourth, 
the system is easy enough to learn so that people's motiva­
tions are high. (Some subjects thanked us for teaching 
them this language that they will probably never use in 
real life.) The training technique of showing subjects a 
series of example queries, ratlter than providing them with 
extended explanations of how the language worked, 
seemed quite effective. Fifth, the language is "be­
haviorally extendable", i.e., a novice user need only learn 
a small part of it to write successful queries for simple 
questions. Subsequently, if his problems require it, he can 
build upon this knowledge by learning more of the lan­
guage. APL is also like this. 

Query language users 

Most query systems in present use have been designed 
for people. who know their application well and regularly 
use the system as a main part of their job. As in the case 
of airline reservations systems, these users are expected to 
spend days or weeks learning the system because they 
then can use several short-cuts that lead to system effi­
ciencies. At the other extreme is Codd's "casual user,"17 
who can be thought of as a browser or dilettante who may 
even sample information or problems and applications he 
knows nothing about. Somewhere in between are people, 
including "professionals", who wish to use a computer 
creatively and in a flexible and powerful manner on ap­
plications they know about, but without spending an inor­
dinate amount of time learning to use the system. Our 
results suggest Query By Example should be especially 
useful for this latter group. 

Research problems 

Formal behavioral investigations prior to implementing 
a query or programming language are rare. This experi­
mentdemonstrates feasibility, and our experience is that 
computer scientists take seriously the results and implica­
tions. There remain many important behavioral research 
problems on the design and use of query systems. 

In this experiment subjects translated a test question 
into a single query. In real life, people often generate their 
own questions, sometimes a related series of them, to gain 
the information they need. The cognitive processes in~ 

volved in translating and generating questions are not 
identical. We plan to study how people generate questions, 
and we hope to learn about how people use the informa­
tion they have already obtained, how they determine when 
they have arrived at an acceptable answer, and how the 
characteristics of their problem affect the types of ques­
tions they ask. 

A Psychological Study of Query by Example 445 

The types of questions people would ask of a data base 
in natural language need to be identified and compared 
with those that people would ask using formal languages. 

Data need to be collected not only on how non-experts 
(as in this experiment) write queries but also on how 
experts would query large data bases to formulate and 
answer complex questions of real importance to them. 

ACKNOWLEDGMENTS 

We wish to thank Brian Madden for helping to grade the 
1560 queries and for his many suggestions for system im­
plementation. We also wish to thank Vivian Clingman and 
Cay Dietrich for their excellent secretarial services, and 
Bill Scholz and John Parkman for their many suggestions 
on this manuscript. 

REFERENCES 

1. Leavenworth, B. M. and J. E. Sammet, An Overview of Nonproce­
dural Languages, IBM Technical Report, RC4685, January, 1974. 

2. Thompson, F. B., P. C. Lockemann, B. Dostert and R. S. Deverill, 
"REL: A Rapidly Extensible Language System," Proceedings of the 
24th National Conference, ACM, Publication p. 69, September 1969. 

3. Heidorn, G. E., "English as a Very High Level Language for Simula­
tion Programming," SIGPLAN, 1974,9,91-100. 

4. Interactive Query Facility (IQF) for IMSj360, Publication No. 
GH20-1074, IBM Corporation, Nhite Plains, New York. 

5. Chamberlin, D. D. and R. F. Boyce, SEQUEL: A Structured English 
Query Language, IBM TechnicatReport, RJ1394, May, 1974. 

6. Zloof, M., Query By Example, IBM Technical Report, RC-4917, 
July, 1974. 

7. Schwartz, S. H., "Modes of Representation and Problem Solving: 
Well Evolved is Half Solved," Journal of Experimental Psychology, 
1971, 91 (2), pp. 347-350. 

8. Wright, P. and F. Reid, "Written Information: Some Alternatives to 
Prose for Expressing the Outcomes of Complex Contingencies," 
Journal of Applied Psychology, 1973,57 (2), pp. 160-166. 

9. Wickelgren, W. A. How to Solve Problems, San Francisco: W. H. 
Freeman, 1974. 

10. Miller, L. A., Programming by Non-Programmers, IBM Technical 
Report, RC4280, 1973. 

11. Just, M. A., "Comprehending Quantified Sentences: The Relation 
Between Sentence-Picture and Semantic Memory Verification," 
Cognitive Psychology, 1974,6, pp. 216-236. 

12. Gould, J. D. and R. N. Ascher, Querying By Non-Programmers, 
paper presented at the American Psychological Association meetings, 
New Orleans, 1974. 

13. Otis, A. S., Otis Group Intelligence Scale, New York: Harcourt, 
Brace & World, Inc. 

14. Reisner, P., R. F. Boyce and D. D. Chamberlin, Human Factors 
Evaluation of Two Data Base Query Languages: SQUARE and SE­
QUEL. IBM Technical Report, RJ 1478, 1974. 

15. Cohen, J., "Multiple Regression as a General Data-Analytic 
System," Psychological Bulletin, 1968, pp. 426-443. 

16. Zloof, M., The Invocation of Tables and Attributes, IBM Technical 
Report, RC5115, November, 1974. 

17. Codd, E. F., Seven Steps to Rendezvous with the Casual User, IBM 
Technical Report, RJ 1333, January, 1974. 





Human factors evaluation of two data base 
query languages-Square and Sequel 

by PHYLLIS REISNER, RAYMOND F. BOYCE and DONALD D. CHAMBERLIN 
IBM Research Laboratory 
San Jose, California 

INTRODUCTION 

Boyce et a1. have recently described two data base query 
languages, SQUAREl and SEQUEL,2 which are intended for 
use in an interactive mode by both programmers and 
professional non-programmers (e.g., accountants, lawyers, 
managers). The languages are comparable in the sense that 
the basic operators, underlying data structures and intended 
use are the same. They differ_ primarily in syntactic form, 
with a few additional differences in some of the specific 
features. Both of the languages are intended to be easily 
learned and used by people without specialized computer 
training. 

This paper reports on a human factors experiment intended 
to evaluate the languages and, where possible in the same 
experiment, to compare them. 

Specifically, the main goal of this experiment was to 
determine whether the languages could, as expected, be used 
by the intended populations. We were particularly interested 
in determining whether non-programmers, of professional 
caliber, could use the languages without extensive training. 
A second goal was to determine whether there was a difference 
in useability of the two languages. 

A third goal, at least as important as the preceding, was to 
discover, prior to implementation, types of user errors that 
were commonly made. We felt that a language intended for 
non-programmers should be "user-friendly," with extensive 
use of the machine to catch human error. Common error 
types, if known, could be handled either by language changes, 
interactive user aids, or special emphasis in teaching. 

GENERAL APPROACH 

Arrangements were made with the psychology department 
of a local university to provide stUdents as experimental sub­
jects and to provide classroom space to run the experiment. 

To evaluate and compare the languages, a common teach­
ing curriculum was developed and used to teach four classes 
to four different subject populations: SEQUEL for program­
mers, SEQUEL for non-programmers, SQUARE for pro­
grammers, and SQUARE for non-programmers. Each class 
extended over a two week span. Extensive testing in the use 
of the language taught was carried out both during and after 
the classes. 

447 

The current experiment was preceded by a pilot experiment 
with a smaller subject population to debug the techniques and 
materials to be used in the classes. 

SUBJECTS 

The subject population consisted of 61 undergraduates and 
three graduate students from the local university, paid for 
their participation. They were not preselected in any known 
way, and thus varied considerably in background. Among the 
64 participants in the experiment were students from 29 
diverse majors, e.g., accounting, fine arts, recreation, mathe­
matics, nursing, and political science. 

We defined a "programmer" as anyone who had taken at 
least one programming course, and a "non-programmerlr as 
anyone eise. Thus there was a considerable spread of experi­
ence even within the "programmer" group. Subjects were not 
required to have any specific mathematics background 
(other than that required for admission to the university). 
Consequently many were unfamiliar with concepts and 
notation used in the languages: set comparisons, logical 
connectives, and even elementary mathematical notation such 
as">." 

The number of subjects completing each class was as 
follows: SEQUEL programmers, 18; SQUARE programmers, 
11; SEQUEL non-programmers, 15; SQUARE non-program­
mers, 20. Several additional subjects dropped out before 
completion of the classes for various reasons such as illness. 

THE LANGUAGES 

The SQUARE and SEQUEL query languages are both 
based on the relational model of data proposed by 
E. F. Codd. 3 All information in the data base is assumed to 
be represented in a series of named tables, or "relations." The 
columns of the tables have names, and each row of each table 
represents information about some entity in the real world 
such as an employee. Figure 1 shows two example tables 
which describe the employees and departments of a small 
company. 

SQUARE (Specifying Queries As Relational Expressions) 
utilizes a mathematical notation to express queries against a 
data base, while SEQUEL (Structured English Query 
Language) is based on English keywords. The central concept 



448 National Computer Conference, 1975 

EMP: NAME DEPTNO SAL 

SMITH 50 12500 

JONES 50 11250 

DOE 55 16000 

ROBERTS 55 15500 

DEPT: DEPTNO DEPTNAME LOCATION 

50 STAMPING SACRAMENTO 

55 MILLING STOCKTON 

~ 

Figure I-Two relations 

in each language is that of a "mapping," which returns the 
data-values in some column which are associated with a 
known data-value in another column, as illustrated by Q1. 

Q1. Find the names of employees in Department 50. 

SQUARE: EMP ('50') 
NAME DEPTNO 

SEQUEL: SELECT NAME 
FROM EMP 
WHERE DEPTNO=50 

Both SQUARE and SEQUEL allow the result of one 
mapping to be used as input to another mapping. This 
process, illustrated by Q2, is called "composition." 

Q2. Find the names of those employees who work for a 
department located in Stockton. 

SQUARE: 
EMP 0 DEPT ('STOCKTON') 

NAME DEPTNO DEPTNO LOC 

SEQUEL: 
SELECT 
FROM 
WHERE 

NAME 
EMP 
DEPTNO= 
SELECT DEPTNO 
FROM DEPT 
WHERE LOC='STOCKTON' 

Both SEQUEL and SQUARE allow built-in functions, 
including AVG, SUM, COUNT, MAX, and MIN, to be 
applied to any set of numeric data-values (such as the result 
of a mapping.) 

For complex queries, the features of the two languages 
differ slightly. SQUARE employs a notation called a "free 
variable" in which the user invents a variable to represent 
a row, then states a test which defines the rows he wishes to 
be selected, as in Q3: 

Q3. List the department numbers of those departments 
having average salary greater than 15000. 

SQUARE: X E EMP: 
DEPTNO 

AVG( EMP (X ))>15000 
SAL DEPT NO DEPTNO 

SEQUEL avoids most uses of variables by means of a feature 
called GROUP BY, which organizes the rows of a table into 
groups by matching the values in some column, and then 
applies a built-in function to the rows in each group. This 
feature is illustrated by the SEQUEL expression for Q3. 

SEQUEL: SELECT DEPT NO 
FROM EMP GROUP BY DEPTNO 
WHERE AVG(SAL) > 15000 

Both SQUARE and SEQUEL allow use of the set-operators 
union, intersection and difference. Both languages permit two 
tables to be joined together by matching values in a common 
column, as in Codd's "join" operations. 3 

The teaching and testing for this experiment covered the 
query features of the two languages as presented in the 
references cited, including assignment of query results to new 
tables. Insertion, deletion, and update features, although they 
were defined for the two languages, were not included in the 
experiment. 

TEACHING 

The languages were taught in a classroom-type situation 
with all its attendant problems (late arrivals, Monday 
fatigue, classes missed for illness, etc.) The expository 
materials, English examples to be translated into the query 
language, manuals, and quizzes were the same in all four 
classes. The classes were highly interactive, with extensive 
student participation. We decided that the goal of the classes 
should be to teach the fundamentals of the languages to as 
many subjects as possible. Therefore, the pace of each class 
was determined by the slower members. 

In general, the programmers were able to learn the 
languag~s somewhat faster than the non-programmers; hence 
the classes for programmers were completed after 12 academic 
hours of instruction, while the non-programmer classes 
required 14 academic hours to cover the same material. 

Several example data bases were used in teaching to 
accustom the students to using different data bases (monop­
oly, school administration, computer dating, car sales). 



TESTING 

The major tests were: five review quizzes given at intervals 
during the class, a final exam at the end of the class, and a 
memory test given one week later. In each, a set of questions 
was presented in English (e.g., "Find the names of all 
employees who make more than their managers") and the 
student was required to write the appropriate query language 
statement. The English questions on the tests were the same 
for all four populations. The final exam and memory test 
contained forty questions each, to be completed in two hours. 

The questions on the tests were carefully designed to 
include all features of the languages. The major emphasis of 
the testing was on understanding the basic features of the 
languages, such as mapping, composition, free variables, and 
set operations. Therefore, 35 of the 40 questions on the final 
exam were "Basic Feature" questions designed to test each of 
the basic features individually. The remaining five questions, 
called "Combination of Features" questions, tested subjects' 
ability to combine some of the basic features in ways they had 
not seen before. The memory test also contained 35 com­
parable Basic Feature questions, covering the same syntactic 
features as those on the final exam, plus five filler questions. 

We attempted to write English questions for the test that 
were unambiguous and did not contain features, other than 
the ones being tested, that might create difficulties. The order 
of the questions on the final exam and memory test was 
randomized. Students were instructed that accuracy of 
v:riting queries, rather than speed, was the goal on all the 
exams. 

The tests used data bases that had not been seen before by 
the students (airport administration, department store.) 
Each student was given a sample data base containing 
examples of data items in every column, for reference in 
formulating queries. Students were permitted to use class 
notes and other teaching materials on the reviews and final 
exam; however, the memory test was "closed book." 

SCORING 

Scoring the responses presented some difficulty. Obviously, 
a simple 'correct' or 'incorrect' decision is the simplest choice. 
Just as clearly, however, errors such as a misspelled word or 
an omitted quotation sign around a data value represent less 
serious misunderstanding of the language than failure to use 
a test on the right side of a free variable statement. 

We thus devised the following scoring system: 

C = completely correct 
D =minor data error 
M = minor language error 
S = error of substance 
F = error of form 

Minor language errors (M) were, for example, misspelled 
column names or omitted quotation marks. Data errors (D) 
were, for example, using only a surname (Jones) when the 

SQUARE and SEQUEL 449 

TABLE I-Mean Percentage of Essentially 
Correct Responses 

SQUARE SEQUEL Mean 

Non-prog. 54.7 65.0 59.8 
Prog. 77.7 77.5 77.6 
Mean 66.2 71.2 68.7 

a. Final Exam, Basic Functions 

SQUARE SEQUEL Mean 

Non-prog. 52.0 60.0 56.0 
Prog. 76.4 83.3 79.8 
Mean 64.2 71.6 67.9 

b. Final Exam, Combination of Functions 

SQUARE SEQUEL Mean 

Non-prog. 51.4 58.1 54.8 
Prog. 78.9 81.0 80.0 
Mean 65.2 69.6 67.4 

c. Memory Test, Basic Functions 

sample data base required the full name (John Jones). These 
data errors were not errors that could reasonably be charged 
to the query language itself, since they could easily occur with 
any language. However, a query with such an error would not 
produce the correct response. We chose therefore to tabulate 
them separately. 

Errors of substance (S) were valid forms that would run, 
but produce the wrong answer. Errors of form (F) were 
invalid forms. 

In order of judged seriousness, we considered that F errors 
represented the most severe misunderstanding of the lan­
guage, then S, M, and D in that order. Each question was 
given the score of its worst error. Repetitive errors were 
counted each time they occurred. For example, if subject 5 
misspelled "personnel" in both question 10 and question 15, 
this was scored as two errors. 

RESULTS 

Overall evaluation and comparison 

To obtain a general picture of student performance, we 
combined the correct responses (C) with those containing 
minor language errors (M) and minor data errors (D) to 
obtain the mean percentage of "essentially correct" responses 
in each population. These results are shown in Table 1. 

The overall mean score for programmers on the final exam 
(counting basic feature questions only for both languages) 
was 77.6 percent; that for non-programmers was 59.8 percent. 
Analysis of variance showed that the difference in overall 
mean scores between programmers and non-programmers was 
significant (p<.Ol). 



450 National Computer Conference, 1975 

~ 100~------~------~\---r--------~---------' 
l1.J 

ffi .... \ ~."'-.. 
~ ............ \ ',', 
o 80 ...... \, , .... '" 

~ """\ '\~ = ',\ 
UJ '\ 
::> '" 
<.D 60 '.\ \ 

',\ ' 
~ ~ \ 
3 ~, \ 

~ \ ''''... \ \ 
~ 40 ......... SQUARE NON-PROG. ... "'.. '\ 
~ . ... 
~ ------ SEQUEL NON-PROG. • '\ 

~ ---SQUARE PROG. \ 
\ \ 
\ . \ ~ 20 

c:r:: 
--SEQUEL PROG. 

I-= UJ 
t..) 
~ 
UJ 
Cl... 

\\\ 

\i I ' 
O~------~------~----~-------r--~~ 

o 20 40 60 80 

SCORE (PERCENTAGE ESSENTIALLY CORRECT) 
Figure 2-Cumulative frequency distribution of subject 

performance on final exam 

100 

Analysis revealed that neither the overall difference 
between SQUARE and SEQUEL nor the interaction effect 
was statistically significant. However, examination of Table I 
reveals that non-programmers showed greater facility with 
SEQUEL than with SQUARE, as expected. The mean scores 
for the final exam, basic function questions for non-program­
mers were 54.7 percent for SQUARE and 65.0 percent for 
SEQUEL; this difference was significant (p< .05). 

Table I shows only small differences between the Basic 
Feature scores and the Combination of Features scores for the 
various populations. Subjects could apparently use the 
features they had learned in class to generate the novel forms 
required on the test about as well as they could use the 
individual basic features. From this we conclude that the 
subjects were actually expressing ideas in the new language 
rather than merely selecting from a set of known syntactic 
patterns. 

In general, scores on the memory test showed no apparent 
decrease as compared to scores on the final exam, despite the 
one-week gap and despite the fact that students were not 
allowed to use notes on the memory test. This shows a high 
level of retention of the learned languages (and suggests that 
the final exam itself was probably a learning experience.) 

Distribution of scores 

Figure 2 shows the cumulative distribution of scores on the 
final exam (Basic Feature questions) for the four subject 
populations. The curves show that at least 50 percent of the 
test queries were expressed "essentially correctly" by the 

following proportions of the populations: 

75% of SQUARE non-programmers 
80% of SEQUEL non-programmers 
91% of SQUARE programmers 
94% of SEQUEL programmers 

Learning curves 

An attempt was made to determine the rate at which 
subjects learned several of the more important features of the 
languages, using data from the five reviews and the final exam. 
Figure 3 gives the learning curve for a simple, mapping, 
showing the mean percentage of simple mapping questions 
expressed "essentially correctly" on the various tests by each 
of the four populations. It can be seen that programmers 
could use simple mapping in either language with over 90 
percent accuracy after about two hours' instruction, and 
non-programmers achieved this level of proficiency after 
about four hours' instruction. 

Learning curves for composition were also obtained but 
yielded more erratic patterns. On the first review testing use 
of composition (Review 3) the scores were: 

SQUARE non-programmers: 80% 
SEQUEL non-programmers: 79% 
SQUARE programmers: 91% 
SEQUEL programmers: 89% 

Clearly, at this time, subjects understood the composition 
feature and could select it appropriately from the other 
features they had learned. After this point, scores on composi­
tion questions tended to decline, reaching the following level 

:~~\.'~~,:.:. .......... 
•.•• r/ I " .... , .... 

(/)9 
~ 

....... \. "",' " .... 
i········· r, './ .;,..... '. ''''',-
l " ~\\ ,,' ..................... . 

o 
u 
(/) 

t; 
LU 

G§80 
o 
u 

~ 
...J 
<C 

~70 
~ 
(/) 
LU 

f !',,' 
: ,', , 
: , \ I 

/ : '.' 
",. 

,/ 

,,',,/ 

." 
~ ••••••••••••• SQUARE NON-PROG. 
~6 ______ SEQUEL NON-PROG. 

~ - - SQUARE PROG. 
u 

;~~ __ -r ____ r-__ ~-~-____ ~,SE_Q_UE_L~P,RO_G_'-.~ __ .-___ 

o 8 10 12 14 

HOURS OF INSTRUCTION 

Figure 3-Learning curves for simple mapping 



on the final exam : 

SQUARE non-programmers: 25% 
SEQUEL non-programmers: 53% 
SQUARE programmers: 67% 
SEQUEL programmers: 74% 

Confusion generated by the later introduction of other 
features, such as free variables, may account for the declining 
ability of subjects to use composition. 

Scores on questions requiring the use of free variables in 
SQUARE or GROUP BY in SEQUEL were much lower than 
those for the simpler features. Comparison of SEQUEL with 
SQUARE for these features should be undertaken cautiously, 
since the one-to·one parallelism found between SEQUEL and 
SQUARE for -other features does not always hold between 
free variables and GROUP BY. On Review 5, immediately 
after introduction, of these features, the scores for free 
variable and GROUP BY questions were: 

SQUARE non-programmers: 30% 
SEQUEL non-programmers: 33% 
SQUARE programmers: 55% 
SEQUEL programmers: 82% 

By the final exam, the scores for these features had fallen to 
the following levels: 

SQUARE non-programmers: 11% 
SEQUEL non-programmers: 33% 
SQUARE ,programmers: 48% 
SEQUEL programmers: 48% 

It appears that GROUP BY is somewhat easier to use than 
free variables, but both features are likely to prove difficult 
for non-programmers to use correctly. This conclusion is 
reinforced by comments made by students during the classes. 

Error analysis 

Table II gives the detailed breakdown of responses into 
five error categories for the four populations on the final exam 
(Basic Feature questions). It should be noted that the M and 
D scores do not represent the total occurrence of minor 
language and data errors in the experiment, because each 
response is placed in the category of the worst error it 
contains. 

We observe that F -type errors, denoting inability to write 
syntactically correct language forms, occurred more often 
among non-programmers than among programmers. Also, 
among non-programmers, F -type errors occurred more often 
with SQUARE than with SEQUEL. 

One of the goals of this experiment was to identify common 
types of user errors for which special aids could be built into 
the system. Study of M-type and D-type errors has yielded 
some preliminary results in this area. 

A common tendency among subjects was to insert words 
from the English sentence into the SEQUEL or SQUARE 

SQUARE and SEQUEL 451 

TABLE II-PerMntage of Responses in Each Response Category 
on Final Exam, Basic Feature Questions 

SQUARE SEQUEL SQUARE SEQUEL 
Response Non- Non-
Category Prog. Prog. Prog. Prog. 

C (Correct) 42.7 56.2 66.0 68.2 

D (Minor Data Error) 2.2 1.9 2.1 1.3 

M (Minor Lang. Error) 9.9 6.9 9.6 7.9 

Total Essentially Correct 54.8 65.0 77.7 77.4 

S (Error of Substance) 11.5 10.9 10.6 10.2 

F (Error of Form) 33.8 24.2 11.7 12.4 

Total Incorrect 45.3 35.1 22.3 22.6 

query in place of the correct table name, column name, or 
data value. Thus, subjects wrote "NAMES" rather than 
"NAME," "SOLD" rather than "SALES," "PERSONNEL" 
rather than "EMPLOYEE," etc. These "intrusion errors" 
were made in both languages, by both programmers and 
non-programmers, in spite of the fact that subjects had 
sample data bases to refer to during the tests. A "user­
friendly" system might be able to correct some of these minor 
errors by such techniques as word-stem matching or alterna­
tive-form dictionaries. 

Misspellings of keywords, table names, and column-names 
were also common, despite the availability of the sample data 
base. This suggests that a spelling corrector would be another 
important part of a "user-friendly" system. 

DISCUSSION OF METHOD 

An early decision was made that the SQUARE and 
SEQUEL classes for this experiment would be taught in a 
conventional classroom situation with a human teacher 
rather than by a system of programmed or computer-assisted 
instruction. This decision was made because classroom 
teaching is relatively quick to implement and known to be 
effective, and because it provides opportunity for on-the-spot 
feedback between the teacher and the student. On the other 
hand, a programmed instruction or CAl curriculum would 
have been more reproducible. Furthermore, an individualized 
curriculum allowing each student to learn at his own rate and 
to take an examination when ready would have provided a 
more accurate measure of learning times for individual 
students. 

All testing for the experiment was done on paper in the 
classroom. If an actual interactive data base management 
system had been available for testing, it might have been able 
to provide feedback to prevent subjects from making the same 
error repeatedly. On the other hand, such a test would 
confuse difficulty in use of the language with difficulty in 
learning to use the terminal system. 

A limitation of the experiment was that the effectiveness 



452 National Computer Conference, 1975 

of the teaching techniques and the learnability of the 
languages tend to be confounded. Since the results of the 
experiment were favorable, we conclude both that the 
languages are reasonably easy to learn and that the curricu­
lum was reasonably effective; however, it is difficult to 
separate the two factors. To some extent, the goals of the 
experiment were conflicting (e.g., we wished to study user 
errors, but if the teaching were perfectly effective, errors 
would be eliminated). 

NEED FOR FURTHER WORK 

The field of language evaluation is in its infancy and 
provides fertile opportunities for further research. The 
present experiment focused on the learnability of languages, 
but other language aspects remain to be measured; for 
example, the ease with which one subject can understand a 
query written by someone else, or the ease with which a 
query can be modified. 

In our experiment, subjects were unsystematically assigned 
to classes with the expectation that individual differences 
among subjects would "balance out" and allow the different 
classes to be compared (e.g., SQUARE class vs. SEQUEL 
class for non-programmers). This aspect of the experiment 
could be made more rigorous if an "aptitude measure" were 
developed which would enable matching the aptitudes of 
students in two populations before the experiment is begun. 

SUMMARY 

A series of experiments was conducted to evaluate the 
learnability of two data base query languages, SQUARE and 
SEQUEL, using university students as subjects. The students 
were divided into two groups according to whether they had 
had programming experience. Experiments showed that both 
populations were able to use either language with reasonable 
proficiency after 12 to 14 academic hours of instruction 
(lowest class mean was 55 percent for SQUARE non-pro­
grammers; mean score for programmers was 77 percent in 
both languages). Programmers learned both languages more 
quickly and more completely than did non-programmers, and 
the non-programmers showed greater proficiency with 

SEQUEL than with SQUARE. Test scores showed that both 
programmers and non-programmers were able to combine the 
basic language features in ways they had not been explicitly 
taught. Also, it was shown that, one week after the end of 
instruction, subjects still retained nearly all their proficiency 
and were able to use the languages successfully on a closed­
book examination. 

The individual features of the languages varied consider­
ably in learnability. The basic language feature, a simple 
mapping, was learned in each language with near-perfect 
accuracy by programmers after two hours and by non-pro­
grammers after four hours. However, considerable difficulty 
was experienced in learning and retaining the more complex 
"free variable" and "GROUP BY" features, especially by 
non-programmers. 

A study of errors made by subjects suggests that a real 
data base system should be prepared to correct minor 
syntactic errors and to search for poorly-specified data values 
by some technique such as stem-matching or a synonym 
dictionary. 

REFERENCES 

1. Boyce, R. F., D. D. Chamberlin, W. F. King, and M. M. Hammer, 
Specifying Queries as Relational Expressions: SQUARE, Research 
Report RJ 1291, IBM Research Laboratory, San Jose, California, 
October 1973. (To appear in Communications of the ACM.) 

2. Chamberlin, D. D. and R. F. Boyce, "SEQUEL: A Structured 
English Query Language," Proceedings of ACM SIGFIDEl' 
Workshop, Ann Arbor, Michigan, May 1974. 

3. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," Communications of the ACM, 15, June 1970 pp. 377-387. 

BIBLIOGRAPHY 

1. Gould, J. D., Query by Non-programmers, paper presented at the 
82nd Annual Convention of the American Psychological Assoc., 
New Orleans, August 1974. 

2. Thomas, J. C. and J. D. Gould, A Psychological Study of Query By 
Example, Research Report RC 5124, IBM T. J. Watson Research 
Center, Yorktown Heights, N. Y., November 1974. 

3. Weinberg, G. M., The Psychology of Computer Programming, 
New York, Van Nostrand Reinhold Company, 1971. 

4. Young, E. A., "Human Errors in Programming," International 
Journal of Man-Machine Studies, 1974, 6, pp. 361-376. 



A classification of compression methods and 
their usefulness for a large data processing 
center 

by DORON GOTTLIEB, STEVEN A. HAGERTH, PHILIPPE G. H. LEHOT and 
HENRY S. RABINOWITZ 
Fireman's Fund American Insurance Companies 
San Francisco, California 

INTRODUCTION 

The compression techniques surveyed in this paper all work 
to reduce storage space for data files at the price of increased 
CPU activity needed for compression and decompression. 
As CPU time becomes cheaper relative to the cost of external 
storage devices, compression appears as an increasingly 
attractive option for dealing with large files. 

In a small shop, which is typically 1-0 bound, compression 
uses available CPU time to decrease the amount of disc or 
tape storage. More generally, compression of storage space 
is achieved only at the expense of CPU time. The most 
clear-cut use of compression is for archive files where the 
main consideration is minimizing physical storage space. 

This paper surveys available techniques for automatic 
reversible compression of files; i.e., techniques that require 
no special knowledge of the contents of a file. The theoretical 
advantages of the two main categories of compression-dif­
ferencing and statistical encoding-are compared, and the 
practical results of these techniques on large insurance files 
are shown, both in terms of compression efficiency and CPU 
efficiency. 

Suggestions are offered for improving the compression 
achieved through Huffman coding by adding a schema to 
code strings of a repeated character. An Algorithm is given 
to find the threshold for the minimal length of those strings 
whose coding will result in improved compression. 

DEFINITIONS AND USES OF COMPACTION AND 
COMPRESSION 

Definitions 

Since there are no standardized definitions of compaction 
and compression, we propose the following usage, to be 
followed throughout this paper: 

Compaction of data means any technique which reduces the 
size of the physical representation of the data while preserv-

453 

ing a subset of the information deemed "relevant informa­
tion." 

Compression of data is a Compaction technique which is 
completely reversible. 

Compression ratio is the size of the compressed file expressed 
as percentage of the original file. 

A compaction technique that is not a compression tech­
nique involves elimination of information deemed super­
fluous in order to decrease overall storage requirements. 
Such a technique is, by definition, dependent on the seman­
tics of the data. 

The file-oriented techniques studied in this paper are 
primarily compression techniques since these are the easiest 
to implement in a generalized fashio~. While a familiarity 
with the semantics of a file is necessary for-maximal compac­
tion, compression techniques have the advantage of "auto­
matic" applicability to a wide variety of files. 

Compaction techniques that are irreversible are most ap­
plicable to directories of a file. Indeed, at a directory level 
there is often an advantage in disregarding less important 
information, which may be carried in lower directories or in 
the file itself, so as to speed up the directory scanning and the 
overall efficiency of the "general directory access method." 

COMPACTION OF A SEQUENCE OF SORTED 
RANDOM KEYS 

Introduction 

A good example of compaction is the following front­
compression/rear-compaction scheme on a sequence of sorted 
keys. The scheme achieves a very compact first level direc­
tory in which only those portions of a key K are kept that are 

-not identical to the previous key 
-necessary to make K unique; i.e., distinct from 

previous key and following key. 



454 National Computer Conference, 1975 

In particular, the "front string" (the initial string of 
characters of K identical to the same-positioned characters 
in the key before K) will be skipped. The "rear string" 
(the string of trailing characters which are not needed to 
distinguish K from the previous key and the following key) 
is knocked out. Rear compaction involves a loss of informa­
tion. Hence, the keys must be carried with their full informa­
tion at the level of the record, or at some intermediary level. 

Front compression 

The leading bits of a key which are identical to the previous 
key's leading bits constitute the FRS (front redundant 
string) and need not be repeated. The FRS is expanded to 
include one extra bit, since it follows automatically that if 
the first n bits 01 a key are the initial repeated string, then 
the (n+1)st bit must be different. Instead of the FRS it­
self, a number can be written specifying the length of the 
FRS. This number will only require a field of bits equal to the 
logarithm (base 2) of the length of the key. For example, if 
m is the length of the key, say m = 32 bits, then the length 
of FRS cannot exceed m; hence, the number of bits needed to 
express the FRS-length is [lOg2mJ = 5 bits. 

Rear compaction 

Unlike front compression, which suppresses some re­
dundancy but does not really do away with any information 
per se (provided one knows the previous key) the rear compac­
tion will do away with information which is judged un­
necessary. 

Rear compaction will delete an "RRS" (Rear Redundant 
String) . An RRS is composed. of those right most bits of a key 
which are not necessary to uniquely distinguish this key with 
respect to the set of all keys in the particular sequence to be 
rear-compacted. We can immediately state the following 
theorem: 

Theorem: 

Given a set of keys, some of which may be identical, in 
order to find the RRS of a key K, it is enough to look at the 
previous key P and the following key A in the sorted se­
quence; i.e., the RRS for K relative to the whole set of keys 
is identical to the RRS for K relative to the set of 3 keys 
P, K, and A. 
The useful string (US) is what is left of the key after the 
FRS and the RRS have been removed. 

Example: 

P Key # (i - 1) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

FRS US RRS 
K Key #i 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 

A Key # (i + 1) 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 

Key #i will be coded as (8) 0 1 0 1 0, where 8 is the 
size of the front redundant string (FRS) and "01010" is the 
useful string left over after front and rear compaction. 

Note that the last bit, and only the last bit, of the FRS 
differs from the corresponding bit of the previous record. 
Note also that the FRS of key #i is sufficient to distinguish 
it from key # (i-l), but that the 5 bits of the Useful 
String (US) are needed to distinguish· key #i from key 
#(i+l). 

Note: Another way of looking at rear compaction is to 
define the useful string of key # i as follows: 

If FRS of key # (i+l) contains the FRS of key 
#i then the US of key #i is the string obtained 
by deleting the FRS of key # i from the FRS of 
key # (i+l); otherwise it is null. 

If the keys are viewed as binary numbers of n bits each, then 
the compacted key #i will occupy [log2(Ki+l-Ki)]+ 
[lOg2 (K i - K i - 1) ]+2[lOg2n] bits in the first case and 2[log n] 
bits in the second. 

COMPRESSION BY DIFFERENCING 

The term differencing describes techniques which compare 
a current record to a pattern record and retain only the dif­
ferences between them; i.e., information in compressed 
record = information in current record-information already 
in pattern record. 

This technique is particularly successful with large record 
files of alphanumeric characters where most . corresponding 
fields in different records are the same (or even blanks or 
zeros); also, compression is often improved by sorting the 
file on the largest field. 

In some sense, the differencing scheme is a generalization 
of front compression seen above. The process of compressing 
the front string is repeated for each maximal substring in the 
current record which matches a substring (in the same 
position) in a pattern record. The start and end signals for 
such a matched substring are the overhead for the scheme. 
The information unit on which differencing is performed can 
be the bit, the byte, the field, or logical information. 

a. Bit: Both current" and pattern records are considered 
as equal length bit strings. (They could· also be left or 
right justified variable-length bit strings.) 

b. Byte or character: Bbth current and pattern records are 
viewed as character strings. (Byte access being cheaper, 
this is the most common case.) 

c. Field: The record is viewed as a string of fields (each 
with its own characteristics). Quite often, the start and 
end signals for the unmatched "strings" will be imple­
mented by bit maps, where each bit for the map is on 
or off to signal whether a given field of the current 
record is identical to the corresponding field of the 
pattern record. It is a rougher scheme, but it may 



present the advantage of less over-head whenever 
matching fields are frequent. 

d. Logical information (instead of physical data such as 
bit/byte/field) as in the example: 

date 1, date 2, date 3 (=) date 1, interval 2, interval 3 
where interval 2 = date 2-date 1 

interval 3 = date 3 - date 2 

In conclusion, we see that differencing schemes, (like front 
compression which is a special case) seek to diminish the 
overall amount of information by not repeating (andactu­
ally subtracting) that part of the information in a record 
which is already present in another (previous/pattern) 
record. 

Most often, differencing is applied to sequential files where 
the pattern record is taken to be the previous record in the 
file, which itself may have been sorted. 

If used with a direct access file, the first record of the block 
which directly accessed should be left intact (non-com­
pressed). This may be expensive when the ratio (size of non­
compressed record) / (size of block) is not small enough. 
In this case, a change in the blocking format might be war­
ranted. 

Zero and blank compression techniques can be viewed as a 
special case of differencing in which a zero or blank record is 
used as the pattern record for the entire file. 

The use of the same pattern record for the whole file may 
not yield as good a compression as a schema where the pattern 
used to compress each record is the record preceding it. But 
the latter choice is more expensive in encoding and decoding 
time. Indeed, whenever a record is to be read every record 
preceding it has to be decoded; i.e., half a block decom­
pression on the average. Deletions and insertions are, clearly, 
even costlier. 

The Ling-Palermo algorithm for compression of blocks of 
datal through a clever use of linear'depE::ndence concept is an 
extension of differencing and so is the QUATREE method 
by Hardgrave.2 

STATISTICAL ENCODING 

A statistical encoding is a transformation of tlte user's 
alphabet, converting each member of the alphabet into a 
code bit string whose length is inversely related to the 
frequency of the member in a text. 

A text is normally written using a fixed alphabet where each 
character is represented by a fi~ed length bit string (e.g., 
a byte). A statistical encoding schema attempts to take ad­
vantage of the fact that different characters will usually 
occur with different frequencies. Coding each character as a 
bit string of length inversely related to its frequency (i.e., 
coding non-frequent characters with long ones) will usually 
compress the text. 

If a text is written in an alphabet 1= {aI, ... , an} where 
each character occupies k bits, then an efficient statistical 

A Classification of Compression Methods 455 

encoding will assign a code {3i to each character ai such that: 
n 

L I {3i I ~k*N 
i=l 

where ii is the frequency of ai in the text, I {3i I is the length 
of the code {3i, and N is the number of characters in the text. 

An essential property of any statistical encoding schema is 
complete reversibility. That is, the ability to retrieve the 
original text from the encoded one in a finite (preferably 
linear) number of steps. Another desired quality is the prefix 
property where no code {3i is the prefix of another code {3j. 

This property assures both complete and unique reversibility 
and also that the decoder never has to back up and rescan any 
portion of the text. It is sometimes desired to have a coding 
schema that will preserve the alphabetic ordering of the 
user's alphabet (the alphabetic property) that is, if ai 
precedes aj in the original alphabet, one should be able 
to deduce this fact from the codes {3i and {3j without having 
to decode them. 

Information-Theoretic considerations assure us that when 
an alphabet of n characters is coded so that its complete 
reversibility is assured, N*H is the shortest possible binary 
representation for a text of N characters where H is the 
entropy of the distribution of characters in the text. This 
means, roughly, that the more "skewed" the distribution, 
the better the compression. 

Huffman coding scheme3 is a very elegant and simple 
statistical coding algorithm with the prefix property. It is 
optimal in the sense that its performance reaches the in­
formation-theoretic lower bound stated above. The Hu­
Tucker algorithm4 is a statistical coding scheme with both 
the prefix and alphabetic property. In the next section, we 
discuss in more detail the application of these two algorithms. 

EVALUATION OF HUFFMAN CODING FOR LARGE 
BUSINESS FILES 

Huffman coding, based on statistical characteristics of a 
file, provides an easy and effective method .of file compression 
without necessitating any inquiry into' ,the' semantics of file 
records. Thus, one package can be used on a wide variety of 
files to achieve compression without investment of large 
amounts of programmers' time to investigate particular files 
for their storage-wasteful properties. In testing a Huffman 
encoding package on a variety of large insurance files, ·the 
worst results encountered (on an already compact binary 
file) were 50 percent compression. 

Furthermore, contrary to Kreutzer,5 Huffman coding is 
suitable for files that are frequently updated. This is because 
the compression ratio achieved by Huffman coding can be 
discerned immediately from a table of the frequency of oc­
currence of each character in the file. If the frequency .of oc­
currence of letter i is ii, then the expected code length gen­
erated by Huffman code is closely approximated by the 
entropy of the frequency table H = LiEf [(fi/ LiEI Ii) * 
log2 ( (LiEI Ii) Iii) ] where I is the alphabet being coded. 
In fact, H ~expected code length ~H +1. Thus, if a file is 
frequently updated, it is easy to compile new frequency 



456 National Computer Conference, 1975 

statistics at the same time updates are performed. Then, 
after a certain number of updates, the expected code length 
using the new statistics and a new coding can be compared 
with the expected code-length using the new statistics and 
old code. If a significant improvement can be made by re­
coding (which will probably occur only rarely), then a new 
code can be generated and the file recoded. 

Because the compression-ratio can be calculated using a 
simple statistical pass of the file, the Huffman technique 
gives more immediate information than a differencing 
technique which cannot give an advance notice of its ef­
fectiveness before an actual encoding pass occurs. Huffman 
coding has the further advantage, over differencing tech­
niques, that records can be decoded individually without 
need for some reference to a pattern record. In fact, dif­
ferencing techniques derive most of their power from the fact 
that blanks or zeroes are commonly repeated, a fact that is 
handled well by Huffman coding, and even better by a 
modification of Huffman coding that is discussed below. 

It is hard to improve on Huffman coding while still pre­
serving its "automatic" effectiveness; i.e., without reference 
to data semantics. However, some progress can be made in 
special coding techniques for repeating characters and un­
recognized characters. 

Huffman code is optimal given the assumption that the 
probability of appearance of any letter is independent of the 
probability of appearance of any other letter. Of course, this 
is never actually the case, but this assumption is necessitated 
by the difficulty of discerning patterns in an automatic 
fashion. The simplest "pattern" is a ~epeating string of the 
same character (a clump). Usually the most frequent char­
acter in a file (say, blank or zero) is not raridomly distributed 
throughout the file but occurs in clumps. Since this commonly 
occurring condition violates the assumptions under which 
Huffman is optimal, it is possible to devise strategies to 
improve on Huffman, the simplest of which is to invent a 
"repeat" flag. 

A repeat flag can be included in the frequency table of a 
file with frequency equal to the number of occurrences of 
repeat strings whose length is greater than some threshold T. 
Then, for example, the string .hlS151511, instead of being en­
coded as (codeJ5) (codeJ5) (codeJ5) (codeJ1') (code.k), will 
be encoded as (code of repeat flag) (5) (code})). (Note the 
introduction of the repeat flag modifies the frequencies of the 
characters which ar.e repeated beyond the threshold.) 
Despite the vicious cycle nature of the problem, there is an 
algorithm that enables one to estimate the lower threshold 
T for length of repeated strings above which use of the 
repeat flag is more efficient than simple Huffman code. This 
algorithm depends only on the frequency of occurrence of 
characters and of repetitions. In practice, it turns out that 
this technique provides significant improvement over Huff­
man only when applied to the most frequent character in the 
file. 

We will assume here that repeating strings of character 
ai are to be encoded using the format: 

(code of repeat flag) (clump size) 

The following tables are obtained by scanning the file once: 

Frequency of 
Character Frequency Clump Length Clumps 

al it m <Pm 

a2 h m - 1 <Pm-l 

2 <P2 

n 

N = Lfi 
i=l 

TABLE A 
Frequency of Characters 

TABLE B 
Frequency of Clumps of 

Character ai 

Whereij is the total frequency of character aj in the text and 
C(Jk is the number of clumps (of character ai) of length 
exactly k (i.e., k successive occurrences of ai bounded on both 
sides by different characters). The threshold T is then the 
maximal K satisfying: 

Length of flag+count field~K*length of code for ai 

Denoting by a n+l the flag character, we will use log2 (N lij) 
as an estimate for the length of the Huffman code for char­
acter aj, and [IOg2 mJ as the number of bits in the fixed 
size count field (m is the size of the longest clump of ai in the 
text). 

The following is the algorithm to find T: 

(1) set r=o 

(2) set r=r+ 1 

(3) set ii=ii- (m-r+1)*"'m-r+1 (adjusting the fre­
quency of ai by subtracting occurrences of ai in 
clumps of size m-r+1) 

(4) set in+1=in+l+C(Jm-r+l (adjust the frequency of the 
flag) 

n+l 
(5) set N = L Ii (adjust the total) 

j=l 

(6) Evaluate: 

l~g(N lin+1) + [IOg2 mJ< (m-r+1) *log2(N Iii) 

If the inequality holds, go to Step 2. Otherwise, readjust 

ii=ii- (m-r+1)*C(Jm-r+l, 

n+l 
i n+l = i n+1 - C(Jm-r+l, N = L Ii 

j=l 

(i.e., use the frequencies from the previous step). 

Set T=m-r+2 and proceed to produce Huffman code 
using the resulting Table A. EnQode the file applying the 
repeat-flag format to ai clumps of size ~ T. 

The above algorithm could be modified so that clumps of 
other frequent characters could be evaluated. This will re-



quire a table (like Table B) for each of the characters under 
consideration and possibly a format: 

(flag) (count) (code of repeating character) 

Note that to obtain the expected gain in compression one 
could, at Step 6, compute the entropy of Table A and use 
that to compute the compression ratio. 

Another simple addition to Huffman coding is the un­
recognized character flag. Suppose a file is to be encoded byte 
by byte, as is natural with IBM implementations. In most 
files, many of the 256 possible patterns of 8 bits do not occur. 
If these patterns are included in the coding, even with a 
weight of zero, space needed to store the code table will 
increase. Thus, it is more efficient in terms of storage (and 
CPU time for code making) to code only those characters 
that actually appear in the file, along with a special flag to 
mark the presence of an unrecognized character. Then, if a 
character not in the code table becomes included in the file 
due to an update, it will be coded by the code for the un­
recognized-character-flag followed by the character itself 
written as 8 bits. 

Unfortunately, this technique is not suitable to Hu­
Tucker coding. Hu-Tucker coding is nearly as short as 
Huffman coding and it preserves alphabetical order. Thus, it 
would seem to be useful in a situation where alphabetical 
sorting of records or keys would be necessary. However, if 
the file is to be updated at all, th~ user is faced with two 
equally unpleasant alternatives. One is to code every possible 
character that could ever occur. Even if the absent characters 
were coded with frequency zero, this would greatly increase 
the expected code length. (Unlike in the Huffman code tree, 
the unused characters cannot be stuck off in one remote 
subtree, but must be interspersed with the other characters 
in natural alphabetical order, thus, increasing the code length 
for all.) The other alternative is to use an unrecognized 
character flag. But this technique destroys the alphabetic 
property which distinguishes Hu-Tucker. Thus, Hu-Tucker 
coding is of practical interest in files that are rarely, if ever, 
updated or whose character set is fixed. 

In conclusion, Huffman coding is the optimal prefix 
property bit string coding given a particular choice of al­
phabet. However, due to patterns and dependencies among 
the data, the choice of alphabet itself can make a difference 
in the efficiency of the coding. 

CONCLUSIONS 

A variety of compression techniques were applied to large 
insurance files some of which were already in compact form 
(that is, after a semantic analysis was used to eliminate 
"redundant" information like long strings of blanks, etc.). 
The programs were all written in PL/1 and executed on 
IBM 370/168 system. CPU measurements given below have 
only a relative meaning. For production purposes, assembler­
code routines should perform roughly 10 times faster. 

A Classification of Compression Methods 457 

Differencing 

Differencing techniques are limited to files of fixed for­
matted records. Differencing was the most economical 
method as far as CPU time. Encoding required about 5 
milliseconds (mls) per 1000 characters, and decoding about 
3 mls. Sequential differencing, where each record is used as a 
pattern for the record succeeding it, yielded good compression 
ratios varying between 28 and 44 percent. However, the dis­
advantages of this technique are apparent. Any update re­
quires a complete decoding of the entire file since the code 
for every record depends on all records preceding it. This also . 
implies that physical damage to a record will propagate and 
might hinder complete decoding of succeeding records. 
Trying to get around this by using a fixed pattern for the 
entire file (or fixed pattern for each block) alleviated the 
problem at the expense of yielding worse compression ratios 
that ranged around 45 percent. 

Differencing is also characterized by the fact that there is 
no need for a scanning pass of the data before actual encoding. 
This, however, implies that one cannot automatically predict 
the compression ratio without actually encoding the file. 

Huffman coding 

Huffman coding, unlike differencing, can be applied to 
variable length as well as fixed length records. Huffman 
coding achieved good compression ratios (between 35 and 
49 percent) and was surpassed only on one file by sequential 
differencing. The CPU time for scanning the file and obtain­
ing the frequency table was negligible. The production of the 
code table from the frequency table required less than 50 
mls. We have observed that it was enough to sample 
only 3-5 percent of a file in order to obtain frequency tables 
and produce a code table which was identical to the one ob­
tained by scanning the entire file. The cost in CPU time of 
encoding and decoding was at about 100 mls per 1000 char­
acters, or roughly 20 times more than differencing (in the 
case when differencing is applicable) . This fact is attributable 
to bit level versus byte level manipulation. 

Applying Huffman coding together with the repeat-flag 
schema improved the compression ratio to between 28 and 
43 percent without any detectable change in CPU cost for 
encoding or decoding. 

Huffman coding requires an initial statistical pass through 
the file or through part of it. The frequency table obtained 
from the initial pass gives an excellent indication of the 
compression ratio that could be achieved if the file is to be 
compressed using Huffman coding; i.e., the user could decide 
whether it is worthwhile compressing a file without the need 
for an actual compression run. 

The frequency table that is attached to the file can be up­
dated continuously with every deletion and insertion to the 
file (at negligible CPU cost) so that the actual compression 
ratio of the file and the maximum achievable compression 
are always available to the user or to an automatic monitor-



458 National Computer Conference, 1975 

ing routine for deciding whether a new code table should be 
produced. 

Hu-Tucker 

The Hu-Tucker code, as was mentioned in the previous 
section, is a statistical code which preserves alphabetic 
ordering. 

The CPU costs of using Hu-Tucker coding are the same as 
those for Huffman coding. The compression ratios achieved 
were only very slightly worse than Huffman. The decline in 

, compression (as compared to Huffman) never exceeded 
7 percent. 

Hu-Tucker coding is especially useful for directories and 
files where frequent sorting is necessary. The alphabetic 
property enables the user to sort a compressed file without 
the need to decompress it. 

In short, we found statistical compression methods to be 
more generally applicable than differencing to a variety of 
file structures, alas, at a cost of higher CPU time. 

REFERENCES 

1. Ling, H., and F. P. Palermo, A Block Oriented Information Compres­
sion, IBM San Jose Research Center, Report RJ 1172, No. 19024. 

2. Hardgrave,W. T., The Prospects for Large Capacity Set Support 
Systems Imbedded within Generalized Data Management Systems, 
International Computing Symposium, Davos, Switzerland, Sept. 
4-7, 1973. 

3. Huffman, D. A., "A Method for Construction of Minimal Redun­
dancy Codes," Proc., I.R.I.E., 51, pp. 1098-1101, Sept. 1952. 

4. Hu, T. C., and A. C. Tucker, "Optimal Computer Search Trees and 
Variable Length Alphabetical Codes," S.I.A.M. Journal of Applied 
Mathmetics, 21, 514 (1971). 

5. Kreutzer, P. J., Data Compression for Business Applications, Navy 
Fleet Material Support Office. 

6. Tunstall, Brian, "Synthesis of Digital Compression Codes," Hawaii 
International Conference on System Sciences, Jan. 1968, pp. 266-268. 

7. Tunstall, Brian, Synthesis of Noiseless Compression Codes, Research 
Report #67-7, Georgia Institute of Technology. 

8. DeMaine, P. A. D., Principles of the NAPAK Alphanumeric 
Compressor in the SOLID System, National Bureau of Standards, 
Tech. Note 413, August 15, 1967, Part III. 

9. Gilbert, E. N., and E. F. Moore, Variable Length Binary Encoding, 
The Bell System Technical Journal, July 1959. 

10. Ott, Eugene, "Compact Encoding of Stationary Markov Sources," 
I.E.E.E. Transactions on Information Theory, Vol. IT-I, No.1, 
Jan. 1967. 

11. Rottwitt, Theodore, Jr., and P. A. D. DeMaine, "Storage Optimiza­
tion of Tree Structured Files Representing Descriptor Sets. 

12. Rice, R. F., The Code Word Wiggle: TV Data Compression, Technical 
Memorandum 33-428, National Aeronautics and Space Administra­
tion Jet PropUlsion Lab., Cal. Tech., Pasadena, Calif., June 1969. 

13. Knuth, D. E., The Art of Computer Programming, Vol. 3, Addison­
Wesley. 



A simulation mo·del for data base system 
performance evaluation 

by FUMIO NAKAMURA, IKUZO YOSHIDA and HIDEFUMI KONDO 
Hitachi Limited 
Yokohama, Japan 

INTRODUCTION 

Performance evaluation represents one of the most critical 
and also most complex aspects of the design of a data base 
system for operation in an on-line environment. 

l\1ost techniques for computer system evaluation (such as 
software and hardware monitoring) presume that the system 
or at least a skeletal version of it is operational. Such tech­
niques are useful primarily for turning already developed 
systems. 

Simulation, on the other hand, although it is expensive, 
offers a way to evaluate a system with relative accuracy 
prior to its development. By varying design parameters, the 
system designer can hope to identify potential bottlenecks, 
avoid costly design mistakes, and eliminate some of the 
guess work of identifying the most suitable system solution. 

The subject of this paper is a large scale simulation model 
which was developed for data base system performance 
evaluation. The model, which is used for evaluation of 
design alternatives for application systems as well as system 
software (OS (Operating System) and DBMS (Data Base 
Management System)), employs event-driven simulation of 
the actual operations of hardware, host operating system, 
DBMS, and application programs. 

Great care was taken to model OS and DBMS functions, 
such as task scheduling, I/O interrupt processing, communi­
cation processing, message scheduling, data base access 
processing, buffer management, and disk space management 
independent of any application characteristics. 

In order to evaluate an application data base system, 
description of hardware configuration and data base charac­
teristics, as well as application program models, must be 
prepared. l\1odifications of the actual model are required only 
if alternative OS and/or DBMS architectures are being 
examined. 

Once the user has developed a model of his system, its 
behavior can be evaluated with relative ease, by simply 
modifying parameters such as message traffic, data base 
buffer set size, number of concurrent application program 
tasks, data base organization, and disk storage allocation. 

The remainder of this paper gives a presentation of the 
model, discusses some simulation results, and outlines 
approaches for further development. 

459 

SIMULATION MODEL 

The simulation model written by using a computer system 
simulation package has two major portions, definition part 
and procedure part. The definition part describes the system 
environment being simulated, while the procedure part 
represents the software system using an instruction set 
prepared by the simulator. The simulator executes instruc­
tions in the procedure part interpretively referencing infor­
mation in the definition part. 

Our model consists of the following components. 

Definition Part 
(1) Hardware description 
(2) Application description 

Procedure Part 
(3) Operating system model 
(4) Data base management system (DBMS) model 
(5) Application program models 

For an application system, (1), (2) and (5) must be 
prepared to be input into the simulator. Figure 1 shows an 
overall view of the model. 

The following is obtained through simulator runs. 

• Resource utilization (CPU, channels, disks, magnetic 
tapes, lines, etc.) 

• Frequency of each software module usage 
• Response time and throughput 
• Number of data base l/Os 
• Queue statistics 

From the above information, the designer can estimate the 
capacity of his system, identify bottlenecks and critical 
factors, which enable him to decide improvement steps, and 
consider the trade-offs. 

Hardware description 

It includes configuration description and definition of the 
following hardware characteristics. 

• CPU-instruction mix (CPU speed) 
• Lines-transmission rate and delay 



460 National Computer Conference, 1975 

Terminal 
Queues 

~----------------------l 

I I 
t---+--I Communica­
f------t"-... tion Support 

I 
I 
I Task 

Schedule 

Ready 
Queue 

Wait 
I 
I 
I 

Input 
Message 
Queue 

Output I Queue 
Message I 

Queue : I 
, ________ J 

Message 
Scheduler 

Scheduling 
Queue 

Communication 
Processor 

Message 
Buffers 

L _____________ , 

Buffer 
Manager 

I/O 

I/O Inter­
rupt 
Routines 

~ 
~ 

Data Access t-----~ 
Service 

Access 

Methods 

Application 
Programs 

Disk Space 
Manager 

(~s?) 
I 

L ______________________________________________ J. 

~ 
Figure I-Overall view of simulation model 

• Terminals-message generation rate and distribution 
• Channels-data transfer rate and channel interference 

rate 
• Disks-data transfer rate, cycle time, seek time 

characteristics and RPS (Rotational Position 
Sensing) lead and hold time 

• Magnetic tapes-data transfer rate and start time 

A pplication description 

The most important information here is the data base 
definition characterized by data structures, storage structures 
and access methods. Figure 2, Table I and Table II show how 
we are dealing with data base definition in the model. 

(1) Data structures-The DBMS supports hierarchical 
data structures, composed of an aggregate of elements 

Data Base 

Definition Tables 

File Definition 

Tables 

Figure 2-Table relationships in data base definition 

called segments. Each segment has one parent segment 
except a root segment and any number of child seg­
ments. Item 6 to the last in Table I describe a data 
structure. 

(2) Storage structures-Item 2 and 5 in Table I and item 
2 to 7 in Table II are concerned with a storage 
structure which, due to its nature, cannot be easily 
represented in a model; that is, there may be tens of 
thousands of records or millions of records and a 
model can never keep the exact position of each 
record except environmental information such as disk 
type, block length, and file allocation on secondary 
storage. The only information related to the above 
problem is the segment overflow ratio in Table I and 
this information and some additional data base access 
calls will make up for the problem. (See DBMS model) 

(3) Access methods-The DB]\tIS supports, as basic access 
methods, Sequential Access Method (SAM), Indexed 
Sequential Access Method (ISAM) and Direct Access 
Method (DAM). 

Operating system model 

Excluding comments, 400 simulator instructions were 
required to model the following operating system functions. 

(1) Task scheduler-A data base system in an on-line 
environment is executed in multi-programming and/or 



A Simulation Model for Data Base System Performance Evaluation 461 

(2) 

(3) 

TABLE I-Data Base Definition Table 

No. CONTENTS 

Data Base Name 

2 Disk Type to Store Data Base 

3 Pointer for FDT 1 

4 Pointer for FDT 2 

5 Segment Overflow Ratio 

6 Number of Segments in Data Base 

7 Segment Name 

8 Segment Length 

9 Segment Level in Hierarchy 

10 Parent Segment Name 

11 Occurrence under Parent Segment 

Repeat 7 '" 11 until Last Segment 

multi-tasking modes, which requires a module for task 
management. This module attaches and detaches 
tasks to the DBMS and application programs, 
maintains ready and wait queues, and activates and 
inactivates tasks according to their priorities. 
Communication support-This component manages 
communication lines and terminals, controls polling, 
sends and receives messages and services message I/O 
completion interrupts. A productive poll which 
follows message transmission occurs when a terminal 
generates a message. After message transmission has 
completed, the message is put into the input message 
queue. An output message in the output message 
queue, on the other hand, is sent to a terminal, which 
causes an output transmission completion interrupt 
that restarts polling. 
I/O interrupt service routines-The model has I/O 
interrupt routines according to I/O device types which 
involve magnetic tapes (for log data), HITAC 
8578 Disk Storage (cycle time 25 ms, average seek 
time 60 ms, capacity 29 MB) and HITAC 8589 
Disk Storage (cycle time 16.7 ms, average seek time 
30 ms, capacity 100 MB). Completion of read, write 
and seek gives control to these routines. 

DBMS model 

Two thousand three hundred statements are used to model 
this part which, consisting of the main controller, the com-

munication processor and the data access processor, is the 
most important part in the model. 

(1) 

(2) 

(3) 

Main controller-This component manages the whole 
DBMS, which means that it gathers log information, 
controls the status of the data base system, schedules 
messages and communicates with and controls mes­
sages. It gives control to the communication processor 
when an input message arrives. After communication 
processor's service, it schedules the message according 
to the priority and activates an application program. 
A data access call from an application program makes 
it give control to the data access. 
Communication processor-It services input and 
output messages under communication support in the 
operating system and gets control when, (a) com­
munication support completes message input and 
output, and (b) a message to send exists. It moves an 
input message from the input message queue to the 
scheduling queue and makes a copy on a disk at the 
same time. Transmission completion service of an 
output message causes it to issue a request to restart 
polling to communication support. When a message 
is in the output message queue, it issues a command 
to send out the message to communication support. 
Data access-It is activated by a data access call from 
an application program. Its major modules are service 
routines for data access calls, i.e., retrieve, insert, 
replace and delete, buffer and disk space management 
modules, and modules to support access methods 
(SAM, ISAM, DAM). The model supports a set of 
primitive data access call functions including Get 
Random, Get Random Next, Get Immediate Next, 
Get Link, Insert Random, Insert Immediate Next, 
Replace and Delete. For example, Get Random 
selects a record randomly among all data base records 
given by data base definition, determines the physical 
address, and accesses it; Get Random Next calculates 
the distance, within a record, between the segment 

TABLE II--,-File Definition Table 

No. CONTENTS 

Access Method 

2 Start Address in Disk Number 

3 Start Address in Cylinder Number 

4 N umber of Blocks Allocated 

5 Block Length 

6 N umber of Blocks per Track 

7 Logical Record Length 



462 National Computer Conference, 1975 

Data Base 
I/O Requests 

Buffer Management 
Module 

Access 
Methods 

L/ 

Buffer Set 

, 
\ 

\ , , 
Buffer Address in Buffer Set 

Buffer Size 

Data Base Name 

b~r:~~:ddress in 

Buffer Empty Flag 

Buffer Busy Flag 

Write Identifier 

Reference Chain 

Reference 
chain 

Information 
attached to 
buffer 

Figure 3-Buffer management position and buffer information 

to be obtained and the one accessed before based on 
the hierarchical structure of the data base and each 
segment's occurrence and gets it; Get Immediate Next 
brings the next segment immediately after the current 
segment; Get Link issues one random physical read 
to the specified data base. 

The LRU (Least Recently Used) method is used in 
the buffer management module which is one of the 
most important modules in the DBMS model. All 
data base I/O requests are processed through this 

. module. Figure 3 illustrates the position of buffer 
management and information attached to each buffer 
for its manipulation of the buffer set. Buffers in the 
buffer set are chained by reference chain. At the time 
of data base access the buffer management module 
searches the buffer set at first by tracing this chain, and 
if the required data don't exist in the buffer set it 
tries to get buffer space to read the data from disk 
storage by tracing the chain backwards. The module 
also .controls concurrent data base access. 

A pplication program model 

User application programs are modeled in this part. The 
model mainly involves CPU steps spent in application pro­
grams, control of the process and data access calls with the 
following format: 

DA call function, data base name, segment name 

Example: 
Process 
DA 
CTR=5 

A Process 
DA 

CTR=CTR-l 

200 (instruction steps) 
GR, DBI, SG1 (GR: Get Random) 

100 
GRN, DB1, SG2 (GIN: Get 
Immediate Next) 

If CTR~O Go To A 

EXAMPLES OF SIMULATION 

H ardware configuration-Insurance company 

Figure 4 shows all equipment components, some of which 
(the console typewriter, card readers, line printers and most 
magnetic tapes) are not necessary for simulation. 

The central processing unit (CPU) has a 0.1J,L second 
machine cycle time, a 0.9J,L second memory cycle time and 
16K byte high speed buffer memory and supports four-way 
interleave. 

We decided on a CPU speed of 1.6J,L seconds per instruction 
which was gotten by the other project. 

There exists no channel interference as the I/O processor 
processes all data I/Os. 

• Forty (40) disk storage devices are connected with 6 
control units and 2 block multiplexor channels and have 
30 millisecond average seek time, 16.7 millisecond cycle 
time, a data transfer rate of 800K bytes per second, and 
a 100 million byte capacity per spindle. The model also 
simulates RPS (Rotational Position Sensing) action. 

• Only one or two magnetic tapes for logging are necessary 
to simulate the system because simultaneous background 
jobs are left out of consideration. The tapes have a data 
transfer rate of 240K bytes per second and 3 millisecond 
start time. 

• There are 250 terminals connected with 30 lines with a 
speed of 1200 bits per second. Message length is within 
a range of 30 to 800 bytes. Poisson arrival of messages is 
assumed. 

Data bases-Insurance company 

Eleven data bases, most of them constructed by ISAM 
and DAM combinations, are contained in the system and 
have totally about 6 million records which occupy 32 disk 
packs. The data structures are not so complex, however, as 
their hierarchical levels are two or three. The largest data 
base is the car insurance data base which has 1.3 million 
records and requires 9 disk packs. ISAM files have four kinds 
of indexes, super index, master index, cylinder index and 
block index, where super and master indexes are always in 
core and also cylinder indexes in some cases. All data bases 
have the same block size of 2400 bytes which allows for five 
blocks per track. 



A Simulation Model for Data Base System Performance Evaluation 463 

* It includes 20 percent 
not in buffer ratio H8700 CPU 

1.6* Jls/inst. (MM 1.5 MB) H8589 Disk Storage 

Traffic: 10000 Msg/hr 

250 Terminals 

30 Lines 

1200 bps 

MPX 

Console 

lOP 

I I 

:: 14 decks 

6 
H8455 Magnetic 

(

AV. Seek Time: 30 ms ) 
Cycle Time : 16.7 ms 
Data Transfer: 800 KB/sec. 

----{j 8 Spindles 

---{j 8 Spindles 

---{j 4 Spindles 

---{j 8 Spindles 

--{j 8 Spindles 

---{j 4 Spindles 

Tape System (240 KB/ sec) 

Figure 4-Hardware configuration 

Application programs-Insurance company 

The system employs 60 different application programs 
which can be classified into four categories. The first covers 
inquiry services, the second is registration of a new contract 
and its document issue, the third is continuance of a contract, 
and the last is the update of a contract. All categories but 
the first one require data base updates. New contract pro­
cessing takes a particularly long time on account of many 
data base access calls (more than ten get, insert and replace 
calls) to four or five data bases. Five partitions where appli­
cation programs run are reserved in the model, which means 
that a maximum of five application programs are simultane­
ously executed. 

Results-Insurance company 

We simulated 15 production runs with different message 
traffic, message scheduling strategies (concurrent DB access 
checks), application programs and number of partitions for 
application programs. Three results selected among those 
provided by these runs are shown in Table III. Result 1 
based on the system environment explained above tells that 
the system failed to process the traffic of 10000 messages per 
hour (response time, its standard distribution and current 
contents of scheduling queue). The causes are neither hard­
ware equipment bottlenecks (CPU, channel and disk 
utilizations) nor a task bottleneck (number of concurrent 

TABLE III-Simulation Results 

2 

Message Traffic (Msg./hr.) 9500 9600 

Average Response Time (sec.) 7.8 1.0 

Standard Deviation of Response Time 
(sec.) 19.9 0.84 

CPU Utilization (%) 31.0 26.0 

Max. Channel Utilization (%) 5.6 5.1 

Max. Disk Utilization (%) 28.5 26.4 

Average Number of DB l/Os (jTrans.) 10.5 6.2 

Current Contents of Scheduling Queue 
(Trans.) 131 

Average Number of Concurrent AP 
Tasks 2.2 1.8 

Clock Value in the Model (sec.) 438 573 

Simulation Time (min.) 220 220 

3 

15200 

1.6 

2.1 

38.6 

7.5 

40.0 

5.2 

o 

2.5 

393 

220 



464 National Computer Conference, 1975 

AP tasks) because there can exist five application program 
tasks at a time. The real bottlenGck lay in the area of con­
current data base updates. All application programs except 
inquiry services issue data base update calls and if they are 
going to update the same data bases, only the message which 
has the highest priority is scheduled, while other messages 
remain in the scheduling queue· even if all other partitions 
are empty. In this case, application programs of three cate­
gories update the same data bases, and the new contract 
processing has the highest priority and the heaviest load of 
all as mentioned before and accounts for a quarter of the 
message traffic, Which means that messages belonging to the 
other two categories can hardly be scheduled. Actually we 
found, by checking the scheduling queue, that these messages 
had waited over 70 seconds there when the simulation stopped. 
We suggested to the system designers to eliminate on-line 
updates in the new contract processing and to maintain data 
bases in batch mode or batch message processing mode. 
Result 2 shows how the new contract processing without data 
base updates improved the response time. There is no per­
formance problem at all in Result 2. Result 3 tells that the 
modified system can easily bear the traffic of 15000 messages 
per hour. 

Other results 

The following simulation results were obtained in a differ­
ent system environment, which will not be explained in detail 
here. 

Figure 5 shows the relationship between data base buffer 
set sizes and the response time with message traffic as a 
parameter. The number of concurrent application program 
tasks is five, the block size of data bases is 3500 bytes, and 
application programs retrieve a record randomly among all 

20 

15 

0 
Ql 
rn 

. ~ 10 

~ 
" 0 

~ 
Ql 
~ 

Ql 
QJ) 
oj 
~ 
Ql 
> ...: 

0 
0 

Type of APs : Inquiry 
Number of concurrent AP tasks: 5 
Data base block size: 3500 bytes 

Traffic 

17200 Msg./hr. 

14000 Msg./hr. 

~g88 ~~~Jg~: 

14 21 

data base buffer set size (K bytes) 

Figure 5-DB buffer set size vs. response time 

] 
.B 
.... 
0 

i:i 
Ql 
0 
~ 
<l> 

Il. 

30 

20 

10 

Number of physical 
data base l/Os 

21/0 s 

41/0s 

Type of APs : Inquiry 

Number of concurrent AP tasks : 5 
Traffic : 5000 messages/hr. 

0+-~~--~~--~~------4-------4------

o 4 

Response time (sec.) 

Figure 6-Response time distribution (1) 

data base records. Figure 5 tells that 

• buffer set size hardly affects the response time with low 
message traffic, 

• more buffers are required as message traffic goes up, 
buffer requirement becomes saturated, however, and 
further buffers don't shorten the response time. 

The dotted line in the figure shows the minimum buffer set 
size required at each value of message traffic and we can see 
the necessary and sufficient buffer set size to contribute to the 
system throughput is 17500 bytes which can contain five 
data base blocks, the same number as concurrent application 
program tasks. 

This is caused by the facts that a required record seldom 
exists in the buffer set because of random retrieval and the 
retrieval process needs one buffer at a time. 

Response time distribution with the number of data base 
l/Os as a parameter is plotted in Figure 6. The effect of the 
number of data base l/Os on response time distribution is 
dramatic. Figure 7 shows the response time distribution with 
physical block lengths of data bases, as a parameter, compar­
ing the same block length with two kinds of block lengths in 

10 

3 
.8 
.... 
0 ..., 
= Q) 
(J 
!-t 
Q) 

Il. 

0 
0 

Traffic: 14000 messages/hr. 
Number of concurrent AP tasks : 

DB block size: 3500 byte's 
/ Average response time: 2.45 sec . 

2 

DB block sizes: 3500 and 2000 bytes 
Average response time: 4.82 sec. 

/ 

4 6 7 8 

Response time (sec.) 

Figure 7-Response time distribution (2) 



A Simulation Model for Data Base System Performance Evaluation 465 

3 
.8 
'0 
0: 
Q) 
() 
1-< 
Q) 

p., 

15 

10 

DB block size: 3500 bytes 
/ Average response time: 1.49 sec. 

DB block sizes: 3500 and 2000 bytes 
Average response time: 1.64 sec . 

Traffic: 9200 messages/hr. 
Number of concurrent AP tasks: 5 

o+------L~-----+------~---­
o 

Response time (sec.) 

Figure 8-Response time distribution (3) 

the same system environment. Avera; ; response time in the 
case of two kinds of block sizes becL1ffies twice the one in 
case of the same block size, and the same trend exists for the 
deviation. The reason is that the buffer management module 
has the common buffer set for all data bases and manages it 
dynamically. More than one block size causes core frag~en­
tation and frequent requirements for garbage collectlOn, 
which in turn increases the internal task wait time in the 
buffer management module. 

The effect becomes remarkable as the number of requests 
for buffer management increases with· higher message traffic 
and/or frequency of data base I/O requests per meassage. 
Figure 8 which curves were obtained under the same environ­
ment as Figure 7 except message traffic demonstrates this. 
We can see from the figure that there is no big difference 
between the two results when the message traffic is 9200 
messages per hour. 

CONCLUSION 

A simulation model which uses an event-driven type simu­
lator was developed for the purpose of performance prediction 
of data base systems and research in the field of data base 
management system architecture. Several areas in which the 
model has been and is currently being used are as follows. 

• Performance evaluation of an on-line design information 
system of a manufacturing company 

• Evaluation of design alternatives of an on-line data 
base system in an insurance company 

• Simulation of buffer management characteristics 

• Simulation of concurrent processing 

• Memory hierarchy of data bases (main memory-drum 

or fixed head disks-movable head disks) vs. system 
throughput 

We have collected and will collect the following data for 
tuning of the model. 

(a) Measurement of CPU dynamic steps and module 
activity by an instruction tracer. 

(b) Measurement of CPU, channels and disk storage 
devices activities by a hardware monitor. It includes 
data as described below in batch and on-line en­
vironment. 

• CPU active time, CPU active and supervisor state time 

• Process steps, process steps in supervisor state 

• Number of supervisor calls issued 

• Channel busy time 

• Disk seek time and count, search/read time and count, 
write time and count, RPS time and count. 

We finished measuring them, finished analyzing the results 
in batch environment and are currently analyzing the results 
in on-line environment. The model is reasonably accurate in 
batch environment. 

As this model uses an event-driven type simulator, real 
time/simulated time ratio is generally high (i.e., simulation 
cost is high). The value of that ratio depends upon the 
density of events (message traffic, number of data base ac­
cess calls, etc.). From our experiment, the value is between 
20 and 100. 

ACKNOWLEDGMENTS 

The authors wish to express their grateful thanks to Mr. S. 
Mimura and Mr. H. Sakai of the Software Works for provid­
ing us the opportunity of this research. We 91so would like 
to thank Mr. K. Arai and Mr. Y. Kasai for their suggestion 
and support concerning the simulation package. 

REFERENCES 

1. Senko, M. E., E. B. Altman, M. M. Astrahan, and P. L. Fehder, 
"Data Structures and Accessing in Data-Base Systems," IBM 
Systems Journal, No.1, 1973. 

2. Collmeyer, A. J. and J. E. Shemer, "Analysis of Retrieval Perform­
ance for Selected File Organization Techniques," Proceedings of the 
Fall Joint Computer Conference, 1970. 

3. Stimler, S. and K. A. Brons, "A Methodology for Calculating and 
Optimizing Real-Time System Performance," Comm. of the ACM, 
Vol. 11, No.7, 1968. 

4. Lum, V. Y., H. Ling, and M. E. Senko, "Analysis of a Complex 
Data Management Access Method by Simulation Modeling," 
Proceedings of the Fall Joint Computer Conference, 1970. 





W eight-balanced trees * 
by J. L. BAER 
University of Washington 
Seattle, Washington 

INTRODUCTION 

It is now recognized that binary search trees are structures 
which can be used efficiently for the organization of files and 
directories. The ease of insertion and deletion of nodes makes 
trees very appealing for dij:ectories which are often modified. 
By comparison with a sequential table organization, some 
additional memory is required for the links between nodes. 
From a cost-effective viewpoint, this is generally more than 
compensated for by the savings in searching (for a linear 
table) and inserting (for an ordered table). 

A number of studies have been conducted in order to 
build trees with as small an average searching time as pos­
sible while keeping to a reasonable degree the amount of 
computation and of extra memory needed for the insertion 
algorithms. Depending on the type of application, these 
studies have fallen into two categories: those concerned with 
trees where the nodes have a uniform weight as exemplified 
by A VL trees,3.4 binary B-trees,9 and BB or bounded bal­
anced trees;6 and those which consider weighted trees, the 
weight being for example a frequency of query.2,4,5,8 

Our primary intention was to concentrate exclusively on 
weighted trees for the following reasons. First, they are more 
representative of common directories; second, dynamic self­
optimization of weighted trees has not been considered yet; 
and finally, it was felt that the techniques used in non­
weighted trees could be easily modified to be applied effi­
ciently to weighted trees. Hence, we present two closely 
related algorithms, called weight-balanced (WB), for con­
structing dynamically self-optimizing binary search trees. 
Results of simulation experiments show that near-optimal 
trees are obtained. 

But, if the algorithms are applied to non-weighted trees, 
we obtain results in the same range as those yielded by A VL 
and BB algorithms. This is not surprising since WB algo­
rithms produce BB (1/4) trees in the worst case. A discussion 
of the relative advantages and disadvantages of the various 
methods is then in order. It will show the flexibility of the 
WB approach. 

DEFINITIONS AND RELATED WORK 

A binary tree is either the empty tree To, or the triple 
(T L, r, T R) where T Land TR are the left and right binary 

* This work was supported by NSF Grant GJ-41164. 

467 

subtrees and r is a special node called the root. Given a node 
P in the tree and the subtree (TLP, P, TRP), its left son is the 
root of TLP and its right son the root of TRP. Conversely, 
each node (but the root) has a father for which it is a son. A 
node without a son is a leaf. Each node in the tree contains a 
key. A binary tree is a binary search tree (abbreviated b.s.t.) 
if for all nodes P, the keys of the left (right) subtree are less 
(greater) than the key of P. In a weighted binary search tree 
(w.b.s.t.) each node has a weight associated with it. The 
level of a node P in a tree is one if P is the root, or else the 
level of its father plus one. The he'ight of a node is one if it is 
a leaf, or else the maximum height of its sons plus one. 

]n addition, we define the total of a node as its weight if it 
is a leaf, or otherwise as the sum of the total(s) of its son(s) 
and its own weight. 

The weighted path length of a w.b.s.t. T of n nodes is 

n 

Path(T) = L: level (i) -weight (i) 
i=l 

In terms of computer representation, each node P will 
contain four fields; namely LLINK(P), INFO(P), TOTAL 
(P), and RLINK(P). LLINK(P) points to the left son 
of P or equals A if there is no left son and likewise 
for RLINK(P); INFO(P) is the key, and TOTAL(P) is 
as defined previously. 

Given a set of n keys and associated weights, there exists 
an algorithm4 which produces the optimal w.b.s.t. that is the 
tree with minimal path length. However, this algorithm pre­
sents two disadvantages: 

(1) It requires a processing time of the order 0 (n2) and, 
most importantly, additional memory requirements of 
O(n2) units. Thus it becomes rapidly impractical 
when the number of nodes increases. 

(2) The weights of all nodes must be known in advance. 

Circumventing these difficulties is possible if one is ready 
to settle for near-optimal trees instead of complete optimality. 
Heuristic methods, approaching the optimal solution within 
2 or 3 percent, have been devised.2.5.8 The algorithms run in 
time between O(n log n) and O(n2) depending on the weight 
distribution and require only 0 (n) memory units. Yet, the 
second assumption above is still enforced. 

We introduce next new algorithms which will yield also 
near-optimal trees with a similar requirement of 0 (n) mem-



468 National Computer Conference, 1975 

/:' 
p q 

> 
Balancing criterion 

true 

INFO(A) < INFO(B) 

(a) Single rotation. 

> 
Balancing criterion 

true 

INFO (A) < INFO(B) < INFO(C) 

(b) Double rotation. 

Figure 1 

ory units. The main advantage of our scheme is that assump­
tion (2) above is no longer necessary. That is, the algorithms 
work on evolving structures corresponding to dynamic 
queries in a directory and "balance" the tree accordingly. In 
the case where all weights are known in advance, its running 
time is of the same order as those of the already mentioned 
algorithms for comparable results. This is not surprising since 
many heuristics lead to near-optimal trees. 5 

The weight-balanced algorithms that we introduce are 
adaptations of techniques used in the A VL and BB trees to 
the case of w.b.s.t.'s. Recall that an AVL tree is a (non­
weighted) tree such that the height of the left son of any 
node never differs by more than one from the height of the 
right son. The algorithm to build an AVL tree consists of a 
top-down search to find the place of insertion followed by a 
bottom-up traversal of the search path with appropriate 
"balancing" of the tree. The data structure used is similar to 
the one described above with the only difference being that 
the TOTAL field is replaced by a smaller (2 bits only) 
BALANCE indicator. 

BB trees of balance a, are such that at every node P: 

< TOTAL(LLINK(P))+1 < _ <lL 
a_ TOTAL(P)+1 _1 a, O<a_72 

A pure top-down algorithm to insert an item in a BB (a) 
tree for any a in the range 0::::; ex::::; I-v'2/2 is known.6 As in 
the A VL trees, the balancings are of the two types shown in 
Figure 1. The data structure is the same as the one already 
presented. 

SELF-OPTIMIZING WEIGHTED BINARY 
SEARCH TREES 

Self-optimizing weighted structures have been investigated 
only in the case of linear lists without frequency counters 
under the assumption that the extra cost incurred by the 

space reserved for the counters is not effective. Two heuristics 
have been tested with success: "move up front", which 
moves the queried entry at the head of the list, and "trans­
position", which moves it up one notch unconditionally. The 
latter performs always as well as the former,7 and in addition, 
can also be easily implemented with a sequential allocation 
technique. 

In the case of b.s.t.'s, dynamic optimality is impractical 
for the reasons mentioned previously. Direct extensions of 
the above heuristics imply restructuring of the tree at every 
insertion with no assurance of good results. In fact, one can 
construct realistic cases giving a worst case behavior. There­
fore we need a more selective criterion for balancing. 

The heuristic that we propose has for its goal to minimize 
locally the weighted path length on the path of insertion. 
More specifically, turning our attention to Figure 1, with 
p, q, rand 8 being the TOTAL's of the respective sons of 
A, Band C: 

A single rotation will be performed if (Figure la) : 

weight(A)+p>weight(B) +r 
(or TOTAL (A) - q > TOTAL (B ) - TOTAL (A) ), 

thus minimizing locally the path length of the subtree of new 
root A. 

A double rotation will be performed, after checking that a 
single rotation did not apply, if (Figure 1b): 

2 weight(B)+p+q>weight(C) + 8 

(or 2.TOTAL(B)-p-q>TOTAL(C)-TOTAL(A)) 

(a) 

original tree 

B/l 

(c) 

Bottom-up alr;orithm 
imposes a single rotation AB 

Figure 2 

D/l 

(b) 

Tree without rebalancing 
after insertion of A/3 

(d) 

Top-down algorithm imposes 
a single rotation BC 



thus minimizing again locally the path length of the subtree 
of new root B. Hence we define as weight-balanced trees (WB 
trees) those trees obtained dynamically by the application 
of the above balancing criterion. 

The algorithms that we introduce are modelled after the 
bottom-up A VL construction on one hand and after the top­
down BB algorithm on the other hand. (Computer programs 
can be obtained from the author.) Both can be used with 
incremental weights corresponding to individual queries or 
with total weights (or fractions of them) for the periodic 
rebalancing of directories. 

Intuitively it appears that the bottom-up algorithm hav­
ing more information about weights on the insertion path 
should perform slightly better. For example, if the node A of 
weight 3 were introduced at the lef.t of B in the tree of Figure 
2a, then the bottom-up algorithm would yield the tree of 
Figure 2c, and the top-down algorithm the tree of Figure 2d 
resulting in an advantage of one unit for the former. How­
ever, as seen later, the performance of the bottom-up algo­
rithm is only marginally better. Yet, it should not be dis­
carded despite its extra space or pointer manipulation 
requirement since it can sometimes be used more conveniently 
as seen in the next section. 

Analytical results on w.b.s.t.'s are scarce. 5 ,lO While using 
heuristics care must be taken in their development since 
some will tend asymptotically to construct random trees 
( e.g., insert in order of decreasing weights). The difference 
between random trees and optimal trees being on the order of 
40 percent on the average, one can understand why a cate­
gory of heuristics yielding "balanced" trees is needed. By 
examining the results of some simulation experiments, we 
can safely assume that the one we propose falls into that 
latter class. 

TABLE I-Bottom-up Algorithm on Weighted Trees. 

Tree 1 Tree 2 Tree 3 

1. Optimal 3.437 2.992 5.200 

2. Random 4.804 (43%) 3.820 (28%) 6.074 (17%) 

3. Decreasing weights 4.042 (18%) 3.142 (8%) 5.726 (10%) 

4. Decreasing weights 3.437 (-) 2.992 (-) 5.212 (.2%) 
and rebalancing 

5. Self-optimizing 3.523 (2.2%) 3.007 (.5%) 5.241 (.8%) 
100% 88 rotations 48 rotations 31 rotations 

6, Self-optimizing 3.526 (2.4%) 3.059 (2.2%) 5.314 (2.2%) 
10% 61 rotations 21 rotations 20 rotations 

7. Self-optimizing 3.550 (3.3%) 
1% 35 rotations 

W eight-balanced Trees 469 

TABLE II-Top-down Algorithm on Weighted Trees. 

Tree 1 Tree 2 Tree 3 

1. Optimal 3.437 2.992 5.200 

2. Random 4.804 (43%) 3.820 (28%) 6.074 (17%) 

3. Decreasing weights 4.042 (18%) 3.142 (8%) 5.726 (10%) 

4. Decreasing weights 3.502(2%) 2.992 (-) 5.238 (.7%) 
and rebalanCing 

5. Self-optimizing 3.563 (3.6%) 3.060 (2%) 5.265 (1.2%) 
100% 35 rotations 27 rotations 26 rotations 

6. Self-optimizing 3.569 (3.8%) 3.110 (4%) 5.337 (2.6%) 
10% 29 rotations 17 rotations 19 rotations 

7. Self-optimizing 3.575 (4%) 
1% 23 rotations 

Simulation results 

In order to test our hypothesis we performed a series of 
experiments on the following three trees: 

Tree 1: 31 nodes; total queries~85000. 
Tree 2: 35 nodes; total queries~1300. 
Tree 3: 27 leaves carried the information (i.e., a tree of 

53 nodes) ; total queries = 1000. 

The results of the simulation are shown in Table I for the 
bottom-up algorithm and Table II for the top-down. Ten 
sample runs were used for lines 2, 5, 6 and 7. Lines 1 through 
4 show the average search times in the optimal (1) and 
random (2) cases, with insertion of keys (total weight at 
once) in decreasing weight order without balancing (3), and 
with balancing (4). In lines 5 to 7 each query is treated in­
dividually and is selected randomly assuming a uniform 
distribution on the remaining queries. Balancing is performed 
on either all queries (5), the first 10 percent (6) or the first 
1 percent (7). 

From this series of experiments we observe that: 

(1) The bottom-up algorithm performs slightly better 
than the top-down. 

(2) The random trees are (on the average) between 17 
and 43 percent worse than the optimal, and the 
"decreasing weight" heuristic is not good, thus con­
firming the theoretical analysis. 5 

(3) The "decreasing weight with balancing" performs ex­
tremely well (within 2 percent of optimality). 

(4) The self-optimizing feature is very efficient. Near­
optimal trees are obtained with a small number of 
rebalancings. Under our assumption of uniform dis­
tribution of queries, this is quite encouraging, since it 



470 National Computer Conference, 1975 

implies that balancing could be performed only at the 
creation of the directory on each individual query and 
then periodically later 'On. 

. These simulation results show that WJ3 trees lead to effi­
cient heuristics, yielding near optimal trees. The amount of 
space needed is minimal and the extra computation time not 
significant if one limits the restructuring to the initial creation 
time of the directory. 

BALANCING NON-WEIGHTED TREES· 

The algorithms presented in the previous section were not 
intended to be used for non-weighted trees. Yet, when applied 
to those structures they yield results quite comparable in 
efficiency andfiexibility with those obtained through the 
AVL and BB techniques. 

Worst case behavior 

I t is known that Fibonacci trees are the worst case of 
AVL trees, i.e., the highest level is bounded by 1. 4410g2 
(n+ 1) for a tree of n nodes. In the case of BB (a) trees, it 
has been sho·wn 6 that the worst case is (lOg2 (n+ 1 ) -1 ) / 
10g2(1/ (I-a». 

In order to obtain a bound on the worst case for WB trees, 
we show that they a:re BB(I/4). The following lemma is 
true for WB trees constructed either by the top-down or 
bottom-up algorithms. The proofs assume a bottom-up al­
gorithm. The method is to show that some trees cannot arise 
when the WB algorithms are executed. Because of space 
limitations we show only part of the proof in detail. 

Lemma: In a WB tree each node P is such that 1 TLP I ~ 

3 I T R P I + 1, and I T R
P I ~ 3 I T L P I + 1. 

Proof: (By induction on the number of nodes n in the tree. ) 

The lemma is true for n= 1, 2, 3 as can be easily seen by 
construction. Assume it is true for n (hypothesis HI). Let us 
insert a node in the tree and show that the WB algorithm 
results in a tree with HI verified for n+ 1. We only have to 
check on the path of insertion that the lemma's property is 
conserved. Let k' be the height of the node C on the path of 
insertion. The lemma's property is still true for k' = 1, 2 as 
can be shown directly by construction. Assume that it is true 
for k' =k-l (H2). We show that it is still true for k' =k. 
We distinguish 3 cases: 

A. No rotation 

Before insertion we had A and we have now A 

p+q/'< ;("r 
p q 

The only difficulty is in showing that p+q+l~3r+l, or 

q~3r-p when p<q. Assume p=r-x and let us show that 
q=2r+x+l is impossible (q>2r+x+l contradicts HI). 

Thus we have to show that a subtree such ~ r 

. B 
r-x 2r+x+l 

cannot result when a key has been inserted at the left of A. 
Such a tree camiot be constructed directly since at most 
2r+ 1 keys can be inserted at the left of A without implying 
a rotation on A. The latest rotation on A could not have been 
a single rotation AC since it would have implied a subtree 
such as C 

r-x~ r-x-£ and insert 
2r+X+l-y . 

which implies 2E+3x+l~y, i.e., at least l~y, beca.useof the 
induction HI. But then the first insertion of the y remaining 
keys greater than INFO(C) and less than INFO(A) would 
rotate again A and C. Finally, a double rotation such as _. &:A r-z 

r-x~£ .. B 
Z-E' 2r+x+l-y 

would fail for the same reasons. 

B. Single rotation 

Before insertion we had ~ and we have n0;z. A 

p+q rA 
q r 

The (easy) proof stems from HI and a possible contradiction 
onH2. 

C. Double rotation 

Before insertion we :~ e and now I'x 
p+q r S P q r 

The difficult part of the proof is to show that s~3p+l (or 
r ~ 3q+ 1 ). We use the same contradictory approach in as­
suming s=3p+2. Then before the rotation we had: 
either A or A 

3P+~~ 3P+2~. C 1 r 

p~1)p+2 p ~ 
p+l p-l 

(next insertion on left. of Bl) (next insertion on right of B2) 



Weight-balanced Trees 471 

TABLE III-AVL, BB and WB Algorithms 

# of nodes Average searching time 

opt AVL BB [1 - 0/2] WB (top down) WB (bottom up) Random 

1000 8.98 9.207 (.46) 9.267 ( .40) 

750 8.66 8.790 (.47) 8.816 ( .40) 

500 7.99 8.193 (.47) 8.216 (.40) 

We show that obtention of the subtrees of root Bl is not 
possible. Evidently this is true for p = 1. Assume it is not 
possible for p-l (hypothesis H3). We prove then that it is 
not possible for p. We detail the proof only for the first 
subtree. 

The last insertion to obtain the subtree of root Bl cannot 
come from the right of C since we would have had either 

BI or 

P-l~ 
2p+2 p-I 

(forbidden by HI) 

P-l~2+2 
p-l P 

(forbidden by H3) 
Evidently H3 forbids that the latest insertion comes from the 
left of B1. The only two situations left open are: 

;;52 C r 

p-l 
BI 

2 p+2 
p-

or 

~
Cr 

BI 

p-I B2 

p+2 p-2 

This construction can be carried on further, but we can see 
that the p+2 keys K such that INFO(Bl) <K <INFO(B2) 
are never introduced. Therefore, either of HI or H3 will soon 
be contradicted, thus showing the impossibility that s = 

3p+2. 

9.161 ( .51) 9.155 (.54) 11.981 

8.740 ( .51) 8.741 (.52) 11.157 

8.157 (.51 ) 8.150 ( .52) 10.665 

Theorem: The maximum level of a WB tree is 0 (lOg2n) 
where n is the number of nodes in the tree. 

Proof: The lemma shows that 

1/.< TOTAL(LLINK(P) )+1 <3/ 
74~ TOTAL(P)+1 -74 

i.e., WB trees are BB (1/4) ; the highest level is hence6,........,2.32 
(log2(n+l)-I), or 0(log2n). 

Average searching time 

As for all b.s.t.'s the average searching time in a WB tree 
is o (lOg2n). To evaluate the efficiency of the WB algorithms, 
we performed the following experiment. Sets of 500, 750 and 
1000 different keys were generated randomly and we applied 
the AVL, BB(I-V2/2) and WB algorithms for their inser­
tions in a binary search tree. The averages of 25 sample runs 
are shown in Table III. As can be seen, the WB trees are 
slightly more performant (.5 percent to 1 percent), but cer­
tainly not significantly. The average number of rotations/ 
insertion is also indicated (figures in parentheses). The WB 
algorithms require between 5 percent and 10 percent more 
rotations than the other two methods. 

This larger number of rotations is compensated by the 
following advantages. First, in comparing with the BB al­
gorithm, there is no need for division which is a time con­
suming operation. Second, in comparing with the A VL 
technique, we can use a top-down algorithm so that we do 
not have to go back up the path. Finally, the fact that we 
can choose between two algorithms allows us to face easily 

TABLE IV-AVL, BB and WB Flexibility (1000 nodes) 

a = 1 a = 2 a = 3 a = 4 a = 5 
a = 1 - 0/2 a = .25 a = .20 
')'=0 ')' = 1 ')'=2 ')'=3 ')'=4 

AVL 9.207 (.46) 9.416 (.21) 9.665 ( .12) 9.925 (.07) 10.23 (0.05) 

BB 9.267 (.40) 9.444 (.26) 9.765 (.16) 

WB top down 9.161 ( .51) 9.251 (.26) 9.344 (.18) 9.427 (.13) 9.505 (.11) 

WB bottom up 9.155 (.54) 9.244 (.27) 9.333 (.18) 9.422 (.13) 9.499 (.11) 



472 National Computer Conference, 1975 

the contradictory situations: the key to be inserted is cer­
tainly not present, hence use a top-down algorithm; and, the 
key ·to be inserted might be present, hence use a bottom-up 
algorithm and cancel the balancing if the key were present. 

Space required 

The amount of space required is of the same order for the 
three algorithms. As observed in Reference 4, the little sav­
ings in A VL trees is compensated by the need of the TOTAL 
field (or equivalent) if one wants to use the structure effi­
ciently as a linear list 

Flexibility of the algorithm 

It is interesting to see how the algorithms behave if one 
relaxes the balancing criteria in order to reduce the number 
of rotations. In terms of AVL trees3 this is akin to letting the 
difference in heights be some 0 greater than 1 and for BB 
trees to having a be less than 1-Y2/2. For WB trees this 
means that we will have a single rotation if 

weight (A) + p > weight (B) +r+'Y (Figure 1a) 

and a double rotation if 

2. weight (B) +p+ q> weight (C) +s+'Y (Figure 1b) 

The above sets of 1000 keys were used again to construct 
A VL trees with 0 varying from 1 to 5, BB trees with a being 
1-Y2/2, 0.25 and 0.20, and WB trees with 'Y varying from 
o to 4. As before, the number of rotations was monitored. 
The results summarized in Table IV show that WB algo­
rithms provide a fine tuning of the average search time with 
decreases in rotations (proportionally) as great as for AVL 
trees. 

At this time it does not seem possible to rate the "good­
ness" of the different algorithms since there is no evident 
connection between the parameters a, 'Y and o. The only fair 
assessment that one can make relative to WB trees is that 
both the worst case and average searching times (for trees 
of approximately 103 nodes) are of the same order of magni-

tude as those obtained by using A VL and BB trees. Further­
more, the parameter 0 can be used very efficiently for tuning 
the algorithm. Mainly, it should be emphasized that since 
the WB technique can also be applied to weighted trees and 
since there is a choice between a top-down and a bottom-up 
algorithm, WB trees provide a very flexible tool. 

CONCLUSION 

In this paper we have presented a new technique for balanc­
ing search trees in order to minimize the average searching 
time of a key in the tree. The technique is based on the con­
cept of weight balance and is applicable to both weighted 
and non-weighted trees. In the former case, near-optimal 
trees can be obtained dynamically in a self-optimizing 
fashion. In the latter, the technique gives results of quality 
comparable to those obtained by A VL or BB methods. 

It would be interesting to test further the technique in 
different environments, as for example paging systems, 
multiprocessing and in connection with B-trees. 1 

REFERENCES 

1. Bayer, R. and E. McCreight, "Organization and Maintenance of 
Large Ordered Indexes," Acta Informatica, pp. 173-189, Volume 1, 
1972. 

2. Bruno, J. and E. G. Coffman, "Nearly Optimal Binary Search 
Trees," IFIP Congress 1971, pp. 99-103, North-Holland. 

3. Foster, C. C., "A Generalization of AVL Trees," CACM, 16, 8, 
pp. 513-517, August 1973. 

4. Knuth, D., Sorting and Searching, Addison-Wesley, 1973. 
5. Nievergelt, J. and C. K. ·Wong, "On Binary Search Trees," IFIP 

Congress 1971, pp. 91-98, North-Holland. 
6. Nievergelt, J. and E. M. Reingold, "Binary Search Trees of Bounded 

Balance," SIAM J. Computing, 2, 1, pp. 33-43, March 1973. 
7. Rivest, R., "On Self-Organizing Sequential Search Heuristics," 15th 

Annual Symposium on Switching and Automata Theory, pp. 122-126, 
October 1974. 

8. Walker, W. A. and C. C. Gottlieb, "A Top-Down Algorithm for 
Constructing Nearly-Optimal Lexicographic Trees," Graph Theory 
and Computing, R. C. Read Ed., Academic Press, pp. 302-323,1972. 

9. Bayer, R., "Symmetric Binary B-Trees: Data Structure and 
Maintenance Algorithms," Acta Informatica, pp. 290-306, Volume 1, 
1972. 

10. Rissanen, J., "Bounds for Weight Balanced Trees," IBM Journal 
of R&D, pp.101-106, 17, 1, March 1973. 



Optimizing distributed data bases­
A framework for research* 

by K. DAN LEVIN and HOWARD LEE MORGAN 
The Wharton School 
Philadelphia, Pennsylvania 

INTRODUCTION 

The interaction between computers and communication 
technology has steadily developed in recent years bringing 
with it the creation of large computer communication 
complexes. Earlier computer communication systems were 
generally focused around a single large computer installation. 
Although a strong argument can still be made for serving 
distributed users with a centralized system, we now witness 
an increasing number of systems in which information 
processing and storage functions are distributed among 
several computers. The idea is to distribute the resources 
(programs, data, computing hardware, etc.) of each computer 
site to a widely spread community of users. Various factors 
may favor a shift toward computer networks, especially 
with similarly structured organizations which are inde­
pendent but can be motivated to share. The most well­
known example is the network developed under the spon­
sorship of the Advanced Research Project Agency (ARPA), 
that links independent research organizations, all involved in 
solving closely related problems. The libraries of specialized 
software and data at each research center, make it attractive 
to link the computers of these organizations. Clearly, access 
to specialized data bases is a major feature of the networks 
and the cost incurred by such an access is an important 
consideration in determining the economic viability of this 
kind of resource sharing. 

Much research is being focused on the problem of mini­
mizing the operating cost of a distributed data base shared 
by a community of users interconnected through a computer 
communication network. We ourselves have been studying 
the problems of finding the optimal file/program locations 
in computer networks. In this paper, we attempt to provide 
a framework in which to view this research, to point out 
those areas which we and others have already studied, and to 
highlight areas which would be fruitful for others to examine. 

A THREE-DIMENSIONAL FRAMEWORK 

We can break up the problem of organizing distributed 
data bases in computer networks along three dimensions: 

(1) The level of sharing 

* This research was supported by the Office of Naval Research under 
Contract N00014-67-A-0216-07. 

473 

(2) The behavior of access patterns 
(3) The level of information on the behavior of access 

patterns. 

In the first dimension, the "level of sharing", one may 
distinguish between the data sharing level (in which inde­
pendence between programs and files can be assumed) and 
the "program and data sharing" level, in which dependencies 
between files and programs exist (as is the case in real 
heterogeneous computer networks) . 

When no sharing takes place, there is no allocation prob­
lem since each node has to carry a copy of every file and 
program that might be requested at that node. At the level 
of data sharing, each node carries a copy of every program 
but the data files themselves are shared, i.e., the files can be 
accessed from remote nodes. At this level, the fact that access 
requests have to be processed by the relevant programs has 
no effect on the distribution pattern of the requests. Each 
request can be processed at the node that originated this 
request. At the highest level, both the programs and the 
data files are shared and are accessible to other nodes. At this 
level, program and data sharing, an access request from 
node A, invokes a program at node B that in turn requires 
access to file X at node C. Obviously, the distribution of 
access requests to files is dependent (to some extent) on the 
location of the programs. Hence, the optimal location of 
data files is also dependent on the program assignment. 

It is true that the distinction between programs and data 
files is somewhat artificial but one has to make this distinc­
tion in a heterogeneous network. While data files can be 
transferred relatively easily from one computer to another, 
even where different manufacturers are involved, programs 
written and compiled under the supervision of one operating 
system cannot be executed in a different computer. The 
opportunity costs of "stepping down" from a "sharing" 
level to "no sharing" are determined by the costs of getting 
compatible copies of the files at each node. Where data files 
are involved, the costs of obtaining a compatible copy 
are determined by the storage cost at the node at which a 
compatible copy is required. It is much more complicated to 
obtain an operationally compatible copy of a program. The 
main cost factor in this case is the cost of conversion from 
one computer to another, and in most cases the program has 
to be rewritten. In addition, all versions of the program 
have to be updated and the problems associated with both 



474 National Computer Conference, 1975 

Program and Data Sharing 
Dynamic 

Program and Data Sharing 
Static 

Partial Information 

Program and Data Sharing 
Dynamic 
Complete Information 

Th is Research 

Dynamic 

Data Sharing 
Dynamic 
Partial Information 

Data Sharing 
Dynamic 
Complete Information 

Partial Information 

Static 

Data Sharing 
Static 
Partial Information 

~.§ 
~!i 
~€ 

~----~--~-------W~WWWWWW~WW~llUllja_f 
Dynamic Slatic-

Figure I-Three-dimensional partitioning of the file 
assignment problem 

the initial conversion and the continuous maintenance are 
well-known. It is most conceivable that in heterogeneous 
networks, the network members will find it more attractive 
to share · programs than to convert them and by doing so, 
dependencies between programs and files are introduced into 
the system. 

In the second dimension a distinction should be made 
between "static" behavior and "dynamic" behavior. 
"Dynamic" behavior refers to a situation in which the access 
request patterns are changed over time while in static be­
havior they remain fixed. Most of real life situations fall 
under the "dynamic" category. 

The level of information available can be dichotomized 
to "complete" information and partial information. Under 
"complete" information we assume that the access request 
patterns are known with certainty, i.e., there are no devi­
ations between the forecasted request patterns and the 
actual request pattern. When only partial information is 
available one should expect some disturbances between the 
forecasted request pattern and the actual request patterns. 

Figure 1 illustrates the three-dimensional partioning of the 
distributed data base problem. Under this framework an 
interaction between "partial information" and "dynamic" 
behavior represents access req!lest patterns that are both 
changed over time and unknown. The evolution of these 
access requests over time can be regarded as a non-stationary 
time series. 

So far, all the efforts with regard to the optimal location 
of files in computer networks, were concentrated in the 
"data sharing" level under static behavior and complete 
information assumptions (the bottom right-hand box of 
Figure 1). Two papers by Chu1 and Casey2 and a Ph.D. 
dissertation by Whitney3 addressed the file location under 
these restrictive assumptions. As illustrated in Figure 1 

our work addresses the file location problem at the "program 
and data sharing" level, i.e., dependencies between programs 
and files are taken into account. Clearly, the models de­
veloped at this level can handle all the corresponding situ­
ations at the lower level just by relaxing the program-file 
interdependence assumption. 

MODEL FORMULATION 

The operating costs of the data base are a function of the 
communication cost to the individual files (incurred by access 
request from remote locations) and the storage costs of the 
files in the resident nodes. It is clear that different assign­
ments of files/programs in the network nodes will yield 
different operating costs. It is also conceivable that in some 
cases, the maintenance of several copies of the same file 
(distributed over the network), will be economically at­
tractive. Accordingly, one can construct a model of the oper­
ating cost of a file as a function of the number of file copies 
maintained, the location of these copies and the patterns of 
access requests to the files. In this model the access request 
patterns will be regarded as uncontrolled variables, while the 
number of file copies maintained and their assignments to 
network nodes will be controlled by the model. In this re­
spect, the focus is on the optimal assignment of data files. 
We already stated that programs can be executed in a limited 
subset of the network nodes and since the storage costs of 
programs are relatively small (as compared to storage costs 
of data files) the optimization is performed on data files 
only. 

Static file assignment with complete information 

A computer network is considered here with N nodes and 
a data-base constituted of F files and P programs. The 
problem is to find that distribution of files and programs 
that minimizes the operating costs of the data base. These 
costs are formulated below. Every node in the network 
demands the services of some programs and files. This 
demand is generated through transactions originated in each 
node and fall into one of two classes-query traffic and up­
date traffic. The transaction is first routed to its relevant 
program and from this program a query is transmitted to the 
nearest file copy while an update message is transmitted to 
every copy of the file. \ 

Let Aipf = Query traffic from node i to file f via program p 
AiP/ = Updating traffic from node i to file f via program 

p 
C ij = Communication cost per query unit from i to j 

C;/ = Communication cost per update unit from i to j 

We differentiate between updates and queries (traffic 
volume and communication costs), on the premise that 
queries require faster response time than updating traffic 
and should be charged accordingly with a higher rate. 



Let (Ti/ = Storage cost of file f at node j 
(Tip = Storage cost of program p at node j 

a = Expansion fa-ctor for query message 
(3 = Expansion factor for update message 

The provision of the expansion factors is discussed below. 
Let program p and file f reside in node j and node k re­

spectively and assume that a query, x bits length, has been 
originated at node i. The query is first transmitted to its 
relevant program p to be processed. The program resides 
at node j, consequently, x bits are transmitted on the com­
munication link i-j. This query is then processed at node 
j and, as a result, an access request to file f is issued by the 
program. The form and the length of the access request is 
different from the original query of x bits. This access re­
que~t is developed by the program and the host computer 
software, specifically, it consists of a sequence of commands 
from the Network Command Language (NCL) and is 
handled by the Inter Process Communication (IPC) mechan­
ism, see Peebles.4 Assume the length of the access request is 
Y bits. These y bits are transmitted on the communication 
link j - k (between the program and the file ) and the ratio 
y/x determines the expansion factor a mentioned above. 
Similarly, another expansion factor {3 can be applied to up­
date traffic. Jp denotes the set of nodes at which a given 
program p can be processed. It is clear that in a homogeneous 
computer network, or when only data sharing is available, 
the set J p for any given p is equivalent to the set of the 
network nodes. 

So far w-e have defined the uncontrolled variables of the 
model. We will now define the controlled variables that de­
termine the file locations and the routing discipline. 

Let Yk! = {: 
A copy of file f is stored at node k 

Otherwise 

YiP' = {: 

A copy of program p is stored at j node 

Otherwise 

Where 'k and j denotes the network nodes' indices, j, k = 

1 .... N, p denotes the program index', p = 1 .... P and f de­
notes the file index, f = 1 .... F. Recall that p can be processed 
only in a subset of the network nodes (in J p) . 

Xjk/ indicates that portion of transactions from node j to 
file f that should be routed to node k. Thus, 0 ~ Xjk/ ~ 1 
and it min be shown that at the optimum Xjk/ will assume the 
values 0 or 1. 

. . _ {I Transactions from node j to file f are routed to 
l.e., X]k/- node k 

o Otherwise 

{

I Transactions from node i to file fare 
Similarly Xij/ = routed to node j via program p. 

o Otherwise 

Obviously, one would expect that if Xjk/= 1, then Yk/= 1 and 
if xij/=I, then Yip'=1 andjEJp. 

Optimizing Distributed Data Bases 475 

The upper index f (in Xij/) provides us with the possibility 
that transactions from a given node, that are processed by 
the same program but require access to different files, can 
be routed to different nodes at which copies of the program 
are stored. 

We are now in a position to express the traffic flow between 
nodes in terms of the controlled and uncontrolled variables 
and to formulate the objective function of the model. 

Pi! = L: Aip/*Xij/ = Query traffic to file f processed at node j 
itp 

t/li/= L: Aip/*Xij/ = Updating traffic to file f processed at 
i,p node j 

The Model Objective is To Minimize C = 

L: Aip/*C ij*Xij/ = Communication cost of queries from 
/,j,i,p initiating nodes to the programs 

+ L: Aip/*C~j*Xij/ = Communication cost of updates from 
/,j,i,p initiating nodes to the programs 

+ L: pi/*aCjk *Xjk/ = Communication cost of queries from 
I,j,k programs to files 

+ L: t/ljl*{j*Cjk*Yk/ = Communication cost of updates from 
I,j,k programs to files 

+ L: (Tkl*Ykf = Storage cost of files 
I,k 

+ L: (Tjp*Y}p' 
j,p 

= Storage cost of programs 

Subject to the following constraints: 

-To assure the attainment of a feasible solution there must 
be at least one copy of each file and each program, i.e., 

v'p=I ... P 

v'! =1 ... F 

-To assure that every transaction to every file via every 
program and from every node, will have a defined route: 

"X .. 1>1 L..J ']P-
j 

v'i=I ... N, p=I ... P,/=I ... F 

v'j=1 ... N,/=1 ... F 

-To assure residency of the appropriate .files and programs 
in accordance with the defined routes: 

L: Xij/ <.5:.N*Yjp' 
i 

v'j=1 ... N, p=I ... P,/=1 .. , F 

v'k=1 ... N,f=I ... F 

-To assure that program p will reside only in a node at 
which it can be processed: 

And yjp', Ykh Xij/, Xjkl binary variables. 

It has been shown by Levin5 that the multi-file minimiza­
tion problem can be decomposed to individual file minimiza-



476 National Computer Conference, 1975 

tion problems and the cost associated with an arbitrary 
assignment of an arbitrary file f (Kf) is given by: 

C(K,) = L LAiP,*MinjEJpq(Cii+a*MinkEK,Cjk) 
pEPq i 

+ L L Aip/*MinjEJp",(Cii'+,6* L Cjk') + L Uk, 
pEP", i kEK, kEKf 

LetQ(K,) = L L Aip,*MinjEJpq(Cij+a*MinkEK,Cjk) 
pEPq i 

= Queries cost 

U(K,) = L L Aip/*MinjEJp" (Cii'+,6* L Cjk') 
pEP" i kEKf 

= Updates cost 

S(K,)= L Uk, 
kEKf 

= Storage cost 

So that C(K,) =Q(K,) +U(K,) +S(K,) 

The problem is to find that assignment K, for which C (K,) is 
minimum and we will refer to this problem in the section 
that deals with recent results of our own research. 

Dynamic file assignment with complete information 

The dynamic file assignment problem involves an optimiza­
tion process extending over several periods of time. With 
varying access request rates from period to period, it is con­
ceivable that an optimal assignment at one period is non­
optimal at the next period. In this case, an additional cost 
factor has to be considered and it is not sufficient to invoke 
the static model (mentioned above) for each pattern of 
access requests. This factor expresses the transition costs 
incurred by the file movements from one assignment at a 
given period to another assignment at the next period. In 
order to move from one assignment ki to another assign­
ment k2, the files have to be transfer~ed over the communica­
tion links from the nodes in KI to the nodes in K2. It follows 
that in order to find the optimal combination of file assign­
ments over t periods, an aggregate evaluation should be 
performed. 

{

I File copy is assign to node k at period t 
Let Ykt= 

o Otherwise 

And let K t= {k I Ykt=l} denote an arbitrary assignment of 
a file at t. 

KT = [KI, K 2, ••• , K T] An arbitrary arrangement of file 
assignments at periods 1 to T. 

Two major cost factors are associated with each possible 
combination of file assignment K T • 

(a) Summation over T periods of the operating costs at 
each period. These costs are given by C (K t ), the cost 
function of the static model. Recall that C (K t ) is 

subdivided to three factors, i.e., C(Kt) =Q(Kt) + 
U(K t ) +S(K t ) 

(b) Summation over T periods of the transition costs from 
an assignment in one period to the assignment in the 
next period. This factor is denoted by Tt(Kt- l, Kt). 

The transition costs from one period to the next one are 
determined by the communication costs of transmitting the 
files over the communication links. 

Let Ls deIiote the length of the file in storage units. And let l' 
be a transformation factor from storage units to message 
units. 

Then Lm = Ls*1' = The number of message units involved in 
the transmission of the file over the communication links. 
Transition costs from K t_ 1 to Kt (two arbitrary assign­
ments) are determined by 

Tt(k t- I, K t) = L Lm*Mink(t-I)EKt_Pk(t-l)k(t) 
k(t)EKt 

Where k (t) denotes the node index in period t. 

The term Mink(t-I) EKt_lCk(t-l)k(t) reflects the assumption that 
file transmission from one assignment to the other is carried 
out in the most economical way. 

Thus, the multi-period cost function for an arbitrary 
combination KT is given by:-

T 

G(KT*) = L [C(Kt) +Tt(Kt- l, K t)] 
t=1 

Implicitly, we assume that the file assignment at to is given. 
The problem is to find that arrangement of file assignments 
KT* that will minimize the multi-period cost function. 

i.e., G (KT*) = MinKTG (KT) 

where the minimization is performed on all possible combi­
nations of KT. 

File assignment with incomplete information 

The main disadvantage of the complete information 
assumption is that exac"t measurement of all access rates in 
the network is necessary. This is seldom the case in practical 
applications and in this section, we will relax this assump­
tion. We will introduce deviations between the actual demand 
patterns in the network and the forecasted static access 
rates, deviations due to the fact that the access rates at each 
node for each program and file are random variables with 
underlying probability distributions. The static environ­
ment is implied by a "stationary" assumption, i.e., the same 
probability distribution exists over time for each node, 
program and file. The dynamic environment is implied by a 
"non-stationary" assumption. The access request rates are 
treated as random variables with an underlying probability 
distribution function. However, unlike the stationary case, 



Static· Behavior 
Complete Information 

D= D 

Actual A.R.P.* 
=D 
(Static) 

Forcasted A. R. P . 
=0 
(S!atic) 

I 

Cost Model 
Cost = j(A, D) 
A = Assignment 

Optimization ,­
Select A*, S.T 
f(A * ,0) ~ f(A,O) 

• Fi Ie / Program 
Assignment 
Policy 

* A.R.P. = Access Request 
Pattern 

I 

Actual A.R.P. 
D1, D2,·· .Dt 1 
(Stationary) 

Forcasted A.R.P. 
Dt 1 + 1 =f( D1 ' D2 , 
Dt 1) (Stationary) 

, 
______ ~-~~ File Assignment ) 

"'l Procedure 

Static Behavior 
(Stationary) 
Partial Information 

\ j 

+ 
Actual File 
Assignment 
AT t1+1 

I 

Optimizing Distributed Data Bases 477 

File Locations 
AT t=O 

-

Dynamic Behavior 
Complete Information 

Dt = Dt V t = 1 ... T 

Actual A.R.P. 
Dt t = 1 ... T 
(Dynamic) 

Forcasted A. R. P. 
Dt 
t = 1 ... T 

Cost Model 
Per Period 
Ct = f (At,Ot) 

Multi-Period 
Cost Model 

Optimization .­
Select:A1 *,A2 *At* 
S.T C*~C 

Assignment 
Policy 
t = 1 ... T 

: r 
Actual A.R.P. 
Dt1+1 

Ex -Post 
Prediction 
Dt-Dt­
Vt=1 ... t1 

Error 

I'"\r 
Actual A.R.P. 
D1, D2,· .. Dt 
Non Stationary 

I 

I 

t 
Forcasted A.R.P. Prediction 

Error 
Dt 1+ 1-0t1 +1 

~Dj=f(D1, ... ,Dj-1 

Dynamic Behav.ior 
Partial Information 

Dti=Dt, Dt Non-Stationary 

Vj=t+1, ... T 

I Opti mal File , 

I Assignment ' .. ------"" 
Procedure r-

\ ) 

Actual File 
Assignment 
AT t1+1 

Figure 2-Gross structure of model development 



478 National Computer Conference, 1975 

the first moments of the distributions are subject to changes 
over time. 

Recall that the cost associated with a given combination 
of file assignments over T periods = G (KT ) is 

T 

G(KT ) = 2: [2: 2: AiptMinjEJpq(Cij+a*Mink(t)EKPjk(t») 
t=1 Pq i 

+ 2: 2: Aipt'MinjEJpu (cd +,8* 2: Cjk(t/) 
Pu i k(t)EKt 

+ 2: (ukt+Lm*Mink(t-l)E K t-Pk(t-l) ,K(t») ] 
k(t)EKt 

Since AiPt and Aipt' are random variables, the cost of a given 
T-assignments (over T periods) is in itself a random variable 
with yet unknown expectation. Under these circumstances, 
our objective should be modified and a search should be con­
ducted to find that combination of file assignments that will 
yield the minimum expected cost. 

i.e., Find KT* such that E[ G (KT*) ] = MinKT {E[ G (KT) J} 
It has been proven by Levin5 that the problem of optimal 
file assignment with stochastic demand patterns reduces to 
one of estimating the first moment of the access rates' 
distribution. A statistical procedure for the estimation of 
these patterns is developed there and incorporated in the 
file location model. 

SOME RECE:kT RESULTS 

Figure 2 describes the various stages of our own research 
in this area. In Morgan and Levin6 we have presented results 
for the file assignment problem under static access request 
behavior and complete information. A search procedure for 
finding the optimal file assignment (with respect to min­
imizing operating costs) is presented there. This procedure is 
computationally efficient, and we are now experimenting 
with it on various probIems. 

Building on this work, we have developed a dynamic 
model for the multi period case Levin and Morgan.7 In this 
model, the access time requests are assumed to be known for 
the next T periods. However, the assumption that the access 
request patterns are static over time was relaxed and a 
dynamic model which considers transition costs was sug­
gested. A dynamic programming solution. approach is 
discussed there with respect to computational efficiency and 
storage requirements. Figure 2 shows the connection between 
the static and dynamic models. 

Finally, we have been able recently to work on an adaptive 
model for organizing distributed data bases in computer 
networks. A forecasting method which attempts to predict 
the best policy on the basis of where requests are expected 
to arise is developed. As new information becomes available, 
the forecast is revised and the assignment policy adapts 
itself to the new information. Such an adaptive strategy has 
proven quite efficient in optimizing access time in a memory 
hierarchy on a single machine (Morgan and Kennedy8), 
and we are hopeful that similar gains can be shown in the 
network environment. 

POSSIBLE APPLICATION AND FURTHER 
RESEARCH 

This research can be applied by both a potential user 
of an existing computer network and a network designer. 
From the user's viewpoint, these models can be applied 
directly for different classes of decisions. A potential user 
will probably be faced with a set of network specifications, 
such as prices for storage and communication and expected 
delays on the communication links. His decision problems 
range from where to store his files, given a set of nodes 
which can execute his programs, to the maj or decision of 
whether to join the network at all. 

From the network designer's viewpoint, these models can 
be used as the building blocks in an integrated design ap­
proach. One can envision an interactive design system in 
which the network designer sits at a terminal and enters 
different network specifications, i.e., pricing factors and 
expected delays. The file assignment models of this research 
are then invoked to provide him with the revenue figure for 
the forecasted demand. In addition, the routing discipline 
and the file assignments determined by these models are 
transferred as capacity constraints to minimum cost models 
of channel and storage capacity. The resulting cost figure is 
communicated to the network designer, with a list of the 
shadow prices of the relevant constraints. In response, the 
designer can utilize his judgment to readjust the pricing 
scheme (or other specifications) in order to relax some of the 
more costly constraints for another iteration of the models. 

Further research in this direction is very promising and the 
authors, themselves, are currently trying to incorporate 
these models in an interactive design process. 

REFERENCES 

1. Chu, W. W., "Optimal File Allocation in a Multiple Computer 
System," IEEE Trans. on Computers, October 1969, pp. 885-889. 

2. Casey, R. G., "Allocation of copies of a file in an information 
network," SJCC 1972, AFIPS Press, Vol. 40, 1972. 

3. Whitney, V. K. M., A Study of Optimal File Assignment and 
Communication Network Configuration, Ph.D. Dissertation, Uni­
versity of Michigan, 1970. 

4. Peebles, R. W., Design Considerations for a Distributed Data Access 
System, Ph.D. Dissertation, Moore School of'Electrical Engineering, 
University of Pennsylvania, 1973. 

5. Levin, K. D., Organizing Distributed Data Bases in Computer 
Networks, Technical Report No. 74-09-01, Dept. of Decision 
Sciences, The Wharton School, University of Pennsylvania, (Ph.D. 
Dissertation). 

6. Morgan, H. L. and K. D. Levin, Optimal Program and Data Locations 
in Computer Networks, Technical Report No. 74-10-01, Dept. of 
Decision Sciences, The Wharton School, University of Pennsyl­
vania. Presented at the TIMS XXI international meeting, San 
Juan, October 1974. 

7. Levin, K. D. and H. L. Morgan, Dynamic File Assignment in 
Computer Networks under Varying Access Request Patterns, An 
invited paper, ORSA/TIMS Joint National Meeting, Chicago, 
April 1975. 

8. Morgan, H. L. and S. R. Kennedy, An Adaptive File System, 
Information Science Dept., Technical Report No.4, CalTech, 
pp. 286-80, 1972. 



Structured organization of clinical data bases 

by GIO WIEDERHOLD and JAMES F. FRIES 
Stanford University 
Stanford, California 

and 

STEPHEN WEYL 
Stanford Research Institute 
Menlo Park, California 

INTRODUCTION 

The health care delivery system is under strong pressures 
from several sides. Many of these pressures derive from 
the demand for a more comprehensive range of health 
services and from the increased complexity of disease and 
treatment patterns. Since medical science has provided 
tools to manage many of the once common diseases, it now 
has to cope with problems of less well understood origin 
and course. 1 The practicing physician is faced with an in­
formation explosion of major dimensions and a gap 
between scientific knowledge in a basic form and its 
practical application at the bedside.2 

The medical system has responded in part by 
restructuring itself to provide increasing specialization, 
allowing the physician to develop a deeper understanding 
of a narrower portion of medicine. This has resulted in the 
development of discrete specialized units in the health 
care system. Specialized diagnostic centers and clinics are 
examples of this development in outpatient care. These in­
dividual units are highly sophisticated, justified by their 
ability to deliver superior care within the narrower area, 
but with unique sets of requirements and functions. 
Within these units work physicians, physician aides, nurse 
practitioners, specialized therapists, and medical clerical 
personnel, each of whom interacts with certain portions of 
the data in the medical record.3 As the government's share 
of health support becomes more significant, the increased 
record keeping required for fiducial accountability adds 
further burdens to the systems used to collect and main­
tain data on the care given to patients. 

Information needs of the several potential recipients of 
data from the medical record will vary greatly depending 
upon the nature of the problem and the purpose of the 
consultation. Most medical data base systems have 
concentrated upon the individual patient record:' Re­
search oriented systems, on the other hand, have collected 
smaller, predefined sets of patient data, which then are ac­
cessed selectively by element.5 A related approach in­
volves the collection of information from multiple indi­
vidual records to _ collect past experience to facilitate the 

479 

clinical decision.6 There are large numbers of systems 
which mainly collect charges and prepare bills. 

Functions of the medical record 

Hospital medical record rooms contain a collection of in­
dividual patient record folders, which are retrieved for 
patient care when a patient is scheduled in a clinic or 
admitted to a bed in the hospital. It typically takes more 
than one hour to deliver the record for a given patient and 
months to collect data to study a disease or treatment mo­
dality. The inaccessibility of the information in the record 
room and in the medical record itself prevents utilization 
of the stored data in response to many other needs. 

The medical record room is, however, an important 
clinical resource. The accumulated clinical experience of 
many patients over many years contains data potentially 
relevant to nearly every clinical problem. Epidemiological 
studies are an important component of the understanding 
of disease. The majority of published clinical studies are 
tabulated from such data, despite the haphazard collec­
tion of information, the lack of standardization of termi­
nology in the record and a variety of inherent biases in the 
approach. The volume of records which had to be collected 
to provide statistically legitimate information to establish 
the linkage between smoking and lung cancer indicates the 
massive efforts which will be required for more obscure 
diseases. 

The medical record also fulfills a number of legal re­
quirements. R'estrictions imposed on the record due to this 
function are often cited as limitations to innovation in 
medical record management. An example is the need to 
keep signed medical care orders which inhibits merging of 
the request with the resulting report.7 

In addition to access to the data of previous diseases, 
the ideal medical record also preserves a record of the 
clinical reasoning used to manage the medical problems 
presented. Since the medical record is intended to be com­
plete, it also provides the full context for the recorded 
data. 



480 National Computer Conference, 1975 

Increasingly, the traditional reliance upon clinical diag­
nosis is being recognized as inadequate. New classifica­
tions of patients with regard to the specific problems they 
manifest and the specific symptom complexes they 
demonstrate have greater utility. Medical reference ma­
terial and abstracts of medical records are also keyed to 
diagnostic codes and cannot provide data organized to the 
unique requirements of the individual patient.8 

Due to the high cost of health care, questions are being 
asked about the effectiveness of the various components of 
the care system. Ultimately, each specific element in the 
health care delivery process must be analyzed for its effect 
upon the outcome of care. A clinical data base can record 
utilization of various health care resources and provide 
measures for rational allocation. The diversity and drama 
of the medical environment, together with political and 
social pressures, can easily distort rational priorities if 
good data on cost effectiveness are not available.9 

Difficulties with automated clinical data bases 

It seems surprising that few comprehensive data base 
systems in medicine have been implemented. A number of 
barriers have limited the development of systems able to 
support the functions previously enumerated. 

An important problem exists in the technology itself. 
Whereas we have developed procedural programming lan­
guages to the extent that simple computer applications can 
be efficiently and reliably developed, in practice a single 
individual has to be able to understand the entire scope of 
the system. 10 Small to moderate computer applications 
can be efficiently developed and achieve adequate relia­
bility; for larger systems formal techniques of modulariza­
tion are required. ll Data base systems have not yet been 
definitely separated into appropriate levels of abstraction, 
as have areas as pattern recognition applications and 
design automation systems.12 

Exact specifications of the uses to be made of stored 
medical information have not been available. The 
programmer has seldom been able to determine what the 
physician wants, and the physician himself has been 
unaware of what he needs. Clinical data base systems 
have often been archival in nature and have not been ef­
fectively used for data retrieval purposes. 

Extraction, verification, decoding, and transformation 
of available data has to be supported so that statistical 
procedures can operate on subsets of stored data. The 
unavailability of highly interactive systems with large files 
has prevented the development of approaches in statistical 
data handling which would exploit more fully dynamic ac­
cess to dataY The potential of graphics to bridge the gulf 
between the results of data analysis and their clinical ap­
plications has also not yet been realized adequately, again 
partially due to the high cost of the few model systems.14 

These limitations have discouraged the clinician from par­
ticipating fully in development of clinical data systems. 
Without an adequate cadre of medical users, medical data 
base systems have generally failed to have a significant 

clinical impact, which has in turn reduced their cost-effec­
tiveness.15 

There is a high cost in the collection of data, and addi­
tionally an equally high cost in the operation of a system 
which verifies input, provides feedback in a useful form 
and encourages correction of data. Without assurance of 
fruitful utilization of information, it has been hard to jus­
tify the systematic collection of large amounts of medical 
data. 16 Systems storing small amounts of data have at­
tacked specific areas of interest to a clinician or re­
searcher, but have generally not been clinically useful. At­
tempts to store large amounts of data have not 
demonstrated cost-effectiveness. Large systems have inter­
rupted the clinical habits of the physician without provid­
ing him with usable information in return. Information in 
many medical data bases is limited to few variables and 
often financially oriented or restricted to small sample 
populations. 

DEVELOPMENTS AT STANFORD 

Availability of a highly interactive time-shared system 
with the capability to process large files with minimal dif­
ficulty has allowed a number of medical researchers to im­
plement small data bases oriented toward their specific 
needs. 17.18 After a number of years of availability of the 
time-shared system, a pattern of data base usage began to 
emerge. Clinicians began to develop individualized, highly 
structured, and clinically satisfactory medical record 
systems prior to approaching the problems of efficient 
computer data storage and generalized retrieval ca­
pabilities. Systems developed within specialty areas with 
immediate relevance and satisfaction to the medical 
users.19 Common patterns of information handling desired 
by the physicians from the computer databank began to 
be ascertained. Physicians in specialties not possessing 
these systems wanted to have access to the benefits while 
maintaining independence in defining their specific data 
collection and data analysis requirements. 

The schema based approach 

In order to achieve commonality of data base use and to 
provide a basis for controlled future development, a data 
base support system based upon the concept of a 
"schema" was developed and put into operation.20 The 
design recognizes four levels of abstraction: 

• application programs which refer to data by name. 
• service programs which use the schema to interact 

with the data base. 
• a file system, summarized later. 
• a storage management level which allocates and 

moves blocks. 

A Time Oriented Data Base (TOD) contains clinical in­
formation organized chronologically and generally 
collected by the physician in the form of a time oriented 



flow sheet of clinical data. Two levels of hierarchy are 
recognized within a clinical data base: 

• the patients 
• the visits of the patients to the clinic 

A schema is a structure which defines the specific 
content of the individual databank. The two levels used by 
TOD are described in an identical manner.21 

An entry in the schema for a data base element 
specifies: 

• A descriptive name for the element 
• A short, formal name 
• The units of measurement for the element 
• The element's data type, oriented to user require-

ments, rather than to available hardware operations 
• Range limits for numeric data 
• Coding requirements for non-numeric values 
• The retrieval files in which the data element IS 

fecorded to meet accessing requirements 

In addition, the data base manipulation programs collect 
into audit record associated with the schema various 
utilization data and integrity indicators. Each complete 
schema provides a formal and machine-processable 
description of each 'data base. This description is used by 
the processing programs to identify, select, and analyze 
patient and visit records as well as specific data elements 
within these records. All data bases which are described 
using the schema and which follow certain structural rules 
can use these processing programs without any user­
specific changes. There is no generalized data base 
management system to provide these services. There is 
instead a library of programs which is shared by the 
various databank users to the extent that they provide 
useful services to them. 

The authority over contents, the responsibility for up­
dating, and maintenance of quality remain in the hands of 
the "owner" of each of the data bases. Programs 
developed by one user can be shared by all, or copied and 
modified to provide information and formats suitable for 
one specific clinic. The databank is selected by the user 
rather than being imposed upon him and he is not 
threatened by arbitrary decisions made by others. In 
practice, a rather remarkable diversity has been evident. 
TOD structured databanks have been implemented for 
more than a dozen clinics and research groups within the 
Stanford Medical Center. Unanticipated applications have 
been in the office of the dean of the medical school to keep 
records on incoming students and faculty appointments as 
well as a system to control hospital engineering projects. 

Since all medical data bases serve subgroups of the 
same regional patient population, another hierarchical 
level is available which addresses the problem of com­
munication and centralization. A central management 
function has access to the individual schemas and to their 
utilization records. There are a number of programs here 
which extract and aggregate this information. This also 

Structured Organization of Clinical Data Bases 481 

allows control and advice-giving regarding naming and 
coding conventions. A formal name for each data domain 
provides the basis for inter-data base linkages and hence is 
subject to joint agreement. All coding and decoding of data 
entries is carried out within the TOD system, as specified 
by the schema, so that these procedures are also sharable. 
This feature aids in the maintenance of internal and 
external consistency between otherwise separate systems. 
The utilization data can provide guidance to management 
when system extensions or changes are being considered. 

Structure of the TOD files 

The files used by a TOD data base can be categorized 
into three areas: 

• The Schema Files, describing the detailed structure. 
• The Data Files, containing the actual data values. 
• The Accessing Files, which provide rapid access to 

data according to various retrieval criteria. All data in 
these files are redundant relative to the data files 
themselves. 

The schema resides in two files. The first is the source 
file, containing TOD Data Definition Language 
(TOD~DL) statements. It provides the documentation, 
and contains lines of text, normally in record element 
order. The second, object, file is produced by the 
TOD~DL translator, and is oriented toward efficient 
driving of the interpretive TOD data entry and extraction 
routines. The record content specification here is arranged 
in transposed form; for instance, the type codes for all ele­
ments of the record for a file appear in a single object 
schema record. Only the translated file is used during 
TOD processing. The object form can be fully detrans­
lated to the source schema; even comments are preserved 
in designated object schema records. 

All data reside on two files: the HEADER file, which 
contains non-chronological patient information, and the 
PARAMETER file containing visit information. The 
HEADER file refers to the PARAMETER file using sym­
bolic numeric keys, visit numbers, which are used to 
locate the records via the index structure of the parameter 
file. This provides the linkage without placing restrictions 
on the organization or placement of the parameters. The 
first and last visit key is specified in the header, and the 
other visits in the parameter file are chained both forward 
and reverse, again using symbolic keys, which allows effi­
cient retrieval both in chronological order, as well as for a 
series of recent visits preceding the last visit. Both header 
and parameter records have in their identification field a 
unique identifying value for each patient to allow recovery 
if chains should be damaged. This simple structure avoids 
the need for complex hierarchies and repeating groups.22,23 
Other criteria for normality are met since the data ele­
ments within a record are due to independent observa­
tions. Research on the data could of course discover func­
tional dependencies! 



482 National Computer Conference, 1975 

TOO_DOL: :-<recordspeclflcat Ion» (elementspecl fl cat Ion» 
< I nl t I al I zat Ion specl fl cat Ion» (co,.".,ent> 

(recordspec I fl cat Ion>: : -DECLARE <,. Ie> «arrays I ze»; 
<element specIfIcatIon>: :-<1'1 le>«array_element.:,number»­

«content>, <un It>, <name>, <type> <opt Ions>, <access»; 
<InItIalIzatIon specIfIcatIon>: :-INITIAl <name> <Inlt>; 
<comment>: :-/*<cornrnentstrlng>*/ 

<flle>::- HEADER)H)PARAMETER)P 
<arrayslze>::- Integer count of maxImum nUlllber of el~ments 
<arrayelement_number>::- Integer value wIthIn arrayslze of fIle 
<content>::- characterstrlng whIch doculllents varla"le 
<unlt>::- characterstrlng specIfyIng stan<1ard unIt used 
<nallle>::- a global varIable name of up to 8 characters 
<type>::- VALUE) +RANGE I CHAR( <str InlLlength» IDATE I 

cnOE ICONF IDENTI AU <strl"ILI ength» I POI NTEI! 
The semantIcs of these types are explaIned In the 
next sectIon. 

<strlnlLlength>::- Integer 0 to 1280, gIvIng maxImum length 
of a variable_length strIng 

<opt Ions>: : - <opt Ion» <opt I ons> <opt Ion> 
<optlon>::- LllAIT«mln),<max» ICHFCKIFIX 

The optIons are descrIbed below. 
<Inlt>: :-<flrst>ISAMEI <flrst)SAME 
<flrst>::-VALUE(lnltlal value) 

The keyword SAME IndIcate that a patIent parallleter Is to be 
copIed from a prevIous vIsIt unless explIcItly entered. 

<IIIln>::- real value causIng dIagnostIc when lower value Is entered 
<IIIax>::- real value causIng dIagnostIc when greater value Is entered 
<access>::- NONEI<accesstypes> 
<access types) :: - <access type> ) <access types> <access type> 
<access type> :: - INDEX IRANGEI TRANSPOSEOI PRIVATE 

These access mechanIsms have been dIscussed earlIer. 

Figure I-Syntax for the TOD data description language 

An optional data file, the OVERFLOW file, is only used 
if non-numeric parameter entries are kept without encod­
ing. Then a reference key is inserted in the record position 
and the string itself is stored in the overflow file. Since 
there is no satisfactory analysis possible for data which do 
not lend themselves to encoding, there seems to be no 
reason to keep values of these parameters in the prime 
data file. String data are directly stored in the HEADER 
file, since such information is useful for searching and 
classification. 

Accessing files are created on request. These contain 
data elements, which were indicated in the schema to be 
important search keys, arranged to optimize retrieval, and 
are used, when available, by the data retrieval programs. 
These files are typically generated overnight. They are 
identified with the date of their creation. This allows 
reporting of the date of validity in reports which use them. 
Both initial and final generation time are written into 
identification records of these files to provide verification 
of update process completion. 

An INDEX file contains all values of the specified 
element, in ascending order, with the symbolic keys to 
the records. Any PARAMETER or HEADER ele­
ment may be indexed. 
RANGE files contain the lowest and highest value of 
the specified PARAMETER element of one patient, 
and provide the key of the patient HEADER. This re­
quires less space than the INDEX and is especially 
suitable for case selection. 
The TRANSPOSED file is organized by element. A 
record consists of all entries for the specified element. 
This facilitates efficient and rapid retrieval according 
to complex criteria based on a few parameters. No 
keys are provided since the corresponding 
PARAMETER record can be found positionally. The 

transposed files have become the principal means for 
selection and data analysis since statistical 
procedures can operate on transposed data without 
requiring a reference to the primary data file. 
If desired, additional PRIVATE access files can be 
constructed, using the TOD scheduling and verifica­
tion facilities. 

Other accessing files are generated to support the subset­
ting capabilities of the analysis programs*. Subsets that 
are created are catalogued and identified with the in­
formation from the request which generated them and 
with specifications from the schema. These facilities are 
described in the TOD User's Manua1.24 This documenta­
tion also describes the supporting data entry, analysis, 
report generating, and graphics output procedures. 

The data description language 

The data description language is quite simple, so that 
after initial definition, maintenance of the schema can be 
carried out by the owner of the data base.25 

The syntax for the language is sketched in Figure l. 
The data types used within TOD are oriented toward 

the medical user: 

VALUE data items can meaningfully assume rational 
numbers representing continuous values. These num­
bers are of the standard IBM 360 precision of not 
quite 7 digits. 
+ RANGE data items can assume numeric values 
between 0 and 4. This implements a common notation 
used to indicate severity of problems or symptoms. 
DISCRETE data items can only meaningfully 
assume discrete numeric values. Statistical 
procedures using these data are restricted to classifi­
cation and similar operations. 
CHAR(string--1ength) specifies that a data item has 
as its value a string of variable length less than or 
equal to string--1ength. This data type is natural for 
HEADER· elements, and not recommended for 
PARAMETER elements. 
DATE data items store dates in a numeric form. 
Dates are displayed in a standard format, 
DDMONYY. DD are two digits specifying the day, 
MON is first three letters of the month, and YY are 
the last two digits of the year. There are no spaces. On 
input this and unambiguously similar forms are auto-

matically encoded into a Julian date for storage and 
numerical manipulation. The use of an alphabetic 
representation for the months is intended to re­
duce confusion which can easily occur due to the 
diversity of national backgrounds found in the med­
ical environment. 

* The subsetting capabilities have recently been greatly extended by 
Alison Harlow of the Department of Immunology, and will be the subject 
of a separate paper. 



CODE data items are stored as numeric values re­
lated by encoding-decoding procedures to a more 
meaningful representation. For example, the item 
"sex" might be coded as 0, 1 for Female, Male. This is 
achieved by invocation of an ENCODE or DECODE 
procedure at data-entry or output time. These 
procedures receive as arguments the array ele­
ment--Ilumber as well as the value of the input string 
or array element. 

CONFIDENTIAL data items are encoded and de­
coded by procedures providing keywork-protected 
scrambling. The procedure may be a general Vignere 
ciphering procedure provided by the system. The 

keystrings, of course, are private and submitted by 
the user at the first instance of a scrambling request. 

POINTER data items store pointers to information 
contained elsewhere. What gets pointed to by a 
POINTER item is entirely up to the individual user. 
As an example, a HEADER element of type 
POINTER might point to the first of a group of text­
file lines comprising a reference letter for each 
patient. This facility is only intended as an escape 
hatch to implement non-standard features, and is yet 
unused. 

Three HEADER and two PARAMETER element 
assignments must be included in every databank (Figure 
2) if a user wishes to take advantage of public data entry 
and retrieval programs. The assignments are written below 
in TOD--DDL with explanatory comments. 

A trivial example of a schema for a databank is given in 
Figure 3. 

The options, LIMIT, CHECK and FIX specify data 
checking procedures. LIMIT and CHECK are invoked at 
data-entry time. The option CHECK causes invocation of 
a procedure in a manner similar to the CODE data type 
specification. The CHECK procedure then can apply arbi­
trarily complex verification procedures. It can access any 
data value in the data base to accomplish its task. 

The CODE procedures themselves, when they are in­
voked, will also provide data input filtering capability. 
Both are structured so that they can reprompt the user for 
correct data values. 

The FIX specification invokes checking procedure in a 

HEAIlER(l) 

HEAIlER( 2) 

HEAIlERO) 

- ('Name: last,flrst,mlrldle Inltl"l', 'none' ,NA"'E, CHAROO),NONE); 

- ('Stanford medical record number','non~',"'EDRFC,VALUE,NONE); 

/* Stored as a six digit number. */ 

- (' RI rthdate', 'none', R I RTHIlAT, IlATE,NONE); 

PARAI~ETER(l) - ('Oate of vlslt','none',IlATE,[IATE,NONE); 

PARA"ETER(2) - ('Age of patient to date','years',AGE,VALUE,NnNE); 

/* The value of age Is automatically computed from BIRTHOAT as a 

decimal number of years when the value of OATE Ie entered.*/ 

of OATE Is entererl. */ 

Figure 2-Required header and parameter items 

Structured Organization of Clinical Data Bases 483 

IlECLARE HEAIlER(6); /-Allow six HEAOER ele",ents./ 

IlECLARE PARAt~ETER(lO); /*Allow ten PARAtIETEP elel'1p.nts */ 

/* Thp.n follow the HEAIlER elements required for use of TOO programs. */ 

/* This HEAOER element Is defined for a specific uSf!r's data bank. */ 

HEAIlER(4) - ('Marital status', 'none' ,MARITAL,COIlE,tIONE); 

HEAIlER(S) - ('Home address','none',ADDRESS,CHAR(200),NONE); 

/* Thf! followln!,; arf! PARAt'ETEP' f!lemp.nts requl red for use of TOO IHoy,rams. */ 

PARAMETER(l) - ('Oate of visit', 'none' ,IlATE,OATE,NONEl; 

PARAt,ETER(2) - ('Age of patient to date', 'years' ,AGE,VALlIE,NONE); 

/* Thf!se are PARAMETER elel'1p.nts chosen for a specific user's data bank */ 

PARAtIETERO) • ('Fatlguf!', '+RANGE' ,FATIGlIE,+RANGE,RANGE TRANSPOSEIl); 

INITIAL FATf(WE VALlIE(O) SAME; 

P(4) - ('White blood cpll count','xlOOO',WCC,VALlIE LltHO,30),RMIGE); 

P(5) - ('Protp.ln','mgmt',PROT,VALUE FIX,INIlEX); 

Figure 3-Example of a schema 

deferred operation. Since extensive on-line checking can 
make a system unresponsive and costly, there can be a sig­
nificant benefit if complex checking procedures are exe­
cuted at night or other low utilization times. An error 
report will be produced, and when correct values have 
been determined, they can be entered via the normal up­
date mechanism. 

File service 

The implementation of TOD would not have been 
feasible without the availability of the services of a power­
ful filesystem. 26 The essential features of the ACME file 
system will only be summarized. 

The file system provides isolation between users. Files 
which have not been further protected, however, can be 
read by other legal users of the system. The general public 
library is actually handled as one additional user. Nearly 
absolute reliability has been achieved. The use of 
programmed redundancy, internally suspicious code, 
system initiated back-up procedures, and other techniques 
has resulted in a file system, which through many years of 
normal operations with the typical rate of equipment 
changes and failures, is trusted by the medical staff. 

The file structure supports sequential access, direct ac­
cess and indexes all within one physical file design. 
Sequentially written records are given ascending integers 
as keys, and the index allows direct retrieval of compactly 
stored variable length records, assigned dynamically to not 
necessarily contiguous blocks. The two level index sup­
ports only numeric keys. The key for the patient file is a 
patient number and the key for the visit file is a 
sequential visit number. The files, while not physically 
sequential, appear hence as indexed-'sequential files. 

The availability of co'mpression makes it possible to 
store the inherently sparse medical records efficiently, 
while the user works with array oriented concepts which 
are convenient to manipulate.27

•
28 The compression of nu-



484 National Computer Conference, 1975 

meric data uses a four-valued coding system: 

00 val ue is zero 
01 value is undefined 
10 non zero value 
11 repeat of previous value 

The "undefined" data type (coded within the processor as 
negative zero) is recognized throughout the ACME system, 
and IS specifically important in statistical analysis. The 
compression, even with the additional bits required for 
new non-zero values, reduces TOD data files by a factor of 
five. The access files are also compressed. They contain 
many repeated element values. 

The fact that compression is employed causes changes 
in the sizes of the records when the records are updated. 
An implementation of the compression algorithm for dy­
namically changing files is only possible because the 
design 6f the file system permits the rewriting of records 
that have changed in size. Few file systems permit such an 
action. Occasionally data have to be moved between 
blocks or new blocks have to be logically inserted to enable 
record expansion. 

The use of these file system facilities permits the 
presentation of the formal structure to the users, without 
burdening their programming with file efficiency 
considerations, which are user and environment specific.29 
The levels of hierarchy of the data have also been imple­
mented through symbolic linkages, rather than through 
the use of pointers. This structure provides more flexi-

. bility in data management. We believe that these are 
important aspects of a methodical approach to the 
development of successful large information systems. 

Operational support 

The entire system is written in an interactive subset of 
PLj 1, called PLj ACME, at the Stanford University 
Medical School.30 The TOD system was originally imple­
mented using the ACME services on an IBMj360, model 
50. The ACME System operated as one partition under 
IBM's OS system. Stanford has since replaced the model 
50 with an IBM 370, model 158 and ACME runs there 
under VS2, using mainly virtual storage, but it still main­
tains its own file system. It would seem desirable to use 
the IBM VSAM file system instead, in order to provide 
system compatibility, albeit at higher overhead costs. 
Conflicting demands on the 158 system have caused Stan­
ford to decide to implement ACME-like files and other 
facilities on an IBM 360, model 67. No IBM file system 
exists for the 360 which offers adequate facilities, so that 
again a special file system is required. Uncertainties 
associated with the hardware changes described above 
have retarded the ongoing TOD development. 

Currently, all TOD users share the same large com­
puter. For applications where a dedicated smaller system 
is more appropriate, the concept of the schema and the 

common data names provides the same benefits and may 
be an important step toward communication between data 
bases which are both logically and physically distant. 
Since the intensity of data utilization tends to be highest 
within individual project areas, a modest level of inter­
system communication capability should be adequate to 
provide data sharing when required. Such alternatives are 
being investigated. 

CONCLUSION 

The system described attempts to allow the variety of ac­
cess and use seen in the medical record environment while 
providing many sharable resources. The structure im­
posed: 'patient having visits' seems well accepted. Within 
this structure we find databanks specifying from 20 to 
500 data items which might be collected per patient visit. 
The usage of the databanks ranges from the monitoring of 
patients follow-up visits to the prognosis of disease 
development from the records for patients which 
presented similar symptoms. This is done without de­
pendence on diagnostic codes. 

The demonstrated ability to share programs allows new 
projects to reach operational status rapidly after file 
definition and user-specific programs have been com­
pleted. Most databanks do not have a full-time program­
mer associated with them. The owners have been willing to 
pay for the computer services at approximately com­
mercial rates. There is only one user outside of Stanford 
University and promotion of such use is not within the 
mandate of the institution. 

The adequacy of the approach is best demonstrated by 
the extent with which such systems are accepted and 
adapted to cope with the changing medical environment. 
Incompatibility and weaknesses in the technical support 
still inhibit direct transfer of interactive data base ap­
plications. Documentation of effective computer applica­
tions will provide directions for further development of ap­
propriate systems.31 

ACKNOWLEDGMENTS 

Many people have contributed to this effort. We wish to 
thank especially Frank Germano, who expended much 
energy in bringing the system to a routine operational 
level. All of the users have contributed more than they 
intended. This description of the system was improved 
greatly by the thorough work of the NCC reviewers. Ap­
plications of the system have been reported elsewhere by 
Fries and Weyl among others.32,33,34 

Current developments of the system are in the hands of 
Ned Russell of the Stanford Center for Information 
Processing and Jim Standish and Alison Harlow of the Di­
vision of Immunology, Stanford University Medical 
School. Initial resources for the implementation of TOD 
came from the Biotechnology Resources Branch of NIH 



(RR 00311-4) which established the entire ACME service. 
Present support is afforded by an award of the American 
Society of Computer Medicine. 

REFERENCES 

1. Starmer, C., R. A. Rosati, J. F. McNeer, "Data Bank Use in 
Management of Chronic Disease," Editorial, Computers and 
Biomedical Research, Vol. 7, No.2, April 1974. 

2. Feinstein, A. R., Clinical Judgement, Wilkins and Wilkins, Balti­
more, 1967. 

3. Somers, Anne R., Health Care in Transition, Direction for the Fu­
ture, Hospital Research and Educational Trust, Chicago, 1971. 

4. Davis, Lou, "Prototype for Future Computer Medical Records," 
Computers and Biomedical Research, Vol. 3, No.5, Oct. 1970. 

5. Horton, Caroline L., J. Edward Okies, Bruno J. Messmer, Grady L. 
Hallman and Denton A. Cooley, "Computer Application in Clinical 
Medicine, CARE: A Practical System for Processing Data," Com­
puters and Biomedical Research, Vol. 6, No.3, June 1973, pp. 286 to 
298. 

6. Fries, James F., "Experience Counting in Sequential Computer 
Diagnosis," Archives of Int. Med., 1970, pp. 647 to 651. 

7. Freed, Ray N., Law and Contemporary Problems, Autumn 1967, 
Duke University School of Law, Durham, N.C. 

8. Weed, Lawrence L., Medical Records, Medical Education and 
Patient Care, Case Western Reserve University press, 1969. 

9. Culliton, Barbara J., "Cancer, Heart Disease, and Everything 
Else," Science, Vol. 181, Aug. 1973, pp. 822 to 830. 

10. Baker, F. T., "Chief Programmer Team Management of Production 
Programming," IBM Systems Journal, Vol. 11, No.1, 1972. 

11. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems 
into Modules," Comm. of the ACM, Vol. 15, No. 12, Dec. 1972. 

12. Wiederhold, Gio, A Proposal for the Structuring of the Data Base 
Problem, April 1973, unpublished, available from the author. 

13. Wiederhold, Gio, "New Environments for Statistics," Allied Statis­
tical Meeting, Detroit 1970, abstract Stanford Univ. ACME Note 
ASD, July 1970. 

14. Dixon, Wilfrid J., "Use of Displays with Packaged Statistical Pro­
grams," Proc. of the 1967 FJCC, AFIPS Vol. 31, pp. 481 to 489. 

15. Barnett, G. Octo, "The Use of Computers in Clinical Data Manage­
ment: The Ten Commandments," AMS Conference, Las Vegas, Ne­
vada, Feb. 16, 1971. 

16. Baker, M. G. J., et aI., Data Base Management Systems, Their Use 

Structured Organization of Clinical Data Bases 485 

in Hospital Data Processing, Her Majesty's Stationery Office, 
London 1972. 

17. Sanders, W. J., Gio Wiederhold, et aI., "An Advanced Computer 
. System for Medical Research," Proc. of the 1967 FJCC, AFIPS Vol. 

31, pages 497 to 508. 
18. Frey, Regina, Serge Girardi and Gio Wiederhold, "A Filing System 

for Medical Research," Int'l Journ. of Biomedical Computing, Vol. 2, 
No. 1,1971. 

19. Fries, James F., "Time-Oriented Patient Records and a Computer 
Data Bank," Journal of the Am. Medical Assn., Vol. 222, No. 12, 
Dec. 1972. 

20. CODASYL Data Base Task Group, April 1971, ACM, New York. 
21. Weyl, Stephen, Definition of the PL/ACME Time-Oriented Data 

Bank Protocol, Stanford University, ACME Note TODD-I, Oct. 
1972. 

22. Codd, E. F., "A Relational Model for Large Shared Data Banks," 
Comm. of the ACM, Vol. 13, No.6, June 1970. 

23. Codd, E. F., "Further Normalization of the Data Base Relational 
Model," in Randall Rustin Data Base Systems, Prentice Hall 1971. 

24. Germano, Frank, Stephen Weyl, Voy Wiederhold, et aI., Stanford 
University TOD (Time-Oriented Databank) Users Manual, April 
1973, Aug. 1973 (2nd ed.). 

25. Wiederhold, Voy, How to Write a Schema for a Time Oriented 
Medical Record Data Bank (TOD), Stanford University, ACME 
Note TDUA-2, July 1973. 

26. Miller, Gerald F., The ACME File System, Stanford University, 
ACME Note FY-1, Feb. 1969. 

27. Wiederhold, Gio, Proposal to Aid in More Efficient Usage of Disk, 
Stanford University ACME Note PEFF-1, Dec. 1971. 

28. Granieri, Charles, Data File Compression, Implementation Notes, 
Stanford University ACME Note WCOMPS-2, April 1973. 

29. Johnson, Martin E. and Ruth E. Dayhoff, MUMPS Primer, Na­
tional Bureau of Standards, Sept. 1974. 

30. Breitbard, Gary Y. and Gio Wiederhold, "The ACME Compiler," 
Proc. of the 1968 IFIP Conference, North Holland 1969, pp. 358 to 
365. 

31. Wiederhold, Gio, Data Base Structure and Schemas, in preparation, 
partially available as class notes for MIS290, USCF. 

32. Fries, James F., "Alternatives in Medical Records," Medical Care, 
1974. 

33. Fries, James F., Stephen Weyl, and Hal Holman, "Estimating Prog­
nosis in Systemic Lupus Erythematosus," Am. Journ. Med., Vol. 57, 
pp. 561 to 565, 1974. 

34. Weyl, Stephen, James Fries, Gio Wiederhold, and Frank Germano, 
"A Modular, Self-Describing Clinical Databank System," to be 
published in Computers and Biomedical Research, April 1975. 





Integrated data bases for municipal decision­
making 

by PATRICK E. MANTEY and ERIC D. CARLSON 
IBM Research Laboratory 
San Jose, California 

APPLICATIONS OF A MUNICIPAL DATA BASE 

Municipal governments are, in essence, created to deliver 
services to a geographical area. There is an unusual va­
riety, in comparison to private industry, of services of­
fered. Local government is often structured (or fractured) 
along functional lines into special districts, as well as by 
geography. Such structuring has precluded concentration 
of power, but it has increased the complexity of planning, 
resource allocation, or management. 

Many of the problems in municipal government require 
decisions which are not routine. Rather, they require the 
professional insight and judgment of human decision 
makers who consider the specific conditions of each 
problem. Ideally, this insight and judgment would be 
aided and guided by appropriate information derived from 
a comprehensive data base. This is the objective of a mu­
nicipal information system: to facilitate effective analysis 
and solution of specific problems by supporting human de­
cision makers with data resources and analysis functions 
in readily usable form. Because a municipality provides 
services to a geographical area, much of the data relevant 
to decision-making or problem solving in local agencies 
will have geographical attributes, and can be given spatial 
interpretation via maps. A key attribute of a municipal in­
formation system is the capability for displaying informa­
tion in the form of maps. Another requirement for such 
systems to be effective is that they support ready use by 
decision makers who know very little about computers. 
The system must help the decision makers develop their 
precise objectives or decision criteria. for solving a 
problem. The solution process in such decision-making re- ' 
quires exploratory analysis, selection of relevant data, and 
meaningful data presentation in an .interactive environ­
ment. A system which provides such capabilities, called 
GADS (Geo-data Analysis and Display System) has been 
developed and evaluated in several applications, su~h as 
police manpower allocation and analysis of urban develop­
ment policies.1

-
4 The evaluations of GADS indicate that 

interactive analysis and display systems have a great 
potential in the operations, management~ and planning of 
municipalities. 

As an example, consider a municipality which main­
tains a computerized property information file (via the tax 
assessor function). Such a file would have detailed data on 

487 

each parcel. If this data were accessed via an interactive 
information system, a decision maker could readily ob­
tain, for example, the address and assessed value of all 
residences constructed between 1960 and 1962 and having, 
floor area between 1600 and 1800 square feet, on lots with 
6800 to 7200 square feet. If the user of the system were a 
real estate appraiser, this information displayed on a map 
would provide the appraiser with information in a spatial 
framework. If the user of the information system were an 
assessor concerned with determining the neighborhoods 
which could be considered equivalent for purposes of com­
puter-aided appraisal, additional data would be required. 
If recent sales records are the basis for calibrating the 
assessment model, it may be found that the assessor's data 
alone cannot be used to model variations in selling price of 
houses fitting the description above. Showing on a map the 
mean and variance of the selling price of such houses by 
neighborhood will offer the assessor a visual means for 
examining the quality of the assessment model. The dis­
play may cause the assessor to consider other factors to 
explain the variations; e.g., crime rate, level of public 
facilities and services (such as the influence of an adjacent 
regional park5

) or the influence of other near-by land uses. 
For the user to further investigate the influence of these 
factors, the information system would have to provide ac­
cess to the data in the appropriate files (e.g., crime, public 
facilities, land use) and support the relating of data in 
these files to the neighborhoods of interest. Such systems, 
which provide access to arbitrary subsets of a data base 
and which facilitate the development of such subsets at ar­
bitrary levels of aggregation, will be said to offer a 
comprehensive data base. 

CURRENT STATUS OF MUNICIPAL DATA 
BASES 

The importance of a comprehensive data base to sup­
port decision-making in municipal government has been 
widely recognized. There have been several different ap­
proaches taken to the development of comprehensive mu­
nicipal data bases. 

One approach, which was popular in the 1960's, was the 
development of a comprehensive "data bank." This data 
bank was usually generated as a special collection or 



488 National Computer Conference, 1975 

census, and often was carried out and funded as part of a 
comprehensive transportation and land use planning 
study. Data acquisition consumed a major portion of the 
resources of these studies and often did not provide any in­
formation relating.to many municipal services (e.g., public 
safety). Although accurate data was often gathered in the 
development of these data banks, their value was short­
lived because they were at best a snapshot of the state of 
a very dynamic system, and no means were provided for 
updating and extending these data banks. 

At about the same time, the computer was becoming a 
tool in the operations of local governments. The applica­
tion of computers by municipalities beginning in the 
1960's can be characterized as a function-by-function ap­
proach, with data processing introduced into tasks involv­
ing high-volume routine transactions. The computer is 
generally utilized in those functions which have previously 
been computerized in private industry: payroll, account­
ing, billing, budget status reporting, personnel records, etc. 
Also, the 1960's saw widespread use of computers in the 
processes associated with pro'perty records, elections, and 
in operations of law enforcement agencies. Usually these 
applications were isolated from each other, and no at­
tempts were made to make this information available for 
use by other municipal functions. 

Current approaches related to the development of mu­
nicipal data bases are characterized by the USAC 
projects,6 particularly those of Charlotte, North Carolina, 
and Wichita Falls, Texas. These cities were funded by the 
Federal USAC project to build Integrated Municipal In­
formation Systems, (IMIS). The USAC efforts involve 
city governments, and were the consequence of studies 
such as the IBM / New Haven projecF and the 
USC/Burbank project.8 These earlier groups sought to 
develop a methodology, via a "systems approach", for the 
application of computers by municipalities6 but did not 
result in implementation of integrated municipal informa­
tion systems. The USAC approach wisely focused on 
operational sources to provide the current data required 
for municipal decision-making. In the implementations, 
which are still in progress, the cities have concentrated on 
building up operational uses of computers, and on imple­
menting these applications on a central computer under 
an integrated data-base management system. The value of 
computers to these operational functions has been con­
firmed9 but the applications of IMIS in the areas of 
management decision-making are still to be demonstrated. 

One of the difficulties that must be overcome in provid­
ing a comprehensive municipal data base (even in cities 
with a fully integrated and operational IMIS constructed 
according to the USAC philosophy), is that complete in­
tegration, where all municipal functions use the same com­
puter and data base management system, is not a likely 
prospect with current local governmental structure and 
with the limited resources of local governments. For 
example, the data pertinent to decision-making in a city 
may be gathered by another agency, such as the tax 
assessor, and may reside on different computers, under 
different data management schemes and in different file 

formats. In addition, problems of data security, compati­
bility of files, and high processing costs may make com­
plete integration unrealistic for many municipalities. Spe­
cial data collections, such as the U.S. Census, and data 
available from state sources, must also be readily incor­
porated into a municipal data base. With census data 
gathered according to blocks, block groups and census 
tracts, with assessors property data coded according to 
assessor map, book and page, with public works data in 
state-plane coordinates, and school data gathered by 
school attendance area, the building and maintenance of a 
truly integrated municipal data base presents a for­
midable task. 

APPROACHES PERMITTING DEVELOPMENT OF 
INTEGRATED FILES 

A completely integrated data base would have all data 
relating to any functions of a municipality residing on the 
same computer system, under the same data management 
system and organized and indexed to facilitate correlation. 
This ideal is not attainable, given present organizational 
structures and computing capabilities in most munici­
palities. However, if the computerized files of various mu­
nicipal functions are "properly structured," it will be 
possible to achieve the same benefits as if there existed a 
completely integrated municipal data base. In addition, 
such an approach will not require re-implementation of 
current applications, but rather leaves the application 
data base in the control of those responsible for its 
primary maintenance and use. 

The approach taken is to make use of data, when data 
files are "properly structured," to develop the same results 
as if there existed a completely integrated data base 
without requiring that complete integration take place. 
This should not be construed as an argument against in­
tegration. If integration is politically and technically 
possible, provides required data security, and is eco­
nomically attractive, it should be implemented. Even with 
an integrated data base, there will always be decisions 
which require different groupings of data than those sup­
ported by the integrated data base. There will also remain, 
in practice, data sources which cannot be integrated. So, 
the problem of providing a comprehensive data base from 
multiple data sources is unavoidable and is not completely 
solved by an "integrated" data base. 

The "proper structuring" required to make data integra­
tion possible can be illustrated by example. If one is 
interested in information about burglaries, and wishes to 
relate this information to neighborhood conditions, data 
sources could include police dispatch files, criminal justice 
arrest files, census data and tax assessor files. Suppose the 
police dispatch data is used for burglary incidence, and 
that such data is available in terms of police beats, e.g., 
the number of burglaries in each beat for each day. If one 
wishes to use census data for socio-economic information, 
and if the census tracts and beats have few common 
boundaries, no small area information is obtainable relat-



ing these data sources. Alternatively, if the police dispatch 
data is captured by the street address of the call, and if a 
directory exists for the city which will permit identifica­
tion of the census tract for each street address, then burg­
laries and socio-economic data can be related at the census 
tract level. 

"Proper structuring" of data files only has meaning with 
respect to potential uses of the data (i.e., data files are not 
an end in themselves). If the objective is to offer data to 
support decision-making in a wide range of problem areas, 
then the data files must be as detailed as possible, within 
the constraints of economics, privacy and security. The 
detailed data can then make possible the development of 
the widest variety of data subsets and aggregations, and is 
more likely to permit development of the required set of 
integrated data for a particular decision-making context. 
An additional requirement is the existence of data ele­
ments in each file which will facilitate relating the data to 
that from different files. (In this paper, geographical 
references will be singled out as data elements serving this 
function in municipal files. Common references to account 
numbers, project numbers or personnel identifiers are 
other examples of data elements permitting the relating of 
data from different source files.) A set of files will be 
called "properly structured" if it contains information per­
mitting the relating of data from different source files so 
that integrated subsets of data at the appropriate level of 
detail can be developed to support the requirements of 
problem solvers. 

Because municipal government is a service delivery 
function, mutual references to geography can often be 
used to relate data from the diverse files available in mu­
nicipalities. A powerful file in facilitating the relating of 
data, based on these common geographical references, is a 
Geographic Base File (GBF). Functionally, the GBF 
contains data to support the relating of data from other 
files to geographical location and also the display of this 
data on a map. The creation of a GBF for a municipality is 
a key requirement in the development of a comprehensive 
municipal data base from source files. Several different ap­
proaches have been taken. 

The simplest GBF is a file sometimes called a Property 
Location Index (PLI) which contains a list of the valid ad-:­
dresses in the municipality and an x,y coordinate for each. 
This approach is the one used in Lane County, Oregon, and 
by the Assessor in Santa Clara County, California. To 
make this more useful, a list of public place and street 
intersections and their x,y coordinates is appended. With 
such a GBF it is then possible to automatically convert ad­
dresses (in the police call file for example) to x,y coor­
dinates. If the GBF also contains the police beat, census 
tract, and municipality for each address, then it is very 
simple computationally to count the number of calls in 
each beat. Evaluation of calls by census tract would also 
permit consideration of socio-economic data with the crime 
data (of course, police officers could also encode calls by 
beat and census tract, but this approach is liable to signifi­
cant errors and seems to be a poor use of police manpower). 

The most detailed GBF's contain digitized land parcel 

Integrated Data Bases 489 

boundaries, easement locations, building outlines, utility 
placements, and even topographic information, along with 
street address information on all parcels and names of all 
public lands and buildings. This GBF is at the level of de­
tail of surveyor's data, and is suitable for engineering ap­
plications and detailed map building. Ottawa, Canada's 
National Capital Commissionll has pioneered in the 
development of this kind of GBF. 

The most common GBF at the present time is the result 
of work by the U.S. Census Bureau in conjunction with 
the 1970 Census. Using the Metropolitan Map Series, a 
massive feature labeling and digitization was performed 
for 200 major metropolitan areas in the United States. 
The resulting computerized maps were called the DIME 
(Dual Independent Map Encoding) files. 12 Each entry 
(record) in the DIME file represents a line segment (a por­
tion of a street segment, railroad, creek, city limit, etc.). 
Administrative overlays (e.g., beats, census tracts) can be 
readily defined in terms of segments of this file. Used in 
combination with "point-in-polygon" routines, these com­
puterized overlays facilitate development of counts of 
events in areas of any specific overlay map. 

As in the development of any large machine readable 
file, high startup costs, data errors, and poor standardiza­
tion have hindered development of GBF's. But the key 
problem in the development and use of a GBF is editing 
(corrections and additions). Because of the startup cost, 
accuracy, and standardization problems, editing is a key 
aspect of development. It is particularly important to 
verify the topological and coordinate accuracy of the file. 
Even if there were no developmental problems, 
"geographic" changes, such as new streets or changing 
area boundaries, make file editing essential to a useful 
GBF. The Census Bureau and related efforts have 
produced programs for off-line creation and batch editing 
of a DIME file. 12

-
13 These programs require a digitizer for 

data entry and take large amounts of computer and clerical 
time for editing. Although the procedures were used to 
create 200 GBF's, there has been little editing, and hence 
little use, of.these files. Some cities (e.g., Reference 14) 
have developed their own GBF's similar to DIME. These 
efforts are also characterized by the use of a digitizer and 
batch computer programs for file creation, and by cum­
bersome file editing procedures. There have been a few ef­
forts to develop on-line digitization systems, (e.g., 
Reference 15) and there are experimental systems which 
could support on-line digitization with visual feedback. 16- 17 ' 

Yet, none of these systems provide all of the capabilities 
required for effective GBF creation and editing. Conclu­
sions drawn from the IBM studylO regarding the require­
ments for interactive GBF editing and maintenance were: 

1. There must be a capability for projecting hard copy 
maps and/ or photographs onto the display screen. It 
must be possible to select arbitrary (contiguous) sec­
tions of the maps, and to produce a range of scales. 

2. The display system must be able to handle multiple, 
non-rectangular geographic coordinate systems. 

3. The display system must be able to produce both 



490 National Computer Conference, 1975 

text and lines, with at least three colors for lines (in 
order to be able to distinguish two maps). 

4. The display system must enable selection of any ad­
dressable point on the screen, whether or not any­
thing is displayed at that point. 

5. The creation and editing functions must include: 
digitization of base and overlay maps; labeling of 
points, lines, and polygons in the maps; moving and 
deleting points and lines; display of any section of 
the maps, and of specific points, lines and polygons; 
and checking for topological accuracy. 

DATA EXTRACTION 

Philosophy and operation 

In the previous section, the combination of a GBF and 
properly structured source files containing geographic 
references were identified as the basis for offering a deci­
sion maker a comprehensive data base. Recent studies of 
interactive information systems applications in the solu­
tion of unstructured problems·,18,19 have identified the 
need for reduced subsets of data for supporting the deci­
sion-making. Data reduction is required because: 

a. the potentially useful data base will be much larger 
than the data actually used, 

b. the user will want access to varying levels of detail in 
the data base, 

c. the relevant subset of data will vary during the 
problem-solving process, 

d. some data (e.g., census and event data such as police 
calls) may not be compatible at the detail level of the 
data captured in the source files. 

Extraction is a process by which an integrated subset of 
data is developed from the source files relevant to a 
particular problem-solving application. Extraction thus 
provides the user with a capability effectively indistin­
guishable from a fully integrated data base, without 
requiring the development of such an integrated data base 
at the detail level of the source files, i.e., it provides a "vir­
tually" integrated data base. 

The extraction approach builds a data base subset from 
the source files according to a priori specifications for a 
particular application. Total integration of the source files, 
and dynamic aggregation and subsetting of the data at the 
time the data items are required is of course an alternative 
approach. This approach is not attractive in today's envi­
ronment because: 

a. for any application all the relevant source files would 
have to be on-line to support conversational interac­
tion, 

b. protection of the source files would be more difficult, 
c. development of conversational information systems 

would require additional, standardized data struc-

tures and codes for the dynamic aggregation and 
subsetting, 

d. better conversational performance is possible when 
the problem solving accesses a smaller data base. 

Clearly the development of a fully-integrated, on-line 
data base from the source files, solely for problem-solving 
applications, is not (currently) economical. Such an ap­
proach would also require special procedures for keeping 
the duplicate records current and consistent. With the ex­
traction approach, the subset of data thought to be rele­
vant to the particular problem is developed and made ac­
cessible to the problem-solving system in an extracted 
data base. The subset is an extract from the available 
source files at the level of detail desired by the decision 
maker for (that phase of) problem solving. This extracted 
data base may be thought of as a set of tables. Each table 
contains values for a set of variables extracted from the 
source files. For each variable there is one value in the 
table for each basic unit (e.g., zone, account, employee) 
used for the problem solving. New variables can be added 
directly to the extracted data base as an added column of 
the tables. An example of an extracted data base as imple­
mented in the GADS system3 is shown in Figure 1. The ex­
tracted data tables are formed from: source files contain­
ing 10 years' data on crimes, land use, and population; a 
special purpose map of police beat-building-blocks (basic 
zones); and an extraction specification for computing 20 
crime categories and selecting population and number of 
houses by year. The result is 10 tables (one for each year) 
giving crime by category, population, and number of 
houses for each basic zone. 

The extraction approach leaves control of the opera­
tional source files in the hands of the originating applica­
tion. The extracted data bases are "snapshots" which are 
current at the time of their development. The problem 
solver can re-invoke the extraction process at any time to 
get a more current extracted data base. This process 
decouples the data base used in problem solving from the 
operational files, and assures the problem solver that the 
data base upon which he makes decisions is under his con­
trol. This user control of the extracted data base, and the 
potential pe·rformance advantages offered by access to the 
smaller extracted data set as compared to access to the 
total set of data, make the extraction approach attractive 
even in installations where an integrated data base exists. 
Extraction is simplified with the existence of an integrated 
data base, because there are then no difficulties with file 
formats and data conversion. 

Extraction system architecture 

The architecture of a municipal information system 
designed using the data extraction philosophy would have 
three major sets of programs and data bases (e.g., Figure 
1). The first set would be the source data files and related 
programs for data entry, update, and other routine 



Integrated Data Bases 491 

ANALYSIS AND DISPLAY 
FUNCTIONS 

Statement Language 

Map Display 

Overlay 
Contruction 

Graphs 

Geographic 
Base File 

Table Display 
and Correction 

Geographic Code 
't--------+--.. to Geographic 

Coordinate 
Transformation 

N 

Year 10 

3 
17 
4 

26 

Example of Tables 
in Extracted Data Base 

Crimes··· Houses··· Population 
#2 

15 
6 
4 

9 

50 
53 
41 

15 

EXTRACTION 

SOURCE 
DATA 
FILES 

146 
203 
192 

47 

Figure I-GADS architecture 

processing. These files should be "properly structured" as 
defined earlier in this paper. The data base management 
for these files may be an integrated system, such as IBM's 
IMS, or a more traditional system such as those provided 
by IBM's DOS. The second component includes accurate 
reference files (indices), such as the Geographic Base File, 
programs for maintaining these files, and programs for 
providing the data extraction functions of data matching, 
subsetting, and aggregation. This component is the key to 
integrating the data base of source files. The GADS 
experience indicates that it is possible to develop general 

purpose programs for the data extraction functions. 
Essentially, these functions provide integration through 
user-invoked processing, rather than through the compli­
cated data structures and accompanying processing 
overhead often found in integrated data base systems. The 
data extraction programs are the interface between the 
municipal data base and the third component of the archi­
tecture, the extracted data bases and associated decision 
support system. The GADS analysis and display functions 
are an example of a decision support system for non­
programmer users. A data extraction interface can provide 



492 National Computer Conference, 1975 

multiple extracted data bases for a single decision support 
system, or for multiple decision support systems. For 
example there might be decision support systems for cash 
management, budget preparation, urban planning, com­
puter-assisted appraisal, crime analysis, etc., all supported 
by a common extraction interface. The data management 
techniques for the extracted data bases should be tailored 
for each decision support system. However, the data ac­
cess techniques may be the same as those provided for the 
source data files. 

The details of the data extraction architecture and the 
implementation requirements are beyond the scope of this 
paper and there will be installation-specific comments. 
There is, however, one general requirement for any data 
extraction system. This requirement pertains to the data 
aggregation functions of extraction and can be described 
by considering examples of the data sources encountered 
in municipal governments and the kinds of extracted data 
to be developed from these sources. Consideration here is 
limited to data which can be related to points or areas. 
Data related to networks, budget items, part numbers, 
etc., should be handled in an analogous fashion. 

1. Compatible data 

This is the easiest, and fortunately the most frequent 
situation, if data files are "properly structured" as defined 
previously. The data in source files which can be 
identified with geographic points (x,y) can be directly re­
lated (and aggregated). If the extracted data base is to be 
relevant to a study of slum dwellings, for example, and if 
health cases, fire alarms and building code violations are 
all data sources which are available at the event level, 
(i.e., by address) then an extracted data table showing in­
cidence of each of these events for specified addresses 
can be directly developed. Another frequently used ex­
tracted data base is the tabulation of such event data by 
geographical area, in terms of a specified map. (The ex­
tracted . data base in Figure 1 is an example of this.) Ex­
tracted data bases in such cases are obtained by matching 
coordinates of events to the corresponding map areas (via 
point-in-polygon processing of the event coordinates 
against the map boundaries specification). 

2. Non-compatible area data 

If data is available by areas in the .source files, and 
these areas are not compatible (i.e., one map is not a 
subset of the other), the extraction process is more compli­
cated. For a chosen set of variables from the source files, 
there is a minimum level of aggregation at which an ex­
tracted data base is possible. For example, school atten­
dance areas and police beats (and therefore the associated 
data) may only be compatible at the census tract level, 
i.e., they may both be (different) finer partitions of census 
tracts. The extraction process should alert the user to the 
non-compatibility and display for the user the minimum 
level of aggregation necessary for compatibility of the data 
sources of interest, in the form of a map, and permit the 

user to specify further aggregation from this map as 
desired. 

If the user desires an extracted data base at a detail 
level finer than is compatible with the data sources given, 
the user must supply additional information. F~r example, 
suppose the user is studying property values vs. age dis­
tribution of inhabitants, with the age data on citizens 
available from the census only at census tract levels of ag­
gregation. Compatibility exists at the census tract level. 
Any finer detailed extracted data base, at the city block 
level for example, could only be developed if the user is 
willing to make assumptions (such as homogeneity of the 
distribution of population ages in the census tract). 

SUMMARY AND CONCLUSIONS 

The development of information for decision-making in 
municipalities requires integration of data from the 
various operational files which are generated in local 
government. Even when an integrated municipal data base 
does not exist, it is possible to develop integrated data 
from properly structured source files in conjunction with a 
well-maintained reference file, such as a Geographic Base 
File. The current sources of information developed in mu­
nicipalities, in particular the property data of the tax 
assessor function and the operating files of various service 
delivery functions, provide a rich source of information, 
augmented by special collections such as the U.S. Census. 

Data Extraction is the process of developing integrated 
data subsets from diverse source files to support interac­
tive problem solving. Extraction provides the interface 
between large data bases of source files and problem solv­
ing systems through data matching, subsetting and ag­
gregation functions. Our experience with GADS has shown 
that data extraction is useful when the user or problem 
characteristics require access to varying amounts, detail, 
and selection of data, and conversational (rapid response) 
interaction with a problem solving system. These charac­
teristics are likely to be encountered when designing 
problem solving systems for nonprogrammer, professional 
users working on unstructured problems. The data extrac­
tion interface matches the functional and response time 
requirements of interactive problem solving, can be imple­
mented on a variety of computer system configurations, 
and can reduce the operating costs of the problem solving 
system. 

Because data extraction operations can produce 
multiple extracted data bases, with different structures, a 
single data extraction interface can support multiple. 
problem solving systems. In addition, existing problem 
solving systems can be supported and enhanced by data 
extraction without major program revisions. 

REFERENCES 

1. Mantey, P. E., J. L. Bennett, E. D. Carlson, "Information for 
Problem Solving: The Development of an Interactive Geographic In­
formation System," IEEE Int. Con/. on Communication, Vol. II. 
Seattle, Wash. June 1973. 



2. Cristiani, E. J., R. J. Evey, R. E. Goldman, P. E. Mantey, "An 
Interactive System for Aiding Evaluation of Local Government 
Policies," IEEE Transactions on Systems, Man & Cybernetics, Vol. 
SMC-3, No.2, March 1973, pp. 141-146. 

3. Carlson, E. D., J. L. Bennett, G. M. Giddings and P. E. Mantey, 
"The Design and Evaluation of an Interactive Geo-data Analysis and 
Display System," Proceedings of the IFIP Congress 74, International 
Federation for Information Processing, Stockholm, August 1974. 
North Holland Publishing Company, Amsterdam, 1974. 

4. Carlson, E. D., and J. A. Sutton, A Case Study of Non-programmer 
Interactive Problem-Solving, IBM Research Report, RJ 1382, IBM 
Research Laboratory, San Jose, Ca., April 1974. 

5. Hammer, T. R., R. E. Coughlin, E. T. Horn IV, "The Effect of a 
Large Urban Park on Real Estate Values," Journal of the American 
Institute of Planners, Vol. 40, No.4, July 1974, pp. 274-277. 

6. "City Hall's Approaching Revolution in Service Delivery," Nation's 
Cities, January 1972. 

7. Concepts of an Urban Management Information System, a Report to 
the City of New Haven, Connecticut, by Advanced Systems Develop­
ment Division, IBM Corporation, Yorktown, January 1967. 

8. A Municipal Information and Decision System, University of 
Southern California, School of Public Administration, 1968, 

9. Stickrod, R. L. and L. C. Martin, Data Processing: Analysis of Costs, 
Benefits, and Resource Allocations, Lane County, Oregon, Manage­
ment Report, February, 1973. 

Integrated Data Bases 493 

10. Giddings, G. M. and E. D. Carlson, An Interactive System for Creat­
ing, Editi~g and Displaying a Geographic Base File, IBM Research 
Report, IBM Research Laboratory, San Jose, California, 1973. 

11. Symons, D. C., A Parcel Geocoding System for Urban and Rural In­
formation, Ottawa, Ontario, National Capital Commission, 1970. 

12. U.S. Bureau of the Census, Census Use Study, The DIME Geocod­
ing System Report No.4, Washington, D.C., 1970. 

13. U.s. Bureau of The Census, Census Use Study, The DIME Editing 
System, Washington, D.C. 1970. 

14. Jull, R., Geo-Modeling: A Local Approach, Eugene, Oregon, Lane 
Council of Governments, 1972. 

15. Hogan, R. D., Remote Graphic Terminal and Urban Geographic In­
formation System Demonstration, Gaithersburg, Maryland, IBM 
Federal Systems Center, 1968. 

16. Merrill, R. D., "Representation of contours and regions for efficient 
computer search," Communications of the ACM, Vol. 16, No.2, 
(February 1973, pp. 69-82. 

17. Saderholm, B. V., Paper 'Keyboard' Runs Experimental IBM 
System, IBM Research Division Press Release, Yorktown Heights, 
N.Y., March 8, 1973. 

18. Cyert, R. M., H. A. Simon and D. B. Throw, "Observation of a busi­
ness decision," Journal of Business, 29, 1956, 237-248. 

19. Peace, D. M. S. and R. S. Easterby, "The evaluation of user interac­
tion with computer-based management information systems," 
Human Factors, 15, April 1973, pp. 163-177. 





Storage technology 

Area Director: 
Glen C. Bacon 
IBM Corporation 
San Jose, California 

The sessions on storage provide a review of recent activity in mass storage 
along with an update on the several technologies which are contending for a 
place in the storage hierarchy. These two sessions are complemented by two 
sessions concerned with systems and reliability aspects. On the latter issue, the 
application of algebraic coding theory to both data transmission and data 
storage is investigated. An extensive piece of theoretical and experimental work 
is reported and hardware implications for mass storage are considered. 

Very large mass storage devices have been the subject of increasing industry 
attention as a result of new activity by manufacturers. Particular attention is 
given to the internal architecture as well as the software aspects of these storage 
systems. Additionally, the session addresses the operational requirements for 
such devices in order that they may solve the major physical data hdndling 
problems in a large computer installation. 

There is a high degree of activity in many industrial laboratories searching 
for better technologies than those which currently reside in a hierarchy. An 
entire session will be devoted to understanding the state of development of the 
novel technologies. These include bubbles, CCD's, super-conductors, holo­
graphic storage, and electron-beam storage. Each of these technologies offers 
different cost and system design trade-offs. Each has particular advantages 
which motivate its ultimate' promise. The goal of this session is to give a 
comprehensive and balanced view of these, in order that their long-term 
promise can be assessed. 

The last session is a panel addressing the system applications of advancing 
storage technology. As new storage function is provided and as old storage func­
tion becomes less costly, the systems architect has the opportunity to reassess 
his old trade-offs and consider new system structures. The panel will range from 
such issues as the opportunity for new technology in the access gap between 
memory and electromechanical storage to new system structure opportunities 
allowed by a very inexpensive memory removed from the central processor. Our 
goal is to produce a dialogue which will allow both the technologist and the 
system architect to better exploit the new memory technology. 

495 





Algebraic codes for improving the reliability 
of tape storage 

by ELWYN R. BERLEKAMP 
University of California at Berkeley and Cyclotomies, Incorporated 
Berkeley, California 

This paper describes an operational software package for 
protecting the integrity of tape files with the use of a sophisti­
cated algebraic code, which provides a large amount of 
protection against a wide variety of possible types of errors 
for a relatively modest amount of redundancy. The software 
is implemented on a Univac 1108 computer. Each 36-bit 
computer word is treated as three 12-bit digits. 

Because the encoder and decoder can work on bytes of 12 
bits rather than on individual bits one by one, the imple­
mentation of the encoder for this code appears to be no more 
time-consuming than the encoder for the popular inter­
leaved binary Hamming codes which are much weaker. 
Our software encodes and decodes using Galois field arith­
metic, which is described in a later section of this paper. 

All of this software is operational on the Univac 1108 
computer under the Exec-8 operating system. There are three 
primary routines: ENCODE, DECODE, and CHECK. 
There is also a considerable number of subordinate routines 
which the primary routines call in order to perform their 
intended functions, but these subordinate routines are not 
intended to be called externally. Some of the subordinate 
routines are written in Fortran and others are written in the 
1108 Assembly language. 

The input to the Fortran subroutine ENCODE (A, K) 
is an array A of 36-bit words. The words A (1), A (2), ... , 
A(K) are the inputs. If 1335:::;K:::;2668, ENCODE will 
compute 62 words of redundancy and store them at locations 
A(K+1), A(K+2), ... ,A(K+62). In no case will EN­
CODE make any changes in A (1), ... , A (K), but it will 
overwriteA(K+1), A(K+2), ... , A (K+62). 

The output of ENCODE is a block of N 36-bit words, 
which can also be viewed as n = 3N 12-bit digits. Each 12-bit 
digit may be considered as an element in the Galois field of 
order 212. With this interpretation, the output of ENCODE 
is a codeword in an appropriately modified reversible Reed­
Solomon code, whose redundancy is 91 digits, rounded up to 
31 words. 

CHECK (A, N) is an integer function whose inputs are 
A(1), A(2), ... , A(N).IfA(1), ... ,A(N) is identical to a 
block of words which was formerly the output of ENCODE, 
then the value of the integer function CHECK is zero. If the 
value of the interger function CHECK is nonzero, then its 
input is a garbled version of a previous output of ENCODE. 
It is possible (but very unlikely) that CHECK may have 
value zero even when its input is garbled. This event cannot oc-

497 

cur unless the garbles affect at least 6 digits of the A block, and 
affect them in a very special (and extremely unlikely) way. 

If CHECK returns a nonzero value, or even if CHECK 
returns zero but the user later encounters other difficulties 
which cause him to be suspicious of the accuracy of the A­
block, then it is appropriate to call the integer function DE­
CODE (A, N). The value of this function is an integer, e, 
which is a guaranteed lower bound on the number of garbled 
digits in the A-block. If DECODE returns a value of e:::;45, 
then it has also changed and corrected the A-block into some­
thing which might have been the output of ENCODE. 
The corrected block is garble-free unless there actually were 
at least (91-e) or more garbled digits. If DECODE returns 
a value ~ 46, then its value still serves as a lower bound on 
the number of garbled digits, but when DECODE detects 
more than 45 garbles, it is unable to locate and correct 
them, and so in this case it makes no changes in the A-block. 

The high-level algorithms used by these programs are de­
scribed in Berlekamp's Algebraic Coding Theory, McGraw­
Hill, 1968. 

RUNNING TIMES 

All of our software is implemented in two versions. The 
faster version attains greater speed with the use of several 
large Read-Only tables. In situations where the memory 
space is limited, it is preferable to use the slower (and 
smaller) versions of our programs. 

The running times of our programs, in milliseconds, for a 
block of K data words, (1334:::;K:::;2668) , are as follows: 

Small version: 

ENCODE t= 1.3K+1460 
CHECK (,,4) t=.085K 
CHECK (,,6) t=.095K 
DECODE (10 errors)t=2.33K+4800 

Fast version: 

ENCODE t=.44K+200 
CHECK (,,4) t = .028K 
CHECK (,,6) t = .033K 
DECODE (10 errors)t= 1.43+3250 



498 National Computer Conference, 1975 

The running time of DECODE depends on the error 
pattern which it is correcting. 

Since DECODE is called only on those rare blocks which 
are otherwise illegible, its running time is not a significant 
cost. The major operational cost is in running ENCODE on 
the many blocks. of archival data which Census seeks to 
protect. For that reason, the rest of this paper will be de­
voted to our encoding programs, even though DECODE is 
much longer and substantially more complicated. 

Galois field arithmetic 

We have found a representation of the Galois field of order 
4096 which is particularly well-suited for implementation on 
the Univac 1108 computer. To construct this representation, 
we first observe that the polynomial x6+x+ 1 is irreducible 
over the binary field, but it has roots in the Galois field of 
order 64. Let a be an element in the Galois field of order 64 
which satisfies the equation a6+a+l =0. Then the powers of 
a include all 63 nonzero elements in the Galois field of order 
64. 

The quadratic x2+x+11 is irreducible over the Galois field 
of order 64 if and only if Tr (11) ¢O, where Tr (y) is defined as 
y20+y21+y22+y23+y24+y25. Since Tr(a) =0, the quadratic 
x2+x+v has two roots in the Galois field of order 64. How­
ever, since Tr(a-1) = 1, the quadratic x2+X+V-1 is irreducible 
over the Galois field of order 64, but it has two roots in the 
Galois field of order 4096. Let a be an element in the Galois 
field of order 4096 which satisfies the equation a2+a+v-1 = o. 
We have determined that all 4095 nonzero elements in the 
Galois field of order 4096 are powers of a, and we hav~ con­
structed tables of logs and antilogs (base a) for all such 
elements. We have also constructed short tables of logs and 
antilogs (base v) for the Galois field of order 64. 

Any element in the Galois field of order 4096 can be 
uniquely represented in the form 

Ii 11 

LAlai+a LAi_6ai 

i=O i=6 

where Ao, AI, ... , All are in the sub field of order 2. This is the 
representation which we are using. The "real" part is in bits 
Ao, AI, ... , Ali; the "imaginary" part is in bits A 6, A 7, 

... , Au. Each 36-bit Univac 1108 computer word is par­
titioned into three 12-bit digits, and each digit corresponds 
to an element in the Galois fieHi of order 4096 according to 
the representation just explained. Our software is imple­
mented in two versions. The fast versions perform multi­
plication and division by using log and antilog tables base a. 

These tables have length 4096, and the antilog table is dupli­
cated to attain even greater speed. 

The short (but slower) versions of our programs perform 
multiplication and division using log and antilog tables, 
base v, for the field of order 64. Addition in either field is 
accomplished directly via the Univac 1108 exclusive-or 
instruction. Multiplication in the field of order 4096 is re­
duced to a sequence of calculations in the field of order 64 by 
the formula (A+Ba) (C+Da) = (AC+a-IBD) + (AD+ 

BC+BD)a. Here A, B, C, and D all lie in the Galois field 
of order 64, where the arithmetic can be performed using the 
short tables. Division is accomplished by multiplying the 
inverse of the denominator. To find the inverse of (A + Ba), 
we first compute its conjugate, (A+Ba)64, and its norm, 
(A+Ba)66. Since the norm lies in the Galois field of order 64, 
division by the norm involves only arithmetic in the smaller 
field, and the inverse of (A + Ba) thus requires only the short 
tables. 

ENCODING 

The .code which we use is a reversible form of a Reed­
Solomon Code. It is a cyclic code. As described in Berlekamp's 
Algebraic Coding Theory, the encoder for a cyclic code of high 
rate is simply a shift register which divides the stream of 
information digits by the code's generator polynomial: 

where a, b, c, ... are r constant digits depending only on the 
code, and not on the information digits. They can be written 
into the program. The EB is an exclusive OR operation. The. 
denotes a Galois field multiplication. Using a duplicate 
stored antilog table of total size 2 X 2048 and a stored log 
table of size 1024, it is possible on the Univac 110~ computer 
to simulate three shifts of any feedback shift register of 
degree r with an inner loop of only 3r+ 16 instruction, each 
running at 750 nanoseconds, as long as r does not exceed 15. 
For example, if a = a73 , b = a582, C = a417, ••• , the inner loop of the 
encoding program is shown as in Appendix 1. 

If r (the number of shift register stages) exceeds 15, the 
Univac 1108 has too few accumulators for the above program 
to work. 

The code which we use has generator polynomial of degree 
91. Hence, the shorter version of our encoder represents this 
generator polynomial as the product of 13 factors, g(l) (x) , 
g(2) (x), ... , g(13) (x), where ten of the factors have degree 8; 
one factor has degree 6; another has degree 4; and one factor, 
x+l, has degree 1. The coefficients of each of these factors 
has been computed and compiled into fast assembly-language 
programs. In order to keep most of the encoding arithmetic 
in the Galois field of order 64, the shorter version of our 
encoder uses factors which also have conjugate roots, and 
therefore twice the degrees of the factors mentioned above. 
The biggest factors thus have degree 16. 

The input to the encoder is considered to be the coefficients 
of a "message polynomial." Our encoding routines begin by 
dividing this polynomial by each of the above-mentioned 
factors of the generator polynomial. Since the degree of the 
divisor never exceeds 16, each division is quickly accom­
plished by a fast assembly-language program which treats 
the 16 a-registers of the Univac 1108 as a single shift register. 



Algebraic Codes for Improving the Reliability of Tape Storage 499 

Let r(i) (x) denote the remainder of the message poly­
nomial divided by g(i) (x). After computing r(i) (x), the 
encoder next obtains a corresponding "prenormalized" 
remainder, t(i) (x), by multiplying r(i) (x) by a precalculated 
polynomial V(i) (x) and then reducing modulo g(i) (x). The 
check digits, which are the coefficients of r (x), the remainder 
if the message polynomial had been divided by the full gener­
ator polynomial g (x), are then calculated via the formula 
r (x) = Li t(J) (x )IIi+i g(j) (x) 

The fact that this formula actually gives the correct 
values of the redundant digits depends on the Chinese re­
mainder theorem and the fact that the pre-calculated 
V(i) (x) satisfy the equation 

1 = V (i) (x)IIj:;;C i gW (x) mod g(i) (x) 

Since 

r(i) (x) =t(i) (x)IIj:;;Ci gW (x) mod g(i) (x) 

it follows that 

rex) =r(i) (x) mod g(i) (x) 

for every i = 1, 2, ... , 13. This shows that our fast encoding 
programs give the same values of the check digits that might 
be obtained more directly by the much slower process of 
dividing the message polynomial by the complete generator 
polynomial all at once. 

LOOP 

APPENDIX I-Sketch of Main Loop of ENCODER 

XOR 
XOR 
XOR 

XOR 
XOR,5 
SA, 5 
LX 
LX 
LA,5 
JZ 
XOR 

XOR 
XOR, 6 
SA,5 
LX 
LX 
LA,5 
JZ 
XOR 

XOR,7 
SA,5 

LA,5 
JZ 
JMGI 

A14, 
A13, 
A12, 

AI, 
AO, 
A15, 
xo, 
Xl, 
AO, 
AO, 
A14, 

AI, 
AO, 
A15, 
XO, 
Xl, 
AO, 
AO, 
A14, 

AO, 
A15, 

AO, 
AO, 
X2, 

ANTILG + 73, 
ANTILG + 582, 
ANTILG + 417, 

ANTILG +?, 
data, 
TEM 
TEM 
LOG, TEM 
TEM 
Bypass! 
ANTILG + 73 

ANTILG +?, 
data, 
TEM 
TEM 
LOG, TEM 
TEM 
Bypass2 

ANTILG = 73, 

data, 
TEM 

TEM 
Bypass3 

LOOP 

Xl 
Xl 
Xl 

Xl 
X2 

Xl 

Xl 
X2 

Xl 

X2 





Bridging the memory access gap 

by DENNIS E. SPELl OTIS 
Micro-Bit Corporation 
Lexington, Massachusetts 

INTRODUCTION 

The rapid growth of electronic data processing over the 
past two decades has been characterized by an almost 
insatiable appetite for larger and faster memories. In fact, 
over this period of time, on-line storage capacity has 
increased about three times as much as CPU power.1 Yet, 
in spite of this impressive growth rate, memory represents 
perhaps the most limiting area in the development of more 
advanced computer systems. Furthermore, the increasing 
diversity of storage devices and the wide disparity in the 
price-performance of these devices, present a difficult 
challenge to the system designer, and account for a large 
part of the complexity of the software and hardware 
system to manage the storage facilities. 

Viewed simplistically, memory devices can be classified 
into two basic categories: electronically accessed main 
memory and electromechanically accessed peripheral 
memory. The former is fast and relatively expensive, while 
the latter is very slow (typically a factor of 104 to 105 

slower access) and relatively inexpensive (by about a factor 
of 10-1 to 10-3 in price per bit). Between these vastly 
separated device technologies we h~ve the famous memory 
access gap,1 which has persisted essentially unchanged 
over the last twenty years even though the boundaries on 
either side of the gap have moved toward faster access by 
about an order of magnitude over this same period of time. 

The absence of a bridging technology is in no way the 
result of a lack of effort and intensive search to develop 
such a technology. Suffice it to mention cryogenics, thin 
magnetic films, thermoplastics, and magneto-optics as a 
partial list of the most spectacular but unfruitful endeavors 
in this domain. In recent years we find a tremendous effort 
concentrated on magnetic bubbles and CCD (charge 
coupled devices). However, the technology with the great­
est promise and' potential in bridging the access gap is the 
three quarters of a century old electron beam, which 
ironically also provided the access means for the very first 
random access memory way back when it all began. 2 

The purpose of this paper is to set forth the fundamental 
arguments on "why electron beams", then to describe the 
particular desirable attributes of an electron beam address­
able memory system, and finally to describe the achieve­
ments to date and the expectations for the future. 

501 

WHY ELECTRON BEAMS 

Peripheral memories 

Peripheral memories in digital computer systems have 
been dominated by magnetic recording devices, such as 
disks, drums, and tapes. The spectacular success and 
growth of magnetic recording storage devices derive from 
certain inherent characteristics of the technology: 

(a) Very low cost storage media based on homogeneous 
(non-discrete) magnetic surfaces. 

(b) A means of accessing which allows tens of millions 
of bits to share one write-read transducer and 
encode-decode-sense channel. 

(c) The fundamental limits of the technology were far 
beyond the demands placed on the technology, thus 
allowing plenty of room for growth and expansion in 
device capability and performance. Using areal 
density as a measure of device sophistication, disk 
systems for example have gone from 2.2x 103 bits/ 
in2 in RAMAC I introduced in 1956 to 2.24x 106 

bits/in2 in the CDC 9762 introduced in 1974, a factor 
of one thousand improvement in packing density! 

The fundamental deficiency of disks is their slow 
electro-mechanical access. System designers have resorted 
to a number of techniques in order to partially mask the 
long access time, but all these approaches are costly and 
less than satisfactory at best. They include: 

(a) Queuing and look-ahead to minimize disk arm 
motion. This is difficult to optimize in multiprocess­
ing environments and at high priority interrupt 
frequencies. 

(b) Transfer large blocks to minimize the frequency of 
accesses to the peripheral device. This requires 
expensive buffering, and depending on the data 
transfer bandwidth could actually result in lengthen­
ing of the average access time in certain processing 
environments. 

(c) Employ fixed head disks and drums to eliminate 
arm motion and head positioning time. This reduces 
the average access time by a factor of three to five, 



502 National Computer Conference, 1975 

but increases the per bit price by one to two orders 
of magnitude. 

(d) Employ more than one head per arm, like in the 
IBM Winchester disk system, or more than one 
head per track, like in the IBM 2305-1 disk 
system-both of which are rather expensive proposi­
tions for only a small improvement in access time. 

It is clearly evident that the slow access time of the 
electromechanically-accessed peripheral memories is a 
very serious bottleneck in improving system performance, 
and the techniques that are being used to shorten it 
provide only small relief at considerable cost. Further­
more, the evolution of computing systems toward timeshar­
ing, virtual storage, multiprocessing, and network process­
ing tends to aggravate the situation and places additional 
emphasis for a technology that bridges the access gap. 
Until such a technology becomes available, we will con­
tinue to see an accelerated growth in the size of main 
memory-and a corresponding increase in total system 
cost-as a necessary prerequisite for efficient system 
performance. 

Main memories 

Main memories on the other hand have price-perform­
ance characteristics which are essentially the opposite of 
peripheral memories. Their outstanding advantage is their 
very fast access time achieved by direct wired access to 
each bit. Their disadvantage is the high cost per bit, and 
the reasons for this are several: 

(a) The bits are physically discrete entItles. This has 
very· important reflections on the cost to introduce 
the discreteness and obtain satisfactory yields. 

(b) Wired access to each bit also reflects on the cost to 
introduce or install the wiring, and to make the 
many thousands of interconnections needed for a 
sizable memory. It also affects the yield and the 
reliability of the devices, particularly as the bit 
packing density and the total capacity of the 
memory increase. 

(c) The number of bits that can share a sense amplifier 
is typically a few thousand as contrasted to tens of 
millions in the case of peripheral memories. 

It can be argued that the cost of main memory will 
continue to decrease as more integration and automation 
are introduced into device fabrication. However, the above 
arguments still apply, and diminishing returns will tend to 
dampen cost improvements, particularly for mature tech­
nologies. 

Searching for a gap-filling technology 

Ideally what we need is a new technology which can 
approach on the one hand the access time of main 
memories, and on the other the per bit price of peripheral 

memories. Clearly, such a technology must employ elec­
tronic accessing. It should also incorporate many of the 
other attributes which contribute to the low per bit cost of 
peripheral memories, such as high bit packing density 
(~106 bits per square inch), avoid structure or discreteness 
for defining the bits, employ a minimum number of 
interconnections, and allow for the sharing of a very large 
number of bits by a sense amplifier. Many different 
schemes have been tried and a much greater number of 
techniques have been proposed for a memory technology 
which may satisfy the above requirements. Generically 
they fit into two categories with different philosophy of 
accessing:3 

Moving the hits to the sensor 

This category includes all the shift register types of 
devices which electronically propagate one or more series 
of bits to a sense amplifier through a fixed propagating 
structure. The prime examples of such technologies are 
charge coupled devices (CCD) and magnetic bubble memo­
ries, the latter of which in particular is receiving a 
tremendous amount of attention currently. 

If we examine the potential of bubble memories on the 
basis of the criteria outlined above for peripheral and main 
memories, we can make the following observations: 

(a) Even though the storage medium is homogeneous, 
the propagating structure is not. 

(b) Material perfection requirements in moving bit 
devices are tough, and this reflects on yields and 
cost. 

(c) Very small bubbles which would permit high bit 
packing densities have been observed only in amor­
phous films and bubble lattice structures, both of 
which have their own materials and processing 
complexities. 

(d) Bubble propagation speeds are rather slow, and 
even though paralleling is straightforward, it adds 
rapidly to the cost of driver-sense electronics. 

(e) Major-minor loop organizations to facilitate the 
sharing of a large number of bits by one sense 
amplifier in order to reduce cost tend to degrade 
their access time. 

The most significant advantages of this technology are 
non-volatility, low power require~ents, and volumetric 
compactness. 

The above observations on magnetic bubbles essentially 
apply also to the CCD technology, but with some signifi­
cant differences. The access time and propagation time of 
CCD is faster by about one order of magnitude than that of 
magnetic bubbles. Offsetting this advantage are certain 
disadvantages, which include volatility and the need for 
very frequent refreshes of the data pattern (a factor which 
can have significant repercussions on error rates even 
when the memory is not being accessed), higher power 
requirements, and the need for a large amount of addi-



tional electronic circuitry for selecting, driving, and re­
freshing the much shorter data loops. 

Clearly, for both CCD and magnetic bubbles, the 
fabrication and processing complexity, the level of dis­
creteness in the definition of the bits, the areal bit density, 
the number of interconnections, and the number of bits 
that can share one write-read channel, fall in the interme­
diate area between main memory and disk-type peripher­
als, as does their access time. Therefore, their price­
performance potential would place them in the "classical" 
access gap, where they should offer cost competitiveness 
with small (up to 20 megabits) fixed-head disk or drum 
systems, but with an all solid-state technology and with 
significant improvements in performance. More specifi­
cally, we would expect CCD to penetrate the small 
auxiliary storage sector where performance is paramount, 
whereas magnetic bubble memories will be used in special 
applications where moderate performance is acceptable, 
but ruggedness, reliability, non-volatility, compactness, 
and low power consumption are emphasized (aerospace 
systems, process control, word processing, numerical 
control, and telecommunications). 

Moving the sensor to the bits 

In this category we place technologies that employ an 
inertialess access mechanism which interacts with a 
stationary storage medium for the writing and reading of 
information. Consequently, our discussion is restricted to 
devices which employ high energy beams of either sound, 
light, or electrons as the accessing mechanism. 

Sonic beams 

Fundamental limitations in focusing and deflecting a 
sonic beam preclude the feasibility of using it as a random 
access addressing mechanism. Serial access utilizing a 
magnetostrictive film as the storage medium has been 
demonstrated,4 and even though the transfer rates are very 
attractive the bit densities are not, which would tend to 
exclude this approach as a serious contender for general 
purpose beam addressable memory applications. 

Light beams 

Spurred on by the development of the laser and 
holography, a tremendous amount of attention has been 
given to the development of optically accessed memories. 
Unfortunately today, more than a decade later, the pros­
pects appear less than exciting for various reasons the 
most important of which are: 

(a) The most fundamental problem is the development 
of a suitable, nonvolatile, erasable, optical storage 
medium. Many different materials and interaction 
modes have been investigated, including magneto­
optics,5,6 thermoplastics, photochromics, photodi­
chromics, electro-optics, and amorphous semicon­
ductors. All of these storage materials have one or 
more basic shortcomings which limit their applica-

Bridging the Memory Access Gap 503 

tion and usefulness (such as low sensitivity requir­
ing enormous beam energy densities for writing and 
erasing particularly for holograms, limited reversi­
bility, low diffraction efficiency, need for cryogenic 
operating temperatures). 

(b) The other fundamental problem is the development 
of high speed, high repetition rate, low cost digital 
deflectors which can address a large number of 
resolution elements. Because of the overhead re­
quired for the generation, modulation, focusing and 
deflection of a light beam, the minimum capacity 
for an economical memory system would have to be 
about 108 bits. For bit by bit recording, this would 
require a deflector system capable of accessing 
104 X 104 resolvable spots, a requirement far exceed­
ing the capabilities of acousto-optical and electro­
optical deflectors. Such deflectors are adequate for 
a page organized holographic memory, but this 
approach is impractical today due to the unavailabil­
ity of suitable materials (except for read-only photo­
graphic emulsions) and page composers7 for input 
data formatting prior to exposure of the holograms. 

(c) Even if the deflector limitations to bit by bit 
r~cording were to be eliminated through some 
breakthrough in development, still the addressabil­
ity of a field of 108 bits would present formidable 
problems due to diffraction, depth of field, depth of 
focus, aberrations in the optical components, and 
accuracy and stability requirements in the deflec­
tion electronics. Proposals6 to get around these 
problems by incorporating mechanical motion of the 
storage medium are unattractive, because the 
achievable areal storage density could only be 
slightly higher than for magnetic recording while the 
performance would be comparable and the cost 
much higher. 

Electron beams 

Electron beams possess very attractive properties which 
render them far superior to light as a memory access 
mechanism. 

(a) Like light, they can be formed into high energy 
density, high resolution beams, but since their 
diffraction limit is several orders of magnitude 
beyond that of visible light they are inherently 
capable of much greater resolution, depth of focus, 
and depth of field. 

(b) Unlike light beams, deflection, modulation, and 
scanning of electron beams is exceptionally simple 
and fast. 

(c) Because electron beams are strongly interactive 
with both electric and magnetic fields, we can 
envision a variety of materials as a possible storage 
medium, including ferroelectric, magnetic, semicon­
ductor, thermoplastic and insulator films. 

(d) Achievable spot size and energy density (current 
density) into the spot are closely interrelated, and 
are ultimately limited by the brightness of the 



504 National Computer Conference, 1975 

source, the physical size of the electron-optical 
components, and the aberrations introduced by 
these components-particularly the deflector. On 
the other hand, the limits on relocating the spots 
are imposed by the accuracy and stability of the 
deflection electronics and by thermal and mechani­
cal considerations. These constraints combine to set 
some practical limits on the number of spots that 
can be randomly addressed reliably in a single lens­
deflector field, and that number is 107_108• Brighter 
sources such as field emitters would certainly allow 
much higher current into the spot, but would not 
appreciably alter this limit until more accurate 
deflection electronics became available. Even with 
thermal electron sources, however, we can conserv­
atively project several million bits for a single lens­
deflector field and available materials, correspond­
ing to areal densities of 2x 107-7 x 107 bits per square 
inch, which are indeed very impressive. 

(e) The total field that can be accessed by a single 
electron beam can be expanded by several orders of 
magnitude by employing two stage deflection and an 
array of lenses known as the fly's eye8 configura­
tion. This approach removes the constraints im­
posed by deflection electronics and opens the road 
to the development of memories with capacities of 
several gigabits, access time of a few microseconds, 
and costs comparable to those of large disk files. It 
is precisely this unlimited potential and the tremen­
dous versatility and capability of electron beams 
that makes them the most powerful developmental 
technology in the race to bridge the access gap. 

DESIGN CRITERIA FOR AN ELECTRON BEAM 
MEMORY 

In this section we discuss the components of an electron 
beam addressable memory (EBAM) system, the available 
choices in the design and configuration of the system, and 
some of the reasons for selecting a preferred embodiment 
in the practical implementation of the system. The discus­
sion is aimed toward the general concepts of the design 
rather than the specific analytic details. 

Electron optics 

The electron source should be a .dispenser-type cathode, 
which has long life of up to 50,000 hours at loadings of 
over 1 A/cm2 , and is readily available and inexpensive. 
Such cathodes incorporated into well designed guns operat-. 
ing at moderate beam energies (about 10 kV) can provide 
excellent brightness. Much higher brightness can be 
obtained with field emission cathodes which, however, 
need additional engineering development. Since brightness 
increases rapidly with increasing beam voltage, the selec­
tion of that voltage must be made as a compromise 
between brightness, operational requirements of the stor­
age target, and the complexity and cost for insulation, 
power supplies, and deflection amplifiers, which increase 

with increasing voltage. A good choice would appear to be 
a beam voltage of about 10 k V. 

For beam focusing and deflection, electrostatics is 
definitely a clear choice over magnetics for practical as 
well as fundamental reasons. Rapid random access re­
quirements would exclude magnetic structures due to 
hysteretic or inductive limitations. Cost, size, and weight 
would also favor the electrostatic approach. Furthermore, 
the difficulty of confining magnetic fields would inhibit the 
close packing of a cluster of tubes in a system sharing 
power supplies and deflection electronics-a highly desira­
ble configuration to reduce system cost and increase 
throughput bandwidth. Finally, magnetic focusing and 
deflection would be totally inapplicable for array electron­
optical structures of the fly's eye type. 

Storage medium 

The storage target must be a stable material, compatible 
with high vacuum and bakeable to at least 350°C, possess 
some physical property which can be reversibly, rapidly, 
and efficiently altered by a high resolution electron beam, 
be capable of good "one" -"zero" discrimination and large 
signal-to noise ratio at very high bit packing densities, and 
have a long life under continuous operation. A crucial 
additional requirement is that the target be homogeneous 
and structureless in a plane perpendicular to the beam 
axis so that the bits are located at the points of beam 
incidence, rather than for the beam having to find 
predetermined bit locations related to a specific structure 
in the target plane. This requirement is imposed not only 
by cost considerations in introducing the structure and the 
resultant yields, but also by the previously mentioned need 
to share electronics for a matrix of tubes, and to accommo­
date some inherent residual aberrations and differences 
among tubes. 

The lack of a suitable target that satisfies the above 
requirements has certainly been the most constraining 
limitation in the development of EBAM systems. Thermo­
plastic materials9 have very limited reversibility due to 
polymerization induced by cross-linking. Similarly limited 
are amorphous to crystalline phase transitions in chalco­
genide glasses. 1o A comparison between magnetic and 
electrostatic storage targets results strongly in favor of the 
latter. Lorentz interactions either with the magnetization or 
with the external fringing field of magnetic films are so 
weak as to preclude readout from such films at anywhere 
near the desired bit densities and speeds. ll Also, if 
readout was based on using the energy of the beam to 
thermally disturb the cooperative coupling of assemblies of 
dipoles, electrostatics would again be favored over magnet­
ics because of higher energy density. Ferroelectric thin 
films 12 are potentially powerful contenders for storage 
targets in EBAM systems, but additional materials devel­
opment is required to fully realize their potential. Even 
tougher materials problems have impeded progress toward 
the development of a photoconductor-ferroelectric sand­
wich target. 13 

A material which satisfies very well the requirements for 



an EBAM storage medium is the silicon-silicon dioxide 
system, and it is indeed an extraordinary phenomenon that 
all known current approaches14- 17 to write/read electron 
beam memories are based in some way or another on 
silicon technology and electrostatic charge storage. Some 
of these approaches use surface charge storage in a finely 
etched structure on the oxide which is selectively charged 
by the beam for writing and serves to modulate either the 
secondary electron emission14 or the transmissivity of a low 
energy beam15 for reading; other approaches16,17 use beam 
induced imbedded charge storage in the oxide and near 
the silicon dioxide-silicon interface, which modulates the 
depletion region in the silicon and serves to separate the 
beam induced charge carriers in the silicon for read out. 
The latter approaches are superior in that they employ 
structureless targets (for planes perpendicular to the beam 
axis), use beam voltages more compatible with high gun 
brightness and resolution, are directly usable in array 
optical configurations, and provide large local amplification 
during the reading and the writing operations. Even though 
such targets have their problems and limitations, they are 
based on a wide ranging and fast advancing technology, 
which can confidently provide the needed improvements. 
A more detailed description of the imbedded charge 
storage mechanism is given in the last section of this 
paper. 

Other considerations 

We have already mentioned the importance of sharing 
some of the electronics overhead among several tubes in 
order to amortize costs over a large storage capacity. 
Random access electron-optical memories require very 
stable and highly regulated power supplies, and a very fast 
and accurate deflection electronics system, both of which 
contribute in very significant proportion to the overall 
system cost, and hence the need for sharing. Using 
common deflection for a number of parallel channels (like 
18), also results in the added advantage of greatly increas­
ing system throughput and bandwidth. This, of course, 
implies that there exists a minimum total capacity below 
which electron optical memories are less cost effective, 
and this minimum is in the range of two to eight 
megabytes depending on whether the systems are used as 
main memory extensions or as high performance peripher­
als. 

The access time of a few microseconds reflects primarily 
the deflection settling time. Consequently, even though 
EBAM systems can be used to access a single bit at a 
time, a more efficient utilization would result from a block 
addressable organization of the memory, where the beam 
settling delay is incurred only for the starting location of 
the block. Block organization also offers the added advan­
tage of data encoding, and permits the reading of transi­
tions rather than absolute charge levels, thus relaxing the 
requirements on signal uniformity. 

The demise of the Williams tube and the subsequent 
slow progress in the development of electron beam memo­
ries was due largely to the basic deficiencies of the 

Bridging the Memory Access Gap 505 

inadequately developed underlying technologies that are 
used in the making of such memories, and the unavailabil­
ity until much later of the very large computers that are 
needed for design simulation of off-axis high resolution 
electron optics. Within the last few years, however, the 
confluence of significant advances and improvements in all 
the supporting technologies have made the realization of 
large and superior EBAM systems possible. These include: 

(a) precise, stable, fast, and inexpensive electronic 
components 

(b) silicon-based targets of excellent perfection and 
processing control 

(c) long life dispenser-type cathodes and superior elec­
tron optical components 

(d) advanced materials, fabrication techniques for low 
cost, high precision parts and assemblies, superior 
cleaning and handling techniques, and improved 
vacuum technology. 

THE MOS ELECTRON BEAM MEMORY 

Electron beams and MOS targets can be combined to 
create a new and powerful memory technology. The basic 
operation of the memory is illustrated in Figure 1. 
Information is stored in a pattern of positive charge in the 

WRITE 
ONE 

ELECTRON 
BEAM 

ONE 

ELECTRON 
BEAM 

-If ZERO 

I
t f DEPLETION 

REGION 
'--1----+..1 

P-TYPE SILICON 

WRITE 
ZERO 

T ~ 

1 

~ 
OXIDE 

READ 

J. 
Figure I-Storage and readout mechanism of the MOS electron beam 

memory (not to scale) 



506 National Computer Conference, 1975 

WRlrE 

ZERO 

r:NE l 

ELECTRON 
SOURCE AND 
CONTROL 
ELECTRODES 

CONDENSOR 
LENS 

OBJECTIVE­
LENS 

DEFLECTOR 

MEMORY 
TARGET 

Figure 2-Schematic description of electron beam memory tube using 
single channel optics 

oxide, near the interface to the semiconductor. The 
storage of positive charge corresponding to a "ONE" is 
accomplished by exposure to the beam under positive gate 
bias, while the removal of positive charge corresponding to 
a "ZERO" is accomplished by exposure to the beam under 
negative gate bias. The stored positive charge. depletes the 
underlying regions of the semiconductor and drives the 
surface of the p-type substrate into inversion. 

The energy of the beam (10 k V) and the thickness of the 

gate and the oxide are such that the beam penetrates 
several thousand Angstrons into the silicon. The reading of 
the stored information is accomplished in the silicon by 
using the same beam as for writing. The electron-hole 
pairs generated by the penetrating read beam in the 
semiconductor are separated by the strong field in the 
depleted regions under the ONES and a current is 
detected in the sensing resistor R, while the absence of a 
field under the ZEROS permits most of the generated 
charge carriers to recombine. Since the creation of an 
electron-hole pair requires an energy loss of about 3.7 e V, 
arid the beam enters the semiconductor with an energy of 
a few ke V, the readout signal is greatly amplified over the 

-~-...:\:.... 

~ -===-- c::::::::a e::::==:II c:::::a 
-===- c:=:=::t c::::::::I c::z:=::::t. c::::t 

- - -===- -====-

II IIIIII 

ELECTRON 
SOURCE 

COARSE 
DEFLECTOR 

LENS AND 
DEFLECTOR 
ARRAY 

ME~~ORY 
TARGET 

WRITE tREAD 
ZERO 

~NEI 

Figure 3-Schematic description of electron beam memory tube using 
array optics 



read beam current by a large local and noiseless gain; a 
similar but much smaller gain also occurs during the 
writing process. This gain represents one of the most 
outstanding advantages of the MOS storage medium. 

A schematic description of an EBAM tube under 
development using single channel optics is shown in Figure 
2. Such a tube stores 4.2 megabits in 1 cm2 target, using a 
30 nA beam into a 2.5 micron spot, and is limited 
principally by deflection electronics accuracy and stability 
and by deflector aberrations. A memory system consisting 
of 18 such channels in parallel will have a capacity of 75 
megabits, access time to any block of under 10 microsec­
onds, and read/write throughput rates of 38 and 5 mega­
bits/sec, respectively. 

The limitations on the number of bits per tube imposed 
by deflection can be removed by using two stage deflection 
in the array optics configuration shown in Figure 3. This 
approach can start with tubes of 32 megabits capacity 
while the upper limits may be in the range of 0.5 to 5 

-.:! 
~ 

8 
" J! 
c • .g 

::e w 
o 

0.1 jJsec 

ACCESS 

Bridging the Memory Access Gap 507 

gigabits per tube corresponding to bit densities of the 
order of 108 to 109 bits/cm2! Because array optics also 
delivers a much higher current density into a given spot on 
the target, the throughput of the memory will also be 
considerably faster. A memory system consisting of 18 
parallel channels of 32 megabits each, will have a capacity 
of about 600 megabits, access time to any block of under 
12 microseconds, and read/write throughput rates of 90 
and 40 megabits/sec, respectively. 

Electron beam memories will initially be cost-competi­
tivewith fast auxiliary storage devices, and eventually with 
all on-line random access peripheral memories, but with 
far superior performance. Equally important, however, is 
their potential use as main memory extensions, in combi­
nation with a semiconductor cache, where they will have a 
large price advantage at comparable performance. This 
application is envisioned in Figure 4, which shows price­
performance comparisons for EBAM and other memory 
technologies through the end of this decade. 

ACCESS liME 
10 100 I msec 10 100 

~~7~~7~IO ~ 
f.~ 

~~ * Does not include 'controller 
or channel costs for DISK, 
CCD, or BUBBLES. 

1000 

100 

10 

0.1 

0.01 

i 
:ii 
o 
o 
2 
" .:! 
c • ~ 

::e 
w o 

TECHNOLOGY COMPARISONS THROUGH 1980 

Figure 4--Price-performance projections of various memory technologies through 1980. Transfer rates for the shift register devices are along each track 



508 National Computer Conference, 1975 

Electron beam memories have the power not only to 
occupy a strong place in the memory access gap, but also 
they have the potential to completely eliminate the gap and 
bring about a drastic simplification in system architecture 
and a large improvement in cost-performance. 

ACKNOWLEDGMENT 

It is a pleasure to acknowledge the many helpful discus­
sions with my colleagues K. J. Harte and D. O. Smith. 

REFERENCES 

1. Pugh, E. W., "IEEE Trans. Magnetics, MAG-7, 8lO, 1971. 
2. Williams, F. C., and T. Kilburn, Proc. lEE (London) Part III, 96, 81, 

1949. 
3. Smith, D.O., Ann. N.Y. Acad. Sci., 189,298, 1972. 

4. Shahbender, R., R. Jerkart, H. Kurlansik and L. Onyshkevych, IEEE 
Trans. Magnetics, MAG-5, 427, 1969. 

5. Chen, D., J. F. Ready, and E. Bernal G., J. Appl. Phys., 39, 3916, 
1968. 

6. Eschenfelder, A. H., J. Appl. Phys.,41, 1372, 1970. 
7. Rajchman, J. A., J. Appl. Phys.,41, 1376, 1970. 
8. Newberry, S. P., T. H. Klotz, Jr., and E. C. Buschmann, Proc. Nat. 

Electrn. Conj.,23, 746, 1967. 
9. Glenn, W. E., J. Soc. Motion Picture Television Engrs., 69, 577, 

1960. 
lO. Chen, A. C. M., IEEE Trans. Electrn. Dev.,ED-20, 160, 1973. 
II. Cohen, M. S., IEEE Trans. Mag.,MAG-4, 639, 1968. 
12. Smith, D.O., K. J. Harte, M. S. Cohen, S. P. Newberry and D. E. 

Speliotis, U.S. Patent No. 3,710,352, January 9, 1973. 
13. Chapman, D. W., Proc. IEEE Int. Computer Group Conj.,56, 1970. 
14. Kelly, J., J. S. Moore and P. R. Thornton, NAECON '74 Record, 55, 

1974. 
15. Heiman, R. and A. Waxman, Digest IEEE Inti. Conv., New York, 

152, 1970. 
16. Cohen, M. S. and J. S. Moore, J. Appl. Phys., 45, 5335, 1974. 
17. Ellis, G. W., G. E. Possin and R. H. Wilson, Appl. Phys. Let., 24, 

419, 1974. 



IBM 3850-Mass storage system 

by CLAYTON JOHNSON 
IBM Corporation 
Boulder, Colorado 

SUMMARY 

IBM's 3850, a hierarchical storage system, provides 
random access to stored data with capacity ranging from 
35 X 1()9 to 472 X 1()9 bytes. The hierarchical architecture 
achieves access times varying from Direct Access Storage 
Device speeds to that of the Mass Storage Facility which 
can be as low as 10 seconds. The architecture of the Mass 
Storage System is examined to demonstrate its functional 
and performance capability. 

INTRODUCTION 

The goal of the Mass Storage System (MSS) is to provide 
capacities for handling all of an establishment's data. In 
addition, it provides the functions of Direct Access Storage 
Devices (DASD) at a cost which approximates that of 
today's half-inch tape systems, and with an architecture 
that allows users to migrate to MSS with minimal costs. 

A hierarchy of devices provides the flexibility needed to 
approach such a diverse set of goals. See Figure l. 

A hierarchical arrangement allows the MSS architecture 
to be hidden, or buffered, from main memory. This allows 
system designs that are specific to the problem of storage 
and retrieval of data, independent of how programs 
manipulate data. Utilization of an existing device 
eliminates the need to develop new Direct Access Devices 
(adding to the complexity of the development project) and 
provides a known, existing interface to data stored in the 
MSS. Actually, the intermediate devices in a storage 
hierarchy can be independent of the architectural inter­
face to data. For example, in MSS the interface to data is 
architecturally that of an IBM 3336 Model 1 DASD 
volume, regardless of whether a 3330 Model 1, or Model 
11 is being used. A new device or memory could be used in 
the intermediate levels of the hierarchy without changing 
the architectural interface to data itself. This allows for 
the incorporation of new technologies in the storage 
hierarchy with little or no disruptive impact to the users of 
the storage hierarchy. 

The ideal control of the external storage is to have on 
DASD that data required by the programs in the CPU 
when the programs need it, and to have space available on 
DASD to store new data. How close we come to this ideal 
is a measure of the trade-off of price versus performance. 

509 

In this hierarchy, the best performance achievable comes 
from DASD. The time a program waits for data to appear 
on DASD or waits for space on DASD to store new data, is 
the visible impact of the storage hierarchy. 

A storage hierarchy also reduces the number of requests 
for data that must be resolved at the Mass Storage 
Facility. Recently active data sets can be kept on the 
DASD level of the hierarchy for a period of time after 
their last use. This is accomplished by providing storage 
capacity at the DASD level that is greater than the sum of 
the size of all concurrently active data sets. 

Reuse of data dramatically reduces the number of ac­
cesses to the Mass Storage Facility, and makes it possible 
to design a system that moves much less data between 
MSF and DASD than that which moves between Main 
Memory and DASD. 

MSS uses a Least Recently Used replacement algorithm 
to schedule which data on DASD should be destaged to 
the MSF when space is needed for new data, or when 
newly active data must be staged to DASD for access by 
the CPU(s). Only those DASD cylinders which have 
changed are actually destaged. 

The following exemplifies the work load an MSS might 
experience, and the advantages of this architecture. 

CONTROL AND DATA FLOW WITHIN MSS 

MSS, as seen by the System Control Program, has 
nearly unlimited Direct Access Storage. This approach to 
Mass Storage furnishes the function of DASD, and it also 
provides a major new capability on IBM CPU systems 
without the disruptive impact of a totally new architec­
ture. MSS also follows the basic architecture of 
System/370 channels and I/O addressing. The result 
avoids a major redesign of Operating Systems, User~Ap­
plication Programs and Channels. 

Today's systems gain addressability to data or storage 
space by mounting a storage volume (either half-inch tape 
or disk packs) on an auxiliary storage device. These 
devices have specific addresses on one or more CPU chan­
nels. An Input or Output operation is performed to a 
specific volume by addressing the specific device holding 
that volume. The total addressable data at anyone time is 
limited in this arrangement to the actual number of 



510 National Computer Conference, 1975 

§J 
! II nstructions 

I ~ain Storage I 
I 1/0 Operations 

I 
DASD Buffer 

I 

1 
Staging/Destaging Requests j 

Mass Storage 

Figure I-Hierarchical store - Data movement 

devices attached to a given system on which storage 
volumes are mounted. 

MSS resolves this limitation through a virtual device 
concept. Because DASD (called "staging buffers") is used 
in MSS as a buffer to the Mass Storage Facilities, the one 
volume per device relationship is no longer necessary. 
Only the active portion of a volume must be on DASD at a 
particular time; therefore, the remaining space of the 
DASD staging buffers can be used for portions of other 
active volumes. A virtual to real mapping capability is ad­
ded to the Storage Controllers. Each Channel connection 
to a Storage Controller with MSS has the ability to ad­
dress 64 unique volumes, independent of how many real 
devices are being used as staging buffers. 

A virtual device approach makes more data addressable 
at any time without the cost of a corresponding number of 
I/O devices; this in turn allows larger data bases to appear 
to be on line, opening up new approaches to selected data 
base applications. 

On real DASD volumes (non-staging), a user must put 
data on volumes that tend to be active at the same time, 
even if they are unrelated. Many problems can result, 
such as backup, security, etc. A virtual device concept 
eases the problem of space management on DASD 
volumes. 

All space in MSS is managed in terms of DASD 
volumes. A pair of cartridges is assigned a name, and this 
name represents a specific DASD volume. This pair of 
cartridges is called a Mass Storage Volume. 

To gain address ability to a Mass Storage Volume, the 
operating system (as a result of the active user programs) 
requests a specific Mass Storage Volume be mounted at a 
specific virtual I/O address. The mount command is 
directed to the Mass Storage Controller (MSC). The 
mount command allows MSS to translate an access to a 
specific Mass Storage Volume when I/O access is made 

against the virtual device. If the specific cylinder required 
by the CPU (1/404th of a Mass Storage Volume) is al­
ready on DASD, an I/O operation proceeds. If not, and 
data is being accessed, the MSC causes the cartridge 
containing the cylinder to be placed on a Data Recording 
Device (DRD), and the data contained in that cylinder to 
be transferred to the DASD staging buffer. The transfer 
path is to the Storage Controller, and from the Storage 
Controller to the Staging Buffer (DASD device) avoiding 
the extra load on channels and memory. The I/O opera­
tion then proceeds as before. If the Operating System 
knows which cylinders will be accessed, it can cause the 
MSC to stage only those cylinders containing the data set; 
reducing the number of times cartridges need to be ac­
cessed. 

It should be apparent that the total amount of DASD 
Staging Buffer Space is related to the total size of the cur­
rently active data sets, and not to total number of active 
volumes. DASD is being used as a buffer to the MSF, and 
the actual device characteristics are architecturally unim­
portant. 

CONFIGURING MSS 

The objective of any configuration is to select the 
components required to do the work load of a specific cus­
tomer. Excess performance capability, either as a result of 
the configuration or the design of the system, yields noth­
ing useful to the customer and adds to the cost of the 
system. Systems must be configured to handle the highest 
work load case with the responsiveness required to meet 
work schedules or human factors requirements in interac­
tive environments. Availability and security may also af­
fect a configuration but are not the subject of this paper. 

In evaluating a Storage System, some terms must be es­
tablished to describe performance. The basic objective of 
storage is the transfer of data to or from a CPU's Chan­
nels. The total amount of data transferred is a measure of 
throughput (total work) while the time to access data be­
comes a measure of responsiveness. 

Current systems can be measured using various tech­
niques to determine the total amount of data transferred 
into or out of storage over given units of time. A basic diffi­
culty in measuring a system is that, by definition, the 
measurement is based on past performance. Past perfor­
mance provides an adequate measure only if the environ­
ment is static; which is seldom. A knowledge of existing 
applications growth and new application requirements 
must be acquired and factored into planned configura­
tions. 

In a storage hierarchy such as MSS, the Direct Access 
Storage must have sufficient performance capability to 
supply all accesses required by the CPU's main memory. 
Direct Access Storage is also involved when data is staged 
from the Mass Storage Facility or destaged to the MSF. It 
must have sufficient capacity to hold all open data sets 
and additional capacity to maximize the reuse potential of 
data. MSF must have transmission capability to handle 



the data being staged or destaged, and the ability to 
handle the cartridge movement involved. It must have ca­
pacity to contain all the data, backup, archival and active. 

A work load analysis of the total system is required to 
choose the proper configuration. 

The following is a hypothetical work load compiled to 
illustrate the demand that might be placed on the major 
interfaces of a storage hierarchy such as MSS. (See 
Figures 2-6.) 

Figure 2 represents the I/O work load over time, and 
the sustained data rate across the CPU's channels, with 
tape and DASD averaged over one-hour periods. Each 
vertical bar reflects the combined effect of operator mount 
delays, operating system overhead, device raw data rate, 
channell control unit configuration and demand for data 
by the programs that were active in that hour. 

At any point, the Input/ Output demand can be limited 
by the speed of the CPU and the number of I/O bytes of 
data required per instruction executed, or by the number 
of programs that may run concurrently. Peak throughput 
of the entire system is always limited by full utilization of 
the CPU's processing cycles. If the I/O is configured so it 
never limits the CPU to less than 100 percent utilization 
(and the cost of this I/O is not prohibitive) an ideal 
throughput system can result. Full utilization also requires 
an unending supply of work and response time which may 
be exceptionally long. Figure 2 is more typical, showing 
peaks and valleys in the I/O work performed by the 
system. Peaks represent 100 percent utilization and 
valleys represent the lack of work to do; or a system being 
limited by operations, number of available devices, or the 
mix of programs in the CPU. 

The total amount of data staged and destaged is de­
termined by the capacity of DASD and by how the data is 
being used. The potential for reuse of data can be under­
stood by making an assumption about DASD capacity, 
and observing the resultant staging rate between DASD 
and MSF. First, assume there is only enough DASD ca­
pacity to contain the total size of concurrently active data 
sets; but with no additional capacity to retain data on 
DASD, then observe the demand on the MSF for data sets 

2 
co 
o 
Q) 

> 
';; 
u 
~ 
W 
E 
~ 
> 

(/) 

800 

700 

600 

500 

400 

300 

200 

100 

o Total Data Rate 
• Tape Data Rate 

O'-----'-----'----'--'---'-----'----J'---'-----'------'-----L--'--L-..L----'----' 
10 20 30 40 50 60 70 80 

Hour 

Figure 2-Systems work load (72 hour example) 

IBM 3850-Mass Storage System 511 

400 

350 

~ 300 
..0 

~ 250 
Q.) 
+-' 

~ 200 
C'l 
c 
C'l 

150 
co 
+-' 100 (J) 

50 

0 
0 

I I 
15 30 45 60 75 
Retention Time (minutes) 

Figure 3-Staging data rate and DASD capacity relationship (72 hour 
example) 

and data rate. Next, assume there is enough DASD ca­
pacity to contain the total size of concurrently active data 
sets, and there is additional capacity to retain data on 
DASD after its active use for longer and longer periods of 
time. Now, if a data set is reused within that retention pe­
riod, it does not have to be staged again nor is it necessary 
to handle the cartridges. Figure 3 represents the results of 
such an analysis. The plot shows the reduction in average 
MSF data rate as the retention period on DASD is 
increased. 

Once a retention period has been selected, it is more ac­
curate to look at the required average capacity over 
smaller increments of time. Figure 4 shows the average ca­
pacity per hour that is required to contain all the active 
data sets during the time of their activity, plus the addi­
tional time included for optimum reuse. Given the average 
capacity to optimize the reuse of data, a closer analysis of 

~! 
.~~ 
c. ..... 
(0 0 
u'" 
(I) C mo 
~= (1):= 
>:2: «-

1200 

1000 

800 

600 

400 

200 

0 

o Total Capacity 
.Tape Contribution 

10 20 30 40 50 60 70 80 
Hour 

Figure 4-DASD capacity required (72 hour example) 



512 National Computer Conference, 1975 

o Total Staging Required 

180 • Tape Contribution 

160 

140 
VI 

---.0 
120 ~ 

~ 
100 CQ 

a: 
~ 80 CQ 

0 
1:1 60 Q) 
Cl 
CQ 

en 40 

20 

0 
10 20 30 40 80 

Hour 

Figure 5-Data staging rate required (72 hour example) 

MSF activity can be made. It must take two forms, the 
first is the total amount of data staged and destaged, the 
second is the total number of individual data sets handled. 
Both are necessary because they represent different work 
loads. 

Figure 5 shows the staged data rate in ea~h hour of t~e 
analysis. The Storage System must be confIgured so thIS 
demand can be met, and so it relates directly to the 
amount of DASD activity introduced by the storage 
hierarchy. The number of paths required for staging and 
destaging also result from this analysis. 

The number of data sets being handled at the MSF level 
of the storage hierarchy can be used to determine the work 
load in terms of cartridge moves. Figure 6 shows this work 
load stated in terms of cartridge moves per hour. The size 
of the data sets, and the Mass Storage Volume organiza­
tion must be considered to translate data set accesses to 
cartridge moves. 

180 

160 

140 

120 
V'> 
Q) 

> 
100 0 

~ 

~ 80 "0 

.~ 
60 u 

40 

20 

0 
10 20 

Hour 

o Total Move Requirement 
• Stage Up Contribution 

80 

Figure 6-Access rate (72 hour example) 

SYSTEMS CONTROL 

The preceding sections presented an analysis of the 
work load relationship that could be expected on the 
major interfaces of a storage hierarchy. If the system is 
designed with work load relationships in mind, then 
maximum reuse potential must be achieved. In addition, 
the control system must function in large establishments 
which typically have multiple CPU syste.'1s controlled by 
separate operating systems. It is necessary to have, 
therefore, a common point of intelligence to control both 
the concurrent use of data and the staging buffer replace­
ment algorithms. 

The MSS has such a control system, called the Mass 
Storage Control or MSC. In MSS, regardless of how many 
Mass Storage Facilites exist, one and only one MSC con­
trols the hierarchy. Some MSS models have two MSCs; 
however, the second serves only to improve availability. 
The MSC cannot perform the entire task without also hav­
ing control over allocation of volumes to devices. Because 
of this, MSS is designed to allow the MSC to control the 
functions of space management, while the control of data 
and allocation is within the operating system. An interface 
between MSC and the operating system is a necessity. 

In IBM System 370 architecture, a program gains ac­
cess to data by having a volume mounted on an ad­
dressable device, as discussed previously. In a single CPU 
environment, the operating system is always aware of 
which volumes are currently mounted. In a multiple 
operating system environment, such as illustrated in 
Figure 7, the systems can take actions independent of each 
other. In addition, a storage hierarchy such as MSS is at­
tempting to maximize the reuse of data. If any residual 
data remains on the staging buffer and the same using 
system or another system reuses that data, the MSC must 
know where that data resides to prevent unnecessary stag­
ing. Another condition which may exist is where one CPU 
is currently using a data set on a specific volume, and 
another CPU needs access to the same data set, or another 
data set also residing on that volume. 

The virtual device concept provides a convenient solu-

Data Flow 

Figure 7-Multiple systems environment 



tion to the following requirements. First, assume that CPU 
1 has access to a volume and it has allocated that volume 
to DASD POOL 1. Now, assume CPU 2 wants access to 
another data set on that same volume. If the operating 
system in CPU 2 were to independently allocate that 
volume, it would be pure chance if it selected a device ad­
dress associated with POOL 1. In MSS, the CPU that is in 
the process of allocation, uses the MSC control interface to 
learn if the volume in question is currently mounted, or if 
any residual data from a previous usage of the volume 
exists anywhere on the staging buffers. If either condition 
exists, the operating system retrieves the information from 
the MSC and chooses a virtual address associated with the 
DASD POOL that contains the data. The MSC then con­
ditions the Storage Controllers associated with that DASD 
POOL to access to the specific unit address maps to the 
desired data. This makes it possible for CPU 1 to access a 
specific volume on one virtual device address while at the 
same time, CPU 2 has access to the volume on a different 
virtual address. The converse is also true, CPU 1 and 
CPU 2 can be accessing different volumes on the same vir­
tual address. 

The above described control makes it possible for 
multiple CPU's, which may be controlled by different 
operating systems (OS/VS1 and OS/VS2 for example), to 
concurrently share the DASD buffer space without having 
a common allocation system. As many as six different vir­
tual addresses can be mapped to the same volume, or each 
may have different volumes associated with them. Each 
Storage Controller used in MSS can have up to three chan­
nel interfaces, and one or two Storage Controllers may ac­
cess the same DASD POOL. Each interface can have up to 
64 virtual addresses, independent of the actual number of 
DASD devices in the pool. This means that 64 volumes 
could be mounted in that pool with six alternate paths to 
each, or that up to 384 volumes could be mounted with no 
alternate paths. 

To control sharing within MSS, two mechanisms are 
used. A logical device reserve I release function is provided 
and is functionally compatible on virtual devices with cur­
rent IBM 3330 devices. A second mechanism is provided 
called exclusive Mass Storage Volumes. This function 
allows the volume to be defined to MSS so the MSC can 
allow only one CPU access at a time. Actually, if the 
data on the volume is read only, or only one user is in the 
update or write mode, there is usually no reason to prevent 
concurrent access. 

SPACE MANAGEMENT 

Managing space on DASD volumes is considerably more 
complex than managing a tape library. This is due to the 
capacity of DASD volumes and the function they provide. 
Typically tape volumes contain data from a single data 
set, while DASD volumes contain data from many data 
sets. If the data sets have' different life times (expiration 
dates), and are of a variety of sizes, the result can be frag-: 
mentation of the space. This is further complicated by dif-

IBM 3850-Mass Storage System 513 

ferent security and backup requirements. It, therefore, is 
desirable to provide new functions to ease the task of 
managing space within MSS because of its capacity 
(equivalent to up to 4,720 Packs of a 3336, Modell). 

Again, it is necessary to divide the control between MSS 
and the attached CPU operating systems. The division is 
made to manage space within the MSC, and to manage the 
content of that space with the existing catalogue functions 
of the operating systems; also to complement the catalogue 
functions with new software functions called Mass Storage 
Volume Control (MSVC). 

The objectives of MSVC are to aid the users of MSS in 
space allocation and space reclamation and to provide a 
management reporting function so that use of space within 
MSS can be monitored. The main parameters of space 
management are accounting, data set size, life cycles, se­
curity and backup. Because these parameters vary widely 
between installations, a framework is implemented to give 
customers control with as little implementation effort as 
possible. 

MSVC maintains an inventory of Mass Storage 
Volumes. This inventory can be structurable into groups 
of volumes. The MSVC maintains information about 
ownership, space usage, space allocation defaults, backup 
volumes, retention dates, and location of the Mass Storage 
Volume if it is removed from the system. Volumes can be 
grouped by data set sizes, user group, security or any other 
parameter the customer chooses. Once a structure is 
chosen, attributes can be applied to the entire group or to 
individual volumes within the group. It should be possible 
in most cases to use MSVC so that the space management 
within MSS is automatic. MSVC also uses the control in­
terface to MSC to manipulate the volumes physically or 
logically. For example, volumes may be removed from 
MSS for security purposes, or may be made inaccessible 
within the system. Volumes may be copied within MSS 
without data movement through the CPU's memory or 
channels, and the copy is inventoried by MSVC, and ac­
cess to the copy is controlled by the MSC. 

CONCLUSION 

As stated earlier, the number of times and the amount of 
, this time, a program or task has to wait for data to appear 
on DASD or has to wait for space on DASD to store new 
data, is a measure of the visible impact of the storage 
hierarchy and the overhead it introduces into the 1/0 
system. The effect on total system performance can only 
be understood by comparing the projected overhead with 
the existing overhead. 

Again, averages are used to demonstrate the potential 
for improvement. Figure 8 is a comparison showing delay 
times in a half-inch tape environment where tape volumes 
are handled by operators; versus the delay times caused 
by MSS. Figure 8 assumes MSS has been configured to 
the optimum reuse DASD capacity and has a sufficient 
number of access paths to handle the peak work loads de­
manded by the job mix. It also assumes the events of data 



514 National Computer Conference, 1975 

o =MSS 
EI = Operations delay % tape 

962 

GOO Average Delay Due to Staging = 0.1 Minutes 

500 I Average Delay Due to Manual 
:/ Tape Mounts = 1.3 Minutes 

CI> 400 
Q) 

I 
I u 

c: 
E300 
::J g 
o 200 

100 

.2.3.5.7 1 .5 2 3 4 6 10 

Task Delay Time (minutes) 

Figure 8-Estimated task delay time (comparison example) 

set usage are essentially the same in both environments. 
The potential for improvement in this specific case is ap­
proximately one order of magnitude. 

The preceding analyses allow the following observations 
to be made relative to the MSS storage hierarchy. 

1. The best possible performance of the hierarchy is 
equal to that of the devices used in the top level of 
storage. For MSS, it is the DASD level. 

2. The total cost of the Storage System is dependent on 
the size of data sets, their reuse characteristics, and 
the amount of data that must be transmitted to and 
from the CPU's main memory. 

3. Mass Storage can be designed with considerably less 
data transmission capability than devices which 
must respond directly to the needs of an active 
program. 

4. The measurable impact of the hierarchy is the length 
of time it takes to make data or space available to the 
CPU channels. The total amount of storage space at 
the DASD level of the hierarchy can have a greater 
effect on this response time than the transmission 
rates between the levels of the Mass Storage System. 

5. A virtual device architecture allows the storage 
hierarchy to adapt new technologies without chang­
ing or impacting the user's interface to data. The 
hierarchy can be expanded to include additional 
levels of storage within this basic approach. 

RECOMMENDATIONS 

Understanding the performance of a storage hierarchy is 
difficult because of its wide range of applications. It is 
relatively clear that properly configured, a storage 
hierarchy performance will be comparable to manually 
mounted tape/ disks in local and remote batch applica­
tions where data set sizes are within the 50 X 1()6 byte 
range and where reuse characteristics are present. Storage 
hierarchies are particularly interesting in remote compute 
applications. The use of storage hierarchies in interactive 
data base applications, however, needs considerably more 
understanding in most cases. 

There are a number of applications which require very 
large data bases but have a low rate of access. If this rate 
of access is less than delivery capability of cartridges in 
MSS, then the analysis is simple. If, however, the total 
work load on the storage system includes local and remote 
batch, interactive compute, interactive data base and 
utility type functions (backup, interchange, archive, etc.) 
understanding the total system is very complex. 

Usually this type of complexity can be understood by 
modeling. In the case of a storage system, however, proven 
modeling techniques are not available. Analytical models 
require that input parameters are some sort of distribu­
tions or averages. Simulation models require large quan­
tities of trace data in order to cause sufficient activity at 
the lowest level of the storage hierarchy. The availability 
of trace data assumes the application has been done 
somewhere. Data organization must be included to relate 
data accesses to MSF accesses. Also, clustering and se­
quencing of requests must be related to data organization 
and understood relative to retention times in the higher 
levels of storage. 

The recommendation is to use caution in approaching 
data base applications where there is a dependency on "80 
percent" of the activity versus "20 percent" of the data (or 
some other rule). Modeling techniques must be developed 
which allow total systems to be analyzed. Data must be 
collected and understood which can indicate the 
predictability of when data will be used and how it relates 
to other data: Lastly, it must be recognized that these ap­
plications will coexist within the same complex; therefore, 
the analysis must encompass the old as well as the more 
exciting, new applications. 



Charge-coupled devices for memory 
applications 

by GILBERT F. AMELIO 
Fairchild Research and Development 
Palo Alto, California 

INTRODUCTION 

Since the invention of charge-coupled devices (CCD) in 
late 1969,1-3 the potential of the charge-coupling concept 
for digital memory has been recognized. Applications to 
image sensing and signal processing requirements have, 
however, preceded the application of CCD to memory. 
This occurred because relatively simple charge-coupled 
devices offered new performance potentials for image sens­
ing and signal processing. Nonetheless, the basic shift­
register nature of CCD implies that its greatest op­
portunity for widespread application lies in the highly 
competitive area of high density semiconductor memory. 
Today, sophisticated CCD memory components are 
emerging. 

Although a CCD memory can be configured in a 
number of ways, all are basically serial in nature and, 
hence are block-access oriented rather than bit-access 
oriented. The charge-coupled device is characterized by 
high packing density, low power dissipation, and a 
structural elegance which will lead to very low cost. 
Besides being a natural semiconductor replacement for 
rotating drums, discs and other peripheral memories, 
CCD will ultimately find application in many main-frame 
requirements as systems architecture evolves to take ad­
vantage of these fast, lower cost block-oriented 
components. 

This paper begins by describing the general properties 
of CCD memories, focusing on speed, power, temperature 
characteristics, and interface requirements. Next 
described are three basic classes of CCO memory 
components-the Synchronous, the Series-Parallel-Series, 
and the Line Addressable. As a specific example, a 
Synchronous configuration with 9216 bits and fabricated 
with Isoplanar, buried channel processing is described in 
detail. 

GENERAL PROPERTIES OF CCD MEMORIES 

Speed 

The movement of charge from one CCD electrode to the 
next is inherently fast, ultimately limited only by the car­
rier saturation velocity. Registers which shift data effi-

515 

ciently at frequencies in excess of 100MHz have been 
reported by Esser.4 Improvement by factors of 2 or 3 over 
these values is only a matter of time. Such speeds will not 
be as easily achieved in useful CCD memory components. 
In a practical memory component, significant peripheral 
and interface circuits are required. These include 
read/ write logic, level converters, sense amplifiers, and 
I/O buffers. In current practice these circuits are imple­
mented, as is the CCD, by N-channel MOS technology. 
For standard voltages and present design rules, such cir­
cuits are limited to about 10MHz with 5 to 7MHz 
representing a more practical current upper limit for 
production devices. 

Power dissipation 

The dynamic, non-equilibrium operating mode of the 
CCD element leads to an almost ideal energy transfer con­
dition where on-chip power dissipation is associated pri­
marily with the movement of signal charge (data). If, on 
the average, one-half the bit sites contain charge, the 
speed-power product for typical parameters is O.2pJ per 
bit transferred. As an illustration, consider a simple series 
shift register block of N bits. The average power dissipated 
on-chip for a data frequency of Ic is given by: 

P= 2N(O.2 X 10- 12 )/c. 

IfN=1024 and/c =5MHz, then 

P=2mW 

(1) 

(2) 

which is a small power for a memory of this size. 
Moreover, in other configurations where most of the data 
is movi1;:!g slowly or not at all, the power per bit is averaged 
downward very much further. 

A much more significant term is the power dissipated in 
the drivers to the CCD register. Since the CCD electrodes 
present a substantial capacitive load, the drivers dissipate 
power according to the general law for reactive power, 

P=CV 2fc 

For the simple series shift register considered above, the 
capacitance per bit for an losplanar, buried channel struc­
ture is approximately Cb =60IF. For V=10V and 



516 National Computer Conference, 1975 

fe = 5 MHz, the driver power becomes 

p= 2NCb V 2!c·= 60m W (3) 

Although this is much larger than the real power dissi­
pated in the CCD, it is quite acceptable. The driver power 
requirement can be averaged downward by slowing the 
clock frequency when the memory is not actively used. 

Perhaps the largest on-chip power dissipation is in the 
peripheral circuitry. Although it is difficult to be quantita­
tive without a particular memory configuration in mind, a 
power dissipation of one to two orders of magnitude higher 
than the CCD storage elements can be expected. 

Temperature behavior 

The CCD storage element is dynamic and therefore, 
must be periodically refreshed similarly to a dynamic 
MOS RAM. The frequency of refresh is a sensitive func­
tion of temperature. At room temperature (25°C), the ele­
ment storage time is of the order of one second. This value 
decreases by a factor of two for every go C increase in 
temperature up to approximately 70°C. Above this it 
decreases even more rapidly, until at 125°C, it is falling a 
factor of two every 4.5°C. For an ambient temperature of 
70° C, a typical die temperature might be around 90° C. 
Since under these conditions the storage time is ap­
proximately 5ms, the memory must be refreshed more 
frequently than at lower temperatures. This increase in 
refresh rate increases power dissipation which, in turn, 
increases the difference between the ambient temperature 
and the die temperature thereby further increasing the re­
quired refresh rate. The power dissipation, therefore, 
increases in a power law fashion as the system ambient 
temperature rises. Conversely, at artificially lowered 
temperatures «25°C) the power and time required for 
refresh rapidly becomes insignificant. For example, at 
- 30° C ambient, the storage time is approximately one­
third of a minute which thereby renders the memory close 
to non-volatile from a power dissipation standpoint. Fu­
ture memory systems using CCD may find it advanta­
geous in many instances to incorporate cooling for 
increased system performance. 

Interfacing and packaging 

As a result of the extensive use of NM OS technology for 
the on-chip peripheral circuits, CCD memory components 
should be no more difficult to use than dynamic M OS cir­
cuits. Indeed, dependent on design, the timing and other 
requirements may be superior to MOS. 

The similarity of CCD memory to M OS memory will 
lead to the use of essentially identical packaging 
technology, which includes side-brazed ceramic, cerdip 
and plastic. The designing and qualification cycles should 
be rapid. 

MEMORY CONFIGURATIONS 

The inherent digital CCD configuration is that of a shift 
register with a serial-in/ serial out operation where all bits 
are simultaneously shifted. CCD memory elements can be 
formed by using these shifts registers directly or by 
combining the shift registers with refresh, sense and de­
coding circuitry to construct more sophisticated memory 
chips. There are three basic organizations for memory ap­
plications: 
(1) Synchronous 

The synchronous organization is one in which all shift 
register segments are clocked simultaneously. For 
example, the well-known serpentine configuration is 
synchronous. This organization (Figure 1a) is obtained by 
connecting in tandem several sequential multi-stage shift 
registers by means of refresh cells. Internally, all data bits 
are simultaneously shifted through all cells of the register 
and characteristic of the synchronous organizations, the 
internal shift frequency is equal to the input/ output data 
rate. An important advantage of the serpentine configura­
tion is that it permits the construction of extremely long 
shift registers with excellent low frequency response even 
at elevated temperatures where leakage currents become 
significant. A disadvantage of this organization is that 
power dissipation is higher at a given operating frequency 
than the other approaches because all bits of data are 
moving at the same frequency. Additionally, the clock 
power requirements are high for a large capacity memory 
since the clock-line capacitance is relatively high. Several 
serpentine shift registers can be combined on a single chip 
using common control signals and an address decoder 
which enables selection of one or more of the serpentine 
registers. Because all of the serpentine memory operates at 
the same frequency, it can operate over a wide range of 
frequencies, which is particularly useful for data buffering 
applications. 
(2) Serial-Parallel-Serial (SPS) 

The power efficiency and effective packing density of 
the basic CCD shift register can be increased by perform­
ing a serial-parallel-serial (SPS) manipulation of the data. 
An SPS memory arrangement is shown schematically in 
Figure lb. The input rate is determined by the clock fre­
quency of the horizontal registers. After filling the top 
horizontal register with data, a parallel operation is 
performed in which all of this information is shifted into 
the vertical registers. Thus, the vertical registers run at a 
frequency equal to N-l of that of the horizontal registers 
where N is the number of bits in the horizontal register. If 
it is assumed that the total number of bits is NXM, the 
delay from input to output is NM / fh where fh is the hori­
zontal clock frequency. However, the number of stages of 
shift register through which anyone bit is transferred 
equals only N+M. 

One advantage of this configuration is that the power 
dissipation is low because most of the data bits are moving 
at the slow (vertical) clock rate. This reduction in power 
dissipation is obtained at the expense of an additional set 



ADDRESS 

IN 
~ 

II . I 

II 

DRIVING 
PULSE TRAINS 

SELECTION I 
I 
I 
I 
I 
I 
I 
6 

COMMON 
INPUT 

Charge-Coupled Devices for Memory Applications 517 

• II REFRESH 

II I 
.. II 

• 
• 
• 
• 

• --+ 
OUT 

1 1 1 1 

L--______ • ----0-----11 Dour 

2nd LINE 

3rd LINE 

REGENERATION 

COMMON 
OUTPUT 

OUT 

Figure I-A schematic representation of a charge-coupled. (a) serpentine shift register organization. (b) serial-parallel-serial (SPS) shift register 
organization. (c) line addressable random access memory (LARAM) organization 



518 National Computer Conference, 1975 

TABLE I 

Memorv Class Aprlic.::.tion 

ceD Mcnlory 
Order 

of 
Pl':eference 

Fast Access Bulk Storage LARAM 

FAST ACCESS MEMORY 

SEP-IAL H!lMORY 

BUFFER MEMOR) 

Main Memory Mini CPU 

Signal Processing 

Multistation Data Collection 

Disc Enhancement 

Ai rborne Mag Tape Repl. 

Commercial Disc 

Commercial Tape 

Lightweight Field Data 
Collection 

Communications Buffers, 
Large Record 

Mul tiplex Communications 
Buffers 

Synchronous 

SPS 

SPS 

LARAM 

~ynchronous 

Synchronous 

Buffered I/O controllers SPS 

LARAM 

of clocks for the vertical registers. Another advantage is 
flexibility in timing if the vertical clocks are program­
mable. Additional flexibility can be achieved with 
separate input and output clocking. 

A disadvantage is the long delay between input and 
output. This limits the low frequency and high tempera­
ture operation of the memory, because ofleakage currents. 
Similarly, the access times for SPS memory chips are 
generally longer than those for other organizations. It 
should be noted, however, that the data rate can still be 
very high. Overall, the SPS characteristics make it very at­
tractive as a potential replacement for mechanical 
memories. 
(3) Line-Addressable 

Although a true random bit-access capability is 
inherently precluded by the very nature of the CCD 
storage structure, a novel organization has been conceived 
which does provide a pseudo-random access with access 
times in the tens of microseconds. This is the line-ad­
dressable random access memory (LARAM) configuration 
which is an integration of CCD and M OS memory con­
cepts. One form of the LARAM is illustrated in a sim­
plified schematic form in Figure lc. Basically, the 
memory is composed of an MOS address selection matrix 
and a number of CCD sequential shift registers, where 
each register represents a line. Selection of an address 
causes the driving waveforms to be applied to the chosen 
line (register) to initiate read-out/write-in/ or refresh or 
information in that register. 

This configuration allows an access time that is 
essentially dependent on the number of elements per line. 
In addition, since only one line is operative at anyone 
time, clock capacitance and power dissipation are 
minimal. Dependent on the stack configuration, a memory 
system using a line-addressable structure can be either 
word-organized, where each line represents one or more 
words, or bit-organized, where each line contains one 

particular bit of a number of words. Since the data is, in 
general, not moving most of the time, this type of device 
organization has the most stringent requirement on dark 
current uniformity. Nonetheless, this organization is the 
most flexible and will find greatest application in cache 
buffers, swapping stores and mainframes. 

Other organizations which are basically derivatives of 
those above include among others, the multiplexed elec­
trode-per-bit5 configuration, the interlaced SPS6 and the 
addressed drum type structure.7 

In the multiplexed electrode per bit configuration each 
electrode is used as a storage site. The clocking is such 
that only 1 of N electrodes is clocked at a time thus propa­
gating a "hole" through the stored data. For the price of 
an N-phase clock (N)> 1) the packing density of the 
memory can be doubled. The interlaced SPS is just like 
any other SPS except there is one horizontal electrode 
rather than one bit for each vertical register. Clocking is 
such that the odd and even vertical registers are al­
ternately filled from the odd and even electrodes of the 
horizontal input register. At the output, this sequence is 
pursued in an analogous but reverse manner. The ad­
dressed drum type structure is a synchronous organization 
similar to the serpentine configuration except each loop 
closes back on itself. Access to these independent loops is 
by means of an address decode for the I/O. 

Several organizations will emerge as standard CCD 
memory products as a result of the complex trade-offs 
between system requirements and device economies. A 
qualitative comparison of the three basic organizations for 
different applications is shown in Table I. Note that in the 
critical area of fast access memories (FAM's), the 
LARAM is the preferred configuration. This choice 
derives from the fast access time and low clock capaci­
tance characteristic of this organization which permits 
easy memory expansion. In addition, the power dissipa­
tion is low and the organizadon leads naturallY, to a high 
density layout. As a result of these unique features, the 
LARAM will playa major role in the application of CCD 
to system design and layout. For serial memory, the SPS 
is preferred because of its simplicity. Finally, for buffer 
memory synchronous architecture is preferred because of 
its versatility and ease of use. 

EXPERIMENTAL RESULTS 

In order to put the above remarks in a realistic frame of 
reference, this section deals with a specific CCD/NMOS 

1024 BIT SHIFT REG DATA LINE 
(HIGH TRUE DLcp) 

WRITE ENABLE CP1 CP2 

(LOW TRUE -WRITE) (LOW. TRUE - READ) 

Figur~ 2-A logic diagram for one of the nine channels in the CCD450 



Charge-Coupled Devices for Memory Applications 519 

Figure 3-Photomicrograph of the CCD450 



520 National Computer Conference, 1975 

(a) 50 KHz Data Rate 

(b) 3MHz Data Rate 

Figure 4-0scilloscope traces of one channel of CCD450 operating at 50KHz and at 3MHz. The lower two traces show input data and output data 
respectively 



memory component which has been developed at Fair­
child. This part is known as the CCD450. 

Description 

The CCD450 is a serial storage memory consisting of 
9216 bits which are organized into a format of 1024 bytes 
by 9 bits. This architecture is realized by the use of nine 
shift registers each containing 1024 bits. Since these 
registers are shifted in parallel, nine-bit bytes are stored or 
retrieved in a byte-serial mode. 

The component represents a significant advance in 
semiconductor memory. Although it contains all the logic 
necessary to facilitate ease of use the average density is 
less than 3 mil2

/ bit. The fabrication of the memory is little 
more complicated than comparable N-channel MOS cir­
cuits with only one additional photo masking operation. 
On-chip TTL-to-MOS level conversion permits all logic 
and data lines to be TTL compatible. On-chip timing 
reduces the system requirements to simple two phase 
clocks. Bi-directional tri-state data lines and commonality 
oflogic for I/O control permit the memory to be packaged 
in a 0.3 inch 18 pin standard package. 

A logic diagram for one of the nine registers is shown in 
Figure 2. Each register is accessed by its own bi-direc­
tional data line, but all nine registers are serviced by com­
mon data-transfer clocks (01 and 02) and control functions 
READ and WRITE. Not shown on the logic diagram, but 
also common, are the DC power supply lines and a data­
enable (DE) line. The data lines are driven with a tri-state 
buffer, thus providing a "wired OR" capability at the 
output. This eases memory system expansion, eliminating 
the need for interfacing components on the PC board. 

The CCD registers are organized in a serpentine fashion 
with refresh turn-around-cells every 128 bits. The CCD 
structure used is a buried channel, gapless structure with 
ion-implanted barriers. The MOS circuits used to provide 
timing, charge detection and level conversion are fabri­
cated using Fairchild's n-channel silicon gate Isoplanar(R) 
process. Figure 3 is a photograph of the chip. 

Performance 

The operating modes of the circuit include: read, write, 
read/ modify /write, and recirculate. Furthermore, depend­
ing upon the data transfer rate, the recirculate mode can 
be broken down into a search mode and a standby mode. 

The basic timing is established by the two clocks «(A and 
02)' During 0 high time, the logic is reset, data is shifted by 
Y2 bit and the mode control level conversion from TTL to 
MOS levels is accomplished. During 02 high time the data 
is shifted by Y2 bit, output charge (or lack of charge) is 
sensed and presented to the output and, simultaneously, is 
written into the first CCD stage. The charge level written 
into the first CCD well is controlled either by the output 
charge level or the data pin state depending upon whether 
the selected mode is recirculate or write. Figure 4 shows 

Charge-Coupled Devices for Memory Applications 521 

TABLE II-Summary of CCD450 Characteristics 

ORGANIZATION' 

OPERATING FREQUENCY' 

INPUT/OUTPUT INTERFACE, 

READ/WRITE LOGIC 
INTERFACE 

CCD CLOCKS' 

DATA ENABLE CONTROL' 

POWER DISSIPATION, 

CLOCK CAPACITANCE' 

VOLTAGE REQUIREMENTS 

PACKAGE, 

1024 BITS x 9 BITS 

3 MHz MAX READ, WRITE OR RECIRCULATE 
2 MHz MAX READ/MODIFY/WRITE 
50 KHz MIN STANDBY 

TTL COMPATIBLE BI-DIRECTIONAL DATA BUS 

TTL COMPATIBLE "LOW -TRUE" LOGIC 
INPUTS 

TWO- PHASE CLOCKS (4), AND "'2) 

DISABLES READ/WRITE BUFFER FOR LOW 
POWER STANDBY OPERATION (0-12 VOLTS) 

READ- AT 3 MHz - 250 mW TYP 
RECIRCULATE AT 3 MHz -50 mW TYP 
STANDBY AT 50 KHz - 30 mW TYP 

400 pF MAX. 

4>,,4>2 AND DE 0-12V CLOCKS 

Voo +1~ Vdc 

Vee +5 Vdc 

18- LEAD D.IP (300 Mil WIDTH) 

one channel of the memory operating in a write/recircu­
late/read mode at 50KHz and at 3 MHz. 

During the recirculate mode, only those circuits re­
quired for internal data transfer need to be active. This se­
lection is accomplished by bringing the data enable (DE) 
line to its low state, thus disabling the read and write logic. 
While in this state, the chip will disregard the READ and 
WRITE lines, thus removing all constraints on these lines 
during the recirculate mode. This mode is thus useful for 
either a high speed "search" operation, or a low speed, low 
power standby operation. 

A low power standby mode can be obtained by reducing 
the operating frequency. Further power reductions can be 
obtained by reducing the duty cycle, operating with both 
01 and 02 low for much of the cycle. Table II lists the 
device characteristics. 

Application 

The CCD450 is most conveniently envisioned as a byte­
organized dynamic shift register with sufficient overhead 
functions to ease its use considerably. As such, it is most 
attractive for terminal applications where the byte organi­
zation and low power are highly desirable. In this applica­
tion, it replaces more than nine packages, saves several 
square inches of board space and reduces power dissipa­
tion by more than an order of magnitude. The low power 
recirculate mode permits battery back-up for non-vol­
atility and portability. 

CONCLUSIONS 

The charge-coupled device will playa major role in future 
semiconductor memory systems. Its characteristics of low 
complexity, low power dissipation, high data rate and ease 
of use will result in rapid growth in numerous memory 
applications and produce concomitant reduction in 
cost/bit. 



522 National Computer Conference, 1975 

REFERENCES 

1. Boyle, W. S. and G. E. Smith, "Charge Coupled Semiconductor 
Devices, " Bell System Tech. Journal, Briefs, 49, p. 587, April 1970. 

2. Amelio, G. F., M. F. Tompsett and G. E. Smith, "Experimental 
Verification of the Charge Coupled Device Concept," Bell System 
Tech. Journal, Briefs, 49, p. 593, April 1970. 

3. Tompsett, M. F., G. F. Amelio and G. E. Smith, "Charge Coupled 8-
Bit Shift Register," Appl. Physics Letters, 17, p. 111, August 1970. 

4. Esser, L. J. M., "The Peristaltic Charge Coupled Device for High 

Speed Charge Transfer," 1974 IEEE Solid-State Circuit Conference, 
p.28. 

5. Collins, D. R., J. B. Barton, D. C. Buss, A. R. Kinetz, S. E. 
Schroeder, "CCD Memory Options," 1973 IEEE Solid-State Circuits 
Conference, p. 136. 

6. Erb, D. M., and C. V. Agnew, "A High Density 
Serial/Parallel/Serial CCD Memory with Interlaced Columns," 
Session 3-B, Dev. Res. Conf, Univ. of Ca., Santa Barbara, December 
1974. 

7. Rosenbaum, Stanley D., and T. Terry Caves, "CCD Memory Arrays 
with Fast Access by On-Chip Decoding," 1974 IEEE Solid-State Cir­
cuits Conference, p. 210. 



Bubble domain memory systems 

by JOHN E. YPMA 
Rockwell International Corporation 
Anaheim, California 

INTRODUCTION 

This paper presents bubble memory technology from a 
systems viewpoint. A perspective is given listing the 
characteristics of bubble domain memory relative to other 
available and oncoming memory technology. The applica­
tion areas most conformed to bubble capability are 
identified. Bubble domain chip topologies and bubble 
memory systems organized to fit the application are dis­
cussed. Examples of actual devices being built are 
presented. Prototype systems are discussed, indicating 
their organization and interface command and timing 
structure. 

BACKGROUND 

The effort presently being put forth in the development 
of bubble domain memories is based upon three factors. 
First, the basic characteristics associated with bubble 
domain memory are attractive. Secondly, there are at 
least three places in the spectrum of memory approaches 
where bubble memories can fill vacancies in an effective 
manner. Thirdly, the technical problems associated with 
bringing bubble technology into fruition as hardware are 
being surmounted. By November, 1974 at least three com­
panies had constructed prototype bubble memory systems 
which exhibited all the necessary functions required for a 
usable memory. 

Those characteristics which make bubbles attractive for 
storage systems are several in number. Bubble memory is 
non-volatile. Its non-volatility provides data protection 
during power failures. More important, it allows the 
memory to be powered down when no data is being 
transferred. During operation, power consumption 
remains low with 10 Watts for a 107 bit memory as a 
reasonable figure. These power levels coupled with bubble 
memory bit density in the range of 2.5 X lOS bits per 
square inch allow compact packaging to be achieved 
without heat problems. Lack of mechanical motion and 
the periodic servicing associated with moving devices 
makes bubble memory a candidate wherever servicing is 
difficult or overly costly. Finally, bubbles extend the range 
of non-volatile, non-mechanical magnetic storage to sizes 
heretofore unavailable. 

Tables I and II and Figure 1 show in greater detail 
where bubble memories fit with respect to other memory 

523 

approaches. Three application areas where bubbles can 
provide added capabilities can be seen. 

The first is an endless loop recorder with a capacity of 
about lOS bits. This application, at the small end of the ca­
pacity range can be considered as a non-mechanical al­
ternative to the cassette or floppy disk. This type of device 
would be used for data loggers, text editors, point of sale 
terminals, and some portable applications where 
extremely low power and physical ruggedness is required. 

The second application area is as a large block or­
ganized store with 0.5 to 1 millisecond access time at 0.050 
cents per bit cost ceiling. This application fills the 
classical access time gap between 1 microsecond core 
memory and 8 millisecond head-per-track disc memory. 
Here bubbles offer a substantial improvement in block 
and access time for data processing application. In addi­
tion to commercial EDP usage, the non-mechanical nature 
of bubble memory is especially applicable for military and 
airborne applications. 

The third application area is a large non-mechanical 
storage system for tape recorder replacement. The most 
common usage for this device is in spacecraft tape 
recorder replacements for satellite service. The next sec­
tion describes a small model which has been built. 

SERIAL RECORDER-A DESIGN REDUCED TO 
PRACTICE 

Figure 2 is a block diagram of a serial recorder feasi­
bility model developed for NASA by Rockwell Interna­
tional. The purpose of this very small recorder was to test 
and exhibit the many· system features expected of bubble 
memory technology. A short listing of its characteristics is 
given in Table III. Effectively, the unit was comprised of 
three completely independent 20,000 bit tracks housed in 
a single module and synchronized to a single clock. Each 
of these tracks was free to run independently of the others. 
In this organization it was entirely reasonable for one 
track to be recording data at one speed while another was 
replaying data at another speed for processing. 

Several significant operational features were established 
in this model. One important attribute desired by NASA 
was that of very low power. To accommodate this need, 
the recorder was designed so that each functional section 
was power strobed in accordance with its usage. The read 
circuit is energized only when reading; the write only dur-



524 National Computer Conference, 1975 

TABLE I-Comparison of Memory Attributes 

TYPE VOLATILE MECH 

TTL RAM Y N 
MOS RAM Y N 
CORE N N 
BUBBLE DOMAIN N N 

FLOPPY DISK~DRUM (NrJ 
Y 

CASSETTE Y 
HEAD/TRACK DISK- Y 
MOVING HEAD DISK Y 
TAPE Y 

(NDRO) 

ing write; and the entire recorder is turned off between 
operations. Successful performance of the unit under this 
mode of operation established several bench marks. Non­
volatility was established by the repeated rapid turning on 
and off of the system. More significantly, however, the 
ability to run for just a few cycles and perform all of the 
recorder functions reliably was established. In the byte 
read mode successive groups of 8 bits of data were read 
from the recorder in 8 cycle bursts. The ability of the bub­
ble memory to be read immediately after starting without 
gaps was established. This ability to start and stop re­
liably was also used to make the recorder exhibit a pseudo 
variable speed characteristic, where data could either be 
recorded or played back at any rate from dc to the 
maximum operating frequency of 150 kHz. This was done 
by filling an input buffer at system rate, while emptying it 
with 150 kHz bursts of operation. This made the recorder 
synchronous to the system which it served. Finally, the 
power sequence circuitry developed established the feasi­
bility of zero power standby modes in portable data log­
ging applications where the amount of primary power 
available is at a minimum. 

ENDLESS LOOP RECORDER 

A version of a recorder more applicable to data logging 
is shown in Figure 3. This design utilizes 8, 100,000 chips 
to form a one byte wide lOOK endless loop memory. The 
block diagram of Figure 4 presents this system design. 
Table IV lists its characteristics. This design incorporated 
several requirements in its design philosophy. The goal 

TTL RAM 
MOS RAM 
CORE 

TABLE II-Access Times 

BUBBLES (FAST AUXILIARY CONFlG.) 
HPT DISK/DRUM 
MOVING HEAD DISK 
FLOPPY DISK 
BUBBLES (ENDLESS LOOP CONFIG.) 
CASSETTES 
TAPES 

60 ns 
300 ns 
SOO ns 

O.S-l ms 
8 ms 

SO ms 
100 ms 

1 sec 
10 sec 
10 sec 

DATA ACCESS SIZE BITS COMM. COST/BIT 

RANDOM WORD 103-S.105 S¢ 
RANDOM WORD 4.103_106 1.2S¢ 
RANDOM WORD 105-S.107 0.7¢ 
RANDOM BLOCK S. 105-2. 108 0.03-0.0S¢ 

SERIAL BLOCK S.105-S.106 O.OS¢ 
SERIAL BLOCK 106_107 0.04¢ 
SERIAL BLOCK 107-2.108 0.08¢ 
SERIAL BLOCK S.107-S.109 0.002S¢ 
SERIAL BLOCK 108_1010 0.0001¢ 

was to create a unit which was as simple as possible, 
consumed very little power and which could be 
constructed for a mimimum of cost. As a consequence a 
minimum of control functions were incorporated in the 
design and no housekeeping or addressing registers were 
used. Instead, an interface which correlates directly to the 
bubble memory functional elements is presented to the in­
terface to be driven by the controlling device. The four 
basic commands delivered to the interface correlate 
exactly with the basic memory function. These are: (1) the 
run/ stop command; (2) the erase command; (3) the write 
command; and (4) the read command. These four func­
tions, controlled in combination by the parent equipment 
are sufficient to exploit the full capabilities of the memory 
module. To obtain minimum power, each control line 
power strobes the section of circuitry needed for that func­
tion, otherwise each section is kept off. When awaiting a 
request for a read or write the recorder power is limited to 
30 mw which is consumed in the oscillator section. In one 
relatively easy implementation, the 8-1OS bit chips are 
treated exactly as an endless tape loop. The data is 
divided into a series of records as shown in Figure 5a. 
Each record block length is assigned as necessary, and 
header information at the beginning of each block suffi­
cient for identification is written. With this organization, 
the information contained in the memory module is suffi-

$1 ,000,000 r-----r---.---~----,--__r_--_r_-___. 

$100,000 

0 
$10,000 

Z 
~ 
u 
~ 
0 

$1,000 Z 
0 
~ 

$100 / 

$10 L..-_--1. __ --'-__ ..J......_--'L::-_--'-:--_""""'":_~ 

103 104 105 106 10
7 

108 109 1010 

SIZE - BITS 

Figure l-Cost-size comparisons 



llilACK 
CO.TROl 
ElECTROlles 
10.1 

+IZV 

-ZlV 

RECORDER BLOCK DIAGRAM 

TRACk 
COITROl 
ELECTROllel 
10.2 

TlIIII' 'lIUATORS 

ClOClClfIII 

DATA ouT 

Figure 2-Feasibility model block diagram 

Figure 3-Endless loop recorder 

CONTI NUOUS CLOCK ~----. 

SELECT 

RUN/STOP COMMAND 

GATED CLOCK 14-----... 

ERASE COMMAND 

WRITE COMMAND 

DATA - 8 BITS 

READ COMMAND 

DATA - 8 BITS 

DATA STROBE 

TRAU 
CO.TROl 
EUCTROla 
IO.l 

Figure 4-Endless loop recorder block diagram 

Bubble Domain Memory Systems 525 

TABLE III-Feasibility Model Characteristics 

SIZE: 

DATA RATE: 

A VERAGE SEEK TIME: 
ADDRESSING: 

3 Tracks of 20,000 Bits (6 x 104 

Bits) 
DC-150K Bits/Sec-Each Track 

Independent 
Not applicable 
None-Total Track Read 

TABLE IV-Endless Loop Recorder Characteristics 

SIZE 
DATA RATE: 
AVERAGE SEARCH: 
ADDRESSING: 
BLOCK LENGTH: 

100,000--8 Bit Words (8 X 105 Bits) 
50K Words/Second (4 X 105 B/Sec.) 
1 Second 
Header Data Comparison 
As Desired 

cient for a record search and read function. Figure 6 
illustrates a representative controller which can couple the 
endless loop recorder to a computer bus structure. In this 
configuration, the controller provides the necessary mode 
control to search the bubble memory for the proper 
header, read or write data as required, and provide the in­
terface with the computer and its main memory. Use of 
this interface is envisioned mostly as a means by which 
data could be dumped for processing. The original record­
ing could take many other forms. For example, the 
memory could be coupled to a keyboard for manual data 
entry or the input could be composed of the simple record­
ing of data from a variety of sensors. This design is 
intended to be especially useful in interactive modes 
where access time is not important, as with a human 

CHIP 8 --------------...~~ 
~--------------------------~~o~ 
r-----------~--~----------~~~~ 

~ 

Figure 5a-Endless loop data organization 

~ (-~---'~":-1tr~~~ ",~~~~ (16) r C (" , , ""'ILL 
)-

: ~ ICc 

CHIP 16 .• 
6 ~ ~C· CHI~ 

)-

)-

)-

T 
BL 
LE 

OCK 
NGTH 

1 CHIP i'~ 
CHIP 1 

, , r)-
H4 H3 H2 Hl 

NUMBER -l~~ t-- OF BlOCKS 

Figure 5b-Fast access memory data organization 

READ 



526 National Computer Conference, 1975 

I~-I--+-..l START/STOP 
1---+--"" ERASE 
r--t-~ WRITE 

REQUEST ~--I------L __ ---1 READ 

DATA BUS 

TO 
COMPUTER 
BUS 
STRUCTURE 

I TYPICAL MODES: 
1) READ BLOCK 

I 2) WRITE BLOCK I 
3) ERASE BLOCK PARITY 
4) ERASE ALL IF REQD 

I 5) INITIALIZE ".," I 
L __ ~,~I~~~O~ 

Figure 6-Representative controller 

WRITE DATA 

READ DATA 

TO 
BUBBLE 
MEMORY 
MODULE 

operator or some other device like microprocessors which 
require non-volatility and a low data rate. 

FAST AUXILIARY MEMORY 

In direct contrast to the simple endless loop memory, 
the Fast Auxiliary Memory is a relatively large rack mount 
device designed for high speed continuous operation. This 
unit is intended to serve as a non-mechanical equivalent to 
a head-per-track disci drum while exhibiting an access 
time an order of magnitude faster. Table V lists its charac­
teristics. The memory is modular in design with a single 
control module capable of addressing as many as sixteen 
memory modules on a bus system. This is analogous to the 
board expandable core memory systems where a customer 
is allowed to choose an initial memory size and increase 
capacity later as desired. Figure 7 illustrates the block dia­
gram of the fast auxiliary bubble memory system. This 
memory is somewhat equivalent to a multiple spindle disc 
memory except that each spindle is momentarily stopped 
and awaiting a command to jump forward to the next 
piece of required data. A significant difference between 
the endless loop recorder and the fast access memory' 
system is the reorganization of the bubble memory chip to 
achieve the access time required. Figure 8 diagrams the or­
ganization of the chip. A series of small loops is used to 
store the data rather than a single large loop. Access is 
achieved by rotating data in the minor loop until that 

TABLE V-Fast Access Memory Characteristics 

SIZE: 

DATA RATE: 
AVERAGE LATENCY: 
QUEUED LATENCY: 
BLOCK LENGTH: 

65K-16 Bit Words (l.05 X 106 Bits) 
to 
1048K-16 Bit Words (1.67 X 101 Bits) 
150K Words/Sec. (2.4 X 106 B/S) 
.986 ms 
.133 ms 
128 Words to 16K Words in 128 Word 

Increments 

record which is desired is opposite the replicator. At that 
time, the record is imaged to the gathering path and de­
livered to the bubble memory detector. Fast access is 
achieved due to the small size of the minor loop and the 
consequently small number of field rotations required to 
bring any desired block up for reading. The use of many 
chips as illustrated in Figure 6b is the application actually 
used in the F AM module. Sixteen chips running si­
multaneously make the block of data a series sixteen bit 
words. 

The addressing technique used in the Fast Auxiliary 
Module varies significantly from that used in the endless 
loop recorder. In the recorder, the seeking of a record data 
requires that all records between the starting position and 
the desired record be transversed in finding the required 
data. As a consequence, the reading of the header tags dur­
ing this transversal can be used as the search method for 
finding any particular record. No access time penalty is 
paid for looking as-you-go. In the fast auxiliary module 
however the rotation of the minor loops until the desired 

MEMORY 
CARDS 

J', .. 
SELECT LI NES 
u ~ 

IINDEX 1 .... MODULE 1 

+ 

IINDEX 2 -- MODULE 2 

t .. 

• • • 
'I 

IINDEX N('L MODULE N 

! . .... 

I ----- -------- n SELECTED I I PARIN 1 I 
BLOCK IF BUS 
INDEX • REQUIRED 

ADDRESS 

CONTROL & 
RESPONSE 

DATA 
I/O 

I + I 
COMPARE I 

I MA~CH ~ ) RUN I v ••• + I I I MODULE I BlOCK ~A READ CHECK I I ADDRESS ADDRESS J 'J 

F!olss PATH r J READ/WRITE 

I & 
TI MI NG GA TES 

I i-I CONTROL ~ I SYSTEM 

+--+ DATA PATH , 
CONTROL MOD~ I -- -- -- -- ------~ 

Figure 7-Fast access memory system diagram 



record is brought up implies that none will be brought out 
prior to that which was addressed. This direct indexing to 
the record sought without reading intermediate headers re­
quires that address information external to the memory 
media must exist in the system. In the block diagram an 
address register is shown in each module corresponding to 
the position at which each memory is resting. From this 
address and the request address, the number of field rota­
tions required to bring up the desired data block can be 
derived. This auxiliary address store is envisioned as vol­
atile. There is no need for it to be non-volatile as a single 
interrogation of a memory board for an initialization mode 
can recover the address information from the head of the 
block nearest the replicator switch. 

Another difference between the fast access module and 
the endless loop module is the apparent dependence of the 
block size upon the number of minor loops incorporated in 
the chip design. In an endless loop module, any number of 
steps along the path can be assigned to a record. Con­
sequently no implicit block size exists. In the fast access 
module, the block size appears to be tied directly to the 
number of minor loops. This is not necessarily true. As it 
turns out, the delivery of a single block of data from the 
minor loops can be immediately succeeded by successive 
blocks. The delivery of successive blocks with no gap in 
between allows the fast access module to deliver combined 
blocks of any desired length. By designing a minor loop 
chip so that the number of bits transferred into the main 
track is prime with respect to the number of records posi­
tioned in the minor loop a situation can be established 
where the entire content of the chips can be read in rapid 
succession with one block immediately following the 
preceding until every block has been read. After the last 

128 LOOPS 
514 BITS/LOOP 
65,792 BITS 

Figure 8-Minor loop chip with replicate read 

Bubble Domain Memory Systems 527 

block, the first immediately reappears. Thus with this or­
ganization of the minor loops, the chip can be made to 
emulate a single continuous loop. Rapid access to any por­
tion of the loop can be made by merely bringing the 
proper section of data to the replicate switches before the 
dump sequence begins. The "mutually prime" minor loop 
design allows block sizes which are multiples of .the 
minimum block size. 

Queuing of records for absolute minimum access time 
can be achieved by bringing the memory to the desired ad­
dress and stopping at that point prior to the actual request 
for data. Often when data is stored in successive records 
this look-ahead will naturally occur due to the startj stop 
nature of the bubble memory. When the reading of a given 
record is complete, the memory stops awaiting the next 
command. When the sequence requires the reading of suc­
cessive records each is immediately available. 

CONCLUSION 

The work for the last two years which has culminated in 
the building of prototype bubble domain memory systems 
has established the technology. Credible systems which do 
indeed exhibit the predicted bubble domain features have 
been built. The use of bubbles in the 4 and 6 micron 
diameter range for useful systems is established. These 
bench marks established, the drive is now to produce 
systems tailored to the user needs. The two examples given 
in this paper address those needs. Initial production of 
units at this point is expected. Additional fundamental 
developments of garnet material in a 1 and 2 micron bub­
ble size will expand the basic capabilities available for 
bubble memory systems. This expansion is useful and 
insures a future growth of bubble memory. However, the 4 
and 6 micron bubble sizes are suitable for commercial ex­
ploitation. 

ACKNOWLEDGMENTS 

The author wishes to acknowledge several of his associates 
at Rockwell International who have participated in the 
work which has brought these memory systems to fruition. 
First is John Archer who has headed up the entire 
program. Oliver D. Bohning and T. T. Chen were the prin­
cipal developers of the NASA feasibility recorder. Thomas 
M. Steury was responsible for many of the system con­
cepts incorporated in the fast access memory design. Fi­
nally, the author also wishes to thank William C. Mavity 
for his many suggestions and kind assistance in the 
preparation of this paper. 

BIBLIOGRAPHY 

1. Ypma, J. E., "Magnetic Bubble Memories," National Aerospace 
Electronics Conference, Dayton, Ohio, May 1974, pp. 50-54. 

2. Chen, T. T., O. D. Bohning, L. R. Tocci, J. L. Archer, and R. L. 
Stermer, "A Magnetic Bubble Domain Flight Recorder," IEEE 
Trans Intermag 1974, Toronto May 1974, MAG 10, No.3, pp. 739. 



528 National Computer Conference, 1975 

3. Bailey, R. F., and J. P. Reekstin, "Yield Analysis of Large Capacity 
Magnetic Bubble Circuits with Redundancy Design," IEEE Trans 
Intermag 1974, Toronto May 1974, MAG 10, No.3, pp. 856. 

4. Archer, J. L., L. R. Tocci, O. D. Bohning, D. H. Baird, C. F. Buhrer 
and J. J. Vytal, "Reliability of Magnetic Domain Memories," 19th 
Conf. on Magnetism and Magnetic Material, Boston, Nov. 1973, 
paper 3A-2. 

5. Chen, T. T., J. L. Archer, R. A. Williams and R. D. Henry, "Radia­
tion Effects on Magnetic Bubble Domain Devices," IEEE Trans. 
MAG 9, No.3, pp. 385-9 (1973). 

6. Bobeck, A. H., "Magnetic Bubble Domain Devices," Intermag Conf., 
Denver, Colo. 1971. 

7. Rifkin, A. A., "A Practical Approach to Packaging Magnetic Bubble 
Devices," IEEE Trans. Magnetic MAG 9, 429, 1973. 

8. IEEE Transactions on Magnetics, Sept 1973, Vol MAG 9, No.3 
Intermag Papers-Sessions 4, 13, 17, 21, 26 & 29. 

9. Feth, G. C., "Memories are Bigger, Faster-and Cheaper," IEEE 
Spectrum, November 1973, pp. 28-35. 

10. Brooks, F. P., Jr., "Mass Memory in Computer Systems," IEEE 

Transactions on Magnetics, Sept. 1969, Vol. MAG 5, No.3, pp. 635-
639. 

11. Matick, R. E., "Review of Current Proposed Technologies for Mass 
Storage Systems," Proceedings of the IEEE, Vol 60, No.3, March 
1972, pp. 266-289. 

12. Report of Tape Recorder Action Plan Committee, March 21, 1972, 
NASA (National Tech Inf. Service, Springfield, VA). 

13. Mavity, W. C., and J. P. Davis, "Applications of Magnetic Bubbles," 
1972 WESCON Technical Papers-Session 8. 

14. Mavity, W. C., "Bubble Memory Status and Trends," 1972 Govern­
ment Microcircuit Applications Conference, (GOMAC) pp. 420-426. 

15. Electronic Design 22, October 25, 1974, "The Great Memory Battle 
Goes on, but Semiconductors Appear the Ultimate Victors," pp. 40-
48. 

16. Chang, Hsu, "Capabilities of the Bubble Technology." National 
Computer Conference, 1974, pp. 847-855. 

17. Carson, R. W., "Minicomputer Removable Storage," Modern Data, 
March 1973, pp. 46-50. 



Superconducting memories employing 
Josephson devices 

by w. ANACKER 
IBM Corporation 
Yorktown Heights, New York 

INTRODUCTION 

Experimental super conducting Josephson devices being in­
vestigated for use in digital logic and memory circuits have 
been demonstrated to switch in the 10 to 100 picosecond 
(1 picosecond = 10-12 sec) range. Projections based on the 
operation of individual logic circuits indicate that they may 
surpass semiconductor circuits in very high performance 
CPU's. This potential is based on the fact that these circuits 
dissipate extremely little energy, on the order of 10 to 1000 
attojoules (attojoule = 10-18 joule), while operating with 
subnanosecond delays. It should, therefore, be possible to 
package Josephson devices very densely and interconnect 
them by properly terminated superconducting transmission 
lines so that the fast switching speed of individual circuits is 
retained throughout large logic networks. 

Ultrafast CPU's need, of course, suitable memories, which 
are fast enough to provide requested data quickly and which 
are large enough to ensure that high throughput is sustained. 
It is likely that memory hierarchies will be needed to satisfy 
these requirements. Improved performance of the individual 
memories forming these hierarchies will, however, be required 
also, to avoid excessive "tuning" of such hierarchies, i.e., 
good performance for only narrow classes of computational 
tasks. The potential of Josephson devices to provide such 
memories and measures to "detune" such hierarchies will be 
discussed in this paper. 

JOSEPHSON DEVICES AND CIRCUITS 

Devices 

Based on superconductivity and electron tunneling effects 
discovered in the early 1960's by Josephson1 and Giaever,2 one 
may construct a thin film switching device as shown in 
Figure 1a. Two thin film strips of superconducting material, 
e.g., Pb, are deposited in a partially overlapping arrangement 
but separated from each other by an extremely thin "native" 
oxide tunnel barrier of about 30 A (1 A = 10-8 cm) thickness. 
A small voltage of a few millivolts will cause a tunneling 
current of single electrons through the insulating oxide barrier 
by virtue of the quantum mechanical tunnel effect. The 
current-voltage relation is linear, as shown in the current-

529 

voltage plot of Figure 1b, as long as the temperature T of the 
structure is above the critical temperature Te of the film 
strips (in case of Pb films Te=7.2°K). One may represent 
this behavior by a voltage independent so-called normal 
tunnel conductance. 

If the structure of Figure 1a is immersed in liquid helium, 
which maintains a temperature of 4.2°K under atmospheric 
pressure, both film strips are superconducting and the 
current-voltage relation undergoes two characteristic changes, 
as shown in Figure 1c. First, a supercurrent, 3 made up of 
paired electrons (Cooper pairs) which are formed below Te 
and are responsible for all superconducting effects, can flow 
through the oxide barrier up to a well defined dc-Josephson 
current threshold 1m without causing any voltage drop 
(V =0) across the oxide barrier. Second, the current-voltage 
relation becomes non-linear, i.e., the tunnel conductance 
becomes voltage dependent. In particular, the tunnel current 
is strongly suppressed at voltages V <Vg, it surges up at 
V = V g and it approaches the "normal" tunnel current at 
V> V g. Here, Vg=2~/e denotes the gap voltage (Vg= 
2.5 mV for Pb), 2~ the super conducting energy gap of the 
film strips and e the electronic charge. 

Apparently, the thin film structure of Figure la, when 
immersed in liquid helium, behaves either as a superconductor 
(V =0) or as a tunnel conductance (V~O) over a substantial 
range of current. Figure 1d denotes a further property of this 
structure, namely, a dependence of the dc-Josephson current 
threshold 1m on magnetic flux 1> enclosed in the junction. 
This dependence is more clearly shown in the 1m vs 1> plot of 
Figure 1e. One may exploit this property by providing a 
third thin film strip on top of the junction and insulated 
from both junction electrodes. A "control" current Ie flowing 
through this third line generates a magnetic flux penetrating 
the junction and thus modulates the threshold 1m. Accord­
ingly, one may relabel the horizontal axis of Figure 1e by Ie 
and interpret the plot as follows: if the vector sum of junction 
and control currents falls inside of the area under the curve, 
the voltage across the junction is zero; if the vector falls 
outside of the area, the voltage is finite. The functional· 
dependence of 1m (Ie) can be varied widely and predictably by 
engineering design. 

The transition time from V = 0 to V = V g is predominantly 
governed by the junction capacitance C and the charging 
current I g through the junction and is given approximately by 

(1) 



530 National Computer Conference, 1975 

a 

I 
b c 

V 

I .4 
.4 

.4 
/ T<Tc / 

/ 8*0 

Vg V 

d e 
Figure l-Josephson tunneling device (a) Structure (b,c, d) Current­

voltage plots (e) Threshold current-flux (and control current) plot 

Since, for miniaturized junctions, C becomes quite small and 
V 11 is small anyway, transition times of 10 to 50 psec are 
readily obtainable.4,5 It should be noted that the transition 
back to V =0 occurs usually at a current much less than 1m, 

i.e., the device exhibits hysteresis,6 and the transition 
proceeds somewhat more slowly. Extensive reviews of 
Josephson devices can be found in References 7 and 8. 

Circuits 

Most circuits with Josephson devices which have been 
investigated so far are of the basic configurations shown in 
Figures 2a and 2b. Either Josephson devices are incorporated 
in both branches9 of a superconducting loop (Figure 2a) or 
one Josephson device is shunted via superconducting striplines 
with a resistorlO,ll (Figure 2b). External current supplied to 
the loop of Figure 2a can be routed through either branch by 
forcing the Josephson device of the alternate branch into the 
V ¢O state. The device will automatically revert to the V =0 
state when all (or almost all) current has been rerouted. 
Except during actual rerouting of current, no power will be 
dissipated in this circuit. It is noteworthy that, once all 
incoming current is routed into one branch, the device in the 
other branch has reverted to V = 0, and when the external 

current is then switched off, a circulating current is estab­
lished in the loop to maintain the magnetic flux linked with 
the totally superconducting loop. The circulating current is 
persistent, does not dissipate power and can be used to store 
binary information. The time required to reroute current is 
governed by the inductance L of the loop, the driving 
voltage V 11 and the amount of current I to be rerouted. It is 
approximately given by: 

I 
Llt=L(-:v-) . 

11 

(2) 

The incoming current in the configuration of Figure 2b 
will pass totally through the Josephson device as long as it is 
in the superconducting state. When it is switched to V ¢O, 
part of the incoming current (Le., V / R) will be diverted to the 
resistor path. The resistor value may be chosen to intersect 
the current-voltage characteristic of the device at V = V 11 or 
at V < V 11 and, in particular, such that the circuit is "latch­
ing"lO,1l,12 i.e., needs resetting to V =0, or "non-latching," 
i.e., follows the input control signals as, for example, described 
in Reference 13. As indicated in Figure 2b, more than one 
control line may be placed on top of the junction and be used 
by proper design to perform AND and OR logic functions. 12 

Clearly, networks can be assembled with circuits as shown in 
2a and 2b by using the output striplines of devices to 
control other devices. 

The characteristic impedance of the striplines connecting 
Josephson device and resistor can be chosen such that the 
resistor represents a matched termination, thus providing a 
zero reflection factor. In this case, the time needed to 
establish the output current at the location of the resistor is 
governed by the voltage risetime and the propagation delay 
of the strip lines. 

a 

b 
Figure 2-Josephson device circuits (a) Super conducting loop with two 

devices (b) Resistive loop with one device 



Superconducting Memories Employing Josephson Devices 531 

Hence 
(3) 

where tR denotes the risetime at the device and td the delay 
in the lines. An average logic delay of 200 psec per circuit has 
been demonstrated in a 1 bit full adder14 controlled with 
Josephson devices. 

MEMORY COMPONENTS 

NDRO Loop Cells 

A practical NDRO memory cell15 ,16 for bit organized 
random access operation is shown in Figure 3. It comprises a 
superconducting loop with Josephson devices A and B in each 
branch, both controlled by "control" bit lines for writing; 
one branch of the loop acts as control for a third Josephson 
device S for non-destructive read out. Persistent circulating 
currents (l w/2) in clockwise or counterclockwise directions 
represent stored binary ones and zeros, respectively. The 
conservation of magnetic flux, for as long as the loop remains 
totally superconducting, dictates that when an external 
current I w is applied, it must split equally into both branches 
and superimpose on the circulating current such that Iw flows 
through one branch and zero current through the other; it 
also dictates that the original circulating current is restored 
when the external current is switched off. Thus, the direction 
of circulating current can be detected without disturbing the 
information by applying a word current I w which causes 
either I w or zero current to flow in the branch controlling 
device S and a sense current 18 which causes the device S to 
switch only when its control current exceeds I w/2. Data is 
written into a cell by coincident word current Iw and bit 
current IB which can switch one device in the selected cell and 
reroute the word current into the alternate branch. 

__ ~======~=r·II~·==~_Is 

I 
1 J I 

5 

Figure 3-NDRO random access memory cell 

Figure 4-Gate current-control current plot of single 
~evice memory cell 

Experiments have demonstrated that data can be written 
in rather large memory cells16 with 2 mil minimum line width 
and '"'-1250 mi12 area in about 600 psec and in miniaturized 
cells17 with 2J.L minimum line width and '"'-11.4 mil2 area in less 
than 100 psec. It was also demonstrated that more than 
5.108 NDRO operations left the stored information un­
disturbed.16 

DRO Single Device Cells 

Single specially shaped or elongated Josephson devicesl8.19 

can be used for data storage in a DRO bit organized random 
access mode as well. These devices admit magnetic flux in 
discrete quanta of magnitude CPo = h/2e'"'-l2 .10-15 V-sec, where 
h denotes Plank's constant and e the electronic charge, when 
their control currents are steadily increased; they possess an 
operating region in the I g- Ie plane as shown shaded in 
Figure 4 in which either 0 or 1, flux quanta can be maintained 
without standby power and stably by a suitable bias control 
current. The number of flux quanta actually stored in such 
devices can be increased (decreased), from 0 to 1 (1 to 0) by 
j, temporary increase (decrease) of the bias control current. 
The presence of a flux quantum can be detected either by the 
occurrence of an energy spike18 upon reduction of the bias 
control current if a flux quantum was stored or by the 
modification19 which a stored flux quantum exerts on the 
dc-Josephson threshold current 1m. In both cases, the stored 
information is destroyed and must be rewritten. The energy 
associated with a flux quantum which is maintained in a 
device, for example, by· a circulating current of 1 to 10 rnA 
amounts to about 2 to 20 attojoules. Although this energy is 
extremely small, even fractions of it have been detected 
experimentally by Josephson device detectors.18 This is in 
part due to the fact that the release of a flux quantum as 
found by simulation leads to an energy spike of only a few 
picoseconds duration, but a peak of a few hundred microvolts 
and microamperes. The expected advantage of single device 
cells is their potential for large memories with high bit 
densities. 



532 National Computer Conference, 1975 

aa b bee d d 

BYPASS 

Figure 5-Tree decoder 

Decoders and Drivers 

Addresses can be decoded with Josephson devices by tree15 

decoders. Tree decoders consist of branching networks with 
one or more Josephson devices in each branch, as shown in 
Figure 5. The branches of the last stage can be connected 
either directly or via drivers to the array lines. The Josephson 
devices in each branch are controlled by the "true" and 
"complement" outputs of address registers. For each address, 
all but one branch through the decoder tree contain Josephson 
devices in the V~O state, while all Josephson devices along 
the selected branch remain in the V = 0 state. It is convenient 
to provide a bypass line to carry the current around the array 
when desired. The decoder and bypass configuration can be 
supplied with dc current. Apparently, any selected branch and 
array line form a "giant" super conducting loop with the 
bypass line, where current rerouting is driven by the one or 
more Josephson devices in the bypass line. The time needed 
to route current from the bypass into a selected array line is 
then given by Equation 2. The operational speed can be 
increased and residual disturb currents in nonselected array 
lines eliminated by using line drivers comprising Josephson 
devices which are controlled by output branches of a tree 
decoder; their output lines are connected to array lines. Thus, 
the tree decoder loops are minimized and speed is gained when 
the output (array) lines of the drivers are terminated in their 
characteristic impedance. The total delay time is then the 
sum of (reduced) current routing time through the tree 
de~oder according to Equation 2 and the signal propagation 
time through the array line according to Equation 3. 

Sense Signal Detection 

Sense gates of NDRO loop cells (see Figure 3) can be 
interconnected into rows of sense lines15 which are provided 
at one edge of the array with superconducting bypass lines, 
as shown in Figure 6. These bypass lines can control, in turn, 

a column of Josephson devices outside of the array which, via 
another bypass line, can finally control a single read out 
Josephson device for the whole array. In this arrangement, 
the read out time, beginning from the time when a sense gate 
in the array has been switched, is given by the sum of two 
current routing times according to Equation 2. 

Of course, it is possible, in principle, to terminate sense 
lines and the "column" line in their own characteristic 
impedances also, in which case the read out time would be the 
sum of signal propagation times according to Equation 3 for 
one row and the "column" line. The practicality of this 
approach depends on tolerance and margin considerations and 
can be assessed only in a realistic and detailed design. 

DRO single device cells generate their read out signals on 
that array line on which they are serially strung. In coinci­
dence operation, this line will carry a current pulse for cell 
selection. The read signal must, therefore, be separated from 
the drive pulse during read out. Special strobed read detection 
circuits are required if the energy spike upon release of a flux 
quantum is to be detected. That this can be done in principle 
has been experimentally demonstrated.18 If, on the other 
hand, the modification of the threshold current 1m by a stored 
flux quantum is used for read out,17 either one of the schemes 
described in conjunction with the NDRO loop cells can be 
employed for read out. 

LSI FABRICATION 

Since Josephson devices can perform memory, drive, 
detection and decode functions, integration of arrays and 
peripheral circuits on a common substrate and-drawing on 
experience from semiconductor technology-adoption of a 
wafer and chip fabrication concept20 with photolithographic 
techniques for pattern definition and evaporation and sput­
tering methods for building a multilayered structure are quite 
natural. Once large scale integration has been adopted, the 
fabrication process must allow for material and process 
compatibility of all required circuit components, i.e., Joseph­
son devices, resistors, superconducting interlayer contacts, 

READ-OUT 
Figure 6-Sense detection scheme 



Superconducting Memories Employing Josephson Devices 533 

insulation and striplines. A major challenge in this respect, 
of course, is the reproducible preparation of extremely thin 
and pinhole-free native oxide tunnel barriers on the surface 
of thin metal films which have been subjected to photo­
lithographic chemistry and ambient atmosphere with con­
tamination being unavoidable. An RF sputter technique21 in 
which growth rates of oxidation and removal rates of sputter 
etching are balanced has been developed and has so far 
provided encouraging results as to the thickness reproduci­
bility of thin oxide tunnel barriers. 

PERFORMANCE PROJECTION 

To date, memories of practical size have not been built or 
designed. Performance must, therefore, be projected by 
estimating cell and array sizes and cycle and access times on 
the basis of the experimental circuits and the delay equations 
mentioned above. Since LSI has been adopted, it is all but 
impossible to predict ultimate bit densities and access times 
because they depend strongly on line width resolution which, 
in turn, is likely to improve as a result of present exploration 
of uv, e-beam and x-ray exposure techniques. Just how much 
improvement is possible is not clear yet, however. Potential 
performance of Josephson device memories with present 
state-of-the-art resolution of, say 0.2 mil minimum line 
width-i.e., what could be expected if Josephson device 
technology were developed and ready for manufacturing-is 
estimated instead. 

On the basis of the previously mentioned 1.4 mil2 100p cell 
with 2JLm wide lines and an upper bound of switching time 
of 100 psec, an NDRO loop cell with 0.2 mil wide striplines 
may be estimated to occupy an area of about 2.5X2.5 mil and 
to switch in about lOO psec. Then, an array of 64X64 =4096 
cells of NDRO loop cells should fit into an area of about 
160 X 160 mil. With peripheral circuits being located on the 
same chip, one may make the following assumptions for such 
an array: word, bit and sense lines, tree decoder branches, 
matrix decoder control lines and a sense column line are all 
about 160 mil long and 0.2 mil wide. The loop inductance for 
those striplines (with 2000 A thick insulation) would amount 
to £,--350 pH, the propagation delay to td"'-'lOO psec and the 
risetime of the output of a Josephson device driver to tR",-,50 
psec. It is also assumed that drive currents of about lO mA 
and sense currents of about 2.5 mA are used and that four 
serially connected Josephson devices per decoder branch and 
bypass line are provided. 

Taking note finally of the pulse sequences required for bit 
organized NDRO random access and allowing for sufficient 
pulse overlap, access and cycle times on the order of 2 to 
2.5 nsec are derived for a low power, 4K bit random access 
NDRO array with a bit density of about 1.6·lO5 bits/inch2• 

DRO single device cells are likely to occupy less area than 
NDRO loop cells since only one Josephson device and no loop 
is required. Four times as many cells could possibly be fitted 
in the same array area. Total access and cycle times would 
likely be longer due to the need for extra pulses to perform 
rewriting and the possible need for sense signal amplification. 
However, even if access and cycle times would turn out to be 

o 
h 

0.9 

0.99 

0. 999 

0.9999 

128 512 2k 8k 32k 
CAPACITY (BYTES) 

10'" 

103 

10
2 

;5 
...... 10 ::I: 
...... 

0 0.5 
Figure 7-(a) Hit ratio h versus capacity Ct plot (b) Hierarchy access 

time ratio TH/T At versus hit ratio h plot 

an order of magnitude longer than those derived above, the 
potentially high bit density of about 6.4·lO5 bit/inch2 

combined with low power and 20 to 30 nsec access and cycle 
time would appear quite attractive for use as main or bulk 
memory in hierarchies to feed ultrafast CPU's. 

A NOTE ON MEJVIORY HIERARCHIES 

Although the memory hierarchy concept has been proven to 
approximate the ideal of a large and fast memory quite well, 
it is noteworthy that certain drawbacks are associated with 
the concept as well. Memory hierarchies tend to be "tuned" 
to specific classes of computational tasks and moreover, the 
sharpness of the "tuning" curve depends on the access time 

h 



534 National Computer Conference, 1975 

ratio of the hierarchy's memories and their capacities. To 
elucidate this point, consider first the effective hierarchy 
access time Tll of a two level hierarchy with memories Ml and 
M2.22 Tll is a function of the so-called hit ratio h and the access 
time ratio of TA2/TAl where TAl and TA2 denote the access 
times of memory Ml and M2 respectively. The hit ratio h is an 
empirical measure defined by the ratio of requested data 
found in Ml over the total number of data requests issued by 
the CPU. It is clearly a'measure of dynamic clustering of data 
addresses in address space. It depends, however, also on the 
capacity of the faster and smaller memory (hereMl ) of the 
hierarchy, as indicated in the plot of Figure 7a,22 which shows 
that h increases for increasing Cl. The hierarchy access time 
Tll as a function of h for a rather large ratio of TA2/TAl =104 

is plotted in Figure 7b. This plot signifies that TH drops 
significantly only when the bit ratio h exceeds 0.95 to 0.99. 
Clearly, this hierarchy would perform well only for a set of 
tasks with large hit ratios h. One can "detune" this hierarchy 
by (a) providing memories Ml andM2 with a more favorable, 
i.e., smaller, TA2/TAl ratio and (b) providing larger memory 
capacity Cl. 

In the case of Josephson device memory hierarchies for 
ultrafast CPU's, the following strategy might be suggested: 
since M 1 with access time TAlon the order of 3 nsec is so 
fast that considerations of signal delays through the memory 
package will likely be limiting its capacity Cl, it is advisable 
to reduce the access time T A2 of M as much as possible to 
obtain a favorable ratio TA2/TAl of, say, 10 to 20. The memory 
M2 will likely be backed up by conventional memory or 
storage device levels Ma with a rather large access time ratio 
T Aa/ T A2 being unavoidable. Therefore, the capacity C2 of M 2 

should be made as large as feasible to increase h. In conse­
quence, one should focus on making M 2 as large and as fast as 
possible. 

SUMMARY 

Josephson devices, circuits and memory components have 
been reviewed. An estimate of potential memory performance 

with state-of-the-art photolithographic resolution has been 
made, and it is found that rather high performance buffer and 
main memories for ultrafast CPU's can be envisioned. It is 
indicated that considerations of memory hierarchy perform­
ance favor the provision of a main memory with large 
capacity and access times on the order of 20 to 100 nsec. It is 
believed that the performance potential of Josephson device 
memories and CPU's warrants further investigation of the 
feasibility of this new technology. 

REFERENCES 

1. Josephson, B. D., Phys. Letts. 1, p. 251, 1962. 
2. Giaever, I., Phys. Rev. Letts. 5, p. 147, 1960. 
3. Bardeen, J., L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 

p. 1175, 1957. 
4. Zappe, H. H., and K. R. Grebe, J. Appl. Phys. 44, p. 865, 1973. 
5. Jutzi, W., Th. O. Mohr, M. Gasser and M. P. Gschwind, El. Letters 

8, November 30, 1972. 
6. McCumber, D. E., J. Appl. Phys. 39, p. 3113, 1968. 
7. Matisoo, J., IEEE Trans. MAG-5, No.4, p. 848, 1969. 
8. Solymar, L., Superconductive Tunneling and Applications, Wiley­

Interscience, New York, 1972. 
9. Matisoo, J., IEEE Trans. MAG-5, No.4, p. 848, 1969. 

10. Anacker, W., Proc. of F JCC, p. 1269, 1972. 
11. Henkels, W. H., Trans. IEEE MAG-W, p. 860, 1974. 
12. Herrell, D. J., IEEE Jour. of Solid State Ckts, SC-9, p. 277, 1974. 
13. Baechtold, W., T. Forster, W. Heuberger, and Th. O. Mohr, 

IBM RZ657, 1974. 
14. Herrell, D. J., Trans. IEEE MAG-10, p. 862, 1974. 
15. Anacker, W., Trans. IEEE MAG-5, p. 968, 1969. 
16. Zappe, H. H., to be published, IEEE Jour. of Solid State Ckts., 

Feb. 1975. 
17. Broom, R. F., W. Jutzi, and Th. O. Mohr, Applied Superconduc­

tivity Conference, 1974. 
18. Gueret, P., Appl. Phys. Letts. 25, p. 426, 1974, and paper M-2 

Applied Superconductivity Conference, 1974, to be published in 
IEEE Trans. MAG, March 1975. 

19. Zappe, H. H., Appl. Phys. Letts. 25, p. 424, 1974. 
20. Greiner, J. H., S. Basavaiah, 1. Ames, J. Vac. Sci. and Tech, 11, p. 81, 

1974. 
21. Greiner, J. H., J. Appl. Phys. 42, p. 5151, 1971. 
22. Anacker, W., IEEE Trans. MAG-7, No.3, pp. 410-415, 1971. 



Holographic memories-Fantasy or reality? 

by A. K. GILLIS, G. E. HOFFMANN and R. H. NELSON 
Harris Corporation 
Melbourne, Florida 

INTRODUCTION 
Twelve years have passed since Leith's historic paperl 
which opened the era of modern holography. Although 
initially investigated for its unusual imaging properties, we 
have seen about five years of intensive research on the ap­
plication of holography to digital data storage. Because of 
its unique properties, it is not surprising that attempts 
have been made to apply holography to such a broad 
range of memory and storage hierarchy. Activity has 
ranged from developing small-capacity, high-speed 
memories to large-capacity, read-only storage in the multi­
terabit range. Additionally, significant activity has been 
directed toward solving the highly specialized problems 
associated with ultra-high data rate recorders and re­
producers. Memory systems are now, and will continue to 
be, the highest single cost item in the computer hardware 
structure. This, at least in part, accounts for the intensive 
research activity in optical alternatives to computer 
memory and storage. 

What is the current status of our research and in what 
segments of the memory hierarchy are holographic tech­
niques likely to play a significant role? Although research 
continues across the broad spectrum of memory 
hierarchy, some strong indicators point to very specific 
areas where the technology has a reasonable chance of suc­
cess. 

Before we consider the specific nature of holographic 
memories, we review the current state-of-memory 
technology and identify the targets at which holographic 
memories have been aimed. Perhaps the two most widely 
used performance measures for memories are. capacity 
and access time. Clearly there are many other factors such 
as transfer rate, size, power consumption, interface ease, 
reliability and reproducibility which may play equally im­
portant roles in characterizing memory performance. 
Similarly, memory cost or more commonly, cost per bit, 
forms one of the important criteria for memory selection. 
For purposes of this discussion, capacity and access time 
will be sufficient factors if we remember that even the ulti­
mate in memory performance is unacceptable if the 
eventual costs are not consistent with what the market­
place can afford. 

Figure 1 shows the present state-of-the-art in so-called 
conventional memory technology, in terms of capacity and 
access time. The technology ranges from the relatively 
small but fast semiconductor memory through moving 

535 

head disc memory to the larger and slower bulk storage 
devices such as magnetic tape. Clearly most memory and 
storage technology is confined to magnetic phenomena. 
The exceptions to the magnetic dominance have been at 
the low-capacity, high-speed end with semiconductor 
technology and at the large capacity slow access end with 
the IBM 1360 and Precision Instrument Model 190 bit-by­
bit optical technology. 

The trends in memory and storage technology indicate a 
gradual (although sometimes rapid) trend up and to the 
left, i.e., toward larger and faster devices. Consequently, 
the aim of early holographic memory researchers was 
toward those areas where the payoff would be largest, i.e., 
107-109 bit capacities with 1-10Jl-sec access time for disc re- . 
placement. Similarly, the promise of extremely high data 
packing density afforded by holographic encoding en­
couraged research activity at the upper end of the 
spectrum to achieve terabit capacity. 

Before we discuss the progress made to date, we shall 
review some of the basic concepts and components used in 
almost all holographic memory and storage devices. The 
holographic approach does not record individual bits but 
rather the optical interference pattern produced by two 
coherent light beams, one of which contains the informa­
tion about the data to be recorded. This is shown in Figure 
2. In general, the holographic approach requires that 
several unique components be arranged to produce a 
memory device. These are a source of coherent light, such 
as a laser, some rather conventional, but sophisticated, 
optical elements, a page composer to transduce electrical 
data into a form which can spatially modulate a light 
beam, a recording medium which records the information 
as a hologram, an array of detectors to transduce the re­
constructed light pattern back into electrical signals and 
finally light deflectors or moving recording media to ad­
dress various hologram positions on the recording media. 
The principal advantages of recording data in holographic 
form include: (1) a natural distributive encoding by re­
cording the information over the entire hologram rather 
than at discrete points, thereby reducing susceptibility to 
dust, scratches and recording media imperfections, (2) the 
data !econstructed during readout is projected directly 
onto a fixed photo detector array with 103 to lOS bits ap­
pearing simultaneously (i.e., a page-oriented parallel ac­
cess) and (3) insensitivity of the recording medium place­
ment relative to the detector array. 



536 National Computer Conference, 1975 

1013 

10
12 

1011 

10
10 

V> 10
9 

~ 
e 
~ 
u lOB « 
4: 
u 
>-
0 107 
~ 

~ 

10
6 

lOS 

10
4 

DRUMS 

SEMICONDUCTOR 

10-7 10- 6 10-5 10-4 10-3 10-2 10- 1 

ACCESS TIME (SECONDS) 

Figure I-Current memory technology 

10 

A logical distinction between various holographic 
memories can be made by first considering those which 
are truly read/ write memories and are aimed at existing 
mainframe and peripheral technology and those which are 
directed at mass storage applications. While the basic 
technology in both applications is somewhat similar, the 
approaches to solutions require emphasis on different 
components. 

READ/WRITE HOLOGRAPHIC MEMORIES 

The major effort to date on read/write holographic 
memories has addressed capacities between 106 and 109 

bits with access times measured in microseconds. Several 
domestic companies, including Harris Corporation, Bell 
Labs, IBM, and RCA, as well as several foreign labora­
tories at Siemens, Nippon, Hitachi and Thomson-CSF, 
have either developed breadboard memories or are ac­
tively pursuing development of major components which 
are required in holographic memories. It is beyond the 
scope of this paper to discuss in detail the work of each 
laboratory and to dwell on the progress made in develop­
ing individual components. It is sufficient to say that al­
though progress on each holographic memory component 

has been significant over the past decade, a truly viable 
cost competitive memory has not emerged from the bread­
board stage into the marketplace. Because of the interac­
tive nature of all holographic memory components, a 
major advance in one area may produce only minor 
improvement in system performance. 

Perhaps the two components which have received the 
greatest attention are the input page composer and the 
holographic recording media. In both cases, the perfor­
mance limitation has been dictated by the availability of 
suitable materials. The page composer should contain 
between 4000 and one million elements. Various materials 
have been or are being considered, including PLZT, liquid 
crystals, thin deformable membrane mirror arrays and 
cadmium sulfide. All currently suffer from one or more 
shortcomings including uniformity, speed, contrast ratio 
and stability. The holographic recording materials have 
also received considerable attention and all candidates fall 
short of the desired properties of high efficiency, high 
sensitivity and long lifetime. Significant progress has been 
made in developing beam deflectors and photodetector ar­
rays, stimulated in part by the requirements imposed on 
these devices by holographic memory researchers. The 
performance of beam deflectors has nearly doubled in the 
past ten years and sophisticated multielement two dimen­
sional photodetector arrays were essentially unavailable 
ten years ago. Research in all component areas is continu­
ing. We can expect significant breakthroughs only by ap­
plication of new materials or through better understanding 
and perfection of existing materials. 

Until recently, heavy emphasis was placed on preserv­
ing high speed access with no moving parts while increas­
ing capacity. Clearly the target was disc replacement. 
Analyses of the constraints imposed on common optical 
components such as lenses as well as a better appreciation 
of physical limitations imposed on the electro-optical 
components has led most investigators to revise their pre-

DATA OUT 

x-v DEFLECTOR 
AND OPTICS 

DATA IN 

Figure 2-Major electro-optic components in a read/write holographic 
memory 



dictions of ultimate read/write holographic memory 
performance, regardless of cost considerations. The ca­
pacity of nonmechanical, practical read/write holographic 
memory with microsecond access time is likely to fall 
between lOS and 109 bits, not up to 1012 bits as was 
believed earlier. In any case, because of costly electro­
optical components, this type of memory will be 
characterized by high cost per bit. Only in highly spe­
cialized applications where technical performance plays 
an over-riding part will we see this memory used. Even so, 
it is not likely to emerge from the research laboratory 
before the end of this decade. 

READ-ONLY MEMORIES 

Read-only holographic memories typically use film as 
the recording media. Once exposed, the film record is 
removed from the recorder, developed by normal tech­
niques, and placed in a holding area until data retrieval is 
required. If any portion of the recorded data must be 
changed or updated, the entire record must be re-recorded 
and replaced within the memory. Read-only memories, 
therefore, are best suited for archival, non-dynamic 
memory applications or applications where updating is 
relatively infrequent. 

Other than the recording media, the holographic ex­
posure and data readout processes are similar to those 
used in a read/write memory. Similar devices are required 
to implement a read-only memory as are required to im­
plement a read/write memory; hence, read-only memories 
are therefore constrained by similar device limitations. 
Possibly the most critical device limitation in read-only 
memory implementation has been the page composer. 
Since a one dimensional (instead of a two dimensional 
page composer) is typically required, device capability in 
this area has recently been improved enough to allow 
system applications. 

Figure 3-HRMR research prototype system 

Holographic Memories-Fantasy or Reality 537 

One way to overcome the page composer limitation in 
holographic recording is to use a synthetic hologram ap­
proach. In this approach, a film intensity function is cal­
culated by a special purpose digital processor and scanned 
onto the film by a scanning device. The resulting film ex­
posure has nearly the same reconstruction properties as 
does an interferometrically generated hologram. 

The recent advances in materials and components have 
allowed production of a few prototype holographic 
memories. For example, let us discuss some specific 
hardware systems being developed by Harris Corporation, 
Electronic Systems Division. 

Synthetic holography has been successfully applied to 
the recording and storage of digital data in the Human 
Read/Machine Read (HRMR) System developed by Har­
ris Electronic Systems Division under contract with the 
Rome Air Development Center. A research prototype, 
shown in Figure 3, was delivered in May, 1973 and an 
engineering prototype is currently under development. 

The HRMR System addresses the document storage, 
retrieval and dissemination problem which is impacting 
both government and industrial complexes having large 
document data bases. The HRMR concept is based upon 
annotating a standard microfiche with the digital 
equivalent of the associated images. Optical readout of the 
digital data directly from the microfiche facilitates 
storage, retrieval and dissemination of data to both local 
and remote locations. 

A direct extension of the concept is the full utilization of 
the microfiche film chip for digital data recording. Thirty 
megabits of user data per film chip is presently being 
realized at a packing density exceeding one megabit per 
square inch. Since this packing density is significantly 
below theoretical limitations, considerable improvement 
can be anticipated as components and techniques are 
further refined. 

Utilization of holography as the digital data recording 
technique in the HRMR System provides an inherent im­
munity to dust, scratches, and film imperfections 
associated with practical hardware which is capable of 
functioning in an operational environment. Only normal 
microfilm storage environmental conditions are required. 
The recorded data is archival and optical readout of data 
is nondestructive. This results in a virtually permanent 
record and contrasts with magnetic media which suffers 
from signal loss and deterioration due to readout and long 
term storage. Of further benefit, the positional invariance 
property of holography facilitates readout and allows rela­
tively simple and economical hardware configurations. 

Microfiche generation in the HRMR System is accom­
plished by means of a laser recorder which scans onto a 
film chip both the human readable images and the 
synthetically generated machine readable holograms 
containing digital data. Digital data is recorded 
sequentially onto the fiche in 500 kilobit blocks and at 
data rates compatible with magnetic tape drives. Fiche are 
automatically developed and all digital data is verified by 
means of parity bits which are appended during the re­
cording process. 



538 National Computer Conference, 1975 

WIDEBAND HOLOGRAPHIC RECORDER 

PHOTO-DETECTOR 
ARRAY 

--../LAS£R 

~ .....•.. ~~ ........•............ ~ .• _ D£MULTIPLEX£R 

~
--- ff •............ ~ 

8£AMF~~:~~ " ' -''''' 

PAG[COMPOS£R iJ .~ 
~ .. ' '~r: SCANNER 

Figure 4-Wideband holographic recorder exploratory development 
model 

Since the HRMR System storage media is oriented 
around the standard microfiche film chip, there is a 
maximum compatibility with commercially available mi­
crofiche handling equipment. It has been a straightfor­
ward development to configure a medium scale microfiche 
storage and retrieval device capable of handling ap­
proximately 7000 microfiche. Total digital store of this 
device is 2(1011

) bits. 
In the present HRMR System configuration, the mass 

memory is on-line to a PDP-1l/45 computer. Random 
fetch of any 500 kilobit data block stored within the 
memory is provided with a maximum access time of less 
than 15 seconds. Transfer rates are compatible with DEC 
Unibus cycle times, but can be tailored to any host com­
puter's channel characteristics and data absorption rates. 

Because the holographic technique used in the HRMR 
mass memory is read-only, utilization of the system is 
projected to be oriented primarily toward archival data 
store applications in which the data placed in the memory 
is non-dynamic. Such data bases are quite common in 
both governmental and industrial organizations and are 
typically characterized by large magnetic tape libraries. A 
magnetic tape, having typical block sizes and utilizations, 
can be holographically recorded on one to two fiche. The 
7000 fiche storage capacity of the holographic memory 
provides on-line access to approximately 3500 magnetic 
tapes with access times a fraction of manual retrieval, 
mount and read times. Based upon user requirements, ad­
ditional holographic memory modules can be added to 
increase this capacity at least an order of magnitude. 

Possibly the most significant characteristic associated 
with the HRMR System's holographic memory is sim­
plicity of operation. The HRMR configuration has in­
tegrated into a mini-computer system, a 2(1011

) bit 

memory and has made this data store available at a 
media cost of approximately 2.5 X 10-6 cents per bit. In 
contrast to many other conventional mass memory ap­
proaches, which record sequential blocks and must 
retrieve blocks sequentially, the HRMR approach 
provides random access to data blocks without a sacrifice 
in overall access time. 

While the use of the synthetic holography for storage 
and retrieval of digital data on microfiche provides a solu­
tion to document-oriented mass memory requirements, 
different recording techniques and physical record for­
mats are more suitable to other types of applications. For 
example, the storage and retrieval of digital data in very 
large data records at extremely fast recording and readout 
data rates can be best handled using roll film and in­
terferometric holography. 

As with magnetic tape recorders, the large supply of 
continuously moving recording media allows very large 
(i.e., tens to hundreds of megabits) data records to be 
recorded and played back with little interface buffering. 
Roll-film formats also allow sustained data processing at 
hundreds of megabits per second. Thus, holographic re­
cording on roll-film offers an extension of the large data 
buffer capabilities now offered by high speed instrumenta­
tion-type magnetic tape recorders. Currently, single 
transport magnetic tape recorders can operate at recording 
and playback speeds of up to 80 or 90 Mb/s and can store 
data at a linear density of about 600Kb/inch on one-inch 
wide tape. In comparison, holographic techniques can be 
used to record and reproduce digital data on single 
transport devices at several hundred megabits per second 
at linear packing densities that are at least six times 
greater than now practical with magnetic tape. 

The Wideband Holographic Recorder Exploratory 
Development Model, also developed by Harris Corpora­
tion, Electronic Systems Division under contract with the 
Rome Air Development Center, uses roll-film format and 
an interferometric approach. This system has 
demonstrated the recording of data at 400 Mb I s and the 
readout of data at 40 Mb/s-a 10:1 slow down. Using in­
terferometric Fourier transform holography, data is 
recorded. in one dimensional holograms spaced on 15 
micron centers across the film. Over 1500 such holograms, 
each containing 128 data bits, are recorded across the film 
which is continuously moving at approximately 2 meters 
per second. Figure 4 is a functional diagram of the system 
showing both the recorder and reader components. 

About 3(1011
) bits of data can be recorded on a 5000 foot 

roll of 35 mm film. Using recording rates of up to 500 
Mb I s, non-stop r~cording could be sustained for a period 
of up to 9.5 minutes. Readout rates reduced by 10:1 or 
100:1 from record rates are easily implemented and cur­
rent development activities promise that readout speeds 
equivalent to record rates will soon be possible. Although 
recording is readily accomplished using roll-film supplies, 
once recorded, the film can be segmented and cassette 
mounted when faster, more random data access or dis­
tribution of duplicate data packs is desired. 



In some applications, both the automatic storage and 
retrieval features offered by the microfiche recording 
format and the higher speed recording and readout ca­
pability provided by roll-film formats are desirable. Under 
contract to NASA Marshall Space Flight Center, Harris 
Electronic Systems Division is developing a Holographic 
Memory that incorporates some of the features of both 
HRMR and the Wideband Holographic Recorder. One of 
the goals of this system development is to record up to 80 
Mb of data on a microfiche which is formatted into 
randomly addressable files. 

CONCLUSIONS 

During the past several years we have witnessed a 
considerable effort which was and still is being undertaken 
by many research laboratories to apply the principles of 
holography to a broad spectrum of memory and storage 
applications. The research is directed toward both the 
intermediate-capacity, fast access time read/ write 
memory market as well as the large-capacity, longer access 
time read-only storage devices. Effort is also continuing in 
the specialized area of ultra-high speed transfer of data 
into and out of large intermediary bulk stores. 

Read/write memories have not yet emerged from the re­
search laboratory into the commercial marketplace. Ef­
forts have been hampered primarily by the unavailability 
of suitable materials which are needed to configure several 
key memory components. Even if we assume that material 
and other technological problems are overcome, the pros­
pects that holographic memories will seriously challenge 
other existing and emerging technologies before the end of 
this decade, indeed if ever, is unlikely. The inertia of mag­
netic technology coupled with remarkable yearly improve-

Holographic Memories-Fantasy or Reality 539 

ments in packing density, access time and transfer rates 
presents a formidable challenge to those who desire to 
penetrate that particular segment of the market. 

The prospects for read-only holographic memories 
which have multi-microsecond access time and lOS to 109 

bit capacity appear to be better because problems 
associated with high-speed page composers and reusable 
storage media are obviated. Unfortunately, the read-only 
property will limit its usefulness to special applications 
where data volatility, extreme environments and data se­
curity overshadow cost considerations. 

The prospects for application of holographic techniques 
to read-only bulk storage appear to be much better. 
Systems with capacity between 1011 and 1013 bits and with 
multi-second access time are currently being built as 
engineering developmental units. At these capacities, 
costly electro-optical components can be justified. On a 
more modest scale, 107 bit capacity, 1.5 second access time 
read-only storage units are already commercially available 
for application to the point-of-sale credit card verification 
problem. 

To date, archival read-only optical memories using bit­
by-bit recording techniques have penetrated a portion of 
the large capacity storage market. This market will grow 
as demand for larger common data bases increases. Al­
though today's market penetration is being made by mag­
netic and bit-by-bit optical techniques, holographic tech­
niques offer the most promising cost-effective approach for 
achieving high transfer speeds and large capacity. We 
believe that holographic storage devices will become com­
mercially attractive well before the end of the decade. 

REFERENCE 

1. Leith, E. N. and J. Upatnieks, J. Opt. Soc. Am., 52, p. 1123, 1962. 





BEAMOS-A new electronic digital memory 

by W. C. HUGHES, C. Q. LEMMOND, H. G. PARKS, G. W. ELLIS, G. E. POSSIN, and 
R. H. WILSON 
General Electric Company 
Schenectady, New York 

INTRODUCTION 

BEAMOS, for' Beam Addressed Metal Oxide Semicon­
ductor, is a new technology for auxiliary memories based 
on an electron beam which reads and writes data on a 
simple unstructured MOS chip. It can store data for 
months with or without power. 

This memory combines large data capacity, high data 
transfer rate and a highly flexible data format. BEAM OS 
use in data systems should result in significant savings in 
both hardware and software costs. 

This 'technology also makes possible auxiliary memories 
with the ruggedness and non-volatility needed for military 
systems. 

Static auxiliary memories such as cores or semiconduc­
tors become extremely expensive and decline in overall re­
liability when large amounts of storage capacity are re­
quired. This results in severe constraints for the designer 
of military information systems. BEAMOS memories 
provide an attractive alternative. 

DESCRIPTION OF THE BEAMOS MEMORY 

A complete BEAM OS memory consists of one or more 
BEAMOS modules, address and interface logic, control 
circuits, and power supplies. 

A 32 million bit capacity was chosen for initial develop­
ment because it was the most viable size for the applica­
tions envisioned. Lower capacity modules are relatively 
easy to design and build but have a higher cost per bit. 
Higher capacity modules provide less modularity in 
systems design, but on the other hand, have iower per bit 
component cost. 

Physical description 

The BEAM OS module, Figure 1, contains a memory 
plane and electron beam accessing system enclosed in a 
sealed, evacuated envelope. In military systems the 
module is shock mounted in a rugged outer shell. 

541 

Memory plane 

Information is stored on the memory plane,l Figure 4, 
which consists of four BEAMOS chips mounted on a base­
plate. The essential structure is shown in Figure 2. It 
consists of a film of aluminum evaporated on a thin insu­
lating layer, such as silicon dioxide, formed on a silicon 
diode. All layers are arranged in continuous, unstructured 
planes. The nand p type silicon layers are connected 
electrically to form a back-biased diode. The operating 
mode of the memory is controlled by the application of a 
voltage across the oxide layer. A positive 40 volt bias is ap­
plied to write and a negative 40 volts to erase. A read bias 
of zero volts allows many reads before rewriting. Destruc­
tive readout can be obtained with a negative 40 volt bias. 

Electron beam addressing 

The conventional way to address an electron beam to a 
given location in a field is through a single stage of deflec­
tion. The maximum number of addressable sites is de­
termined by the accuracies of the deflection structure and 
the driving amplifier, and by the stability of the power 
supplies. A practical open-loop limit is approximately 
1000 addressable sites along a line, and hence a million 
addressable spots in a square field. In the BEAM OS 
module, addressing of the electron beam to the memory 
sites is achieved in a special electron optical structure. 
This employs two stages of deflection, in combination with 
a unique matrix of small lenses. This array of lens/ deflec­
tion systems, called the Matrix Lens,2 permits addressing 
a very large number of discrete memory sites with a single 
electron beam. 

The complete electron optical system of the BEAMOS 
module is shown in Figure 3. The first digits of the address 
are applied to a digital-to-analog converter. This converter 
generates an analog voltage which is applied to the first 
deflection stage called a lenslet selector. This directs the 
electron beam into one of the small lenslets. A lenslet is 
simply a pair of aligned holes in two metal plates. A 
voltage applied between the plates produces an electron 
lens which focuses the beam to an extremely fine spot. In 
addition to its focusing capability, each lenslet has an indi­
vidual deflection structure, integral with the matrix lens. 



542 National Computer Conference, 1975 

Figure I-BEAMOS memory module 

The second part of the digital address is applied to 
another digital-to-analog converter, producing a deflection 
voltage that is applied to this second deflection structure 
called a page selector. This structure directs the beam into 
the desired memory site within the lenslet field. The two 
deflection stages are effectively independent. Minor beam 
positioning variations in the first stage do not cause signifi­
cant errors in the position of the bit site addressed. Figure 
4 is a photograph of a Matrix Lens together with the 
memory plane. The grid structure is the page selector ma­
trix. 

Operating sequence 

To record data in the module the following sequence is 
performed. First the address and operating mode are 

ELECTRON 
BEAM 

ALUMINUM 

Si02 

N-TYPE 
EPITAXIAL 
SILICON 

P-TYPE 
SILICON 

~ASE 
READ 1-

-, DIODE BACK BIAS 

Figure 2-Cross section ofMOS memory chip 

selected by simultaneously entering the lens and page ad­
dresses and switching in the desired oxide bias. This 
moves the beam to the beginning of the page. From this 
point the beam is stepped across the lenslet field one bit 
site at a time while the electron beam is synchronously 
turned on or off as required by the input data. An output 
signal is available from a read amplifier which can be 
monitored as a partial check on the write operation. 

The sequence is the same for the other operations (read, 
destructive read, and erase), except that the electron beam 
is turned on at every bit site. 

Signal life 

The BEAM OS target stores data for a long time but not 
permanently. Thus it is necessary to rewrite the files occa­
sionally whether they are used or not. This function can be 
carried out by reading the data into a block buffer and 
rewriting. Signal decay is very slow with the power off or 
with power on and zero or negative oxide bias values. With 

OXIDE 
BIAS 
DRIVER 

READ 
AMP 

o 
j'O 
"IT 
o 
o 
o 
o 
o 
o 

PAGE LENS 

ADDR~SS ADDRESS yATA IN 
RECORD 

AMP 

II .......... 

=:::':::':'::::-::::.-- J ~--
11 -<;:==:tf!;\'~~~R 
f ~ BEAM ELECTRON 
~ \ , MODULATOR BEAM SOURCE 

MATRIX LENS 

PAGE 
SELECTOR 

LENS LET SELECTOR 

MEMORY PLANE 

Figure 3-BEAMOS electron optical system 



BEAM OS 543 

Figure 4-Matrix lens showing page selector and memory plane 

power off, the measured signal is 90 percent of its initial 
value after five day storage and about 80 percent after 
one month. Decay is somewhat faster at positive bias. 
The decay characteristic is only slightly temperature de­
pendent with variation of no more than + 10 percent in 
signal level between - 40 and +70° C. 

The output signal from the module is also reduced 
slightly by each readout. After approximately 20 reads it 
must be rewritten. It is advantageous to operate the 
module such that several reads are always possible, so that 
re-read cycles can be used as a part of the error recovery 
strategy. Data refresh can be done after each reador when 
necessary, based on the readout signal level. 

MEMORY SYSTEM CHARACTERISTICS 

The BEAM OS module can be configured into memory 
systems which have a wide spectrum of characteristics. 

This design freedom results from the non-structured na­
ture of the storage plane and the flexibility of electron 
beam addressing. 

Data format 

The data layout used in the BEAM OS module can be 
selected at the discretion of the systems designer. The 
page length can vary over wide limits, however, a 
guardband must be left between pages to assure that 
activity on one page does not affect neighboring pages. A 
guardband is also required between lenslets. There are no 
built-in restrictions on word length and redundancy can be 
included within the page as required for error control. 

An example of a particular format based on a 8448 bit 
page is shown in Figure 5. Here each page occupies 24 
data lines extending completely across the lenslet field. A 



544 National Computer Conference, 1975 

~14mm----lr~1mm 

l'~"~ 
14m m I Hf-+.-+-~-4--+-.&-I I~I-+-+-+-II-+-

l,~,'~ 
tl~~ I~-+-+--I 
1 m m IHt-+--+-+-II-+-+-+-I I ~"""""-I-+-~"""""-I 

USEABLE 
TARGET 
WINDOW 

LENS MAP 
289 LENSLETS 

24 LINES 
OF DATA 

PAGE LAYOUT IN 
LENSLET FIELD 
(13 DATA PAGES) 12 #J 

LENSLET FIELD ~ 
1.5mm x 1.5mm 

JUL 

:JIII~~ 
111·1408/'j ~ROX 

USEABLE 125 pm 

GUARDBAND 

LENSLET FIELD 

352 BITS/LINE 

GUARDBAND 

DATA PAGE 
8448 BITS 

Figure 5-Data format 

12 micron guard band is provided between pages and a 125 
micron guardband between lenslets. 

System configuration 

Systems needing 32 million bits capacity require only a 
single module. In larger systems, multiple modules are 
used and advantage can be taken of the fact that much of 
the electronics can be shared among several modules, thus 

minimizing the cost per bit of the system. Figure 6 is a 
block diagram of a multimodule system in which the 
modules are addressed one at a time. In this configuration, 
the modules share the lens and page select amplifier, oxide 
bias circuitry, most of the digital electronics and the power 
supplies. This provides minimum per bit cost and 
maximum reliability with page access times in the 30 
microsecond range and data rates up to 10 mega­
bits/second. Data capacity for a 20 tube system would be 
at least 600 million bits. 



DATA 
REG. 

ADDRESS 
REGISTERS 

MODULE 
SELECT 

CONTROL 
REGISTER 

BEAMOS 
MODULES 

~ 
PAGE 
SELECT 

BEAM OS 545 

CHARACTERISTICS 
1""'------------1 CONTROL 

CIRCUITS 

ICOMPUTER 
INTERFACE 

FUNCTION 
READ 
WRITE 
ERASE 

ACCESS TIME 
DATA RATE 
DATA CAPACITY 

30l'sec 
10 MB/sec 
30 x 106 

TO 600 x 106 BITS 

Figure 6-Multimodule system-serial operation 

In some systems, much higher data rates are desirable 
to minimize service time. This can be provided by ac­
cessing modules in parallel. That is, all, or several, 
modules are simultaneously addressed to the same loca­
tion and each writes or reads a part of the total page. 
Again much of the electronics is shared among the 
modules but since more digital electronics is required the 
cost per bit can be expected to go up somewhat. 

This type of system can have a 30 microsecond access 
time, 600 million bit capacity and data transfer rates up to 
200 megabits/sec. 

Access time 

Access time, the time required to move the electron 
beam to the beginning of a page, is fundamentally limited 
by the transit time of the beam through the optical 
system, about 30 nanoseconds. The practical electron 
beam access time limit is imposed by the switching and 
settling time of the deflection amplifier driving the capaci­
tance of the all electrostatic lenslet and page selectors. 
This can be in the range of a few microseconds. 

The time required to change the bias of the oxide when 

switching from one operation to another (i.e., read to 
write) requires a longer time because the relatively large 
oxide capacitance must be charged through the resistance 
of the n-Iayer in the memory plane. This can be accom­
plished, with time for the disturbance caused in the 
readout amplifier to die out, in about 30 microseconds. 

Thus, the access time can be a few microseconds for suc­
cessive calls of the same operation and up to 30 micro­
seconds if an operation change is involved. 

Data rate 

The recording data rate is determined by the beam cur­
rent available. In the present modules this is 10 mega­
bits/ sec. Considerably less beam current is required to 
read, making it possible to read at higher rates. Target fre­
quency response is not a limiting factor. At higher read 
rates fewer reads can be made before the data has to be 
rewritten because more beam current is required. At 10 
megabits/sec about 20 reads are possible, while at 100 
megabits this would be reduced to six. 



546 National Computer Conference, 1975 

w 
::;: 
>= 
z 
2 
t; 1.0 

~ 
~ 
~ 08 

~ 
~ 0.6 

8 
x 
<:: 

~ 0.4 

~ 
Z g 0.2 2 

<.) 

UNACCEPTABLE 
TRANSACTION DELAYS 

FILE MACHINE 
SERVICE TIME 

40 msec 

TRANSACTION 
TIME RATIO 

_ MEMORy PARTITIONS 
OCCUPIED 

FILE MACHINE 
SERVICE TIME 

0.44 msec 

MEMORY PARTITIONS 
OCCUPIED 

~ 
~ 0 00~~~~~~~;;~~10~~~::~15~-
~ MEAN TRANSACTIONS/SECOND 

::;: 

Figure 7 -System performance comparison 

Service time and some system consequences 

20 

A meaningful number describing the speed of a memory 
system is service time. This is the average time between 
the acceptance by the memory of a new command and the 
earliest time the next command can be accepted. In many 
applications the service time of the file equipment can 
have a dramatic effect on the performance of the total 
system. As an example of this, consider a transaction 
processing system in which a data base is shared among 
many users. The system has a CPU and a working 
memory with space for the file management software and 
eight partitions for transaction programs. 

Requests for CPU and memory time come in on a 
random basis from the users and the required programs 
are brought in from the file and assigned a portion of the 
main memory. The programs are executed in turn until 
they are completed or an operation which requires 
considerable time is encountered, for example, an 
input/ output command or a memory access. When this oc­
curs the operation is initiated and the CPU goes on to the 
next transaction. When transactions begin to come in at a 
rate approaching the average processing rate, queues build 
up and the waiting time may become unacceptably long or 
the number of transaction partitions exceeded. 

The software for such a system must be very complex to 
cope with all eventualities. A particularly troublesome 
situation occurs when two transactions which are resident 
in main memory call for access to the same file; one to 
modify it and the other to read it. In this case it may be 
necessary to roll both transactions back to their initiation 
to decide whether the modification or read should occur 
first. 

This kind of system has been studied by computer 
simulation to determine the effect of service time on its 
performance.3 The results are dependent upon the ca­
pabilities of the CPU and file memory and upon the na­
ture of the transactions in more detail than can be dis­
cussed here, but Figure 7 illustrates what can happen. 

These calculations were made for a real system operating 
on a transaction mix typical of those occurring in a manu­
facturing plant automation data system. 

With a file service time of 40 milliseconds which is 
typical of disk devices the operation of the system is 
limited by the file memory. Only three to four transac­
tions/second can be accommodated before unacceptable 
delays begin to occur. At this point all of the memory par­
titions are occupied with transactions in process, greatly 
increasing the chances for conflicts in the use of the data 
base. 

If the service time is decreased to 0.44 milliseconds, as 
would be possible with a BEAM OS memory, the capacity 
of the system is increased to the point where over 20 
transactions/ sec can be processed. The transaction rate 
would be three times that achievable with the slower file 
with only one memory partition occupied. This means that 
transactions could be processed serially in order of arrival, 
with a consequent simplification in data base protection 
and operating system software and with less main 
memory. 

SUITABILITY FOR MILITARY APPLICATION 

A version of the BEAM OS memory is presently under 
development for U. S. Army ECOM and assessments of its 
suitability for military environments look very promising. 

Military environment 

A major advantage of BEAMOS for use in a military en­
vironment is that it is all electronic, has no moving parts 
and is completely sealed. No parts are especially sensitive 
to vibration and the most important section in controlling 
beam position, the matrix lens/target assembly, is very 
rugged. Tests of this component suggest that it can easily 
be applied in typical aircraft vibration environments. By 
using familiar isolation techniques, application can be 
extended to very severe environments. Tests of the 
BEAMOS storage plane over the range - 50°C to +70°C 
indicate that charge storage is not greatly affected by 
temperature and while there are some changes in target 
characteristics, it is possible to design the system to ac­
commodate them. The matrix lens/target assembly is 
made of materials with matching coefficients of expansion 
so that variation from -40 to +70°C should produce less 
than 0.1 micron variation in the position of the addressing 
beam. 

The memory module requires a magnetic shield to 
protect against external fields, but a shield weighing about 
10 pounds will accommodate fields up to 10 gauss. 
Considerably lighter shielding will suffice in less severe en­
vironments. 

The BEAMOS memory plane is especially tolerant of 
ionizing radiation since it depends on high radiation levels 
for its operation. Ionizing radiation equivalent to lOS Rads 
(Si) will cause no more than 10 percent reduction in signal 



level. No permanent radiation damage has been observed 
up to 6 X 107 Rads. Neutrons will generate permanent 
damage but 1014 neutrons/ cm2 are required to cause sig­
nificant reduction in signal level. 

Military packaging 

An important consideration in most military equipment 
is physical size and power consumption. A packaging 
study has shown that a single module BEAM OS memory 
can be packaged in a volume of 2-3 cubic feet and will re­
quire about 250 watts of power. The study assumed 
packaging techniques similar to those used in aircraft. 

Reliability 

The mean operating time between failures is a part of 
most military equipment specifications. It is useful to 
make an estimate of what might be expected in a memory 
of this type. A single module system was considered and 
by making a component count and applying component 
failure rate data from the Military Standardization Hand­
book4

,5 the following MTBF figures were determined. 

Digital Circuits 
Analog Circuitry 
Power Supplies 
Resultant MTBF of 
Electronic Circuits 

30,000 hours 
36,000 hours 
20,000 hours 

9,000 hours 

It was assumed that the module itself would be replaced 
on a preventive maintenance schedule. The electron 
source6 was a barium dispenser cathode.7 At the cathode 
loading employed the dispenser cathode used in these 
devices can be expected to show only 10 percent drop in 
emission in 40,000 hours ofuse.s A 20,000 hour replacement 
period was selected, and assuming random failures of 20 
percent prior to replacement, the combined MTBF for the 
electronics and the BEAMOS module is calculated to be 
8,000 hours. This compares very favorably with other 
memories of this size and would be even more favorable for 
multimodule systems. 

DEVELOPMENT STATUS 

The 32 million bit BEAMOS memory module is being 
built in pilot quantities. These modules are being tested 
and evaluated in a computer controlled test system. 
Modules have been operated at a data density of 40 
million bits per square inch which produces a module ca­
pacity of 32 million bits. They have been tested at data 
rates of 10 megabits/second and access times of 30"micro­
seconds. Data storage time between refresh cycles can be 
as long as 120 hours. 

BEAM OS 547 

MEMORY COST COMPARISONS 

Estimates of the cost of a BEAMOS memory including 
the analog and digital electronics have been made and 
they compare favorably with competing technologies. The 
systems price will vary depending upon the number of 
modules used but is expected to be in the 0.02 cent per bit 
range for the present module size and density. The price 
can be expected to decline with future developments into 
the 0.001 cent per bit range. 

POTENTIAL FOR IMPROVED PERFORMANCE 

The BEAMOS concept has considerable potential for 
improvement with continued development. Operation of 
the memory plane with the matrix lens optics has been 
achieved in an experimental laboratory configuration at 
100 million bits/inch2

• 

Improvements in the electron optics can also increase 
the addressable target area in a module. A theoretical 
study supported by experimental evidence has 
demonstrated that 10 square inches of target space can be 
addressed at 160 million bits/inch2

• This provides a data 
capacity of over 1 X 109 bits per module. 

Theoretical studies of the density and speed potential of 
the target predict that operation should be possible at 
400 X 106 bitsjin2 (1.3JL bit spacing) and data rates of 10 
megabits/ second. 

ACKNOWLEDGMENTS 

Partial support for this development has been provided by 
the U.S. Army Electronics Command. The authors wish to 
thank J. F. Norton, T. H. Klotz, H. W. Grup, W. R. 
Bozony, and W. D. Barber for assistance in memory plane 
and module testing; E. C. Buschmann, J. F. Bedard, J. K. 
Fisher, and R. A. Wagner for their contributions to 
module fabrication; J. S. Rosczak and D. P. Lalla for 
assistance in memory plane processing; R. C. Raymond 
for the system modeling; and P. E. Pashler, R. W. Red­
ington, H. L. Lester, R. O. McCary, R. H. Kerr, R. A. 
Sigsbee, C. A. Neugebauer and J. F. Burgess for technical 
guidance and advice. The contributions of J. C. Davis, M. 
Goldberg, R. J. Lucas, I. Reingold and P. F. Krzyzkowski 
of the Department of Defense are also gratefully ac­
knowledged. 

REFERENCES 

1. Ellis, G. W., G. E. Possin and R. H. Wilson, "Diode Detection of In­
formation Stored in Electron-Beam-Addressed MOS Structure," Ap­
plied Physics Letters 24, p. 419, 1974. 

2. Lemmond, C. Q., E. C. BU3chmann, T. H. Klotz and G. M. White, 



548 National Computer Conference, 1975 

"Electron Fly's Eye Lens Artwork Camera," IEEE Transactions on 
Electron Devices, ED-21, 9, Sept. 1974, p. 598. 

3. Raymond, R. C., private communication. 
4. Reliability Stress and Failure Rate Data for Electronic Equipment, 

Mil-HDBK 217B, 20 September 1974. 
5. Reliability Handbook, RADC-TR-67-108. 
6. Hughes, W. C., "Long Life-High Brightness Services for 

Demountable Guns," Record of the Tenth Symposium on Electron, 

Ion, and Laser Beam Technology, San Francisco Press, San 
Francisco, 1969. 

7. Levi, R., "Improved Impregnated Cathode," J. Appl. Phys., 26, 
1955, p. 639. 

8. Van Stratum, A. J. A. and P. N. Kuin, "Tracer Study on the 
Decrease of Emission Density of Osmium Coated Impregnated 
Cathodes," Journal of Applied Phys., Vol. 42, No. 11, October 1971, 
p.4436. 



Area Director: 
U go Gagliardi 
Honeywell Information Systems Inc. 
Waltham, Massachusetts 

Interaction of technology and system architecture 

Major hardware technology advances have and will have significant impact 
on system architecture by shifting feasibility constraints and causing new op­
timum structures to emerge. 

This area develops the thesis that a number of very significant hardware 
technology advances are occurring or are about to occur. This, in turn, will 
result in significant changes in the: structure of software systems, productivity 
of systems, ease of use, operational practices, and range of applications of 
general purpose computing systems. 

Some of the specific architectural areas considered are: multi-processors 
structures, storage hierarchy structure and control, firmware primitives for 
data-base applications, software architecture for memory and data manage­
ment. 

Sessions: 

Professor Gerald Estrin, UCLA 
'Chairman-Introductory Panel Session 

This introductory session will consist of two tutorial presentations pointing to 
the two following sessions. The first presentation will discuss major cost/ density 
trends in main, disk and archival memories and how they are affecting system 
architecture and operating concepts for files, data bases and library systems. 
The second presentation will add major technology trends in processors and 
inter-connections and will discuss forms of Processor-Memory-Switch Architec­
tures suggested by those trends. 

Professor Stuart Madnick, MIT 
Chairman-Paper Session-Processor Memory Switch (PMS) Architecture 

Significant cost 'reduction advances in processor technology have now made 
multiple processor architectures economically feasible. In this session three 
specific examples are presented. The first uses an ensemble of up to 13 identical 

549 



550 National Computer Conference, 1975 

processors to implement a highly-reliable communications switching node 
(ARPA IMP). The second addresses the problem of asymmetric task scheduling 
in a multiprocessor system with heterogeneous processors (HITAC 8700's and 
8800's). The third describes a highly modular network of microprocessors con­
nected together by a common ring-bus. 

Ornstein, S. M., et. aI., Bolt Beranek and Newman, Inc., "Pluribus-A reliable 
multiprocessor" 
Noguchi, Kenichiro, et. aI., Hitachi, Ltd., "Design considerations for a 
heterogeneous tightly-coupled multiprocessor system" 
Toong, Hoo-min D., MIT, "Microprocessor-based multiprocessor ring struc­
tured network" 

Dr. Jeffrey Buzen, Honeywell Information Systems, Harvard 
Chairman-Paper Session-Data and Memory Management Architectures 

The hardware capabilities provided by new technologies and the software re­
quirements generated by new applications are exerting a powerful influence on 
memory subsystem architecture. This session will consider both hardware and 
software factors and will include discussions of the conceptual and architectural 
support of data base systems, the use of LSI technology to provide logical 
processing capabilities within a memory subsystem, and the use of micro­
processors to support both memory subsystem hierarchies and software hierar­
chies in a uniform manner. 

Bachman, Charles W., Honeywell Information Systems "Trends in data base 
management-1975" 
Glanz, Z. H., Thompson, P. M., University of Ottawa, "A data sorting system 
using high speed bus" 
Madnick, Stuart E., MIT Sloan School, "Infoplex-A functional decomposition 
of large information management systems into a hierarchical microprocessor 
complex" 

Mr. Richard P. Case, IBM 
Chairman-Discussion Panel on Significance 

The panel will consist of the three session chairmen plus one or two guests. 



Pluribus-A reliable multiprocessor* 

by S. M. ORNSTEIN, W. R. CROWTHER, M. F. KRALEY, R. D. BRESSLER, A. MICHEL 
and F. E. HEART 
Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

As computer technology has evolved, system architects 
have continually sought new ways to exploit the decreasing 
costs of system components. One approach has been to 
pull together collections of units into multiprocessor 
systems. 1 Usually the objectives have been to gain 
increased operating power through parallelism and/ or to 
gain increased system reliability through redundancy. 

In 1972, our group at Bolt Beranek and Newman started 
to design a new machine for use as a switching node (IMP) 
in the ARPA Network.2

,3 The machine was to be capable 
of high bandwidth, in order to handle the 1.5-megabaud 
data circuits which were then planned for the network. It 
was to have a high fanout to Host computers connected at 
a node. It was to come in all sizes (of processing power, 
memory, I/O) so that one could configure an individual 
IMP to meet the requirements of its particular location in 
the network, and change that configuration easily should 
the requirements change. Most of all, it was to be reliable. 

The family of machines we have produced which meets 
these goals has been named the Pluribus line. The ma­
chines are highly modular at several levels and have a 
minicomputer / multiprocessor architecture. Although the 
largest configuration we have put together so far contains 
only 13 processors, we believe there are no inherent prob­
lems with considerably larger systems. The structure and 
details of some of the hardware are described in earlier 
papers.4,5 Familiarity with these papers will be helpful in 
understanding the present paper, which focuses on the 
issue of reliability . We believe that reliability will become 
an increasingly common concern as multiprocessors be­
come more commonplace, and we believe that we have 
gained some interesting insights into the solution of this 
problem. 

THE MULTIPROCESSOR ARCHITECTURE 

A novel feature of our design is the consistent treatment 
of all processors as equal units, both in the hardware and 
in the software. There is no specialization of processors for 
particular system functions, and no assignment of priority 

* This work was supported by the Advanced Research Projects Agency 
(ARPA) under contracts DAHC15-69-C-0179 and F08606-73-C-0027. 

551 

among the processors, such as designating one as master. 
We chose to distribute among the processors not only the 
application job (the IMP job) but also the multiprocessor 
control and reliability jobs, treating all jobs uniformly .. We 
view the processors as a resource used to advance our al­
gorithm; the identity of the processor performing a 
particular task is of no importance. Programs are written 
as for a single processor except that the algorithm includes 
interlocks necessary to insure multiprocessor sequentiality 
when required. The software of our machine consists of a 
single conventional program run by all processors. Each 
processor has its own local copy of about one quarter of. 
this program and the remaining three quarters is in com­
monly accessible memory. 

Hardware structure 

Reliability was a main concern in planning the 
hardware architecture. Although we tried to build the indi­
vidual pieces solidly, our main goal was to provide 
hardware which could be exploited by the program to sur­
vive the failure of any individual component. 

The hardware consists of busses joined together by spe­
cial bus couplers which allow units on one bus to access 
those on another. Each bus, together with its own power 
supply and cooling, is mounted on its own modular unit, 
permitting flexible variation in the size and structure of 
systems. There are processor busses each of which 
contains two processors, each in turn with its own local 4K 
memory which stores frequently run and recovery-related 
code. There are memory busses to house the segments of a 
large memory common to all the processors. Finally, there 
are I/O busses which house device controllers as well as 
certain central resources such as system clocks and special 
(priority-ordered) task disbursers which replace the tradi­
tional priority interrupt system. About half of the machine 
consists of standard parts from the Lockheed SUE line; 
the remainder is of special design. 

As emphasized in our initial paper,4 we were fortunate 
to have a very specific job in mind as we designed the 
system. This enabled us to place specific bounds on the 
problems we sought to solve. For example, the proposed 
initial setting within a communications network means 
that outside entities (neighboring communications 
processors, Hosts, users, etc.) may help to notice that 



552 National Computer Conference, 1975 

things are going wrong. It also means that recovery 
assistance is potentially available' from the Network Con­
trol Center (NCC) through the network.6

,7 The system is 
designed generally to avoid reliance upon external help, 
but upon occasion such help is useful and therefore we 
have provided methods for permitting the system to be 
forcibly reloaded and restarted via the network. 

Software structure 

The problem of building a packet-switching store-and­
forward communications processor (the IMP) lends itself 
especially well to parallel solution since packets of data 
can be treated independently of one another. Other func­
tions, such as routing computations, can also be performed 
in parallel. 

The program is first divided into small pieces, called 
strips, each of which handles a particular aspect of the 
job. When a task needs to be performed, the name 
(number) of the appropriate strip is put on a queue of 
tasks to be run. Each processor, when it is not running a 
strip, repeatedly checks this queue. When a strip number 
appears on the queue, the next available processor will 
take it off the queue and execute the corresponding strip. 
We try to break the program into strips in such a way that 
a minimum of context saving is necessary. 

The number assigned to each strip reflects the priority 
of the task it performs. When a processor <:hecks the task 
queue, it takes the highest priority waiting job. Since all 
processors access this queue frequently, contention for it is 
very high. We therefore built a hardware device called the 
Pseudo Interrupt Device (PID) which serves as a task 
queue. A single instruction allows the highest priority task 
to be fetched and removed from the queue. Another 
instruction allows a new task to be put onto the queue. All 
contention is arbitrated by standard bus logic hardware. 

The length of strips is governed by how long priority 
tasks can wait if all the processors are busy. The worst 
case arises when all processors have just begun the longest 
strip. In the IMP application, the most urgent tasks can 
afford to wait a maximum of 400 microseconds. Therefore, 
strips must not generally be longer than that. 

An inherent part of multiprocessor operation is the lock­
ing of critical resources to enforce sequentiality when 
necessary.8 A load-and-clear operation provides our primi­
tive locking facility. To avoid deadlocks, we priority-order 
our resources and arrange that the software not lock one 
resource when it has already locked another of lower or 
equal priority. 

Status 

During the early spring of 1974 a prototype 13-processor 
system was constructed. As this paper is being written (in 
the fall of 1974) two production copies have been 
constructed and are running. Each contains 13 processors, 
two memory busses, and two I/O busses. These machines 
have been connected intermittently into the ARPA N et-

work for testing purposes and operational installation in 
the network is anticipated shortly. A single processor has 
been running on the network for an extended period in 
order to validate performance during routine operation. 
Three Satellite IMP configurations9 are presently under 
construction as well as a non-IMP configuration designed 
to provide highly reliable preprocessing and forwarding of 
seismic data to processing and storage centers. 

RELIABILITY GOALS 

Since the term "reliable system" can have many dif­
ferent meanings, it is important to establish clearly just 
what we are and what we are not trying to achieve. Weare 
not trying to build a non-failing device (as in Reference 
10); instead, we are trying to build a system which will 
recuperate automatically within seconds, or at most 
minutes following a failure. Furthermore, we want the 
system to survive not only transient failures but also solid 
failures of any single component. In many cases (such as 
the IMP job) it is not necessary to operate continuously 
and perfectly; it suffices to operate correctly most of the 
time so long as outages are infrequent, kept brief, and 
fixed without human intervention. 

How one copes with infrequent brief outages depends on 
what one is trying to do. For tasks not tightly coupled to 
real-time requirements (e.g., for many large numerical 
computations), a simple device is to choose checkpoints at 
which to record the state of the system so that one can al­
ways recover by restarting from the checkpoint just 
preceding an outage.11

,12 The IMP system happens to be 
embedded in a larger system which is quite forgiving. 
(This is not an uncommon situation.) Thus brief outages 
of a few seconds are tolerated easily, and outages of many 
seconds, while causing the particular node to become tem­
porarily unusable, will not in general jeopardize operation 
of the network as a whole. 

Occasionally, despite all efforts, the system will break so 
catastrophically that it will be unable to recover. Our goal 
is to reduce the probability of such total system failure to 
the probability of a multiple hardware failure. We do not 
try to protect against all possible errors; some .o~ our 
procedures will fail to detect errors whose probabIl~ty of 
occurrence is sufficiently low. For example, all code IS pe­
riodically checksummed using a 16-bit checksum. A 
failure that does not disturb the validity of the checksum 
may not be detected. We do not mind if.a failure ren?ers 
large sections of the machine unusable or inaccessIble, 
providing enough remains to run the system. The presence 
of runnable hardware, however, is not sufficient to 
guarantee that operation will be resumed; in addition, the 
software must be able to survive the transients ac­
companying the failure and adapt to the remain~ng 
hardware. This may include combating and overcommg 
active failures (for example, when an element such as a 
processor goes berserk and repeatedly writes meaningless 
data into memory). 

All code is presumed to be debugged-i.e., all frequently 



occurring problems will have been fixed. On the other 
hand, we must be able to survive infrequent bugs even 
when they randomly destroy code, data structures, etc. 

In order to avoid complete system failure, a failed 
component must be repaired or replaced before its backup 
also breaks. The system must therefore report all failures. 
The actual repair and/ or replacement will of course be 
performed by humans, but this will generally take place 
long after the system has noted the failure and recon­
figures itself to bypass the failed module. The ratio of 
mean-time-to-repair to mean-time-between-fail ures will de­
termine overall system reliability. It must also be possible 
to remove and replace any component while the svstem 
continues to run. Finally, the system should absorb 
repaired or newly introduced parts gracefully. 

STRATEGIES 

In order to understand our system it is convenient to 
consider the strategies used to achieve our goals in two 
parts which more or less parallel the traditional division 
into hardware and software. The first part provides 
hardware that will survive any single failure, even a solid 
one, in such a way as to leave a potentially runnable ma­
chine intact (potentially in that it may need resetting, re­
loading, etc.). The second part provides all of the facilities 
necessary to survive any and all transients stemming from 
the failure and to adapt to running in the new hardware 
configuration. 

Appropriate hardware 

We have two basic strategies in providing the hardware. 
The first is to include extra copies of every vital hardware 
resource. The second is to provide sufficient isolation 
between the copies so that any single component failure 
will impair only one copy. 

To increase effective bandwidth in multiprocessors, 
multiple copies of heavily utilized resources are normally 
provided. For reliability, however, all resources critical to 
running the algorithm are duplicated. Where possible the 
system utilizes these extra resources to increase the 
bandwidth of the system. 

It is not sufficient merely to provide duplicate copies of 
a particular resource; we must also be sure that the copies 
are not dependent on any common resource. Thus, for 
example, in addition to providing multiple memories, we 
also include logically independent, physically modular, 
multiple busses on which the memories are distributed. 
Each bus has its own power supply and cooling, and may 
be disconnected and removed from the racks for servicing 
while the rest of the machine continues to run. 

All central system resources, such as the real time clock 
and the PID, are duplicated on at least two separate I/O 
busses. All connections between bus pairs are provided by 
separate bus couplers so that a coupler failure can disable 
at most the two busses it is connecting. 

Non-central resources, such as individual I/O inter-

Pluribus-A Reliable Multiprocessor 553 

faces, are generally less critical. Provision has been made, 
however, to connect important lines to two identical inter­
face units (on separate I/O busses) either of which may be 
selected for use by the program. 

To adapt to different hardware configurations, the 
software must be able to determine what hardware 
resources are available to it. We have made it convenient 
to search for and locate those resources which are present 
and determine the type and parameters of those which are 
found. 

To allow for active failures, all bus couplers have a 
program-controllable switch that inhibits transactions via 
that coupler. Thus, a bus may be effectively "amputated" 
by turning off all couplers from that bus. This mechanism 
is protected from capricious use by requiring a particular 
data word (a password) to be stored in a control register of 
the bus coupler. Naturally an amputated processor is 
prevented from accessing these passwords. 

Finally, although a common reset line is normally 
considered essential, we have avoided such a line since a 
single failure on its driver could jeopardize the entire 
system. There is thus no central point (not even a single 
power switch) where one can gain control of the entire 
system at once. Instead, we rely on resetting a section at a 
time using passwords. 

Software survival 

With the above features, the Pluribus hardware can 
experience any single component failure and still present a 
runnable system. One must assume that as a consequence 
of a failure, the program may have been destroyed, the 
processors halted, and the hardware put in some hung 
state needing to be reset. We now investigate the means 
used to restore the algorithm to operation after a failure. 
The various techniques for doing this may be classified 
under three broad strategies: keep it simple, worry about 
redundancy, and use watchdog timers throughout. 

Simplicity 

It is always good to keep a system simple, for then one 
has a fighting chance to make it work. We describe here 
three system constraints imposed in the name of sim­
plicity. 

First, as mentioned above, we insist that all processors 
be identical and equal: they are viewed only as resources 
used to advance the algorithm. Each should be able to do 
any system task; none should be singled out (except mo­
mentarily) for a particular function. The important thing 
is the algorithm. With this view it is clear that it is 
simplest if the algorithm is accessible to all processors of 
the system. A consequence of this is that the full power of 
the machine can be brought to bear on the part of the al­
gorithm which is busiest at a given time. 

One might argue that for some systems it is in fact 
simpler (or more efficient) to specialize processors to 
specific tasks. One could, in such a case, then duplicate 



554 National Computer Conference, 1975 

each different type for reliability. With that approach, 
however, one must worry about the recovery of several dif­
ferent types of units, and all the possible interactions 
between them. We consider the recovery problem for a 
group of identical machines formidable enough. . 

One consequence of treating all processors equally IS 

that a program can be debugged on a single machine up to 
the point where the multiple machine interaction matters. 
Once this has been done, we· have found that processor 
interaction does not present a severe additional debugging 
problem. On the other hand, finding routine software bugs 
when a dozen machines are running is a difficult problem. 

A second characteristic of our system which arose from 
a desire to keep things simple is passivity. We use the 
terms active and passive to describe communication 
between subsystems in which the receiver is expected to 
put aside what it is doing and respond. The quicker the re­
quired response, the more active the interaction. In 
general, the more passive the communication, the simpler 
the receiver can be, because it can wait until a convenient 
time to process the communication. On the other hand the 
slower response may complicate things for the sender. We 
believe that there is a net gain in using more passive 
systems. An example of this is our decision to make the 
task disbursing mechanism (the PID) a passive device. 
N either the hardware interfaces nor other processors tell a 
processor what to do; rather, processors ask the PID what 
should be done next. There are some costs to such a 
passive system. The resulting slower responsiveness has 
necessitated additional buffering in some of our interfaces. 
In addition, the program must regularly break from tasks 
being executed to check the PID for more important tasks. 

The alternatives, however, are far worse. In a more ac­
tive system, for example one which uses classical priority 
interrupts, it is difficult to decide which processor to 
switch to the new task. Furthermore, it is almost im­
possible to preserve the context of a processor13 while mak­
ing such a switch because of the interaction with the 
resource interlocking system. The possibilities for dead­
locks are frightening, and the general mechanism to re­
solve them cumbersome. With a passive system a 
processor finishes one task before requesting the next, thus 
guaranteeing that task switching occurs at a time when 
there is little context, e.g., no resources are locked. 

Passive systems are more reliable for another reason: 
namely, the recovery mechanisms tend to be far simpler 
than those for active systems. 

As a third example of simplicity we introduce the notion 
of a reliability subsystem. A reliability subsystem is a part 
of the overall system which is verified as a unit. A 
subsystem may include a related set of hardware, 
program, and/ or data structures. The boundaries of these 
reliability subsystems are not necessarily related at all to 
the boundaries of the hardware subsystems (processors, 
busses, memories, etc.) described earlier. The entire 
system is broken into these subsystems, which verify one 
another in an orderly fashion. 

The subsystems are cleanly bounded with well-defined 
interfaces. They are self-contained in that each includes a 

self-test mechanism and reset capability. They are isolated 
in that all communication between subsystems takes place 
passively via data structures. Complete interlocking is pro­
vided at the boundary of every subsystem so that the 
subsystems can operate asynchronously with respect to 
one another. 

The monitoring of one subsystem by another is 
performed using timer modules, as discussed below. These 
timer modules guarantee that the self-test mechanism of 
each subsystem operates, and this in turn guarantees that 
the entire subsystem is operating properly. 

Redundancy 

Redundancy is ~imultaneously a blessing and a curse. It 
occurs in the hardware and the software, and in both con­
trol and data paths. We deliberately introduce redun­
dancy to provide reliability and to promote efficiency, and 
it frequently occurs because it is a natural way to build 
things. On the other hand the mere existence of redun­
dancy implies a possible disagreement between the ver­
sions of the information. Such inconsistencies usually lead 
to erroneous behavior, and often persist for long periods. 

It was not until we adopted a strategy of systematically 
searching out and identifying all the redundancy in every 
subsystem that we succeeded in making the subsystems 
reliable. This process therefore constitutes one of our three 
basic strategies for constructing robust software. 

We use the term redundancy here in a somewhat subtle 
sense, not only for cases in which the same information is 
stored in two places, but also when two stored pieces of in­
formation each imply a common fact although neither is 
necessarily sufficient to imply the other. 

There are several methods of dealing with redundancy. 
The first and best is to eliminate it, and always refer to a 
single copy of the information. When we choose not to 
eliminate it, we can check the redundancy and explicitly 
detect and correct any inconsistencies. It does not really 
matter how this is done as the system is recovering from a 
failure anyway. What is important is to resolve the in­
consistency and keep the algorithm moving. Sometimes it 
is too difficult to test for inconsistency; then timers can be 
used as discussed in the next section. 

Let us consider a few examples of redundancy to make 
these ideas more concrete. 

• A buffer holding a message to be processed, and a 
pointer to the buffer on a "to be processed" queue-if 
the buffer and queue are inconsistent, the buffer will 
not be processed. Each buffer has its own timer and if 
not processed in a reasonable time, it will be replaced 
on the queue. 

• A device requesting a bus cycle, and a request-captur­
ing flip-flop in the bus arbiter-if the arbiter and 
device disagree, the bus may hang. A timer resets the 
bus after one second of inactivity. 

• One processor seeing a memory word at a particular 
system address and another seeing the same word at 



the same address-the software watches for inconsis­
tencies and when they occur declares the memory or 
one of the processors unusable. 

• The PID level used by a particular device and the 
device serviced in response to that level-the PID 
level(s) used by each device are program-readable. A 
process periodically reads them and forces the tables 
driving the program's response to agree. 

Timers 

We have adopted a uniform structure for implementing 
a monitoring function between reliability subsystems 
based on watchdog timers. Consider a subsystem which is 
being monitored. We design such a subsystem to cycle 
with a characteristic time constant and insist that a com­
plete self-consistency check be included within every 
cycle. Regular passage through this cycle therefore is suffi­
cient indication of correct operation of the subsystem. If 
excessive time goes by without passage through the cycle, 
it implies that the subsystem has had a failure from which 
it has not been able to recover by itself. The mechanism 
for monitoring the cycle is a timer which is restarted by 
every passage through the cycle. We have both hardware 
and software timers ranging from five microseconds to two 
minutes in duration. Another subsystem can monitor this 
timer and take corrective action if it ever runs out. To 
avoid the necessity for subsystems to be aware of one 

NETWORK 
CONTROL 
CENTER 

...... -++----~i--f-+_---t-IMP SYSTEMS 

INDIVIDUALS+-~f---t+-+---I-4-+-

CODE 
TESTER I 

I 
I 
I 

BUS TIMER e. --:--t----lf+ 
60 Hz INTERRUPT \ ~ '--.;----t---' 

\ , , I , ' .. _........ /~ 

"... "' .... ..... _-----."..", 

% 
A MONITORS A 
TIMER ON B fA 
RESETS B IF THE 

A TIMER RUNS OUT 

Figure I-Reliability structure 

Pluribus-A Reliable Multiprocessor 555 

TABLE I-Major Subsystems and their Functions 

IMP SYSTEM: Watches network behavior - will not cooperate with 
irresponsible network behavior. . 

IMP SYSTEM RELIABILITY:Watches IMP SYSTEM (data structures 
mostly). 

CONSENSUS:Watches IMP SYSTEM RELIABILITY, verifies all Com­
mon Memory Code (via checksum), watches each proces­
sor, finds all usable hardware resources (interfaces, PIDs, 
memory, processors, etc.), tests each and creates a table 
of good ones. Makes spare copies of code. 

INDIVIDUAL:Watches CONSENSUS, finds all memory and processors it 
considers usable, determines where the Consensus is 
communicating and tries to join it. 

CODE TESTER:Watches INDIVIDUAL, verifies all Local Memory Code 
. (via a checksum), guarantees control and lock mecha-

nisms. 
BUS TIMER + 60Hz INTERRUPT: Watches CODE TESTER, guarantees 

bus activity. 

another's internal structure, each subsystem includes a 
reset mechanism which may be externally activated. Thus 
corrective action consists merely of invoking this reset. 
The reset algorithm is assumed to work although a 
particular incarnation in code may fail because it gets 
damaged. In such a case another subsystem (the code 
checksummer) will shortly repair the damage. 

Note that we have introduced an active element into our 
otherwise totally passive system. These resets constitute 
the only active elements and furthermore are invoked only 
after a failure has occurred. This approach seems to 
provide for the maximum isolation between subsystems. 

SYSTEM RELIABILITY STRUCTURE 

In the previous section we described a mechanism 
whereby one subsystem can monitor another. Our system 
consists of a chain of subsystems in which each subsystem 
monitors the next member of the chain. Figure 1 and 
Table I show this structure in the system we have built for 
the IMP. An efficient way to build such a chain is to have 
lower subsystems provide and guarantee some important 
environmental feature used by higher level systems. For 
example, a low level in our chain guarantees the integrity 
of code for higher levels which thus assume the correctness 
of code. Such a system is vulnerable only at its bottom. 
(We are assuming here that we have runnable hardware 
although it may be in a bad state, requiring resetting.) The 
code tester level (see Figure 1) serves three functions: first, 
it checksums all low level code (including itself); second, it 
insures that control is operating properly, i.e., that all 
subsystems are receiving a share of the processors' atten­
tion; third, it guarantees that locks do not hang up. It thus 
guarantees the most basic features for all higher levels. 
These will, in turn, provide further environmental fea­
tures, such as a list of working memory areas, I/O devices, 
etc., to still higher levels. The method by which the code 
tester subsystem itself is monitored and reset will be dis­
cussed shortly . 

The mechanisms we have described ensure that the 



556 National Computer Conference, 1975 

separate processor subsystems have a satisfactory local en­
vironment in which to work. Before they can work 
together to run the main system it is necessary that a com­
mon environment be established for all processors. We call / 
the process of reaching an agreement about this environ­
ment "forming a consensus", and we dub the group of 
agreeing processors the Consensus. The work done by the 
Consensus is in fact performed by individual processors 
communicating via common memory, but the coordination 
and discipline imposed on Consensus members make 
them behave like a single logical entity. An example of a 
task requiring consensus is the identification of usable 
common memory and the assignment of functions (code, 
variables, buffers, etc.) to particular pages. The members 
of the Consensus will not in general agree in their view of 
the environment, as for example when a broken bus coupler 
blinds one member to a segment of common memory. In 
this case the Consensus, including the processor with the 
broken coupler, will agree to run the main system without 
that processor. 

The Consensus maintains a timer for every processor in 
the system, whether or not the processor is working. The 
Consensus will count down these timers in order to 
eliminate uncooperative or dead processors. In order to 
join the Consensus, a processor need merely register its 
desire to join by holding off its timer. Within the indi­
vidual processors it is the code tester subsystem which 
holds off the timer. 

The Consensus, then, acting as a group, provides the 
monitoring mechanism for the individuals as shown by the 
feedback monitoring path in Figure 1. This monitoring 
mechanism run by the Consensus includes the usual reset 
capability which in this case means reloading the indi­
vidual's local memory and restarting the processor. Since 
all of the processors have identical memories, reloading is 
not difficult. We provide (password protected) paths 
whereby any processor can reset, reload, and restart any 
other processor. This reliance on the Consensus is indeed 
vulnerable to a simultaneous transient failure of all 
processors. However, the Network Control Center has ac­
cess to these same reset and reload facilities and these 
enable it to perform the reload function remotely (a path 
also shown in the figure). 

Thus the Consensus and/ or Network Control Center are 
the ultimate guarantors of the lowest level subsystem. 
While this process· is sufficient it is sometimes slow. For 
many cases in which the Consensus is disabled (as for 
example when all of the processors halt), a simpler reset 
without reloading will suffice. For this reason we have pro­
vided a simpler and more immediate (if redundant) 
mechanism in each processor for resetting the control and 
lock systems. We implement this mechanism in software 
with the assistance of a 60Hz interrupt and a one-second 
timer on the bus. Together these provide a somewhat vul­
nerable but much quicker alternative to the more pon­
derous NCC/Consensus resets. 

There is a problem about what area of common memory 
the processors should use in which to form the Consensus, 
since failures may make any predetermined system ad­
dress inaccessible. To allow for this, sufficient communica-

tion is maintained in all pages of common memory to 
reach agreement both as to which processors are in the 
Consensus and where further communication is to take 
place. 

To protect itself from broken processors, the Consensus 
amputates all processors which do not succeed in joining 
it. There is a conflict between this need to protect itself 
and the need to admit new or healed processors into the 
Consensus. The amputation barrier is therefore lowered 
for a brief period each time the Consensus tries to restart a 
processor. This restart is in fact the reset based on the 
timer held off by the code tester subsystem, as discussed 
above. In the case of certain active failures, even this brief 
relaxation may cause trouble. In these cases the 
Consensus will decide to keep the barrier up continuously. 

Certain active failures may prevent the formation of a 
consensus. In such a situation each processor will behave 
as if it were a Consensus (of one) and will try to amputate 
all other processors. At the point when the actively failing 
component is amputated, the remaining processors will be 
able to form a consensus. From this point the system 
behaves as described above. 

Further up in the figure there is another joining of inde­
pendent units, namely IMPs joining to form the network. 
The analogy here is incomplete because the ARPA Net­
work was not built with these concepts in mind. There is 
collective behavior, e.g., routing, and individual behavior 
which accepts collective decisions only after they pass 
reasonability tests. However, the reliability features of the 
network are concentrated in the Network Control Center, 
which depends on the continual presence of human opera­
tors for successful operation. It is correspondingly power­
ful, resourceful, and erratic in its behavior. 

SOME EXAMPLES OF FAILURES 

In order to explain in more practical terms some of the 
reliability mechanisms, we now discuss a number of 
specific failures and describe the methods which detect 
and repair the resulting damage. In each case, we focus on 
the component that failed and the particular mechanism 
that takes care of that failure. Derivative failures may 
well take place, and other mechanisms will handle these, 
since all mechanisms operate all the time. 

These examples are set in the context of the IMP ap­
plication and the severity of their direct consequences 
rated on the following scale: 

1. Momentary slowdown-no data loss 
2. Loss of data (a network message) 
3. Temporary loss of some IMP function (a network 

link) 
4. Momentary total IMP outage with local self-recovery 
5. Outage requiring reloading via the network 
6. Failure requiring human insight for debugging. 

Example 1. Suppose first that a bus coupler experiences 
a transient failure on a single reference to common 
memory, which leaves one word of common memory with 
the wrong contents but correct parity. Suppose further 



that the failure is subtle, in the sense that there is no ob­
vious ill effect on processor control, like halting or looping, 
which will be caught by lower level mechanisms. We will 
focus first on examples which cause minimal disruption 
and where detection and gentle recovery are the primary 
concerns. We consider four examples of transient memory 
failures: 

Example 1.a Suppose that a word of text in one of the 
messages we are delivering becomes smashed. There is a 
checksum on all messages and the network will notice at 
one of its checkpoints that the message has gone bad. The 
source will be prompted to send a new copy. (Severity 2) 

Example 1. b N ear the heart of our system is a queue of 
unused buffers called the free list. Suppose the failure is 
in the structure of this queue. The system explicitly tests 
for both a looped queue and wrong things on the queue. A 
more subtle form of error occurs when some buffers which 
should be on the queue are missing from it. Our system is 
designed so that a buffer should be removed from the free 
list for at most two minutes at a time. A timer is main­
tained on each buffer, which is restarted whenever the 
buffer returns to the free list. Should any timer ever run 
out, its buffer is forced back onto the free list. The result 
of this failure will be a degradation of system performance 
as it attempts to run with fewer buffers for a short while, 
followed by complete recovery within two minutes. The 
IMP will stay up and no messages will be lost. (Severity 1) 

Example 1.e Suppose that one of the locks on a resource 
is broken so that it wrongly locks the resource. Any 
subsystem which tries to use the resource will put a 
processor into a tight loop waiting for the resource to be­
come free. In about YI5 sec. this will cause the processor's 
timer, driven off its 60Hz clock interrupt, to run out. Upon 
investigation, the program will notice that the subsystem 
is waiting for a locked resource, and arbitrarily unlocks it. 
Aside from the YI5 sec. pause, the system will be unaffected 
by the transient. (Compare the simplicity of this scheme 
UTlth Reference 14.) (Severity 1) 

Example 1.d Suppose now that a failure strikes common 
memory holding code, and that the trouble is 
subtle-either the code is not run often or the cha.nge has 
no immediate drastic effect. In a few seconds the 
processors will begin to notice that the checksum on that 
piece of code is bad and stop running it. Shortly the whole 
Consensus will agree, and will switch over to use the 
memory holding the spare copy of that code. Unless the 
broken code has already caused some other trouble, the 
problem is thereby fixed, with only momentary slowdown. 
(Severity 1) 

Example 2. Suppose a processor fails by suddenly and 
permanently stopping. The immediate effect will be that 
some task will be left half done, with a high probability 
that some resource is locked. This looks to the system like 
a data failure, as in examples l.a, l.b, and I.c above. The 
recovery will be identical. In a few seconds the Consensus 

Pluribus-A Reliable Multiprocessor 557 

will notice that the processor has dropped out and 
processor recovery logic will be invoked. Since the 
processor is solidly broken the recovery will be unsuccess­
ful, and the system will settle into a mode where every so 
often recovery is retried. Eventually a repairman will fix 
the processor, at which time recovery will proceed and the 
processor will rejoin Consensus. It is hard to predict 
whether the IMP system will momentarily go down be­
cause of the failure; experience indicates that it usually 
stays up, but our experience is limited to lightly loaded 
machines. (Severity 2-4) 

Example 3. Suppose a power supply for a processor bus 
breaks. This is similar to the failing processor described 
above except that both processors on the bus are affected 
and the processors are given a hardware warning suffi­
ciently far in advance that they can halt cleanly. The 
system will surely stay up through this failure. (Severity 
1) 

Example 4. Now consider a case in which some page of 
common memory ceases to answer when referenced. Each 
processor will get a hardware trap when it tries to use that 
memory, forcing it directly to the code which routinely 
verifies the environment. As a result, the failing memory 
will be deleted from the memory list by the Consensus and 
another module will be pressed into service to take its 
place. 

If the failed page contained code, a spare copy will nor­
mally be available and a new spare copy will be made if 
possible. If it contained data, an unused page will be 
pressed into service. In either case, the system will be 
reinitialized, momentarily bringing the IMP system down. 
If the failed page contained the Consensus communication 
area, a new Consensus must be formed and thus recovery 
will take a little longer. (Severity 4) 

Example 5. Let us now consider a failure of the PID. 
Suppose that the PID reports a task not previously set. 
When invoked, each strip checks to make sure that it is 
reasonable for the strip to be run. If not, another task is 
sought. Suppose instead that the PID "drops" a task. A 
special process periodically sets all PID flags independent 
of what needs to be done. This causes no harm, because 
superfluous tasks will be ignored (as described above), and 
serves to pick up such dropped tasks. Thus we have both a 
consistency check on redundant information and a timer 
built into our use of the PID. If a PID fails solidly, 
another PID will be switched in to operate the system. 
Transient failures cause slowdown; switchover may mo­
mentarily bring down the IMP system. (Severity 1, 4) 

All of this leads to a slightly different image of the PID. 
Instead of being the central task disburser, with all 
processors relying on it to tell them what to do, the PID is 
a guide, suggesting to processors that if they look in a 
certain place, they will probably find some useful work to 
do. The system would in fact run without a PID, albeit 
much more slowly and inefficiently. 

Example 6. Suppose a halt instruction somehow gets 



558 National Computer Conference, 1975 

planted in common memory and that all processors exe­
cute it and stop. There is thus no Consensus left to come to 
the rescue. Furthermore, 60Hz interrupts are ineffective in 
a halted processor. After one second of inactivity, the bus 
arbiter timer will reset the processors, making them once 
more eligible for 60Hz interrupts which will restart them. 
Before the broken code is run, it will be checksummed, the 
discrepancy found, and a spare copy used. (Severity 2-4) 

Example 7. Let us consider now what happens when, in 
common memory, an end test for a storing loop is 
destroyed, causing each processor to wipe out its 60Hz 
interrupt code in local memory. In this case not only are 
there no processors left to help, but the 60Hz interrupt will 
not help either, since the interrupt code itself is broken. 
This is a case in which the machine is incapable of rescu­
ing itself and will go off the network as a working node. 
When the Network Control Center notices that the IMP is 
no longer up, it will commence an external reload, restor­
ing the IMP to operation. (Severity 5) 

Example 8. Consider the case of a processor whose 
hardware is solidly broken such that it repeatedly stores a 
zero into a location in common memory. Mechanisms 
described above will repeatedly fix the changed location, 
but it is desirable to eliminate the continuing presence of 
this disrupting influence. The Consensus will notice that 
one of its number has dropped out and will endeavor to 
help the errant processor. After a few tries, a longer timer 
will run out, and the Consensus will take a more drastic 
action: final amputation. In this case there will be a rather 
lengthy IMP outage but the system will recover without 
external help. (Severity 4) 

Example 9. One failure from which there is no recovery, 
either automatic or remote, is a program which im­
personates normal behavior but is still somehow incorrect. 
That is, it holds off the right timers, has a valid checksum, 
and simulates enough normal behavior so that higher 
levels (e.g., the NCC) are satisfied. For example, if it were 
not for the fact that the NCC explicitly checks the version 
number of the program running in each IMP, a previous, 
compatible, but obsolete version of the program would 
exhibit this behavior. (Severity 6) 

Example 10. Another class of failures which is hard to 
isolate and deal with is low-frequency intermittents. 
Consider the case of a single processor which is broken 
such. that its indexed shift instruction performs incor­
rectly. Since this instruction only occurs in some in­
frequently executed procedures, the failure only manifests 
itself, on the average, once every period t. If t is large, for 
instance one year, then we can safely disregard the error, 
since its frequency is in the range of other failures over 
which we have no control. If it is small, say 100 milli­
seconds, then the Consensus will isolate the bad processor 
and excise it. At some intermediate frequency, however, 
the Consensus will fail to correlate successive failures and 
will instead treat each as a separate transient. The system 

will repeatedly fail and recover until some human in­
tervenes. (Severity 6) 

RESULTS AND CONCLUSIONS 

Some strategies and techniques for building a reliable 
multiprocessor have been described above. We have, in 
fact, actually built and programmed such a machine using 
these strategies. We have found this machine straightfor­
ward to debug, both in hardware and software. Further­
more, the system continues to operate when individual 
power supplies are turned off, when memory locations are 
altered, when cables and cards are torn out, and through a 
variety of other failures. We have yet to establish field 
performance (which must be measured both in rate of 
recoverable incidents and in rate of unrecoverable 
failures), but we expect to start gathering this information 
shortly. 

We believe there are many important problems in the 
world today which could benefit from the principles 
described here. While we have discussed these principles 
in terms of a specific application (the IMP), most of the 
concepts are application independent. We have been able 
to ·separate the application code from the reliability 
subsystems intact in another application of the Pluribus 
machine. 

ACKNOWLEDGMENTS 

Many people in addition to the authors have contributed 
to the ideas described herein, notably Benjamin Barker, 
John Robinson, David Walden, John McQuillan, and 
Willi~m Mann. In addition, there is a long list of those 
who helped to bring these machines into existence. Fore­
most among these are Martin Thrope, David Katsuki and 
Steven Jeske. The work reported here would not have 
been possible without the continued support of the 
ARP AI IPT office. Finally, a word of thanks to Robert 
Brooks and Julie Moore, who helped to prepare the 
manuscript. 

REFERENCES 

1. Riley, W. B., "Minicomputer Networks-A Challenge to Maxicom­
puters?" Electronics, March 29, 1971, pp. 56-62. 

2. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther and D. C. 
Walden, "The Interface Message Processor for the ARPA Computer 
Network," AFIPS Conference Proceedings, Vol. 36, June 1970, pp. 
551-567; also in Advances in Computer Communications, W. W. Chu 
(ed.), Artech House Inc., 1974, pp. 300-316. 

3. Roberts, L. G. and B. D. Wessler, "Computer Network Development 
to Achieve Resource Sharing," AFIPS Conference Proceedings, Vol. 
36, June 1970, pp. 543-549. 

4. Heart, F. E., S. M. Ornstein, W. R. Crowther and W. B. Barker, "A 
New Minicomputer/Multiprocessor for the ARPA Network," AFIPS 
Conference Proceedings, Vol. 42, June 1973, pp. 529-537; also in 
Selected Papers: International Advanced Study Institute, Computer 
Communication Networks, R. L. Grimsdale and F. F. Kuo (eds.) 
University of Sussex, Brighton, England, September 1973; also in 



Advances in Computer Communications, W. W. Chu (ed.), Artech 
House Inc., 1974, pp. 329-337. 

5. Ornstein, S. M., W. B. Barker, R. D. Bressler, W. R. Crowther, F. E. 
Heart, M. F. Kraley, A. Michel and M. J. Thrope, "The BBN 
Multiprocessor," Proceedings of the Seventh Annual Hawaii Interna­
tional Conference on System Sciences, Honolulu, Hawaii, January 
1974, Computer Nets Supplement, pp. 92-95. 

6. Crowther, W. R., J. M. McQuillan and D. C. Walden, "Reliability 
Issues in the ARPA Network," Proceedings of the ACM/ IEEE Third 
Data Communications Symposium, November 1973, pp. 159-160. 

7. McKenzie, A. A., B. P. Cosell, J. M. McQuillan and M. J. Thrope, 
"The Network Control Center for the ARPA Network," Proceedings 
of the First International Conference on Computer Communication, 
Washington, D.C., October 1972, pp. 185-191. 

8. Dijkstra, E. W., "Cooperating Sequential Processes," in Program­
ming Languages, ed. F. Genuys, Academic Press, London and New 
York 1968, pp. 43-112. 

9. Butterfield, S. C., R. D. Rettberg and D. C. Walden, "The Satellite 
IMP for the ARPA Network," Proceedings of the Seventh Annual 

Pluribus-A Reliable Multiprocessor 559 

Hawaii International Conference on System Sciences, Honolulu, 
Hawaii, January 1974, Computer Nets Supplement, pp. 7()"73. 

10. Hopkins, A. L., Jr., "A Fault-Tolerant Information Processing Con­
cept for Space Vehicles," IEEE Transactions on Computers, Volume 
C-20, Number 11, November 1971, pp. 1394-1403. 

11. Avizienes, A., G. C. Gilley, F. P. Mathur, D. A. Rennels, I. A. Rohr 
and D. K. Rubin, "The STAR (Self-Testing and Repairing) Com­
puter: An Investigation of the Theory and Practice of Fault-Tolerant 
Computer Design," IEEE Transactions on Computers, Volume C-20, 
Number 11, November 1971, pp. 1312-1321. 

12. IBM Corporation, as Advanced Checkpoint/Restart, IBM Manual 
GC28-6708. 

13. Gountanis, R. J. and N. L. Viss, "A Method of Processor Selection 
for Interrupt Handling in a Multiprocessor System," Proceedings of 
the IEEE, Vol. 54, No. 12, December 1966, pp. 1812-1819. 

14. Lamport, L., "A New Solution of Dijkstra's Concurrent Program­
mingProblem," Communications of the ACM, Volume 17, Number 8, 
August 1974, pp. 453-455. 





Design considerations for a heterogeneous 
tightly-coupled multiprocessor system 

by KENICHIRO NOGUCHI, ISAO OHNISHI and HIROSHI MORITA 
Hitachi, Ltd. 
Yokohama, Japan 

INTRODUCTION 

In a multiprocessor system, processors share main memory 
and a single copy of the operating system in shared main 
memory controls the entire system. Basically each processor 
can execute, any of the programs in the system. (This type 
of multiprocessor system is sometimes called a tightly­
coupled multiprocessor system1 ,2 to distinguish from another 
type of multiprocessor system in which each processor has 
its own main memory and operating system. In this paper a 
"multiprocessor system" means a "tightly-coupled multi­
processor system" unless otherwise noted.) A multiprocessor 
system usually consists of identical processors, which have 
same computing speeds as well as the same functional char­
acteristics. In this paper a more general type of multiprocessor 
system which consists of processors of different computing 
speeds are discussed. The component processors are equivalent 
in the hardware functions but have different performance 
characteristics. This type of multiprocessor system, a 
heterogeneous multiprocessor system, has the following 
merits as compared with a homogeneous multiprocessor. 

System organization flexibility 

Installations can select appropriate computing power 
among many combinations of processors which a heteroge­
neous multiprocessor system provides. For example, if the 
operating system and the hardware provide the support of a 
heterogeneous multiprocessor system with two processors of 
different kinds, it can be expected that it is also possible to 
organize homogeneous multiprocessor systems with the same 
kind of processors as well as and single-processor systems. 
Thus there are five possible processor combinations, provided 
that there are two kinds of processors. In general, if there are 
K kinds of processors and the operating system and the 
hardware provide the support of a heterogeneous multi­
processor system which can contain up to M kinds of pro­
cessors (M ~ K) and up to N processors in total, then there 
are 

NK+ f mi'I:Ml (K).(n-1) 
n=2 m=2 m m-1 

possible processor combinations. If M = K = 2, it gives 
N(N+3)/2. 

561 

System performance improvement 

Usually different kinds of processors differ not only in 
total computing speeds but also in their relative speeds to 
various computation loads. Some kind of processor may 
favor the scientific computation loads with floating-point 
arithmetics rather than the system control functions with 
logical operations, and vice versa for some other kind of pro­
cessor. It is possible to assign favorite types of computation 
loads to each kind of processor so that the total processing 
throughput is improved. This kind of load sharing can also be 
done in a multiprocessor system without shared main mem­
ory, where the load sharing is performed through job sched­
uling.3 But more versatile load sharing is possible in a heter­
ogeneous multiprocessor system with shared main memory, 
because basically each processor can execute any programs in 
the system. If a processor has no other favorite load because 
the execution of the favorite load has completed or is sus­
pended by input/output operation, the processor executes 
any other existing loads in the system. 

In this paper, design considerations of the heterogeneous 
multiprocessor system which were developed for Hitachi's 
operating system (OS7) are presented. OS7 is a large-scale, 
general-purpose operating system4 and can contain up to four 
processors of HITAC 8700 ('s) and/or HITAC 8800 ('S).5 
(So there are 14 possible processor combinations.) Other 
significant features of OS7 include virtual memory with 
2048 mega byte address space for each user and integrated 
support of batch processing, remote-batch processing, time­
sharing processing, and real-time processing under the single 
operating system. 

In the following sections of this paper hardware considera­
tions, software considerations, and performance evaluation 
of the heterogeneous multiprocessor system are discussed. 

HARDWARE CONSIDERATIONS 

The hardware features for multiprocessing of H8700 and 
H8800 are briefly discussed in this section. H8700 and H8800 
have the same hardware architecture. They have dynamic 
address translation (DAT) mechanism, buffer memory 
(cache), and ring protection mechanism. They have multi­
processing features of inter-processor communication, pre­
fixing, processor synchronization, and configuration control. 



562 National Computer Conference, 1975 

For inter-processor communication purposes, the direct 
control mechanism is provided. It includes the facilities for 
signaling other processors which are used by programs and 
the facilities for informing other processors of cancel signals 
for buffer memory and hardware error information. Each 
processor of the multiprocessor has unique memory area 
calleo.prefix area (8 kilo bytes for each processor), which is 
pointed to by the prefix register. For processor synchroniza­
tion purposes, a Test and Set (TS) instruction is provided. 
H8700 and H8800 provide the configuration control function 
which is controllable by programs for availability and organi­
zation flexibility purpose. Each component of the system, i.e., 
a processor, a memory unit and an Input/Output Processor 
(lOP), has a configuration register which controls the con­
nection status of the component to other components. The 
connection and disconnection of the component to and from 
the system is accomplished by programs through changing 
the contents of the configuration registers. 

To organize a heterogeneous multiprocessor system H8700 
and H8800 are designed with the following principles: 

• Both processors have identical architecture and identical 
interfaces to other components. 

• All components of the system-processors, memory 
units, and IOP's-operate asynchronously. 

SOFTWARE CONSIDERATIONS 

General features for multiprocessing 

Before discussing the features of the operating system for 
the heterogeneous multiprocessor system, the general features 
for multiprocessing are discussed. 

Actions 

In OS7 it is intended that supervisory programs are run in 
enabled status (Le., allowing interruptions) and in parallel as 
much as possible. By this approach system responsiveness to 
external signals and system. efficiency can be increased. 
Besides a task, an action is introduced as a new type of process 
to realize the above objective. An action has its flow of 
control, has its own status save area in the Action Control 
Block (ACB), and is usually interruptible. The difference 
between actions and tasks is that actions have higher dis­
patching priority than tasks (actions are dispatched by 
Action Scanner; if Action Scanner finds no action to be 
processed, control goes to Task Dispatcher), require less over­
head to create and destroy, can run in any address space, 
and execute only supervisory programs. External interrup­
tions such as input/output termination interruptions are 
processed by actions, including input/output error recovery 
functions; memory scheduling functions and many other 
supervisory functions are performed by actions. 

Locks 

In the multiprocessor envIronment, the locks are necessary 
to serialize the execution of critical portions in the disabled 
(i.e., not allowing interruptions) supervisory programs. The 
simplest method is to introduce a single lock which serializes 
the execution of all disabled supervisor programs, but all this 
creates a performance bottleneck when heavy supervisory 
program services are required. In OS7, in order to minimize 
the loss time due to locks, locks are designed to correspond 
to each of the supervisor resources, e.g., some types of sys­
tem control blocks or critical programs such as Task Dis­
patcher. There are more than 50 multiprocessor locks. 

In OS7 locks are classified into two types, a spin type and a 
control relinquish type. If a processor has failed to get a spin 
type lock by a Test and Set instruction, it repeats the in­
struction until it will succeed. If a processor has failed to get 
a control relinquish type lock, the current process (task or 
action) releases control and process switch occurs. The 
control release type locks can be used in the enabled programs 
and in the programs where mapping faults may occur . 

Inter-processor communications 

In the multiprocessor environment, there are many cases in 
which inter-processor communication is necessary. Since 
main memory is shared by the processors, the means of 
signaling other processors is sufficient. This is done by issuing 
a Write Direct instruction to the destination processors, 
which causes an external interruption in the destination 
processor. Signaling other processors is performed in the 
following cases: 

• when the master processor (the processor from which 
initial program loading (IPL) has been initiated) wakes 
up other processors in the system at system initiation 
time; 

• when Task Dispatcher finds an idle processor at the time 
some task has attained ready status, or when Task 
Dispatcher finds a processor which is executing a lower 
priority task than the task which has attained ready 
status (in the latter case rescheduling of tasks is re­
quested) ; 

• when Action Scanner finds an action which is to be 
executed by another processor (there are two types of 
actions, common actions which any processor can 
execute and fixed-processor actions which are tied to 
specific processors) ; 

• when the paging control routine detects that address 
translation information of the page which it is about to 
invalidate is contained in another processor. 

Features for heterogeneous multiprocessor 

In this section the features of the operating system for the 
heterogeneous multiprocessor system are discussed. They in­
clude asymmetric task scheduling, processor timer conver­
sion, and input/output control. 



Design Considerations for a Heterogeneous Multiprocessor System 563 

Asymmetric task scheduling 

In the heterogeneous multiprocessor system of 087, there 
are two models of processors, H8700 and H8800. They differ 
in computing speeds and performance characteristics. To 
improve system performance, and to meet turnaround time 
requirements, Task Dispatcher performs asymmetric task 
scheduling. 

Because H8800 is faster than H8700, Task Dispatcher 
ensures that H8800 will not become idle when H8700 is 
executing a task. When H8800 finds no ready task, it ex­
amines the status of H8700's. If some of them are executing 
tasks, H8800 takes over one of them. To accomplish this, 
direct control signals are issued first from H8800 to H8700 
requesting task take over, and then from H8700 back to 
H8800 reporting that H8700 has released the task. 

H8800 and H8700 have different performance char­
acteristics. H8800 is much faster than H8700 in arithmetic 
operations rather than in logical operations and memory to 
memory operations. Task Dispatcher reflects these char­
acteristics to improve the system performance, i.e., H8800 
and H8700 are controlled to have different task preference. 
User tasks mainly perform arithmetic operations especially 
in scientific applications and system tasks (tasks which 
control system activities, e.g., job scheduling, console input/ 
output control, system input/output control, T88 control, 
communication control, etc.) mainly perform logical opera­
tions, memory to memory operations and input/output 
operations. Therefore, H8800 is controlled to prefer user 
tasks to system tasks, and the reverse for H8700. Internally 
effective priority of a task is adopted which is determined by 
the task's inherent priority, the type of the task and the 
model of the processor which is about to execute the task. 
User tasks have higher effective priorities than system tasks 
in H8800 and vice versa in H8700 (Figure 1). 

In the heterogeneous multiprocessor environment, there is 
a demand that some job be processed with the shortest turn­
around time, that is, processed by the fastest processor. In 
087 an express task is introduced. An express task has a 
highest priority among user tasks and is executed only by 
H8800. 

H8700 H8800!.; 
SYSTEM TASK READY QUEUE 

USER TASK READY QUEUE 

+n: BASE PRIORITY ADDED TO TASK'S INHERENT 

Figure I-Task preference of HITAC 8700/8800 in asymmetric task 
scheduling 

o 0.8 1.0 

RATIO OF TYPE 1 LOADS TO THE TOTAL LOADS 

X: EFFECTIVE PERFORMANCE IMPROVEMENT 

OF THE CASE OF FIGURE 3 

Figure 2-Theoretical performance improvement of asymmetric load 
scheduling (The case that J.'1:J.I2:1I1:112=1:2:4:4 in Equation (3» 

Proce8s0r timer conver8ion 

In the operating system, the processor time is measured for 
many purposes; for accounting, for job termination by 
processor time limit and for time slicing control. User pro­
grams may also measure it. In the heterogeneous multi­
processor system, to adjust for processor speed differences, 
processor timer conversion is performed. One processor model 
is selected as a standard processor. Every processor time in 
the system is expressed in the standard processor time, and 
processor time of other models are converted to the standard 
processor time. When processor model switch occurs on a task, 
processor timer conversion control is performed. In 087, 
H8700 time is converted by a constant factor (73'""'~ is 
usually used) to H8800 time. Strictly speaking, this value 
varies depending on the computation loads. In 087, the 
installation can change this value. 

Input/output control 

In 087, a channel is controlled by one processor. Input/ 
output instructions to the channel are issued from that 
processor and termination interruptions come to the pro­
cessor. The correspondence of a channel to its controlling 
processor is established at the system generation time. When 
an input/output request to some channel is issued on another 
processor than the controlling processor of the channel, the 
request is chained to the channel request queue. If the 
channel is busy at that moment, no other action is necessary. 
The request will be picked up after termination interruption 
occurs. If the channel is not busy, it is necessary to inform the 



564 National Computer Conference, 1975 

H8800 
CPU TIME 

H8700 
CPU TIME 

USER JO B TIME 
(81%) 

USER JOB TIME 
(48%) 

OS TIME 
(47%) 

IPL &: 
SHUTDOWN 

(5%) 

Figure 3-Processor time usage at the Computer Centre, the University 
of Tokyo (Total of Feb. 1974)6 

controlling processor that a channel request has arrived. This 
is performed by creating an action which is fixed to the 
processor and processes channel requests. The creation of the 
action is made known by a direct control signal, and the in­
formed processor (controlling processor of the channel) 
executes the action. 

In the heterogeneous multiprocessor environment, all 
channels can be attached to H8700's, thus all input/output 
operations can be performed by H8700. This is another type 
of load sharing in the heterogeneous multiprocessor. 

PERFORMANCE EvALUATION 

Analysis of performance improvement 

The performance improvement of a heterogeneous multi­
processor system which is gained by an appropriate load shar­
ing is analyzed. In this analysis it is assumed that there are 
two types of computation loads, type 1 loads and type 2 
loads, and a heterogeneous multiprocessor system consists of 
two kinds of processors, type 1 processors and type 2 proces­
sors. The "effective average instruction execution times" of 
type 1 processors when executing type 1 loads and type 2 
loads are J.LI, and J.L2, respectively; also for type 2 processors, VI 
and V2. The "effective average instruction execution time" of 
processors is given by dividing the average instruction 
execution time of one processor by the number of processors. 
The proportions of type 1 loads and type 2 loads are x and 
I-x, respectively. (The amounts of loads are measured in 
terms of instructions to be executed.) 

• The case that no asymmetric load scheduling is per­
formed. In this case both types of processors execute 
higher priority loads first, hence the effective instruction 
execution time of the total system, TNA , is given by 

(1 ) 

• The case that asymmetric load scheduling is performed. 
The following scheduling is assumed; 1) type 1 processors 
execute type 1 loads first and type 2 processors execute 
type 2 loads first; 2) when some type of loads are ex-

hausted, both types of processors execute remammg 
loads. In this case the effective instruction execution time 
of the total system, T A, is given, depending on the 
proportion of loads, by 

J.LI (V2+ (VI- V2) x) 

J.Ll+Vl 

V2 (J.L2+ (J.LI- J.L2) x) 

J.L2+V2 

for 

(2) 

• The degree of performance improvement. The per­
formance is improved by the asymmetric load scheduling 

when 
J.L2 V2 ->­
J.LI VI 

The degree of performance improvement, TNA/TA, is 
given by 

1+ 
(J.L2VI- J.LIV2) V2 (1- x) 

for 
V2 

J.Ll(J.L2+V2) (V2+ (VI-V2)X) 
x~--

J.Ll+V2 
TNA 

(3) 
TA 

1+ 
(J.L2Vl- J.LIV2) J.LIX 

for 
V2 

V2 (J.Ll +Vl) (J.L2+ (J.Ll- J.L2) x) 
x<--

J.Ll+V2 

These results mean that when performance characteristics 
of two kinds of processors differ (i.e. J.LI/ J.L2~VI/v2), the asym­
metric load scheduling improves system performance and 
the degree of improvement is given by (3). 

As an example, TN A/ T A is shown in Figure 2 in the case 
the ratio of J.Ll:J.L2:Vl:V2 is 1 :2:4:4. 

Discussion on measurement data 

Figure 3 shows the effect of asymmetric scheduling of the 
existing system. This was measured at the Computer Centre, 
the University of Tokyo.6 The system consists of two H8800's 
and two H8700's. H8800's mainly execute user tasks. H8700's 
execute input/output operations and system tasks first, and 
then execute user tasks. Since some portions of the operating 
system programs are executed on the user task, all the H8800 
CPU time is not user job time. In the measurement data OS 
time includes 2,,-,3 percent of idle time. 

The ratio "Of average instruction execution times of H8800 
and H8700, for executing user programs in the scientific 
applications and as programs is approximately equal to the 
ratio presented in the previous example. Hence the per­
formance improvement gained by the asymmetric load 
scheduling is estimated to be 5 percent. In this system the 
proportion of the operating system execution is small. If the 
proportion of OS loads increases, larger degree of performance 
improvement can be gained (see Figure 3). 



Design Considerations for a Heterogeneous Multiprocessor System 565 

SUMMARY 

The heterogeneous tightly-coupled multiprocessor system is 
the extension of the homogeneous tightly-coupled multi­
processor system. The heterogeneous multiprocessor system 
has the merits of system organization flexibility and per­
formance improvement with appropriate load sharing. Fea­
tures for the heterogeneous multiprocessor system were de­
scribed and the performance improvement of the asymmetric 
load scheduling analyzed and evaluated. OS7 provides the 
support of the heterogeneous multiprocessor system for 
HITAC 8700('s) and HITAC 8800('s). It has been in opera­
tion, as heterogeneous multiprocessor systems, since January 
1973. 

ACKNOWLEDGMENT 

Authors wish to acknowledge Prof. H. Ishida of the Uni­
versity of Tokyo, who always gives valuable suggestions, and 

many members of Hitachi, Ltd., who have participated in 
the development of OS7 and HITAC 8700/8800. 

REFERENCES 

1. Mackinnon, R. A., "Advanced Function Extended with Tightly­
Coupled Multiprocessing," IBM Systems Journal, Vol. 13, No.1, 
pp. 32-59, 1974:. 

2. Arnold, J. S., D. P., Casey, and R. H., McKinstry, "Design of 
Tightly-Coupled Multiprocessing Programming," IBM Systems 
Journal, Vol. 13, No.1, pp. 60-87, 1974. 

3. Liu, J. W. S., and C. L., Liu, "Bounds on Scheduling Algorithms for 
Heterogeneous Computing Systems," Information Processing 74, 
North-Holland Publishing Company, pp. 349-353, 1974. 

4. Ohnishi, I., S., Totsune, and H., Ishida, "Command Language in 
OS7," Proceedings of the IFIP Working Conference on Command 
Languages, July 1974. 

5. Nakazawa, K., K., Murata, K., Ishihara, H., Iwakami, H., Hori­
koshi, H., Nishino, and K., Noda, "The Development of the High 
Speed National Project Computer System," Proceedings of the first 
USA-JAPAN Computer Conference, pp. 173-181, Oct. 1972. 

6. Ishida, H., "A 4-CPU Multiprocessor System of the University of 
Tokyo," Journal of the Information Processing Society of Japan, 
Vol. 15, No.7, pp. 534-541, July 1974 (in Japanese). 





Microprocessor-Based multiprocessor ring 
structured network 

by HOO-MIN D. TOONG 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

SUMMARY 

A good deal of interest has been generated by the use of 
multiprocessor distributed architecture networks for 
resource sharing, for load equalization, and for inter­
processor message communications. Such networks 
generally employ node processing elements that fall into 
several distinct categories: general-purpose homogeneous 
processors, general-purpose nonhomogeneous processors, 
array computers, and pipe-line computers. Topology spans 
a multitude of configurations from generalized graph 
structures, to tree and star networks, to multiple-bus and 
time-shared bus systems. 

A particular ring-structured network of microprocessor 
controlled node elements, intended to realize resource 
sharing and high speed interprocessor communication 
among a pool of hardware and software resources, has 
been implemented. The microprocessor approach allows a 
core hardware/ software system of general-purpose homo­
geneous processors to be developed independent of indi­
vidual characteristics of the nonhomogeneous set of 
resources which it will service. Adaptation of any node to 
the particular device(s) or resource which it must manage 
is accomplished primarily through microprocessor 
program development. Complete node interchangeability 
and automatic ring expansion or contraction is readily 
achieved. 

Each resource (such as disk, computer, line printer, ter­
minal) is interfaced to a network node which communi­
cates with other nodes via wideband dedicated serial lines. 
Network interfaces at each node are responsible for all 
aspects of message transmission and reception, thus 
freeing the microprocessors to manage system resources. 

567 

Double frequency data encoding is accomplished at a 7 
Mbit/ sec rate with phase-locked loop techniques em­
ployed at individual nodes for clock regeneration. Data is 
continually inspected at each node in a nonbuffered 
fashion for encoding violations as a first-order check on 
data validity; standard error checking mechanisms are 
also employed to determine message correctness. Because 
of phase-gap generation in such a ring, the node that es­
tablishes network timing must utilize a simultaneous 
read/ write FIFO buffer to allow smooth flow of informa­
tion around the entire ring. 

Because all nodes are identical in structure and message 
capabilities from the network viewpoint, ring control for 
the purposes of message transmission is passed from node 
to node. Under appropriate conditions such as node failure 
or data corruption threatening network control, resynchro­
nization may be invoked by any node; during this period 
of reinitialization control is removed from all nodes and 
network activity is ceased temporarily. Network timing is 
subsequently reestablished and the ring picks up where it 
left off. Appropriate logic within the node interface 
handles retransmission attempts whenever error condi­
tions cause messages to be received improperly. Hardware 
assemblies at each node comprise a CPU, ROM, RAM, 
and resource interfaces. An additional memory controller 
accomplishes DMA type transfers as well as buffering 
messages before and after transmission. 

Information management is handled via a network file 
system responsible for directory maintenance, access 
rights, and appropriate allocation or deallocation of node 
data bases. The file system is hierarchical allowing an in­
ner program structure to handle all network file communi­
cations while an outer structure is tailored to handle node­
resource communication. 





Trends in database management-1975 

by CHARLES w. BACHMAN 
Honeywell Information Systems, Inc. 
Waltham, Massachusetts 

The subject of database management systems is receiv­
ing attention at an accelerating rate. The work of the 
COBOL Data Base Task Group (DBTG) has achieved 
major acceptance. This acceptance can be measured in 
terms of the number of computer systems for which DBTG 
software is now available, and the number of customers 
who have successfully installed application systems based 
upon this software. While the specifications are yet 
imperfect and development committees :will be refining 
them for years, it appears to this author that a major step 
in the evolution of computerized information systems has 
been accomplished. Integrated database systems are here 
to stay. 

Given DBTG as a fact, my theme is to suggest where 
database management systems might go from here. These 
remarks should not be considered as a survey of the 
possibilities, but rather as a description of three areas 
where the author has personal knowledge and ~hich seem 
to have promise of a strong affect upon the future database 
systems. The first such area is development of a three 
schema technology to replace the two schemas of DBTG. 
This technology is being developed by ANSI/X3/SP ARC I 
Study Group Database Systems. It is being driven by the 
thrust for data independence. The second area is con­
cerned with the very active debate between the supporters 
of data-structure-set models which underly the DBTG 
systems, and the relational model. The third area relates 
to the development of hardware to assist in the repetitive 
operations characteristic of database systems. The data­
base features of the new Honeywell Series 60/Levei 64 
computer is the specific case to be discussed. 

The ANSI/X3/SPARC/Study Group Database Systems! 
was activated in November 1972 to examine the question 
of whether database systems were ready for sta~dardiza­
tion. To-date, this group has concentrated upon the 
question, "What is the basic architecture of the database 
systems necessary to support the user requirements of the 
late 1970's and the 1980's? The first requirement was to 
provide a series of alternate data manipulation interfaces. 
These would include both procedural and non-procedural 
approaches. The second requirement, and the one I wish 
to describe in detail, deals with the requirement for data 
independence. 

What is data independence? For some of you this may 
be a new term. For others, let me give you my understand­

. ing. Data independence is the end result of a mechanism 

569 

which permits two seemingly contradictory conditions to 
coexist. The first is that the data structure, as declared 
and stored in the database, is allowed to continue evolving, 
to support the enterprise's own evolution and to support 
the evolution of the applications systems running against 
the database. This evolution is permitted while simultane­
ously maintaining the operability of all the existing applica­
tion programs which were written, tested, and put into 
production sometime in the past. All that was done when 
the database upon which they were running was quite 
different in its structure and optimization. The alternative, 
which we consider to be undesirable and actually not 
feasible, is that every production program must be re­
viewed for each projected database change. Each program 
affected would have to be modified, recompiled and 
retested. Then the database restructuring could be carried 
out. This alternative is so cumbersome, expensive and 
error-prone that the net result has been database stagna­
tion with information systems effectively' halted on some 
plateau in their development. 

The DBTG specifications, as now published by the 
CODASYL Data Description Language Committee, pro­
vides a partial solution to this problem. Each application 
program knows the database through its subschema data 
description. If the schema itself is modified in a way that 
the existing subschemata remain a proper subset, then the 
matter is one of modifying the mapping statements within 
the subschemata to make them again conform. This is 
illustrated by Figure 1 which shows a number of subsche­
mata on the right side and two schemata on the left. The 
lines between represent the mapping statements that tie 
the subschemata back to their source within the data 
declarations of the schema. The addition of new field and 
set types to existing record types, and the addition of new 
record types are handled quite easily as there are no 
existing maps which reference them. However, when 
records are split or combined, or when record, field or set 
implementation technique is changed, then the existing 
maps are placed under heavy stress and many must be 
changed. The SP ARC Study Group is recommendin.g that 
the DBTG schema be replaced with two new schemas. 
These are called the Internal Database Schema and the 
Conceptual Database Schema. In addition, SP ARC defines 
an External Database Schema which is equivalent to the 
DBTG subschema . 

The conceptual schema is considered to hold the best 



570 National Computer Conference, 1975 

BTG mechanism 
subschema #1 

subschema #2 

old schema 

new 

subschema #n 

Figure I-DBTG mechanism 

available definition of the basic information of the enter­
prise. It would include record, field, and data-structure-set 
declarations representing real world entities and their 
properties, whether or not they have become a matter of 
immediate interest to the actual computer processing of 
data. 

The creation and maintenance of the conceptual data­
base schema is considered to be a business operations' 
responsibility rather than an informations systems opera­
tions' responsibility and administratively, would report to 
or be part of the enterprise's operations organization. A 
person, called the Enterprise Administrator, is assigned 
the responsibility for its creation and maintenance. 

The internal database schema is the province of a 
person called the Database Administrator. He is charged 
with optimizing the performance, response time and media 
space requirement tradeoffs of the database system. He 
can change these optimization decisions from time to time 
without the requirement to modify, recompile or retest 
existing application programs. 

Figure 2 illustrates the three kinds of schemas in the 
SPARC approach of things and the mapping between 
them. It should be contrasted with the DBTG approach 
illustrated in Figure l. 

The figure shows the internal database schemata on the 
left, the conceptual database schema in the .center, and 
the multiple external databases schemata on the right. 
Now only the internal schema is changed to recognize new 
access or performance requirements. 

The only mapping changes are in the one set of 
mappings between the internal and conceptual schemata. 
This advantage is really greater than is immediately 
obvious. One reason is that all of the performance, space, 
and response optimization aspects are concentrated in the 
internal schema. This permits the conceptual schema itself 
to take on a more stable and enlightened posture. This 

division of conceptual structure from storage structure is 
already observable in actions of the CODASYL Data 
Description Language Committee. Their publication of the 
Data Description Language Journal of Development2 has 
already discarded certain storage description elements of 
the schema which had been specified by the Data Base 
Task Group Report. 3 

The list below suggests some of the optimization areas in 
which the Database Administrator could practice his skills: 

• record implementation technique 
• field implementation technique 
• set implementation technique 
• pointer implementation technique 
• index implementation technique 
• record placement statements 
• file placement statements 
• redundant data storage statements 

For each conceptual record in· the conceptual schema 
there would be a corresponding internal schema declara­
tion which answers the following questions: (1) Is the 
record to be stored at all? (2) If it is to be stored, will it 
appear as a single linear record? (3) Will it appear as 
several separate linear records each with its own fields and 
storage rules. (4) Or, should it appear as a node in an 
inverted file structure? (5) If it is to be a linear record, 
should it be represented as a free standing database 
record, or (6) as a repeating group within a higher level 
database record? The separation of the conceptual record 
description from the internal record description has given 
the database administrator six choices, whereas the DBTG 
schema seems to limit him to one. Furthermore, it offers 
the opportunity to switch between them without obsoleting 
the external application programs or the maps that tie the 
external record descriptions back to the conceptual record 
descriptions. There are similar optimization declarations 
within the internal database schema with regard to imple­
mentation of fields, data-structure-sets, and indices. These 

'CONCEPTUAL DATABASE SCHEMA mechanism 

old internal schema 

./'" 
/' 

./'" 
new internal ;.crrema 

o 
mappings 

mappings 

external schema #1 

Figure 2-Conceptual database schema mechanism 



can be changed without the collapse of programs interfac­
ing at the external database manipulation level. 

In support of these changes in the internal database 
schema, there must be database utility programs which 
can transform the database from its old internal format to 
its new internal format efficiently. Both batch and incre­
mental restructuring utilities must be available. 

The previous discussion treated with the evolution of the 
stored data, as described by the "internal database 
schema," to maintain efficient database operations. This 
was the province of the database administrator. Paralleling 
these changes, there also must be facilities by which the 
enterprise can change its own view of itself as represented 
by the conceptual database schema. These changes may 
result from structural changes in the enterprise, from 
changing views of the same structure or simply because 
the enterprise had been viewed narrowly and new informa­
tion processing requirements have forced an expansion of 
viewpoint. The enterprise administrator is the person 
responsible for such changes. Many of these changes can 
be made without the loss of integrity to existing external 
database schemata. The anticipated result of most revi­
sions to the conceptual schema is the phenomenon called 
"attribute migration" or "entity splitting." I can best 
explain this phenomenon through the use of an example 
that we discussed at a recent meeting. In this example, 
the conceptual data structure goes through a series of 
changes as the business information is better understood 
and new processing requirements are determined. Figure 3 
contains two data structure diagrams.4 The one to the left 
illustrates the conceptual data structure declared by the 
Enterprise Administrator. 

This data structure diagram illustrates two conceptual 
record types, "company" and "personnel", with a data­
structure-set "a" representing the fact that each person is 
associated with exactly one company and that each 
company has a set of personnel. 

The right side of the diagram is supposed to suggest that 
there are a number of external database schemata as 
declared by the Application System Administrators. 
Schema #1, the only one fully visible, is a very simple, 

External Schema #3 

Conceptual Schema 

External Schema #1 

Figure 3-Database schemata-expressed as data structure diagrams 

Trends in Database Management-75 571 

01 personnel. 

02 name. 

02 year-to-date-earnings 

02 employee-number PRIMf.RY KEY. 

02 office-phone. 

98 ~''[EMBER "a" SET, SELECT UNIQUE OWNER, 

DUPLICATES NOT ALLOWED. 
Figure4--Conceptual database schema 

"flat file", view of the database. An application program 
accessing the database through this external schema would 
find a file of "pay-rec" records. 

The conceptual database schema declaration of the 
"personnel" record type is illustrated in Figure 4. It should 
be noted that its field descriptions contain no declarations 
as to the type, length or mode of either the storage format 
of the fields or the format in which they should be 
delivered to a program which is accessing an instance of 
such a record. Note the I-D-S like 98 level entry which 
declares that the "personnel" record type is a MEMBER 
of the "a" data-structure-set type. It includes the declara­
tions "SELECT UNIQUE OWNER," "DUPLICATES 
NOT ALLOWED" which relate to the integrity of the 
database. There are no set ordering declarations, as 
ordering is a matter of interest to a particular procedural 
program and might be specified differently in each exter­
nal schema. If the set were declared to be implemented in 
the internal database schema, then its ordering rules 
w.ould be specified for that purpose in an internal set 
declaration of the internal schema. 

Note that this description is expressed in I-D-S/COB­
OLese modified to convey the new concepts. All of the 
reserved words are written in capital letters, and the 
variable names are in lower case letters. Please accept this 
for illustration purposes only. The SPARC study group is 
not charged with inventing languages and will deny any 
responsibility for the syntax I invented for this example. 

The text of the external database schema # 1 would look 
something like that illustrated in Figure 5. The "FD" is 
supposed to represent an external file declaration which 
would hold all the personnel records for the company with 
that company's code equal to "12498." Sequence is not 
declared in this example but would be necessary unless 
some arbitrary sequence were acceptable. 

FD personnel-file, WHERE company-code EQUALS 12498 

01 pay-rec, SOURCE IS personnel 

02 narr;e X(6) 

02 office-phone 9(10) 

02 year-to-date-earnings PIC(99,999.99). 

Figure 5-External database schema # 1 



572 National Computer Conference, 1975 

"b" "a" 

" " r"\ 
"--

ayment 

Figure 6-Modified conceptual database schema 

The 01 entry record declaration source statement, 
"SOURCE IS personnel", is the most interesting aspect of 
this declaration. This is the mapping statement that relates 
the "pay-rec" record type in the external schema back to a 
"personnel" record type in the conceptual schema. Pre­
sumably, if the names were identical, then the source 
statement could have been left out and the default would 
be to assume the mapping to a conceptual record type with 
the same name. In our example, the 02 entries declaring 
the fields have no source statement and do make use of 
the default assumption in that they match with similarly 
named fields in the conceptual record type "personnel." 

Given the initial state of the conceptual schema as set 
forth in Figures 3 and 4, let us assume that the following 
changes were made to the conceptual database declara­
tions, while remembering that the existing external data­
base schemata must maintain their effectiveness. There 
were two changes. First, it was recognized that the 
detailed earnings of each employee were of interest from 
time to time. Therefore, a new conceptual record type is 
declared for the "payment" record. It has a field called 
"earnings". The second change was to recognize that the 
personnel of the company were persons in their own right. 
In fact, it was discovered at the merger of several 
companies that some of the persons held two jobs and 
were personnel to two of the merged companies. The 
question now is how to change the personnel record 
declaration in the conceptual database schema to recog­
nize these changes without obsoleting the existing external 
schemata. 

Figure 6 illustrates the data structure diagram for the 
new conceptual schema. The data description of the 
conceptual schema in Figure 7 points out how these 
changes were handled. Note that there are two new 98 
entries declaring the "personnel" record type's new rela­
tionships with the person" and the "payment" record 
types. More interesting are the modified declarations of 

"name" and "year-to-date earnings." The 02 entry for 
"name" has a source statement, "SOURCE IS OWNER 
OF "b" SET." In effect, the "name" attribute has 
migrated to the "person" record type, or more realistically 
the old "personnel" record type has been split into two 
record types, "personnel" and "person." The "name" 
followed the "person" aspect and the "office-phone" 
stayed with the "personnel" record. The 02 entry for 
"year-to-date-earnings" represents an even more interest­
ing case of migration or split. Previously, the only data 
declaration was that of total earnings. Now we have both 
individual "earnings" in the "payment" record type and 
the old "year-to-date-:earnings" in the "personnel" record 
type. The "year-to-date-earnings" has become a derived 
database object. Consequently, there is a new result 
statement associated with the "personnel" record type, 
"RESULT IS SUM OF earnings OF "c" SET WHERE 
year OF payment EQUALS year OF current-date." This is 
stating that the system is to compute this value based 
upon the summarization rules specified. 

If you think of these changes in terms of the internal 
database schema, a number of questions arise. Did the 
Database Administrator actually implement these- new 
conceptual record types with the corresponding internal 
record types. Assuming that he did so, then the further 
questions can be asked. Is the person's "name" to be 
redundantly stored in the "personnel" record? Or is it to 
be extracted from the "person" record whenever it is 
needed? This would be controlled by an internal database 
schema declaration. Similarly, is the "year-to-date-earn­
ings" field actually to be stored in the "personnel" record 
or is it "virtual" and recomputed when needed? Clearly 
these are choices which the Database Administrator should 
have open to him without that choice having any logical 
effect upon the existing application programs. 

The "ACTUAL" and "VIRTUAL" attributes in the 
DBTG schema illustrate the current state of the art. With 
the SPARC study group's separation of the storage aspects 
from the conceptual schema, the internal schema would 
show the fields only if they were to be actually stored. 

Another efficiency question is whether the "payment" 
record type should be implemented as internal database 
records in a data-structure-set, or as a repeating group 
(array) within the "personnel" internal database record. 
The OCCURS clause in the DBTG schema is the means 
by which this storage issue is declared. Under the SP ARC 

01 personnel. 
02 name, SOURCE IS OWNER OF "b" SET. 
02 year-to-date-earnings, RESULT IS S~JI OF earnings 

of "C" SET, WHERE year OF payment EQUALS year 
OF current date. 

02 employee-number, PRIMARY KEY. 
02 office-phone. 
98 MEMBER "a" SET, SELECT UNIQUE OWNER, 

DUPLICATES NOT ALLOWED. 
98 MEMBER lib" SET, SELECT UNIQUE OWNER. 
98 OWNER "c" SET. 

Figure 7-Modified conceptual database schema 



approach, the conceptual database schema does not recog­
nize the concept of repeating group as it is considered a 
special and limited case of a record type within a data­
structure-set. However, both the internal and external 
schemas would allow for their existence as they are useful 
in the storage and access of data and the programming of 
applications. 

Let me take this evolution of the conceptual database 
structure forward two more steps. The first of these steps 
came about when the Enterprise Administrator decided to 
factor the address of residence out of the person record. 
For simplicity, let us assume that an address uniquely 
represented a place of dwelling. In other words, all 
persons with the same address were assumed to have the 
same residence. Figure 8· illustrates the addition of the 
"place" conceptual record type and the data-structure-set 
type "d" which associates occurrences of a "person" 
conceptual record type with a "place" conceptual record 
occurrence. The "address" in the "person" record will 
now migrate from the "person" record to the "place" 
record and the change is described with a source state­
ment in the "person" record declaration. 

Stretching the example the last step, it is now recog­
nized that people move from place to place and that it is 
desirable to know current address as well as past ad­
dresses. Figure 9 illustrates the change in the nature of 
relationship between the "person" and the "place" rec-

place 

II "d" 

person company 

" btl " aft 

personnE ~l 

" " , ("\ 
L. 

payment 

Figure 8--Further modification conceptual database schema 

Trends in Database Management-75 573 

Figure 9-Some more modification conceptual database schema 

ords. Where there had been a n: I relationship, there is 
now a n:m relationship. The new "address" conceptual 
record type serves to define this relationship. A result 
statement, 

02 address RESULT IS address OF THE FIRST 
MEMBER OF "r' SET 

would be associated with the "address" field description in 
the "person" record description of the modified conceptual 
data base schema. In addition, the source statement, 

02 address SOURCE IS OWNER OF "e" SET 

would be associated with the address field description III 

the address record description. 
These two statements jointly define the derivation 

function for the "address" field of the "person" conceptual 
record. Please accept the language as having been just 
invented to support the example. It is the intent of these 
statements to find the first "address" record and from that 
"address" record to find its owner "place" record via set 
"e" to obtain the specific address value. Some very 
interesting questions can be asked concerning the meaning 
of modifying a person's address. Does this mean to create 
a new "address" record relating the person to a new place 
and further to create a new "place" record for the 
designated address if one does not currently exist? Or, 
does it mean to change the address of the place and all the 
other persons who currently or once lived there? Clearly, I 
believe this means the former. However, modifying the 
"address" field of a "place" record would mean that the 
dwelling has somehow had its address changed to correct 
an error, or perhaps all the houses on that street had been 
renumbered in some unification plan. This happened to me 
once when an entire section of town was renumbered. 

I would like to shift the subject now to another very 
important area. This is an area where there is considerable 
technical debate at the present time. A formal debate was 
held at the ACM SIGFIDET meeting a year ago. This is 
the debate as to whether the Relational Model or the 
Data-Structure-Set Model is the best one upon which to 
build future database management systems. Codd of IBM 



574 National Computer Conference, 1975 

domain name name -Z.e~ sex --- -- -- --- I---

role person father birth person 

tuple 1 Charlie, Charlie, 
1924 male Jr. Sr. I 

tuplc2 Margie Charlie, 1952 female/ Jr. 

tuple3 Tom Charlie, 1954 male \ Jr. 

. ) 
( 

1-- ~ -- _l 

Figure lO-Relational model example 

Research is the author and a very articulate sponsor of the 
relational model. 5,6 Date of IBM (Hursley) has also written 
extensively7 on the subject. It would be presumptous for 
me to try to explain the position of the supporters of the 
Relational Model in the limited space available. However, 
it is fair to say that the relational model has received 
tremendous support within the academic circles in the 
United States. One of the reasons is its use of set theoretic 
operations. This makes it very attractive to mathematically 
trained people. Another factor is its promise of usefulness 
in handling enquiries as a non-procedural language. 

The competitive model in the current debate is the data­
structure-setS or network model. This is the model that 
underlies both DBTG systems and Honeywell's Integrated 
Data Store. This is the model that I developed and have 
supported for a number of years. This model is so well 
established that it was described, in the ACM Communica­
tions news article reporting the debate, as being the 
"establishment" point of view. The most critical question 
for all of us is, "What is the significance of the debate?" 
Is it "full of sound and fury signifying nothing" or does it 
portend a radical change ahead? Let me oversimplify 
Codd's position as follows: "The data-structure-set model 
is based upon an access mechanism and has no place in a 
high level language approach to database systems. It will 
ultimately be replaced and disappear." I take a different 
approach to the subject. I consider data-structure-sets as 
representing natural relationships which exist in the real 
world. These are the relationships between teachers and 
students, between companies and customers, or as in the 
earlier example between persons and places. For informa­
tion processing purposes, these relationships can be re­
corded by carrying around redundant data (the relational 
model) or by one of the many set implementation tech­
niques. fj Possibly the redundant data fields used in the 
relational model should just be characterized as the 10th 
set implementation technique and closely related to the 
"phantom" technique. 

This might be the ideal set implementation technique if 
and when hardware support for associative retrieval is 

achieved and becomes competitive with directly addressed 
secondary storage. 

I consider the relational model and the data-structure­
set model essentially compatible and subject to transfor­
mation from one form to the other. In the months since the 
debate last May, I have been attempting to clarify this 
transformability between the models. During this time, a 
third model, the Data Independence Access Modepo 
(DIAM) has also been studied for comparison. It was 
developed at IBM Research by Senko and his associates. 
It has been found to offer some interesting perspective 
upon the debate. The thing that is most interesting is that 
the relational model and the data independence access 
models appear to be completely at odds with each other. 
At best, they are at the opposite ends of a spectrum. By 
comparison, the data-structure-set model seems to be an 
effective hybrid between these two extremes. 

Can this amalgam be explained in a few words? Let me 
try. The relational model, at first glance, appears to be 
concerned with only fields and records. Of course, it is the 
way in which one uses the fields that makes the system 
work. 

Figure 10 illustrates the use of the relational model to 
describe certain aspects of information about a person. 
Each row is called a "tuple" and is similar to a record. 
Each column is a "role" on a "domain" and is similar to a 
field. 

The DIAM model seems to work only with single field 
records and the 1: 1 directed relationships that exist 
between these single field records. Fields are only used for 
the unique or primary key identification of a record. The 
same information about people used in Figure 10 for the 
relational model is recast in Figure 11 for the DIAM 
model. The ovals represent entities and their unique 
identification. The arrows between the ovals represent 
directed 1:1 relationships between a pair of such entities. 

The data-structure-set model, as implemented by DBTG 

narne:Charlie, Sr. 

( year: 1924 ) 

narne:Charlie, Jr. 

Figure ll-Data Independence Access Model example 



and I-D-S, offers the database designer the choice of 
whether to represent a property of an entity as a field or as 
a data-structure-set according to which approach seems 
more natural to him. Figure 12 recasts the information 
used in the last two figures into the data-structure-set 
model. In this case, the blocks represent records and their 
associated data fields. The multi-headed arrows represent 
the l:n relationships between a record in an "owner" role 
and the records in the "member" role of a data-base-set. 

In the example I have chosen to model "year of birth" 
and "sex" attributes as fields and the "parent:child" 
relationship as a data-structure-set. 

In the prior example describing the conceptual database 
schema, the splitting of entities and the resultant migration 
of attributes was the prominent action described. What 
actually happened was that the Enterprise Administrator 
progressively shifted his viewpoint from a mostly relational 
model viewpoint toward a more DIAM-like viewpoint. 
However, during this entire time, the conceptual schema 
was always a mixture of fields, records and data-structure­
sets. It was always a data-structure-set model type of 
compromise. 

The third area. which I want to discuss deals with the 
use of hardware and firmware to assist in handling time 
consuming operations which appear frequently in database 
systems. While progress in this direction is limited, a 
trend is suggested. The virtual memory hardware pi­
oneered by the Ferranti Atlas and the Honeywell MUL­
TICS systems provided hardware support for addressing a 
paged database. The IBM 370 has followed this course. 
While the address space of these machines is too limited 
in size for most databases, they do represent a significant 
step forward. Time should take care of the size problem. 

A second example of hardware and firmware support 
was announced last year for the Honeywell Series 60 Level 
64. 11 This support focuses upon the data independence 
issue discussed earlier. The most time consuming aspects 
of supporting data independence is the need to continually 
transform data from the stored format (internal schema) to 
the format in which the program expects it (external 

Figure 12-Data structure set model example 

Trends in Database Management-75 575 

schema). This requires a field by field examination and 
transfer. The H60/64 has provided a rudimentary set of 
field instructions which are controlled by data descriptors. 
These are the "MOVE A TO B" and "COMPARE A 
WITH B" instructions. These instructions operate through 
a pair of field descriptors. Each descriptor identifies the 
offset of the field within a record or within the program's 
work space or stack frame and identifies a base register 
which establishes the record's, program's or stack frame's 
location within the processes address space. It also states 
the field's length and data type. (BCD, ASCII, EBCDIC, 
packed decimals, ... ). Thus during a move with type 
control, all required conversions are made and the result is 
truncated or, filled with blanks or zeros according to the 
description of the receiving field. 

The H60/64 also has a "hashing" or randomizing com­
mand in the instruction set. This instruction is designed to 
operate with fields of various lengths and with multiple 
fields which are not contiguous. The instruction is based 
upon a folding, shifting, negating algorithm which is 
particularly sensitive to the fact that identifiers, especially 
numeric, stored as character strings do not make use of 
the high order bit patterns. The algorithm is patterned 
after the I-D-S randomizing routine which has more than 
ten years of field exposure on three different machine 
architectures and which has almost universal acceptance 
by I-D-S users on those machines. 

The selection of these three commands to be supported 
by hardware was based upon instrumentation of actual 1-
D-S applications on the H6000 line. The instrumentati6n 
determined which software routines would yield the great­
est return if reimplemented in hardware. 

In summary, the art of database management is evolving 
and has made significant progress. The DBTG type 
systems pioneered by the Integrated Data Store have 
become available from a number of computer manufactur­
ers. The evolution of these DBTG systems to the ANSI/ 
SP ARC tripartite data descriptions is under way and 
should continue. The current debate on data-structure-set 
vs. relational models of data will find its greatest contribu­
tion in the development of a greater understanding of the 
nature of data. This is a little like the continued study of 
particle physics; it is a seemingly unending struggle for 
fine and finer resolution. The introduction of database 
commands into the instruction sets of our computer is a 
yet unproven aspect. Unproven in that their motivation is 
one of efficiency. If the operations which are assisted by 
this hardware are executed with sufficient frequency, then 
they payoff. If the frequency diminishes, then the 
hardware investment is lost. It would now seem that 
money invested in "scatter/gather" instructions and for­
matted track discs to support unit record processing at the 
physical I/O transfer level may have been wasted as their 
utilization is very low in the new database systems. 12 

However, if some advances are false, still others are true 
and pay their way. It appears to this author that there is 
still a good yield to be gained in providing new hardware 
assistance in support of well defined database functions. 



576 National Computer Conference, 1975 

REFERENCES 
1. Bachman, C. W., Summary of Current Work-ANSI/X3/SPARC/ 

Study Group-Database Systems revised January 29, 1974. 
2. "CODASYL Data Description Language," Journal of Development, 

June 1973, NBS Handbook 113, U. S. Department of Commerce. 
3. CODASYL Data Base Task Group Report, April 1971 (various 

sources). 
4. Bachman, C. W., "Data Structure Diagrams," Data Base I, 2, 

Summer 1969, Quarterly Newsletter of ACM SIGBDP. 
5. Codd, E. F., "A Relational Model of Data for Large Shared 

Databanks," Comm. ACM 13, pp. 377-387, June 1970. 
6. Codd, E. F., "A Database Sublanguage Founded on the Relational 

Calculus," Proceedings of the 1971 ACM SIGFIDET Workshop, pp. 
35-68. 

7. Date, C. J., "Relational Database Systems: a Tutorial," 4th Interna­
tional Symposium on Computer and Information Science (COINS-72). 

8. Bachman, C. W., "Set Concepts for Data Structures," Encyclopedia 
of Computer Science, Auerbach Corp. 

9. Bachman, C. W., "Implementation Techniques for Data Structure 
Sets," Data Base Management Systems, D. A. Jardine (editor), North­
Holland Publishing Company, 1974, pp. 147-160. 

10. Senko, M. E., E. G. Altman, M. M. Ashtrahan, P. L. Fehder, "Data 
Structures and Accessing in Data-Base Systems," IBM Systems 
Journal, #1, 1973. 

11. Atkinson, T., "Architecture of Series 60/Level 64," Honeywell 
Computer Journal, Volume 8, No.2. 

12. Buzen, J. P., "I/O Subsystem Architecture," Proceedings of the 
IEEE, Vol. 63, No.6, June 1975, 



A data sorting system using a high speed bus 

by P. M. THOMPSON and Z. H. GLANZ 
University of Ottawa 
Ottawa, Canada 

SUMMARY 

The access time for content addressed data can be signifi­
cantly improved if it is filed according to an appropriate set of 
descriptors. A further improvement can be obtained if 
hardware, rather than software, techniques are used to im­
plement the file or sorting memory. The paper discusses the 
design of a hardware implemented system which can sort and 
re-sort digital data according to any set of descriptors chosen. 
The main limitation to the speed of sorting and re-sorting is the 
intercommunication system between the various parts of the 
store. The application of segmented ring bus techniques gives 
a high sorting speed and a flexible system. The memory de­
sign is suitable for LSI because it consists of a number of 
similar units capable of integration using silicon technology. 

INTRODUCTION 

In general, digital data storage systems can be classified under 
the following headings: 

( a) Direct addressed storage 
(b) Associative memories 
(c) Sorting arrays 

Much has been published about the first two and this paper 
is concerned mainly with the latter. A sorting array has some 
of the characteristics of an associative memory, but the 
position of an entry in the array depends upon a character­
istic of the entry: e.g., several descriptor bits masked position­
ally. For i descriptor bits, there is a maximum of 2i sets of 
entries. A characteristic of a sorting array is that the entries 
are sorted into new sets if the position of the mask for the 
descriptor bits is changed. An example of the process is that 
this paper might be filed under one of several index terms and 
the choice of a new index term would result in a change of file. 
In many applications, the speed with which data entries can 
be resorted is important and software techniques prove to be 
slow. 

It follows that there is a need for a hardware implemented 
sorting system. Kautzl designed a Logic-in-Memory system 
to deal with the sorting of small amounts of data, but this 
approach unmodified becomes cumbersome as the system 
grows. Associative memories can also be used within a sorting 
system, but there are difficulties associated with the com­
munication between the separate associative memory units. 

577 

Indeed, it seems that the main limitation to the speed with 
which a re-sorting operation can be performed is the flexibility 
and speed of the intercommunication system between the 
different storage units in the overall system. 

SEGMENTED BUS 

A solution to the intercommunication problem is provided 
by the segmented bus.2 For a sorting array, it is used in its 
simplest form where it is similar to a parallel shift register 
one word wide with various inputs and outputs along its 
length. Words are transmitted by being clocked from segment 
to segment along the bus in "carriers". Words can be entered 
at input/output segments, or ports, if there is an empty 
carrier. It is possible to enter several words at the same time 
if there are empty carriers at the appropriate ports. Similarly, 
several words can be output at the same time. When a word 
is output its place can be taken by a new input word. Thus 
the segmented bus provides communication between a pair 
of ports without preventing communication between another 
pair, and it can provide communication between several 
pairs at the same time. It is usual to clock the whole system, 
bus and input/output units, at the same speed. 

SIMPLE RING CONFIGURATION 

A simple arrangement for a sorting memory is shown in 
Figure 1. A segment of the bus is extended to become a 
memory segment, which cOQ-sists of a memory unit and 
compare and control logic associated with the appropriate 
segment of the bus. An additional segment is used as an 
input/output unit. 

This ring can perform three basic functions: (a) Input 
information can be clocked around the ring until it reaches an 
appropriate memory segment, where it is stored; (b) A 
re-sorting operation may be performed by changing the de­
scriptors for the different memory units; (c) Words may be 
output on an associative basis. In Figure 1, the memory units 
are first-in-first-out (FIFO) stacks and the control logic is 
routing logic, which can perform the following operations: (a) 
Words arriving from the left are routed to the top of the 
stack if they contain the appropriate descriptor for that 
stack; (b ) Words that do not contain the appropriate de­
scriptor are routed straight through to the right; (c) When­
ever an empty carrier enters the segment, a word at the 



578 National Computer Conference, 1975 

Figure I-Sorting ring: (1) Memory unit, (2) Compare and control 
logic, (3) I/O and function control logic 

bottom of the stack can be routed to the right if it does not 
contain the appropriate descriptor for the stack; Cd) Words 
at the bottom of the stack that contain the appropriate 
descriptor are routed straight through and returned to the 
top of the stack. 

COMPLEX CONFIGURATIONS 

The number of memory units on a ring grows with the 
number of words to be stored and descriptors used. HoweverJ 

although the segmented character of the bus allows multiple 
entry and exit of data words, the single channel characteristic 
of the ring limits the information flow and results in extended 
sorting and re-sorting times. 

The speed of sorting and re-sorting can be improved by 
complex bus configurations. A good criterion for comparison 
of these configurations is the maximum re-sorting time because 
this is a well defined parameter and always larger than the 
initial sorting time. For a simple ring bus, the max:mum 
re-sorting time is given by: 

T(max) =WmoMnotc 

where: T(max) : maximum re-sorting time 
W m: No. of words in a memory unit 
M n : the total No. of memory units 
tc: clock period. 

If a multiple ring configuration such as that shown in Figure 
2 is employed, then: 

T(max)=Ko WmMrtc=KoWmo(Mn/Rn)otc 

where K>l 

and Rn : the total No. of rings. 
M r: No. of memory units on a ring. 

The improvement in sorting time is: Rn/K. 

Values for K were determined by the simulation of some 
single ring and double ring configurations. Values chosen for 
Mn were 16,32 and 64 and values chosen for Mr were 4 and 8. 
A random selection of words was first stored in the system and 

sorted according to one descriptor set. Then the descriptor 
bits were changed and the number of clock pulses for the 
completion of the re-sorting process was determined. K had 
an average value of approximately 1.7 and a worst value of 
approximately 2. ' 

The memory system can be expanded by coupling the ring 
shown in Figure 2 into a further ring segmented bus. This 
further ring can be coupled into another and so on depending 
upon the size of the overall system desired. In large systems, 
the designer has the choice of either employing a large number 
of descriptor bits and increasing the word length, or using 
the same descriptor for several memory segments. The rings 
are coupled by "ring control segments" which function as 
part of a major ring much as do the memory segments in a 
minor ring. The control logic is also similar, except that there 
are three inputs and three outputs, rather than two of each 
as in a minor ring. Thus, in an integrated realization, ring 
control segments can be used as memory segments with one 
input and one output left unused. As in the case of the mem­
ory control logic, the ring control logic can route the data 
from any input to any output as determined by the de­
scriptors. 

MEMORY SEGMENT 

Two types of memory segment have been designed, an 
elementary static logic unit and a more flexible dynamic unit 
where the storage can be in a dynamic MOS shift register 
or a disk. Both units can be used as either a memory segment 
or a ring control segment, depending upon the number of bus 
inputs and outputs connected.· The static logic unit is shown 
in Figure 3. It consists of two static registers (block No 1), 
the one on the left an output register and the one on the 

Figure 2-Four ring sorting system (1) Aux. register, (2) Ring control 
logic, (3) I/O and function control logic, (4) Bus for more 

complicated system 



right an input register. A compare and control unit in block 
2 communicates between the registers and the bus. It allows 
words containing the descriptor for the segment to enter the 
input register and outputs words from the output register into 
empty spaces on the bus. To control its next function, it also 
counts the words entering the input register. When the output 
register is empty, this is detected by the control logic and 
status information transmitted to "Central Control". When 
the resort operation is complete, the words in the input 
register can be shifted through block 3 into the output register 
under the control of the counter in block 2. 

DYNAMIC MEMORY UNIT 

The inefficient use of storage space in the static logic sys­
tem of Figure 3 is overcome in the system of Figure 4. Here a 
large memory (block 1) is used with two auxiliary registers 
(block 5) which become the input and output registers. 
These auxiliary registers are small, static logic FIFO stack 
memories which are coupled to the bus through control 
logic in a similar way to the input and output registers of 
Figure 3. The main memory of block 1 can be any read-write 
memory, but is preferably a disk or a dynamic shift register. 
(In the description below the main memory is a dynamic shift 
register.) 

An advantage of this type of memory unit is that it ,can 
become content or position addressable, according to control 
signals. The unit can thus be used in any of the types of 
memory system given in the introduction. Note the similarity 
between entering a word into a dynamic shift register and a 
bus. In both cases, new information is introduced into empty 
carriers or spaces in the stream and words with the appro­
priate descriptors are removed from the stream. 

SEGMENT 1----

I I 
I 3 1 
I I 
I I 
I I 
I I 
I 1 1 I 
I I 
I I 
I I 
I I 
I 2 I 

l BUS 
"1 r 

L _ - - - - - - - - - - ::::;;;}", 

Figure 3-Static memory unit: (1) Static register, (2) Compare 
and control logic, (3) Logic 

A Data Sorting System Using a High Speed Bus 579 

SEGMENT r - - -- ------, 
I 

I 

L- ____ _ _____ --.J 

Figure 4-Dynamic memory unit: (1) Dynamic register, (2) Compare 
and control logic, (3) Word counter, (4) Cycle counter, 

(5) Aux. register, (6) Control logic 

The dynamic memory unit operates in the following 
manner: During the first cycle of the main memory, counter 
B (block 4) will be incremented every time a word passing 
the control unit (upper block 2) does not match the de­
scriptors for the segment. When the first cycle is finished, the 
number in counter B indicates how many words will leave 
this segment in the process of re-sorting. Whenever space is 
available in the output auxiliary register, words which do not 
match the descriptor for the segment will be transferred there. 
During this operation, there is another transfer operation; 
words arriving from the bus enter the input auxiliary register 
through the control unit (lower block 2) and are transferred 
into the empty spaces of the main memory. 

CONCLUSIONS 

It has been shown that a sorting memory, or digital data filing 
system, can be constructed from memory segments inter­
connected using systems of unidirectional segmented ring 
busses. Furthermore, the memory units within the memory 
segments can also take the form of ring structure .. The control 
logic units used for coupling rings can be treated as coupling 
filters and the same type of coupling filters can be used 
throughout the system, with the differences being only in the 
choice of descriptor and descriptor position. 

There are many applications for sorting arrays and these 
include business filing systems, data acquisition, many medi­
cal applications including diagnostics and library systems. In 
addition to this, they can be applied to s()ftware house-



580 National Computer Conference, 1975 

keeping, and the coupling filters might be used for routing 
in data-packet communication systems. 

Modifications to the design of the memory segments permit 
them to be used as either content or position addressable 
systems, as determined by control inputs. Thus it is possible 
to design a system capable of operating in all the modes 
classified in the introduction. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the contribution of 
M. Kreiger for useful discussions and many good ideas, of 

K. Szabo and P. Charlebois for their work on the realization 
of memory modules and of Microsystems International Ltd. 
and General Instruments of Canada Ltd. for providing the 
integrated memory circuits used. 

REFERENCES 

1. Kautz, W. H., "Cellular Logic in Memory Array," IEEE Transac­
tions on Computers, Vol. C-18, No.8, August 1969. 

2. Champagene, C., "A Bus Structure for a High Data Rate," 
submitted to AFIPS Conference Proceedings 1975. 



INFOPLEX-Hierarchical decomposition of a 
la~ge information management system using a 
mIcroprocessor complex 

by STUART E. MADNICK 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

The effective use of computer systems for large-scale in­
formation management rather than numerical compu­
tation is still a largely unsolved problem. In this paper 
important concepts and theories regarding computer 
architectures for information management are introduced. 
The underlying concept, hierarchical decomposition, is 
presented in the next section. 

Several ongoing developments in computer technology 
have made a radical change in system architecture both 
necessary and feasible. 21 New memory technologies, some 
recently announced and others under development for the 
near future, make very large capacity memories possible. 
But, the physical organization of such memories and their 
logical information handling functionalities are yet to be 
determined. As an example, consider the objective of 
designing an information system with total storage ca­
pacity in excess of 1015 bits processing up to 106 logical 
interactions (e.g., queries, updates) per second and ca­
pable of physical input/ output rates of at least 109 to 1010 

bits per second. No present computer architecture or 
theoretical structure has explicitly addressed the design of 
such a system. 

In order to attain very high performance and func­
tionality, as indicated above, it is necessary to take ad­
vantage of extensive parellelism in the system. With the 
advent of microprocessor technology such a strategy is 
quite feasible. Whereas highly parallel computer systems 
of the past, such as ILLIAC IV and CDC 'STAR-lOO, were 
designed to solve numerical problems, totally new ap­
proaches are needed for information management prob­
lems. 

By using hierarchical decomposition, both functional 
and physical, a highly parallel information management 
system architecture can be implemented by means of a 
processor complex. Such a system, called the INFOPLEX 
is presently under study at the Center for Informatio~ 
Systems Research in the MIT Sloan School of Manage­
ment. 

581 

HIERARCHICAL DECOMPOSITION 

There are two major types of parallelism that can be ex­
ploited in an information system: functional and physical. 

Function decomposition 

In almost all cases, the interactions with an information 
system are in terms of very high level concepts whether 
originating from a human at a terminal or another com­
puter system. These requests must be converted into the 
more basic operations appropriate to the particulars of the 
physical hardware and information structures. There are 
many ways that this conversion can be accomplished but 
in our research7 we have found the technique of hierar­
chical function decomposition to be very effective for ad­
vanced information management systems (similar tech­
niques have been used successfully in operating systems13 

and basic file systemsll ). 
Figure 1 outlines the hierarchical function decomposi­

tion used in our Generalized Management Information 
System (GMIS) effort. This hierarchical concept has been 
used in the implementation of the New England Energy 
Management Information System (NEEMIS).7 Note that 
each functional level of the hierarchy is implemented in 
terms of the functions provided by the next lower level. 
This strictly hierarchical approach has resulted in an 
extremely powerful, flexible, and modular information 
management system-a primary requirement for the 
NEEMIS application. In addition, the conciseness of the 
structuring greatly reduces the complexity of the system 
making optimization and debugging much more effective. 

Physical decomposition 

To date, the technologies that lend themselves to low 
cost per byte storage devices (and, thereby, economical 
large capacity storage) result in relatively slow access 
times. If it were possible to produce ultra-fast limitless-



582 National Computer Conference, 1975 

Languages 

r--------------l 

I Request Sources : 
L ___________ J 

Packages 

High -level Language Interfaces 
(e. g. , h ierarchica I, networ k, 

L-_-,-__ --I relational). 

Co~putational Opera tors 

n -ary Relations 

Binary Re I,a tions 

V irtual Storage 

,----- ------l 

I Physical Storage Devices l 
L ___________ ---1 

Figure I-Hierarchical function decomposition 

capacity storage devices for miniscule cost, there would be 
little need for a physical decomposition of the storage. 
Lacking such a wonderous device, the requirements of 
high-performance yet low-cost are best satisfied by a mix­
ture of technologies combining expensive high-perform­
ance devices with inexpensive lower-performance devices. 

Figure 2 indicates the range of performance and cost for 
typical current-day storage technologies divided into six 
cost-performance levels. New storage technologies will un­
doubtedly make improvements at all levels, possibly even 
collapsing some. In any case, it does appear that multiple 
levels of cost-performance storage devices will continue to 
exist for many years to come. 15

,22 Note in particular that 
the current spectrum of devices represented in Figure 2 
span over six orders of magnitude in both cost and perform­
ance. 

If all references to information in the system were 
random and unpredictable, there would be little utility for 
the intermediate levels of storage technologies. Most 
practical applications result in clustered references such 
that during any interval of time only a subset of the in­
formation is actually used, especially when you consider 
the use of indexes and other control information. This 
phenomenon is known as locality of reference.6 Under 
such circumstances, the intermediate levels of storage 
technologies can be used as paging devices or staging 
devices that hold these information clusters. This ap­
proach has been used in contemporary systems on the 
microscopic level5 (e.g., IBM System/370 Model 158 and 
168 cache systems), intermediate levep,3,8,9,16,17,18 (e.g., 

Random 
Access 

Storage Level Time 

1. Cache 50 ns 

2. Main Ip.s 

3. Block 50 p's 

4. Backing 1 ms 

5. Secondary 50ms 

6. Mass 1 sec 

Transfer 
Rate (bytes/ 
second) 

100M 

16M 

8M 

2M 

1M 

1M 

Cost 
per 

Byte Technology 

lOOt Semiconductor 
RAM 

lOt Semiconductor 
RAM, Fer-
rite core 

2¢ Semiconductor 
shift registers, 
Bulk ferrite 
core, 
Charged-
coupled 
devices, 
magnetic 
bubbles 

.5¢ Fixed-head 
disks and 
drums, 
charge-
coupled 
devices, 
magnetic 
bubbles 

.01¢ Moving-head 
disks 

.0005¢ Automated 
tape-hand-
l€rs, Laser 
devices 

Figure 2-Spectrum of Storage Device Technologies 

Storage Reference 

1---------------------

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 

---, 
Level I 

I. Cache I 
I 

2. Main 

3. Block 

4. Bocking 

5. Secondary 

6.Mass 

I 
L.. _____________ _ ______ -.l 

Figure 3-Hierarchical physical decomposition 



Honeywell 68/80 Multics paging system), and macro­
scopic level4,lo (e.g., IBM 3850 Mass Store System). 

There are many ways that such an ensemble of storage 
devices may be structured but in our researchl2

,14 we have 
found the technique of hierarchical physical decomposi­
tion to be very effective. A detailed explanation of this ap­
proach is presented in Reference 14. Briefly, information 
is moved between storage levels automatically depending 
upon actual or anticipated usage such that the information 
most likely to be referenced in the future is kept at the 
highest (fastest access) levels. Figure 3 depicts the general 
structure of a hierarchical storage system. 

PARALLELISM IN HIERARCHICAL STRUCTURE 

The original research in hierarchical function decom­
position was motivated by the desire for more structured 
implementation; the research in hierarchical physical de­
composition was motivated by the desire for improved 
system performance. In addition to these original benefits, 
the hierarchical structure also lends itself to considerable 
parallelism. 

Asynchronous function decomposition 

As noted earlier, each level of function decomposition is 
implemented in terms of the primatives of the next lower 
level (refer to Figure 1). Furthermore, usually several 
lower level primatives must be used to implement each 
higher level primative. By using separate sets of processors 
for each functional level, it is possible to take advantage of 
parallel execution of lower level primatives, specialize 
processor functionality, simplify implementation, and 
enhance modularity. Thus, a request for a lower level 
function is accomplished by an inter-processor signal to 
one of the processors that implement that level. The 
hierarchical structure of the function decomposition 
makes such inter-processor communication relatively 
simple and efficient. 

By incorporating queueing facilities and internal mul­
tiprogramming within each of the processors, a high 
performance "pipeline" can be attained. This makes it 
possible to maintain high rates of throughput. Further­
more, the simplicity of the structure makes relatively un­
limited modularity possible thereby making it possible to 
assemble systems of enormous performance capacity. 

The multiple processor implementation of the hierar­
chical function decomposition is depicted in Figure 4. Al­
though such extensive use of processors has been quite 
expensive in the past, the advent of low-cost micro­
processors makes such a system economically feasible. 
Furthermore, since each level implements only a limited 
amount of the total system's functionality, very simple 
processors can be used. 

By taking advantage of the particular structure of the 
system and the somewhat specialized functions that are 
performed, highly reliable operation can be attained using 
techniques such as those used in the PLURIBUS system.l9 

INFOPLEX 583 

One of the key properties of the hierarchical function de­
composition implementation is that all processors are 
anonymous and act as interchangeable resources (within a 
function level). Thus, if a processor malfunctions or must 
be removed from service, the system can continue to func­
tion without interruption. After a reasonable amount of 
time has elapsed, the higher level processors that had 
generated requests that were being performed by the de­
fective processor merely need to reissue the same requests. 
Alternatively, the reissuing of requests could be accom­
plished automatically by the inter-level request queue 
mechanism. 

Although the details are not elaborated in this paper, it 
should be clear that extensive parallelism, throughput, 
and reliability can be attained by means of a multiple 
processor implementation of the hierarchical function de­
composition. 

Asynchronous physical decomposition 

As this author has noted in Reference 14, it is possible 
to generalize the current-day specialized hierarchical 
storage systems (e.g., cache systems, paging systems, file 
archiving systems). In such a generalized system, the 
storage system is physically decomposed into a hierarchy 
of storage levels operating under local controls (i.e., 
decentralized control) with limited coordination necessary 
between levels. 

Various physical storage management and movement 

Figure 4-Hierarchical function decomposition using a microprocessor 
complex 



584 National Computer Conference, 1975 

techniques, such as page splitting, read through, and store 
behind, can be distributed into the hierarchy of levels. 
This facilitates parallel and asynchronous operation in the 
hierarchy. Furthermore, these approaches can lead to 
greatly increased reliability of operation. For example, 
under the read through strategy, when data currently 
stored at level i (and all lower performance levels k > i) is 
referenced, it is automatically and simultaneously copied 
and stored into all storage levels j <i (i.e., all higher per­
formance levels). The data itself is moved between levels 
in standard transfer units, also called pages, whose size 
N(i-l,i) depends upon the storage level from which it is be­
ing moved. (See Figure 5 for an illustration of this 
process.) Since all upper storage levels receive this in­
formation simultaneously, if a storage level must be 
removed from the system, there are no changes needed. In 
this case, the information is "read through" the level as if 
it didn't exist. Since all data available at level i is also 
available at level i+l (and alllevelsj>i), there is no in­
formation lost. Thus, no changes are needed to any of the 
other storage levels or the storage management algorithms 
although we would expect the performance to decrease as 
a result of the missing storage level. A limited form of this 
reliability strategy is employed in most current-day cache 
memory systems.5 

en 
cu 
en 
:3 
m 

:g 
c: o 

U 

"0 
c: 
o 

J;! 
o 

C 

~-----.... I N ( 1,2) L _____ ..J 

r-- , 
~-------..,~ I N (2,3) L __________ ..J 

Figure 5-Example of read through with page splitting 

In a store behind strategy, all modified information is 
initially stored in L(1), the highest performance storage 
level. This information is marked "changed" and is copied 
into L(2) as soon as possible, usually during a time when 
there is no activity between L(1) and L(2). At a later time, 
the information is copied from L(2) to L(3), etc. A varia­
tion on this strategy is used in the Multics Multilevel Pag­
ing Hierarchy.8 

The store behind strategy can be used to provide high 
reliability in the storage system. Ordinarily, a changed 
page is not allowed to be purged from a storage level until 
the next lower level has been updated. This can be 
extended to require two levels of acknowledgment. For 
example, a changed page cannot be removed from L(1) 
until the corresponding pages in both L(2) and L(3) have 
been updated. In this way, there will be at least two copies 
of each changed piece of information at levels L(i) and 
L(i+ 1) in the hierarchy. Other than delaying the time at 
which a page may be purged from a level, this approach 
should not adversely affect system performance. As a 
result of this technique, if any level malfunctions or must 
be serviced, it can be removed from the hierarchy without 
causing any information to be lost. There are two except­
ions to this process, L(1) and L(n). To completely safe­
guard the reliability of the system, it may be necessary to 
store duplicate copies of information at these levels only. 
Figure 6 illustrates the two-level store behind algorithm. 

A considerable amount of work is required to manage 
the storage hierarchy. This work can be distributed by 
means of multiple processors servicing separate physical 
storage levels. In this manner, these processors may 
operate asynchronously and in parallel. A simplified 

L ( 3) 

Request 
Source 

r _L..., 
: : N ( 0, I) 

-

Figure 6-Example of the two-level store-behind process (a) A processor 
stores into L(l), corresponding page is marked "changed" 



I L ( I) 

I L (2l 

L (3) 

Rec,.Jest 
Source 

Figure 6(b)-At a later time, the corresponding page in L(2) is updated 
and marked "changed" 

L (3) 

Request 
Source 

~I 
, : N (2,3) 

• • • 

-' 

Figure 6(c)-At a later time, the corresponding page in L(3) is updated 
and marked "changed." Since copies of the changed information exists in 

both L(2) and L(3), the "changed" indicator can be reset in L(l) and 
that page may be replaced if necessary 

INFOPLEX 585 

example of this technique can be found in the IBM 3850 
Mass Storage System.1,lO 

Decentralized control 

In order to develop information systems capable of 
managing extremely large memories and processing a 
tremendous number of requests, a design based upon 
decentralized control is essential. It is unlikely that a 
single processor would be capable of maintaining a 
centralized control over the large number of high-speed 
asynchronous operations needed. Furthermore, a 
centralized control could be seriously impared if there 
were a reliability failure. The hierarchical decomposition 
theory represents a straightforward basis for a decen­
tralized control design. 

FURTHER RESEARCH 

There are many areas of further research under investi­
gation, such as: 

Optimal function and physical decomposition. It is 
necessary to define a measure of performance and be able 
to prove that a particular decomposition is optimal. 

Equivalence between functions. All information system 
functionalities must be mapped onto a standard set of 
functions. It is necessary to prove that the decomposed 
functionality is equivalent to the desired functionality. 

Performance of physical implementation. There are 
various possible physical implementations of the optimal 
function and physical decomposition. It is necessary to 
provide measures for the performance of each such imple­
mentation and determine optimality. 

Reliability. Although examples of reliability techniques 
have been described in this paper, a detailed reliability 
plan that encompasses all eventualities must be found. 

Interlocks. Various interlock mechanisms must be used 
in an information system to coordinate various inde­
pendent update operations. It is necessary to develop in­
terlock techniques that lend themselves to a highly 
decentralized implementation without adversely affecting 
performance or reliability. 

CONCLUDING COMMENTS 

By using hierarchical physical decomposition (as depicted 
in Figure 3) to provide the virtual storage needed for the 
hierarchical function decomposition (as shown in Figure 
1), a complete hierarchical decomposition of a large in­
formation management system can be attained. Further­
more, using the techniques illustrated in Figures 4 and 5, 
the hierarchical decomposition can be implemented by 
means of a microprocessor complex (i.e., the INFO­
PLEX). 

Although such an INFOPLEX has not yet been com­
pletely implemented, portions are under development and 



586 National Computer Conference, 1975 

investigation.20 The overall theory of hierarchical decom­
position remains an important research area. 

REFERENCES 

1. Ahearn, G. R., Y. Dishon, and R. N. Snively, "Design Innovations of 
the IBM 3830 and 2835 Storage Control Units," IBM Journal of Re­
search and Development, Vol. 16, No.1, pp. 11-18, January 1972. 

2. Bensoussan, A., C. T. Clingen and R. C. Daley, "The Multics Virtual 
Memory," Second ACM Symposium on Operating Systems Prin­
ciples, Princeton University, pp. 3()"42, October 1969. 

3. Chu, W. W. and H. Opderbeck, "Performance of Replacement Al­
gorithms with Different Page Sizes," Computer, Vol. 7, No. 11, pp. 
14-21, November 1974. 

4. Considine, J. P. and A. H. Weis, "Establishment and Maintenance of 
a Storage Hierarchy for an On-line Data Base Under TSS/360," 
FJCC, Vol. 35, pp. 433-440, 1969. 

5. Conti, C. J., "Concepts for Buffer Storage," IEEE Computer Group 
News, pp. 6-13, March 1969. 

6. Denning, P. J., "Virtual Memory," ACM Computing Surveys, Vol. 2, 
No.3, pp. 153-190, September 1970. 

7. Donovan, J. J. and H. Jacoby, "A Hierarchical Approach to In­
formation System Design," MIT Sloan School of Management 
Report CISR-5 and WP 762-75, January 1975. 

8. Greenberg, Bernard S. and Steven H. Webber, "Multics Multilevel 
Paging Hierarchy," IEEE INTERCON, 1975. 

9. Hatfield, D. J., "Experiments on Page Size, Program Access Pat-

terns, and Virtual Memory Performance," IBM Journal of Research 
and Development, Vol. 16, No.1, pp. 58-66, January 1972. 

10. Johnson, Clay, "IBM 3850-Mass Storage System," IEEE IN­
TERCON, 1975. 

11. Madnick, S. E., "Design Strategies for File Systems," MIT Project 
MAC Report TR-78, October 1970. 

12. Madnick, S. E., "Storage Hierarchy Systems," MIT Project MAC 
Report TR-105, Cambridge, Massachusetts, 1973. 

13. Madnick, S. E. and J. J. Donovan, Operating Systems, McGraw­
Hill, New York, 1974. 

14. Madnick, S. E., "Design of a General Hierarchical Storage System," 
IEEE INTER CON, 1975. 

15. Martin, R. R. and H. D. Frankel, "Electronic Disks in the 1980's," 
Computer, Vol. 8, No.2, pp. 24-30, February 1975. 

16. Mattson, R., et al., "Evaluation Techniques for Storage Hierar­
chies," IBM Systems Journal, Vol. 9, No.2, pp. 78-117,1970. 

17. Meade, R. M., "On Memory System Design," FJCC, Vol. 37, pp. 33-
44,1970. 

18. Ohnigian, Suran, "Random File Processing in a Storage Hierarchy," 
IEEE INTER CON, 1975. 

19. Ornstein, S.M., et al., "PLURIBUS-A Reliable Multiprocessor," 
NCC, 1975. 

20. Toong, H. D., "Microprocessor-based Multiprocessor Ring Struc­
tured Network," NCC, 1975. 

21. Wensley, J. H., "The Impact of Electronic Disks on System Archi­
tecture," Computer, Vol. 8, No.2, pp. 24-30, February 1975. 

22. Withington, F. G., "Beyond 1984: A Technology Forecast," Datama­
tion Vol. 21, No.1, pp. 54-73, January 1975. 



Interactive graphics 

Area Director: 
Donald C. Lincicome 
Control Data Corporation 
Sunnyvale, California 

The two computer graphic sessions are to a high degree End User oriented. 
The kinds of people who will find the "Data Base" session of interest are Ap­

plication Analysts and End Users who with an Applications Analyst's interest is 
seeking new methods of data representation of physical models where the 
volum€ of data can grow quite large while access must remain rapid even 
though the access trail cannot be predicted or predetermined. The kinds of 
people interested in the "Economics of C.G." session are End Users and 
managers. who must understand the areas of costs and productivity improve­
ment measures that result from Operational Computer Graphics, and who want 
to learn from other Users experiences methods of economic justification and 
measures to ensure economic success of the necessary capital investment. 

587 





A polyhedron representation for computer . . vIsIon 

by BRUCE G. BAUMGART 
Stanford University 
Stanford, California 

USE OF POLYHEDRA IN COMPUTER VISION 

My approach to computer vision is best characterized as 
inverse computer graphics. In computer graphics, the 
world is represented in sufficient detail so that the image 
forming process can be numerically simulated to generate 
synthetic television images; in the inverse, perceived tele­
vision pictures (from a real TV camera) are analyzed to 
compute detailed geometric models. 

For example, the polyhedron in Figure 1 was computed 
from views of a plastic horse on a turntable by intersecting 
silhouette cones. As such, silhouette cone intersection is a 
purely descriptive vision technique; it is a form of wide 
angle stereo reconstruction. Like in the joke about carving 
a statue by cutting away everything that does not look like 
the subject, the approximate shape of the horse is hewed 
out of 3-D space by cutting away everything that falls out­
side of the silhouettes. In the example, the model was 
made from three silhouettes of the horse facing to the left 
which may be compared with two views of the horse facing 
to the right. One of the views is a real video image and the 
other is a display of the result showing how the process au­
tomatically constructed a backside for the horse consistent 
with the givensilhouettes. 

The present implementation requires a favorably ar­
ranged viewing environment (white objects on dark back­
grounds or vice versa); application to more natural situa­
tions will be possible when a bulk correlation processor 
(an SPS-41) becomes available for extracting silhouettes 
by stereo depth discontinuities. Furthermore, the restric­
tion to turntable rotation is for the sake of easy camera 
solving; this restriction will be lifted by providing stronger 
feature tracking for camera calibration. The silhouette 
cone intersection method can construct concave objects 
and even objects with holes in them; what are missed are 
concavities with a full rim, that is points on the surface of 
the object whose tangent plane cuts the surface in a loop 
that encloses the point. The idea arose out of an original 
intention to do "blob" oriented visual model acquisition, 
however a 2-D blob came to be represented by a silhouette 
polygon and a 3-D blob consequently came to be 
represented by a polyhedron. 

Once acquired, a 3-D model can be used to anticipate 
the appearance of an object in a scene, making feasible a 
quantitative form of visual feedback. In Figure 2 for 

589 

example, the approximate video appearance of the ma­
chine parts schematically depicted (top) can be computed 
and analyzed for edges (middle) and compared with an 
edge analysis of an actual video image of the parts (bot­
tom). By comparing the predicted image with a perceived 
image, the correspondence between features of the internal 
model and features of the external reality can be es­
tablished and a corrected location of the parts and the 
camera can be measured. Visually acquired 3-D geometric 
models can be of use to other robotic processes such as 
manipulation, navigation or recognition. 

Unfortunately, these two approaches to computer vision 
(descriptive vision and verification vision) are only as 
strong as the state of the art in 3-D computer graphics. 
Consequently, my recent vision work has been largely 
concerned with the representation and manipulation of 3-
D objects; objects which are solid, opaque and rigid. Al­
though there are several significantly different geometric 
modeling ideas: arrays, 3-D density functions, 2-D 
parametric· functions, volume elements, cross sectional ele­
ments, skeletons, manifolds and polyhedra; I have 
concentrated on polyhedra because they are simple 
enough to readily handle in a computer and complex 
enough to represent an arbitrary opaque surface. The rest 
of this paper is devoted to presenting a particular polyhe­
dron representation for which convenient sets of manipu­
lation routines have been developed. 

INTRODUCTION TO THE WINGED EDGE 

The Winged Edge polyhedron representation is imple­
mented as a data structure composed of small blocks of 
words containing pointers and data in the fashion usual to 
graphics and simulation. An introduction to such data 
structures can be found in Chapter 2 of Knuth's Art of 
Computer Programming. 1 Quickly reviewing Knuth's 
terminology, a node is a group of consecutive words of 
memory,. a field is a named portion of a node and a link is 
the machine address of a node. The notation for referring 
to a field of a node consists simply of the field name 
followed by a link expression enclosed in parentheses. For 
example, the two faces of an edge node whose link is 
stored in the variable named "edge", are found in the 
fields named NF ACE and PF ACE, and are referred to as 



590 National Computer Conference, 1975 

""""I"Ii"":,..-",;I~,iIJW,ol;;.J.,t"",.I~~u.1Il.oa.o..&l..loiw.. ..... ,,, ....... ;., •.• ~,; •. , 

Figure I-An example of silhouette cone intersection 

~FACE(edge) and PFACE(edge). Although my latest lan­
guage of implementation is PDP-10 machine code, exam­
ples will be given in a fictional programming language 
which combines ALGOL with Knuth's node/link notation. 

A polyhedron is made up of four kinds of nodes: bodies, 
faces, edges and vertices. The body node is the head of 
three rings: a ring of faces, a ring of edges and a ring of 
vertices. In this context, a ring is a doubly linked circular 
list with a head node. Each face and each vertex points 
directly at only one of the edges on its perimeter. Each 
edge points to its two faces and its two vertices. Complet­
ing the topology, each edge node contains a link to each of 
its four immediate neighboring edges clockwise and. 
counterclockwise about its face perimeters as seen from 
the exterior side of the surface of the polyhedron. These 
last f()ur ,links are the wings of the edge, which provide the 
ba~is for efficient face perimeter and vertex perimeter ac­
ceHsing. Finally, the links of the edge nodes can be 
com;istently oriented with respect to the surface of the 
pf)lyhedron so that the surface always has two sides: the. 
inside and the outside. 

Observe that there are twenty-two link fields in the 
ha~ic repres(mtati(Jll: t)f)dies contain six links, faces three 
links, v£!rtices three links and edges ten links. I f we allow a 
link narrw such as pgJ) to serve different roles depending 
fJll whHh(!f it appJi(!H to a body, face, edge or vertex; then 

the minimum number of different link field names that 
need to be coined is ten. The data structures and the link 
fields comprising the structures are listed in Figures 3 and 
4. The ten link names include: NFACE and PF ACE for two 
fields that contain face links in edges and the face ring, . 
NED and PED for two fields that contain edge links, NVT 
and PVT for two fields that contain vertex links, and NCW, 
PCW, NCCW and PCCW for the four fields that contain 
edge links and are called the wings. 

By constraining the arrangement of links in an edge 
node both the surface orientation (interior and exterior) 
and a linear orientation of the edge as a directed vector 
can be encoded. Figure 3 diagrams the arrangement of the 
links comprising the topology of an edge of a polyhedron 

J<'igUfe::! An example of verificatioll visioll 



as viewed from the exterior side of its surface. Although 
the vertices in the figure are shown with only three edges, 
vertices may have any number of edges; the other 
potential edges would not be directly linked to the middle 
edge of the figure and so were not shown. 

To ~omplete the representation, space is allocated to 
contain 3-D coordinates of each vertex in fields named 
XWC, YWC and ZWC; the initials "wc" stand for World 
Coordinates. For the sake of vision and display, three 
more words are allocated to hold the Perspective Projected 
coordinates of each vertex in fields named XPP, YPP and 
ZPP. Also a word of thirty six status bits is carried in 
every node: permanent status bits specify the type (body, 
face, edge, vertex, etc.) of every node, temporary bits 
provide space for operations such as hidden line' elimina­
tion that require marking. Passing now from necessities to 
conveniences, faces carry exterior pointing normal vectors 

As viewed from the exterior side 

NFACE(Edge) Edge 

1. Face ring of a body: 

NFACE(body or face) & PFACE(body or face). 

2. Edge ring of a body: 

NEOCbody or edgo) & PEO(body or edge). 

3. Vertex ring of a body: 

NVT(body or vertex) & PVT(body or vertex). 

4. First edge of a face or vertex: 

PED(vertex) or PED(face). 

6. The two faces of an edge: 

NFACE(edge) and PFACE(edge). 

7. The two vertices of an edge: 

NVT(edge) and PVT(edge). 

8. The four wing edges of an Edge: 

NCW(Edge) edge of NFACE Clockwise from Edge. 

PCW(Edge) edge of PFACE Clockwise from Edge. 

NCCW(Edge) edge of NFACE CCW from Edge. 

PCCW(Edge) edge of PFACE CCW from Edge. 

I<'igllrt,;\ Wingl'd l'dgl' t.opology 

A Polyhedron Representation for Computer Vision 591 

and several words of photometric surface characteristics. 
The face vectors are derived from surface topology and 
vertex loci, and so they are not basic geometric data as in 
some representations. Bodies carry a print name, as well 
as four link fields (DAD, SON, BRO, SIS) for implement­
ing a parts tree data structure; and two link fields (CW 
and CCW) for a body ring of all the bodies in the world 
model. Node formats are given in Figure 4 for an imple­
mentation based on fixed sized (twelve word) nodes. 

The Winged Edge Polyhedron Representation as just 
presented is complete. Edge nodes car.ry most of the to­
pology, vertex nodes carry the geometry, face nodes carry 
the photometry and body nodes carry the nomenclature 
and parts tree structure. The point that remains to be 
demonstrated, is that the appropriate subroutines for 
creating, maintaining and exploiting edge orientation exe­
cute efficiently and provide good primitives for solving 
such geometric problems as hidden line elimination and 
polyhedral intersection. 

SEQUENTIAL ACCESSING 

An immediate consequence of the ring structures is that 
the faces, edges and vertices of a body are sequentially ac­
cessible in the manner illustrated by the following lines of 
code: 

COMMENT APPLY A FUNCTION TO ALL THE 
FACES, EDGES AND VERTICES OF A BODY; 
PROCEDURE APPLY (PROCEDURE FN; 
INTEGER B); 
BEGIN 
INTEGER F,E,V; 
F~B; WHILE B~(F~PFACE(F» DO FN(F); 

COMMENT APPLY FUNCTION TO FACES OF 
A BODY; 

E~B; WHILE B~(E+-PED(E» DO FN(E); 
COMMENT APPLY FUNCTION TO EDGES OF 

A BODY; 
, V.-B; WHILE B~(V+-PVT(V» DO FN(V); 

COMMENT APPLY FUNCTION TO VERTICES 
OF A BODY; 

END; 

The rings could of course have been traversed in the other 
direction by invoking NVT, NED and NF ACE in place of 
PVT, PED and PF ACE. The reason for doubly linked lists 
(i.e., rings) is rapid deletion. Finally, observe that the face 
and vertex rings could be eliminated at the cost of having 
a more complicated face/ vertex sequential accessing 
method requiring a visitation marking bit in the status 
word of face and vertex nodes. 

PERIMETER ACCESSING 

The perimeter of a face is an ordered list of edges and 
vertices, the perimeter of a vertex is an ordered list of 



592 National Computer Conference, 1975 

BODY NODE FORMAT EDGE NODE FORMAT 
The body node is the head of tho face, edge and The main fields of the edge are explained in the 

vertex rings which use words I, 2, and 3. The text. The negative three words are used for 

body node carries a parts tree structure in edge coefficients and for clipped display 

words 4 and 5. There is a print name of up to coordinates. The alt, alt2 and cw fields are used 

ten characters carried in words -2 an -I. The as tomporaries. The CCW field points at the 

links of the 8th word are always left free for body of edge and expedites BGET. The nlnk and 

linkage to user data structures. 

-3 TMP 
-2 PNAMEI Print name. 
-1 PNAME2 
0 STATUS £JITS 
1 NFACE Pf_~.£L Face ring. 
2 NED PED Edga ring. 
3 NVT PVT Vertex ring. 
4 DAD SON Parts Tree. 
5 BRO SIS Parts Tree. 
6 alt TRAM Body TRAM. 
7 CW CCW- Body ring. 
8 nlnk pink User links. 

F ACE NODE FORMAT 

pink fields are kept empty for usors. 

-3 
-2 
-I 
o 
1 
2 
3 
4 
5 
6 
7 
8 

t----.;.;.x~1 d;.,..;;c.-.;,A=--=A~yt..,;l~d;,;.c_--1 Display Coord. or 
t--_x2_d_c-:;B=-:;B:::--,y ..... 2_d,....c_--1 2 -0 Edge Coef. or 

t---~ST~A=-::T::-:-~':"::~~B=I=TS."..--~ 3-D line Cosines. 

t--_N:-:~F==A:-C_E-+--=P=-F A,=-C_E~ Two Faces. 
t---:-:N.,;;;,E~D_+--,P",..;E::,;:D:-..-~ Edge ri ng. 
t----:-N:-::V-:-:T-:---t---=P-=V.,-;:T-:--__I Two ve rt ices. 
.----:-N:-:::C"""W-:-:-:--t--=P~C..;.,.W;,.,..,-__I Cloc kwise Wings. 
t----:-NC7"'C_W_t---:PC~C~W---1 CCW Wing Edges. 
.--_a_It_--l'-,,;.,a...;.lt2~_-I T e mpor aries. 
I-~cw~_-+-~cc~w..::-_~ T omporaries. 
"'---.;.;n.:.;..ln;.;.;k_...L-_~piln;.;.;k~__J User I inks. 

VERTEX NODE FORMAT 
The face node carries a normalizod face normal The' vertex node contains locus in three forms: 

vector in AA, B8, and CC; tho negativo distanco world coordinates, perspective projected 

of the face plane from the orgin, KK; photometric coordinates and display coordinates. The first 

parameters are kept in words 4, 5 and 7. 

-3 AA Faco plane 
-2 BB normal 
-1 CC vector. 
0 STATUS BITS 
1 NFACE PFACE Face ring. 
2 Ncnt PE-IS- First odge. 
3 KK Distance to origin 
4 red l.Zrn bluo I wht Reflectivities. 
5 Lr IL~ ILb Lw ISml Sn Lumns.& Spec.Coef. 
6 alt alt2 T empor aries 
7 QO Vidoo Intensity. 
8 nlnk pink User Links. 

\.. 

edge of a vertex perimeter is contained in the 

PED field. The alt, a1t2, cw, ccw and Tjoint fields 

are used as temporaries. 

-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 

XWC 
YWC 

I-__ ~~=-__ ~ World locus 

ZWC 
STATUS BITS 

XDC YDC 
Tjoint PED 
NVT PVT 

XPP 

.---=~~-t---=~-__I Displ ay locus. 
I----::-:~..;.;;..-+--====__~ First Edge. 
'--_~~:-:-::_";"";" _ __I Vertex ring. 
.--__ ~'==:__--__I Perspective 
.--_:-:----",~_,..,...,... _ __I Projected loc us. YPP 

alt ZPP alt2 
cw ccw 
nlnk pInk 

.---':""'-:---t-";"";"~-__I Temporaries. 
"--~~_...L-~';';":';"'_~ User links. 

Figure 4-Example of winged edge node format::; 

edges and faces, and the perimeter of an edge is an 
ordered list consisting of exactly two faces and two 
vertices. The perimeter definitions are caricatured in 
Figure 5. One virtue of the winged edge representation is 
that both vertex and face perimeters can be traversed in 

either direction (clockwise or counterclockwise) while be­
ing dynamically maintained in "one ring". 

Given one edge of a face (or vertex) perimeter, the next 
edge clockwise (or counterclockwise) from the given edge 
about the particular face (or vertex) can be retrieved from 

" 



the data structure with the assistance of two subroutines 
called ECW and ECCW. The idea of the edge clocking 
routines is to match the given face (or vertex) with one of 
the faces (or vertices) of the given edge and to then return 
the appropriate wing. A possible coding of ECCW and 
ECW might be as follows: 

COMMENT FETCH EDGE CCW FROM E ABOUT 
FV; 
INTEGER PROCEDURE ECCW (INTEGER E,FV); 
BEG IN "ECCW" 

IF PFACE(E)=FV THEN RETURN(PCCW(E»; 
IF NFACE(E)=FV THEN RETURN(NCCW(E»; 
IF PVT(E)=FV THEN RETURN(PCW(E»; 
IF NVT(E)=FV THEN RETURN(NCW(E»; 
FATAL; 

END "ECCW"; 

COMMENT FETCH EDGE CLOCKWISE FROM E 
ABOUT FV; 
INTEGER PROCEDURE ECW (INTEGER E,FV); 
BEGIN "ECW" 

IF PFACE(E)=FV THEN RETURN(PCW(E»; 
IF NFACE(E)=FV THEN RETURN(NCW(E»; 
IF PVT(E)=FV THEN RETURN(NCCW(E»; 
IF NVT(E)=FV THEN RETURN(PCCW(E»; 
FATAL; 

END "ECW"; 

The first edge of a face or vertex is (of course) im­
mediately available from the PED field of the face or 
vertex. For example, the two procedures below can be used 
to visit all the edges of a face or all the edges of a vertex, 
respectively. 

COMMENT APPLY FUNCTION TO EDGES OF A 
FACE; 
PROCEDURE APPLY (PROCEDURE FN; 
INTEGER F); 
BEGIN 

INTEGER E,EO; 
E.-EO.-PED (F); 
DO FN(E) UNTIL E0=(E.-ECCW(E,F»; 

END; 

COMMENT APPLY FUNCTION TO EDGES OF A 
VERTEX; 
PROCEDURE APPLY (PROCEDURE FN; 
INTEGER V); 
BEGIN 

INTEGER E,EO 
E.-EO.-PED (V); 
DO FN(E) UNTIL EO=(E.-ECCW(E,V»; 

END; 

U sing the same idea as in the edge clocking routines, a 
face or vertex can be retrieved relative to a given edge and 
a given face or vertex. These routines include; FCW and 
FCCW which return the face clockwise or counter-

A Polyhedron Representation for Computer Vision 593 

A Vertex is surrounded 
by Edges and Faces 

EtE 
An Edge is surrounded 
by Faces and Vertices 

Figure 5-Three kinds of perimeters 

A Face is surrounded 
by Edges and Vertices 

clockwise from a gvien edge with respect to a given vertex; 
VCW and VCCW which return the vertex clockwise or 
counterclockwise from a given edge with respect to a given 
face; and OTHER which returns the face or vertex of the 
given edge opposite the given face or vertex. Together the 
seven routines: ECW, ECCW, VCW, VCCW, FCW, 
FCCW and OTHER exhaust the possible oriented retriev­
als from an edge node; they also alleviate the need to ever 
explicitly reference a wing field when traveling the surface 
or a polyhedron. With node type checking the primitives 
can be made stronger, for example ECCW(vertex,face) is 
implemented to return the edge counterclockwise from 
the given vertex about the given face. With node type 
checking and signed arguments the seven perimeter ac­
cessing routines could even be replaced by a single routine 
perhaps named PERIMETER-FETCH or PGET. On the 
other hand, I favor having the proliferation of accessing 
names for the sake of documenting the clocking direction 
and the types of nodes involved. 

Two remaining accessing routines, of minor importance, 
are BGET(entity) and LINKED(entity,entity). BGET of 
a face, edge or vertex merely cycles the appropriate ring to 
retrieve the body of the given entity. The LINKED 
routine determines whether its two arguments (faces, 
edges or vertices) are adjacent; there are six LINKED 
cases: (i) Face-Face, returns a common edge or FALSE; 
(ii) Face-Edge, returns Boolean value F=PFACE(E) or 
F= NFACE(E); (iii) Edge-Edge, returns a common vertex 
or false; (v) Edge-Vertex, returns Boolean value 
V=PVT(E) or V=NVT(E); (vi) Vertex-Vertex, returns 
common edge or FALSE. (As in LISP, zero is false and non­
zero is true). 

BASIC POLYHEDRON SYNTHESIS 

LOWEST LEVEL WINGED EDGE ROUTINES. 
Node Makers: MKNODE, MKB, MKF, MKE, MKV, 

MKTRAM. 
Node Killers: KLNODE, KLB, KLF, KLE, KLV. 
Wing Mungers: WING, INVERT, EVERT. 
Surface Fetchers: ECW, ECCW, OTHER, VCW, 

VCCW, FCW, FCCW, LINKED. 
Parts Tree Routines: BDET, BATT, BGET. 

There are sixteen routines for node creation and link 
manipulation which when combined with the nine access­
ing routines of the previous section form the nucleus of a 



594 National Computer Conference, 1975 

polyhedron modeling system. These routines are very low 
level in that the. final applications user of winged 
polyhedra will never explicitly need to make a node or 
mung a link. The word mung (meaning to modify an exist­
ing structure by altering links in place) is LISP slang that 
deserves to be promoted into the technical jargon; tradi­
tionally, a mung routine is one which makes applications 
of the LISP primitives RPLACA and RPLACD. The 
twenty five routines listed above are the bedrock for the 
Euler primitives, which are an elegant set of subroutines 
for altering polyhedra while always maintaining the Euler 
relation: F - E + V = 2*B - 2* H between the numbers of 
bodies, faces, edges, vertices and handles. Examples of 
Euler primitives are given in another paper written for 
this conference2 as well as SeCtion 3 of Reference 3 and so 
will not be elaborated here. 

Node makers and killers 

The MKNODE and KLNODE are the raw storage allo­
cation routines which fetch or return a node from the 
available free storage. The MKB routine creates a body 
node with empty face, edge and vertex rings; the body is 
placed into the body ring of the world model. The MKF, 
MKE and MKV each take one argument and create a new 
face, edge or vertex node in the ring of the given ~ntity: 
with type checking these three primitives could be consoli­
dated. Finally the MKTRAM node creates a tram node, 
which consists of twelve real numbers that represent either 
a Euclidean transformation or a Cartesian frame of 
reference depending on the context. As a Cartesian frame 
of reference the tram node is interpreted as a 3-D locus in 
world coordinates with a right handed triad of orthogonal 
unit vectors; as a Euclidean transformation the tram node 
is interpreted as a translation vector followed by a rotation 
matrix. Tram nodes are further explained in Reference 3. 
The corresponding kill routines KLB, KLF, KLE and 
KL V remove the entity from its respective ring and return 
its node to free storage. 

Wing mungers 

The WING(edge1,edge2) routine finds that face and 
vertex the arguments edgel and edge2 have in common 
and stores the wing pointers between edge1 and edge2 ac­
cordingly; the exact link manipulations are illustrated in 
the example coding of the WING procedure immediately 
following this paragraph. Recalling that edges are directed 
vectors, the INVERT(E) routine flips the direction of an 
edge by swapping the contents of the appropriate fields 
as follows: PFACE(E)~NFACE(E); PVT(E)~ 

NVT(E); NCW(E)-NCCW(E) and PCW(E)­
PCCW(E). Finally, the EVERT(B) routine turns a 
body inside out, by performing the following link swaps 
on all the edges of the given body: PF ACE(E)~ 

NFACE(E); NCW(E)-PCCW(E); and NCCW(E)~ 
PCW(E). 

PROCEDURE WING(INTEGER E1,E2); 
BEGIN 

IF PVT(E1)=PVT(E2)I\PFACE(El)= 
NFACE(E2) THEN BEGIN PCW(E1)-E2; 
NCCW(E2)-El;END; 

IF PVT(El)=PVT(E2)I\NFACE(El)= 
PFACE(E2) THEN BEGIN NCCW(El)-E2; 
PCW(E2)-El;END; 

IF PVT(El)=NVT(E2)I\PFACE(El)= 
PFACE(E2) THEN BEGIN PCW(El)-E2; 
PCCW(E2)-El;END; 

IF PVT(El)=NVT(E2)I\NFACE(El)= 
NFACE(E2) THEN BEGIN NCCW(E1)-E2; 
NCW(E2)-El;END; 

IF NVT(El)=PVT(E2)I\PFACE(El)= 
PFACE(E2) THEN BEGIN PCCW(El)-E2; 
PCW(E2)-E1;END; 

IF NVT(El) = PVT(E2) 1\ NFACE(El)= 
NFACE(E2) THEN BEGIN NCW(El)-E2; 
NCCW(E2)-El;END; 

IF NVT(El)=NVT(E2)I\PFACE(El)= 
NFACE(E2) THEN BEGIN PCCW(El)-E2; 
NCW(E2)-El;END; 

IF NVT(El)=NVT(E2)I\NFACE(El)= 
PFACE(E2) THEN BEGIN NCW(El)-E2; 
PCCW(E2)-E1;END; 

END; 

Part tree routines 

Body nodes can be grouped into a tree structure of 
parts. The parts tree consumes four link positions (DAD, 
SON, BRa, SIS) and is maintained in body nodes by the 
following primitives: BDET(body) detaches a body node 
from the parts tree, BATT(bodyl,body2) attaches bodyl to 
the ring of children belonging to body2, and BGET( entity) 
returns the body node at the head of the given face, edge 
or vertex ring. The SON field of a body may contain a 
pointer to a headless ring of subpart bodies, the ring of 
subparts is maintained in the BRa (brother) and SIS 
(sister) fields, and each subpart contains a pointer back to 
its parent in its DAD field. At present, the notion of a 
body is coincident with the notion of a connected polyhe­
dron; however by allowing several bodies to be associated 
with a single polyhedral surface, a flexible object such as 
an animal could be represented. 

EDGE AND FACE SPLITTING 

The most important property of the winged edge 
representation is that edges and faces can be split using 
subroutines that make only local alterations to the data 
structure; and the splits can easily be removed. The edge 



BEFORE: VNEW .. ESPLlT(EDGE); 
AFTER: EDGE" KLEV(VNEW); 

INTEGER PROCEDURE ESPLIT (INTEGER EDGE)I 
BEGIN "ESPLIT" 

INTEGER VNEU,ENEU; 
COMMENT CREATE A NEU EDGE AND VERTEX; 

VNEU ~ MKVCPVT(EDGE»; 
ENEU • MkE(EOGE)1 

COMMENT CONNECT VERTICES & FACES TO EDGES; 
PVTCENEU) ~ PVTCEOGE); 
NVTCENEU) ~ VNEW; 
PVHEOGE> • VNBI; 
PFACECENEU) • PFRCEC£DGE)I 
NFACECENEU) ~ NFACE(EOGE); 

COMMENT CONNECT EDGES TO VERTICES, 
IF PEDepVTCEOGE)~EDGE THEN 

PEDCPVTCEDGE».ENEU, 
PEDeVNEU).ENEU; 

COMMENT LINt: THE WINGS TOG£THER; 
NCUCENEU) • EDGEI PCCUeENEU) ~ EDGE; 
PCUeEDGE) • ENEU; PCCU(EOGE) • ENEU, 
UINGeNCCU(EDGE),ENEU), 
UING(PCU(EOGE),ENEUJ, 
RETURN (VNEU) I 

END "ESPL IT" I 

A Polyhedron Representation for Computer Vision 595 

AFTER: VNEW" ESPLlT(EDGE); 
BEFORE: EDGE" KLEV(VNEW); 

INTEGER PROCEDURE KLEV elNTEGER VNEU) , 
BEGIN ttKLEV" 

INTEGER EDGE,ENEU,V,F,B; 
ENEU ~ PEDCVNEU)I 
EDGE. ECCU(ENEU,VNEU); 

COMtlENT ORIENT EDGES AS IN OHlGRRM; 
IF NVTCENEUI _ VNEU THEN INVERTCENEU); 
IF PVTCEDGEI _ VNEU THEN INVERTCEOGE); 

COMMENT TIE E TO ITS NEIJ UPPER VERTEX AND IJINGS; 
V • PVTCEOGE) • PVT(ENEUI; 
UINGCPCUeENEUI,EDGE); 
UING(NCCU(ENEUI,EOGE)~ 

COMMENT ELIMINATE OCCURRENCES OF ENEU IN F AND V, 
IF PEDCV):ENEU THEN PED(V) • EDGE 
IF PEOCPFRCECEDGE)I=ENEU THEN 
. PED(PFACECEDGE».EOGE; 

IF.PEDCNFRCECEDGE»:ENEIJ THEN 
PED(NFACE(EOGE».EOGE, 

COMMENT REMOVE HODES FROM RINGS AND RETURN EDGE, 
KLVeVNEIH I 
KLE(ENEU); 
RETURNCEDGE), 

END "KLEV"; 

The actual routines differ slightly from those given above in that they do argument type 

checking and data structure checking; nevertheless, a diagnostic trace of the implemented version 

reveals that the ESPLIT routine executes an average of 170 PDP-IO instructions and the KLEV routine 

execute. anlverage of 200 instructions. 

Figure 6-Make and kill edge-vertex 

split routine, ESP LIT , makes a new edge and a new vertex 
and places them into the surface topology as shown in 
Figure 6; the kill edge-vertex routine, KLEV, undoes an 
ESPLIT. The face split routine, MKFE, creates a new 
edge and a new face and places them into the surface to-

o pology as shown in Figure 7; the kill face-edge routine, 
KLFE, undoes a MKFE. 

The rest of this section concerns implementation, the 
use of the split and kill routines illustrate a pattern which 
applies to the coding of any operations on winged· edge 

structures. In a typical situation, there are five steps: first, 
get the proper kinds of nodes into the body rings using the 
MKF, MKE, MKV primitives; second, position the 
vertices by setting their XWC, YWC,. ZWC fields; third, 
connect each vertex and face to one of its edges by setting 
face/vertex PED fields; fourth, connect each edge to its 
two faces and its two vertices by setting the NFACE, 
PFACE, NTV, PVT fields of the edge; finally, set up the 
wing perimeter pointers by applying the WING primitive 
to the pairs of edges to be mated. 



596 National Computer Conference, 1975 

BEFORE: ENEW .. MKFE(Vl,FACE,V2); 
AFTER: FACE" KLFE(ENEW); 

INTEGER PROCEDURE MKFEelNTEGER VI,FACE,V2), 
BEGIN "MKFE" 

INTEGER VI,V2,FNEU,ENEU,E,EO,8,V, 
COMMENT CREATE NEU FACE 8 EOGEI 

FNEU ~ MKF(FACE)I ENEU ~ M~E(PEDeFRCE»; 

COMMENT LINK NEU EDGES TO ITS FRCES & VERTICES, 
PEDeF) ~ PEDeFNEU) ~ ENEW; 
PFACEeENEIl) .. F, NFRCE(ENEIl) .. FNEU; 
PVTeENEU) .. VII NVT(ENEW) .. V2, 

COMMENT GET THE UINGS OF THE NEil EDGE, 
E2 ~ PEO eVl> , 
DO E2 .. EcueeEI .. E2),Vl) UNTIL FCU(EI,VI).FACE, 
E4 .. PEO eVl> I 
DO E4 .. ECU«E3 .. E4),V2) UNTIL FCIl(E3,V2).FACE, 

COMMENT SCAN ceu FROM VI REPLRCING F'S UITH FNEU, 
E ~ E2, 
00 IF PFACECE)cFACE THEN PFRCE(E) .. FNEU 

ELSE NFRCE(E) .. FNEIl, 
UNTIL E4 • eE .. EccueE,FNEU»; 

COMMENT LINK THE !lINGS, 
UINGeEI,ENEU), UING(E2,ENEU), 
IlING(E3,ENEU), UINGeE4,ENEU), 
RETURN (ENEIl) , 

AFTER: ENEW .. MKFE{V 1 ,FACE,V2); 
BEFORE: FACE':' KlFE(ENEW); 

INTEGER PROCEDURE KLFE eINTEGER ENEIl), 
BEGIN "KLFE" 

INTEGER FNEU,FACE,Vl,V2,E,El,E2,E3,E4, 
COMMENT PICKUP RLL THE LINKS OF ENEIlI 

FRCE .. PFRCEeENEU); FNEU ~ NFRCECENEU); 
VI .. PVTeENEU); V2 .. NVT(ENEIl); 
El .. PClleENEU); E2 .. NCCIl(ENEU); 
E3 .. NCUeENEU); E4 .. PCCIl(ENEU); 

COMMENT GET ENEU LINKS OUT OF FRCE, VI RND V2, 
IF PEOeVI) : ENEU THEN PEO(VI) .. EI; 
IF PEoeV2) • ENEIl THEN PED(V2) .. E3; 
IF PEO(FRCE)=ENEIl THEN PEO(FRCE) .. E3, 

COMMENT GET RIO OF FNEIl RPPEARANCES, 
E .. E2, 
00 IF PFACE(E).FNEU THEN PFACE(E) .. FRCE 

ELSE NFACECE) .. FACE; 
UNT IL E4 II (hECCIl (E, FNHI) ) , 

COMMENT LINK UINGS TOGETHER ABOUT FACE, 
UINGeE2,El),IlING(E4,E3), 
KLF(FNEU);KLEeENEIl); 
RETURNeFRCE), 

END; 

END, 
Again, the actual routines differ from those given above in that they do argument type checking 

and data structure checking. The above two routines typically take about twice as long to execute as 

the previous pair; notice that the execution time is dependent on the length of face perimeters, which 

ar. mostly three or four edges long. 

Figure 7-Make and kill face-edge 

CONCLUSION 

The technical point of this paper is that a polyhedral 
representation with a coherent and locally alterable to­
pology can be constructed. The larger philosophical point 
is that computer vision perhaps can be realized by using 
computer graphics techniques to keep an internal mental 
simulation in sync with the changing appearance of the 
external physical reality. 

REFERENCES 

1. Knuth, Donald Ervin, The Art of Computer Programming, Addison­
Wesley, Reading, Massachusetts, 1968. 

2. Eastman, Lividini & Stoker, "A Database for Designing Large 
Physical Systems," Proceedings of the National Computer 
Conference, May 1975. 

3. Baumgart, Bruce G., Geometric Modeling for Computer Vision, 
Stanford Artificial Intelligence Laboratory, Memo no. AIM-249, 
Stanford University, October 1974. 



Aspects of modelling in computer aided 
geometric design* 

by RICHARD F. RIESENFELD 
University of Utah 
Salt Lake City, Utah 

INTRODUCTION 

This paper identifies some problems of modelling free­
form geometry in a computer, and discusses attributes of a 
good model and good parameters for a model. In 
particular, we are interested in representing arbitrary 
shape information, shapes that may not have special 
names and may not be well defined except at particular 
points (or curves) ·of interest occasionally referred to as 
"hard points" or "hard constraints." There may remain 
considerable freedom in modelling the "soft points" or 
"soft constraints." Paradigms of this problem include 
modelling an automobile fender, a shoe last, or a boat hull. 
This is an aspect of an area that Forrest calls computa­
tional geometry. 12 

PROPERTIES OF GEOMETRIC MODELS 

Devising adequate and useful mathematical models for 
representing geometric shape information has been an 
area of lively research even before a numerically con­
trolled drafting machine was first logically attached to a 
computer. The straight line segment AB is easily 
represented by its end points (A, B); the polygonal line is 
then (Au A 2, ••• , An), where Ai is a vertex. Additional 
structure leads to economies in representing line drawings, 
such as architectural plans. Treating the plan like a large 
graph, we list all of the vertices in one array and describe 
the connectivity (also called "topology") in another array, 
known in graph theory as the connection matrix. Ob­
viously this approach is not restricted to planar graphs. 

Since the graphic output from a computer is quantized, 
albeit rather finely in some cases, it may seem no loss to 
quantize the input. Thus a very straightforward approach 
to representing a free-form curve is to approximate it by a 
polygonal line whose sides have length close to the size of 
the output quantization level, namely a raster unit or one 
lowest quantum unit of output resolution. Chain encod­
ing14 sample data points from a curve affects a major data 
reduction by storing mostly relative (incremental) in­
formation instead of the entire absolute coordinate in-

* This work has been supported in part by the National Science Founda­
tion (DCR74-13017) and the Advanced Research Projects Agency 
(DAHC15-73-C-0363). 

597 

formation. Even a computing environment with rich 
enough resources to support a massive "sample and store" 
approach to representing curves cannot overcome the se­
mantic loss that such a method engenders. This model 
leads to copious volumes of coordinate data in which much 
of the original relational and other attribute information 
might be irretrievably lost. Answering a simple user inter­
rogation regarding similarity or identity of two quantized 
curves becomes a formidable task with this model. 

A closed form like X2+y2=5.7 that is, a finite expression 
that describes a genetic point on a curve is more compact to 
store and more useful for identifying attributes of a curve. 
For example, one could symbolically compare the two 
closed forms to determine relationships between two 
modelled curves. A representation in the form of a list of 
points may not be necessary until the last step that 
generates a display file for driving a graphical output 
device like a plotter or a CRT. 

Following the above advice is not a simple matter if we 
observe that a sketched curve almost never has an exact 
closed form. First we must adopt a satisfactory model for 
representing arbitrary curves in a computer. According to 
an internal view of the computer, we seek a mathematical 
model that allows us to represent arbitrary geometric 
curves as a short list of parameters, a form amenable to 
the linear stores found in most general purpose computers. 
In an abstract sense, this is a quantization inasmuch as we 
are representing information about infinitely many 
geometric points on a curve by finitely many parameters. 
Usually these parameters are coefficients (say, of a poly­
nomial) that specify a "point" function in a finite dimen­
sional subspace of the infinite dimensional space of 
continuous (C10) curves, the discretization being the inte­
gral dimension of the subspace, or equivalently, the inte­
gral length of the corresponding parameter list. So the 
finiteness of a polynomial representation manifests itself 
by its restricted capacity for approximating complex, 
randomly meandering curves. 

While we recognize that some inaccuracies will result 
from modelling (approximating) an infinite dimensional 
object space, we would normally insist on a scheme that 
affords us the power to come arbitrarily close, in the user's 
eye, to the object that we are trying to represent. In topo­
logical terms, we need a model space that is dense in the 
object space analogous to the way that the rational num-



598 National Computer Conference, 1975 

bers are dense in the real numbers-every neighborhood 
(interval) of a real number contains a rational number. 

In the case of a polynomial curve model, Weierstrass's 
Theorem assures us that we can come arbitrarily close in 
maximum deviation, or absolute .distance, to any 
continuous curve in our object space. However, this does 
not guarantee that we can have a smooth approximation, 
only a close one. For smooth approximation we must base 
our model on a scheme like Bernstein or Bezier approxi­
mation,4.15 where shape is approximated, as well as posi­
tion. 

INTERACTIVELY SPECIFYING GEOMETRIC 
MODELS 

The discussion in this section has a rather passive 
existential tone, deferring the actual problem of dy­
namically constructing a particular model. While the 
power of a model, the class of objects that it can 
reasonably represent, may be sufficiently general, the 
model may be intractable to use because of difficulties 
that arise when one attempts to find the appropriate 
parameters for modelling an object of interest, for specify­
ing a model. 

Not only do we require that a model be capable of 
representing a wide class of objects of interest, we em­
phatically require that the model offer a convergent 
procedure which enables a user to specify a satisfactory 
parameter list. By analogy, the power of a programming 
language is a separate property from the programming 
diagnostics that guide the user along a convergent iteration 
of programs until a working program is achieved. The 
theoretical power of a programming language is not af­
fected by the efficacy of the associated error messages. 
While this distinction is patently obvious in the program­
ming language setting, the absence of useful and meaning­
ful feedback from many systems that support geometric 
models brings this writer to devote some space to the idea. 

In order to provide the user with a convergent procedure 
for specifying a model, that is, for making a geometric 
statement, we require a system whose controls correspond 
in some basic and predictable fashion to the geometric no­
tions that a designer wishes to express. Is the geometric 
language provided suitable for communicating a geometric 
statement in a direct, efficient, and undistracting manner? 
Moreover, the control response should be smooth and 
stable; small perturbations of the input controls should 
result in small perturbations to the model, for otherwise 
convergence is left to serendipity alone. More abstractly, 
the input controls should be handles of continuous opera­
tors, like scaling or rotating, and discrepancy information 
offered to the user whenever possible. Failing in this, the 
system will be draped with a pall of frustration and rejec­
tion. 

Ambiguity frequently occurs in the process of defining a 
geometric model, when the extent of the region of an 
intended modification is not explicit. Do we wish to raise a 
small bump in a restricted neighborhood of a point, a local 

change, or do we mean to raise the elevation of the entire 
object, a global change? Providing the facility in a 
graphical editor for conveniently specifying the affected 
area during an alteration is an important and subtle 
problem in graphical communications. Recently there has 
been considerable effort in developing various geometric 
models for curves and surfaces that allow for strictly local 
changes. 

By employing these models it is possible to insure that, 
outside of a specified neighborhood, the original model is 
absolutely unchanged. The absence of this property from 
many earlier models is considered a serious deficiency in 
them. In mathematical terms, allowing local alterations 
means that the models are piecewise defined. 

One of the most inhibiting restrictions in defining and 
viewing 3-dimensional geometry models is that most 
graphical input and output is through 2-D media like 
CRT's, plotters, and tablets. Thus the subtle communica­
tion problems just mentioned are severely magnified by 
having to express a statement about 3D objects in terms of 
multiple 2D projections. Similarly the visual impact and 
accuracy of a 2D rendering are often inadequate for sup­
porting a graphical dialogue involving explorations in 3D. 

Typically the scope of interest and degree of tolerances 
range widely during an interactive design session when a 
user tries to specify a model. By definition, design implies 
a mixture of design constraints and design parameters, 
the designer's freedoms. Designing a mechanical part like 
a casing may involve meeting certain boundary require­
ments in order to make the casing fit properly. On the 
other hand, broad freedom may be allowed in the shape of 
the casing apart from the boundary specifications. In sum­
mary the option for specifying parameters very precisely 
is essential, but the tedium of specifying everything in 
precise, minute details when it is not a special concern is a 
dissuasive process. One effective method for coping with 
what seems to be a dilemma between exacting design in 
the small, and casual design in the large, is a strategy for 
assigning reasonable default parameters in the model 
when the designer does not specify overriding particular 
values. Whenever possible the model should automatically 
be augmented with sensible default parameters that 
produce a nondegenerate model. The criteria for establish­
ing such parameters depend very heavily on the specific 
nature of the design work, but in a given application it is 
often apparent what these parameters ought to be. In this 
way a designer only has to delineate initial information in 
the regions where he is primarily concerned about the 
shape. As he refines his design he can improve the default 
parameters to suit his special needs. Recently P. Dube9 

has obtained impressive results in this area of preliminary 
design. 

Finally we note some of the repercussions that the pre­
vious discussion makes on the language that is used to 
express a graphical idea. Since sketching is a natural 
idiom for indicating shape information, the language must 
allow for a pictorial statement. The system has to distin­
guish between basic essential hand motions that define the 
basic character lines of an object, and nonessential marks 



Aspects of Modelling in Computer Aided Geometric Design 599 

that give depth, texture, and other· qualities that 
contribute to the total visual impression on the observer. 
Of equal importance is the ability of the system to impose 
appropriate design constraints, to. ignore unintended im­
pressions that a designer does not wish to make. For 
instance, the random deviations (noise) from a true 
straight line should not be taken literally if a straight line 
is intended. 

Work on developing graphical constraints in a system 
that supports some of the above notions dates back to 
Sketchpad.24 In recent years major advances in recogniz­
ing and interpreting graphical gestures and subtleties were 
achieved by Negroponte's Machine Architecture Group at 
M.I.T.18,19 and Baumgart2,3 at Stanford's Artificial In­
telligence Laboratory. In order to assist and interpret 
sketches, the graphics system must house and maintain a 
current intimate model of the user that includes the type 
of design work that the user is currently performing 
together with the user's own personal design idiosyn­
cracies. The context of a motion is often the best clue 
toward interpreting its meaning. Research in this area 
joins computer graphics with artificial intelligence in a 
way that poses challenging problems for both areas. 

Unless appearance is the sole concern, the geometric at­
tributes of a model form one aspect of a more general in­
tegrated model29 that contains additional information 
about structure, material, cataloging, and the like. For 
reasons beyond appearance, it is often necessary to specify 
very precise relationships, ones that are too fine for the 
eye to detect on a quantized output device. Such state­
ments lend themselves to character string input com­
mands because sketching information or pointing with a 
pen are too ambiguous in these applications.30 So in addi­
tion to the special requirements that graphics imposes, we 
have to consider the remaining requirements that a 
particular nongraphical application brings on. 

An appropriate keyboard language for issuing graphical 
commands is also necessary for forming higher level 
expressions for naming algebraic combinatioris of pre­
viously defined objects. A particular curve may only be 
defined as the intersection of two objects. Or apart may 
be simply defined as the value of a recursive algebraic 
expression involving additions and subtractions of other 
objects.5 ,3o Work of this kind has been hindered by the 
massive numerical and relational calculations needed to 
evaluate such expressions.29 But the imperative for admit­
ting recursively defined and hierarchically structured ob­
jects in a graphics language is clear. 

MODELLING AND RENDERING 

In modelling a situation we strive to abstract the se­
mantic information essential to the particular purpose at 
hand, while generally ignoring other structure that is non­
essential to our needs. For example, we can satisfactorily 
represent the two graphs in Figure 1 with exactly the same 
connection array. Many situations may get mapped into a 
model with the identical parameter list, but we should be 

A D A c 

B c B ·D 

A B C D 

A 0 1 1 0 

B 1 0 0 1 

C 1 0 0 1 

D 0 1 1 0 

Figure 1-Two graphs with same connection matrix 

indifferent to the ambiguity if the model we chose is an 
appropriate one relative to our requirements. Figure 1 
provides two representatives of the entire equivalence 
class of situations which have an identical connection ar­
ray. Moreover, if the model is rich enough in its abstrac­
tion, we can define operations on the models that hold for 
corresponding operations in our actual experiences. If our 
model admits such operations and yields a suitable 
representative of the transaction, then we say that we have 
a homomorphic model. 

Were it not an important and confusing issue in com­
puter graphics the preceding discussion might appear 
excessively lofty. But the semantic information that is im­
portant to CAGD distinguishes the area from computer 
graphics picture synthesis. In particular, there are many 
3D configurations, some defying Newtonian physics, that 
project the appearance of a ball resting on a box. The 
extent (structural relationship) of the model is the same, 
but the intent (set of realizations) of the model is quite dif­
ferent. If the extent is the only concern, then they are all 
equally satisfactory, even though some configurations are 
not physically realizable; they look the same as one that 
is. The following repercussions of this issue will reinforce 
the importance of confronting this issue directly while the 
choice of model is still protean, before the implementation 
phase is begun. 

As we have already observed in the example of the ball 
and the box, the choice of the rendering process for a 
model may critically affect the choice of extent for a 
model. A related example is in the use of shells or surfaces 
to represent solid 3D objects. For many applications this 
model is adequate, but as soon as we ask to examine a 
cross section of a solid using a surface representation we 
are confronted with the fact that this operation is not 
realizable until we augment the model with the notions of 



600 National Computer Conference, 1975 

Figure 2-3D foam model (Courtesy of A. R. Forrest) 

interior points and volumetric intersections. The analo­
gous situation arises when we try to close a "clipped 
polygon."26 Unless the polygon is thought of as a 2D object 
rather than a collection of lines and vertices, the notion of 
clipping a polygon is not well defined in the model. For 
these reasons projects like BDSlo have adopted 
Baumgart's rather elaborate data structure.3 

A CAG D system may rely on the rendering process 
instead of relying entirely on the geometric model, in 
which case the economy is occasionally called "cheating," 
because the model might not be rendered properly in 
another medium. This often occurs in subtractive render­
ing like numerically controlled milling or other machining 
operations, where important intersection curves are not ex­
plicitly computed. Rather they simply result from the suc­
cessive subtractive operations. Recently there has been an 
active interest in curve6.24 and surface descriptions that are 
entirely subtractive, that is, the curve is given by what 
remains inside an envelope of lines. 

In still other situations we make use of an additive 
rendering process. Perhaps the most immediate example 
of this is in picture synthesis when a picture is "painted" 
into a large video memory, a frame buffer, by painting in 
the background first and then "adding in" objects that are 
closer to the eye. The "adding" takes place by adding 
together the transmittance coefficients associated with 
each object. Thus transparency and opacity are achieved 
through the additive rendering process. 

Another example of additive rendering was part of an 
experimental effort by the Architecture Machine Group to 
build a responsive environment for a captive gerbil 
colony.19 With the aid of a mechanical robotic hand, the 
computer actually stacked small building blocks. Thus the 
blocks "added" up to produce an environment. 

The combination, an algebraic rendering process, 
presents itself as a rather different and generally unsolved 
problem. What parts of an assembly should be manufac­
tured subtractively and then "added" together? These 
questions begin to border on the subject called computer 
aided manufacturing, and involve the problems of 

programming a soft assembly line that consists of ma­
chines, stations, materials, and programmable control.27 

The attempted distinction between the model and the 
rendering process may seem somewhat turbid and 
belabored for the case of a single model visualized through 
a single rendering technique. When a single model is ex­
pected to suffice as the input for various rendering 
processes, then the distinction of what is model and what 
is part of the rendering process comes to the fore. For 
example, the surface shown is Figure 2 is a picture of a 3D 
model cut under computer control by a 3D plotter 
developed at University of Cambridge. The actual model 
was a mathematical spline function, a B-spline surface6.23 

that was interactively designed. This plotter, however, dif­
fers from a 2D plotter in a few substantial ways. Besides 
the obvious restriction that it cannot cut a sphere in one 
setting of a block of material, we may inform some readers 
of the subtlety that instructions to a cutter normally refer 
to the position of the end of the chuck that holds the cut­
ters.4 The cutter cuts deeper than the position of the end of 
the chuck. Feeding the cutter the description in the model 
does not produce a proper rendition of the model. Rather, 
an off-set surface must be computed first before the 3D 
positions are passed along as instructions to the cutter. 
The off-set surface which is rendered then, is usually an 
approximation to the description in the model, as approxi­
mations are introduced in the off-set computation. 

One apparent solution is to design the off-set surface 
rather than the surface itself. Sending that to the 3D plot­
ter would produce exactly the desired output. A fault with 
this solution is that the designer probably wants the im­
mediate visual feedback of a CRT, not the considerably 
delayed cutter response. We now have moved to the 
equivalent dual of the original problem. Only now the 
CRT instead of the 3D plotter requires the off-set descrip­
tion. Although it is dual computationally, it is less satisfac­
tory from the point of view that, in making the model the 
off-set surface, we have confused the model with the 
rendering process. Imagine now a third rendering from an 
ordinary digital plotter, perhaps, with hidden lines 
removed. Or a shaded picture of the same model that 
might require a polygonal data base for the rendering 
process. Clearly we would not want to mill out the poly­
gons. Nor do we have to remove hidden surfaces from a 
milled 3D model. On this point rests the case for separat­
ing model and rendering. 

EXAMPLES 

B-splines 

A cubic polynomial spline is a curve that consists of 
cubic polynomial segments called spans which are joined 
together with continuous position, tangency and curvature. 
The spans of this piecewise polynomial are joined at the 
knots of the spline. A mathematical spline is an approxi­
mation to the behavior of a mechanical spline, a thin 
beam or elastica. The mathematical spline approximates 
the minimum energy form of an elastica. 



Aspects of Modelling in Computer Aided Geometric Design 601 

Ordinary cubic spline interpolation involves calculating 
a cubic spline whose knots pass through some prescribed 
data points. The data points plus continuity conditions 
(position, tangency curvature) serve to specify the spline 
(Figure 3). 

We can view this process as an interactive procedure for 
designing a smooth curve that meets preliminary inter­
polation constraints through control points 10, 1, ... , 71 in 
Figure 3. The designer allows the design system to supply 
appropriate default parameters, thus producing a smooth 
curve passing through these designated points. In order to 
respond, the design system offers the unique curve that 
passes through the control points while satisfying the 
variational criterion of minimum ("linearized, total") cur­
vature. Thus the system invokes a variational principle, 
thereby saving the designer from having to specify addi­
tional initial parameters. 

N ow suppose the designer is not satisfied with the initial 
response; he does not like the appearance of the curve in 
the region around data point 1 (Figure 3). Simply moving 
data point 1 and repeating the interpolation process, com­
pletely redefines every point on the curve. However, we 
only want to make a local change, not a global change, 
therefore, another procedure is necessary. There is no 
direct, simple, and predictable method for accomplishing 
a local change by varying the parameters of this global 
scheme. 

Instead we invoke a local scheme for affecting the 
desired change, namely the 8-spline method16

,23 which is a 
spline generalization of a technique for manipulating 

Figure 3-Interpolating periodic spline showing excessive bulge at point 1 

2 

Figure4-Curve from Figure 3 in B-spline form 

P6 

Figure 5-Curve from Figure 3 altered locally by moving vertex P2 

curves that was introduced by P. Bezier.4 Now the control 
parameters for the curve are the vertices of its associated 
polygon whose shape the curve mimics (Figures 4 and 5). 
But each vertex has the special property that it only af­
fects the curve locally. This is aIYexample of different con­
trol parameters for the same geometric model. Manipulat­
ing the polygon permits a local alteration in a simple, 
direct operation, whereas manipulating the interpolation 
points did not. But the internal geometric model, the cubic 
spline, is the same regardless of the parameters used to 
specify it. 

On the other hand, if we expanded the model to rational 
splines, it would have increased the power of the geometric 
model. Rational splines represent circles exactly; cubic 
splines cannot. 

Triangular pate hes 

The most popular element for modelling a free-form sur­
face has been the basic bicubic patch, proposed by Coons7 

and others (Figure 6). Being a bicubic map of the unit 
square, these patches are intrinsically rectilinear-they 
have four boundary curves. Although quilts of 4-sided 
patches are amenable to many situations, triangular 
patches are better suited to certain common situations 

Figure 6-Bicubic Coons patch 



602 National Computer Conference, ~975 

Figure 7 -Curved triangular patch 

(Figure 7). In this example, the 4-sided patch model does 
not permit the designer to specify triangular patches in a 
simple non degenerate way. Recently Barnhill and Greg­
oryl,17 augmented the Coons Patch model with rational 
triangular patches. Barnhill and Gregory have had to 
expand the model to rational patches in order to include 
triangular elements as a proper mathematical extension. 

CONCLUSION 

In choosing a model for computer aided geometric design 
it is important to evaluate the utility of (1) the power of a 
model, and (2) the control parameters. Although they are 
intimately and inextricably related, a deficiency in one 
area is not necessarily remedied by an improvement in the 
other area. Furthermore, we conclude that the computer 
that houses a geometric model can also assist during the 
specification of a particular model by furnishing good 
default parameters and by calculating appropriate values 
of parameters that reflect constraints and relationships 
within the model. 

ACKNOWLEDGMENT 

Because the development of a viewpoint is an inscrutable, 
voluble process, I am not able to separate this acknowledg­
ment into specific attributions of credit. Notwithstanding 
the inequity, may it suffice to express general recognition 
and appreciation to those many individuals who have in­
fluenced me on this subject. I thank R. McDermott for 
providing some of the figures, and making helpful sugges­
tions during the writing of this paper. 

REFERENCES 

1. Barnhill, R. E., "Smooth Interpolation over Triangles," Computer 
Aided Geometric Design (Edited by Barnhill and Riesenfeld) 
Academic Press, 1974. 

2. Baumgart, B., Ph.D. Thesis, Stanford University, 1974. 
3. , "A Polyhedron Representation for Computer Vision," 

These Proceedings. 
4. Bezier, P., Numerical Control-Mathematics and Applications. (trans­

lated by A. R. Forrest). London: John Wiley and Sons, 1973. 
5. Braid, I. C., "Designing with Volumes," Ph.D. Thesis, Univ. of 

Cambridge, 1973. (Reprinted, Cantab Press, Cambridge, U .K., 
1974). 

6. Chaikin, G., "An Algorithm for High-Speed Curve Generation," 
Computer Graphics and Image Processing, June 1975. 

7. Coons, S. A., "Surface Patches and E-spline Curves," Computer 
Aided Geometric Design (Edited by' Barnhill and Riesenfeld) 
Academic Press, 1974. 

8. Davis, P. J., Interpolation and Approximation, New York: Ginn-Bla­
sidell, 1963. 

9. Dube, R. Peter, Local Schemes for Computer Aided Geometric 
Design, Ph.D. Thesis at University of Utah, 1975. 

10. Eastman, C., D. Fisher, G. Lafue, J. Lividini, D. Stoker and C. 
Yessios, An Outline of the Building Description System, Institute of 
Physical Planning Research Report #50. Carnegie-Mellon University 
(Sept. 1974). 

11. Eastman, C., J. Lividini and D. Stoker, "A Database for Designing 
Large Physical Systems," These Proceedings. 

12. Forrest, A. R., "Computer-Aided Design of Three-Dimensional Ob­
jects: A. Survey," Proc. ACM/AICA Intern. Computing Sym., 
Venice, 1972. 

13. Forrest, A. R., "Computational Geometry-Achievements and Prob­
lems," Computer Aided Geometric Design (Edited by Barnhill and 
Riesenfeld) Academic Press, 1974. 

14. Freeman, H., "Computer Processing of Line-Drawing Images," ACM 
Computing Surveys, Vol. 6, No.1, March 1974, pp. 57-97. 

15. Gordon, W. J. and R. F. Riesenfeld, "Bernstein-Bezier Methods for 
the Computer-Aided Design of Free Form Curves and Surfaces," J. 
of ACM, Vol. 21, No.2, April 1974, pp. 293-310. 

16. Gordon, W. J. and R. F. Riesenfeld, "E-spline Curves and Surfaces," 
Computer-Aided Geometric Design (Edited by Barnhill and Riesen­
feld) Academic Press, 1974. 

17. Gregory, J. A., "Smooth Interpolation without Twist Constraints," 
Computer Aided Geometric Design (Edited by Barnhill and Riesen­
feld) Academic Press, 1974. 

18. Negroponte, N., "Graphics and architecture-Recent developments 
in sketch recognition," Proc of NCC, AFIPS Press, 1973. 

19. Negroponte, N., The Architecture Machine, MIT Press, 1970. 
20. Newell, M., The Utilization of Procedural Models in Digital Image 

Synthesis, Ph.D. Thesis at University of Utah, 1975. 
21. Newman, W. and R. Sproull, Principles of Interactive Computer 

Graphics, McGraw Hill, 1973. 
22. Resch, R. D., "The Topological Design of Sculptural and Archi­

tectural Systems," AFIPS Conference Proceedings, Vol. 42, AFIPS 
Press, 1973, pp. 643-650. 

23. Riesenfeld, R. F., Applications of B-spline Approximation to 
Geometric Problems of Computer Aided Design, Ph.D. Thesis, 
Syracuse U., 1973. Available at Univ. of Utah UTEC-CSc-73-126. 

24. Riesenfeld, R. F., "Note on Chaikin's Algorithm," Computer 
Graphics and Image Processing (to appear). 

25. Sutherland, I. E., "Sketchpad: a man-machine graphical communi­
cation system," Proc. SJCC, 23, Spartan Books, 1963, pp. 329-346. 

26. Sutherland, I. E. and G. W. Hodgman, "Re-entrant Polygon Clip­
ping," C of ACM, Vol. 17, No.1, Jan. 1974, pp. 32-42. 

27. Voelcker, H., Discrete Part Manufacturing: Theory and Practice, TR 
of Production Automation Project, Univ. of Rochester, 1973. 

28. Williams, R., "On the Application of Relational Data Structures in 
Computer Graphics," Proc of IFIPS, Stockholm. North Holland 
Publishing Company, Amsterdam; American Elsevier Publishing 
Company, New York, 1974. 

29. An Introduction to PADL, Production Automation Project Staff TM-
22, University of Rochester, December 1974. 



A database for designing large physical 
systems* 

by C. EASTMAN, J. LIVIDINI and D. STOKER 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

To date, paper and pencil have been the principal medium 
for problem-solving and communication in architecture and 
engineering. While the computer has helped analyze topo­
logical and 2-dimensional problems, the drawingboard has 
remained the principal problem-solving tool for complex 
3-dimensional systems. 

Development of the Building Description System (BDS) 
was undertaken to explore use of the computer to construct 
models of complex physical systems. A fundamental goal of 
this work is a computer system capable of replacing drawings 
as the primary description for design and construction of 
buildings. The resulting capabilities are also directed toward 
the design of factories, bridges, mechanical systems, and 
urban planning. 

BDS is based upon the assumption that an adequate 
description of a physical system is a specification of a set of 
elements together with their relative locations and that all 
other relations may be identified from these primitives. It 
provides facilities to define, modify, and arrange a large 
number of elements, coupled with a means to produce 
drawings of their arrangement and to analyze their perform­
ances. It also allows derivation and analysis of the spaces 
created by elements and automatic determination of spatial 
conflicts. The result is a single database useful for communi­
cation, analyses, coordination, and fabrication. 

Elsewhere, several computer programs are under develop­
ment that allow composition and analysis of a predefined set 
of building elements. 5.9 This restriction allows a priori analysis 
to identify all allowed conditions. Design, in their case, 
consists of composing elements so as to satisfy the predefined 
system constraints as well as desired building performances. 
An alternative approach, which we have followed, has been to 
develop a general description system, allowing definition or 
alteration of any possible element, and very general analytic 
arid drawing routines. 

In order to achieve these goals in a practical way, these 
performance requirements were further elaborated, to consist 
of: 

* This work has been supported by the National Science Foundation 
(GJ-42231X) and the Advanced Research Projects Agency of the Office 
of the Secretary of Defense (F44620-73-C-0074). 

603 

(a) real-time manipulation of a database allowing the 
description of about 500,000 elements; 

(b) easy definition and manipulation of arbitrarily complex 
shapes; 

(c) a general facility for the association of attributes to 
shapes; 

(d) structures for accessing elements according to their 
name, their properties, or their spatial location ; 

(e) implementation of the program in a readily available, 
inexpensive, computing environment. 

In this paper, we present an overview of the database 
configuration of BDS which is designed to achieve these 
objectives. We shall particularly focus on: (1) the general 
facilities for describing an element in a concise manner and 
enabling easy definition and alteration, and (2) the organiza­
tion of information about a very large number of elements, 
so as to allow real-time manipulation and accessing according 
to a variety of criteria. As will be seen, these two aspects are 
highly interrelated. 

AN ENVIRONMENT FOR PHYSICAL SYSTEMS 
DESIGN 

In the use of any large scale computer aided design (CAD) 
system, a component library of standard elements is expected 
to evolve to save users from repeated definition of commonly 
occurring components. During design, element descriptions 
will be transferred from it to a project file and augmented with 
information about location and performances. Accesses to an 
element description within the project file may be frequent, 
making efficiency of access important. Only one access of the 
library is necessary for each type of element, though, as copies 
can be easily made within the project file. If a custom element 
is to be reused later,- it should be transferrable to the 
component library. 

While a variety of hardware configurations could achieve 
these performances, our work has been designed for a 16-bit 
minicomputer (PDP-ll/15) with 56K bytes of memory, 
supported by disc storage, a refresh graphics consoleS and 
interfaced with a large time-shared computer. The library is 
assumed to be stored on unmounted disc packs on the host or 
remote facility, while the project file will be maintained 
on-line on a disc file. All database operations will be made by 



604 National Computer Conference, 1975 

REMOTE MACHINE 
FILES FOR 

COMPONENT LIBRARY 

APPLICATION PROGRAMS 

( 
PDP-ll 

DATA ACCESS ROUTINES 

PROJECT FILES 

MANIPULATION 
ROUTINES 

( 
D 
( ~ 

DESIGN STATION 

Figure I-System organization of the building description system 

the host minicomputer. The remotely connected machine is 
used for large application programs, interfacing with the 
database through a set of routines. This arrangement is 
schematically characterized in Figure 1. 

REPRESENTATION OF AN ELEMENT 

At the nucleus of the representation of any physical 
system is the information structure describing a single 
element. Most physical systems consist of an enormous set of 
different elements with complexity varying from a simple 
cube to a condensing tower, yet all design manipulations 
reduce to singular or compound operations upon the element 
data structure. Further, the performance of those manipula­
tions are in part, dependent on the structure and content of 
the element information. 

In general, any representation intended for machine aided 
design should respond to three general requirements: 

1. the structure should be adequately general to enable 

storing the description of elements of vastly different 
complexity; 

2. the structure should be sufficiently "rich" to facilitate 
the operations to be applied to it, and to define the 
range of properties of interest. Among the properties 
desired in this case are capabilities for an open-ended 
set of attributes, identification of inside-outside, and 
operations for manipulating element descriptions, in­
cluding shape and location; 

3. the structure should be efficient,both in terms of the 
space required to store an element description, and in 
terms of the time required to manipulate it. 

Realization of these requirements is facilitated by introduc­
ing a level of abstraction to the concept of an element 
description. An element description may be thought of as 
three separate parts, as a topology, a geometry, and a set of 
attributes. Thus, a cube might be thought of as a topology of 
six four-sided, inter-connected planar surfaces, a geometry 
made up of eight coordinate triples locating the eight corners, 
and a set of attributes, such as surface texture, composition, 
weight, etc. 

This abstraction provides several distinct advantages in 
satisfying the above criteria. Operations on an element 
consist of distinct actions on these three parts. The spatial 
transformations (rotation, translations, scaling) act on the 
geometry, as do the perspective and other visual transforma­
tions. These operations are well defined and efficient algo­
rithms exist to perform them.7 

The Euler Operations 

Operation Equation 

(faces) - (edges) + (vertexes) = (2*objects) - (2*holes) 

Construct 
edge and 
vertex 

Construct 
face and 
edge 

Construct 
object and 
face, de­
stroyedge 

Split an edge 
with a 
vertex 

Divide an 
object with 
a plane 

Fuse two 
objects and 
remove the 
common 
faces 

Remove two 
faces and 
construct a 
hole 

+1 

+1 

+2 

-2 

-2 

+1 +1 

+1 

-1 +2*1 

+1 +1 

+2*1 

-2*1 

+2*1 

Figure 2-Definition of the Euler operations and their consistency 
with regard to Euler's equation 



As Baumgart has pointed out, 1 operations on topologies 
are also well defined. The equation first proved by Euler: 

(faces) - (edges) + (vertexes) = 2* (bodies) - 2* (holes) 

provides not only the fundamental canonical relations within 
all polyhedral topologies, but also suggests a discipline for 
defining the operations needed to perform any topological 
construction or manipulation. A set of operations, called the 
Euler operators, are enumerated in Figure 2. Each operation 

1. 
Initial state. 

3. 
Repeat step 2 
For vertexes 2, 3 
and 4. 

5. 
Cons t ruc t new 
edges and vertexes 
5, 6, 7 and 8. 

7. 
Construct Face 
5-6-7-8 with 
edge 5-6 

A Database for Designing Large Physical Systems 605 

structurally alters the topology to which it is applied, but in 
such a way that the Euler equation is satisfied. Thus each 
operation results in a well-formed elerp.ent, eliminating 
problems of ambiguous line Or coordinateJiElfinition due to an 
incomplete element description. Figure 3 illustrates how these 
operators may be used ~o construct a cube. They may be used 
to construct or alter any.polyhedral topology. 

Other topological operations can be expressed in terms of 
the Euler operators. For example, using both topological and 

2. 
Construct new 
edge and vertex 

4. 
Construct Face 
1-2-3-4 with new 
edge 4-1. 

6. 
Construct Faces 
1-4-8-5, 8-4-3-7 
and 7-3-2-6 with 
edges 8-5, 7-8 and 
6-7. 

8. 
Construct the new 
element by removing 
edge w-l. 

Figure 3-An example of the construction of a topology using the Euler operators 



606 National Computer Conference, 1975 

BODY 

next body 

body id. 

vertex ring 

face ring 

no.of vert. 

no.of faces 

pattern size edge 

data data 

coord. ptr. 

vertex id. 

data 

Figure 4-Data structure for depicting the topology 
of an element shape 

geometric primitives, we have implemented the set operations 
(union, intersection, differences). The set operations provide 
the necessary primitives for manipulating the shapes of 
elements and for testing spatial conflicts between them. 

The analysis and manipulation of attribute information is 
usually treated by various types of application programs. 
Operations on attribute information will not be further 
developed here. 

The three parts to an element description each require 
their own data structure. The topology data structure, upon 
which the Euler Operators apply, is shown in Figure 4. The 
"clockwise ordering" of the vertexes defining an object face 
(planar surface), may be used to easily determine the relative 
location of apoint.l Adjacency relationships between element 
faces are recorded and the notion that a topological "edge" 
represents the boundary between exactly two faces is 
maintained. Also properties (texture, reflectance) may be 
assigned to a face. The geometry data structure, in its most 
complete form, is simply a vector of coordinate values. The 
attribute data structure is described later. 

HIERARCHICAL DEFINITION OF SHAPE 

A major benefit of separating the topology of a shape from 
its geometry is the efficiency of storage gained. One topology 

may be common to a wide variety of shapes; a rectangle, for 
instance, defines the shape of all doors, bookshelves, windows, 
and structural timber within a building. Similarly, the 
topologies for all steel WF members are the same. Conversely, 
multiple topologies utilizing a common set of coordinates are 
unlikely ever to occur (though they can be conceived). The 
relation between topologies and geometries suggests a 
hierarchy of shape description, with the geometries of different 
elements sharing a single topology to describe a set of 
elements. Thus the cost of a topological description can be 
spread over the number of geometrical descriptions which 
access it. 

A further saving is possible by recognizing that in most 
areas of design-and particularly building design-many 
elements are used repetitively. Instead of describing each 
geometry separately in a common base coordinate system, 
each element can be described in local coordinates and 
mapped via a spatial transform into world coordiriates. Only 
a separate transform is needed to generate the unique 
coordinates of an element. This introduces a third level to the 
database hierarchy. The hierarchy ~onsists of topology, local 
coordinate and transform levels. 

Each level in the hierarchy defines a class of information 
which is shared by all elements below it. By describing the 
common information once, redundancy is reduced in the 
database. 

Other redundancies can also be identified. One pertains to 

TOPOLOGY 
PATTERN LEVEL 

V5a~V7 
11 ~IV6 ~ 
U· ;v~I~3 
V~U/ 

GEOMETRY., ~'-. 
EXPRESSION LEV~ ~ 

r-----~-------. (rectangle) 
xl =X4 =Xs =X8=0 
X2=X3=X6=X7=A1 
Y1=Y2=Y3=Y4=0 
Y S=Y6=Y 7=Y8=A2 
Zl=::2=ZS=Z6=0 
Z3=Z4=Z7=Z8=A3 

A1=l.S 

A2=3.S 

A3=96.0 

A1=30.0 

A
2
=68.0 

A3=1.37S 

;1\\11\ 
spatial transforms 

INSTANCE LEVEL 

A 1=4.0 

A2=S .0 

A3=2.0 

A4=0.03 

A
1
=12.0 

A2=12.0 

A3=136.S 

A4=O.00042 

~~ 
spatial transforms 

Figure 5-The four hierarchical levels within the BDS database. The 
shapes depicted are an eight foot 2X4, a door, a rubber motor mount, 
and a concrete column respectively 



PATTERN 

EXPRESSION 1 

EXPRESSION 2 

VALUE 1 

(WF27177) 
A1=27.25 
A2=14.125 
A3=1.1875 
A4 =0.75 

A Database for Designing Large Physical Systems 607 

(WF817) 
A

1
=8.0 

A2=5.25 
A

3
=0.3125 

A
4

=0.25 

Figure 6-The final six level instantiation hierarchy implemented in BDS 



608 National Computer Conference, 1975 

COMPONENT 
LIBRARY 

PROJECT 
FILE 

LOAD IN 
CORE 

JUST PRIOR 
TO EXECUTION 

1. TOPOLOGY ---+ TOPOLOGY ~ TOPOLOGY ............ 

2. EXPRESSIONS 1 ~ ELEMENT IN WORLD 
attributes 

TEMPLATE 
attributes 

attributes > 
3. VALUES 1 '-

attributes ~ 

4. EXPRESSIONS2 
WORLD 

~ COORDINATES 
/ 1 attributes 

5. 
attributes 

6. 

VALUES 2 ! 
TRANSFORM 

Figure7-Computation sequence in instantiating an element. Those 
attributes underlined are stored, the others computed 

common families of shapes. The number of vertex coordinates 
required by a shape is usually much greater than the number 
of parameters required to describe it. Any rectangle is defined 
by three parameters. In the structural steel handbooks, the 
shape of all WF elements are defined in terms of four parame­
ters, depth, width, flange thickness and web thickness. It is 
straightforward to define a set of expressions that converts 
the essential shape parameters into the corresponding set of 
vertex coordinates. See Figure 5. Expressions may be derived 
that convert a set of parameters into vertex coordinates for 
any shape based on a single topology. The resulting savings 
are significant. One pattern and set of expressions, together 
with a collection of parameter sets, can now, for example, 
represent all rectangles or WF beams within a complex design. 

In some cases, we have found it worthwhile to partition the 
expressions and parameters even further. Those dimensions 
fixed by the selection of the element are derived first, by 
applying the appropriate parameters to a first set of expres­
sions. This first set defines the section of extruded or the 
thickness of rolled stock. Thus all elements made of the same 
stock can use common expressions and values. Later, indi­
vidual lengths or sizes can be derived by applying a second 
set of values to a second set of expressions, deriving the rest 
of the shape coordinates. A path through the six level 
hierarchy describes the shape of any particular element. An 
example of the information stored in the hierarchy is shown 
in Figure 6. 

Of course, all these levels of description need not be used if 
there are no corresponding variations within the element set 
being described. For the concise description of elements used 
in building, though, we have found it efficient to use all six 
levels for standard, predefined elements and the three initial 
levels of topology, geometry, and transform for custom 
fabricated elements. 

Significant storage efficiencies are gained through the 
hierarchical storage of shapes. A cost has been imposed, 
though, in the computation required to create a full shape 
description. An overall benefit is achiev'ed only if the compu­
tations to create a full description are inconspicuous to the 
user. The computation sequence used in BDS is shown in 
Figure 7. Most of the computation is undertaken when the 

element description is transferred from the component 
lib~ary to the project file. All oth~r computations, except 
aSSIgnment of the base address for the coordinates, are done 
when the element is loaded into core for operations. The 
analysis leading to this particular implementation has been 
described elsewhere. 4 

ATTRIBUTE INFORMATION· 

In general, attributes are needed in CAD to describe such 
properties as an element's manufacturer cost function 
performance, and other properties. Unfortu~atel;, the rang~ 
of pbssibly relevant properties is too large for a single set of 
predefined attributes to be practical. 

Among the criteria important in the definition of attributes 
are: (1) the capability to associate attributes with specific 
elements as well as with any arbitrary collection; (2) the 
ability to introduce or modify attribute names and values at 
any time during design. 

Considered most generally, an attribute consists of three 
pieces of information: a name, a data type, and a value. We 
have found the need to include three different data types: 
Number (on input, integers are converted to real)· Character 
string, and Set. All attribute names are coded in a~ extendible 
dictionary; so are all character strings. 

The element hierarchy can be used to advantage, allowing 
the storing of attribute triples at multiple levels. For example, 
the name "manufacturer" and its character string value can 
be associated with the topology; the name "cost" and a 
numerical value can be associated with the template. See 
Figure 8. 

The element hierarchy does not provide a mechanism for 
assessing elements by function and an alternative hierarchical 
scheme is needed. An attribute type called Set may be used to 
construct an inverted file based upon any common attribute 
values at any level, as shown in Figure 8. The file can be 
assessed in a variety of ways and can be made up of other sets 
making a set hierarchy. ' 

SPATIAL ORIENTED ACCESSES 

The retrieval method for any part of the hierarchical data 
structure is through a Directory within the project file. 
Elements with similar properties are accessed through the 

Figure 8-Facilities for storing and accessing attributes. Cost is stored 
as a real value within each template, whereas manufacturer is a type 
SET allowing accesses to all elements with the same value 



(a) BUILDING PARTITIONS 

I 
x~ 110.0 ,/ I" X~40.3S A C 

y~ 39.~ ~ "D 
./ " F' E G 

A Database for Designing Large Physical Systems 609 

(b) ALGORITHM 

P4-T; I+- 0; J4-0: 114- 0.0; 
INDEX 4- 0; 

INDEX 4- INDEX + 1; 

IF (J 2:. T /2 + QI) THEN EXIT; 

IF COORD (INDEX, SIDE) 
= ) THEN (I 4- I ~ 1; J 4- J + I) 
E LS E I +- 1+ 1; 

IF (J > T /2 - QI) THEN IF 
1< p TIrnN (I+- P; 114-
(COORD (INDEX,VALUE) + 
COORD (INDEX + 1, VALUE)) /2 

................ _ ..... .....-,....- ........... .... .-- ...... -- ......... -f-- - -- - - ....... --....-, ...... ........- .... ....- ---
(e) EXAMPLE 

COORD (VAL'J"E, INDEX, SIZE) where EXAMPLE 

INDEX · . = 0 ~ integer ~ (T*2) 1 2 3 4 5 6 7 8 9 10 11 12 
VALUE · . = real number 2.0 5.5 6.5 7.0 7.8 8.4 8.4 9.2 10.0 '10.2 11.6 13.6 
SIDE · . = ( for min and ) for max (1 (2 (6 (7 1) 6) (5 (8 2) 8) 7) 5) 

ALGORITHM I 1 2 3 4 3 2 3 4 3 2 
RESULTS: II 0 0 0 0 8.2 8.4 8 8 10.1 10.4 

J 0 0 0 1 2 2 2 2 3 4 
P 6.0 6.0 6.0 6.0 3.0 2.0 2.0 2.0 2.0 2.0 

Figure 9-A method for determining the spatial partition of a full block of elements 

IX: : = the range from 
middle of allowed 
partitions (a tuning 
parameter) 

I: : =number of elements 
cut by partition 

J:: =number of elements 
to the left of 
current pointer II: : = coordinate value of 

next partition 

Set values, which are also stored in a Directory. A typical 
requirement for CAD systems, though, is to access collections 
of spatially related elements. This involves finding all 
elements within the data structure which, when transformed 
into the world coordinates, occupy or spatially conflict with 
a specified volume of space. None of the structures described 
thus far collect together elements which are spatially related 
and an exhaustive search would be prohibitive. 

To access element information spatially in an acceptable 

amount of time, it is necessary to eliminate without inspection 
as many elements as possible which might prove to be 
completely disjoint from the search vQlume. A preliminary 
search can eliminate those elements whose envelopes are 
disjoint with the envelope of the search volume. By an 
envelope, we mean the minimal rectangle enclosing an 
element, with the rectang~.e's faces parallel to the coordinate 
axes. This initial 'search would hopefully generate a small 
enough set of elements that can be tested exhaustively. 



610 National Computer Conference, 1975 

Figure 10 
s. Leinhardt 



Rather then attempt to superimpose on the hierarchical 
data structure an accessing mechanism which would allow 
this search, it is much more efficient to manage element 
allocations within secondary storage on a spatial basis and set 
up a tree structure for accesses. See Figure 9 (a). The en­
velopes of elements will be located together within some type 
of block structure, e.g., disc segments, each block correspond­
ing to a rectangular area within the design space. When a 
block becomes full, the elements within it can be ordered by 
their envelope coordinates along the longest dimension of the 
rectangular volume. By applying the algorithm sketched in 
Figure 9(b) to the coordinates, they are partitioned into two 
approximately equal sets by a plane through the rectangular 
volume resulting in the fewest overlaps with the elements. 
Those elements which do overlap are allocated to a third 
block. As this partitioning takes place, the access tree is 
modified accordingly. With this structure a spatial search 
involves scanning only the search tree to identify all those 
blocks overlapping the volume of interest. Once this is done 
it is necessary to test exhaustively the elements within these 
partitions for conflicts. 

The maximum size of an element within a block cannot be 
larger than the block dimensions. This accessing scheme thus 
proves useful in selecting elements by size for display. This 
organization and search scheme evolved from one developed 
during the CEDAR project9 and is more fully described 
elsewhere. 4 

CONCLUSION 

At some future point in time, we predict that most design and 
drafting will be undertaken in a system environment quite 
different than that which exists today. Design will be done at 
a CRT console, as first imagined by Coons2 and Licklider. 6 

The designer will interactively construct a large database 
representing his design. He may interactively manipulate and 
analyze, or automatically generate subsystems. For analyses, 
general purpose analysis programs will rely on a set of 
interface procedures that will access the data needed. Ele­
ments may be automatically selected by the application 
programs. 

A project database will be backed up by a large library of 
standard elements, readily available for machine accessing in 
a compatible format. These parts libraries will reside locally 
or be remotely accessible and maintained by a service bureau 
or similar organization. Custom elements will be easily added 
by a mixture of graphic and typed input. Members of the 

A Database for Designing Large Physical Systems 611 

design team may be remotely located, but all working on the 
same system description. Each project will reside on a mass 
storage device, most likely a disc pack. As the design evolves, 
cost estimates, bills of materials, and construction schedules 
will be prepared, by a single organization or by many different 
ones using a common database. Building or other legal codes 
will be just another form of analysis program. Contractors or 
other fabricators will use the database produced during design 
for parts ordering and analysis of the construction sequence. 
For some parts, it may allow automated fabrication. Later, 
the database could be used for monitoring operations, 
maintenance, and depreciation on the elements or the system 
as a whole. 

BDS was conceived as a prototype for developing the 
techniques needed to realize general building description 
systems. Most of its features are operational and have been 
used to design several simple buildings. Some of the graphic 
output available for one of the buildings is shown in Figure 10. 

BDS was written in BLISS, a system building language 
developed at C-MU and operates in the PDP-1O as well as 
PDP-l1. The program size currently 120K bytes. Database 
capacity is a function of disc storage available. The average 
density is approximately sixty bytes per element. 

BIBLIOGRAPHY 

1. Baumgart, B., Winged Edge Polyhedron Representation, Stanford 
A.I. Project Report AIM-179, October 1972, Stanford University. 

2. Coons, S. A., "An Outline of the Requirements for a Computer-Aided 
Design System," Proceedings Spring Joint Computer Conference, 
Spartan Books, Washington, D.C. 1963. 

3. Eastman, C. and J. Lividini, Spatial Search, Institute of Physical 
Planning Research Report, Carnegie-Mellon University, September 
1974. 

4. Eastman, C., J. Lividini and D. Stoker, A Database for Very Large 
Physical Systems, Institute of Physical Planning Research Report, 
Carnegie-Mellon University, February 1975. 

5. Hoskins, E. M., "Computer Aids in Building," in Computer Aided 
Design, J. J. Vlietstra and R. F. Wielinga (eds.) American Elsevier, 
New York 1973. 

6. Licklider, J. C. R., ."Manl Computer Syinbiosis,~' Institute of Radio 
Engineers on HU1ll.an Factors in Electronics, Volume HFE-1 #7, 
March 1960. 

7. Newman, Wm. and R. Sproul, Principles of Interactive Computer 
Graphics, McGraw-Hill, New York 1973. 

8. Rosen, Brian, "The Architecture of a High-Performance Graphics 
Display Terminal," 1973 Society for Information Display Inter­
national Symposium, May 1973, New York City. 

9. Sampson, Peter, 'The Implementation of CEDAR: A Computer-Aided 
Building Design System, unpublished report Design Group, Royal 
College of Art, London, August 1973. 





Economic principles for interactive graphic 
applications 

by S. H. CHASEN 
Lockheed Aircraft Corporation 
Marietta, Georgia 

BACKGROUND 

With the continuing national economic malaise, there is a 
steadily increasing consciousness of the need to understand 
cost/benefits relationships which will result from the use of 
additional or alternative technical tools. This is particularly 
true in the consideration of interactive computer graphics 
(ICG) as a viable and valuable adjunct to our technical 
options. Although much potential exists to enhance our under­
standing of the economics of ICG, very little hard data has 
been forthcoming for a variety of reasons. There are a number 
of attributes which have been applied to ICG and which 
represent implied or intangible value. The oft-stated advan­
tages of lead time reduction, reduction of the number of 
evaluation cycles, improved product quality, better training 
and comprehension, etc., have various degrees of economic 
benefit equivalence, but such benefits are difficult to quantify 
and they depend heavily on both the nature of the applica­
tion and of the graphic user. For example, if time savings are 
manifest for tasks which lie on or close to the "critical path" of 
a multi-task project, cost benefits as a function of time saved 
might be easily verified and easily computed. On the other 
hand, savings of time on non "critical path" tasks may have 
little or no economic value whatsoever. Generally, however, 
the attributes stated above imply economic advantages on 
primarily qualitative terms. The problem of determining eco­
nomic benefits is exacerbated by the method by which graphic 
facilities are charged. Prorated costs for additional systems 
and support are quite varied from institution to institution 
and opportunities for a variety of lease or buy options will 
impact the computation of cost effectiveness. It should be 
recognized that an appropriate console use charge for ICG 
most decidedly impacts ICG utilization and the level of utili­
zation feeds back to affect the charge. Thus, early potential 
users of a start-up and low-use ICG system may be deterred 
for budgetary reasons. Therefore, maximum development 
of cost-effective operations would be possible if ICG use 
charges were predicted on an "expected" level of use over a 
reasonable time frame. An appropriate charge can be estab­
lished as follows. First, determine use charge based on use of 
graphics of all applications where graphics could show any 
benefits potential. The resulting charge would then be based 
on a maximum operation of the system. This charge would 
then be studied in light of the prospective potential appli-

613 

cations to eliminate those for which this "minimum" charge 
would be too great for cost effective ICG use. With the smaller 
set of potential applications, an amended use charge would 
be computed, remaining applications would be studied in 
light of the modified charge, and the iterative cycle would be 
continued until there is convergence on charges and appli­
cations which will use the system. If there is no convergence, 
then there would be no applicatio~ set for which graphics is 
cost effective. The charge should be subsidized or put into 
overhead initially to give ample opportunities for ICG 
applications to reach their potential. Subsequently, the. 
charge to users would be periodically reviewed and modified. 
This approach to ICG charges can yield the optimum number 
of graphic scopes. This will be described later in more detail. 

Another problem in determining cost effectiveness or 
benefits for leG is characteristic of people and of their 
organizations. In general there seems to be little or no funding 
mechanism to make serious studies and to perform needed 
controlled comparative experimentation to derive hard data 
to clearly set forth the advantages of ICG. Without such a 
mechanism there is no eagerness on the part of each potential 
user to spend his own budget to perform modest research on 
the cost effectiveness for his application. Where good benefits 
data have been developed, most ICG users have no particular 
motivation to publicize it. Thus, we note the continued 
expanded use of ICG (which implies cost benefits), but good 
factual data is very difficult to find. The most prevalent data 
have been developed using the hard data liberally augmented 
by the "educated" estimates of experts in various application 
areas for ICG. The thoroughness, the method of assessment, 
and indeed the reliability of such estimates will vary among 
users. The important point is that most institutions come out 
with similar benefit expectations for similar applications. 

In spite of the lack of large quantities of accessible hard 
data on ICG economics, there have been some data developed 
in the past, some data is being developed, and there is a 
considerable amount of unexploited potential in this area. In 
1969, for example, the Lockheed-Georgia Company document­
eda savings of $250,000 for the first nine months of use of the 
3-scope IBM 2250 and 360/50 system as applied to 2-D 
structural analysis. This cost reduction was recorded as 
Lockheed Report CRR#68-12-26G-01 under the DOD cost 
reduction program. It was a net value after subtracting ap­
propriate costs for additional hardware, for system mainte-



614 National Computer Conference, 1975 

nance, and for system implementation. It did not reflect earlier 
costs for research and development. It is interesting to note 
that the largest portion of cost reduction was achieved in the 
data evaluation and documentation phases. Net computer 
costs, including graphics charges, were increased, although 
that may not necessarily be the case for certain other 
applications. 

The well-publicized numerical control part programming 
application at Lockheed-Georgia did not improve manpower 
productivity as much as initial estimates of six to one had 
predicted. The actual increase of productivity by a factor 
of three (one man hour at the graphic console would produce 
the equivalence of three man hours of conventional N/C 
work) was estimated to defray the additional costs associated 
with the utilization of graphics for N /C programming. The 
other benefits of time, product quality, better utilization of 
scarce manpower skills, etc., tipped the scales in favor of 
graphics for N /C part programming. The use of the Lock­
heed-Burbank developed CADAM, Computer Augmented 
Design and Manufacturing, further enhanced the value of 
N /C graphics since CADAM produces the geometry (on 
which N /C cutter paths are derived) at an earlier stage of 
design-in the detailed drafting phase via graphics. CADAM 
itself has received very heavy use at both Lockheed-Burbank 
and Lockheed-Sunnyvale. It increases productivity over 'a 
range of values depending on the application type. Its heavy 
utilization and a Lockheed-Burbank software development 
which operates many terminals within a single core partition 
have teamed to lower costs to operate graphic consoles and 
to make CADAM cost effective. Efforts to reduce hardware 
costs through consideration of alternative displays and of 
mini computers promise to further enhance CADAM for 
design drafting, N /C, and other applications. 

There are many relatively simple tests and analyses that 
could be assessed, in the light of potential applications, that 
would indicate the potential economics of various graphic 
system options. For applications which require analysis, 
multiple parameters, iterations, and plotted results, it may 
suffice to affix a direct view storage display directly to a time 
share system. It should be very easy, in most cases, to show 
cost effectiveness with this very low cost addition. Of course, 
the level of sophistication of interactive graphics that will 
produce the maximum benefit is a function of many factors 
and is, therefore, difficult to determine. Among the ICG 
options are: stand alone single display systems, stand alone 
multiple display systems, multiple display and other consoles 
within a stand alone system; non-stand alone host/satellite 
ICG systems, and systems that can operate either in 
stand alone or host/satellite mode. In most modern and fu­
ture options of this sort, mini computers will play a promi­
nent role. Thus, mini computer characteristics, display type 
and facilities, communication options, peripheral devices, 
applications mix, available software, organizational consider­
ations, and many other factors must be weighed in a veritable 
infinitude of combinations and permutations. 

Although costs are continually falling for both hardware 
and software, it will be asserted without proof that most ICG 
applications of substance will require a graphic console and 
peripherals ranging in equivalent purchase price from ap-

proximately $75K to about $200K and even higher (excluding 
the case of the direct linkage between the computer and a 
storage tube described earlier). Of course, multiple consoles 
can be implemented at lower costs per console, in general. 
(Special CPU requirements and system support will increase 
the unit cost, as is the case for CADAM.) Although such 
costs would be contested by some, the figures are intended as 
more or less an all-inclusive range and are an attempt to 
put yastly differing systems on a common basis. 

To interpret this range in cost/hour for the system, one 
may consider a variety of lease/buy/accounting alternatives. 
These options will not be discussed. However, nominal 
values will be assumed here to put matters into perspective. 
Suppose, for example, the ICG system is to be amortized over 
five years. The number of work hours in a standard work 
year is taken, for convenience, to be 2000 hours. Thus, amorti­
zation is taken, in this example, over a period of 10,000 
hours. This translates the console purchase price range from 
above to $7.50 through $20 per hour for a standard eight 
hour work day, five days each week, for 50 weeks each year. 
To this figure one should add a reasonable level of mainte­
nance and support which is particular to graphics such as, 

"for example, $5 to $10 per hour per console. (Obviously this 
figure would not rise proportionally to the number of consoles; 
but an estimate for maintenance and support is needed for 
the number of consoles that may be projected.) These latter 
estimates increase the hourly rates to a range from $12.50 
to $30. This resultant can, of course, be easily modified con­
tingent upon other assumptions for utilization, amortization 
schedule, maintenance and support, and other particular 
hardware/software options. It is now convenient to consider 
the wage rate (including fringe benefits, overhead, etc.) for 
the principal ICG user. This is another parameter. As an 
example, assume that it is $20/hour. Then the increased cost 
of $12.50 to $30 per hour associated with the provision of 
ICG services can be ratioed with respect to wage rate to 
produce a figure of "productivity increase" necessary to 
defray costs of the ICG system. That is $12.50/$20 through 
$30/$20 or 0.625 through 1.5 increase in productivity. Put 
another way, the graphic console user would have to produce 
1.625 to 2.5 his normal output (productivity ratio) to defray 
additional system costs. This range depends on factors 
described earlier but are put forth as "reasonable" figures of 
merit to delineate the principal cost components. It is impor­
tant to note at this juncture that trends toward lower costs 
of hardware and software and higher costs of manpower lead 
to a decreased range of productivity ratios which are neces­
sary to defray ICG systems cost. However, even present 
productivity requirements favor the widespread use of ICG. 
This is because experience has indicated, in somewhat 
qualitative terms, that most applications have shown a 
minimum productivity ratio of three. Therefore, an applica­
tion with sustained utilization should show a cost benefit 
based on the statistics set forth here. Again, one should 
be cautioned that such statistics and judgments might well 
have detractors. The experiences and judgments of practi­
tioners of ICG vary widely as might be expected. There is no 
doubt that the amount of hard data on the subject is quite 
inadequate. Somewhat more potential exists than has been 



Economic Principles for Interactive Graphic Applications 615 

exploited to evaluate the expected cost benefits in employing 
ICG for a particular application. 

TECHNIQUES FOR DETERMINING COST 
REDUCTION 

The preceding discussion has dealt primarily with back­
ground principles which impact cost benefits determinations. 
The sequel will describe more specific techniques for deter­
mining cost reduction and the number of graphic consoles 
that will support multiple graphic applications. 

Any application under consideration might be classified 
into cost components. For example, suppose T 1 represents the 
total cost to accomplish a particular application using current 
technology. Suppose further that Tl is partitioned into costs 
as follows: 

Al = Planning and Scheduling 

Bl = Set Up 

C1 = Key Punch and Data Preparation 

Dl = Computing 

El = Data Analysis and Evaluation 

Fl = Documentation and Administration 

G1 = Correlated functions unaffected by the introduction 
of ICG. 

Here Al through Fl represent component tasks whose costs 
will be affected (either increased or decreased) by the intro­
duction of ICG. The element, G1, represents components 
unaffected by ICG. Similarly T2 is composed of the same 
components A2, B2, ... , G2 after ICG has been introduced. 
Of course, one may choose whatever classification components 
that fit the application. If desired, classification can be some­
what more detailed. For the present example, the two costs, 
T 1 and T 2, might be represented QY two bars as follows: 

F.J 

Figure I-Component costs for application without and with graphics 

In the example, keypunching is eliminated, computing costs 
are actually increased, and other costs (except for G) are 

decreased. Then, 

Cost Reduction=LlT=T1-T2= (A1-A2) + (B1-B2) 
+ (C1-C2) + (D1-D2) + (E1-E2) 

+ (F1-F2) 

(G1 - G2 = 0 since the G's are defined as 
those tasks unaffected by ICG.) 

It should be noted that the two primary parameters that 
influence the value of LlT are man hour rate of the ICG 
console user and the cost per hour rate for the use of the ICG 
system. Thus, 

where 

and 

RM=Man Hour Rate 

Re = Console Rate 

Both Tl and Tz and lience LlT will be affected by the choice 
of RM and Re. More specifically, LlT may be expressed as: 

~T=K+RM (H1-H2) -RMH3-ReH3 

where: K = The cumulative cost effects (gains and/or losses) 
resulting from the use of ICG but not directly 
a function of the graphic system or of the graphic 
console user, per se. 

HI = The hours the potential graphics user would 
employ in the conventional task where cost is 
defined earlier as T 1 •. 

H2 = The hours (expected to be less than HI, in 
general) that the user would expend after the 
interjection of ICG, but not in the use of the 
graphic console, per se. 

H3 = The hours that the ICG user spends at the 
console. 

The parameter, K, could include such effects as material or 
weight reduction, decreased inspection requirements, de­
creased batch or other nongraphic computation, different 
technician and administrative support, and other factors 
with varying degrees of direct cost effects. Since K would 
normally be expected to be positive, on balance, the required 
console user productivity gain needed to defray ICG systems 
costs would be decreased. If it is assumed that RM and Re 
are measured in $/hour, then HI, H2, and H3 are measured 
in hours. 

The preceding equation for LlT encompasses all gains and 
losses that result from ICG use. This equation is rewritten 
as: 

LlT=K+ (HI-H2-H3)RM-H3Re (1) 

Here it is clear that LlT is a linear function of Re and that for 
any R M, the slope of the line is- H3. For an application under 
consideration to use some form of ICG, LlT can be plotted 
as in Figure 2. 

Using algebra on equation (1), it can be shown that 

(2) 

Where the line, for a particular R M, crosses the abscissa" 
that will be the highest console rate (threshold) to achieve 
cost effectiveness. Either the plot for LlT or equation (2) may 



616 National Computer Conference, 1975 

30,000 

20,000 

6T COST 

REDUCTION 

a 

10,000 

o 
o 

APPLICATION X 

20 
RC ,GRAPHIC 

RM = a 20/HR 

a 15 I HR 

40 '60 

CONSOLE RATE, U I HR 

Figure 2-Example application cost reduction versus console rate 
for increments of manpower rate 

be used to relate the change in the threshold graphic console 
rate to alternative man hour rates. 

The y-intercepts of equation (1) show the maximum cost 
reduction, ~TMAx, that would be achieved for a given man 
hour rate. This would be the value of ~T for a zero console 
rate. The formula for ~TMAx is: 

~TMAx=K+ (HI-H2-H3)RM 

It should be noted that ICG becomes increasingly cost effec­
tive as graphic rates decrease and as man hour rates increase. 
Thus, present economic trends of lower computer costs and 
higher wages trend toward the increased value of ICG. The 
higher ~T for higher RM at a particular Re means that the 
introduction of a labor saving system such as ICG is worth 
more when it increases the productivity of high-priced labor. 
It does not mean that tasks performed by low-cost labor 
should now be performed by high-cost labor. In the example, 
the threshold for cost reduction for a $20/hour manpower rate 
is about $62/console hour. In other words, ICG can benefit 
application X, in pure cost, for a total graphic rate as high 
as $62/hour which would imply that application X can 
support a fairly sophisticated lCG system. The $1O/hr. RM 
crosses the axis at a console rate of about $37/hr. This means 
that if application X uses principal manpower at a rate of 
$10/hr, then the ICG system would have to be somewhat 
less expensive if it is to be a paying proposition in purely 
monetary terms. 

EXAMPLE OF GRAPHIC/NON-GRAPHIC 
COMPARISON 

To illustrate the preceding discussion of cost reduction, a 
candidate application in the Lockheed-Georgia CADAM 
evaluation for potential contract work will be described. 

The following chart is a breakdown 01 tasks for both 
conventional and CADAM processing ofa particular numeri­
cal control tape development task, Figure 3. 

From the chart, it can be observed that tasks 1, 4, 5, 10, 
and 13 are unaltered. They would fall into the classification, 
"G," in the earlier discussion of cost reduction. All other 
tasks are altered because of graphics and would be treated 
similar to classifications "A" through "F". 

In reference to the equation for ~T in terms of K, HI, H2, 
H3, RM and Re, it is noted for this example that K is zero 
(although there are certainly other related effects, like inspec­
tion, that are not included in the chart). 

The formula, ~T=K+ (HI-H2-H3)RM-H3Re 

gives ~T=O+ (40.55-6.10-9.26) 20-9.26 (40) 

Based on a 4-scope CADAM system with a $40/hr console 
rate, Re, and a $20/hr manpower rate, R M. 

Thus ~T=$133.40 (cost reduction) 

Since tasks 1, 4, 10, and 13 are unaffected by graphics 
(classification "G") , they need not necessarily have been 
included in the chart. Their inclusion does help set forth all 
the elements of the example N/C application. If they had 
been deleted from the chart, then both HI and H2 would be 
6.10 hours less. That is, they would be 34.45 and 0 re­
spectively. As discussed before, this would not alter the cost 
reduction value of $133.40 because cost reduction is inde­
pendent of tasks classified as "G." 

CONSOLE RATES 

The applications and system costs of a projected Lockheed­
Georgia CADAM system relate directly to the earlier discus­
sion on the optimum charging mechanism and on the opti-

CADI>M CONVENTIONAl COMMENTS 

H2 
Moun 

H3 Hours, Hl 

TASKS Off-Scope Scope Preparation Program 

I. Collect and analyze data, drawings, 1.00 1.00 
fixture design, etc. 

2. Machine part drawing for layout 2.37 6.00 

3. Furnish tool dept. with fixture sketch .50 2.00 

4. Determine cutters .30 .30 

5. Plan cut sequences .50 .50 

6. Generate cutter paths 6.39 24.00 Conventional method ~s 
by written manuscript 

7. Punch IBM cards .30 
Includes all later card 
punch corrections 

8. Assemble cord deck .05 Includes changes to deck 

9. Submit cards to computer .10 Includes all computer 

10. Check center-line and postproce»or 
data from computer listing .30 .30 

11. Plat N/C.Machine tape 1.50 
CADAM.eliminotes this, 
usually 

12. Check N/C plot .50 
Overlay on N/C layout 
or visual check 

13. Draw operation sequence sheets 4.00 4.00 

TOTALS 6.10 9.26 16.55 24.00 

Figure 3-Example numerical control task 



Economic Principles for Interactive Graphic Applications 617 

APPROXIMATE IBM 360/65 SYSTEM COSTS (IN THOUSANDS OF DOLLARS) 

Number of Scopes 2 3 4 5 6 7 8 10 11 12 13 

Hardware Renta I/Mo. : 

CPU & Associated Peripherals 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Scopes (Includes 10% 2nd Shift Charge) 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0 23.1 25.2 

512 Bytes Mass Storage 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 

Scope Control I er 5. 1 5. 1 5.1 10.1 10.1 10.1 15.2 15.2 15.2 15.2 20.2 

Display MPX 0.5 0.5 0.5 0.9 0.9 0.9 0.9 1.4 1.4 

Printer Switch; 6 Disc Packs 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Drum, Controller, Selector Channel, 
7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 MPX Sel. Sub Channel 

Total Hardware Rental 23.5 25.6 28.2 42.8 44.9 47.4 54.6 56.7 58.8 61.4 68.5 

Programming, Operator Support 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 

Total Monthly Cost 32.1 34.2 36.8 51.4 53.5 56.0 63.2 65.3 67.4 70.0 77.1 

Hours of Use/Month, (2 Shifts, 5 Days;Wk., 554 831 1108 1385 1662 1939 2216 2493 2770 3047 3324 
80% Uti lization) 

Cost, $/Scope Hour 58 41 33.5 37 32 29 28.5 26 24 23 23 

Cost Adjustment/Scope for ,Errors 
10 8.0 6.5 5.5 5 4.5 4.0 3.5 3.0 2.5 2.2 in Estimates, Assumptions, 

Unanticipated Costs 

Total Cost, $/Scope Hour 68 59 40 42.5 37 33.5 32.5 29.5 27 25.5 25.2 

Figure 4-Console rate versus number of scopes 

mum number of scopes to support the applications. Data are 
being compiled within the framework of an on-site CADAM 
system. It is assumed that a dedicated IBM 360/65 configura­
tion will be acquired to service the appropriate number of 
scopes. Based on the potential of driving "N" scopes two 
shifts each day, five days each week and with 80 percent 
utilization, the hourly console rate as a function of "N" has 
been computed, as shown in the preceding tabulation, Figure 
4. The hourly console rate for this particular system is high 
for up to three consoles (in comparison to ranges set forth 
earlier) because of the cost of the assumed graphic dedicated 
IBM 360/65 which is predicated on multiple-scope use, 
because third shift CPU operation is not assumed, and 
because substantial support is to be given initially. 

PRODUCTIVITY RATIO DEFINITION 

One of the more valuable measures of effectiveness for 
graphics is productivity ratio defined by: 

RM+Be 
Productivity Ratio 

For a RM of 20 and a Be of 40, as in the example above, this 
ratio would be 3. In other words, one hour at the console 
would have to produce the equivalent of three hours of non­
graphic work to defray the extra cost of the console. From 
the chart of Figure 3, the conventional hours on which gra­
phics have an effect are 40.55-6.10=34.45. This work can be 
accomplished, according to the chart, with 9.26 hours at the 
console. Thus (34.45/9.26) =3.7 is the productivity ratio 
for the example. This compares favorably to the 3.0 threshold 
or "breakeven" ratio. In computing ratios of hours as exem­
plified here, it is essential to consider only graphic-affected 
tasks if the ratio is to have meaning. That is why 6.10 was 
excluded from the calculation of the ratio of 3.7. That is, 6.10 
was subtracted from both the total CADAM hours and the 
conventional hours. Had this not been done, the ratio would 
have been (40.55/15.36) =2.6 which would have falsely indi­
cated that the increased productivity did not reach the 
"breakeven" value of 3.0. Furthermore, had the unaffected 
hours been much greater, say for example 106.10 instead of 
6.10, the ratio would have been (140.55/115.36) = 1.2. This 
illustrates that if the constant hours (same for both conven­
tional and graphics) are not subtracted out before calculating 



618 National Computer Conference, 1975 

Conventional Cumulative Scope Cumulative Productivity Cum. # Scopes 
Task Hours Conv.Hours Hours Scope Hrs. Ratio * Prod. Ratio (2770 Hours/Scope) 

1. Stock Drawings 632 632 146 146 4.3 4.3 1 

2. Assemblies, Detail Drawings 18940 19572 5167 5313 3.7 3.7 2 

-3. Sheet Metal Drawings 7975 27547 2175 7488 3.7 3.7 3 

4. Extrusion Drawings 1873 29420 577 8065 3.2 3.6 3 

5. N/C {Tapes} 1780 31200 668 8733 2.7 3.6 3+ 

6. Detail Drawings 5502 36702 2267 11000 2.4 3.3 4 
{Another Project} 

2.2 3. 1 5 
7. * Other Tasks: 

Layouts, Tool Design, Etc. 2.0 2.9 6 
{Estimated Ratios} 

1.9 2.75 7 

1.8 2.6 8 

1.8 2.5 9 

1.7 2.4 10 

1.7 2.35 11 

'it: See following discussion in text. 1.7 2.3 12 
I 

Figure 5-A verage productivity ratio for applications using N scopes 

the ratio, then the ratio would be a function of the number of 
unaffected hours which are listed and would, therefore, 
obviate the meaning of the ratio as a measure of effective­
ness. 

The console rates from Figure 4 are used in Equation 3 
(with RM = 20) to determine productivity ratios for each 
"N." 

These productivity ratios, as a function of N, are the 
"breakeven" ratios required for "N" scopes. The plot of this 
ratio as a function of "N" is depicted as function A on the 
graph, Figure 6. 

APPLICATIONS AND PRODUCTIVITY RATIOS FOR 
CADAM 

The current Lockheed-Georgia mix of potential appli­
cations for CADAM has been initially identified as follows: 

Engineering Drawings 

• Layouts 

• Assemblies, Details 

• Machined Parts 

• Sheet Metal Parts 

• Extrusions 

• Stock Drawings 

Tool Design 

• Interference Layouts 

• Small Fab and Assembly Tools 

N /e (Tapes) 

• Lay-up Blocks 

• Production Machined Parts 

For several specific tasks, the productivity ratio has been 
computed based on studies, experimentation, and judgment. 
The ratios are believed to have been conservatively estab­
lished. It is assumed that the first scopes will be applied to 
the most productive of the potential application tasks. 
Therefore, as a larger number of scopes (N) are contem­
plated, applications with less productivity are brought into 
consideration and thus the cumulative productivity ratio 
will decline as a function of "N." These potential applica­
tions are listed in order of decreasing productivity ratio in 
the preceding tabulation, Figure 5. 

It should be noted that the application set beyond four 
scope utilization has not been determined as of this writing. 
Therefore, for the purpose of showing the complete tech­
nique for ascertaining the "optimum" number of scopes, 
estimates of ratios are inserted on the basis of an average 
ratio for complete utilization of each additional scope. 
Subsequent studies may very well show additional applica­
tions with relatively high ratios. However, at any assessment 



Economic Principles for Interactive Graphic Applications 619 

time, the applications should be added to the set in descend­
ing order of ratios-as exemplified in the tabulation. 

The CADAM operational use was studied for a projected 
10-month period, from initiation on March 1, 1975, through 
the end of 1975. Therefore, the hours of use to determine the 
number of scopes (last column of Figure 5) is obtained by 
multiplying the monthly use (lower part of the tabulation 
on Figure 4) by 10. 

ANALYSIS OF GRAPH OF PRODUCTIVITY RATIOS 

Curve B, Figure 6, of productivity ratio versus "N" results 
from plotting the data from the table of Figure 5. It is inter­
esting to note that both functions A and B decline, in general, 
with increasing "N." Function A is erratic because of the 
introduction of certain specific hardware, like controllers, 
drums, etc., at specific values of "N." Thus, function A is 
more or less a step function. Similarly, function B depends on 
the mix of application ratios which is not homogeneous in this 
case. Therefore, function B is erratic. 

If function B remained below function A for all "N," then 
there would be no number of scopes that would make 
CADAM cost effective for the considered applications. 

The crossover between "N" equals three and four, 
illustrates the hypothetical point where savings (increase in 
productivity) exactly defray the cost of the scopes. The 
differential productivities between "B" and "A" is a maxi­
mum for "N" equal to four. This means that the increase in 
productivity obtained by going to four scopes more than 
offsets the additional systems costs. From then on, increasing 
"N" yields a decreasing difference. Where the functions 
cross again, between 8 and 9, all cost benefits are wiped out. 
Thus, the optimum for the particular application mix con­
sidered and for the assumed configuration costs is four scopes. 
Naturally, any shift in either the "A" or "B" functions 
would, in general, change the optimum number of scopes in 
the purely cost benefits sense. 

POSITIVE AND NEGATIVE INTANGIBLES 

The data that is used to develop function B is somewhat 
more subjective than that used for function A. Although the 
methodology for evaluating cost effectiveness, as set forth 
here, is an attempt to blend the maximum amount of both 
objective and experienced subjective data, there must remain 
some level of error-both positive and negative error. To 
those intangible benefits cited in the opening remarks should 
be added the ability to expand advanced technology into 
new areas, better manpower leveling and manpower utiliza­
tion, better interfaces and understanding between specialty 
disciplines, and better interfaces and understanding between 
major functions such as Engineering and Manufacturing. 
These qualities improve the opportunities for better planning 
and scheduling which will bring about significant cost 
benefits. On the negative side, it is difficult to predict what 
special systems problems will arise, special problems in 
scheduling two-shift operation may arise, contract go-ahead 
may not be compatible with system availability, it may be 

4 

o 10 

NUMBER OF SCOPES 

A - BREAKEVEN RATIO (REQUIRED TO JUST PAY FOR SYSTEM) 
$ PER HR COST =(RATIO X $20)- $20 
E.G. 4 SCOPES, RATIO = 3, COST = $40/HR 

B - ESTIMATED CUMULATIVE PRODUCTIVITY 
RATIO (ENCOMPASSES MORE AND MORE 
TASKS WITH LOWER PRODUCTIVITY RATIOS) 

Figure 6-IBM 360/65 graphic system dedicated to CADAM 

15 

difficult to schedule the most productive mix of applications 
at any given time, estimates may not have anticipated all 
relevant manpower factors, etc. On balance, however, it is 
felt that the estimates set forth in this paper are conserv­
ative. 

It is not common practice for most organizations to know 
the breakdown of costs for conventional tasks not to mention 
the breakdown for tasks using advanced technology. This is 
not to say that such data could not or should not be sought. 
On the contrary, in an era where increased productivity is 
becoming so very important, it would seem that organiza­
tional growth or even survival might well depend on the 
intelligent appraisal of present costs of operation and of 
alternative costs as a function of the incorporation of new 
technology. 

As pointed out earlier, although cost benefits are by no 
means the only benefits, they undoubtedly playa major role 
in the decision processes of most establishments. Even with 
this constraint, interactive computer graphics is now coming 
of age. 

ACKNOWLEDGMENT 

A paper of this kind is, of course, the product of inputs from 
many sources. In particular, I would like to thank Ira Cotton 
of the National Bureau of Standards and Don Scarbrough, 
head of the Lockheed-Georgia Operations Research Depart­
ment, for a very constructive critique; Dick Schunk, Staff to 
the Lockheed-Georgia Chief Design Engineer, for furnishing 
excellent background and operational experience on the local 
CADAM evaluation; Roy Harris and the Lockheed-Georgia 
Scientific Computing organization for CADAM systems costs 
data; Harry Peabody of Lockheed-Sunnyvale for experience 



620 National Computer Conference, 1975 

data on CADAM; and many people from Lockheed-Burbank, 
developers of CADAJVI 

BIBLIOGRAPHY 

1. Chasen, S. H., "General Principles for Planning an Interactive 
Graphic System," UCLA Short Course (Lecture Notes), Engineering 
819.53, Applied Interactive Computer Graphi~s, 23-27 September 
1974. 

2. Cislo, R. A., "Graphic System Performance Evaluation," (PROC) 
1972 ACM National Conference. 

3. Cotton, I. W., Cost Benefit Analysis of Computer Graphics Systems, 
National Bureau of Standard Technical Note 826; April 1974. 

4. Foley, J. D., "An Approach to the Optimum Design of Computer 
Graphics Systems," Communications of the ACM, June 1971. 

5. Jacobs, L. D., CRT Graphics Consoles-An Aid to Selection, Rome 
Air Development Center, Technical Report 71-61, Nov. 1971. 

6. Machover, C., "How Applications Affect Interactive CRT Terminal 
Selection," UCLA Short Course (Lecture Notes), Engineering 
819.53; Applied Interactive Computer Graphics, 23-27 September, 
1974. 

7. Poole, H. H., "Computer Display System Tradeoffs," in Computer 
Graphics: Techniques and Applications, Eds. Parslow, Prowse & 
Green; New York, Plenum Press, 1969. 



Future prospects in data processing 

Area Director: 
Earl C. Joseph 
Sperry Univac Defense Systems 
St. Paul, Minnesota 

So far, in the seventies, rapid revolutionary developments have occurred in 
the development and usage of computer systems. Already, we have passed 
through three generations of microprocessors, the distributed-function architec­
ture (networks) has emerged, dedicated special-purpose systems have reversed 
the economy-of-scale rule, and operating systems are turning toward easier to 
use systems. Massive evidence now exists, pointing toward a new computer era 
for the near and far term futures. These sessions will forecast trends and discuss 
future prospects relative to the direction that these trends are pushing the com­
puter field especially relative to expected impacts of interest to users. The three 
sessions will cover the following: 

Session I-Future Maxi-Micro Technology, Economics and Operations. 
Session II-Future Distributed Function Networks Technology and Manage­
ment. 
Session III-Panel-Expected Future User Impacts. 

621 





Where is technology taking us in data 
processing systems? 

by BERNARD J. GREENBLOTT and MU Y. HSIAO 
International Business Machines Corporation 
Poughkeepsie, New York 

INTRODUCTION 

During the past decades progress in LSI for logic and 
storage implies the following for data processing systems: 
(i) Cost reduction for a given function; (ii) Complexity 
increasing which also implies Capability and Performance 
increase; (iii) Reliability increase; (iv) Mass production 
capability handled by automated processes; and (v) Re­
duction in physical size. Similarly, in magnetic recording 
technological progress toward an increase in areal density 
of storage has the following implications: (i) Cost reduc­
tion per bit stored; (ii) Mass on-line storage is possible and 
practical; (iii) Performance improvement; and (iv) Re­
duction in physical size. 

As a result of this technological progress in LSI, high 
density magnetic recording, and related device develop­
ment have opened up three broad areas of significance to 
data processing systems: 

(1) Hardware costs of storing and processing data are 
decreasing, i.e., the unit cost of functional work 
performed by a computer is decreasing. 

(2) Following the trend described above, data process­
ing systems of the future will be designed around 
the user, not only in terms of business and domestic 
requirements, but also taking into account the 
physical location of the computer and/ or the user's 
terminal. 1,2 

(3) Advances in device technology have paved the way 
for overall system improvement. 

Based on existing trends in technology as outlined 
above, we can visualize a data processing system of the fu­
ture according to the concept shown in Figure 1. 

With reference to Figure 1 a self-contained unit with in­
telligent terminals or other I/O devices at the user's end is 
essentially the whole on-line data base system. 

As developed in the following sections of this paper the 
trends of technology over the last decades have been mov­
ing toward this concept. What is projected from observed 
trends is therefore no more than the final convergence of 
these trends. 

623 

THE TRENDS OF TECHNOLOGY 

Progress in semiconductor devices for logic and storage 

Judging from recent trends/ extrapolations, IC's with 1 
million components, or 10 bipolar LSI chips to yield 
100,000 gates for computer application are possible for the 
1980's.3 

These achievements, representing a definite trend from 
1953 to 1974, (Figure 2) show an increase in computer 
processing capability and a decrease in physical size, 
quantified as follows: (1) From milliseconds (l0-3) to nano­
seconds (10- 9

) in circuit performance means 6 orders of 
magnitude; (2) From cubic inches per circuit to 10 thou­
sands of circuits per cubic inch means 6 orders of mag­
nitude; and (3) At least 3 orders of magnitude improvement 
in power requirement and circuit failure rate. 

Storage technology,5 

In reviewing different conventional storage technologies, 
E. W. Pugh5 gives the following views on cost reduction as 
shown in Figure 3. 

Where there is a correlation between the cost/perform­
ance and the size of the largest single unit in that system, 
it is predictable that trends of the future will be to achieve 
ratio improvements of 40 or even greater in the cost re­
duction and volumetric efficiency of storage systems. 

Technological trends of various storage devices are dis­
cussed as follows. 

Semiconductor storage 

Semiconductor storage offers the best example of cost 
reduction, performance and volumetric efficiency 
improvement based on LSI technological progress. 

Progress in semiconductor storage has been made with 
both bipolar and FET devices (see Figure 4). Semiconduc­
tor storage at the present has a role in supporting innova­
tive storage arrangements/hierarchies (cache, buffer, local 
store). Semiconductor storage, in combination with mag­
netic storage, yields increased volumetric efficiency and 
cost performance improvement. 



624 National Computer Conference, 1975 

Figure I-Trends in future processing systems 

I t is likely that developments in storage systems over 
the next several years will also emphasize the organization 
of the storage, and the information in storage, as well as 
the technology of the storage devices. 

Magnetic storage6
-
a 

In the current state-of-the-art, disks, drums, and tapes 
are usually considered as the major source for mass 
storage because of their large capacity, and low cost. 
Technology progress in recent years has included not only 
read/write heads, but media, source coding and error cor­
rection, read/ write channel design and mechanical 
systems, resulting in cost-per-bit decrease, and improve­
ment in performance and reliability. Areal density has 
been used as a key factor in achieving cost reduction and 
improved performance in magnetic recording devices. 

5 
10 .~----------------------~ 

Number of Circuits 
Per Chip 

4 
10 

10 
= 

55 

.(11 " 

I 

60 

" , 

/ 
/ , 

65 70 75 

Year 

Figure 2-Logic circuit density progress 

80 

Log of Cost 
Per Bit in Cents 

- 1 

-6 

" " 
" " 
" , , 

1960 1970 1980 1990 

Year Installed 
Figure 3-Storage technologies 

Figures 5 and 6 show the progress in areal density for disk 
and tape products. 

Progress in terminals 

Since the late 1960's, applications of terminals have 
been rising rapidly. An indication of this trend is reported 
in the Infotech State-of-the-Art Report on Terminals, * 
which predicts the number of data terminals in the U.S. to 
grow from 195,000 in 1970 to 2,425,000 by 1980. This esti­
mate may be conservative, however, in view of what has 
been observed in the electronic calculator market during 
the past few years. Clearly, LSI technology is exercising a 

105 

Bit/Chip 

104 

8.192 
4.096 

2.56 
102 

6.4 

~ 
~ 
f-

I- ~fET 

I::: 

~ I I I-

L. l- I 

I- 1.024 

F 

J~ 
I f: I "" I-Bipolar F ,'..-l-

f-

f- ' I 
~ , 
l-
f- I 
f-

f-

~ I I 
I I I 

60 65 70 75 80 

Year 
Figure 4~ Progress in semiconductor storage 

* Computing Terminals, International Computer State-of-the-Art Report, 
Maiden Head, England, Infotech 1971, #4 



Where is Technology Taking Us in Data Processing Systems? 625 

major thrust for terminal progress. LSI, which puts more 
and more function into smaller elements, has made it 
possible to incorporate more storage and logic capabilities 
into the terminals. 

As a result of technological progress it is expected that 
the new terminal-based system together with the rapid­
growth of data-base and communications-based systems 
will put more capability in the terminal subsystems. 

Multi-level hierarchies in the structure of the dis­
tributed system are becoming more likely, thereby reduc­
ing the burden on communication lines, and increasing 
system availability. 

A WORKING EXAMPLE 

In this section, an attempt is made to project the end 
result of the technological progress described previously. 

Since the principal result of technological progress has 
been to reduce the cost of processor and storage functions, 
as well as the physical size of a data processing system, let 
us therefore visualize the single shippable unit, as shown 
in Figure 7. 

Based on projections derived from trends observed over 
the past decade the configuration shown in Figure 7 
consists essentially of 2 technologies: 

1. LSI Technology-Several LSI processors that yield 
data processing power rated in MIPS, and an LSI 
storage of 1 ()9 bits. 

2. Magnetic Recording TechnologJP-An archival store 
at 1012 bits is based on the assumption that 107 bit/in2 

areal density of magnetic storage. 

The hardware in Figure 7 can be represented by the 
system block diagram in Figure 8. 

To quantify the data processing system shown in Figure 
7, let us assume the access time of the storage system, and 
then work back to the required computing power of the 

Areal Density 
(BPI2~ 

10
7"F"---------_-----. 

, 
./ 

/ 
f 

/ 
/ 

103.+----+----+---~--~~--~ 
55 60 65 70 75 80 

Year 

Figure 5-Increases in areal density in disk products 

1.12 
.. 

Areal Density 
(BPI2,.6) 

r-------~I 
-.f:=====47't 

55 60 65 70 75 
Year 

Figure 6-Increases in tape areal density 

80 

processors. A set of assumptions for computation purpose 
on the characteristics of the storage system is given as 
follows: (1) Total storage size= 1012 bits; (2) Average ac­
cess time/data block (e.g., 512 bytes)=5jls at the en­
trance; (3) The hit ratio (Hr) of the cache is 0.985; (4) 
E/B=.l (Ratio of instruction per byte of required data) of 
processors; and (5) The block size transferred between the 
processor and cache is 8 bytes. 

Using these assumptions, the required computing power 
of the processor can be calculated from Figure 8. The 
activity (= data traffic) between the processor and the 
cache is equal to 

(1) 

where B1 is assumed to be 8 bytes. The activity between 
the cache and the storage system is equal to 

(2) 

where B2 is assumed to be 512 bytes. Therefore, we have 

(F1+S1)B1 (F1+S1)B1 8 --~1 
(F2 +S2 )B2 (F1 +S1)(1- H r )B2 .015 X512 

(3) 

This shows that the data activity between the processor 
and the cache is equal to the rate between the cache and 

LSI Logic 
and Storage 009 Bits) 

Multiple Centrally 
Located Access 
Head 

Cooling. Power 
Supply. Etc. 

Mechanical and 
Electronic Mechanisms 

Figure 7-A future data processing system 



626 National Computer Conference, 1975 

................... CACHE 

LSI 0 

PROCESSOR 

Fl ,SI = Fetch and Store Activity 
at the CACHE level 
from the PROCESSOR. 

F ,S = Fetch and Store Activity t 2 2 at the STORAGE SYSTEM 1 1..-II,om 'h. CACHE. 

~~F+S ~ / 
- - - - - ---- - {~"'--------- -', 

I 

SOLID STATE 
STORAGE 
109 Bits 

! 
ARCHIVAL STORE 

1012 Bits 
I 
I 
I 

\. ____________________ ___ J 

81 1 1 

'----H 
B2~~F:+S2 

CACHE 

Figure 8-System block diagram 

1'----- - - - - - - - - --, 

370/158 

• • • 

370/158 

~ 1011 Bit ' 
r-~--l Tape/Disk: 

: •• 'Systems , , , 

; 1(I~M2~!20)1 , LJ ' Tape Reels' , •• I . , 
, , on Line I 
" , 
:' I l.. ____ J , 

I , , , 
I r-----' I 

I , 
I I : , 
, I , , 
, I , , 
I I 

I 'I 
: I I 
I L----J I 

~:-~ 
I/O Terminals 

PRESENT 

f 

~~ 
Intelligent I/O Terminals 

FUTURE 
Figure 9-Progress in a data processing system 

10 MIPS 

109 Semicond. Storage 

10 12 Bit Archival 



Where is Technology Taking Us in Data Processing Systems? 627 

Semiconduct<;H 
Storage 

logic 

Board 

Ch;p, Module ~ 

e---= :_@_I~~trJ --.J1 

Semiconductor 
Storage 

logic 

Share 
Module 

Figure lO-Chip packaging/merging concept 

the storage system, which equals 

512 Bytes ~100 MB 
5 10-6 /sec 

X sec 
(4) 

Based on the assumption that each instruction of the 
processor on the average requires 10 bytes of data, i.e., 
E/B=O.l, a 100 MB/sec data rate can be supported by a 
processing power of 10 MIPS. Therefore, as predicted by 
known progress in LSI technology, a 10 MIPS processing 
power can be hosted within several LSI p~ocessor modules 
as shown in Figure 7. 

As a final comparison, let us consider how this system 
compares with the IBM 370/158 where machine charac­
teristics can be generalized as follows: (i) Processing ca­
pability=l MIPS; and (ii) Storage capacity=4 MEGA 
Bytes. 

If we effectively put ten IBM S370/158's together to 
yield system characteristics of 10 MIPS processing power 
and 10X(4X8Xl06 bit)=3.2x1OS bit storage, we can say 
that the ten systems together with more than 2000 reels of 
tape on-line are about equivalent to that of the data 
processing system as shown in Figure 9. 

Figure 9 shows the natural trend of future data process­
ing sy-stems, and the need to design these systems so as to 
share the merits of technological progress in different 
areas. 

FUTURE TRENDS 

Advances in device technology have made a great im­
pact on computer systems, affecting not only cost, per­
formance, and reliability but also volumetric efficiency. 

In the logic area, it is possible to fabricate hundreds and 
even thousands of logic gates on one chip. 'In the semicon­
ductor storage area, we have witnessed the progress of 64, 
128, up to 8192 bits per chip.lO This trend will continue in 
the future and it will mean further reduction in the cost 
per bit of solid state storage. The realization of these cost 
reductions will also require innovations in manufacturing 

procedures. If the technology is the same, then a merge of 
logic and storage in the LSI process is more desirable. 
This means that the chip size will also increase. The result 
of the trend toward the large chip is a reduction in packag­
ing/handling costs. Figure 10 shows the trend of merging 
of logic and storage on the same board, eventually to the 
same module. 

Improvements in LSI technology common to storage 
and logic have established that storage/logic functions will 
no longer be distinguishable in any physical way. Further­
more, development in the storage hierarchy concept is the 
key link between high speed LSI semiconductor storage, 
and mass storage magnetic recording devices. 

In magnetic recording devices, the trend in areal density 
is much the same in terms of factoral improvements in 
cost and size reduction. We see disk and tape becoming in­
separable, with an access time of a fraction of a second. 
Mass on-line data storage is essentially the archival store 
with its storage capacity being the total system store ca­
pacity. 

CONCLUSION 

During the past decade technologica1 advances in semicon­
ductor logic and storage, and increased areal density in 
magnetic recording-particularly tape and disk-have 
been achieved. Initially the benefits of these achievements 
were applied to desk-top calculators, small computers, and 
aero-space equipment. However, as a result of engineering 
innovation and the solution of manufacturing and process 
problems, it is becoming apparent that these technological 
advances will also have an effect on the concept and 
performance capabilities and applications of terminals in 
front of large scale data processing systems of the future. 

What we have emphasized here is that the new concept 
is principally the result of a convergence of many 
technological trend-curves observed over the past decade, 
i.e., the focus of attention is not on any breakthrough 
technology but, rather, is on the net result of several ~over-



628 National Computer Conference, 1975 

lapping/ evol ving technologies and where they are taking 
us in data processing systems. The significance of a 1012 

data base storage with 10 MIPS processor power packaged 
in a single unit is thus completely overshadowed by a 
corollary effect of a cost-per-hit to the user which is ex­
pected will eventually be somewhere in the range of the 
cost of telephone service. 

No longer will data processing capabilities be cost-pro­
hibitive to many potential small users. Decreased terminal 
and system cost, and decreased functional cost to the user, 
will make computer services available to the needs of the 
local community, of small businesses, and the general 
public-at-Iarge. In the context of access to the system via 
an interactive terminal the potential for new aids to educa­
tion, problem-solving, and decision-making is almost limit­
less. 

ACKNOWLEDGMENT 

The authors express their appreciation to Mr. J. A. 
Haddad for his encouragement in developing this paper. 

REFERENCES 

1. Tobias, M. J. and G. M. Booth, "The Future of Remote Information 
Processing Systems," FJCC 1972, pp. 1025-1035. 

2. IEEE Computer Society, "Computer"-Distributed-Function Com-
puter Architectures, March 1974. . 

3. Heath, F. G., "Large-Scale Integration in Electronics," Scientific 
American, February, 1970, p. 31. 

4. Feth, G. C., "Memories are Bigger, Faster-and Cheaper," IEEE 
Spectrum, November, 1973. 

5. Pugh, E. W., "Alternatives to Magnetic Recording," AlP Conference 
Proceedings, #5, pp. 31-44, 1971. 

6. Harker, J. M. and H. Chang, "Magnetic Disks for Bulk Storage, 
Past and Future," SJCC, 1972. 

7. Branscomb, L. M., "Technology Trends in Peripheral Devices," 
IEEE 1974 CompconSpring, pp. 17-20. 

8. Conley, S. T., "Tape, Disk ... What Next?" IEEE 1974 Compon 
Spring, pp. 5-8. 

9. Pohm, A. V. and R. J. Zingg, "Proposal for a 1012 Bit Flexible Disk 
Pack Memory," IEEE Transactions on Magnetics, September, 1972 
pp. 574-576. 

10. Huffman, W. K. and H. L. Kalter, "An 8-K Bit Random Access 
Memory Chip Using a One Device FET Cell," 1973 IEEE Interna­
tional Solid State Circuits Cont Proceedings, pp. 64-65. 



The economic implications of microprocessors 
on future computer technology and systems 

by JAMES C. NELSON 
Sperry Univac 
St. Paul, Minnesota 

INTRODUCTION (HOW DID WE GET HERE?) 

At the turn of the last decade, 1970, the computer market 
was well structured. Almost 70 percent of the market was 
controlled by a single company, IBM, while (25 percent) 
of the remaining market was primarily controlled by four 
other companies. These companies produced the systems, 
software and hardware required for automation systems 
using second order suppliers to furnish a large proportion 
of the component parts. The largest second order suppliers 
were the semiconductor manufacturers who did an annual 
business of ($348 millionjl970) annually producing the 
logic components for the required computer and pe­
ripheral system elements. 7 

As the semiconductor technology devEloped to permit 
integration of larger logical functions on a single semicon­
ductor chip, a new low-cost computer industry evolved. 
This industry, the minicomputer industry, specialized in 
the production of dedicated computer systems for control 
applications in price ranges starting under $10,000. 

Further development in the semiconductor industry 
centered around the memory requirements for computer 
manufacturers. It had been recognized much earlier that 
MOS technology had the potential of being more cost ef­
fective than the (at the time) low-cost core memory. 
However, the large investment in core memory tended to 
retard the development in semiconductor memory until 
such time as significant cost advantages were possible. 
The processes which eventually permitted the semiconduc­
tor memories to overtake the core memory were' embodied 
in the 1103 semiconductor memory chip which eventually 
broke the core cost barrier in 1973-74. 

Along with the development of the MOS process for 
memory came the development of MOS process to 
produce adding machines. The capability of placing all of 
the functions of an adding machine on one chip permitted 
an extreme cost reduction in this product, opening a new 
market to millions of potential users. Certain of the semi­
conductor manufacturers were quick to determine that the 
structure required to build a sophisticated adding machine 
was similar to that required for a simple computer, .and 
development of such computers was begun. Initially this 
development was restricted severely in complexity by the 
semiconductor yields (a function of chip size, and thus 
complexity), as well as the limited number of pins on semi-

629 

conductor packages then available. Initially, it is . likely 
that semiconductor manufacturers saw the development of 
microprocessors as a means to increase sales of already 
existing semiconductor memories. However, it rapidly be­
came apparent that these devices were capable of use in 
many new and old applications, such as intelligent termi­
nals and numerical controllers for processes, which pre­
viously required assembly from discrete logic devices. 

Further developments in this field involved the produc­
tion of a microcomputer which was partitioned into bit ele­
ments of a minicomputer combined with a micromemory 
capable of sequencing simple microinstructions in order to 
affect, complex minicomputer instruction performance. 

Another development expanded the four bit microcom­
puter capability to eight bits permitting these devices to 
efficiently operate for the first time with alphanumeric 
type codes, such as ASTIA. Thus, application of micro­
computers to intelligent terminals and low speed data 
concentrators began to occur. 

WHERE ARE WE NOW? 

At the point of this writing, three major semiconductor 
manufacturers control over ninety percent of the micro­
processing market. HOWEver, over twenty other manufac­
turers have announced competitive products in an attempt 
to penetrate this new market. The next year promises to 
be one of extreme competition between semiconductor­
microprocessor vendors while they attempt to obtain 
market shares large enough to permit their continuation in 
this business area. Certainly many competitors will not 
survive in the keen competition which is about to occur. 

In contrast with the initial microprocessor devices which 
were available, all of which began utilizing the more 
readily processed PMOS technology, microprocessors are 
now becoming available utilizing more exotic technologies 
which permit them to realistically compete with minicom­
puters in speed, as well as use in rugged environments. 
Among the technologies recently announced are; 
NMOS-which yields a factor of three in increased device 
speed of operation, CMOS-which permits wide tempera­
ture range for rugged applications, along with minimum 
power requirements, and single supply voltage, BIPOLAR 
TTL-which permits high speed and single power supply 



630 National Computer Conference, 1975 

requirement, and INTEGRATED INJECTION LOGIC, 
which permits reasonably high speed, wide temperature 
range, and minimum power consumption. 

Along with the development of these new technologies in 
microprocessors, better semiconductor process controls are 
beginning to permit larger quantities of logic to be placed 
upon a chip with reasonable yield. This improved process 
technique is resulting in the design of microprocessors 
with larger word lengths for applications where more 
powerful processing functions are required. At this time 
processors of 12 and 16 bit lengths have been announced 
by semiconductor manufacturers. 

Although many manufacturers are attempting to build 
truly general purpose microprocessors for use in all ap­
plications, certain of the manufacturers have singled out 
specific applications areas, either based upon their 
processors dHign, or by design of chip sets for specific 
input/ output applications. The function of peripheral con­
trol has been targeted by Rockwell while RCA is attempt­
ing to penetrate the entertainment market with a televi­
sion add-on processor. Both Motorola and Rockwell are at­
tempting to penetrate the communications market with 
specially designed microprocessor-modem parts, and To­
shiba is attempting to win the automobile microprocessor 
control market with their wide-word, wide temperature 
range, 12 bit microprocessor. 

In order to penetrate the microprocessor market, semi­
conductor firms have found that it is necessary to provide 
potential users with software capabilities almost as so­
phisticated as that provided by minicomputer firms. Most 
microprocessor manufacturers now have software 
assemblers and simulators available from timesharing 
services, or will provide Foitran decks for users who have 
their own computer systems. 

Most of the microprocessor systems maintain their 
procedures (program) in read only memories, either fixed 
or programmable. In order to fix instructions within the 
ROMs, the user must either prepare data tapes for the 
semiconductor manufacturer or have available a means of 
programming their own semiconductor memories. In order 
to provide this function, and to permit checkout of micro­
processor systems several manufacturers have made 
available low-cost ($2-3,000) hardware simulators which 
permit test of the system before the program is frozen in 
ROM or PROM. 

At present, except in the case of National Semiconduc­
tor, few of the semiconductor microprocessor manufac­
turers provide assistance in application of their devices to 
actual function implementation. National is the only 

TABLE I-Potential Microprocessor Control Market 

Washing machine control ________________________ 9 million per year 
Dryer control __________________________________ 5 million per year 
Electric range control __________________________ 2.6 million per year 
Television game interface __________________ up to 12 million per year 
Automobiles ____________________________________ 8 million per year 
Telephones ____________________________________ over 109 million 

TliAT 61 G? 

DOLLAR VOLUME-MICROCOMPUTER SYSTEMS 

AVERAGE SYSTEM PRI CE 

QUANTUM: 3,106 UNITS ( '78) 
2.0 556ij/SYSTEM 
1.9 

GHOSTI C: 3, 106 UN I TS (' 82) 
1.8 

5167/SYSTEM 
1.7 

1.6 51600,106 

1.5 
I.ij 

1.3 QUANTUM 

1.2 
SCI ENCE 

1.1 

1.0 5990, 106 

0.9 
0.8 

0.7 

0.6 5500, 106 

0.5 
O.ij 

0.3 

0.2 
0.1 

0.0 

73 7ij 75 76 77 78 79 80 81 32 

Figure 1-

manufacturer that has indicated that it is in direct com­
petition with the minicomputer manufacturer for applica­
tion type business. All other microprocessor manufac­
turers indicate that they intend to operate as original 
equipment manufacturers of parts only. 

WHERE ARE WE HEADING? 

Nonetheless, it is evident at this time that the micro­
processor is headed for competition in two basic areas. 
First, it will penetrate the low end and eventually take 
over the minicomputer market,2 sec·ondly, it will generate 
many new high volume applications in areas previously 
unreachable by the computer industry due to the pre­
viously high cost of processor hardware. 

There is no question that we shall see· a marked change 
in the semiconductor business as a result of the evolu­
tionary development of the microprocessor. For the first 
time the semiconductor manufacturer will have volume 
(end product) markets in automation application areas. 
Areas of business which could provide new markets for 
microprocessors directly to the semiconductor houses 
without intervention of computer manufacturers are 
shown in Table I below.3 

Several market projections have been made during 
recent months. A summary of these market projections in 
dollar volume is given in Figures 1 and 2.4

-
6 As indicated 

in Figure 1, market projections vary between $180 
million in 1978 to $107 million in 1982. It is interesting to 
note that given an estimated demand of 3 million chip sets 
in the end projected year, the cost of chip sets by semicon­
ductor manufacturers shows a cost varying between $36 
and $90 per chip set. 

Actual microprocessor system costs, projected in Figure 
2 include memory and input/ output units, in addition to 
the basic microprocessors. Average costs of these units 
vary from $167 to $564 in 1982 and 1978 respectively. One 

. can only regard the large variation in these figures as an 
indication that the emerging microprocessor market is not 



yet well defined. No projection yet indicates the effect of 
the automobile market, estimated to begin using micro­
processor product in 1980, and only one projection4 indi­
cates the in-house capability that will be developed by the 
present computer industry leaders in order to maintain 
value added in their peripheral and processor products. 

One thing is patently apparent, and this is that there 
will be a fall-out of vendors of microprocessor products. 
Noone winner will be evident, but rather several manu­
facturers concentrating on specific functional products 
will survive the shakeout, along with, perhaps, several 
general purpose device producers. 

The effect on microprocessor users, such as numerical 
control manufacturers, and peripheral manufacturers will 
be the development of de facto interface standards that are 
enforced by the availability of only a few dominant types 
of microprocessor types to implement their device control. 
It is appealing to project that the survivor, and thus the in­
terface definition will be determined by the best, most eco­
nomical design available from the several semiconductor 
microprocessor producers. However, as already apparent 
in the industry, the surviving de facto standard is not al­
ways the best possible design, but rather an indication of 
the economic, marketing, and political elements existing at 
the time of the technology shakeout. 

Projections of eventual costs of devices by semiconduc­
tor manufacturers indicate that piece parts of $10 per unit 
are possible for product volumes of 10,000 units or greater. 
Simple availability of such devices will force computer 
design engineers of larger systems to use these devices 
whenever possible because of economics. Thus the 
availability of microprocessors will affect even the archi­
tectures of larger machines in areas where speed is not of 
extreme importance. 

Undoubtedly, because of cost advantage there will be a 
trend toward partitioning of those problems which will 
admit such decomposition into a series of serial processes 
which can be implemented by means of microprocessors 
with little sharing of the problem data base. (An example 

S2.0 
1.9 

1.8 
1.7 
1.6 
1.5 
I.ij 

1.3 

1.2 
1.1 

1.0 
0.9 

0.8 
0.7 
0.6 

0.5 
O.ij 

0.3 

0.2 
0.1 

0.0 

73 7ij 

HOW BIG IS THE MARKET? 

OOLLAR VOLUME-CH I P SETS ONLY -MI CRO PROCESSORS 

S180xl06 

75 76 77 78 

Figure 2-

AVERAGE CH I P SET PR I CE 

ADL: 2 TO 3.5x106 UNITS ('79) 
S51-901 CHIP SET 

GNOSTIC: 3xl06 UNITS ('82) 
S36/CH IPS ET 

79 80 81 82 

The Economic Implications of Microprocessors 631 

SYSTEMS DESIGN FOR PARTITIONING 

CONTROL CONTROL CONTROL 

OUTPUT 

CONFL I CT DETECT I ON FUNCT I ON 

(M I N I M I Z E MU L T I PL E MEMO RY USE) 

Figure 3-

of such a partition for a radar processing function is given 
in Figure 3.) Some modification to current microprocessor 
architecture will undoubtedly occur to more readily permit 
sharing of certain memory banks by multiple micro­
processors. 

Certainly in the near future there will cease to be any 
non-intelligent peripherals. The economics of the micro­
processor dictates that all symbiont routines, previously 
held in the central processor for peripheral unit control, 
will gravitate to the microprocessor within each peripheral 
which controls its function and permits modification to­
affect various control disciplines. 

Nevertheless, there will continue the need for the high 
performance general purpose processors of high com­
plexity manufactured by the leaders of the processing in­
dustry. These processors will continue to be used for net­
work control and as data base handlers, because the eco­
nomics of the central data base will force this form of net­
work organization. 

SUMMARY 

In summary, the microprocessor evolution will work great 
changes on the computer-automation field. Anticipated 
events within the next five years will include: 

1. Growth of intelligent peripherals with microprocess­
ing control, including even the simplest data entry 
device. Implementation of present software I/O 
symbionts into the fixed programs contained within 
the processors/ controlling peripherals. 

2. A renewed attempt to partition complex problems 
with little data base overlap so that a pipeline of 
microprocessors may be used to effect a more eco­
nomic implementation of such problems. 

3. Minimization of the actual control of processes by 
large scale processors, and a specialization of central 



632 National Computer Conference, 1975 

processor facility to provide network control and data 
base handling. 

4. A fallout of microprocessor manufacturers with 
several specialized architectures and suppliers 
remaining to service different functions. (i.e., com­
munications, entertainment, machine (auto) control, 
general purpose.) 

5. As a result of the fallout, a de facto standard of 
devices and device interface which will force the 
large scale computer manufacturer to design to the 
needs of the microprocessor interface. 

REFERENCES 

1. "u.s. Markets 1971 Forecast," Electronics, pp. 63, January 4, 1971. 
2. Microprocessors and Microcomputers, Auerbach Report 

S175.0000.100, September, 1974. 
3. Statistical Abstract of the United States, U.S. Bureau of the Census, 

Washington, D.C., G.P.O., 1973. 
4. The Potential of Microprocessor Technology, Arthur D. Little Im­

pact Services, Norman S. Zimbel, September 1974. 
5. "Special Report, Microprocessors," Electronic News, pp. Hf, John 

Day and Martin Gold, May 27,1974. 
6. "Shipments of Microprocessors," Electronic News Special Supple­

ment, pp. 4, August 12, 1974. 



Innovations in the operation of future 
computers 

by FREDERIC G. WITHINGTON 
Arthur Do Little, Inco 
Cambridge, Massachusetts 

EVOLUTIONARY TRENDS 

Not many years ago the standard way of operating com­
puters was in a single stream batch mode. The operator 
completely controlled the computer resource, setting up 
each job before its initiation, mounting the appropriate 
tapes and I/O media, initializing the machine, putting the 
appropriate program deck in the cardreader and so forth. 
The user interacted with the operator most often in a 
"closed shop" mode, giving the operator a run request 
from a card deck and tapes as needed, and leaving it to 
him to take care of applying the resources to the job. 

Because of the waste of computer time involved in single 
stream batch operation, multi-programming became 
general. In the multi-program environment the roles of 
user and operator did not change in any relative way, but 
the role of the operator became impossibly difficult. He 
was still required to specifically allocate system resources 
to each job in the mix, but now he had to handle as many 
as five to ten jobs simultaneously in the system. He was 
also expected to see to it that regardless of the pattern of 
operation of each job the system resources devoted to each 
partition (particularly computer time and memory space) 
were efficiently used. This proved humanly impossible in 
most cases, and the computeOr operator's job became a 
very difficult and unhappy one. 

Fortunately for the operator, demand was slowly grow­
ing for systems which would project the resources of the 
computer directly to the user. Beginning with computa­
tional time-sharing and evolving into production areas, 
modern systems provided the user with a computer that 
would respond when needed, both to compile new pro­
grams and to execute runs of programs in the library. 
These interactive concepts have by now spread over the 
entire spectrum of data processing. Remote data entry, re­
mote batch processing, conversational program develop­
ment, transaction processing and (in general) the associa­
tion of integrated data bases with the organization's em­
ployees at every level have achieved general acceptance. A 
diversity of developments have been needed to make this 
possible: 

• Virtual system management techniques have proved 
to be desirable. First, virtual memory management 
evolved to allocate the storage resource in a dynamic 

633 

environment. Second, to a still controversial degree 
multiple operating environments will be provided 
through the use of virtual monitor techniques. Most 
recently came the concept of the virtual file, first in 
MULTICS and now in the IBM 3850, with more to 
come. The virtual file may prove to be at least as im­
portant as any of the other concepts of virtual opera­
tion, because it enables the system to provide data 
sets, program libraries and files dynamically in 
response to user demand without operator interven­
tion. 

• Data base management software is becoming mature 
in the sense of being reliable, versatile and easy to use 
in an on-line environment of multiple users. Particu­
larly important is the development of user query lan­
guages, which not only permit users to inquire about 
the contents of files but increasingly permit them to 
develop and execute new procedures involving 
manipulation of file data. 

• Communication processing subsystems including net­
work definition languages, versatile access methods, 
and economical controllers have evolved to a degree 
that permits economical use of communications net­
works by users without specialized knowledge. 

• A special case of interactive processing with 
particular implications for local operation is the self­
diagnostic and remote maintenance capability being 
evolved by some of the manufacturers. Designed to 
reduce maintenance costs while providing increased 
systems availability to the user, remote maintenance 
will further reduce the need for people at the com­
puter's location. 

All of these developments reduce-sometimes nearly 
eliminate-the need for operators in the computer room. 

Comparable developments are occurring in small 
systems, used both in association with large machines in 
networks and independently by small users. The 
dominant trend is toward the development of small, easy 
to use interactive systems typified by the new Honeywell 
Series 60/61 and the NCR SPIRIT. In these systems all 
processing takes place interactively. {Few small users were 
ever very interested in batch processing computers, be­
cause their small volumes of transactions had never made 
batch processing necessary. U sing file cabinets full of 



634 National Computer Conference, 1975 

ledger cards, accounting machines and telephones, the 
small users already had the full advantages of interactive 
processing-even though semimanual-and saw no need to 
put up with the time delays of the batch approach.) These 
new small systems, taking advantage of the low transac­
tion volumes which enable the dedication of the whole 
system to one transaction at the time, are also causing the 
user to become the operator. The order entry clerk is auto­
matically causing the machine to execute procedures to 
process each order as it is entered. Outputs are delivered 
to the receiving dock, the storeroom, or the production 
line. There are few changes of programs or disk packs, 
since the system is dedicated most of the time. Just as 
with the large systems, the need for an individual in the 
machine room to set up and execute each application 
program disappears. 

The intelligent terminal represents a parallel develop­
ment. An intelligent terminal is usually used in a hierar­
chical system where a central data base exists, performing 
some processing of the individual transaction, sometimes 
using local files applying only to the location where the 
terminal exists. Processing performed by intelligent termi­
nals has also obviously left the control of the central 
system operator. He has no idea how much processing is 
taking place in the intelligent terminals of the system, nor 
any control over who does it, when, or in what manner. 

IMPLICATIONS 

In some respects these trends should be a cause of 
considerable concern. No single individual or group will 
have knowledge at the time of what the system is doing or 
for whom. If any failure, fraud, confusion or loss of data 
occurs, it will be far more difficult than in the past to 
identify the cause of the problem and to rectify it. The 
manufacturers face a formidable responsibility of provid­
ing fool-proof software which cannot be caused to fail by 
any combination of permissible actions on the part of the 
users, and which also provides all of the necessary audit 
trails, journals and control reports needed for the user to 
detect misuse and be able to recover from failure. The 
software must also provide responsive service to the user 
and run the system reasonably efficiently; experience 
shows that these objectives are not easily met either. 

The user also has formidable challenges facing him. He 
must be able to identify which users consumed what 
resources, where bottle-necks in the system are occurring, 
and where any bugs in either the applications or the 
system itself are cropping up. In the old batch environ­
ment these monitoring functions were not too difficult 
(though in multi-programmed systems considerable com­
plexities arose). In the new world of direct interaction with 
the user the system must monitor itself, which is easier 
said than done. 

Perhaps more critical than the monitoring problems are 
those of data quality control, protection against system 

misuse and provision of adequate security and privacy of 
data. Even though the contents of the data base are being 
projected to many users in many locations, the user must 
somehow find a way to be sure that restrictions on access 
to the data are enforced and that accounting controls and 
protections against fraud are effective in all circum­
stances. In the. past, with an orderly flow of batched 
transactions through manual check-points and with all 
files contained in the computer room, it was not difficult 
to provide these satisfactory controls. No comparably ef­
fective general methods have been developed for interac­
tive systems; the user is challenged to develop specific 
methods which will be adequate in his individual case. 

Presuming that the manufacturer and the user can deal 
adequately with these problems (and most manufacturers 
and users alike think that they can), the roles of the 
people as they interact with the systems will be changed in 
interesting ways. 

The user becomes the operator of the system, in the old 
sense that he causes a run to be performed at a particular 
time requiring a particular set of resources. Except for the 
remaining periodic batch runs (such as the production of 
payrolls and month-end accounting reports) the remainder 
of the system's operations will be initiated by the user 
without the assistance or intervention of any central 
operating personnel. To a considerable degree he also be­
comes his own programmer; such tools as query languages 
merge the programming and command languages indistin­
guishably. The user finds it easy to prepare most reports 
and local, small programming runs; the application 
programmer loses his role as a provider of fast response 
special reports and small runs. However, the large batch 
jobs of the organization continue to be implemented by 
specialist application programmers; a large number of 
them are still needed. 

The computer operator is affected more than the ap­
plication programmer. His primary responsibility ... used to 
be the application of system resources to every individual 
job; this role has disappeared altogether. To the degree 
that local batch runs remain the system still needs help in 
the mounting of forms on printers (until such time as all 
output is delivered remotely), in mounting tapes (until au­
tomated tape library machines come into wider use) and 
in performing similar supporting functions. Also, the 
operator will probably have to assist the machine in 
instances of conflict between jobs of equal priority, in 
resource allocation or schedule conflicts that are beyond 
the machine's ability to resolve for itself. The operator be­
comes, in a sense, the foreman who augments the in­
telligence of a group of cooperating robots. The operator 
also remains responsible for the master schedule: inform-. 
ing the machine of the necessity for performing regularly 
scheduled batch runs, making sure that the primary 
operating environments are available to users during the 
scheduled hours, and the like. 

Finally, and perhaps most important, the operator be­
comes the custodian of the information resource. He must 
see to it that appropriate analytic studies are performed 



regularly, for purposes of accounting for usage and of 
tracking developing maintenance and bottle-neck prob­
lems. He must also (above all) see to it that the control 
and back-up procedures are adequately followed, that no 
illegitimate access to data is occurring via routes of access 
which he can monitor, that the appropriate journals of 
transactions and file images are maintained and safe­
guarded, and that in general all control procedures which 

Innovations in the Operation of Future Computers 635 

require regular execution are followed. In this sense the 
operator has a more important job than he has ever had 
before, and the job is considerably upgraded from the ap­
plications-oriented one of previous generations. The opera­
tor becomes the overseer of the performance of the informa­
tion systems resource; he becomes the conductor of the 
orchestra in which each user plays his preferred instru­
ment. 





User orientation in networking* 

by ORRIN E. TAULBEE, SIEGFRIED TREU and JIRI NEHNEVAJSA 

University of Pittsburgh 
Pittsburgh, Pennsylvania 

INTRODUCTION 

Motivation 

The virtues and drawbacks of computer networks are 
well known. A number of significant networks are already 
in existence,1 and their effects and potential in the area of 
resource sharing are unquestionably important. Confirma­
tion of this fact is indicated not only by the relevant litera­
ture on the whole,2 but also by various NSF-sponsored re­
search efforts3,4 and special NSF initiatives.5,6 

But real success in computer networking, totally aside 
from the question of economic justification, has been quite 
difficult to attain. This is not to say that important partial 
successes have not been scored. The ARPA Network, for 
example, represents a significant achievement in applica­
tion of communication technology to networking.7 But the 
communications subnet was not the only goal. The net­
work was to be used-resources were to be shared.s Al­
though some actual "users" have by now gotten involved, 
and the network implications previously described by 
Roberts promise considerable growth in usage,9 indications 
are that the user was inadequately taken into account dur­
ing initial network design stages. Only after the sophisti­
cated communications network was established were 
detailed questions about network usability seriously raised 
and confronted. The latter were partly initiated by users 
themselves lO and have also resulted in a network users 
group which meets periodically to discuss user problems 
and suggestions. 

In stark contrast to the ARPA network, an Educational 
Information Network (EIN) was also started several years 
ago. It has left some lingering lessons behind.ll EIN was 
also to enable sharing of computer resources. Much re­
lated discussion and planning resulted in an organizational 
framework within which a user could 'utilize the 
catalogued resources of member institutions. But the 
means of communication provided for EIN was not a 
telecommunications net. Users were to transmit their data 
by mail or courier! For this and other reasons, the users 
were obviously not attracted to EIN. Hence, in spite of the 
interest in sharing resources displayed by EIN member in­
stitutions, very little use was made of the network.12 

* Supported in part by National Science Foundation Grant GJ39989. 

637 

In a sense, we have had a peculiar dichotomy between 
widespread interest in sharing of computer resources and 
adequately advanced technology to supply the essential 
telecommunication means and methods. We must 
endeavor to bridge the gap. To do so, we do not require 
substantial additional technological breakthroughs. 
Instead we need major advances in tailoring the available 
computer / communications technology to become more 
amenable to and suitable for human use. Regardless of 
how efficient a computer network might be, it must be ap­
proachable and usable in order not only to appeal to 
prospective users, but also to retain the current usership. 

Therefore, user-orientation in computer network design 
and implementation is crucial. But how can it be 
achieved? First, it is necessary to recognize that the objec­
tive requires interdisciplinary attention. If the user is of 
genuine concern, psychological and sociological considera­
tions must immediately enter the picture. Furthermore, 
network management must be involved. It must bring its 
directives and policies to bear. In past years, local com­
puter center management frequently left design decisions 
affecting the user-computer interface to the whims and 
wishes of local computer programmers. That was serious 
enough in a local environment. But it must be viewed as 
intolerable in the context of a nationwide computer net­
work. 

Study context 

This paper is one result of a recent NSF-supported 
study.13 That study was purposely restricted to the major 
user-oriented considerations which should concern 
management. The broader roles in network management,14 
though recognized, were not addressed. Just how manage­
ment itself is organized and distributed geographically was 
only questioned on the basis of effects (if any) on user 
services. Logically, the user sees (or should be able to see) 
management as centralized, regardless of actual organiza­
tional structure and location. Consistent with this, the cur­
rently popular attempt at stratifying networks into 
wholesale/retail functions,t5 is considered to be another 
manifestation of a kind of management which, on the one 
hand, might show a potential for facilitating services but 
which, on the other hand, the user "could care less about." 



638 National Computer Conference, 1975 

STUDY FRAMEWORK 

Global view 

There is a time for specialized or stratified approaches 
to studying a major problem area. This is especially true 
when a highly complex system is involved, for which some 
kind of total view may· be overly ambitious and in fact 
counterproductive. In view of the significant progress that 
has been made, particularly with respect to network-re­
lated computer and communications technology, the time 
is now ripe for putting it all together on behalf of the 
·consumer of network-based services. 

We have therefore tried to confront the complexity of 
user-oriented network considerations at a more global view 
and higher level of abstraction. The intention was to 

1. observe, conceptualize and organize the characteris­
tics and problems of the computer network and its 
environment which are significant to the user, and 

2. systematically utilize the results and other pertinent 
knowledge for the specification of those network fea­
tures which should not only eliminate or at least 
alleviate user difficulties but actually provide a fa­
vorable network posture to the user. 

All of this has been considered with the view that network 
management must ultimately be responsible. Much can be 
said about what is idealistically desirable. But, unless ef­
fective means and methods are made available for incor­
porating desired user-oriented features in network design 
and operation, and unless network management is 
properly motivated and has appropriate policies and 
procedures at its disposal, the desirable network charac­
teristics will remain just that: desirable and seemingly 
unattainable. 

Interdisciplinary approach 

As long as a computer network is intended to attract 
and benefit the human consumers of its services, it must 
not only be designed and managed for technologically effi­
cient operation; it must also capitalize on the expertise im­
portable from other disciplines, particularly those which 
can facilitate human interactions or dealings with the net­
work. The increasing sophistication of computer science 
and technology, as it is exhibited through the presently 

. available as well as planned computer networks, justi­
fiably enthralls computing professionals. However, we 
must not ignore the (probably) detrimental consequences 
for the present and prospective network user. 

"Non-computer specialist" computer users have had 
and still do have a multiplicity of problems in trying to 
cope with past and present computer service modes. The 
very nature of a geographically distributed set of intercon­
nected service centers presents the real danger of leaving 
the normal kind of user even further "removed" from 
what is going on and where to get help. Unless we are will-

ing to suggest or concede that the consumer should learn to 
live at the mercy of hardware and software and be forced 
to adapt accordingly, we must deliberately start to take 
the requirements and preferences of users, whenever 
reasonable and feasible, into account in computer network 
design and subsequent management. To determine and 
understand what the user needs or wants, it is desirable to 
take advantage of the people-oriented disciplines of 
psychology and sociology. 

Accordingly, our study has been carried out in a dis­
tinctly interdisciplinary manner. This should be apparent 
from the following description of the study procedure and 
various resulting behavioral considerations. 

Three-phase procedure 

Toward achieving the objective of developing a frame­
work of consumer-oriented considerations in network 
design and management, a procedure was followed which 
consisted essentially of three phases: 

1. Descriptive modeling 
2. Structured reasoning, and 
3. Policy mapping 

These are successively characterized below. 

Descriptive model 

Without any externally imposed network design 
constraints, a suitable computer network configuration 
had to be specified as an exemplary model. A realistic and 
useful network configuration, based both on precedent-set­
ting examples among existing networks as well as on con­
ceptions of what a nation-wide network for science might 
be like, had to be hypothesized. The study results should 
then have particular reference to the modeled network. 

To hypothesize a network of national scope, without the 
benefit of any surveys or estimates on who might par­
ticipate, from where and what for, obviously requires a 
number of assumptions. These are characterized in con­
junction with Figure 1. As that figure shows, the concep­
tualized model configuration is decentralized. Its nodes 
are considered to be located at preselected, geographically 
distributed sites and they collectively involve some set of 
heterogeneous, medium- to large-scale computer systems. 
The internode communications facilities are assumed to 
be adequate for accommodating the reasonable require­
ments of the network users. 

This leads to the next level of our descriptive model: the 
user population which is necessary to render a network 
viable. It is depicted by the arbitrary pattern of U 
symbols in Figure 1. With our primary objective of 
consumer-oriented network design and management, this 
level is of course at the heart of concern. What are the 
possible problems confronting the average user who is try­
ing to access and utilize network facilities from one of the 
indicated locations? They are not insignificant; they may 



be very frustrating if not altogether intolerable. The user 
is faced with a broad spectrum of questions or potential 
problems, ranging from whether and where the resource of 
interest is available, to how to get access to it and utilize it, 
and how to take care of various administrative matters 
such as authorization of system use. Throughout this range 
of user problems, a variety of psychological considerations 
enter the picture. These are dealt with more closely in a 
later section. 

Having settled on a particular technological configura­
tion for a model network, and having superimposed a re­
quired user population for whom, after all, the network 
services should be intended and designed accordingly, we 
are ready for the third and final level of our model. It is 
precipitated by asking whether the network capabilities in 
terms of hardware and software are viewed to be in 
themselves sufficient for serving the user successfully. In 
spite of the aforementioned laudits for technology, the 
answer is a definite no. Whether we like it or not, people 
are still required-even in the context of a sophisticated 
computer network. Hence, as indicated in Figure 1, the 
user may need to acquire assistance or advice from 
geographically distributed network staff members or 
perhaps even other users of the network. Furthermore, the 
users as well as staff members may have to directly or in­
directly relate to or communicate with network manage­
ment, whatever form the latter might take. 

Consequently, we actually find that all of 

1. a user population, 
2. a supporting staff, and 
3. the management personnel 

A COMPUTER/COMMUNICATIONS NETWORK 

WITH A USER POPULATION 

INVOLVED IN A SOCIAL SYSTEM 

U = USER 
S = STAFF 
M = MANAGEMENT 

Figure 1-Three-level descriptive network model 

User Orientation in Networking 639 

are involved in what can be viewed as a "social system" 
superimposed on the computer network. The sociological 
considerations relevant to this level of our descriptive 
model will be highlighted later. 

It should be apparent from the description thus far that 
the nature of this study is indeed interdisciplinary. In ad­
dition, since all of the above should be understood, 
directed and facilitated by network management, appro­
priate policies and procedures must be established. 

Structured reasoning 

With reference to the descriptive network model, 
specific network features now had to be identified along 
with any corresponding recommendations for manage­
ment. To accomplish this in a deliberate and thorough 
manner, an organized structure was imposed on the search 
for or reasoning out of those network characteristics which 
are deemed to be consumer-oriented. 

From the outset, this structured reasoning phase 
stratified the network considerations16 into those pertain­
ingto 

1. Usability, 
2. Sociability, and 
3. Accountability 

The term "usability" was employed to encompass those 
network features and capabilities which have a significant 
bearing on the user's fundamental inclination and ability 
to interact with the network to take advantage of its 
available resources. "Sociability" was selected to include 
those network features and capabilities which facilitate or 
enable the establishment of various cooperative links or 
colleagueships, in the interest of better utilizing available 
resources. Thirdly, we used "accountability" to refer to 
those network features and capabilities which permit the 
user's direct or indirect interaction with management in 
accounting for network access, use, billing and other re­
lated problems. 

The three categories of consideration are clearly interre­
lated in a number of ways. Nevertheless, each area is sig­
nificant in itself and warrants some separate attention. In 
this paper, however, emphasis can only be given to the 
first two because of space limitations. The third category, 
accountability, and implications of all three categories for 
network management, will be treated in a separate paper. 

Our "structured reasoning" entailed one additional step: 
the establishment of a framework according to which the 
desired network features could be determined more 
systematically. This framework is an array. For each of 
the usability and sociability (as well as accountability) 
strata, the framework was employed, as will be seen from 
Tables I and II, toward finding a desired set of factors in 
response to each of the following three questions which are 
indicated by row labels of the array: 

1. What is the availability of appropriate resources? 
2. Is the user-network interface suitable? 



640 National Computer Conference, 1975 

Table I-Usability Factors 

NETWORK CHARACTERISTICS AND 
FEATURES USER KNOWLEDGE AND PREPAREDNESS DIAGNOSTIC OR F ACILIT ATING FACTORS 

1. Availability of Appropriate Resources: 
(a) Hardware Facilities 

1. On Resources: 1. 
(a) Awareness of Available Resources 

With Regard to Resources: 
(a) Market Survey 

(b) Software Capabilities (b) Willingness to Find Out about Them (b) Publicity 
(c) Data Bases 
(d) Directory to Resources 
(e) Other 

(c) Need to Use Them 
(d) Other 

(c) Regular and Prompt Updating of Informa-
tion about Resources Available 

(d) Other 
2. Suitability of User-Network Interface: 

(a) Terminals 
2. On the Interface: 2. 

(a) Experience with Different Interface(s) 
With Regard to Interface: 
(a) Training both On-line and Off-line 

(b) Interactive Languages 
(c) Procedures and Rules 
(d) Documentation 

(b) Willingness to Learn How to Use It (b) Preparation and Distribution of Appropri­
ate Documentation (c) Willingness to Study Documentation 

(d) Other 
(e) Other 

(c) User Feedback Leading to Potential Re-
design 

(d) Other 
3. Level of Network/Interface Performance: 

(a) Accessibility 
3. On Performance: 3. 

(a) Realistic Expectations 
With Regard to Performance: 
(a) Continuous Evaluation 

(b) Reliability (b) Reasonable Tolerance (b) Security Checking 
(c) Responsiveness 
(d) Data Security 
(e) Other 

(c) Willingness to Accept Blame· when 
Appropriate 

(c) Quality Control 
(d) Other 

(d) Other 

3. Are the network. resources as well as interface 
performing properly? 

Further structure is imposed via the dichotomy por­
trayed by the first two columns of the array. In spite of 
the frequently mentioned advocacy of user-orientation in 
this paper, that is not to imply a totally one-sided relation­
ship between user and network. The user does also have 
certain, minimal obligations. While the network must sup­
ply the necessary resources, the user must at least show 
enough interest to be minimally informed and prepared. 
Thus, for each network characteristic to be listed in the 
first column of the array, one or more corresponding oblig­
atory factors in behalf of the user are implicitly sought in 
the second column. 

Policy mapping 

If we can successfully identify the significant consumer­
oriented network features, then the final question to be ad­
dressed is: what should network management do about 
them, or what policies and procedures should they adopt 
and carry out? 

This third phase of our study procedure can be viewed 
as a kind of policy mapping. The third column of Figure 2 
can be used to define this concept. If the first two columns 
portray the features to which the network and the user 
should respectively contribute, what are the factors, or 
means and methods, which are available toward diag­
nosis/reinforcement/facilitation of the desired features on 
the part of management? Furthermore, management must 
be cognizant of and apply suitable policies and procedures 
to assure success. Thus, while the factors to be listed in the 
third column are responsive to "what" is necessary, 
certain policies and procedures are required to say "how" 
it is to be done. 

PSYCHOLOGICAL CONSIDERATIONS 

Usability array 

Network usability factors pertain to the user-network 
interaction. Collectively they represent a kind of idealized 
profile of man-machine partnership or rapport. The net­
work is expected to provide all those features which carry 
psychological implications for user attraction to and satis­
faction by the network. The user, on the other hand, 
should be obligated to do comparatively little: gain 
minimal knowledge and preparedness and display a 
reasonable attitude toward the network. 

These considerations are brought out in more detail 
through the structured reasoning phase, resulting in the 
usability array displayed in Table I. The latter is not 
intended to be exhaustive and entries are only indicated in 
capsule form. 

From the standpoint of interest and welfare of the user, 
the network is unlikely to attract attention unless it has 
some appropriate resources to offer. These might include 
special hardware facilities or software packages which are 
not locally available, and perhaps one-of-a-kind data bases 
to which access is sought. And to assure awareness by the 
user of the available resources, a very important resource 
in itself is a (preferably on-line) directory to the repertoire 
of network facilities. But all of that is to no avail if the 
prospective user does not have a need (or at least a natural 
curiosity) to become aware of what the network can offer, 
and to expend the effort toward finding out. 

Utilization is promoted if the user or potential user is 
aware of the resources available and how to use them. 
This means that adequate steps must be taken to publicize 
and announce what resources are available, when they are 
available, where they are available, and how the user can 
take advantage of this opportunity. Such publicity must 



be complete and up-to-date in that it includes the latest 
changes about each of the resources. 

In order to keep the resources of the network attuned to 
the needs of the user a mechanism for surveying user 
wants and experiences in utilization must be established. 
This must be accomplished on a regular basis so that net­
work performance quality can be maintained through 
improvement of existing resources or by re-design. 

Assuming that those first hurdles are overcome and a 
user-network match-up is potentially in the making, the 
details of actual interaction with the network gain 
prominence. Does the network support the kind of 
hardware· terminals, e.g., graphic devices, which the user 
wants or needs? Is the interactive language, or set thereof, 
too heterogeneous and confusing? Are the required interac­
tion procedures too cumbersome, and is the related docu­
mentation out-of-date or lacking in clarity? Answers which 
are unfavorable to the user will surely tend to lessen if not 
eliminate enthusiasm for the network. But even if inter­
face features are favorable, the user is again obliged to 
play his part. Experience with other interfaces will nor­
mally help, although prior conditioning to certain charac­
teristics and expectations can also negatively affect a 
user's view of a new facility. In any case, the user must 
demonstrate a willingness to learn whatever is required in 
order to interact with the network in question. This task 
must not be too difficult; otherwise, the user will give up. 

An individual desiring to use the network's resources 
should be able to take advantage of an orientation and 
training program to satisfy his need for basic information 
about the network. Such a training program may be 
conducted in both on-line and off-line modes. Distribution 
of documentation may take place at an off-line training 
session. However, adequate documentation should be 
readily available at other times as well. 

Finally, with reference to Table I, the basic network 

User Orientation in Networking 641 

resources and interface characteristics may exist and ap­
pear to be attractive, but their respective performances 
may be lacking. A much longer list of performance factors, 
viewed as desirable from the user's standpoint, could be 
listed. While some of them, such as reliability, may be 
deemed more important than others, the overall 
"usability" of the network is significantly affected by its 
performance profile. However, as before, the user must do 
his part. He must be realistic and reasonable in what he 
expects and what he is willing to tolerate. This is of course 
to some degree influenced by the user's past experience 
(and conditioning to other computer services) and result­
ing understanding of and appreciation for what is realis­
tically possible. 

Selected special concerns 

Not all the important features are apparent from or 
even listable inTable 1. Instead, some result from various 
collective treatments or abstractions on those features 
which are listed. A few of these are highlighted in Table 1. 

Attracting users 

What is it about the psychology of a user which causes 
him/her to be attracted to a particular service, such as a 
computer network? Actually both psychology and so­
ciology are involved in the process. To begin with, some­
body has to be innovative enough to try it regardless of 
whether he knows of anyone else having done so. Then, in 
trying the network, he finds himself faced with an assort­
ment of network features like those listed in Table I, and 
the questions relating thereto. After a trial period, some 
particular mixture of favorable characteristics may tip the 
user's "scale" in favor of network-related success, as op-

Table II-Sociability Factors 

NETWOllK CHAllACTEl{lSTICS AND 
FEATURES 

USER KNOWLEDGE AND PllEPAREDNESS DIAGNOSTIC OR FACILITATING FACTORS 

1. Availability of Appropriate Resources: 1. On Resources: 1. With Regard to Resources: 
(a) Staff Specialists for Various Re-

sources 
(b) Specialists Among Other Users 
(c) Directory to Human Resources 
(d) Other 

2. Suitability of Interpersonal Interface: 2. 
(a) Special Communication Software/ 

Hardware 
(b) Interpersonal Communication Proce­

dures 
(c) Documentation 
(d) Other 

3. Level of Human Network/Interface Per- 3. 
formance: 
(a) Access to Specialists 
(b) Human Responsiveness 
(c) Cooperation 
(d) Other 

(a) Awareness of Available Human Re-
sources 

(b) Willingness to Locate Them 
(c) Need to Use Them 
(d) Other 
On the Interface: 2. 
(a) Interpersonal Communications Experi-

ence 
(b) Willingness to Communicate 
(c) Willingness to Learn Special Proce­
dures 
(d) Other 
On Performance: 3. 
(a) Tactful Communication 
(b) Demonstrated Appreciation 
(c) Appropriate Credit 
(d) Other 

(a) Identification of Specialists Among Other 
Users 

(b) Selection of Staff Specialists 
(c) Publicity on Availability of Specialists 
(d) Other 
With Regard to Interface: 
(a) Training and Scheduling of Specialists 
(b) Opportunity for Regular Face-to-Face 

Meetings between User, Staff, and Man­
agement 

(c) Insuring Sensitivity to User Concerns 
(d) Other 
With Regard to Performance: 
(a) Continuous Evaluation 
(b) Incentives Program for Staff and User 

Specialists 
(c) Instill in Staff that Network is a Means to 

an End for the User rather than an End 
in Itself. 

(d) Other 



642 National Computer Conference, 1975 

posed to failure. The mixture does of course vary from 
user to user, subject to personal priorities, preferences, 
and again, prior experience. 

The important byproduct of successful user experience 
with the network is that a satisfied user is probably the 
best catalyst for attracting additional users. The attraction 
of users in this manner entails basically three steps: 

1. Observing or being informed that another user (e.g. 
colleague) has been successful in using the network 
and likes it, 

2. Actually bringing himself to try it, 
3. Experiencing that an adequate combination of net­

work features (in Table 1) is favorable and that his 
required personal efforts (also Table I) are not 
excessive. 

Thus the user has essentially been given positive rein­
forcement for expectations, personalized to himself, but 
originating from promises or projections based on someone 
else's experiences. 

Informing users 

Another concern, which cuts across the considerations in 
the second column of Table I, is how much information 
the user actually needs, or is forced to assimilate, in 
interacting (or learning how to interact) with the network. 
The user who really wishes to know all about available 
resources, access procedures, interactive languages etc. is 
probably the exception rather than the rule. Instead, at 
any particular time of being motivated to access the net­
work, the user wants to know only what he needs for suc­
cessful interaction. And he wants that information to be 
made available expeditiously and unambiguously. 

Ideally, the network should enable the user to learn, on 
the one hand, as little as necessary and, on the other hand, 
as much as desirable. Over a period of time, this will cause 
the user to develop more insight than if initial experiences 
with the network required the user to learn a multitude of 
details about the total network. Opportunities for learning 
as much as desired, when desired, should however be 
available. The extreme of inundating the users must not 
be replaced by the extreme of withholding pertinent in­
formation or perhaps cloaking it in technical jargon which 
only specialists understand. 

Maintaining users 

After a user has been attracted to the network and, 
then, has been adequately but not excessively informed 
about the network, what is to make sure that he does not 
turn into a non-user again? Aside from any economic 
considerations, the user who needs the particular resources 
available can be expected to remain a customer either 
until the network services and performance deteriorate 
below a certain, personal threshold of tolerance, or until a 

competitive computer service with better performance be­
comes available. 

So, the key to success in maintaining users lies not only 
in assuring that those characteristics which originally at­
tracted the user are continued at the same or higher levels 
of performance; it also requires a certain amount of inno­
vativeness toward improving services, without generating 
serious disruptive effects. As the user gets more experience 
and gains a better understanding of what the network can 
and could do, he probably does not want to stay in a net­
working environment which is comparatively static. Thus, 
aside from pure economic and administrative concerns, 
the user is likely to remain satisfied if the network 
achieves a reasonable balance between service quality and 
innovative hardware/ software development toward modi­
fying/ improving network capabilities. 

SOCIOLOGICAL CONSIDERATIONS 

Sociability array 

The social system of users, staff and management, when 
superimposed on the technological network, plays a signifi­
cant role in actually enabling or facilitating network use. 
The "sociability" concept is therefore not addressed for its 
own sake, but because of its bearing on "usability", 
described earlier. The primary concern here is with over­
coming the depersonalization which naturally arises in 
networking where, by design, a network as a "system" is 
automated to the maximum extent possible consistent 
with economic and reliability considerations. This means 
that communication between users, staff and management 
must be natural and free flowing. Thus, ability to com­
municate should be an important factor in selecting staff 
and management personnel. Beyond this, mechanisms to 
promote communication should be established. 

Analogous to what was done with usability in Table I, 
sociability factors are portrayed in capsule form in Table 
II. It can be seen that the main emphasis is on users "so­
cializing" with the network staff or other users. Network 
management is assumed as implicit in or behind the staff 
representatives of the network. 

It is interesting to observe that many of the factors 
listed in Table II are analogous to those in Table I, except 
that now a human network of resources is that object of at­
tention of the user. This means that on the network side 
appropriate staff specialists must be made available and 
identifiable by means of a suitable personnel directory. In 
addition, for certain highly specialized projects and per­
sonal resources accessible via the network, other users 
might be the best (if not the only) available sources of in­
formation. Given their willingness to participate, they can 
significantly supplement the network's repertoire of 
human resources. As was true for the hardware and 
software resources, the user must now play his/her part by 
gaining awareness of the human resources and then, when 
necessary, calling on them. 



But that is more easily said than done. Given an up-to­
date directory of network specialists, the regular telephone 
call can be employed for a limited amount of interpersonal 
communication. However, in a reasonably sophisticated 
network, various (computer) network-supported modes 
can be expected and are preferred for certain tasks. Voice 
conversations can of course be maintained in addition to 
on-line, computer-based communication. 

As was the case for the user-network hardware/software 
interface, the hardware/ software-supported interface for 
interpersonal interaction must be suitable for the user. 
Otherwise, if it presents too much of an obstacle, he will 
become frustrated and refrain from any further attempts 
to get (remotely located) human assistance in the network. 

Thirdly, with reference to Table II, the human 
resources aspect in the network must perform satisfac­
torily. If specialists are announced to be available at 
scheduled times, the user should be able to rely on that. 
Furthermore, once the user-specialists communication link 
is established, it is not too much to ask that the specialist 
be as patient, responsive, and cooperative as is reasonably 
possible. Managers of local computer centers know only 
too well what problems arise from lack of adequate and 
sincere user-orientation on the part of staff members. This 
possibility is most likely to be compounded in attempted 
communication between a user and a remotely located 
resource person. 

Selected emphasis areas 

Within the social system consisting of users, staff and 
management, it is desirable to give special attention to 
each of the following pairwise combinations in the network 
environment: user-user, user-staff, staff-staff, manage­
ment-management (perhaps multi-level), user-manage­
ment, and staff-management. The following two sections 
briefly address only the first two of these; the others will 
be considered in a separate paper. 

Users and users 

One important reason for one user's wish to gain the 
assistance of another was already indicated: the case in 
which the latter is perhaps the best or only authority on 
the use of a particular piece of hardware or software or 
data base. But other reasons may exist. 

This leads to a potentially significant sociability feature 
in a computer network. If the network can maintain some 
kind of accessible record of usage patterns and related 
user problems, as exhibited or experienced by individual 
users, then the capability to search such records could 
lead to user-user match-ups and subsequent interactions. 

Of course the above would not be carried out without 
expressed user permission. User privacy and the proprie­
tary nature of his software or' data must clearly be 
protected. However, if and when a user determines that 
the time is ripe for him to share information about either 

User Orientation in Networking 643 

his newly developed data bases and debugged software 
packages or his other substantive network-related 
activities and experiences, he should be able to so indicate, 
with the assurance that he will be given appropriate credit 
and can turn this accessibility off when he desires. 

Users and staff 

One of the serious problems in user-staff interaction is 
overcoming the certain "in-group barrier" which tends to 
develop and surround network personnel. The latter are 
very likely to evolve an esprit de corps, based on the sig­
nificance and attractiveness of belonging to the network 
organization, such that they become rather self-centered 
and regard the struggling users out there as almost alien. 

This is, in a sense, not too surprising in view of the 
normal constituency of a network staff: computer 
programmers, information retrieval specialists, computer 
systems analysts and others with similar occupational 
titles. These persons are naturally inclined to view their 
common objective, namely the computer/communications 
network, as the only thing of importance.17 But regrettably 
this is done strictly from their occupational vantage 
points, without attempt to reach out and learn to ap­
preciate what the service consumer at the other end of the 
network is really trying to do. These users do not normally 
regard the network as all-absorbing. They tend to be 
persons from industry, business, government or academia 
who only wish to use the network as a means to an end, 
not an end-in-itself.18 

That gap between staff and users must be bridged. And 
once the staff members can be encouraged, enticed or 
ordered to develop greater interest in and understanding 
of user problems, then they can become more receptive 
and responsive to user inquiries for assistance. Needless to 
say, as was indicated previously, the user must in turn 
demonstrate not only respect, but also the tact and appre­
ciativeness which makes for much better two-way com­
munication among people. 

CONCLUSION 

A review of the literature on computing indicates a pleth­
ora of material on networking. But in this literature there 
is a paucity of publications dealing with users in relation 
to a network. The current paper, and the study from 
which it is derived, contributes to the literature on net­
working because: 

1. It emphasizes user concerns and focuses on certain 
features which make the network consumer- and 
service-oriented. 

2. It highlights the importance of an interdisciplinary 
approach in studying one aspect of networking. 

3. It displays one structured method of attacking such a 
complex system. 



644 National Computer Conference, 1975 

REFERENCES 

1. Farber, D. G., "Networks: An Introduction," Datamation, April 
1972, pp. 36-39. 

2. Blanc, R. P., I. W. Cotton, T. N. Pyke, Jr. and S. W. Watkins, An­
notated Bibliography of the Literature on Resource Sharing Com­
puter Networks, NBS Special Publication 384, September 1973. 

3. Dorn, W. and M. Robbins, Alternative Approaches to the Manage­
ment and Financing of University Computing Centers, University of 
Colorado, NSF Grant No. GJ-32368. 

4. Weingarten, F. W., N. R. Nielson, J. R. Whiteley, and G. P. Weeg, A 
Study of Regional Computer Networks, University of Iowa, Partially 
supported by NSF Grants GJ-27723, GJ-27724. February 1973. 

5. Aufenkamp, D. D., "National Science (Computer) Network," Net­
works for Higher Education, Proc. of EDUCOM Spring Conference, 
April, 1972, pp.29-35. 

6. Greenberger, M., J. Aranovsky, J. L. McKenney, and W. Massey, 
Networks for Research and Education: Sharing Computer and In­
formation Services Nationwide, MIT Press, Cambridge, 1973. 

7. Frank, R., R. E. Kahn and L. Kleinrock, "Computer Communica­
tion Network Design-Experience with Theory and Practice," SJCC, 
Vol. 40, 1972, pp. 255-270. 

8. Roberts, L. G. and B. D. Wessler, "Computer Network Development 
to Achieve Resource Sharing," SJCC, Vol. 36, 1970, pp. 543-549. 

9. Roberts, L. G., "ARPA Network Implications," EDUCOM Bulletin, 
Vol. 6, No.3, Fall 1971, pp. 4-8. 

10. Pickens, J. R., "Evaluation of ARPANET Services, January-March 
1972," UCSB Computer Systems Lab, RFC #369 July 25, 1972. 

11. Le Gates, J., "The Lessons of EIN," EDUCOM Bulletin, Vol. 7, No. 
2, Summer 1972, pp. 18-20. 

12. Denk, J. R., "Exchange of Applications Programs for Education-A 
National Stalemate," Interface Vol. 5, No.1, February 1971, pp. 11-
21. 

13. Taulbee, O. E. and S. Treu, User-Oriented Computer Network 
Management, Dept. of Computer Science, University of Pittsburgh, 
Report Under NSF Grant GJ-39989, 1975. 

14. Stefferud, E., "Management's Role in Networking," Datamation, 
April 1972, pp. 40-42. 

15. Stefferud, E., D. L. Grobstein and R. P. Uhlig, "Wholesale/Retain 
Specification in Resource Sharing Networks," Computer, August 
1973, pp. 31-37. 

16. Taulbee, O. E. and S. Treu, "Usability, Sociability and Ac­
countability in Computer Networks," Bulletin of 1974 Computer 
Science Conference, February, 1974, Detroit, Michigan (Abstract 
Only). 

17. Thompson, Victor A., Modern Organization, Alfred Knopf, 1961, pp. 
16 ff. 

18. Lefton, Mark, "Client Characteristics and Structural Outcomes," in 
Rosengren, William and Mark Lefton, Organizations and Clients, 
Charles E. Merrill, 1970. 



A deterministic analytic model of a 
multiprogrammed interactive system 

by SAMUEL T. CHANSON 
Purdue University 
w. Lafayette, Indiana 

and 

DOMENICO FERRARI 
University of California 
Berkeley, California 

INTRODUCTION 

The analytic models used to evaluate the performance of 
multi-access computer systems are generally queueing 
models. Their ability to iBpresent, often adequately, these 
systems is due both to the congestion situation created by the 
processes competing for a system's resources and to the vari­
ability of the workload, whose parameters can be much more 
concisely characterized as stochastic variables than by some 
deterministic representation. Thus, deterministic models 
have been only applied in extremely simple, first-approxi­
mation studies (see, for example, Hellerman and Smith! and 
Fenichel and Grossman2), or in the analysis of some resource 
management algorithms (e.g., the problem of optimal sched­
ules discussed in Chapter 3 of Coffman and Denning3). 

This paper presents a non-queueing model of a multipro­
grammed interactive system. The model is substantially 
more sophisticated and more accurate than the deterministic 
models previously proposed, but retains the characteristics, 
common to all deterministic models, of greater mathematical 
simplicity and better understandability with respect to 
queueing models of comparable accuracy. Even though the 
equations of the model derived in the paper for an XDS 
940 installation cannot probably be applied to other systems, 
the authors feel that the approach can be used for most 
systems to obtain quick and reasonably accurate estimates of 
some performance indices. 

THE APPROACH 

The system to be modeled in the study reported here was an 
XDS 940 time-sharing computer with a primary memory of 
64K words, a drum, a movable-arm disk and a number of 
interactive terminals. The system is multiprogrammed but 
its memory is not automatically managed; since a process 
must completely reside in memory before its execution is 
started, its information is swapped in at the beginning of an 
interaction (unless the process is already in memory) and 
is swapped out, if room for another process is needed, at the 
end of the interaction. Each process is given control of the 

645 

CPU for a maximum amount of time, called a quantum; 
when the quantum expires, the CPU is switched to another 
process (if there is at least one being ready to run) and the 
interrupted process joins a queue of ready processes. The 940 
has two quantum lengths; a process is allocated a short 
quantum first, and, if this is exceeded, then the process 
receives a longer quantum. 

In the model, a process (and hence the workload, defined 
as the ensemble of processes using system resources during a 
given interval of time) is characterized by the durations of 
its three possible states (see Kimbleton and Moore4); 

active (running), ready (waiting for the CPU), and blocked 
(waiting for, or using, a secondary memory or I/O device). 
Since this process-state model is not load-independent, in that 
the duration of the three types of periods for a given process 
generally depends on the behaviors of the processes competing 
with it, a simpler process-state model will be introduced. This 
is the one characterizing the given process in the so-called 
homologous uniprogramming environment, i.e., when it 
runs on the same system and the same configuration in uni­
programming mode; evidently, in this case a process can 
only be in one of two states, namely, active or blocked. 

The performance indices selected for the study were the 
CPU utilization p and the mean response time RES. These 
indices will be expressed as functions of the parameters which 
characterize the workload, first in the multiprogramming 
environment and then in the homologous uniprogramming 
environment. 

The derivation of the model is based on several assump­
tions, the most important of which are summarized here. 
In deriving most of the equations, the workload is assumed to 
be uniform, i.e., to consist of identical processes. (When the 
identical processes in a uniform workload have very narrowly 
distributed state durations, the workload is said to be 
homogeneous.) The assumption of uniform workload will be 
discussed in a later section. Another assumption which seems 
to be, and in fact is, very unrealistic is the lockstep mode 
(i.e., fixed order) in which the processes are supposed to be 
executed (see also Kimbleton and Moore4). This assumption, 
however, has been found to produce tolerable errors in many 



646 National Computer Conference, 1975 

N 

N a , NT, Nblk 
N tty , NaTm , Nask 

A,R,B 

L 
s 
To 
C 
M 

p 

RES 
X 
rXl 
p(X=x) 

TABLE I -Symbols Used in the Text 

Number of non-dormant processes in the system 
(N=1,2, ... ) 
Total numbers of active, ready and blocked periods 
Total numbers of teletype, drum and disk I/O 
operations 
Durations of active, ready and blocked periods (in ms) 
(subscripts indicate position in temporal sequence or 
process they refer to; when the number of processes is 
important, they appear as A(N), R(N), B(N)) 
Durations of blocked periods due to teletype, drum, 
and disk I/O 
Quantum length (in ms) 
Probability of having to swap in a process's pages 
Swap-in time for C pages (in ms) 
Mean number of pages needed by a process to run 
Primary memory capacity available to user processes 
(in page frames) 
CPU utilization 
Response time (in seconds) 
Mean of random variable X 
Smallest integer not lower than X 
Probability that random variable X takes the 
value x 

cases; some experimental data confirming this conclusion 
will be presented in Table VI. Other simplifying assumptions 
made consist of neglecting the overhead and I/O activity 
generated by the operating system; swapping-in and swap­
ping-out times were incorporated into the active periods of 
the process involved, and all I/O operations were considered 
as generated by user processes. Finally, only one quantum 
length was assumed, for simplicity. 

The simulator used to validate the model is described in 
detail in Reference 5. Its design, features and degree of detail 
are similar to those of Nielsen's time-sharing system simu­
lator.6 The validation of the simulator was based on mea­
surement data collected on the 940 system during normal 
operation. 

THE BASIC EQUATIONS 

In this section, the two performance indices we have 
selected, namely, CPU utilization p and mean response 
time RES, are expressed in terms of the parameters of the 
system's workload. The symbols that will be used in this and 
in the subsequent sections are listed, together with their 
meanings, in Table I. It should be noted that the workload 
parameters in Table I characterize the behavior of the set of 
processes which constitute the workload, or of each single 
process in it, over a time interval called total elapsed time, 
which is measured from the instant the N processes in the 
workload enter the system (their arrivals are assumed to be 
simultaneous) to the instant the execution of the last process 
terminates. Also the two performance indices will be com­
puted over that interval. 

CPU utilization is defined as the fraction of the total 
elapsed time during which the CPU is active. In a uni-

programming environment, we have 

A (1) 
(1) 

p= A(I)+B(I)' 

In a multiprogramming environment, the CPU is active 
for a total time period equal to NaA (N). The total elapsed 
time would be equal to the duration of the mean interval 
between the start and the termination of one process, which is 

- 1 - - -
D = N (NaA(N)+NrR(N)+NblkB(N», (2) 

if the processes all ended at the same time. Since this is never 
the case, due to the fact that most of the resources in a 
computer system are non-shareable, the actual elapsed time 
is always longer than D. However, if the workload is relatively 
homogeneous (in particular if the first and last few active 
and blocked periods are not disproportionately long), then 
the error incurred by taking D as the total elapsed time is 
small, provided that Na is large enough. Hence, p can be 
approximated by 

NaA (N) NNaA (N) 
pl"'./ D = NaA(N)+NrR(N)+NblkB(N) ' (3) 

which, when N = 1, reduces to (1). 
The values of p given by (3) were compared with simu­

lation results for a number of realistic workloads and in all 
cases it was seen that the error made by using (3) never 
exceeded a few percent, and that the accuracy of (3) in- " 
creases as N (hence also N a ) becomes larger. 

The response time for an interactive user can be defined as 
the interval between two consecutive blocked periods due to 
teletype I/O (ignoring echoes). Note that the usual assump­
tion is made here that computing is finished before the 
response starts being output. For N tty» 1, the total number 
of interactions is practically Nt/y. Hence, taking the average 
over the total elapsed time, we obtain 

-- 1 - - -
RES(N) = -N (NaA(N)+NrR(N)+NdrmBdrm(N) 

tty 

+Nd8kBd8k (N». (4) 

Note that the lockstep assumption has not been invoked 
in deriving (3) and (4), and that (4) is fully valid even for 
non-uniform, non-homogeneous workloads. 

EXPANDING THE BASIC EQUATIONS 

Among some of the parameters in Table I, there exist the 
following two relationships, which can be derived from their 
definitions: 

(5) 

- 1 - - -
B (N) =-N (N ttyB tty (N) + N drmBdrm (N) + N dskBdsk (N) ). 

blk 

(6) 

Since all four parameters in (5) appear in the basic Equa-



tions (3) and (4) (whereas this is not the case for (6», 
one of the twelve parameters in equations (3) and (4) is 
dependent on some of the others and eleven are the inde­
pendent parameters. These parameters can be thought of as 
characterizing the workload being multiprogrammed and 
are therefore called the multiprogramming parameters. We 
shall now try to express each one of them, with the only ex­
ception N, which we assume to' be known, as a function of 
the process-state parameters which characterize each process 
in the homologous uniprogramming environment and are 
therefore called the uniprogramming parameters. Both types 
of workload parameters are functions of system parameters. 

. However, most of the system parameters influencing the 
uniprogramming parameters (e.g., CPU speed, primary and 
secondary memory speeds) are likely to remain unchanged, 
or to change very few times, during the lifetime of the sys­
tem. For straight-line programs (in which all loops are ex­
ecuted a number of times specified within the program), the 
values of the uniprogramming parameters can be obtained 
directly from the listings of the programs if the speeds of the 
hardware units of the system are known. Otherwise, some of 
the parameters must be measured in the homologous uni­
programming environment, provided that the system being 
modeled does exist. It should be observed here that these 
measurements are to be performed only once and that, 
unless the system has been designed with measurement in 
mind, it is easier to measure these workload parameters than 
the performance indices themselves (whose measurement 
cannot be used to predict the effects of system or workload 
modifications). We shall now see how each one of the ten 
multiprogramming parameters we are interested in can be 
computed. 

Assuming that all I/O requests are initiated by the users, 
N tty, N drm, and N dsk are workload parameters not affected 
by the system. They can either be measured or, in the case of 
straight-line programs, be obtained by counting the number 
of teletype, drum and disk I/O operations respectively in the 
listings of the N programs. The identical-process assumption 
is not necessary to obtain these values. 

TABLE II-Validation of Equation (7) 

Workload Na/Nblk Percent 
Type N p Equation (7) Simulation Difference 

QED 5 0.1 1.0 1.0 
QED 9 0.6 1.03 1.03 
M2 5 0.6 1.24 1.20 +3.5% 
M2 9 0.8 1.27 1.23 +3.2% 
Ml 5 0.92 1.81 1. 73 +4.6% 
Ml 9 0.97 1.90 1.84 +3.2% 
QSPL 5 0.99 4.07 3.77 +7.5% 
QSPL 9 1.00 4.2 3.95 +6.5% 

A Deterministic Analytic Model 647 

If N is so large that CPU utilization is very near to 1, it is 
highly probable that any CPU time request greater than one 
quantum will result in more than one active period. In fact, 
if Ai is the CPU time request of a process at a certain instant, 
then, with a probability approaching unity as N increases, the 
number of active periods resulting from this request is 
r Ai/L1. 

Since for most systems the normal workload tends to keep 
high CPU utilization, we can approximate N a, by 

Na=Nblk LP(A=ai)[ai/L1, (7) 
i 

where i runs over the entire histogram of A. 
Table II compares the values of Na/Nblk given by (7) to 

those obtained by simulation under various workloads, which 
are described in the Appendix. The accuracy of Equation 
(7) depends on the type of workload as well as on the value of 
p. It is better for those workloads where most or all of the 
CPU demands can be satisfied in one time quantum (e.g., 
the QED workloads). For the same type of workload, the 
higher p (i.e., the larger N) is, the higher the accuracy. 
However, those workloads for which p is low usually have 
relatively small CPU demands and hence Equation (7) may 
still give a good approximation (see the first rows of Table 
II) . 

For identical processes running in lockstep mode, a ready 
period is present whenever one or more of the following 
conditions are satisfied: 

1. a CPU time request is greater than L and there is at 
least one other process waiting to use the CPU; 

2. the duration of a blocked interval is less than the sum 
of the active durations of the rest of the N processes 
in the same period (see the timing diagram in Figure 
1 (a»: 

(8) 

3. it is both (see Figure 1 (b) ) 

Hi> (N -l)Ai and Ai+l>A i. (9) 

Given the histograms of A (1) and B (1), N r can be cal­
culated from the three conditions above as 

Nr=Nblk L peA (1) =aj) { (raj/L 1-1) +p(B(1) 
i 

where j runs over the entire histogram of A (1). 
Even though the lockstep assumption is generally not 

satisfied in a real-life situation, simulation has shown that, 
for a relatively homogeneous environment, the estimates of 
N r given by (10), which are based on this assumption, are 
reasonably accurate (see Table 111). 



648 National Computer Conference, 1975 

Aj B j Rj":.I,1 

Aj Bj 

Aj B j 

(a) 

(b) 

Aj + I 

Rj + 1,2 

I Rj + 1,2 

: 
: Ai+ I ... 
I 

Figure 1-Timing diagrams illustrating the creation of ready periods 
when (a) condition (8) is satisfied (N =5) and (b) condition (9) is sat­
isfied (N =3). 

A(N) 

The mean active duration of the N processes in the system 
is affected by variations of N in two conflicting ways. First, 
as N increases, A (N) tends to decrease since it is more 
likely that there is a ready process waiting for the CPU at 
the end of a quantum. At the same time, however, since the 
time needed to swap in a process's pages at the beginning of 
an active period is considered part of A (N), and since the 
probability of swapping increases as N increases, A (N) also 
tends to increase with N. Thus, we can write (without 

1.0 

0.5 

Random and replacement 

20 30 N 

Figure 2-The curve of the probability of swapping 
(M=32, C=6). 

making use of the lockstep assumption) 

- - Nblk 
A (N) =A (1) Na +8Tc. (11) 

The probability of swapping, 8, depends on N, 11J and on 
the page requirement of each process. In the long run, and 
for N identical processes in the system, we have 

8 

CN-M >--­
- CN 

=0 

(12) 

The value of 8 is likely to be near its upper bound when 
random scheduling and random page replacement policies 
are used. The curve of 8 as a function of N, obtained by 
simulation using these policies, is plotted, together with the 
lower bound given by (12), in Figure 2 for M = 32 and C = 6. 
The actual curve lies somewhere between these two limits, 
and may be approximated by the middle curve (dotted in 
Figure 2). The average time T c to bring C pages into primary 
memory is the product of C by the average time required by 
the swapping drum to transfer a page (neglecting the 
latency time in both the one-page and the C-page cases). 
The two errors introduced in (11) by estimating 8 and Tc 
as described above have caused the results obtained from 
(11) to differ from those of our simulation experiments by 
less than 10 percent. 

R(N) 

To estimate R (N) accurately, it is necessary to know for 
each process the uniprogramming durations of active and 
blocked periods in their chronological order, i.e., the se­
quence A l , B l , A 2, B2 , ••• , rather than the two distributions 
of A (1) and B (1). Each Ai is incremented by 8Tc (see 
Equation (11)) and, for Ai>L, it is replaced by (Ai/L-1) 
Land (Ai-L (Ai/L-1)) (i.e., it is assumed that every CPU 
request exceeding L will be interrupted at the end of the 
quantum). Let Rij be the duration of the i-th ready period 
of the j-th process. Even though processes are assumed to be 

TABLE III-Validation of Equation (10) 

Workload Nr/Nblk Percent 
Type N Equation (10) Simulation . Difference 

M1 7 1.715 1. 75 -2.0% 
M1 15 1.844 1.88 -1.9% 
M2 5 0.71 0.66 -7.6% 
M2 11 1.0 1.015 -1.5% 
QED 8 0.35 0.41 -14% 
QED 15 0.87 0.985 -12% 
QSPL 7 4.03 4.1 -1.7% 
QSPL 15 4.15 4.22 -1.6% 



identical, each one of them will experience different ready 
periods. 

Assuming lockstep execution, we have for j = 1, 2, ... N: 

for Bi~ (N -1)Ai 
Ri+l,j= j

max{ (j-l) (Ai+l-Ai) , O} 

(13) 
max{ (j-l)A i+1+ (N -j)Ai-Bi,'O} 

for B i < (N -1)Ai. 

Equations (13) have been obtained by using timing dia­
grams such as those in Figures 1 (a) and 1 (b). As shown in 
Table IV, the lockstep assumption makes Equations (13) 
much less accurate than the others presented so fa~. How­
ever, they always overestimate R (N), whereas Equation 
(10) always underestimates N r , as seen in Table III. Thus, 
since N r and R (N) always appear as a product in the basic 
equations, the two errors partially compensate each other. 

R (N) may also be derived by the same approach used to 
obtain Equation (10). This allows R (N) to be computed with 
the knowledge of only the two distributions of A (1) and 
B (1) at the expense of accuracy. A (1) is to be modified by 
adding sTc to each ai to form a/. The a/s greater than the 
quantum length L are dropped with the sum of their proba­
bilities given to a/ = L. Then 

R(N) ~ ~ peA' (1) =a/){p(B(I) ~ (N -1)a/) 

'p(A' (1) >an(N ;1) 
X( L (ak'p(A'(I)=ak'))-a/) 

ak'>ai' 

+p(B(I) < (N -1)a/)[ (N ;1) (a/+A' (1)) 

- L BIP(B(I) =Bl)]} ' 
Bl«N-l)aj' 

(13') 

where j runs over the entire (modified) histogram of A' (1). 
The error was found to be about 20 percent. 

Note that, if Na»Nblk (i.e., in the case of a heavily com­
putebound workload, with A (1»>L), a process has to wait 
almost at every interaction for the other N -1 processes. 

Workload 
Type. N 

QED 5 
QED 13 
QSPL 5 
QSPL 11 
Ml 5 
Ml 13 
M2 5 
M2 13 

TABLE IV-Validation of Equation (13) 

R(N)[ms] 
Equation (13) Simulation 

3.62 3.44 
377 349.68 

2450 2213 
6440 5634 
1100 969.5 
3540 3092 
600 541 

1352 1176 

Percent 
Difference 

+5.1% 
+8.0% 

+10.2% 
+14.2% 
+13.5% 
+14.2% 
+10.5% 
+15% 

A Deterministic Analytic Model 649 

TABLE V-Validation of Equation (16) 

Bdrm(N) [ms] 
Simulation Workload 

N Equation (16) K=5 K=500 

3 
5 
9 

13 

31.4 
39.0 
55.2 
69.5 

Thus, the approximate equation 

32.39 
38.39 
57.85 
71.82 

R (N) r-./ (N -1)A (N) 

can be used. 

B (N) , Bdrm (N) , Bdsk (N) 

30.76 
37.59 
53.39 
71.21 

(14) 

For those interactive users who do not make excessive use 
of secondary memory devices, Btty (1) is at least one order of 
magnitude greater than both Bdrm (1) and Bdsk (1). Therefore, 
B (1) will reflect mostly B tty (1), and since think time in 
front of a teletype is likely to vary very little with N, B tty (N) 
will approximately equal B tty (1). Thus, we can write 

(15) 

and the analogous approximate equalities for Bdrm (N) and 
Bdsk (N), because of the assumption of very light secondary 
memory usage, which is equivalent to the one of empty disk 
and drum queues. 

When this assumption is not satisfied, we have to resort to 
the ordering of the active and blocked periods again. As­
suming identical processes, let Bij (N) be the duration of the 
i-th blocked period of the j-th process in the multiprogram­
ming case (j = 1, 2, . . . N), and let B i be a short-hand nota­
tion for Bil(I). Then, 

(16) 

withj = 1, ... N, i =2, ... K and K =min{x I Ax~ (N -1)Bx}. 
Note that K is the number of I/O operations in a burst of 

I/O activity and that index i counts the operations in the 
burst from its beginning. Equation (16) is based on the lock­
step assumption applied to a steady-state condition (K --+ 00 ) 

and considers a burst of I/O operations to a single I/O device, 
which can be represented by a single-server queueing system 
with FCFS policy. Most secondary memory I/O devices 
employ a multi-queue scheme. with FCFS or some other 
policy for each queue. Generalizations of (16) to cover these 
cases are presented in Reference 5. 

It should be noted that Equation (16) (or its generaliza­
tions) are in fact used to calculate Bdrm (N) and Bdsk (N) ; 
these values, together with that of B tty (N) derived from the 
distribution of console times, which we assume to be known, 
and with those of N drm, N dsk and N tty, can then be introduced 
in (6) to obtain B (N). 

In spite of the crude assumptions made to derive (16), 
the results of its usage are quite satisfactory even for small 
values of K (see for example their comparison with simula­
tion results for Bdrm (N) in Table V). 



650 National Computer Conference, 1975 

TABLE VI-Comparison Between Real and Nearly-Equivalent Workloads 

CPU Utilization Mean Response Time [ms] 
Workload Nearly-Equivalent Uniform Nearly-Equivalent Uniform 

Type N Real Analytic 

Dl 7 0.854 0.834 
D2 9 0.905 0.875 

REAL WORKLOADS AND THE ASSUMPTION OF 
IDENTICAL PROCESSES 

The equations derived in the previous sections are ap­
plicable only to workloads consisting of identical jobs. This 
section outlines the procedure for transforming a workload 
consisting of N non-identical jobs into a uniform workload. 
Two workloads are said to be nth-order equivalent with respect 
to a given system and a given set of performance indices if 
the first n moments of the distributions of the selected per­
formance indices they produce are the same. For instance, 
if CPU utilization and response time are the selected indices, 
a first-order equivalent of a given workload is a workload 
which produces the same mean values of CPU utilization 
and response time. Thus, we are interested here in construct­
ing a set of N identical processes which is first-order equiv­
alent to the real workload, or, more precisely, in determining 
its characterization in terms of uniprogramming parameters. 

By looking at the equations derived in the previous 
section, in particular at Equations (13) and (16), it is easy 
to realize that, for two workoads to be first-order equivalent, 
the condition that they have the same values of N, N drm, 
N d8k, N tty, and the same distributions of A (1), B drm (1) , 
Bd8k (1), B tty (1) is not generally sufficient; indeed, in the 
general case, this condition (to be called here the condition 
of near equivalence) must be supplemented with the one that 
the orderings of the active and blocked periods be such that 
they produce the same values of R (N), B (N), Bdrm (N) and 
Bdsk (N) for both workloads. 

We shall now see how a uniform workload which is first­
order nearly equivalent to a given real workload can be 
obtained. Since deriving a nearly equivalent workload is 
much easier than determining an equivalent one, the question 
of whether and to what extent the former can be used in our 
model instead of the latter will then be examined. 

If the real workload is composed of N straight-line pro­
grams, then it is not too difficult to determine the numbers of 
teletype, drum and disk operations. It is also a matter of 
simple calculation to find A (1), Bdrm (1), and Bdsk (1) , 
assuming that all the I/O requests are explicitly issued by 
the users. Btty (l) depends on the users and may be obtained 
either by monitoring the system, if it exists and is measur­
able, or from published distributions of console times. 

If the programs are not straight-line, then the values of the 
above parameters must be obtained by direct measurement. 
It is again emphasized here that the measurement needs to 
be performed only once and that it is usually easier to measure 
these workload parameters than the performance indices 
themselves. 

Simulation Real Analytic Simulation 

0.862 758.5 714.1 719.0 
0.866 1011.7 1004.0 939.0 

With these data, N identical programs having the same 
proportions of I/O operations as the totality of the N pro­
cesses in the real workload and the same values of A (1) , 
Bdrm (1), Bdsk (1) and B tty (1) can be conceptually created. 

The problem of selecting the order of the various operations 
in this workload, which is nearly equivalent to the real one, 
presents itself naturally at this point. In our experiments, 
the values of the uniprogramming durations were either kept 
constant or varied only slightly above or below the mean so 
that the ordering became less important. In these cases, for 
non-I/O-bound workloads (Le., when Nblk is small with re­
spect to N a ), the order of blocked periods does not sig­
nificantly affect performance estimations (see Equations 
(14) and (15». Also, for I/O-bound workloads, where 
Nblk~Na, the order is 'again unimportant since the programs 
tend to become homogeneous. It was found that by using 
arbitrary orderings in a relatively homogeneous, uniform, 
nearly-equivalent workload, the analytically computed 
results never differ from the corresponding simulation results 
by more than 10 percent (see some sample comparisons in 
Table VI). 

In the next sections, some applications of the model to 
performance estimation, performance prediction and system 
tuning (in particular, the optimum choice of quantum length) 
will be illustrated. 

PERFORMANCE ESTIMATION 

Let us consider a uniform workload consisting of N = 5 
processes identical to the one schematically represented in 
Table VII. (Note that the short console times are due to 
the fact that the XDS 940 deals with teletype I/O on a 
break-character rather than on a line-by-line basis.) Let M 
be 32 pages, C be 3 pages and L be 250 ms. Using the hard­
ware speeds of the XDS 940 system and the data in Table 

1 
2 
3 
4 
5 
6 
7 

TABLE VII-Description of a Process 

Ai (I) [ms] 

50 
60 
80 
20 

100 
30 
70 

Read one page from disk 
Console time (1.5 s) 
Read two pages from drum 
Console time (1.5 s) 
Write three pages onto disk 
Write one page onto drum 
Console time (1.5 s) 



A Deterministic Analytic Model 651 

VII, we can derive the distributions of A (1), Bdrm (1) , RES(N) 

Bdsk (1) and B tty (1), and obtain the following results. [5] 

Btty (1) = 1500 ms 

Bdrm(l) =25 ms 

B dsk (1) = 200 ms 

A (1) =58.7 ms 

B (1) =710 ms. 

From Equation (15) we have B tty (5) "-'B tty (1) =1500 
ms and since the value of K in Equation (16) is zero, there 
ar: no 'bursts of I/O activity. Thus, Bdrm(5) "-'Bdrm (l) = 
25 ms, and B dsk (5) "-'Bdsk (1) =200 ms. Since rM/cl=l1 
is greater than N, Equation (12) shows that the probability 
of swapping is zero. Also, since Equation (7) gives N a=35, 
from Equation (11) we have A (5) =58.7 ms. 

To calculate R (5), note that, at the beginning, the four 
processes following the first have to wait 50, 100, 150 and 
200 ms respectively. Since Al = 50 ms and BI = 100 ms, we 
have (N -1)A1> BI and equation (13) allows us to compute 
the durations of the five ready periods which are produced: 
R21 = 100 ms, R22 = 110 ms, R 23 = 120 ms, R24 = 130 ms, 
R25 =140 ms. Since A 2 =60 ms and B2 =1500 ms, we have 
(N-1)A2:::;B2' and Equation (13) gives R31 =O, R32 =20 ms, 
R33 = 40 ms, R34 = 60 ms, R35 = 80 ms. The durations of the 
subsequent ready periods can similarly be determined, their 
mean turns out to be R(5) = 127 ms and N a =29. 

We now use the basic Equations (3) and (4) to compute 
p=0.338 and RES(5) =533 ms. A simulation experiment 
with the same workload produced the values p = 0.328 and 
RES (5) =515 ms. Thus, the model overestimated both 
indices by approximately 3 percent. 

PERFORMANCE PREDICTION 

The model can be very easily used to estimate the effects 
on performance of certain changes in the system. For in­
stance, taking the same workload considered in the previous 
section (see Table VII) and assuming that the drum is re­
placed by one twice as fast, B3 and B6 will be 15 ms and 10 ms 
instead of 30 ms and 20 ms respectively. Console times are 
not likely to change appreciably. Similarly, a change of CPU 
speed would affect all the A/s in Table VII by the same per­
centage. 

As another example, if the capacity of main memory is re­
duced from 32 pages to 10 pages of the same size, rM / Cl 
becomes less· than N, and, since. primary memory cannot 
hold everything, swapping is likely to occur. The diagram in 
Figure 3 allows us to estimate the probability of swapping. 
As a result, A (N) and R (N) increase, and so does the mean 
response time. 

QUANTUM LENGTH OPTIMIZATION 

The quantum length may have a sizable influence on per­
formance and can be changed rather easily in a well-written 
operating system. Thus, it is in principle feasible to vary the 
quantum length dynamically to optimize performance. 
While this topic still requires a considerable amount of re-

2.0 

\ 

\ Simulation 

\"',", ------------[-----~----------------
"'-_;-~ ~" Model 

1.5 

I 
1.01".0---'---.L----L-L---L-----;:IOO~0:---'-----'---'---'-~2'irO;:;0:hO----;Lr:[m:-:5;-J -

Figure 3-Mean response time vs. quantum length 
(workload MI, N =7). 

search, the choice of the quantum length which optimizes 
system performance under the normal workload of an in­
stallation is an important aspect of system tuning. The 
model developed in this paper can offer some help in this 
direction. For a given system and with a given workload, 
assuming Na»Nblk (so that Equation (14) holds), and using 
Equation (11), we get from (4) 

(17) 

where C1 and C2 are constants. 
To minimize mean response time, the value of Nr(Jra +1) 

must be minimized. Since both Na and N r are non-negative, 
the mean response time will be at a minimum if Nr=O. 
Tbis is what happens when every process which emerges 
from the blocked state always finds the CPU available, so 
that there are no ready periods. This situation can be 
achieved when p is very low. When both the system hardware 
and the workload are fixed, the term N r (kr a + 1 ) can be 
changed by varying the quantum length L, since both N a 

and N r are affected by it. As L decreases, Na will increase 
but so will N r • Therefore, given a workload, there may be a 
value of L which minimizes the mean response time. Figure 
3 shows the effect of changing the quantum length in a 
version of the XDS 940 having only one time quantum. The 
workload used is the one called M1 with N = 7 (see the 
Appendix). The diagram shows that a quantum length 
around 700 ms will minimize RES (N) for this workload. It 
can be observed that, when L approaches zero,· the curve 
goes up rather steeply. This is due to the sharp increase in 
swapping activity. We have found that, for most cases, 
RES (N) remains quite high if L is not greater than about 
90 percent of all CPU time requests. As L is increased, 
RES(N) may rise slightly as some processes may have to 
wait for longer periods when the CPU is executing processes 
which have large CPU time requests. Beyond a certain value 
of L, when the quantum length is greater than any of the 
CPU requests, RES (N) "vill no longer be affected by vari­
ations of L and the curve will flatten out to a horizontal line. 



652 National Computer Conference. 1975 

CONCLUSION 

An analytic non-queueing model of the XDS 940 multi­
programmed interactive system has been presented. In order 
to construct the model, a number of approximations had to be 
introduced, some of which are quite unrealistic. However, 
simulation results (obtained from a simulator validated by 
measurement) have shown the model to be reasonably ac­
curate for the purposes of a number of performance evalu­
ation studies. Some of the possible applications of the model 
have been briefly described. 

The equations which constitute the model of the 940 
system reflect the peculiarities of that system and cannot be 
used to describe any other system. However, it is felt that the 
approach is applicable to a large class of multiprogrammed 
systems, especially to those whose workloads are not too 
far from being uniform or, even better, homogeneous, since 
under these conditions the model is much easier to construct 
and much more accurate. An investigation of the applica­
bility of the approach to the modeling of systems different 
from the XDS 940 is the most obvious next step of this re­
search. 

ACKNOWLEDGMENT 

The research reported in this paper was supported in part by 
the Joint Services Electronics Program under Contract 
USAF -F44620-71-C-0087. 

REFERENCES 

1. Hellerman, H. and H. J. Smith, "Throughput Analysis of Some 
Idealized Input, Output and Computer Overlap Configurations," 
Computing Surveys, Vol. 2, No.2, June 1970. 

2. Fenichel, R. R. and A. J. Grossman, "An Analytic Model of 
Multiprogrammed Computing," AFIPS Conference Proceedings, 
Vol. 34, SJCC, 1969. 

3. Coffman, E. G. Jr., and P. J. Denning, Operating Systems Theory, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1973. 

4. Kimbleton, S. R. and C. G. Moore III, "A Probabilistic Framework 
for System Performance Evaluation," Proceedings ACM-SIGOPS 
Workshop on System Performance Evaluation, Harvard University, 
April 1971. 

5. Chanson, S. T., Workload Characterization of Multiprogrammed 
Computer Systems, Ph.D. Thesis, University of California, Berkeley, 
1974. 

6. Nielsen, N. R., "The Simulation of Time-Sharing Systems," 
Communications of the ACM, Vol. 10, No.7, July 1967. 

APPENDIX 

The types of workloads used to obtain the validation results 
presented in the tables of this paper are described here. They 
were constructed from experimental data measured in the 
Berkeley XDS 940 installation. 

Uniform Workloads 

Three types of uniform workloads were considered. 

QED 

These are predominantly interactive workloads (QED 
is the name of the 940's interactive test editor). Ninety per­
cent of the durations of active periods ar~ less than 10 ms, 
and the mean active time is about 6 ms. The mean blocked 
time is dominated by the terminal time and is about 1.5 s. 
Only 5 percent of all I/O requests are for the drum (with 
mean duration 28 ms) and 5 percent are for the disk (with 
mean duration 200 ms). 

QSPL 

These are mostly compute-bound workloads (QSPL is 
the name of the 940's major higher-level language) . The mean 
active period is about 2.2 s and the mean blocked time is 
about 370 ms. Only 4 percent of all I/O requests are for the 
terminals (with a mean blocked time of 0.75 s). 

Mixed 

Several workloads having characteristics in between those 
of QED and those of QSPL workloads have been con­
structed. They are denoted by the symbol MX, where X is an 
integer. The greater the value of X, the closer the workload 
to the QED type. Ml and M2 have mean active times equal 
to 480 ms and 125 ms, respectively, and mean blocked 
periods of 400 ms and 500 ms, respectively. 

Non-Uniform Workloads 

These, denoted by the symbol DX, were mixed workloads 
composed of non-identical processes. 



Experimental testing in programming 
languages, stylistic considerations and design 
techniques 

by BEN SHNEIDERMAN 
Indiana University 
Bloomington, Indiana 

BACKGROUND 

In the early stages of the development of high-level lan­
guages, radically differing alternatives were often promul­
gated. Each language had a dedicated corps of adherents 
who advocated the primacy of their facility. Turbulent de­
bates among the protagonists were a common affair at 
conferences and in the trade journals. Now as the field 
matures, the vehement discussions have subsided and 
there is a widespread recognition of the usefulness of a va­
riety of languages. Even the proponents of a single 
universal language have softened their tone and have ac­
cepted the multiple language condition. 

New proposals for algorithmic languages offer only 
slight variations, and much effort has been devoted to 
standardization. Simultaneously, there has been a pro­
liferation of modest language extensions producing a con­
glomeration of dialects of the accepted standard. Widely 
varying languages are still developing, but primarily for 
specific problem domains, such as data description, data 
manipulation, or artificial intelligence research. 

As the issues become more subtle, it is no longer ac­
ceptable for developers and implementors to make highly 
subjective and personalized statements concerning the 
worthiness of a particular language feature or stylistic 
technique. The rampant proliferation of new dialects or 
entirely new languages is counterproductive since it limits 
the sharing of programs. A concerted effort must be made 
to ensure that new features, dialects, languages, and tech:' 
niques are truly improvements. Control cards for operat­
ing systems and utility programs could also be improved 
by proper experiments with users. 

As computer utilization becomes more widespread, large 
numbers of programming amateurs in diverse disciplines 
will demand facilities which are simple to use. 
Professional parametric users, such as bank tellers and 
reservations clerks, with a minimum of training will also 
have to be accommodated. Since the background and 
orientation of these users is profoundly different from that 
of the programming language designer, experimental tech­
niques must be devised to guide the designer to the op­
timum language specification. 

653 

Although Dijkstra explicitly stated that computer 
programming was primarily a human activity as early as 
1965/ it was not until the publication, in 1971, of Gerald 
Weinberg's text The Psychology of Computer Program­
ming2 that this notion was widely recognized. This stimu­
lating and insightful work set the stage for research into 
the human factors in programming. Weinberg's text 
concentrates on defining the programming task in the 
context of the professional environment and promotes the 
notion of "egoless programming teams." This team organi­
zation concept may be contrasted with the "chief program­
mer team" strategy advocated by IBM.3 Experimental 
comparison of interactions in these personal organization 
strategies would be an intriguing task for social 
psychologists. 

Other sections of Weinberg's book concentrate on indi­
vidual personality factors, training, and motivational fac­
tors. Although the conference reports of the ACM Special 
Interest Group on Computer Personnel Research describe 
initial steps, much more research needs to be done on the 
psychological make-up of programmers. Fortunately, 
psychologists have begun to study programming behavior 
as an aspect of problem solving.4 

Training and teaching of programming has long been of 
interest to academically oriented researchers, as witnessed 
by the papers presented at the annual conferences of the 
ACM Special Interest Group on Computer Science 
Education. Programming has only recently become a 
subject for related disciplines such as educational 
psychology .5 

Although experimentation in all of the above mentioned 
areas would undoubtedly be welcome, the focus of this 
paper is on experiments in programming language fea­
tures, stylistic considerations and design techniques. 

Research in programming language design 

The volume of written material on programming lan­
.guage design is enormous. Thorough comparative surveys 
can be found in the work of Sammet,6 Higman7 or Elson8

• 

Detailed remarks by the designers occur in the classic 



654 National Computer Conference, 1975 

reports on languages such as FORTRAN, COBOL, 
ALGOL 60, ALGOL 68, or PASCAL. Standardization 
reports on FORTRAN and COBOL also provide certain­
insights. Recently the overall topic of programming lan­
guage design has been discussed by Hoare,9 Wirth10 and 
Carlson. ll All of these works are based on the observations 
of individuals .or small groups. The controversy over struc­
tured programming is closely related to program design 
issues. Although much has been written on this topic, the 
experimental evidence for eliminating the GOTO state­
ment in favor of the three Bohm and J acopini12 structures 
has never been collected or reported. While individual 
experiences are useful,13,14 they do not provide meaningful 
results to make judgments for the entire community of 
programmers. 

Two groups of researchers have recognized the useful­
ness of studying non-programmers in the hopes of develop­
ing languages more closely conforming to "natural" 
thought processes. Sime, Green, and Guest15 describe a 
fascinating experiment on non-programmers to determine 
which of two conditional statements these subjects found 
easier to use. Motivated by psycho-linguistic considera­
tions, they attempted to compare the ease of use of 
the IF-THEN-ELSE construction and the IF(CONDI­
TION)GOTO statement. Their result, based on a rela­
tively small sample size in a carefully controlled, but arti­
ficial programming environment, was that the IF-THEN­
ELSE construction was easier to use and resulted in fewer 
bugs, particularly with more complex problems. The 
paper does not mention structured programming, but the 
results are an initial confirmation of the concept. 

Miller16 also tested non-programmers using a highly sim­
plified, specially constructed programming language. His 
subjects constructed programs for a series of simple card­
sorting problems (the cards had a single name printed on 
them) containing conjunctive ("and") and inclusive dis­
junctive ("or") conditions expressed in the negative or af­
firmative. An example of the inclusive disjunctive form 
where one clause was in the affirmative and one was in the 
negative, was the problem of writing a program to "put a 
card in box three if either the name's second letter is not 
'L' or if its last letter is 'N' ... count the number of cards 
in box three using counter 1. Put the remaining cards in 
box 2." The results indicate that it was more difficult for 
the subjects to deal with the inclusive disjunctive than the 
conjunctive and that a negative clause made the problem 
still more challenging. The difficulty was measured by the 
time used and by the number of errors, both of which were 
significantly higher for "or" problems. Although this ex­
periment does not directly shed light on language design 
issues, the experimental methodology is useful, and it sug­
gests that further work with non-programmers would be 
very useful. 

A third group17 is comparing two proposed data retrieval 
sublanguages by testing programmers and non-program­
mers. This is the first time that a thorough and carefully 
controlled experiment has been performed prior to imple­
mentation. 

Research in stylistic considerations 

A number of texts have focussed on issues of program­
ming style.18.19 Although these texts offer valid practical 
suggestions for reducing execution time or storage utiliza­
tion, they can only proffer subjective suggestions for 
stylistic decisions. Those stylistic issues include docu­
mentation standards, keypunching rules to increase 
clarity, guidelines for the selection of variable names, sug­
gestions about programming techniques to increase the 
readability of programs and principles of program design. 

N ewsted20 has elevated the discussion by conducting an 
experiment to determine the influence of comment cards 
in FORTRAN programs. His results indicate that on short 
FORTRAN programs (less than 30 lines) comments and 
mnemonic names may actually interfere with attempts to 
understand programs. 

Weissman21·23 has carried out a number of interesting 
experiments, concentrating on stylistic issues such as com­
menting, meanin~ul variable name selection, indentation, 
choice of flow of control techniques and subroutine use. 
Unfortunately, none of these experiments resulted in 
clear-cut recommendations for programmers. Weissman 
focuses heavily on issues of experimental design and tech­
niques for measuring comprehension. 

Research in design techniques 

Some of the most provocative current debates are on the 
topic of program design methodologies such as modularity, 
step-wise refinement, and top-down design, each of which is 
often coupled to the structured programming concept. Al­
though Bakey24 has reported on remarkable successes in a 
single project and Weissman conducted a single inconclu­
sive experiment, no steps have been taken to confirm or 
refute these proposed design techniques. Personal testimo­
nials do not suffice; replicable experimental results from a 
wide range of subjects are necessary. 

Even the fundamental technique of flowcharting can be 
controversial. While some programmers reject the useful­
ness of flowcharting, others find it essential in planning 
and documenting large programs. A pilot experiment has 
demonstrated that for short programs, preliminary flow­
charting does not simplify the programming task. A new 
flowcharting technique for structured programming25 is 
gaining acceptance, but it has not yet been experimentally 
validated. 

EXPERIMENTAL PARADIGMS 

The fundamental difficulty in this research area is that 
it is so broad and so ill defined. Basic research into the 
way people think about programs would serve as a step­
ping stone to more precise experiments to resolve 



particular issues. But first, the underlying experimental 
methodologies must be developed and verified. 

Problem domains 

There are at least five highly interwoven tasks which 
unify the questions of programming language design, 
stylistic considerations and design techniques. In each 
case the goal is to facilitate the interrelated tasks of: 

• learning 
• program understanding 
• program writing 
• debugging 
• modification 

Preferred improvements would impact positively for 
each of these tasks, but it is conceivable that an improve­
ment in one area would hinder another. For example, a 
complex indentation or keypunching rule might make the 
program easier to read and understand, but more difficult 
to write. While modularity may simplify debugging and 
modification, errors might be committed in passing 
parameters when the program is composed. Finally, a 
powerful but complex and difficult to learn concept may 
ease the burden of program writing. 

Complications result from the fact that a technique 
which is beneficial in long programs may be a hindrance 
in short programs. Different stylistic and design rules 
seem appropriate for programs of differing lengths. 

Another variable that must be explored is programmer 
ability. Useful principles for professional programmers 
may be too complex for novices. Preliminary results from 
several studies indicate that techniques appropriate for 
novice programmers working on short simple programs are 
substantially different from the techniques applied by 
professionals on large difficult projects. 

In summary, proposed improvements must be evaluated 
with respect to the tasks of learning, program understand­
ing, writing, debugging, and modification, while si­
multaneously considering the spectrum of programmer 
abilities and program complexity. 

Experimental techniq ues 

Developing suitable experimental techniques is a non­
trivial task. Care must be taken to minimize the number 
of variables, and proper experimental controls must be es­
tablished. A sufficiently large group of subjects must be 
secured and pre-tests or other measures obtained to ensure 
the homogeneity of the subjects. Replicable, objective tests 
must be constructed and validated. Finally, accepted 
statistical techniques should be applied to the data to 
produce results which would be acknowledged by other re­
searchers. 

Testing program understandability is the most straight­
forward of the tasks. After studying a program for a 

Experimental Testing in Programming Languages 655 

prescribed length of time, subjects are asked to describe in 
words the function of the program. Grading the responses 
can be difficult, but if more than one person scores each 
response, it should be possible to obtain reliable results. 
The subjects may be asked to introspect and respond as to 
the difficulty of the problem, say, on a scale ranging from 
one to ten. This simple experimental procedure may be 
used to compare two proposed language features or 
stylistic rules. Alternatively, the subjects may be told to 
study until they feel their' comprehension is adequate, 
making time and correctness the measured variables. 

The numerous other methods of measuring understand­
ing include asking subjects to determine the output for a 
given set of inputs. Weissman utilized detailed hand 
simulations of execution and paragraph fill-in techniques 
as measures of comprehension. Simpler traces such as list­
ing the line number executed for a given input may be use­
ful. Two other measures are the correctness and time 
needed to make a specific modification or to locate a bug 
(which has been included in the program). Although sub­
jective measures of difficulty have dubious value, they 
may be used to enhance each of the above techniques. 

Finally, subjects may be asked to memorize the 
program. Since memorization is best accomplished by 
"chunking" of the program, to gain meaningful (as op­
posed to rote) learning, more detailed recollection suggests 
more thorough comprehension. This technique is 
described in the companion paper, entitled "Two Explora­
tory Experiments in Program Comprehension."26 

To simplify grading, N ewsted used multiple choice ques­
tions rather than fill-ins in testing the subject's ability to 
comprehend, trace execution, determine outputs, etc. 
Multiple choice questions ensure objective and clear-cut 
grading standards. 

A number of recent studies have concentrated on errors 
in programming and in debugging techniques.27

-
3o By 

including monitoring code in compilers researchers have 
been able to capture the diagnostic reports and determine 
which errors are most frequently made. Controlled experi­
ments can be conducted by providing programmer sub­
jects with listings containing one or more errors and study­
ing how they attempt to locate the errors. 

CONCLUSION 

Experimental techniques are being developed to resolve 
the human factors issues in program development. These 
experimental techniques can be applied to objectively vali­
date proposals for programming language features, 
stylistic guidelines, and design paradigms. Much work 
remains to be done to extend the scope of these experi­
ments so that concrete recommendations can be made to 
professional programmers for improving the quality of 
their work and their productivity. Additional experimental 
results should enable instructors to provide better training 
programs. 



656 National Computer Conference, 1975 

REFERENCES 

1. Dijkstra, E. W., "Programming Considered as a Human Activity," 
Proc. IFIP Congress 1,1965, pp. 213-217. 

2. Weinberg, G. M., The Psychology of Computer Programming, Van 
Nostrand Reinhold, New York, New York, 1971. 

3. Baker, F. T., "Chief Programmer Teams," IBM Systems Journal 11, 
1,1972. 

4. Mayer, R. E., Instructional Variables in Meaningful Learning of 
Computer Programming. Indiana Mathematical Psychology 
Program, Report No. 75-1, 1975. 

5. Kreitzberg, C. and L. Swanson, "A Cognitive Model for Structuring 
an Introductory Programming Curriculum," AFIPS Proc. National 
Computer Conference, 1974. 

6. Sammet, J. E., Programming Languages: History and Funda­
mentals, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. 

7. Higman, B., A Comparative Study of Programming Lan­
guages,American Elsevier Publishing Company, Inc., New York, 
1967. 

8. Elson, M., Concepts of Programming Languages, Science Research 
Associates, Inc., Chicago, Illinois, 1973. 

9. Hoare" C. A. R., Hints on Programming Language Design, invited ad­
dress at SIGACT /SIGPLAN Symposium on Principles of Program­
ming Languages, Boston, Mass., October 1-3, 1973. 

10. Wirth, N., On Certain Basic Concepts of Programming Languages, 
Technical Report No. CS 65, Computer Science Department, Stan­
ford University, Stanford, California, May 1, 1967. 

11. Carlson, C. R., Programming Language Design, Computer Sciences 
Department, The Technological Institute, Northwestern University, 
Evanston, Illinois, 1973. 

12. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines and 
Languages with Only Two Formation Rules," Comm. ACM 9; May, 
1966, pp. 366-371. 

13. Henderson, P. and R. Snowdon, "An Experiment in Structured 
Programming, BIT 12, 1972, pp. 38-53. 

14. Standish, T. A., Observations and Hypotheses About Program Syn­
thesis Mechanisms. Automatic Programming Memo 9, Report No. 
2780, Computer Science Division, Bolt Beranek and Newman, 
Cambridge, Mass., December 19, 1973. 

15. Sime, M., T. Green, and D. Guest, "Psychological Evaluation of Two 

Conditional Constructions Used in Computer Languages," Interna­
tional Journal of Man-Machine Studies, Vol. 5, No.1, 1973. 

16. Miller, L., Programming by Non-Programmers, IBM Research 
Report RC 4280, 1973. 

17. Reisner, P., R. F. Boyce, and D. D. Chamberlin, "Human Factors 
Evaluation of Two Data Base Query Languages: SQUARE and SE­
QUEL, Proc. National Computer Conference, AFIPS Press, Mont­
vale, New Jersey, 1975. 

18. Kreitzberg, C. B. and B. Shneiderman, The Elements of FORTRAN 
Style: Techniques for Effective Programming, Harcourt Brace 
Jovanovich, Inc., New York, New York, 1972. 

19. Van Tassel, D. Program Style, Design, Efficie.ncy, Debugging, Test­
ing, Prentice-Hall, Englewood Cliffs, New Jersey, June, 1974. 

20. Newsted, P. R., FORTRAN Program Comprehension as a Function 
of Documentation, School of Business Administration Report, The 
University of Wisconsin, Milwaukee, Wisconsin. 

21. Weissman, L., Psychological Complexity of Computer Programs: An 
Initial Experiment, Technical Report CSRG-26, Computer Systems 
Research Group, University of Toronto, Toronto, Canada, 1973. 

22. --, "Psychological Complexity of Computer Programs: An Experi­
mental :Methodology," SIGPLAN Notices 9,6, June, 1974. 

23. --, A Methodology for Studying the Psychological Complexity of 
Computer Programs, Ph.D. thesis, University of Toronto, 1974 
(available as Technical Report, Computer Science Research Group 
CSRG-37). 

24. Baker, F. T., "System Quality Through Structured Programming," 
Proc. FJCC, 1972, pp. 339-343. 

25. Nassi, I. and B. Shneiderman, "Flowchart Techniques for Struc­
tured Programming, SIGPLAN Notices 8, 8, August, 1973, pp. 12-26. 

26. Shneiderman, B. and Mao-Hsian Ho, Two Exploratory Experiments 
in Program Comprehension, Technical Report No. 27, Computer 
Science Department, Indiana University, 1974. 

27. Gould, J. D. Some Psychological Evidence on How People Debug 
Computer Programs, IBM Research Report RC 4542, 1973. 

28. Boies, S. J. and J. D. Gould, "Syntactic Errors in Computer 
Programming, Human Factors 16,3,1974, pp. 253-257. 

29. Young, E. A., "Human Errors in Programming," International 
Journal of Man-Machine Studies 6, 1974, pp.361-376. 

30. Gould, J. D. and P. Drongowski, "An Exploratory Study of Com­
puter Program Debugging," Human Factors 16, 3, 1974, pp. 258-277. 



Naive programmer problems with 
specification of transfer-of-control 

by LANCE A. MILLER 
IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

We have conducted a series of experiments concerning the 
programming performance of persons with no prior 
contact with computers other than the training received in 
the experimental sessions. Our objective in these experi­
ments is to identify design principles for facilitating com­
munication between the naive user, as a problem solver, 
and a computer system. We view programming as a 
problem-solving activity, an instance of what generally 
may be called "procedure specification." We believe it· 
possible to design computers as optimal problem-solving 
tools only if the operating characteristics of the problem 
solvers are known and taken into account. Consequently, 
we are seeking to discover the problems and processes in­
volved in human specification of procedures, using experi­
mental laboratory methods. 

A typical research method is to create a laboratory 
programming language designed to investigate questions of 

657 

interest, teach this language to subjects, and study per­
formance using this language for solving a variety of prob­
lems, either using computer terminals or pencil and paper 
tests. In addition to this approach we have applied content 
analysis methods to various kinds of procedure specifica­
tions expressed in natural English, these being collected 
either in our laboratory or in written publications. Our ob­
jective in this latter approach is to identify normative com­
munication modes and mechanisms which may be usable 
for man-machine interactions. 

The presentation is organized around information and 
graphics charts and covers the following topics: (1) initial 
studies demonstrating feasibility of investigating program­
ming in the laboratory and suggesting expression of 
transfer-of-control as a locus of difficulty; (2) studies com­
paring various means for expressing transfer.:.of-control; 
(3) results of experiments using our "procedure table"; (4) 
results of analysis of specifications in natural language. 

Introductory and explanatory text accompanying each 
chart is presented below. 



658 National Computer Conference, 1975 

PROCEDURE SPECIFICATION RESEARCH 

1. IDENTIFY GEN'L. PROBS. 

VERY S If1PLE LAB. PROG. LANG. 
TWO EXPS. WITH < SIMPLE PROBLEr1S 

COLLEGE SUBJECTS 
POWERFUL LAB. PROG. LANG. 
MORE COMPLEX PROBLEMS 

*** 

*** 

(TIME 
SPECIFYING TRANSFER OF CONTRAL A KEY DIFFICULTY ERRORS) 

VARIETY OF CONTROL STRUCTURES PRODUCED 

--- PROGRAMS WI REDUNDANCY BETTER THAN THOSE WITHOUT 

--- PROGRAMS WI COMPLICATED FLOW OF CONTROL OFTEN IN ERROR 

CONCl US IONS 

*** KEY PROBLEM TO FOCUS ON IS HOW BEST TO SPECIFY CONTROL 
Chart I-Our first two experiments demonstrated the feasibility of 
studying programming in the laboratory using naive (to computing) 
subjects. We found that a majority of the difficulty was concerned with 
specifying transfer-of-control. 

A L T ERN A T I V E S FOR S P E C I FYI N G 

T RAN S FER 0 F CON T R 0 L 

I F - THE Ii - E L S E (I F A THEN Y. ELSE l ) 

BRA N C H - T 0 - LAB E L (IF A YES: Ai NO: HZ 

FLO W D I A G RAM 

o THE R 

DEC I S ION TAB L E S 

I P 0 & HIP 0 

C A USE E F F E C T G RAP H S 

Chart II-There are three primary ways of expressing the set of 
contingencies governing appropriateness of executing a particular 
action-where expression is in a procedural manner. 

1. GRAPHICAL--

E.G. FLOW DIAGRAMS 

NO 

Chart III-Flow diagrams utilize two-dimensional representation with 
the yes/no actions to be taken depending on the truth-value of the 
predicate expressed as connective lines to other areas. 

2. IF - THEN - ELSE 

(LEADS TO "TREE" OR HIERARCHICAL STRUCTURES) 

IF X 

THEN DO ... 

ELSE IF Y . 

Chart IV-The "if-then-else" method involves hierarchical or nesting 
structures ... (cf. also Chart VII). 



'Naive Programmer Problems with Specification of Transfer-of-Control 659 

3. BRANCH - TO - LABEL 

(SYHBOLI C. LEADS TO COMPLEX BUT NOT EMBEDDED 
STRUCTURES) 

GREEi~? YES.: NEXT till: B2 

B2: DO ACTION ... 

Chart V-While the "branch-to-Iabel" means permits a much wider 
variety of path connections (cf. also Chart VII). 

EXPERIMENTAL EVALUATION IF/BRANCH/FLOW 

HYPOTHESES UNDER TEST 

IF VS, OTHERS 

HIERARCHIC (EMBEDDED) VS. ONE-LEVEL NON-LINEAR STRUCTURES 

BRANCH VS, FLOW 

(1.) SYMBOLIC VS. GRAPHICAL TRANSFER 

(2.) ONE VS. TWO DIMENSIONAL REPRESENTATION 

PROCEDURE 

GROUP TRAINING VIA BOOKLET 

2 PRACTICE PROBLEMS WITH CORRECTNESS FEEDBACK 

6 EXP'L. PROBS. WITH SYNTACTIC FEEDBACK ONLY 

TRAINING - - TIME/ERRORS/COMPLETION 
EXPERIM'L. - TIME/ERRORS 

Chart VI-We, like Sime, Green and Guest (1973), were interested in 
comparing these means of expressing transfer-of-control. A comparison of 
the IF method vs. the others is, among other things, a comparison of 
planning and procedure specification using hierarchical vs. non­
hierarchical structures. A comparison of FLOW to BRANCH permits 
evaluation of graphical vs. symbolic representation of transfer-of-control 
and one vs. the highly commended two-dimensional representation. 

IF (A) THEN 

IF (B) THEN 

IF (c) THEN X 

ELSE W. 

ELSE '1. 

IF (A) YES 81 NO 82 
Al IF (B) YES 83. NO M 
A3 IF (c) YES AS. NO Ali 
A5 X 
A2 Z Z 

A4 V V 
A6 W 

Chart VII-Use of the IF procedure restricts the variety of incorrect 
transfers which may occur-e.g., given the hierarchical specification of 
tests A, B, erroneous transfer from C to action Z instead of W cannot 
occur. With a BRANCH method, given appropriate means of identifying 
commands (command numbers or labels) transfer may occur to any 
other command without restriction. 

EXP. EVAL. IF/BRANCH/FLOW (CNT. ) 

LANGUAGE FEATURES AI SO MAN I PlJI ATED 

1. ABILITY TO USE LOGICAL OPERATOR "AND" "OR" 

2. ABILITY TO USE NEGATION -- "NOT" 

THESE WERE MANIPULATED NQI TO SEE IF DESIRABLE (THEY ARE) 
BUT TO EQRC[ DIFFERENT -- MORE COMPLICATED -- CONTROL 
STRUCTURES. 

PROG. MODE 
USE OF "AND, OR" 
USE OF "NOT" 
PROBLEMS 

NUMBER OF CONDITIONS 

3 
2 
2 
6 

Chart VIII-Each of the three means of expression conditionals was 
studied under four language-feature conditions resulting from 
combinations of two variables-capability to employ the negation 
operator "not", and capability to employ logical connectives "and" and 
"or". The intent of these manipulations was not to study the desirability 
of providing such features (they are highly desirable) but to force 
subjects to use various features of the conditional modes. For example, 
when use of the operator "not" is not permitted in the IF mode, subjects 
cannot simply test for "not-x" by specifying "IF not-x ... " but they 
must employ the "else" aspect of the conditional-e.g., "IF X ... ELSE 
K" where K represents the actions appropriate for the condition of "not-
x." 



660 National Computer Conference, 1975 

EXP. EVAL. IF/BRANCH/FLOW (CaNT. ) 

P.IillB.LEf1S: SIX PROBLEMS VARYING ON TWO DIMENSIONS 
LOGICAL OPERATOR -- AND vs. OR (INCL.) 
pas. VS. NEG. STATEMENT -- pas. NEW NEG. MIXED 

PUT THINGS IN BOXES INDICATED WHEN THE CONDITIONS ARE MET 

BOX 4: ALL THINGS THAT ARE OLD AND NOT BROKEN 
BOX 2: ALL OTHER THINGS THAT ARE OLD OR NOT WOODEN 
BOX 1: EVERYTH HlG ELSE 

Chart IX-Hierarchical multiple-action problems of the type used by 
Sime et aI., were employed, using a fixed level of three actions and three 
relevant attributes. Within this framework the logical characteristics of 
the problems were varied on two dimensions-the logical connective, and 
vs. or, and the presence or absence of the operator not. The second 
action-line of the problem was always the place of variation (e.g., an 
affirmative conjunctive problem would read " ... BOX 2: ALL OTHER 
THINGS THAT ARE OLD AND WOODEN ... "). 

EXP. EVAL. IF/BRANCH/FLOW (CaNT. ) 

RESUI TS WITH COIl EGE STUDENTS 

1. TRAINING -- IF SLIGHTLY MORE.DIFFICULT 
2. EXP. PROBLS -- NO DIFFERENCES AMONG THREE MODES 

SIG. EFFECTS OF OTHER VARIABLES 

RESlJI TS WITH NAVY RATINGS 

1. TRAINING -- IF CONSIDERABLY MORE DIFFICULT 
2. EXP. PROBS. -- IF SIG. MORE DIFFICULT. NO OTHER DIFF. 

CONClUSIONS 

1. SYMBOLIC ADDRESSES MD I-DIM. REPRESENTATION ARE O.K. 
2. POSSIBLE POPULATION DIFFERENCES 
3. CLOUDS OF SUSPICION FOR IE 

Chart X-The finding that IF was either no different from or poorer than 
the other modes is in contrast to Sime et aI's finding of IF superiority to 
BRANCH. We believe that our experimental testing situation was more 
neutral than theirs, with automatic indentation, for example, facilitating 
IF performance, and forcing a jump on positive outcome for BRANCH 
interferring with BRANCH performance. The finding of no differences, 
over language conditions or populations, between FLOW and BRANCH 
brings into question the often expressed, but untested, claim of flow­
diagram superiority over other methods. 

PRO C E D II RET A B L E 

THOUGHT ABOUT ALTERNATIVES TO 

IF THEN ELSE 
BRANCH TO LABEL 
FLOW DIAGRAM 

CONSIDERED -----------------DECISION TABLES. HIPO. SNOBOL. 
NATURAL LANGUAGE CHARACTERISTICS 

PROCEDURE TABLE 

Chart XI-At this point we decided to test out our understanding of the 
processes and problems involved in programming specification of 
transfer-of-control by attempting to generate a method for specification 
which would not be subject to the problems characterizing the previously 
tried modes of specification, at least for the same problems. We 
considered a variety of possibilities, keeping in mind the insignificant 
BRANCH-FLOW results which suggested that one-dimensional, symbolic 
transfer structures did not lead to greater difficulty than FLOW 
representation. 



Naive Programmer Problems with Specification of Transfer-of-Control 661 

PROCEDURE TABLE 

LABEL QUESTION ACTION(S) GO TO 

Al ANY CARD IN INPUT LOOK AT NEXT 
BOX? CARD 
till: STOP 

NAME ON CARD HAS PUT CARD I N BOX 
SECOND LETTER AS #3, INCREASE 
"NOT-L" OR LAST COUNTER 1 
LETTER AS "N" 

------------------~ PUT CARD IN 
BOX #2 

PROBLEM: PUT A CARD IN BOX 3 IF EITHER THE NAME ON 
THE CARD HAS THE SECOND LETTER N.OI "L" OR ELSE THE 
LAST LETTER IS "N" (OR BOTH), 

COUNT THE NUMBER OF CARDS IN BOX 3 USING COUNTER 1, 
PUT THE REMAIiHI~G CARDS IN BOX 2, 

Al 

Al 

Chart XII-Our "procedure table" is in no way innovative, merely a new 
assembly of old ideas. If the truth value of the "question" predicate is 
true, transfer is made in the table to the "action" on the right in the same 
row, thence to the next row unless over-ridden by a specification of a 
command label in the "go to" area. If the predicate is false, transfer is 
made immediately to the next row unless over-ridden by a special "NO:" 
transfer within the "question" area. Provisions for transferring to other 
tables, etc., were worked out but not experimentally tested. 

FIRST pROCEDlJRE TABI E EXPERIMENT 

SAME PROBLEMS AS IN IF/BRANCH/FLOW EXPERIMENT 

(PERMITTED USE OF "AND, OR, NOT") 

TRAINING SAME METHOD -- BOOKLET -- ABOUT SAME TIME (20 MIN,) 

NO SUBJECT HAD DIFFICULTY WITH TRAINING 
SIGNIFICANTLY BETTER THAN FOR OTHER MODES 

IN BOTH COLLEGE AND NAVY POPULATIONS 

CONClUSIONS 

MAYBE WE ARE ON TO SOMETHING 

BEST ALTERNATIVE SO FAR 
Chart XIII-In the same manner as the experiments comparing the 
three conditional modes we developed training and testing procedures 
and materials for the Procedure Table, using the same problems. 
Performance was significantly better in training and in testing than with 
the other modes of specification suggesting that there was merit in our 
present tabular structuring and syntax. 

COMPLEX PROBI EMS 

NOW WE ARE INTERESTED IN TAKING REAL WORLD PROBLEMS 
AND SEEING HOW OUR SUBJECTS FARE, 

TOOK EXAMPLES FROM A NUMBER OF SOURCES 

- RECIPES 
- INSTRUCTION MANUALS 
- REPAIR MANUALS 
- MATH, PROBLEMS 

Chart XIV-The problems in most of the preceding experiments were 
fairly simple. We now wished to see how subjects would fare in 
translating various complex examples of specified procedures into 
procedure tables. 



662 National Computer Conference, 1975 

SECOND PROCEDURE TABLE EXPERIMENT 

USED 18 REAL WORLD PROBLEMS 
BOTH COLLEGE AND NAVY SUBJECTS 
SOLUTIONS GIVEN USING PROCEDURE TABLES 

DATA PRESENTLY BEING ANALYSED 

8PP8RENLIRENDS 

DIFFICULTY DOES NOT APPEAR TO BE IN USE OF 
PROCEDURE TABLE, THIS IS O.K. FOR SIMPLER PROBLEMS. 

PRIMARY DIFFICULTY APPEARS TO BE IN 
(1) FORMULATING PROBLEM 
(2) FORMULATING SOLUTION, APPROACH, TO PROBLEM 

Chart XV-While results continue to be analyzed, a key trend appears to 
be that incorrect specifications are due not so much to difficulty in using 
the procedure table but errors in understanding or resolving the 
ambiguity in the procedures expressed in natural language. This suggests 
the utility of adding pre-programming phases which facilitate planning 
and consideration of the solution algorithm eventually to be specified. 
We are currently evaluating various such planning aids. 

NATURAl I ANGIJAGE SPECIFICATIONS 

RECENT REPORT DESCRIBES RESULTS OF EXPERIMENT --­
ASKED 14 COLLEGE STUDENTS TO SPECIFY THE 
SEQUENCE OF STEPS (IN DETAIL) THEY WOULD 
FOLLOW TO SOLVE CERTAIN FILE SEARCH AND 
MAINTENANCE PROBLEMS. 

EXPERIMENTAL RESULTS --
DATA REFERENCING -- 42% REQUIRED CONTEXT 
TRANSFER OF CONTROL -- LITTLE (7-9%) COMPARED 

WITH REAL PROGRAMS (E.G. 
KNUTH=28%) 
(SOME "IF-THEN' B T NO 
"ELSE") 

OPERATORS -- HIGH LEVEL OPERATING ON WHOLE DATA 
AGGREGATE (FIND THOSE WHO ..• ), LIKE APL 

OMISSIONS -- NO EOF, INITIALIZATIONS, DECLARATIONS, 
DIMENSIONING DATA TYPE SPECIFICATION, 
EXCEPTION HANDLING 

Chart XVI-In parallel with our laboratory studies of programming we 
have also been interested in learning about how people naturally specify 
procedures. Our first study involved college students writing procedures 
to interrogate a data base of a mythical company, and we found some 
interesting features ... 

PROCEDURE SPECIFICATION 

NATURAL PROGRAMMING 
LANGUAGE LANGUAGES 

CONTEXT: HEAVY USE CAN'T USE 

TRANSFER OF INCOMPLETE "IF ... THEN ... ELSE" 
CONTROL SPECIFICATION 

ITERATION: VAGUE PRECISE 

IN IT IALIZATI ON/ NEVER STATED USUALLY REQUIRED 
EOF 

EXCEPTION HANDLING NEVER STATED ALWAYS REQUIRED 

Chart XVII-The natural language characteristics contrast strongly with 
features of programming languages ... 

OTHER NATURAl LANGUAGE ANAlYSES 

EXAMINATION OF REAL-WORLD SPECIFICATIONS OF PROCEDURES -­

** KITCHEN RECIPES 
** KNITTING INSTRUCTIONS 
** KIT TESTING/ASSEMBLY INSTRUCTIONS 
** ·TROUBLE SHOOTING MANUALS 

PRESENTLY ANALY2ING "JOY OF COOKING" 

* HOW ARE PROCEDURES CALLED? 
* HOW ARE DATA ENTITIES REFERRED TO? 
* HOW ARE PARAMETERS EXPRESSED AND PASSED 
* HOW EXPRESS TRANSFER OF CONTROL, EXCEPTION 

HANDLING, ITERATION? 
* HOW DATA SELECTION SPECIFIED? 
* WORD USAGE 

Chart XVIII-In view of the interesting results obtained from this study, 
we felt it might be even more informative to investigate how highly stable 
and evolved procedures are specified-e.g., knitting instructions, kitchen 
recipes, kit assembly instructions. We chose kitchen recipes to begin this 
study (for a variety of reasons, including some important secondary 
considerations as evaluating output after actual execution). 



Naive Programmer Problems with Specification of Transfer-of-Control 663 

ANALYSIS OF KITCHEN RECIPES 

~ 
IF - CONDITION 
ITERATION 
GOAL TO BE ATTAINED 
INION WHAT OBJECT(S) 
IN WHAT MANNER 

INTO WHAT PORTIONS 

DATA COMPONENT 
QUANTITY 
UNIT 
IST~ 2ND~ 3RD QUALIFIER 
DATA ENTITY 

OIliER 
PAGE REFERENCE 
INDENTATION 

DO WH I LE/UNTI L 
LOOKING OUT FOR 
WHEN START <BEFORE ... AFTER ... ) 
INION WHAT FOOD MATERIALS 
EXIDIT: TIME~ TEMP. ~ tEVEL 
OF ACTION 
FROM WHERE II TO WHERE 

CONNECTIVE BETWEEN VERBS OR COMPONENTS 
DATA COMPONENT IS NOT DIRECT OBJECT 
SCOPE OF ITALICS OR INDENTATION 

Chart XIX--We generated and stabilized a set of semantic content 
categories which involves identification of two principal aspects of 
recipes-the action verb and the components of the recipe. Each aspect 
has associated with it a number of other content categories which 
indicate various· qualifications of the principal aspects. Our analysis of 
verb clustering, associations between verbs and qualifiers, etc., leads us to 
believe that it may be quite possible to write a BNF recipe grammar. One 
type of analysis of immediate relevance to language design for computers 
is that which indicates which kind of qualifications may be omitted and 
under what circumstances, pointing the way for development of machine­
implementable context-sensitive grammars. 

PRO G RAM MIN G 

LAN G U AGE 

VS. 

NAT U R ALL A N G U AGE 

SEE M S T 0 BET H E CAS E 0 F . . . 

CON D I T ION A L 

V S • 

QUA L I F I CAT ION A L 

il THING 

IS RED~ 

PUT I N BOX 1 

E L S E ••• 

PUT RED THINGS IN BOX 1 

Charts XX to XXIII-We had as one of our verb categories an IF 
classification to provide for statements of the conditions that had to be 
satisfied before the subsequently specified actions should be taken. This 
category corresponds roughly to the conditional command in 
programming languages, and it is of interest to note how rarely incidents 
of this class occurred. Most often actions or recipe components were 
characterized not in terms of a sequence of testing for certain attribute­
values and then specifying the appropriate actions but in terms of 
specifying the action to be taken in certain qualified ways for certain 
qualified components. The qualificational method may well prove a more 
useful model for language design for naive users than the traditional 
conditional method of programming languages of the present. 

REFERENCES 

1. Miller, L. A., "Programming By Non-Programmers," Journal of 
Man-Machine Studies, 1974, Vol. 6, pp. 237-260. Programming in 
Natural English, IBM Technical Report No. RC5137, November 
1974. 

2. Sime, M. E., T. R. G. Green and D. J. Guest, "Psychological Evalua­
tion of Two Conditional Constructions Used in Programming Lan­
guages," International Journal of Man-Machine Studies, 1973, 5, pp. 
105-113. 





Computer programming fundamentals for 
non-computer scientists 

by DANIEL P. FREEDMAN and THOMAS PLUM 
State University of New York 
Binghamton, New York 

BACKGROUND 

Computing for Social Scientists is one of a series of intro­
ductory computer programming courses designed for spe­
cialists, this one for graduate level social science students. 
A wide spectrum of disciplines was represented including 
anthropology, sociology, psychology, history, economics, 
linguistics, and urban planning. The students also had a 
highly varied background in mathematics-from one 
college math course through advanced calculus; from 
strong statistics to no statistical background whatsoever. 

Computing background was equally varied. Few of the 
students had any formal background in programming, but 
some had been users of packaged programs. Other 
students had worked for faculty members in a data entry 
capacity, and others had monitored computerized scien­
tific apparatus. 

Even though most of the students! were from non­
computing fields, we chose to give them a full introduction 
to the new approaches in computing called "structured 
programming." We wanted them to be aware that pro­
grams can be written with the goal of being correct· as a 
direct result of the way they are written, rather than being 
thrown together in hopes of not being too hard to debug. 
We did not delve into the technicalities surrounding struc­
tured programming-rather we followed the non-technical 
approach of the introductory textbooks Structured 
Programming in PLjC (by Weinberg, Marcus, and Ya­
sukawa), and Structured Programming in APL (by Geller 
and Freedman). This approach not only gives them a 
higher standard of precision in their own work, but also 
shows them that they can read other people's programs for 
correctness-freeing them, as consumers of software, from 
dependence on .. haphazard testing of the programmer's 
product. 

This emphasis on program reading paid off in some 
unexpected ways. A mini-computer show was held on 
campus, scheduled during the class period, so there was no 
difficulty getting the whole class to attend the show. Both 
. instructors attended the exhibition, to see the displays and 
to explain the machines to the students. Of course they 
were also interested in seeing how the students approached 
computer sales personnel. Now, for the first time, the 
students had a real opportunity to play the role of 
consumer! 

665 

A student asked the salesman to display the program for 
the output on the fancy CRT. The salesman tried to avoid 
doing this by explaining that the program was written in 
BASIC, a language with which the student was unfamiliar. 
She remained undaunted and said, if the language was 
called. "basic", she should be able to understand it. Fi­
nally, the salesman displayed the program, and with a few 
words of syntactic explanation, the student was able to 
read the program. After examining the program for about 
five minutes, the student discovered a potential bug. 
Given a certain input, the program would blow up. The 
salesman said that the critical input would never be given, 
and the student smiled knowing full well that she would 
have given that input. 

The objectives and priorities of the course were designed 
with the audience in mind. We knew that the majority of 
our students were becoming computer customers rather 
than computer programmers, but the emphasis was still 
placed on creating usable programs. Sheltering and relia­
bility were the key objectives. Sheltered programs are 
designed with the user in mind. As far as possible, a 
program checks all input data for suitability. If the input 
is not correct, the user is informed, and the illegal input is 
not processed. Whenever possible the program control 
should remain within the program, rather than depend on 
the larger system for error correction or recovery. 

Ease of data entry was also an important concern. The 
philosophy was that the user should not be exposed to all 
the peculiarities of the computer. The programs were 
designed to do formatting, both of input and output, and 
an output which was difficult to read was unacceptable. 

The programs themselves were to be structured and 
readable. The programs were to be self-documenting and 
self-explanatory. "Let the program speak for itself." 

Each program submitted had to be correct, and the cor­
rectness had to be demonstrated through a combination of 
structure and rigid testing. In addition to the testing, each 
program was examined and read by a classmate before 
submission. Any program which did not reach acceptable 
standards was returned, corrected, and resubmitted . 

METHODOLOGY 

The course was taught by a team of instructors, both of 
whom had considerable experience in computer program-



666 National Computer Conference, 1975 

ming and social science. Although the instructors' back­
grounds did not cover the total range of student interests, 
most major areas were covered between the two. 

The class met twice weekly for two-hour sessions. One of 
these sessions was a lecture presentation by one instructor; 
the other was a workshop. The format of the workshop 
varied. Some weeks the class would meet at the computing 
facilities and students would work on their programs and 
receive individual assistance. At other times, exercises 
would be presented, homework reviewed, and specific 
programs discussed. The workshops were extremely suc­
cessful in teaching practical debugging technique, program 
reading, and error checking. They created a congenial, 
pleasant work atmosphere for free discussion and explora­
tion of computer concepts. 

In addition to the instructors' presentation, computer 
center staff provided supplementary information about 
our computing installation. This presentation introduced 
the relevant packaged programs, computer center person­
nel, and informed the students of the services of the com­
puter center. Computer center involvement was motivated 
originally by a sad story. 

One day, one of the instructors was walking across 
campus when he encountered a colleague from another de­
partment. The professor was unloading a full station 
wagon. The cargo was box upon box of punched cards. 
During the conversation which followed, the instructor 
learned that the professor had just returned from a special 
trip to the Midwest to pick up his data and programs. 
These were statistical packages which had been written for 
the professor at his previous university. Subsequent dis­
cussion indicated that the statistical routines were fairly 
standard, and were contained in the packaged commercial 
programs offered by our computer center. It further ap­
peared that this professor was never told about the possi­
bility of transferring the data and programs to tape for 
ease of transport. 

After this sad experience, the instructor realized the im­
portance of teaching future social science professors where 
to find information-who to speak with about what, and a 
general appreciation of the capabilities of the modern 
computing system. 

LANGUAGE AND TEXT 

It has been our experience that teaching beginners two 
languages avoids language dependence. Once a student has 
mastered two languages, the third or fourth is not so 
awesome. The vast number of computer languages 
combined with the high rate of academic mobility requires 
that computer-oriented scholars be capable of adapting to 
different computer languages, facilities and installations. 

With these factors in mind, two radically different lan­
guages were chosen for instructional purposes-PL/C (the 
Cornell version of PLjl) and APL. These two languages 
present an excellent contrast. APL is an interactive lan­
guage with good facilities for handling higher level data 
structures. Its workspace limitation of 32K places a limit 

on the size of the problem. This "natural" limitation is 
fortunate, because our version of APL does not lend itself 
to large applications. 

PL/ C is a subset of PL/ I, enhanced with excellent error 
detection facilities. The usually intelligent choice of error 
correcting options, and meaningful error messages aids the 
student to overcome many of the annoying pitfalls often 
encountered by beginning programmers. Our experience 
has shown that students who have mastered PLjI have lit­
tle trouble reading and mastering other popular batch lan­
guages. 

The use of these languages is further enhanced by the 
availability of two texts, Structured Programming in 
PL/C by Weinberg, Yasukawa, and Marcus, and Struc­
tured Programming in APL by Geller and Freedman, 
specifically designed for introductory students. The ele­
ments of design, program structure, clarity, and rules of 
structured programming are clearly incorporated into the 
programming procedure. Throughout the texts, programs 
which are progressively constructed and modified present 
a clear picture of the programming process. 

By reading the many programs used as illustrative ma­
terial, the student makes the acquaintance of good 
programming practices and learns to recognize good 
programming techniques. This last point was extremely 
important for our specialized audience. As consumers of 
software products, professionals, regardless of discipline, 
should be able to evaluate relevant packages. Even if these 
products are free, they still require time, which is the 
professional's currency. 

EXERCISES 

Some exercises were designed to reinforce a healthy 
skepticism on the part of the student as a consumer. 
Students were asked to choose a program from the APL li­
brary which had some application in their respective 
fields, or was just of general interest. Students were then 
asked to execute these programs, as if they were naive 
users; that is, read and follow the directions. They were 
not supposed to correct or debug these supposedly tested 
programs but rather, report the experience. They were to 
evaluate the same properties we had been stressing 
throughout the course; i.e., reliability, clarity of docu­
mentation, ease of use, clarity of program, clarity of 
output, and user protection. The results were interesting to 
the students though not surprising to the instructors. The 
majority of the programs did not do what they said they 
did. Most of the documentation was inadequate if not in­
correct, and a good percentage did not execute at all. Of 
those which ran, many would blow up on incorrect inputs, 
and most had no means of recovery. In some cases the 
function which was supposed to print out the instructions 
failed to operate. This exercise vividly impressed the 
students with a sense of responsibility toward the user. 

Other exercises were designed to move the students into 
taking a familiar function or operation and writing a pro­
gram to execute the algorithm. An example of the problems 



Computer Programming Fundamentals for Non-Computer ~cientists 667 

was assigned to read as follows: "Complete a program 
called ENVIRON which will print out the distributional 
environment for a given letter. (Assume that you already 
have a corpus stored in a vector called TEXT.)" By 
consistently moving from the familiar to the unfamiliar, a 
methodology of programming exercises was presented, 
and by the termination of the problem, all students had 
been exposed to many solutions to the same problem. 
Thus, they learned that design is a choice among alterna­
tives, not the only solution to the problem. The im­
portance of design was further emphasized by having 
students modify their code, to make them aware of the dif­
ficulty in trying to modify a poorly structured program. 

Essentially, exercises were designed to acquaint the 
students with a wide range of computer applications. As 
social scientists from different disciplines and different 
interests within disciplines, some would be doing numeric 
calculations whereas others might be dealing with textual 
problems. We felt that regardless of their immediate in­
terests, each group should know the computer's capability 
in both these areas. Even if a sociologist never dealt with 
textual material, he or she should be a knowledgeable 
consumer of software. 

THE FINAL PROBLEM 

Remembering that our students were specialists in the 
social sciences and taking a computer course as an excur­
sion in their educational careers, we wanted the final 
assignment to be of relevance to their primary interests. 
Therefore, the last assignment was broadly expressed. The 
student was to choose a significant problem within his dis­
cipline which lent itself to a computer application and at­
tempt to solve it. We did not expect the resulting analyses 
to be earthshattering, but we did expect them to be mean­
ingful and interesting. We were not disappointed. 

Final projects could be broken down into two major 
categories. Many students explored the cmp.puter center 
resources and found packaged programs which were useful 

in analyzing data they had been compiling. Some of these 
applications were of a standard statistical nature, where 
others were new applications of standard routines in an 
extremely creative manner. One group of archeologists ap­
plied a mapping program to archeological-geological data. 
They were attempting to discover trade and migration pat­
terns based on the distribution of raw materials in certain 
locations through time. An examination of this new form 
of data representation led to the formulation of hy­
potheses which were subsequently tested through stan­
dard archeological fieldwork methodology. Many of the 
hypotheses were validated. 

CONCLUSIONS 

We found that teaching, rather than "exposing", introduc­
tory computer programming to noncomputer people is a 
time consuming task. This course, which we consider a 
success, required two instructors, with a heavy commit­
ment. All student programs were carefully read and dis­
cussed by both teachers. Given a class of 26 people, this 
required at a minimum one full day per week. Work­
shops and lectures were attended by both instructors, 
a practice essential for continuity. Team teaching re­
quires the full time commitment of both people rather 
than the half time interest of two teachers. 

Teaching computer consumerism involves many of the 
same principles as teaching good computer programming. 
Be skeptical. Read programs. Ask questions, and most of 
all remember the words "I don't know" and "I don't 
understand. " 

BIBLIOGRAPHY 

1. Yasukawa, N., R. Marcus and G. M. Weinberg, Structured Program­
ming Using PL/C: An Abecedarian, New York, John Wiley & Sons, 
1973. 

2. Freedman, D., and D. Geller, Structured Programming in APL, in 
press, to appear Dec. 1975, Winthrop Publishers. 





PART II 

METHODS AND APPLICATIONS 





Area Co-Director: Area Co-Director: 
Bruce Wrigley 
Travelers Insurance 
Hartford, Connecticut 

Edward J. Palmer 
Boston University 
Boston, Massachusetts 

User's viewpoint on EDP 

Two prime concerns of the user of data processing equipment today are for­
malism in the administration of the DP function and the question of privacy. 
The former is becoming important through management pressures for engineer­
ing-like controls and procedures. Emphasis is being generated on the latter by 
activities of governmental bodies in proposing legislation which will control data 
processing practices. Both pressures will require rapid and definitive response. 
These concerns are addressed in a series of four panel discussions structured for 
the EDP user. Panelists discuss the issues and outline their solutions to some of 
the problems. 

There have been advances· in the state of the art· of systems development 
recently, and even newer methodologies are being experimented with. In the 
session on "Benefits of New Programming Methodologies," the impact of these 
methods on the effectiveness of the organization is explored by those who have 
used them. One of the emerging trends in larger data processing organizations is 
the establishment of functional units devoted to the optimization of resource 
utilization. Methods, tools and results are discussed by individuals who have 
been deeply involved in this new activity in the session titled "Optimization of 
EDP Installations." There are many organizations currently involved in the se­
lection process for data base management systems. There are very few 
guidelines to follow in this process and a formal technique for making such an 
analysis is strongly needed. A panel has been assembled for "Selection Tech­
niques for Packaged Data Management Systems" consisting of individuals who 
have each used different formal methodologies resulting in the selection of dif­
ferent packages. The panelists will present their methodologies and argue the 
relative importance of various factors in such a selection. In the final session, 
"Issues and Answers-Data Security and Personal Privacy," some of the people 
who are active in the legislative process regarding privacy and security develop 
a picture in regard to what the user can expect in the near future, what is 
needed, and the implications of both to the data processing function. 

No formal papers are included in this group of sessions. 

671 





Area Co-Director: Area Co-Director: 
John J. Donovan 
Sloan School, M.LT. 
Cambridge, Massachusetts 

Michael S. Scott Morton 
Sloan School, M.LT. 
Cambridge, Massachusetts 

Management and computers 

As our society evolves into a more service-oriented society, the problems of 
management and processing information are increasing. The computer-based in­
formation system function has changed considerably in its 20-year history. 
Hardware and software have evolved significantly. Applications have been ad­
ded in abundance. Methods of managing the technology, human resources, and 
system and user/computer interfaces have evolved, and most recently, the 
technological advances in the software for storing, retrieving, and manipulating 
data have made significant advances. 

We have set up three interrelated sessions focusing on what computational 
needs user executives perceive they want, WHAT EDP professionals (computer 
executives) perceive managers want, and on EDP topics that managers and 
EDP professionals concerned with managers should be aware of. 

The first is a panel session consisting of managers and executives (not EDP 
specialists). They will discuss the past, present, and future of EDP in their orga­
nization with emphasis on the future. 

The panel consists of: 

Mr. W. J. Evans 
Manager, Purchasing and Administration 
The Aluminum Company of America (ALCOA) 
1501 Alcoa Building 
Pittsburgh, Pennsylvania 15219 
(412) 553-4303 

Mr. H. L. Kephart 
Vice President Financial Administration 
Sun Oil Company of Pennsylvania 
(Product Group) 
1608 Walnut Street 
Philadelphia, Pennsylvania 19103 
(215) 985-1600 

673 



674 National Computer Conference, 1975 

Mr. William Madden 
Director of Technical Services 
Bank of America Investment Management Corporation 
555 California Street 
San Francisco, California 94104 
(415) 622-6606 

Mr. Peter E. Viemeister 
Vice President of Development 
Grumman Corporation 
Bethpage, New York 11714 
(156) 575-3445 

The second session is also a panel consisting of EDP specialist and computer 
executives. The panel consists of: 

Robert B. Anderson 
President 
Sun Services Company 
240 Radnov-Chester Road 
St. Davids, Pennsylvania 19087 
(215) 985-1600 

Barry D. Rowe 
Vice President and General Manager 
Data Systems 
Martin Marietta Corporation 
Hampton Plaza 
300 East Joppa Road 
Baltimore, Maryland 21204 
(301) 823-1600 

Dr. Phillips Whidden 
Manager 
ALCOA Management Information Services Division 
1501 Alcoa Building 
Pittsburgh, Pennsylvania 15219 
(412) 553-3264 

They will focus on their views of EDP in their organization and in general. 
The third session is a paper session focusing on three EDP topics that 

managers and EDP specialists should be aware of. The first is a cost analysis of 
interactive computing in organizations. The second is a new technology that is 
particularly helpful in building management information systems. The third is 
an approach to analyzing EDP requirements. 



Practical guidelines for EDP long-range 
planning 

by JOHN V. SODEN and GEORGE M. CRANDELL, JR. 
McKinsey & Company, Inc. 
Los Angeles, California 

INTRODUCTION 

This paper summarizes the approaches some major orga­
nizations are taking toward EDP long-range planning 
(LRP) and presents what we believe are useful and 
practical guidelines for others involved in, or contemplat­
ing, such an activity. The information presented here was 
gathered during an April 1974 working conference on long­
range planning for information systems cosponsored by 
McKinsey & Company, Inc., and the University of 
California at Los Angeles Graduate School of Manage­
ment. 

Some 20 major public and private sector EDP execu­
tives attended the invitational conference, and par­
t~cipated in two days of discussions regarding various 
aspects of their LRP experience. These executives also 
participated in a detailed preconference survey focusing 
on the objectives, development process, and end products 
of their individual planning efforts. 

The paper is divided into three sections which discuss: 

1. The approaches to EDP planning utilized by the 
conference participants, including their planning ob­
jectives and final LRP documentation. 

2. The planning processes used to develop an EDP 
strategy statement and LRP. 

3. Practical planning guidelines that should be 
considered by the EDP executive in undertl:lking and 
carrying out a planning activity. 

For the purposes of this paper, it will be assumed that 
the EDP organization, by which the planning is being 
done, is responsible for computer operations, systems 
analysis, and system development activities. 

APPROACHES TO PLANNING 

The approach to EDP MIS planning adopted by an or­
ganization reflects many things, including the charter, 
credibility, and capability of the organization itself; its 
industry characteristics; and the maturity, sophistication, 
and enthusiasm of the company and individual "users." 
In order to obtain a good cross section of various ap­
proaches to planning, conference participants were chosen 

675 

to represent the aerospace, airline, business equipment, 
chemical, consumer goods, insurance, medical services, pe­
troleum, and utility industries as well as government and 
education at the local, state, and Federal levels. The 
"average" participant was from an organization that had 
annual revenues or a total budget greater than $1 billion, 
an annual EDP budget of over $15 million, formal capital 
allocation and budgeting procedures, and a formal EDP 
long-range plan for more than three years. They, therefore, 
represented a cross section of relatively large, mature 
EDP organizations experienced in EDP planning. Hence, 
it can be expected that they were familiar with the litera­
ture on this subject represented by the References 1 
through 8. 

Planning objectives 

These organizations tended to have five primary objec­
tives for their LRP effort. Ranked in order of importance, 
they were to: 

1. Increase communications and cooperation between 
the EDP group, its users, and top management. 

2. Improve EDP requirements forecasting, allocation of 
EDP resources, and short-term decision-making 
within the EDP group. 

3. Identify opportunities for improvement and cost re­
duction within the EDP group. 

4. Identify new and/ or higher payout computer applica­
tions and cancel marginal development efforts. 

5. Gain a better understanding of, and increase EDP's 
visibility within, the overall organization. 

Only half of the participants indicated that they at­
tained these objectives above their initial expectations. 
This, we feel, was caused by several basic shortfalls in, 
and misunderstanding of, the planning process, as dis­
cussed more fully in a subsequent section. 

LRP documentation 

The vast majority of conference participants agree that 
something called an LRP document should contain the 



676 National Computer Conference, 1975 

following: 

• Statement of objectives for the EDP organization. 
• Projection of future EDP and user environments. 
• Application development priorities and timetable 

(including specific project descriptions with cost, 
benefit, return on investment, and risk estimates). 

• Budget, hardware, personnel, facilities, education, 
and organization schedules. 

• Implementation plan. 

There was a difference of opinion, however, over whether 
certain additional items of information should be included 
in the document. This information consisted of: 

• Summary of EDP organization strengths and weak­
nesses. 

• Alternative strategy definitions and evaluations. 
• Projection of host organization's future industry envi­

ronment. 

The objections to including a summary of EDP group 
strengths and weaknesses in the LRP document were 
understandable; however, an honest introspective analysis 
of the current status of the EDP group is necessary, both 
to identify areas in which improvement is required and to 
assess the resources available for undertaking any future 
plans. Regarding alternative strategies, most organizations 
implicitly considered them, but felt that is was not worth 
the time to formally document them. Finally, a projection 
of the host organization's future industry environment was 
usually left out because the company itself had not 
developed or documented one-the EDP group either did 
not desire to or did not feel capable of doing so. This is 
somewhat paradoxical in that one of the planning objec­
tives was to gain a better understanding of the overall or­
ganization-it may explain why that objective was not 
achieved to a higher degree. 

One of the most telling findings regarding the LRP docu­
mentation was the fact that, of the participants who 
agreed that they should include certain information, over 
half of them failed to do so. This information consisted of 
return on investment or risk estimates for potential 
projects, alternative strategy definitions and evaluations, 
and summaries of the EDP organization's strengths and 
weaknesses. The failure of these organizations to include 
items they deemed necessary indicates that even in these 
relatively large and mature EDP organizations, the gap 
between recognized standards of planning and actual 
practice is relatively large. As the next section discusses, 
this gap is, in part, a result of varying interpretations of 
what actually constitutes long-range planning. 

PLANNING PROCESSES 

The planning process is the sum of the individual 
activities involved in developing the LRP. It can take an 
endless number of forms depending upon the desired 

comprehensiveness of the end product and the resources 
available for its development. Some factors that affect the 
choice of an LRP process are: 

• The characteristics of the overall organization-e.g., 
contingency planning could be very important in a 
public sector organization subject to rapid changes in 
administration and direction, while its use might be 
minimal in a stable manufacturing company. 

• The objectives of the overall organization regarding 
its use of computing resources-i.e., is EDP to be a 
reactive support function or an assertive agent for im­
proving operations and procedures throughout the 
company? 

• The specific role of the particular EDP organiza­
tion-e.g., a corporate EDP organization having advi­
sory, but not operating, responsibilities might stress 
policy planning as opposed to operational planning. 

• The managerial sophistication of the overall company 
and individual "user" executives-e.g., a company 
without established capital allocation criteria may 
have difficulty in agreeing on methods for ranking 
system development projects based on financial at­
tractiveness. 

• The relative degree of maturity and sophistication of 
the EDP function-i.e., an EDP organization strug­
glingto manage computer operations on a timely, ac­
curate, and cost-effective basis should likely 
concentrate on this area and not be overly concerned 
with planning to meet the further information needs 
of users. 

A distinction should be made between the development of 
an EDP strategy statement and an EDP plan. The two are 
closely interrelated in that the strategy statement defines 
the objectives and policies of the EDP organization, while 
the plan lays out the actions to be taken to achieve the 
desired objectives. Few participants actually made this 
distinction and explicitly created an EDP strategy state­
ment as part of their planning process. This appears to be 
one of the major factors that inhibited achievement of 
planning objectives. 

EDP strategy statement 

The strategy statement is a key communication vehicle 
between EDPand top management. Through it, top 
management can participate in directing the EDP effort 
such that it best suits the present and expected needs of 
the company. The development of an EDP strategy is also 
a means for the EDP executive to improve his relationship 
with top management and establish himself as a member 
of the management team. 

One form of the EDP strategy statement development 
process is depicted in Figure 1. It involves two stages: (1) 
EDP management develops and presents to top manage­
ment an environmental assessment, recommended objec­
tives, and proposed policies; and (2) top management re-



Approved 

EDP 

Strategy 

Proposed Policies 
r----II'----'-.,. Organization ,..------1.__ • Allocation 

Environmental 
Assessment 

• Past 
Performance 

• Capability 

Recom­
mended 

Objectives 

• User Needs ~-"!II!'-'--

Criteria 
• Expenditure 

Level 
(Rationale) 

Figure I-General strategy development process 

views and modifies the proposals in accord with its views or 
desires, thereby producing an approved EDP strategy. 
Through this top management participation, EDP plans 
which are later developed will be relatively integrated and 
aligned with those of the overall company. 

The inputs provided by EDP management-i.e., the en­
vironmental assessment, recommended objectives, and 
proposed policies-indicate where the EDP group is, 
where it should be going, and what some of the guidelines 
for getting there should be. The assessment, then, 
evaluates the past performance of the EDP group, its cur­
rent strengths and weaknesses, and the needs of its users 
that it is or should be satisfying. Recommended objectives 
for the EDP organization are generally directed at over­
coming present shortcomings and preparing it to satisfy 
future demands. Proposed policies might cover such topics 
as the organizational approach to computing (e.g., 
centralized versus decentralized); the criteria for allocat­
ing computer-related resources (e.g., application steering 
committee versus first-come-first-served); and the expendi­
ture level for EDP services, including an explanation of 
what services would be provided and why that level of 
service is appropriate. 

Within the general strategy development framework 
there are (at least) two modes in which EDP can operate: 

Approved 

Company 

Strategy 

Approved 

EDP 

Strategy 

• Environment I 
Assessment 

• Recommend d 
Objectives 

• Proposed 
Policies 

Figure 2-"Reactive" strategy development process 

Practical Guidelines for EDP Long-range Planning 677 

Approved Approved 
Company EDP 
Strategy Strategy 

Proposed 
EDP 
Strategy 

Proposed 
1+-+ Company 

Strategy 

t 

Figure 3-"Proactive" strategy development process 

"reactive" and "proactive." The "reactive" mode is 
depicted in Figure 2. In it, top management develops an 
overall company-wide strategy and EDP management 
"reacts" to it by developing a proposed EDP strategy that 
supports it. In this manner, the EDP strategy does not im­
pact the development of the company strategy. In the 
"proactive" mode, the EDP and company strategy are 
developed simultaneously, as shown in Figure 3. In this ar­
rangement, EDP can influence the company's strategy 
formulation such that it takes the best possible advantage 
of the computing capabilities and available resources. 

In both these modes the choice of appropriate strategic 
objectives for EDP is key since they set the tone for the 
long-range planning effort and the pattern for EDP's fu­
ture role and development. What the appropriate objec­
tives are for a given organization depends on its current 
status and anticipated future role, and these will change as 
the EDP group develops. A typical EDP organization 
might, over time, pass through the following objectives: 

• Build a sound foundation for managing the EDP 
activity day to day. 

• Cultivate a core group of appreciative users. 
• Filter requests of core users to enhance the return on 

investment (ROI) of EDP. 
• Expand the user group to further enhance the EDP 

ROI. 
• Identify and prepare for user needs likely to arise in 

the future. 
• Influence the future development of the company to 

make the best possible use of EDP. 

SHORT TERM MEDIUM TERM 

• Build EDP 
Foundation. 

• Cultivate. Core 
Group of Users 

• Filter User 
Requests 

• Expand User 
Group 

LONG TERM 

• Contribute to 
Company 
Development 

• Influence Company 
Development 

Figure 4-Strategic objectives 

F 
U 
T 
U 
R 
E 



678 National Computer Conference, 1975 

Identify 
Potential 
Projects 

• Organization 
• Personnel 

Alternatives 

Develop 
Action 
Plans 

• Management Procedures 
• Computer Operations USERS 
• System Development --

~---------------------
Figure 5-EDP plan development process 

The above objectives can, for the purposes of con­
venience, be divided into three groups: short term, me­
dium term, and long term, as shown in Figure 4. These 
groupings are based on the time horizon for planning im­
plied by each objective and indicate the type of plan ap­
propriate for achieving it. 

EDP plans 

As mentioned previously, the EDP plan lays out the ac­
tions to be taken to achieve strategic objectives. Thus, the 
plan is the end result of identifying, evaluating, and rank­
ing alternative projects. The process of developing the 
EDP plan is diagrammed in Figure 5. The term "projects" 
in this instance is meant to include not only systems 
development, but all aspects of EDP activities and 
management, e.g., organizational modification, personnel 
development, improvement of management procedures, 
and improvement of operations. Note that the entire plan­
ning process takes place within the organizational frame­
work of the users which it is EDP's main function to serve. 

EDP plans can be loosely categorized as short term, me­
dium term, and long term, corresponding to the major ob­
jectives they are designed to achieve (see Figure 4). 

Short-term plans stress the achievement of precise quan­
titative objectives during a one-year period. These objec­
tives usually relate to ways of measurably improving such 
areas as production service levels and costs per transac­
tion, effectiveness and efficiency of system development 
efforts, and maintenance request throughput. The short­
term plan generally takes the form of a statement or list of 
improvement targets, a schedule with milestones for re­
viewing progress, and an operating budget. 

Medium-term plans generally seek to maximize the 
contribution of the EDP effort in meeting today's needs 
using a multiyear planning horizon. This usually involves 
a study to determine current users needs. A number of ap­
proaches to this may be taken, including the simple listing 
of all previously proposed system development projects, 
full-scale documentation of the types of information users 

throughout the company would like to have available 
(perhaps embodied in a company MIS architecture dia­
gram), and/ or an identification and analysis of key func­
tional areas in the company for which data processing ap­
plications might be of high value. This last approach, 
often referred to as "top down" business analysis, involves 
an examination of the company's financial and operating 
data to identify those areas in which the use of EDP could 
have the greatest impact on the company's current and fu­
ture success. Mastery of this approach poses a significant 
challenge to the EDP executive in that it requires him 
to become a businessman and develop a broad-scale un­
derstanding of the economic leverage points of the com­
pany which he serves. 

Once projects have been identified, they are then 
ranked and a course of action developed using those 
policies developed for allocating computer-related 
resources (as well as internal EDP organization 
technological policies). The medium-term plan usually 
consists of a multiyear system development schedule and 
budget extrapolation to support it. 

Long-term plans seek to contribute to, or influence, the 
future development of the company. "Contribute to" 
(reactive) plans involve aligning EDP activities with the 
long-term plans of the overall company. This might in­
volve such things as developing expertise in new areas an­
ticipated to be of use in the future or gradually modifying 
the organization structure to be better prepared to provide 
future services. "Influence" (proactive) plans involve ac­
tive participation of EDP in the long-term planning of the 
overall company, e.g., making organizational recom­
mendations based on information flow. 

Naturally, planning processes cannot all be categorized 
in such a black and white manner; for instance, a me­
dium-term systems development plan derived from a truly 
long-term systems development plan might well focus on 
future rather than current needs. 

Most importantly, however, the use of each successively 
longer ranged plan should be mastered before proceeding 
to develop the next. This is because the successful imple­
mentation of each longer range plan is dependent upon the 
shorter range plans developed to support it. For example, 
regardless of how good a given long-range plan is, it will 
likely lead to disappointing results if adequate short- and 
medium-range plans have not been mastered for putting it 
into action. 

Note also that the need for top management involve­
ment is not an exclusive aspect of long-term planning. 
EDP objectives and policies should be established with 
top management's participation, even if a short- or me­
dium-term plan is most appropriate for a given EDP orga­
nization. And these objectives and policies should be care­
fully set in light of an objective assessment of the EDP or­
ganization's capabilities and weaknesses. 

PRACTICAL PLANNING GUIDELINES 

During the conference, a great deal of discussion 
centered around the pitfalls involved in developing a plan-



ning approach and carrying out the planning process. 
Based on those discussions, it would appear that the EDP 
executive undertaking a planning activity should consider 
the following guidelines within the framework of his own 
unique environment. 

• Recognize the growing need for formal long-range 
EDP planning as computer systems become more 
complex, cost more, require longer to develop, involve 
multiple functions or departments, and become 
increasingly important to the success of the company. 

• Admit that a set of extrapolated budget, personnel, 
and hardware schedules routinely submitted to the 
corporate planners does not constitute an EDP long­
range plan. 

• Recognize the importance of communication with and 
support of top management for the planning ef­
fort-gain their agreement on a simple set of EDP 
policies and objectives at the outset and keep them 
appraised of progress. 

• Define specifically the objectives of the planning ef­
fort at the outset and "plan the plan" around achiev­
ing these-do not attempt the great leap forward. 

• Select a planning process suited to the practicalities 
of your situation-e.g., time and resources, (if 
possible, develop a conceptual model of the planning 
process, along with a well-defined set of desired end 
products)-avoid trying to do everything at once. 

Practical Guidelines for EDP Long-range Planning 679 

• Make the plan one for company/user use of computer 
systems not one just for the EDP department-in­
volve users in its development and make its language 
and structure as user-oriented as possible. 

Most importantly, remember that helpful as formal 
long-range planning can be, it cannot replace the political 
sensitivity, entrepreneurship, conceptual contribution, and 
basic business leadership required of the successful EDP 
executive. 

REFERENCES 

1. Brown, W. F., R. E. Biband, G. L. Hodgkins, "Planning For The 
Future Computer Complex," Computer Decisions, January, 1973, 
pp.30-35. 

2. Dearden, J., F. W. McFarlan, W. M. Zani, Managing Computer­
Based Information Systems. (R. D. Irwin: Homewood, 1971), 
Chapters 2 and 7. 

3. Harvath, C. and B. Bridging Chilcoat, The Systems Expectations 
Gap, an AMA management briefing, 1973. 

4. Kriebel, C. H., "The Strategic Dimension of Computer Systems 
Planning," Long Range Planning, September 1968, pp. 7-12. 

5. McFarlan, F. W., "Problems In Planning The Information System," 
Harvard Business Review, Marchi April, 1971, pp. 75-89. 

6. Neuschel, R. F., "You, Your EDP Plan, And Top Management," 
keynote address at the Third Annual Conference of PIMA on April 
13-14, 1971. 

7. Schwartz, M. H., "MIS Planning," Datamation, September 1, 1970, 
pp.28-31. 

8. Steiner, G. A., Top Management Planning, (McMillan, 1969). 





An application of a generalized management 
information system to energy policy and 
decision making-The user's view 

by JOHN J. DONOVAN, LOUIS M. GUTENTAG, STUART E. MADNICK and 
GRANT N. SMITH 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Motivations for flexible systems for energy 

As a result of recent disruption in the world petroleum 
market and rapid price increases, the United States is in 
the process of developing energy policies that will lead to a 
greater degree of energy self-sufficiency, and to a reduced 
level of vulnerability to interruption of supply from 
abroad. 

New England is particularly susceptible to disruption in 
energy supplies, as we are "at the end of the pipeline." 

One advantage of the market system is that public of­
ficials can get by without knowing much about the details 
of the operation of most sectors of the country. Many 
goods and services are produced, allocated over space and 
time, and delivered to consumers without government in­
tervention and with no need for a public record of how 
things are done. When events occur that call for govern­
ment efforts to influence markets, however, a dearth of 
public information can be a crucial barrier to effective 
policymaking. 

The need for information, hence an information 
management system, is obvious in a crisis situation. 
However, there also exists a need for energy information in 
a non-crisis situation to aid in a wide set of tasks: 

• studies of the economic impact of various events in 
the energy sector 

• studies of the location of major energy facilities 
(ports, refineries, etc.) 

• development of early warning indicators of problems 
in regional energy supply 

• provision of information for special studies of environ­
mental impacts, conservation efforts, price trends, 
etc. 

Our objective is: 

To establish a facility (for storing and validating data, 
retrieving data, interpreting and analyzing data,. and 
constructing and applying models using those data), 
which will facilitate New England energy policy 
analysis and decisions. 

681 

A system to support the objectives outlined would not be 
adequately represented by, for example, an accounting 
system. The accounting system operates on a well-defined 
set of data in a well-defined way. Neither data nor opera­
tions are subject to rapid alternations. Furthermore, the 
data is relatively "clean", i.e., from consistent, high­
quality sources. 

For the purposes of the energy information system, the 
problem area being addressed is not constant. It changes 
when changes in perception arise, which may be for any 
number of reasons. This has the effect of changing both 
the data required and the format of data required far 
more rapidly than the reporting and data gathering 
procedures can be altered to reflect the new needs. As 
such, the already inaccurate data become rapidly less 
suited to the task at hand. 

Furthermore, with change occurring so frequently, it is 
imperative that the system can be modified to meet the 
change without incurring prohibitive expenses. 

While these requirements are certainly true in the 
energy information system, they are by no means unique 
to it. Our approach has thus been to meet the needs of the 
energy system without actually implementing an energy­
specific system. Rather, we have concentrated on 
constructing a Generalized Management Information 
System (GMIS) that meets requirements of extreme flexi­
bility, acceptable costs, and simultaneously serving a 
diverse user group. This paper is addressed to a particular 
instance of the GMIS, namely, its use in the New England 
Energy Management Information System (NEEMIS), 
and more specifically, to the user view of the system 
rather than the implementation. 

DESCRIPTION OF NEEMIS 

Keeping in mind the ultimate purpose of NEEMIS-to 
provide a facility to aid public policymakers in energy de­
cisions in New England-we recognize several classes of 
users of the NEEMIS facility. In this section we shall 
briefly explain what facilities each class of user will have. 
The precise syntax of intermediate languages and imple­
mentation details are described elsewhere. 1 



682 National Computer Conference, 1975 

~ 
FACILITY PREPARED NEEMIS NEEMIS HIGH MODELING RELATIONAL DATA RELATIONAL 

INTERACTIVE LEVEL QUERY QUERY DEFINITION OPERATORS & 
USER PACKAGES LANGUAGE 

FACILITY LANGUAGE FACILITY PL/l FACILITY QUERY 
CATEGORY FACILITY (DML) (DOL) 

NON-TECHNICAL 

(No computer X X X 
training) 

WELL 

TRAINED X X X X X 

RESEARCHER X X X X X X 

SYSTEMS ANALYST 

& PROGRAMMERS X X X X X X X 

Figure I-Project NEEMIS-Functions available in each interface facility 

In the NEEMIS facility, we wish to give users increas­
ingly more powerful tools. Figure 1 depicts 4 classes of 
users as factors: 

• Non-technical-e.g., a state energy officer. His objec­
tive is to get answers to questions and report. 

• Well-trained-e.g., a specialist within a state energy 
office who has been trained in the use of the system. 

• Researcher-e.g., an economist with some computer 
background who wishes to build a model for a special 
study. 

• Systems analyst/programmer-e.g., a computer 
professional. He may wish to add a new table to the 
system or change the protection rights on an existing 
data series. 

Looking across the table in Figure 1, we see the tools 
available to users of NEEMIS. Although all levels and 
facilities of the system are available to all users, it is un­
likely that users will venture outside of those tools 
designated (by "X"). Increased sophistication onthe part 
of anyone user will, of course, qualify him/ her for a dif­
ferent category. 

The tools of the system have been designed in such a 
way that the interests of the various user groups are met. 
Let us proceed to briefly describe the facilities at each 
level. 

Relational Operator and PLj 1 Facility 

At this level, the user sees all data as being stored in 
relations. * This includes not only regular entered data, but 

* For our purposes, can be thought of as matrix of values; each column a 
domain, each rowan entry. See Reference 2 for more details. 

all system data, all access control data, etc. The user at 
this level has at his command thirteen set-oriented rela­
tional operators that are used to perform all operations on 
all data. It is important to note that user data, system 
data, access control data, etc., are all accessed in a 
consistent manner via these thirteen operators that are 
based on the relational model of data,2,3 which have their 
roots in logical systems and predicate calculus.4-7 The 
operators available in NEEMIS are described in detail in 
Reference 1. 

Since these operators appear as PL/1 subroutine calls 
within NEEMIS, the user at this level also enjoys all the 
power of PL/l. 

Notice that both PL/1 and relational operators require 
precise use and exhibit low tolerance for error. 

Data definition facility 

A user at this level has facilities to specify and create 
relations. We call this facility the Data Definition Lan­
guage (DDL). The DDL will accept a data specification 
and will produce an appropriate relational data base, 
which is then incorporated into the system. The DDL also 
provides a facility for loading bulk data into the newly 
constructed relational system from punched cards, mag­
netic tapes, or magnetic disk files. 

In the establishment of a new relation, the system tables 
are modified to include data about this new relation, as 
well as provision for specification of access control, etc. 

Also available at this level is on-line help with com­
mands, and extensive diagnostics. 

An example of the use of the DDL facility follows. 
("Domain" means a column of the "relation," or matrix.) 



An Application of a Generalized Management Information System 683 

Example: 

With most information management systems, the design 
of the system-that is, the design of the data base-is a 
vital step in the operation. If done incorrectly, it is often 
impossible, and usually extremely costly in dollars and 
man years to restructure the data base to more ably suit 
the needs. 

Not so with NEEMIS. In fact, during the summer we 
experimented with three different designs in the course of 
a single month. The DDL permits specification of the data 
base on-line, and extremely rapidly. A sample session 
might be: 

Example: 

system: ENTER COMMAND: 
user: 
system: 
user: 
user: 
user: 
system: 
user: 
system: 
user: 

system: 

user: 
system: 

user: 

define domains 
(. = "ready for input") 

name character, soc-.J3ec_# numeric (9), 
supplier choice (gulf, exxon, mobil), 
address character; 
ENTER COMMAND 
create relation 

employee (name, soc---.Sec_#, address) 
(primary key: soc-.J3ec_#), 

fuel_data (soc---.Sec_#, name, supplier) 
(primary key: soc---.Sec_#, required: 
supplier); 

RELATIONS DEFINED 
ENTER COMMAND 
define synonym: soc---.Sec_# = 'ss'; 
SYNONYM ENTERED 
ENTER COMMAND 
stop. 

This session would establish the two relations, and 
permit data to be entered immediately. 

Query facility 

At this level a user can specify queries of data stored in 
relations. The user uses a rigid syntax for his queries that 
we sometimes call "cryptic" English. More specifically, we 
call this facility a Data Manipulation Language (DML). 

An internal document describes a complete DDL and 
DML that has been specified at M.LT.IS Other attempts at 
implementing a query facility based on the relational 
model include: MACAIMS,s SEQUEL,9 COLARD/o 
RIL,l1 and M.LT.'s RDMS. 

This facility is available for querying relations es­
tablished via the DDL or possibly the relational operator 
facility (see earlier sections of this paper). 

The commands, although conforming to a rigid syntax, 
employ English-like keywords, are quite easy to learn and 
readily readable. Once again, all data, including system 
data, are accessed in a consistent manner; and access con­
trol specification is an integral part of DML. 

Let us give two examples here of our DML query com­
mands. 

We assume that the following four tables have been 
created using the DDL. The first table is named 'terminal' 
and it has six columns: terminal id, name, etc. 

TERMINAL (TERMINALID, NAME, CITY, STATE, 
ZIP CODE, AFFILIATION) 

SUPPLY CAPACITY (TERMINALID, FUELTYPE, 
FUELAMI, DATA) 

SUPPLIER (SUPPLIERNO, NAME, VOLUME, 
FUELTYPE, DISTNO) 

DISTRIBUTORS (DISTNO, NAME, ADDRESS, 
CITY, STATE, INVENTORY, FUELTYPE) 

The following are sample queries against a data base 
that contains the above tables: 

Question 1 

DISPLAY NAME, AFFILIATION, CITY 
FOR STATE = 'MASSACHUSETTS' 

This question causes the listing of the name, affiliation 
and city of all terminals in the state of Massachusetts. 

Question 2 

DISPLAY NAME FOR FUELAMT> 1000, 
FUELTYPE = 'GASOLINE', CITY = 'LYNN' 

This lists the names of all terminals in Lynn that have 
over 1000 gallons of gasoline capacity. 

The display command is but one of several available. 
All commands employ consistent syntactic constructs and 
are equally readable. 

There is, again, extensive on-line help with commands 
available, as well as explanatory diagnostics. No high-level 
user should have to see "protection exception at location 
OFElA3"! 

The modeling facility 

A user of this facility may construct and activate a 
model interactively via provision of a set of functions 
called from APL. These functions include" regression 
routines, plotting routines, time series modeling routines, 
etc., in addition to the standard APL facilities. The lan­
guage used for modeling is a superset of APL-i.e., APL 
with additional facilities. The data that the model uses 
may be retrieved directly from stored in the relations (see 
previous section). 

This APL-oriented modeling facility is the current stan­
dard. Inclusion of additional or different modeling lan­
guages, however, poses little problem (see later section). 



684 National Computer Conference, 1975 

what are the terminals and their cities for 'kennebec' county? 

TRANSLAT.ION: 
D TERMINAl.OPNAME,TERMINAL.CITY FOR TERMINAL.COUNTY='KENNEB£C'; 

TERMINAL.OPNAME 

MOBIL OIL CORP 
NORTHEAST PETROLEUM 
GULF OIL 
AGWAY PETROLEUM 

DISRlAY COMPLETE. 

TERMINAL. CITY 

HALLOWELL 
AUGUSTA 
AUGUSTA 
HALLOWEll 

what are the capacities and fuel types for the 'mobil oil corp' 
terminal in the city of 'hallowell'? 

TRANSLATION: 
D CAPACITY.CAPACITY,CAPACITY.FUELTYPE FOR TERMINAL.OPNAME~'MOBIL OIL CORP', 
TERMINAL.CITY='HALLOWELL'; 

CAPACITY.CAPACITY 

17814 
18327 

DISPLAY COMPLETE. 

CAPACITY. FUELTYPE 

REGULAR GAS 
KEROSENE 

who are the terminal supervisors and what are their telephone numbers and 
adresses in the city of 'hallowell'? 

TRANSLATION: 
D TERMINAL.SUPNAME,TERMINAL.SUPPHONE,TERMINAL.SUPADDR FOR 
TERMINAL.CITY='HALLOWELL'; 

TERMINAL.SUPNAME 

ROBERT F CRESSEY 

TERMINAL.SUPADDR 

197 CONY STREET 

DISPLAY COMPLETE. 

TERMINAL.SUPPHONE 

2036233873 

Figure 2-Example of computer dialogue 



An Application of a Generalized Management Information System 685 

NEEMIS high-level query facility 

Figure 2 shows an example of the type of query that can 
be used at this level. For purposes of illustration, we have 
shown how the requests are translated into DML and 
passed to that level for further handling. ('D' is an abbre­
viation for "DISPLAY".) 

NEEMIS interactive query facility 

The user of this facility simply points to a question cate­
gory he wants answered on a CRT using a "light pen". If 
the question needs further specification, the system will 
flash subsequent choices on the scope, and the user will 
point to the choice that clarifies his query. 

Prepared pac kages 

Users of this facility will request standard reports or 
invoke common models, for example, a monthly forecast­
ing model. All the user at this level needs to know is the 
name of the report or model. The system will take care of 
retrieving the requisite data and invoking the appropriate 
facility to generate a report or run a model. 

NOTES ON IMPLEMENTATION 

The purpose of this paper was primarily to describe the 
hierarchy of user facilities in NEEMIS as opposed to a 
description of the implementation of the GMIS. However, 
there are a number of interesting implementation-related 
points that bear mentioning. 

Extensions of the relational model 

Just as the user-view of NEEMIS described levels of dif­
fering power and flexibility, so the actual implementation 
of the system was carried out. Software developed for the 
GMIS has been implemented as a multi-level hierarchy in 
which each level employs only those facilities imple­
mented in the levels below it. Early explanations and ap­
plications of this approach may be found in References 12, 
13, and 14. 

The GMIS in which NEEMIS is built has paid exten­
sive heed to security of data. Some nineteen types of ac­
cess have been identified and any owner of data may au­
thorize any user to access those data in any or all of those 
nineteen ways. The default authority is NO access, rather 
than the usual approach that allows full access unless 
otherwise specified. These security specifications are made 
via facilities in the DML directly. 

The relation used to store access control information, as 
well as all other system relations and descriptors are 
identical to and accessed in an identical manner to regular 
user data. Thus all data stored in the system is stored in a 

consistent fashion making security checking, as well as ac­
cess consistent for any and all data. 

Finally, imbedded in the system code are facilities for 
monitoring program execution for debugging purposes, as 
well as timing of operations for system tuning. There is 
also an ability to log all requests made in the DML and 
DDL, used mainly for determining optimal data base 
structure. These facilities may be turned on or off in the 
DML. 

A detailed description of the levels of implementation of 
the GMIS may be found in Reference 1. 

Role of VMj370 

The capability of running multiple virtual machines at 
the same time under IBM's Virtual Machine Facility /370 
(VM/370)15 has facilitated a solution to the problem of us­
ing NEEMIS as a multiple access system, with different 
users having varying applications requirements (e.g., 
report generation, econometric modeling). 

In the multiple user environment, the basic require­
ments for a user are to send a command to NEEMIS, 
receive a reply that may be in a number of forms (report, 
single answer, return code) depending on the command, 
and then either displaying the reply or performing further 
operations on it. 

These requirements are satisfied by using a single vir­
tual machine that contains the NEEMIS data base and 
command processor. Each user has his own virtual ma­
chine, and communicates with the NEEMIS machine 
through the use of virtual card punches and shared 
query / reply files. User requests to the NEEMIS machine 
are stacked in its virtual card reader and are selected one 
at a time for processing. The NEEMIS machine writes the 
results of each request in the user's reply file, and then 
processes the next user in the queue on a FIFO basis. 

Each user is thus provided with a reply file that can be 
processed by programs written in any language. Currently, 
programs for flexible report generation have been written 
in PL/ I, and an econometric modeling interface that 
operates in an APL environment will be implemented. 

Using this facility, each user can tailor h~s interface to 
NEEMIS to suit his own needs. For example, it is possible 
to interface TROLL, a popular econometric modeling 
package,16 to NEEMIS using programs to convert 
NEEMIS reply files to TROLL compatible input files. 

In summary, the use of multiple virtual machines 
facilitates increased user isolation and security,t7 multiple 
access to a shared data base without loss of integrity, and 
the capability of running many different user-dependent 
application interfaces simultaneously. 

CONCLUSION 

We have presented here a brief overview of some of the 
user facilities that have been made available in the 
NEEMIS System. These facilities have been designed 



686 National Computer Conference, 1975 

with maximum flexibility and for a wide range of users in 
terms of both computer sophistication and type of func­
tion they perform. 

ACKNOWLEDGMENTS 

We ac,knowledge the contributions of Professor Henry D. 
Jacoby of the Sloan School, M.LT., for his experience and 
guidance in the energy policy area. 

We would also like to thank Drs. Stuart Greenberg, 
Paul Comba, and Ray Fessel of the IBM Cambridge 
Scientific Center for their insight and thoughts, specifi­
cally, Paul Comba for his guidance in preserving the 
mathematical and relational model of data in our DDL 
and DML, Ray Fessel for his ingenious programming 
guidance, and Stu Greenberg for his help with the VM 
concepts of implementation. 

Since the writing of this paper, we acknowledge the 
contributions of members of the IBM Research Labora­
tory of San Jose who have greatly enhanced the opera­
tional aspect of NEEMIS, and we look forward to working 
with them in the future. 

Work reported herein was supported in part by the New 
England Regional Commission (NERCOM), Boston, 
Massachusetts. 

REFERENCES 

1. Donovan, J. J. and H. D. Jacoby, A Hierarchical Approach to In­
formation System Design, Report CISR-5, M.I.T. Sloan School 
Working Paper 762-75, January, 1975. 

2. Codd, E. F., "A Relational Model of Data for Large Shared Data 
Banks," CACM, Vol. 13, No.6, June, 1970, pp. 377-387. 

3. Codd, E. F., "A Data Base Sublanguage Founded on the Relational 
Calculus," Proceedings 1971 ACM/SIGFIDET Workshop. 

4. Post, E. L., "Formal Reductions of the General Combinatorial Deci­
sion Problem," American Journal of Mathematics, Vol. 65,1943, pp. 
197-215. 

5. Church, A., "The Calculi of Lambda-Conversion," Annals of 
Mathematics Studies, No.6, Princeton University Press, 1941. 

6. Smullyan, R., Theory of Formal Systems, Study 47, Princeton 
University Press, 1961. 

7. Donovan, J. and H. Ledgard, "A Formal System for the Specifica­
tion of the Syntax and Translation of Computer Language," AFIPS 
Conference Proceedings, Vol. 31, 1967, AFIPS Press, Montvale, N.J. 

8. Goldstein, I. and A. Strnad, The MACAIMS Data Management 
System, M.I.T. Project MAC TM-24, April, 1971. 

9. Chamberlin, D. D. and R. F. Boyce, "SEQUEL: A Structured 
English Query Language," Proceedings 1974 ACM/SIGFIDET 
Workshop. 

10. Bracchi, G. et aI., "A Language for a Relational Data Base Manage­
ment System," Proceedings, 5th Princeton Conference on Informa­
tion Science, 1972. 

11. Fehher, P. C., The Representation of Independent Language, IBM 
Technical Report RJ1121, November, 1972. 

12. Dijkstra, E., "T.H.E. Multiprogramming System," CACM, May 
1968. 

13. Madnick, S. E., Design Strategies for File Systems, M.I.T. Project 
MAC TR-78, October, 1970. 

14. Donovan, J. J., Systems Programming, McGraw-Hill, New York, 
1972. 

15. IBM Virtual Machine Facility/370, Introduction, No. GC20-1813, 
IBM, Burlington, Mass. 

16. Troll Reference Manual, National Bureau of Economic Research, 
1972. 

17. Donovan, J. J. and S. E. Madnick, Application and Analysis of the 
Virtual Machine Approach to Computer System Security and Relia­
bility, M.I.T. Sloan School Report CISR-2, May, 1974 (to be 
published inthe IBM SYSTEMS JOURNAL, May, 1975). 

18. Smith, G. N., Internal Intermediate Language, Version 2, M.I.T. 
Sloan School Report CISR-6, November, 1974. 



Cost-benefit evaluation of interactive 
transaction processing systems 

by GEORGE A. HOLT and HENRY C. STERN 
Technology Management Incorporated 
Washington, D.C. 

INTRODUCTION 

Interactive transaction processing systems are being 
designed and implemented to support an increasing 
number of applications in business and government. Only 
a small amount of attention has been paid in the literature 
toward providing a basis for the economic evaluation of 
interactive systems in general1

,2 and little of it is directly 
useful to a manager in a practical situation. This paper 
presents an approach to the economic evaluation of 
interactive transaction processing based on cost-benefit 
analysis which was developed by members of the staff of 
Technology Management Incorporated (TMI). This paper 
highlights the managerial considerations and specific 
analytical techniques employed in the course of evaluating 
a large-scale system currently under development by a 
major government agency. This system will automate na­
tionwide regional office claims processing operations and 
will employ a distributed network of processors and re­
mote terminals. 

The approach consists of two components: 

• A framework which is designed to structure the 
analysis into a set of elements capturing all signifi­
cant costs and benefits pertaining to the development, 
procurement, installation, and operation of a system 
over time. The elements include not only hardware 
and software items but also manpower and perform­
ance effect items. 

• A methodology which involves techniques for esti­
mating values for the cost-benefit elements and eval­
uating them by means of standard investment per­
formance tests. Each step accomplishes a specific 
portion of the overall analysis and by itself or in con­
junction with other steps provides supporting data for 
other financial and technical analyses. 

Although the approach was used to evaluate a highly 
complex system, it is equally applicable to systems of 
varying sizes and configurations, ranging from centralized 
to decentralized, and it will support aggregate or detailed 
levels of analysis. 

687 

MANAGEMENT CONTEXT 

The development and operation of an information 
system should, from the manager's viewpoint, be looked 
upon as an investment project and subjected to the same 
evaluation as any other type of investment decision. The 
manager should understand fully the extent of the out-of­
pocket and reallocated cost involved and also the nature 
and extent of potential dollar savings and other benefits. 
Too often, the decision to develop a new computer applica­
tion is made without an adequate economic appraisal, 
either of the system itself or of alternative designs or con­
figurations. The decision maker in this case may feel that 
the benefits to be gained cannot be properly evaluated in 
economic terms or that the task is too complex, time­
consuming, and ill-structured to undertake with available 
staff. In general, managers have traditionally not gotten 
sufficiently involved in ADP matters. On the other hand, 
government agencies and some commercial organizations 
routinely require that some level of cost~benefit evaluation 
be made before a major ADP effort can be initiated since 
most systems represent a sizable investment. 

Some specific considerations facing a manager 
interested in pursuing cost-benefit evaluation are: 

Organizational responsibility-to effectively accom­
plish a cost-benefit evaluation, several organizational 
components must be represented: 

• the ADP organization which has specific under­
standing of the system design and the relation­
ship of hardware, software, and communications 
factors; 

• the "user" or operating organization which 
understands the functional job to be accom­
plished, the workload, and workforce; and 

• the financial organization which has responsi­
bility for gathering financial and budgetary data 
across organizational boundaries with a purview 
of all prospective projects on which to spend 
resources. 

The ultimate responsibility for conducting the cost­
benefit evaluation should rest outside the ADP and 
the "user" organizations which may have vested 



688 National Computer Conference, 1975 

interests and be placed with the financial organiza­
tion or a separate evaluation group. 

• Skills required-in addition to knowledge of the 
system, the functional aspects of the organization, 
and financial evaluation techniques, it is desirable 
that the group assigned to the project have abilities in 
computer programming, hardware and telecommuni­
cation technology, work measurement, and simulation 
techniques, particularly if a detailed analysis is to be 
done. 

• Credibility of results-the ultimate credibility of the 
results of the evaluation will rest on the key technical 
and managerial assumptions underlying it. For 
example, the analysis should include consideration of 
technological risk and changes in future workload if 
they are expected to be significant factors. The 
manager must be prepared to question and test all 
assumptions from many viewpoints, not purely 
technical ones. 

• Updating of results-the results of the cost-benefit 
evaluation should be updated over time (every six 
months if possible and at least yearly) to reflect 
internal and external changes which will affect 
system cost and savings factors. 

ANALYTICAL CONSIDERATIONS 

The economic impact of a systems project is the result 
of a large number of individual costs incurred and benefits 
received for specific activities. Normally, the bulk of the 
investment is made before any appreciable benefits are 
received, and the time interval between the two can make 
a critical difference in the value of the system. Factors 
which act to determine this timing are: 

• length of the development phase, 
• rate of system implementation (e.g., if the system has 

several subsystems or regional locations) , and 
• rate of personnel attrition (e.g., if savings are to be 

achieved by means of reduced personnel require­
ments). 

The design of an interactive system must account for 
the locational distribution of the demand for processing 
services and the cost-benefit analysis must include the 
relative amounts of capital equipment, manpower, and 
other resources required to provide these services. These 
factors influence not only the cost of communication net­
works and terminals but also the distribution of comput­
ing resources. 

Benefits which accrue from a system are included in the 
analysis by means of a three step process: 

• identifying and defining the benefit, 
• measuring the net magnitude of the benefit, and 
• valuating (costing) the benefit. 

Most benefits are in the form of increased productivity or 
reduced manpower expenditures and are said to be tan-

gible since it is relatively easy to place a dollar value on 
them. Other benefits, such as improved service, better con­
trol, and greater flexibility which cannot be easily costed 
are commonly labeled "performance effects." They are 
often important in themselves and are usually evaluated 
by somewhat subjective means. 

It is also important to define the comparative basis 
upon which the cost-benefit evaluation is being conducted. 
In general, a system represents either a completely new 
application (including extensions to existing systems) or a 
replacement or upgrading of an existing system. In the 
former case, net benefits of the project are examined to de­
termine whether they are positive. In the latter case, net 
benefits must be compared to the existing system. One 
must also be aware of possible evolutionary changes in the 
existing system occurring before the new system is imple­
mented which may change the basis of comparison. 

As a final point, management should decide at the 
outset the level of detail it requires from the evaluation 
and the extent to which it is willing to commit resources to 
the task. In most cases, the focus in the early stages of a 
project is on aggregate questions, i.e., total investment, 
total cost savings, return on investment, and organiza­
tional impact. As the project progresses, system design be­
comes more detailed and so must management planning. 
Consideration must be made of hardware selection, site 
preparation, changes in personnel policy, etc. To answer 
this kind of question, the evaluation must become more 
detailed. 

THE ANALYTICAL FRAMEWORK 

The analytical framework developed for cost-benefit 
evaluation of interactive systems is designed to encompass 
all significant costs and benefits related to a system during 
its development and operational lifetime. Its primary use 
is in defining the boundaries within which investigation of 
various costs and benefits is undertaken. 

Costs are classified into three major categories: 

1. One-time development costs-include manpower 
costs associated with systems development, procure­
ment, installation, and training; travel costs; 
subcontracting costs; and site preparation costs. 

2. Hardware/software costs-include the purchase of 
computer hardware (CPU's, terminals, and pe­
ripherals) and proprietary software packages. 

3. Recurring operational costs-include the manpower 
costs associated with the operation and maintenance 
of the system; outside maintenance contract cost; 
utilities; and the annual cost of any system hardware 
which is leased, such as communication lines. 

One-time development costs and hardware costs are 
considered to be the investment cost of the system. 

Benefits are also classified into three major categories: 

1. One-time cost recovery-includes the salvage value of 
eliminated or replaced facilities and equipment. 



Cost-Benefit Evaluation of Interactive Transaction Processing Systems 689 

2. Recurring tangible savings-include savings (both 
positive and negative) in costs resulting from opera­
tion of the system due to modifications of processes 
and procedures as well as elimination of manual 
procedures through automation. 

3. Performance effects-include all recurring benefits 
which are not readily convertable into dollar 
amounts, such as improvements in quality of service, 
timeliness, control, responsiveness, and flexibility. 

The difference between recurring savings and recurring 
costs is the net annual savings (positive or negative) result­
ing from the system during its operational lifetime. 

Table I presents the structure of the analytical frame­
work and lists the major cost-benefit elements which fit 
into each category. 

THE EVALUATION METHODOLOGY 

Once the system cost-benefit elements have been out­
lined, the remainder of the evaluation effort lies in 
developing values for them and then applying an invest­
ment performance test to those values. There are two basic 
levels of analysis which can be undertaken in the evalua­
tion process: 

• "top-down" (aggregate), and 
• "bottom-up" (detailed). 

In the top-down approach, the strategy is to examine ag­
gregate cost elements of the existing system in order to 
identify similarities and differences between it and the 
proposed system. The present and proposed systems are 
considered to have the same demand pattern or workload 
which simplifies the task by eliminating the problem of 
determining the impact of workload changes on system 
size and operational costs. The major cost elements of the 
system are classified into five categories according to func­
tional impact: 

• functions partially or totally eliminated, 
• revised procedures within a function, 
• new functions, 
• functions with little or no change, and 
• overhead and management functions. 

In each case, an attempt is made to estimate the impact of 
the proposed system on the cost of the function. Costs 
which are substantially unchanged are carried over 
directly. Elements that differ are examined more closely 
to determine the magnitude of change. This approach 
stresses simplicity and opportunism in both data collec­
tion and analysis. The key objective is to develop lower 
bound savings and upper bound cost estimates in order to 
establish the economic feasibility of the project. 

The bottom-up approach, in contrast, stresses greater 
accuracy and completeness and is more appropriate for 
the later stages of cost-benefit evaluation. In this ap-

TABLE I -Analytical Framework 

COSTS BENEFITS 

-----------------------1------

One-Time Development 
System Development 

• software design 
and programming 

• customizing purchased 
software 

• software testing/ 
integration 

• software documentation 
• operating & user procedure 

design & documentation 
• outside contractors 
• purchased computer time 
• travel 

System Procurement 
• request for proposal 

(RFP) development 
• RFP evaluation and 

vendor selection 
• vendor negotiation and 

contracting 
System Installation 

• conversion 
• site construction & 

preparation 
• acceptance testing 

Training 
• operating personnel 
• user personnel 

Hardware/Software 
Hardware Purchase 

• CPUs 
• terminals 
• peripherals 

Software Purchase 
• data base packages 
• telecommunication 

packages 
Recurring Operational 

System Operation 
• operators and supervisory 

personnel 
• facility rental and 

utilities 
System Maintenance 

• vendor or in-house 
hardware maintenance 

• system program modi­
fication and maintenance 

Hardware Leasing/Rental 

• CPUs 
• terminals 
• peripherals 
• communication lines 

One-Time Cost Recovery 
Salvagable Equipmt. & 
Facilities 

• eliminated equipment 
and facilities 

• replaced equipment 
and facilities 

Recurring Tangible Savings 
Eliminated Functions 

• completely automated 
manual operations 

• reduced demand on 
manual operations 

• outside contracted services 
Revised Procedures 

• improved efficiency & 
productivity effects 

Performance Effects 
Quality of Service & Goodwill 
Throughput Timeliness 
Operational Control 
Demand Responsiveness 
Operational Flexibility 
Personnel Morale 

proach, the sequence of methodology steps which are 
followed are outlined below and explained in more detail 
in the next section. 

1. Size the workload-by type, long-run volume trends, 
geographical distribution, and seasonal factors. 



690 National Computer Conference, 1975 

2. Define the workflow-in terms of the processing to be 
utilized in conjunction with the system, i.e., the work 
steps performed at each stage of processing. 

3. Define and size system interactions-in terms of the 
volume of man-machine interactions required to sup­
port the work steps. Interaction volumes are 
measured in terms of commands, message trans­
missions, data base accesses, etc. 

4. Size the processor capacity-determine the size and 
number of processor units required with respect to ef­
fective computation rate, storage capacity, I/O chan­
nel capacity, operating system overhead, and 
response time. 

5. Size the network capacity-with respect to 
geographical distribution and the number of termi­
nals and communication lines. 

6. Determine the resulting manpower changes-in the 
various categories of personnel affected by imple­
mentation of the system, including System Operation 
and System Maintenance personnel. 

7. Valuate the resources required-for manpower and 
data processing including the costs of System 
Development, System Operation, Maintenance and 
Installation, System Procurement, Hardware and 
Software Purchase/ Leasing, and Training; Cost 
Recovery; and Tangible Savings. 

8. Analyze investment performance-based on the cost­
benefit data developed in the previous steps and 
measured in terms of payback period, return on in­
vestment, or discounted net benefits. 

The flow of the evaluation steps is illustrated in Figure 
1. 

DETAILED EVALUATION TECHNIQUES 

The purpose of this section is to examine the eight steps 
of the evaluation methodology in terms of the bottom-up 
approach and to briefly describe some of the specific tech­
niques which can be employed in performing them. In 
examining the collection of cost-benefit elements outlined 
in the framework, it is evident that certain ones are more 
difficult to valuate than others. Among them are hardware 
and network purchase and leasing costs and recurring tan­
gible savings. The majority of the techniques described in 
this section are oriented toward valuating these elements. 

Figure I-The evaluation methodology 

Sizing the workload 

Workload sizing is based primarily on analyzing his­
torical volumes for each work item which will be processed 
on the system. Several years of historical data can be 
examined to develop daily, weekly, or monthly seasonal 
indices and geographical distribution factors. Long-run 
trend projections of workload over the expected system 
lifetime can be made by using standard forecasting tech­
niques such as regression analysis, exponential smoothing, 
Box-J enkins, and spectral analysis, or structural models 
which account for various external factors. 

The main objective of this step is to determine both 
long-run growth patterns in the workload and the peak 
workload. This step provides a basis for assuring sufficient 
overall system capacity and for making trade-off decisions 
concerning the value of being able to handle peaks effi­
ciently. 

Defining the workflow 

The purpose of this task is to define how the workload 
will be processed in terms of the work steps involved. Each 
type of work item requires work to be done at one or more 
processing stations and the type of procedures involved 
may vary from item to item. More than likely, introduc­
tion of the system will cause changes to be made in many 
of the established procedures, replacing manual operations 
with man-machine interactions. What is required in this 
task is to: 

• define the flow of work through the work stations, 
• define the new procedures for each item and for each 

station, 
• identify who will perform the various procedures, and 
• estimate the average amount of time involved for 

each step. 

If the workflow is straightforward, it is sufficient to list 
the stations and their associated personnel types and 
processing times by work item. If the flow involves a 
number of stations with many possible inter-routings and 
personnel types, it may be desirable to construct a dy­
namic simulation model which represents the stations and 
flows. A model of this nature has several advantages: 

• it is easily changeable and usable, 
• it allows observation of behavior under varying 

workload volumes and personnel assignments, and 
• it can be designed to generate statistics which might 

otherwise be unavailable, such as queue lengths and 
work completion times. 

Several programming languages are suited for this type of 
application, such as GPSS and SIMSCRIPT II. 

In either case, this step provides a means of translating 
the workload projections into the volume of worksteps and 
the number of man hours involved in processing. This data 



Cost-Benefit Evaluation of Interactive Transaction Processing Systems 691 

provides the input for the manpower changes and system 
interaction steps. 

Defining and sizing system interactions 

Each work step identified in the preceding step will in­
volve a combination of manual subtasks and man-machine 
interactions. The purpose of this step is to examine the 
man-machine interactions in order to assess the work that 
the system itself must perform in order to support the 
work steps. The system work is characterized as a se­
quence of "system work elements." These elements are de­
fined at an intermediate level between those of instruc­
tions and applications modules. Each interaction sequence 
begins with either an operator-initiated command or a 
prompting message from the system. The composition of 
the set of work elements depends upon the particular 
system, but almost any set would contain the following 
major categories: 

• operator commands (terminal to processor), 
• screens or responses (processor to terminal), 
• messages (processor to processor), 
• file access and maintenance (processor to storage), 
• on-line printing (processor to peripheral), and 
• miscellaneous routines (non-trivial processing). 

The easiest way of constructing the interaction sequences 
is to use high or intermediate level flowcharts. In cases 
where there are optional commands, screens, etc., which 
can be used, estimates must be made of their frequency of 
occurrence. The output of this step is a set of all possible 
interaction sequences for each work step with a frequency 
of occurrence value for each element in the sequence. 

Sizing processor capacity 

The amount of processor capacity needed to handle a 
given amount of interactive work is a function of: 

• the volume of work elements of various types which 
must be performed within a specified time interval, 
and 

• the amount of capacity utilized in performing a given 
work element. 

The workflow and system interaction analysis provide the 
data for the first requirement. The amount of processor 
capacity required per work element is based on the 
number of machine instructions executed per element. For 
example, each of the elements outlined in the previous sec­
tion would require in the range of 1000 to 2000 instruc­
tions in a typical data base and telecommunication 
processing environment. The total number of instructions 
to be processed is found by summing across all work ele­
ments the products of the element frequency and its 
instruction set length. 

Several adjustments can be made to these results: 

• In order to insure fast response time, CPU utilization 
should be kept low (for example, in the range of 25 to 
30 percent). 

• If processing capacity is to be distributed among 
several sites, the larger relative workload fluctuation 
per site requires greater capacity per site than just 
the proportional fraction of total capacity. 

• Any provisions for failsoft and backup capability will 
require additional capacity. 

System storage requirements are of two 
types-processor (core) and data base (disk, extended 
core, etc.). Processor storage needs in many systems fall 
into three categories: 

• static-used by the operating system and user-shared 
re-entrant and serially reusable application programs, 

• user dynamically allocated-allocated on a per user 
basis to hold user session data, and 

• terminal dynamically allocated-allocated to hold 
intermediate data during transmission to and from a 
terminal. 

The need for static storage is dependent upon the 
particular hardware, operating system, data base package, 
and 'telecommunication monitor employed. About· one 
million bits are typically needed on average for each 
operating system or package in operation. The amount of 
user dynamically allocated storage depends upon the 
average number of users at a given time while the amount 
of terminal dynamically allocated storage is dependent 
upon the average number of commands and screens 
transmitted to and from the terminals at a given time. 
Data for these requirements can either be roughly esti­
mated or be obtained by· using a contention model similar 
to the one used in the network capacity analysis. 

The amount of data base storage required depends to a 
large extent upon the type of data involved. If the data 
base is stable in nature, such as for a master file, the size 
is relatively easy to estimate. If the data base is dynamic 
in nature, such as for a work-in-process file, the size is de­
pendent upon the volume of new records created per unit 
time, their average size, and their average length of reten­
tion. 

Other peripheral capacity requirements, such as for 
printers, can be estimated in a similar manner. More 
detailed hardware sizing can be accomplished by using the 
data developed in this step in conjunction with a hardware 
simulation system such as SCERT or CASE. 

Sizing network capacity 

The communication channel capacity required for a 
system depends on the volume and size of messages to be 
transmitted and on the amount of delay in transmission 
that is acceptable. The volume of messages is an output of 



692 National Computer Conference, 1975 

the system interaction analysis. Transmission delays 
result from the unavailability of a line if it is shared by 
several sources and by the capacity of the line itself. 

An aggregate level estimate can be made by estimating 
the traffic between each point in the network in terms of 
bits, characters, messages, or CRT screens transmitted per 
unit time and translating it into the number and size of 
the lines required between each point. Total network costs 
are found by calculating mileage and non-mileage 
(modems, line conditioning, connect charges) costs based 
on the number and size of the lines. 

A more refined technique is to construct a communica­
tion link contention model of the network which incorpo­
rates: 

• the mean message arrival rate at each sending point 
in the network, 

• the mean length per message, and 
• the desired wait probability and duration. 

By varying the performance constraint while holding the 
other conditions constant, the model provides a means for 
evaluating the capacity required to achieve alternative 
levels of performance. Details of the model cannot be 
explained here, but it is based upon a queuing theory ap­
proach.3,4 

Terminal requirements for a system depend upon the 
volume of inputs and screens transmitted and the average 
amount of operator time taken per input or screen. The 
volume depends upon the type of work items being 
processed and this information is an output of the system 
interaction analysis. Terminal usage time is composed of 
four basic types of operator actions: 

• reading time to interpret data displayed on a CRT 
screen or printed page, 

• retrieving data from source documents to be input to 
the system, 

• entering data on the keyboard, including decision 
time, and 

• session preparation, logon/logoff, and other miscella­
neous activities. 

System response delays also may be included. In any 
event, it is necessary to either estimate or conduct a 
detailed analysis in order to arrive at average session 
times per work step. A contention model, similar to the 
one used in the communication link analysis, can be used 
with this data to determine the number of terminals re­
quired, given the amount of terminal sharing and waiting 
time that is acceptable. 

Determining manpower changes 

Recurring tangible savings are in most instances the 
result of a change in the required manpower skill mix 
caused by introduction of the new system. (If the applica-

tion is new and the personnel are purely additional, then 
the benefits of the system lie in the realm of performance 
effects and earned revenues, if any, since manpower will 
be a cost item.) The workflow analysis and/ or model serve 
to project manpower under the new system. Overall man­
power changes, then, are simply the differences between 
projected manpower in the new system and projected 
manpower in the current system in each affected job cate­
gory. The only difficulty that might be encountered here is 
that current unit manpower requirements may not be 
known with any accuracy. In this case, it would be 
necessary to establish work rate standards for each task 
that is affected. 

In this analysis, several points are worth mentioning: 

• In practical situations, personnel levels cannot always 
be cut immediately. Instead, attrition due to retire­
ments, resignations, and transfers must act over a pe­
riod of time. Allowance for this factor should be in­
cluded in order to prevent overstating savings. 

• The system may not be implemented at all remote lo­
cations simultaneously. If the system is phased in 
gradually, savings should be similarly adjusted. 

• While introduction of the system may eliminate work 
that would otherwise continue to be done in the exist­
ing system, it may also result in additional work not 
presently required. Care must be taken to estimate 
both types of effects. 

Manpower needed for system operation and 
maintenance is dependent upon the size and number of 
processor sites. 

Valuating resources 

This step involves determining unit costs for hardware, 
software, and manpower and applying them to the various 
capacities determined in the previous steps. For the 
hardware, it must be decided what equipment will be 
purchased and what will be leased. Significant economies 
of scale exist for processors in terms of cost-effectiveness 
in instruction execution. This economy is sacrificed to 
some extent as processing power is distributed across 
several sites. The same effect holds for other hardware 
items.5 For manpower, the increase in real wages during 
future time periods may be included. Historically, real 
wages have increased at two to three percent annually. 

Costs for other items such as system installation, 
procurement, and maintenance are functions of the 
particular system configuration selected. Training and 
software purchase costs are also unique to the system and 
its design. 

Analyzing investment performance 

The final step in the process is to analyze the cost­
benefit data in terms of investment performance. Several 



Cost-Benefit Evaluation of Interactive Transaction Processing Systems 693 

TABLE II-Discounted Net Benefits Analysis 

($Ooos) 
Benefits 1975 1976 1977 1978 1979 1980 

Eliminated Functions 
Keypunching 0 0 311 2370 2370 2370 
Teletype Messages 0 0 118 869 869 869 
File Look-ups 0 0 680 4959 4959 4959 

Revised Functions 
Records Processing 0 0 1299 5491 5491 5491 
Accounting 0 0 87 607 607 607 

Gross Benefits 0 0 2490 13996 13996 13996 

Costs 

System Hardware 0 4350 0 0 0 0 
CRT Terminal Hardware 0 0 627 2508 2508 2508 
Communication Facilities 0 0 214 858 858 858 
Computer System Operations 0 0 232 464 464 464 
System Development & Installation 2420 2422 956 0 0 0 

Total Costs 2420 6772 2029 3830 3830 3830 

Net Benefits (2420) (6772) 461 10166 10166 10166 

Discount Factor @ 10% 1.000 0.909 0.826 0.750 0.681 0.619 
Discounted Net Benefits @1O% (2420) (61.56) 381 7625 6923 6293 
TOTAL DISCOUNTED NET 

BENEFITS @ 10% 12646 
BENEFIT-COST RATIO 1. 70 

(NOTE: This analysis is intended as a simplified example which is carried out for only a portion of a typical system lifetime and assumes 
constant workload and manpower costs.) 

techniques exist for this purpose, among them are: 

• discounted net benefits (net present value), 
• payback or breakeven analysis, and 
• return on investment. 

An example of a discounted net benefits analysis which 
represents the end product of an evaluation is illustrated 
in Table II. A sophisticated approach would include the 
aspect of risk or uncertainty in the estimated cost-benefit 
element values. This can be done by making optimistic 
and pessimistic evaluations or by assigning probability 
distributions to the values. The second investment 
measure, the payback period, is computed as the ratio of 
the investment cost to the net annual savings if the net an­
nual savings is relatively constant over time. Otherwise, its 
computation is slightly more complex. The return on in­
vestment appears in Table II as the Total Discounted Net 
Benefits figure calculated at ten percent in this example. 

If alternative system designs or configurations are being 
evaluated, a separate analysis should be done on each one 
and each ranked by its respective benefit-to-cost ratio. At 
this point, management has the necessary data to make a 
go/no-go decision or to select the appropriate option, tak­
ing into consideration the related performance efforts. 

EXTENSIONS TO RELATED SYSTEM 
DEVELOPMENT AREAS 

The data developed in the course of the cost-benefit 
evaluation is useful in other areas of the system develop­
ment effort. These include: 

• Manpower and operations planning-the manpower 
changes data can be used to forecast future personnel 
level requirements and to develop the personnel 
policies necessary to achieve them. The workflow 
model can also be used as a basis to optimize work 
procedures. 

• Budgeting-the cost and savings data when arranged 
on a fiscal year basis can directly support budget 
forecasting requirements. 

• Procurement-hardware and software performance 
data developed in the course of the analysis can be 
used to support Request for Proposal preparation and 
benchmarking requirements. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the contributions of 
Joseph P. Mazzetti, G. Allen Moulton, and C. Wade 
Tamb"or to the project work upon which this paper is based. 



694 National Computer Conference, 1975 

REFERENCES 

1. Sharpe, W. F., The Economics of Computers, Columbia University 
Press, New York, 1969. 

2. Streeter, D. N., "Cost-Benefit Evaluation of Scientific Computing 
Services," IBM Systems Journal, Vol. 11, No.3, pp. 219-233, 1972. 

3. Morse, P. M., Queues, Inventories and Maintenance, Wiley, New 
York,1958. 

4. Martin, J., Systems Analysis for Data Transmission, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1972. 

5. Streeter, D. N., "Centralization or Dispersion of Computing 
Facilities," IBM Systems Journal, Vol. 12, No.3, pp. 283-301,1973. 



A note on recoverability of modular systems* 

by PHILIP M. MERLIN and DAVID J. FARBER 
University of California 
Irvine, California 

INTRODUCTION 

In a paper by Gostelow-Van Weert, l it was shown that any 
processes can be described by Petri-nets (PN). Thus PN 
can be used as a model in the design (or analysis) of any 
computer system. This approach makes it possible to uti­
lize all the theoretic knowledge developed for PN and thus 
provides a powerful tool for computer systems (or 
program) design. In this case, the PN can be used as a 
framework that provides a tool for: 

1. the understanding of the design, 
2. handling the incremental changes of the design 

(without redesigning the entire system), 
3. the implementation of desired properties (like re­

coverability in case of failures, proper termination, 
mutual exclusion, etc.), and 

4. at least, the analysis of the program in order to check 
if it has the desired properties. 

In Reference 2, it was shown that the UCLA Graph 
Model of Computation and the Petri-nets are equivalent. 
This means that the same approach can be applied using 
PN, the UCLA Graph Model, or any other equivalent 
model of computation. Note that these models are able to 
represent a concurrent environment (multiprocessing, 
multi programing, computer networks, etc.). 

In the past, the use of these models as a practical tool 
was limited. The principal reason of this limitation is that 
any program (or system) of reasonable size has a cor­
responding very large model, usually of unacceptable size, 
even for processing by computer. 

In order to simplify the handling of these models of pro­
grams, many researchers tried to find a way of dividing 
the models into modules. We note that the models of struc­
tured (modular) programs are easily divisible into 
natural modules, the subroutines. Then, any structured, 
hierarchical, top-bottom, modular design can be relatively 
easily modeled by Petri-nets, et al. At each level, the 
description of the desired system behavior is given. This 
description is then modeled by a ,Petri-net and analyzed 
using the theory developed for Petri-nets. 

We note that distributed computation naturally leans 
toward structured (modular) programming and indeed 

* This work was supported in part by the National Science Foundation 
under grant GJ-I045-"The Distributed Computer Project". 

695 

makes it difficult to do otherwise. We feel that the applica­
tion of the above modeling methodology will enable one to 
gain strong insight into this and other areas. 

In the following sections, we will focus our discussion on 
the problem of recoverability. Our approach is based on 
the method for analyzing and designing recoverable Petri­
nets presented in References 3, 4 and 5. The same method 
is improved in Reference 6, and an example of its use is 
given in Reference 7. By "recoverability" we mean that 
after the occurrence of a failure the control of the process 
is not lost, and after several steps it will return to "normal 
execution". Note the difference between this concept and 
the concept of "correctness of results". In this paper we do 
not deal with the problem of correctness. We are 
concerned with control recoverability-structural recover­
ability. Our approach is motivated by the philosophy that 
we can accept the situation in which a user gets some erro­
neous results, but we do not accept the possibility that a 
single error (or failure) may cause the entire breakdown 
of big systems. 

In the next section a short background is presented. A 
later section presents an example, the top level design of a 
simple operating system. 

RECOVERABILITY OF A PETRI-NET 

Petri nets8 model "conditions," represented by nodes 
and "events" represented by transition bars. The holding 
of a condition is represented by placing a token on that 
node. Directed arcs connect nodes to bars and bars to 
nodes. A transition bar (event) can fire (occur) if all the 
nodes (conditions) input to that transition bar have tokens 
(hold). When a transition bar fires, it removes one token 
from each input node and places one token on each output 
node. If we permit repetitions of the directed arcs, the 
number of tokens placed (or removed) in each node is 
equal to the number of repetitions of the arc connecting 
the transition bar and the node. 

Figure 1 shows a PN example. Assuming as initial con­
dition a token in node 1, bar 1 can fire. When bar 1 fires it 
removes the token of 1 and places a token on 2 and two to­
kens on 3. In this new state (2, 3, 3) only bar 2 can fire. If 
bar 2 fires it removes a token from 3 and places a token on 
4. In this position bar 2 or bar 4 can fire, and so on. 

The state of the Petri-net is defined by the collection of 
names of the nodes holding tokens. The number of 



696 National Computer Conference, 1975 

Figure l-APetri-net 

instances of a node in a state is equal to the number of to­
kens the node holds in this state. All the possible states in 
which a PN can stay and the possible transitions between 
them define a state machine called Token Machine (TM). 
The TM for the net of Figure 1 is shown in Figure 2, 
assuming as initial state a token in 1. 

Suppose that a condition in the PN may fail. In this 
case, a token held by this condition may disappear. It is 
possible to represent this characteristic by adding a new 
branch to the TM. This branch will represent the possible 
flow of the execution when the "problematic" token disap­
pears. For illustration, suppose that when the PN of 
Figure 1 is in state (2, 4, 5) a token of 5 disappears, then 
the PN will go to state (2, 4). In state (2, 4) bars 3 and 4 
can fire. A fine state machine including the TM of figure 2 
and all the additional paths for the case that 5 can lose a 
token is given in Figure 3. Thick lines represent the TM 
and thin lines describe the paths added since a failure. 
This new machine will be called Error Token Machine 
(ETM). 

The states (and transitions) of the TM are called "legal 

Figure 2-The TM for the PN of Figure 1 

states" ("legal transitions") and the other states (transi­
tions) are called "illegal states" ("illegal transitions"). 

At this point we can state the conditions for recovery: 

"A process P is recoverable from failure F if and only if 
in the ETM of P for failure F, all the directed paths 
through illegal states arrive to legal states." 

It means, after a failure, the execution sequence must 
return to normal execution after a finite number of steps. 

In this work, we limit our study to processes that have 
finite TM. From the properties of directed graphs, for the 
case of finite TM we can derive an equivalent set of condi­
tions for recoverability: 

"a process P is recoverable from failure F if and only if 
in the ETM of P for failure F: 
1. the number of illegal states is finite, 
2. there are no final illegal states, and 
3. there are no directed loops including only illegal 

states." 

In this paper, these conditions are named Conditions of 
Recoverability (COR). Figure 3 shows that the PN of 
Figure 1 is not recoverable from failures in 5. Conditions 
COR are not satisfied because of the final illegal state (2, 
6) and because of the loop between the states (2, 4) and (2, 
5). 

In the previous discussion we deal only with the case 
that a token may disappear. But in the same way, because 
of a failure, a condition in the PN may generate a token. 
This situation may also be represented by adding new 
branches to the correspondent nodes in the TM. The ap­
proach is similar to the previous case. 

In References 4 and 6, it was shown a method of design­
ing recoverable PNs for failure of kind "loss of token". 
The design is executed in two steps. First, a TM that can 
be implemented by a recoverable PN is designed. In the 

Figure 3-The ETM for the PN of Figure 1 



second step, a recoverable PN corresponding to the given 
TM is generated. In order to accomplish this method,4,6 
develop a way. of designing PNs that affect a given TM, 
and also gives the necessary and sufficient conditions that 
a TM has to satisfy in order to be implementable by a 
recoverable PN. Since the TM of Figure 2 contradicts 
these conditions, this TM cannot be implemented by a 
recoverable PN. 

In References 5 and 6, it was shown that in case where 
no assumptions have been made about the execution times 
of the different parts of the PN, the recoverable processes 
under a failure of type "loss of token" are very limited in 
their possible structures. These limitations are usually un­
acceptable in practical processes. Because of these limita­
tions, some knowledge about the execution times was in­
troduced in the PNs, and a new model, the TPN, was de­
fined. In this new model, practical processes can be imple­
mented as recoverable, but in this recoverable TPNs it is 
necessary to state some constraints on the execution times 
of its parts. 

The reader interested in a more detailed and formal dis­
cussion on the TPN and recoverability of the TPN is 
referred to the sources.5

,6 Here we limit ourself only to the 
discussion "how to design a recoverable TPN that imple­
ments the TM of Figure 2". 

A TPN is defined by a PN where for each transition bar 
b i a pair of real numbers (t*i; t**i) are given. In a TPN a 
bar b i can fire only after its input conditions hold for a pe­
riod of time larger than t*i. On the other hand, if the input 
conditions of bar bi hold for a period of time t**i, then bi 

must fire. Note that in some sense, t*i and t**i give a 
measure of minimal and maximal execution times of the 
events (the executions). Note that when no constraints are 
stated for these times (for all i t*i=O and t**i=infinite) 
the TPN is equal to a PN. 

In order to transform the PN of Figure 1 into a TPN 
that satisfies the conditions COR and has the TM of 
Figure 2 two changes have to be introduced. First, the 
illegal loop of states (2, 4) and (2,5) have to be eliminated. 
Second, (2,6) has to be converted into a no final state. 

The loop of states (2, 4) and (2, 5) is broken if bar 4 is 
split into four different bars, as shown in Figure 4. Note 

Figure 4-A PN for the TM of Figure 2 

A Note on Recoverability of Modular Systems 697 

Figure 5-ETM for the PN of Figure 4 

that the TM of the PN of Figure 4 is the same TM of 
Figure 2, but its ETM (see Figure 5) differs from the ETM 
of Figure 3. References 4 and 6 present an analysis on the 
ways of breaking illegal loops. 

In order to transform state (2, 6) into a non- final state 
it has to be a bar, say 7, that fires in state (2, 6) bringing 
the system to one of its legal states. For example, bar 7 
can be defined as: 

input conditions of 7 = 2, 6 
output conditions of 7 = 1 

This new TPN is shown in Figure 6. But, if the TPN of 
Figure 6 is supposed to have the same TM of Figure 2, 
then bar 7 has to be prevented from firing in any state out 
of (2, 6). In other words, t*7 has to be bigger than the 
maximal time that the conditions 2, 6 can be enabled in 
the TPN. If this time is denoted as T**26, then t*7 has to 
satisfy: 

t*7>T**26 

In this case, bar 7 can fire o~ly after it is sure that the 
TPN is in state (2, 6). 

Figure 6-A recoverable TPN for the TM of Figure 2 



698 National Computer Conference, 1975 

It is possible to show that T**26 satisfies: 

T* * 26 ~ max (t* * 2 + min (t* * 3; t* * 44
) 

+t**6; t**5+min(t**3; t**44 )+t**6) 

Thus, if: 

t*7 > max(t* * 2+ min(t* * 3; t* * 44) + t**6; 
t**5+min(t**3+t**44

) +t**6) (1) 

then: 

t*7>T**26 

is satisfied. 
A general study on the problem of eliminating final 

illegal states is presented in References 4, 5, and 6. 
The TPN of Figure 6 with the constraint (1) has the TM 

of Figure 2 and it is recoverable after the occurrence of a 
failure of kind "loss of token" in condition 5. 

The next section demonstrates a practical example of 
the use of the methodology presented. 

EXAMPLE-THE DESIGN OF A SIMPLIFIED O.S. 

In order to present an example big enough to show our 
methodology, but small enough to fit into the physical 
limitation on papers for this conference, we decided to 
present a simplified version of an operating system (OS) 
design. We admit that our example is much simpler than 
any "real" OS, but it shows the way of designing we advo­
cate. The designer of any "real" system can go the same 
path in the design of a recoverable system. 

We advocate modular top-down design. The system de­
fined at each level is modeled by a Petri-net. In this paper, 
we only present the top level design of the OS. We assume 
that the same approach is applied to the other levels. 

Suppose that our simplified operating system is 
described as following:. 

1. The system loads two jobs, executes them, and only 
when both are finished it can load two other jobs. 

2. The system can be in one of two main states: WAIT 
or BUSY. 

3. In WAIT two jobs can be loaded, and then the 
system goes to the state BUSY. (Note that in this 
configuration, the operating system can also execute 
one job at a time by loading a job and a "null" job.) 

4. In the state BUSY, the jobs are executed and when 
both are finished, the system goes to the state WAIT. 

5. After the jobs are loaded, each one is executed in the 
following steps: 
(1) the operating system starts the job (by setting 

initial values, allocating resources, etc.), 
(2) the operating system checks if the job is finished. 

If the job is not finished, the OS executes moni­
tor subroutines as necessary (tests, resource allo-

cation and deallocation, etc.,) and goes to the 
actual execution of the user program (5.3). 

(3) The user program is executed until a "call moni­
tor" is found. Then step 5.2 (above) is executed. 

These execution steps can be time sliced for the two 
jobs. 

6. When the two jobs are completed, the OS goes to the 
state WAIT. 

We note that the previous OS description corresponds to 
the PN of Figure 1 (or the TM of Figure 2) when the 
following interpretations are given to the conditions and 
bars: 

condition 1 = WAIT 
condition 2 = BUSY 
condition 3=JOBS READY 
condition 4=OS MONITORING 
condition 5=JOBS IN EXECUTION 
condition 6=JOB COMPLETED 
bar 1=JOB LOADER 
bar 2=INITIALIZE JOB 
bar 3=TERMINATION CHECK 
bar 4=MONITOR SUBROUTINE 
bar 5 = USER PROGRAMS 
bar 6=CHECK FOR TERMINATION OF TWO 

JOBS 

Each bar denotes a subroutine (or a part of a subroutine), 
the distribution of tokens among the conditions denotes 
the state of the system, and the arcs represent the control 
structure. 

Suppose that the user program executes input (or 
output) and then wait for interrupt. An example of a tem­
porary failure would be that the input device never sends 
an interrupt request, or that the interrupt request was 
sent, but because of a failure it was not actually executed. 
In all these kinds of failures (and others) the user program 
will remain waiting forever. Thus, bar 5 (Figure 1) will be 
using the "resources" provided by condition 5, but it will 
never fire. This situation can be represented as a "loss of 
token" in condition 5. 

The recoverability after "loss of token" in condition 5 
was presented in the previous section. As explained there, 
the process represented in Figure 1 cannot be recoverable 
if there is not introduced some limitations on the execu­
tion times of the associated events. The recoverable TPN 
was given in Figure 6. Bar 4 was split into four different 
bars that can fire only if a failure has not occurred. In 
other words, before the OS allocates a token to condition 5, 
it checks the system status in order to find out if any 
token was lost. In case of failure, bar 4 cannot fire and 
thus bar 3 will fire. After a time long enough (see 
inequality (1)) the "recovery routine" (bar 7) is activated 
returning the system to normal initial state. Note that in 
this case of failure, one or two jobs can be destroyed, but 
the system recovers and jobs can be executed again. 

Note that the system is recoverable only if inequality 
(1) is satisfied. Thus, the maximal execution time between 



successive "monitor calls" from the user programs (t**5) 
must be finite. The other times appearing in (1) are 
usually known and are finite. 

SUMMARY 

We have demonstrated a methodology for designing and 
checking a system for certain recoverability properties. In 
order to do this, it was necessary to accept constraints on 
the execution time of its parts. 

We believe that the method presented can be used as a 
practical tool. In order to apply the method efficiently, the 
designer is urged to refer himself to the references of this 
paper for a wider mathematical background of the ap­
proach used. 

REFERENCES 

1. Gostelow, K. P. and T. J. Van Weert, "Processes and Networks," 
Stichting Academisch Rekencentrum Amsterdam, Postbus 7161, 
Amsterdam, the Netherlands, January 1974. (Author's present ad-

A Note on Recoverability of Modular Systems 699 

dress: Department of Information and Computer Science, University 
of California, Irvine California 92664). 

2. Gostelow, K. P., Flow of Control, Resource Allocation, and the 
Proper Termination of Programs, Ph.D. Dissertation, ENG-7179, 
Computer Science Department, University of California, Los 
Angeles, December 1971 (UCLA-10Pl4-106). 

3. Merlin, Ph. M., Recoverability of Processes, Technical Report #44, 
Department of Information and Computer Science, University of 
California, Irvine, California 92664, February 1974. 

4. Merlin, Ph. M., A Study on Recoverability of Processes, Technical 
Report #47, Department of Information and Computer Science, 
University of California, Irvine, California 92664, April 1974. 

5. Merlin, Ph. M., The Time-Petri-Net and the Recoverability of 
Processes, Technical Report #48, Department of Information and 
Computer Science, University of California, Irvine, California 92664, 
May 1974. 

6. Merlin, Ph. M., A Study on the Recoverability of Computing 
Systems, Ph.D. Dissertation, University of California, Irvine, in 
preparation for publication. 

7. Merlin, Ph. M. and D. J. Farber, A Note on Recoverability of 
Modular Systems, Department of Information and Computer 
Science, University of California, Irvine, California 92664, June 
1974. 

8. Holt A. W., H. Saint, R. M. Shapiro and S. Warshall, Final Report 
for the Information System Theory Project, Rome Air Development 
Center (Applied Data Research Inc.) Contract #AF30(602)-4211, 450 
Seventh Ave., New York, New York 10001,1968. 





An integrated approach to network protocols 

by LOUIS POUZIN 
Institut de Recherche d'Informatique et d'Automatique 
Rocquencourt, France 

INTRODUCTION 

Host-t~host protocols (H-H) for heterogeneous computer 
networks are still in infancy. So far very few implementa­
tions are in existence. Among those on which documenta­
tion is available are Arpanet1 and Cyclades.2 The former 
provides only for basic services allowing the transfer of up 
to 1000 octet messages, with flow control but not error con­
trol. The latter allows up to 32 000 octet messages, with er­
ror and flow control. Both are similar in the sense that 
they offer only a message transfer service, which is 
intended for building higher level protocols more appr~ 
priate for specific uses. Since data to be transferred are 
usually structured in various ways, a traditional approach 
is to superimpose additional layers of specific protocols, 
each one dealing with a particular level of structure. While 
being functionally correct, this approach leads to 
heterogeneity, redundancy and overhead among the 
various layers. 

Part of the difficulty can be attributed to the 
heterogeneity of operating systems, for which there is no 
well accepted common model. Another reason is the misti­
ness of the host concept, which is usually assumed to be of 
a certain kind by protocol designers. There is no doubt 
that a big enough computer can support a protocol of 
several thousands of instructions. But what if a host is 
simply a terminal? It should be kept in mind that com­
munication between an application program and a ter­
minal must wind its way: through an H-H protocol 
somewhere along the path. If this protocol logic is rather 
involved, it will be economically necessary to share it 
between a number of terminals. Hence the need for 
concentrators, which may be considered as mini-hosts, 
(Figure 1). But is this the only desirable solution? 

TERMINAL ACCESS 

Most existing networks are actually star networks of ter­
minals. In the coming years they will tend to adopt packet 
switching, and at the same time introduce more efficient 
and homogeneous end-t~end protocols (E-E) no longer 
tied up with the intricacies of the communication gear .. 
Application programs and terminals will become inde­
pendent of communication systems. 

By integrating several overlapping star networks there 

701 

will be a need for computer-t~computer communications. 
But the most frequently required type of communications 
will be terminal access. This trend is consistently pointed 
out by various forecasts, such as Eurodata. Consequently, 
the development of networks will be strongly influenced 
by the overall cost of accessing terminals, including all 
communications gear interposed between computers and 
terminals. 

Minimizing the cost of terminal access includes reduc­
ing line mileage and bandwidth, as well as intermediate in­
telligence necessary to relay communications. The 
minimum logic required by a terminal is a transmission 
procedure, if the traffic is to be sufficiently reliable. Line 
mileage and bandwidth are reduced with multi-point local 
networks using packet mode traffic. Loop3 or tree net­
works4 make terminals accessible through a ramification 
of inexpensive links relayed by packet concentrators and 
base-band modems. This should be more economical and 
flexible than traditional multiplexing or concentration, 
(Figure 2). 

At this point, one may wonder what is a host. Any ter­
minal could be a host, but this is not very economical in 
terms of address space, since the address field would have 
to be tailored for a much larger population than is usually 
anticipated for hosts. Another approach would be to 
interpose a mini-computer as a front-end to the communi­
cation network for the sake of playing host to the terminal 
cluster, (Figure 3). This bogus host could indeed perform 
its part of an H-H protocol, but this is not basically dif­
ferent from the traditional concentrator approach. Since 
its presence does not appear a necessity from a communi­
cation standpoint, why not do away with it altogether? 

DISTRIBUTED HOST 

Communications between hosts are not an objective per 
se. What is actually aimed at are communications between 
entities, which represent a meaningful set of self-contained 
correspondents, e.g. processes, files, devices, jobs, sub­
systems, etc .... Since many of these entities are usually 
housed and activated simultaneously on a single host com­
puter, it is customary to refer to an H-H protocol while 
what is meant is actually the set of communication rules 
between corresponding entities in different hosts. 

For generality, communication rules tend to be inde-



702 National Computer Conference, 1975 

Terminals 
,,- -------- Host-Host protocol --- - --~ 
, I 

: ! 
Comm. net 

Figure 1-Terminal concentrator 

pendent of the nature of the corresponding entities, at 
least for a class of basic services. Therefore, entities are 
not specified in the definition of protocols. Instead, there 
appear anchoring points called ports, to which they are 
bound at communication time. 

Although they abide by the same protocol, communica­
tions between pairs of ports are logically independent from 
one another. However, they must share some resources, 
like an 1-0 device, a telecommunications package, a com­
munication network. Therefore, protocols must include 
the information necessary to multiplex shared resources in 
an orderly manner, so as to preserve logical independence. 
On the other hand, there is no point in making it a require­
ment that ports belong, somehow to certain host com­
puters. Whether they happen to share the same computer 
or not is immaterial as far as communication protocols are 
concerned. A host address is no more than an information 
required for the multiplexing of some resources. It does 
not have to be a particular computer. 

For example, in the network structure of Figure 2, the 
concept of host reduces to a set of transmission lines and 
packet concentrators, which are a shared resource bearing 
a host name. 

Such a construction may be termed a distributed host. 
One may notice that in this example the technology of 
packet concentrators is not at stake. They may be 
programmed mini-computers or hard-wired delay 
registers. The same concept of distributed host would 
hold. 

It should be clear by now that an H-H protocol on a dis­
tributed host cannot be implemented on a particular com­
puter. Furthermore it may well be that nowhere can be 
found enough computing power to implement a protocol of 

Figure 2-Packet concentrators 

a few thousands instructions. As a result, only simple and 
compact protocols are acceptable. 

PORT-PORT PROTOCOL 

Since a host may not represent a geographically well de­
fined destination, there should be literally no H-H pro­
tocol. When two ports communicate, there should not be 
any logical interference from other ports, hosts, or com­
munications network. In other words, all the machinery 
interposed between ports should be transparent. E.g., pro­
tocols used at inner levels should remain invisible. Port­
Port protocols are just end-to-end (E-E) protocols. 

In order to facilitate communications in a heterogeneous 
environment of hosts and terminals, it would be desirable 
to adopt existing or proposed standards. The trouble is 
that no E-E protocol suitable for networks has yet been ad­
vanced in standardization bodies such as ISO or ECMA. 
HDLC5 is only valid for wire-like transmission media. 

One can vaticinate that HDLC with double numbering 
scheme will be a de facto standard at some point in the 
near future, since it is already introduced by IBM in its 
new products lines. Although HDLC is actually designed 
only for the control of a physical data link, it may well 
serve as a starting point for the design of a network E-E 
protocol. This approach may result from sheer inertia, or 
mimicry, or IBM pressure on the market. Another reason 
is that HDLC contains some basic features reasonably 
close to what might be required for an E-E protocol. 
Anyhow it seems worth attempting to define an E-E pro­
tocol applicable to communications between ports by bor­
rowing from HDLC. At least that may sound as a sensible 
enough move on the standardization scene. 

PROTOCOL TRANSPARENCY 

Protocols between ports are only sub-functions invoked 
by higher level logic for the purpose of transferring in­
formation from one domain to another. This transfer ac­
tion is supposed to remain transparent in terms of in­
formation contents. In other words, no alteration should 
occur. Actually, no physical communication medium can 
be assumed error-free. Thus mechanisms for error detec­
tion and recovery are usually associated with E-E pro­
tocols in order to lower the error rate down to a required 
level. However there remains always some residual 
probability of error, which may be considered as ac-
ceptable, or negligible, for the purpose at hand. . 

Indeed higher level constructions may contain addI­
tional mechanisms which are able to cope with E-E pro-

------- H-H protocol ----~ 

Comm. net 

Bogus Host 

Figure 3-Bogus host 

Terminal cluster 



tocol errors, and make them disappear for all practical 
purposes. In other words, E-E protocols are designed to be 
normally transparent, except for residual errors, which 
may even be detected, but not necessarily recovered. What 
are the nature and the rate of acceptable errors is a matter 
of economics in distributing properly control functions 
across levels of protocols. 

HIGH LEVEL PROTOCOLS 

Transferring information is only a tool toward the 
achievement of some practical goals, e.g., interaction 
between process and terminal, or file transfer. These are 
typical examples of high level functions which are so com­
monly used in networks that they are worth packaging in 
some standard form. They also have come to be called pro­
tocols in the network literature,6 such as virtual terminal 
protocol, or file transfer protocol. 

A high level protocol such as file transfer may involve 
more than two hosts. It is no longer a simple E-E protocol. 
Actually a high level protocol is a set of rules defining the 
working of a distributed machine, which is designed for 
handling a particular application. One may notice that 
this definition applies to E-E protocols as well. 

In order to perform its task a distributed machine must 
accept commands, input or output data, and transfer in­
formation between its components. These exchanges may 
carry data, or commands and state variables necessary for 
the synchronization of the whole machine. 

While data can be altered intentionally, as part of the 
machine task, (e.g. data conversion or reformatting), com­
munication mechanisms between the distributed 
components should be ideally transparent. Thus E-E pro­
tocols may be used as building blocks to carry out any in­
formation transfer required by a high level protocol. This 
makes for strong incentives to define general and efficient 
E-E protocols. Otherwise the piling up of layers of pro­
tocols would ultimately result in excessive overhead. 

PROTOCOL NESTING 

A unit of information, say a message, exchanged 
between a terminal and a process may be restricted in 
length by mutual agreement. But this is not necessarily 
short enough to comply with the characteristics of a com­
munication network, which may use smaller units for 
various reasons of cost-effectiveness. Therefore messages 
to be transmitted must be fragmented, and the fragments 
must be reassembled at the destination. 

job {files (pages (records (packets ) records ) pages ) files } job 

cr----l11f---<;.----111~ II ~··---<r--lll f---+--ill ~III----? 

; L----~::::::::::::~:~-::~:~~-:·::j---------j ! 
I level 0 , 
~ ........ -.. - .......... -.•....... - ....... - ............ ·····-·············-·······r··-··························of 

Figure 4-Protocol nesting 

An Integrated Approach to Network Protocols 703 

records 

packets, etc ... 

j ob o------4:J".-~ 

Figure 5-Protocol tree 

Similarly, transferring a file cannot usually be accom­
plished by just sending one message. The file must be frag­
mented in blocks, pages, records, which are sent indi­
vidually, and put back together onto the destination file 
store. 

Sending a job to a distant computer may involve the 
transfer of a set of files. More generally transferring a unit 
of structured data requires breaking it into a set of pieces, 
which are again broken down repeatedly until one reaches 
a level of fragmentation suitable for physical transfer, 
(Figure 4). This scheme is general, and does not make any 
assumption about the physical or the logical structure of 
data. 

At each level of nesting there appear similar functions: 

• break logical unit into fragments 
• transfer fragments separately 
• put fragments back into logical unit 

This is again repeated, as each fragment becomes a 
logical unit and is broken down in sub-fragments, 
etc .... up until no more fragmentation is necessary. A way 
of representing this process is traversing a tree structure, 
(Figure 5). 

A first idea that comes immediately to the mind is that 
transferrin~ information could well be a recursive applica­
tion of the same protocol. 

Let us call S (N,F) the function called upon at the Nth 
level of fragmentation for sending the fragment F. The 
function S (N,F) may be expressed as follows: 

sender: procedure S (N,F) 
begin if fragmentation required then 

begin make fragments f (1) ... (p); 
for i: = 1 step 1 until p do S (N + l,f(i» 

end 
else send F 

end 

The corresponding function R (N,F) at the other end 



704 National Computer Conference, 1975 

might be expressed as follows: 

receiver: procedure R (N,F) 
begin if fragmentation then 

while fragment missing until time-out do 
begin R (N + 1,f) ; 

if f good then place fin F 
else drop f 

end 
else receive F; 
if F bad or time-out then report F bad 

end 

These algorithms are obviously a first approximation. 
They contain a limited set of functions necessary to carry 
out communications. It may now be appropriate to 
examine what differences or additional requirements 
might appear in practice. 

Error recovery 

The previous algorithms detect errors and report them 
to the next higher level of control. Ultimately the highest 
level gets the report and starts all over again. But this may 
not be satisfactory in terms of efficiency. Transit delays 
and possibly transmission overhead are reduced when er­
ror recovery is performed at lower levels, on small frag­
ments. 

E.g., one might introduce addition~l functions whereby 
the receiver sends back an acknowledgment for each good 
or duplicate fragment received. At the other end, a repeti­
tion process sends again any fragment not acknowledged 
within a certain delay. As can be predicted, this error 
control scheme induces overhead of its own in trans­
mission (ACK information) and in processing. 

Furthermore, handling error recovery at a particular 
level does not make it error free for all higher levels, be­
cause it cannot be guaranteed to be always successful. 
Consequently, the highest level must always be prepared 
to get an error report. Recovery at lower levels can only 
reduce the error rate down to an acceptable figure. 

There is no simple criterion to help determine at which 
level error recovery would be the most effective. First, er­
ror control overhead in transmission, processing, or buffer­
ing depends on the many variants in acknowle<:igment 
schemes. Second, error and traffic patterns, user 
constraints, system characteristics, are also major factors 
bearing on error control effectiveness. 

Therefore, one may say that error recovery should ap­
pear at some levels of protocols, depending on the environ­
ment. A convenient way is to make it an option, both in 
time, and at a particular level. 

Flow control 

Resources necessary for transferring information must 
be made available, on the spot, or by prior reservation. 
Allocation schemes may be desirable to prevent traffic un-

stability and interferences between independent cor­
respondents. 

Again flow control adds up its own overhead, and it is 
likely not desirable to place it at all times at all levels. 
This is also a feature which one would like to turn on and 
off at a particular level, depending on the environment. 

Fragment identification 

A noticeable difference in handling fragments at the 
receiver end derives from the sequence of arrivals. When 
the sending order is normally maintained by the com­
munication medium, any fragment can be identified by its 
order of arrival. Since errors may occur, fragments carry a 
sequence number, and any fragment arriving out of se­
quence is an indication of error. At this point recovery 
may take over, at some level of protocol. 

On the other hand, when fragments may normally ar­
rive out of sequence, they should not be rejected, except if 
this occurrence is practically negligible. Thus some buffer­
ing is needed to park temporarily early fragments waiting 
for logical predecessors. In the algorithms given pre­
viously, there is no assumption about the arrival sequence, 
as long as all fragments belong to the same next higher 
level unit. Otherwise, two alternatives may be considered: 

(a) fragments of the next unit are rejected. They may be 
kept from being sent by synchronizing the next higher 
level of protocol at unit level. 
(b) fragments belonging to a future unit are just stored 
until the corresponding instance of the protocol is acti­
vated. 

It is clear that fragments must be labeled so that such 
an identification can take place. 

Other differences 

The semantics of the algorithms differ depending on the 
physical and logical structure of fragments. E.g., 
reassembling pieces of a file on disk is not the same as for 
a message in core memory. Reporting a failure may take 
different forms. Time-out's are adjustable parameters. 
System protection and access methods may introduce 
quite a number of differences in the practical handling of 
fragments. 

For all sorts of reasons mentioned previously, it may not 
be practical to use identical routines or algorithms to im­
plement the various levels of protocols. However, simi­
larities are substantial enough to warrant some effort 
toward a general scheme applicable at all levels. 

Control information 

In order to handle each fragment properly, some addi­
tional information is necessary for fragment identification 
and to allow each end of the protocol to work in synchroni-



zation. This is usually packed into a header preceding the 
text or the descriptor of the fragment proper. 

When nesting protocols a classical method is that each 
level wraps every fragment in its own envelop. If further 
fragmentation is to occur, the complete fragment (header 
and text) is broken into smaller pieces, each of which 
receives a new header sticked by the nested protocol. This 
works of course, but each level of header increases the 
amount of transmission overhead. If each level of frag­
mentation produces statistically a large number of smaller 
fragments, then headers at intermediate levels contribute 
a relatively small part of the total overhead. But nesting 
does not always produce many fragments, since it may be 
required only to pass through a particular layer of the 

. system hierarchy. Then each level of wrapping duplicates 
to a large extent control information in every nested 
header. 

In compensation for overhead there is the advantage of 
allowing the design of each level independently. For lower 
levels, fragments are just unrelated pieces of information. 
This approach is indeed desirable when it is essential to 
avoid unnecessary coupling between layers of systems, 
e.g., when some layers are shared by unrelated users. 

On the other hand when system-wide consistency is de­
sirable for efficiency, and in the domain of realistic objec­
tives, one may attempt to define a common set of control 
information intended to be used by every layer of pro­
tocols. This may reduce effort in design, help standardize 
vlell defined protocols, and ease out error recovery, since 
every fragment may be directly related to a logical higher 
level unit of information. 

NESTED PROTOCOL CONTROL 

When implementing a full-fledged protocol at some level 
of communications, it is possibk to identify two classes of 
control information exchanged between sender and 
receiver. One class is associated with the direct handling of 
the text part of messages, in order to make sure it is cor­
rect, and to locate it in relationship with other text parts. 
Another class pertains to the specific mechanisms 
intended for the synchronization of the two ends of the 
protocol. 

In a nested environment, the first class may be called 
global variables, since the text is independent of the pro­
tocol level. The second class constitutes local variables 
which are part of the execution context of the protocol. 
They should not normally appear at other levels, except 
for those variables used as run time arguments when con­
trol passes up and down across levels of nesting. 

Actually, one may often identify a third class, such as 
"piggy-back" information. But this is in essence inde­
pendent of the protocol. Only messages are used as ready 
to go containers for hitch-hiking information that belongs 
to another protocol, i.e., the sender-receiver pair dealing 
with traffic in the reverse direction. 

In the following we shall examine what control informa­
tion could make up a common header at all levels of nest-

An Integrated Approach to Network Protocols 705 

ing. The objective is that each level of protocol should only 
modify certain fields of a fragment header, rather than ad­
ding its own. When fragmentation occurs, each sub-frag­
ment receives a similar header, with only changes in 
certain fields. There are also suggestions for field sizes. 

P-Ievel (4 bits) 

This is a number indicating the nested level of the pro­
tocol in charge of processing this message. (Higher num­
bers are lower levels of protocols; they may be considered 
as negative if one wants to keep consistency in termi­
nology.) 

U-NR (7 bits) 

This is the identification number of the logical unit be­
ing fragmented or reassembled at this level of protocol. It 
is also a fragment number passed as argument between 
this level and the next higher. Its use is to segregate frag­
ments of other units arriving out of order. 

F-NR (7 bits) 

This is the fragment identification number of the text 
part carried within this message. It becomes a U-NR 
passed to the next level down when further fragmentation 
is required. It may be used circularly when the number of 
fragments exceed the maximum value allowed by the field 
size. But this assumes that chances are nil that a message 
gets out of sequence by such a gap. If this cannot be as­
certained, the number of fragments is limited to the 
maximum value for F-NR. 

F-TOT (8 bits) 

This is the total number of fragments created or ex­
pected at this level of protocol. It is intended for resource 
reservation. 

E-Ievel (4 bits) 

This is the level of the protocol handling the unit of 
which this message is the last fragment. In the protocol 
tree, it is a pointer back to a higher level in a traversing 
process. 

ALT (1 bit) 

This is an alternation signal used for various purposes 
such as checkpoints, or conversational interactions. It cor­
responds to the P IF bit of HDLC procedures.5 It pertains 
to E-LEVEL, if any, otherwise to P-LEVEL, in the pro­
tocol hierarchy. 



706 National Computer Conference, 1975 

Table I-Fragmentation Scheme 

P-LEVEL U-NR F-NR F-TOT E-LEVEL 

1 a b c d e 

2 a+l c 1 f 

3 a+l c 2 f 

4 a+l c 3 f 

5 .. . .. . ... . .. 

6 a+l c b d e 

7 a b c d e 

COM (4 bits) 

This is a command field allowing for a variety of in­
terpretations of message formats. 

ACK-ALL (16 bits) 

This is piggy-back information intended to carry ac­
knowledgment and allocation of messages for the reverse 
traffic. No assumption is made in this paper about the 
particular scheme used. The ACK-ALL field may be op­
tional. It can contain a level number so that it be 
forwarded to the proper level of protocol, independently of 
the P-LEVEL of this message. 

Coding and packing these fields toward an efficient 
format is left for further study. 

, Principles of operation 

A simple example is likely the best way to explain out 
how transfer mechanisms work out. 

Let us assume that a particular level of protocol has to 
fragment and transfer a unit of information with the 
parameters indicated in (Table I), row 1. The number of 
fragments generated will be f. Thus, it produces a series of 
messages with headers indicated in rows 2-6. The last frag­
ment identified by the presence of E-LEVEL carries the 
parameters intended for the protocol at level e, which is to 
reconstitute a complete unit. Thus the receiver part of the 
protocol at level a is able to piece together all the 
parameters of its message, check it for validity, and make 
up a unit for its next higher level. If there is no E-LEVEL 

indicator in row 1, then the last message in row 6 will 
carry the value a for E-LEVEL. 

There is no need for separate initialization, except at the 
highest level. Error and flow control may be exercised in­
dependently at any level on an optional basis. I t is 
possible from the highest level to turn these options on and 
off, through appropriate commands directed to the proper 
level. A negotiation protocol may be introduced, so that 
the implementation of options be also optional. Due to 
these facilities, the ultimate user is in a position to select 
an efficient set of characteristics throughout all levels. 

INTER-NETWORKING 

The inter-connection of separate networks raises a 
number of problems which have been addressed in pre­
vious papers.7 ,s One particular issue revolves around the 
maximum message size accepted by each network. A first 
approach is to assume a minimum size which every net­
work would be able to carry. Thus inter-network traffic 
would use a maximum message size commonly agreed as a 
standard. This is typically what has been defined as the 
"datagram" service within the CCITT. A comprehensive 
inter-connection scheme based on this approach can be 
found in Reference 8. 

Another approach assumes that some networks will of­
fer larger message sizes than others, and that inter-net­
work traffic should take advantage of larger sizes as much 
as possible. To that effect networks would be intercon­
nected via gateways which would fragment messages 
further whenever they happen to be too large for the net­
work downstream. A controversial implication of that 
scheme is that a network accepting only small messages 
would induce additional overhead in all successively 
traversed networks including the final receiver host. Also 
the fragmentation scheme in gateways would have to 
match tightly the E-E protocol between hosts. 

It does not appear possible to do away with these 
drawbacks, which are intrinsic to any fragmentation 
scheme located within communication networks. To the 
extent that the implications of inter-network fragmenta­
tion are acceptable, then the protocol presented in this 
paper applies perfectly to the situation. 

Indeed, no particular assumption has been made about 
the mechanisms transferring messages across protocol 
level boundaries. As a possibility, successive levels of 
sender protocols may be located in the gateways of several 
interconnected networks. Whenever necessary a message 
passing through a gateway will be broken down into 
several fragments. At the final destination, all matching 
levels of receiver protocols coalesce into a single procedure 
putting back. together all arriving fragments through a re­
cursive application of the protocol at the level indicated in 
each message header. 

If at all useful, error recovery and' flow control can be 
exercised between the final destination and any of the 
sender levels, including the traversed gateways. This may 



improve efficiency by reducing repetitions, and smoothing 
out traffic. 

Furthermore, if it turns out that for a certain destina­
tion all messages created at a certain level of fragmenta­
tion must actually travel through a single gateway, it may 
well reassemble pieces into higher level-units, rather than 
let them travel individually. This would reduce overhead 
downstream. Such a case is typical of networks requiring 
an initial virtual call set up. Then all fragments are 
constrained to leave the network through the same 
gateway. This is indeed a rare case where the clumsiness 
of virtual calls is put to an advantage. 

STANDARDIZATION 

There is not yet a final consensus for an HDLC stan­
dard within ISO. However proposals tend to stabilize 
around an independent double numbering scheme, with 
provision for address and control field extensions. As such 
HDLC would not meet the requiremerits brought up in 
this paper. Nevertheless the principles introduced by 
HDLC are reasonably close, viz: 

• independent double numbering 
• time delay between sending and acknowledgment 
• data transparency 

J?ield extensions and additional modes of operation 
could turn HDLC into an acceptable multi-level transfer 
protocol such as described here. Furthermore, a simple 
point-to-point physical data link is just a degenerated net­
work, and could be under control of a network protocol. 

An Integrated Approach to Network Protocols 707 

Thus at some point in the future, a general network pro­
tocol, with negotiable options, might be suitable for most 
kinds of information transfer, regardless of data structure, 
message size, and communic'ation medium. 

The recursive approach, combined with implementation 
options, should lead to simple and compact micro­
programmed protocols integrated within intelligent termi­
nals. On the other hand, if levels of protocols . are dis­
tributed within a system hierarchy, each level may be im­
plemented with a particular optimization in mind, while 
the complete structure remains consistent and easily 
understood. 

REFERENCES 

1. Crocker, S., A. McKenzie, J. Postel, Host-Host Protocol for the Arpa 
Network. NIC 8246, January 1972, 37 p. 

2. Zimmermann, H. and M. Elie, Transport Protocol: Standard Host­
Host Protocol for Heterogeneous Computer Networks, IFIP WG6.1, 
Doc. 61, April 1974, 31 p. 

3. Farber, D. J., K. C. Larson, The System Architecture of the Dis­
tributed Computer System, The communications system Symposium 
on computer-communications networks and teletraffic, April 1972, 
pp. 21-27, Polytechnic Institute of Brooklyn. 

4. Denjean, F., Connexion de Terminaux a un Reseau de Commutation 
de Paquets, Internat. meeting on mini-computers and data communi­
cations, Liege, January 1975, 8 p. 

5. ISOjTC 97 jSC6-High Level Data Link Control Procedures, Doc. 
1005, October 1974,54 p. 

6. Crocker, S. D., J. F. Heafner, R. H. Metcalfe, J. B. Postel, "Function 
Oriented Protocols for the Arpa Computer Network," SJCC, June 
1972, pp. 271-279. 

7. Cerf, V. G. and R. E. Kahn, "A Protocol for Packet Network Inter­
communication," IEEE Transae. Comm., May 74, pp. 637-648. 

8. Pouzin L., "A Proposal for Interconnecting Packet Switching Net­
works," Eurocomp, BruneI Univ., May 1974, pp. 1023-1036. 





Interaction monitors in a distributed system 

by RAJIV MALHOTRA 
Burroughs Corporation 
Detroit, Michigan 

INTRODUCTION 

By utilizing the parallelism and redundancy inherent in a 
network, a set of interacting processes could be made more 
effective. But this should not require the user to know the 
network details: the network should be transparent 
enough to allow him to treat it as a single entity rather 
than as a collection of computers. The concept of 
relocatable programs within a machine could be 
generalized to allow processes to be relocatable anywhere 
within the network. Then, several mappings could exist 
from a given set of processes to the set of computers in the 
network, with the final results being independent of the 
mapping used. 

As a step toward such generality, one needs adequate 
constructs to conceptualize and represent the interactions 
among processes independently of their geographical loca­
tions. It is, therefore, desirable to have some "atoms" of 
interaction that are equally vaid for processes in separate 
computers and for processes in the same computer. The 
implementation philosophy for constructs which perform 
this interaction should be such as to allow easy additions 
of further constructs. 

There are two aspects of a set of asynchronous processes 
in a network: the dynamic creation and deletion of 
processes and the interaction among these processes once 
they have started. In this paper, we deal only with the 
second of these aspects. 

Existing IPC (interprocess communication) schemes 
merely allow messages to be transferred between 
processes. 1,4,6, 16 Although this facility is necessary, it is not 
always a convenient programming tool. Accordingly, some 
higher-level (or function-oriented) protocols have been in­
troduced to provide specific types of interfaces, and 
thereby isolate the user from the mechanics of communi­
cation.5 

In parallel with this approach, we suggest that each type 
of interaction among a set of processes should be con­
trolled and coordinated by a special process called a moni­
tor. Some synchronization monitors are discussed as exam­
ples in the appendix. Other kinds of monitors may be in­
troduced in a similar fashion. The notion of synchroniza­
tion is introduced below. 

Synchronization is any timing constraint placed on 
interactions among concurrent processes. In a typical 
situation, one has a set of interacting processes whose 

709 

speed ratios are not predictable; yet constraints exist on 
the relative sequencing of certain operations performed by 
them. At one extreme, such a set of processes could have 
almost unrestricted concurrency. At the other extreme, the 
processes could require synchronization to run "in step" 
most of the time. In many applications, there are "units of 
action" (often called transactions) that are allowed to 
interleave arbitrarily but operations within such units 
have to be synchronized.2

,8,9 This creates a degree of 
serialism in a set of concurrent processes. 

In the following sections, references will be made to 
some specific synchronization constructs found in the ap­
pendix. Their syntax is similar to that suggested in the 
literature for conventional operation systems although 
their effects span across machine boundaries. An open 
problem in the design of interaction constructs is to allow 
compilers to check for most time-dependent errors. 

The remainder of this paper contains a general descrip­
tion of monitors and their implementation in a distributed 
system. 

MONITORS 

A set of processes that wish to interact may do so by re­
ferring to shared objects. A shared object is an entity that 
may be known to more than one process. Each process us­
ing a given shared object must declare it with the attribute 
"SHARED". 

Just as in the case of ordinary objects local to a given 
program, shared objects are of various types. The type of a 
shared object determines a valid set of operations on that 
subject. Examples of types of shared objects are: file, 
semaphore, event and conditional region. (Some of these 
shared objects are discussed in the appendix.) One shared 
object could be appropriate for a particular kind of 
interaction but not for another. 

A shared object may be either a constant or a variable. 
For instance, if s is a constant of type semaphore and x is 
a variable of type semaphore, PROCURE (s) will have the 
same effect as: 

x:=s ; PROCURE (x); 

To manage a shared object, there is a special kind of 
process called a monitor. Each time a shared object is 



710 National Computer Conference, 1975 

MONITOR 

e 

o o 
Figure I-Processes A and B referencing a shared object e 

referenced, the local system software sends a message to 
the monitor of the shared object. All such messages (called 
requests) to a given monitor are queued. When the moni­
tor services a request in its queue, it sends responses back 
to one or more nodes. This transfer of messages is totally 
invisible to the interacting processes. 

In our theoretical model, there is a one-to-one cor­
respondence between shared objects and monitors, and 
hence, these terms shall be used interchangeably. In 
practice, the work of many monitors could be accom­
plished in a single process. 

Figure 1 shows processes A and B referencing a shared 
object e. The monitor for e is located at one of the nodes 
in the network. The management of e is invisible to A and 
B. If e were an event, then each time a process executed 
an operation to WAIT for e, that process would get sus­
pended and a message would be sent to the monitor of e 
(by the system software). Monitor e would maintain a list 
of all such processes waiting for e, and when any process 
executed a CAUSE operation on e, monitor e would send 
messages to certain nodes asking the system software that 
all the process waiting for e be restarted. 

There is a distinction between real and virtual times. 
Real time is made available by a hardware clock. Virtual 
time is relative to a given process and corresponds to state 
changes of that process. Thus, if a particular process 
remains suspended for a while, then its virtual time does 
not elapse although the real time continues progressing. 
Each operation on a shared object is instantaneous in the 
virtual time of the process but will necessarily have a 
delay in real time. For instance, a PROCURE operation 

could involve a long period of real time but the state of the 
process remains unchanged. 

Even though any single operation is instantaneous in 
virtual time, the overall interaction between a process and 
its environment could be such that while the interaction 
is in progress the process is doing some other work. Such 
constructs allow a process to interleave several interac­
tions in virtual time. For instance, if a process wishes to 
procure a semaphore, it could periodically do a 
TRYTOPROCURE operation and on failure spend its 
time doing something else. On the other hand, if a process 
has no other work to do and is waiting for a certain condi­
tion, it is more efficient for it to get suspended for the in­
terim period. (This is known as the "non-busy" form of 
interaction.) The choice of how to interact would be based 
upon the extent to which a process depends on the interac­
tion. A "tightly coupled" set of processes would prefer this 
non-busy form of interaction. 

In the next section matters related to an implementa­
tion of monitors are discussed. 

SOFTWARE STRUCTURE 

To implement operations on a shared object without ex­
plicit message transfers, one needs some intermediate 
system software, called the interaction system, in each 
computer. Specifically, if a process executes an operation 
on a shared object, the local computer's interaction system 
receives control. The process itself may be suspended. The 
interaction system searches its tables to find the cor­
responding monitor for this shared object, and sends a 
message to it requesting appropriate action or status in­
formation. Since the interaction system must be able to si-

·EJ 

INTERACTION 

SYSTEM 

1/ \ o 0··· 0 
Figure 2-Interaction system of one computer interfacing between all its 

local processes and all the network's monitors 



multaneously handle many operations, it makes entries in 
its tables to save the state of each operation in progress. 
When a reply from a monitor arrives, the interaction 
system interrogates its tables to determine the processes 
that are affected by this reply. For instance, if a message 
arrives from a monitor indicating that a particular event 
has been caused then all local processes that are waiting 
on that event will be started. Figure 2 shows the interac­
tion system of a computer interfacing to the local 
processes on one side and the relevant monitors of the net­
work on the other. 

The next matter to be discussed is how the interaction 
system communicates with the various monitors located in 
different parts of the network. We assume that the dis­
tributed network already has an IPC scheme. At least 
three such schemes are known.4,6,!6,1 Basically, an IPC ca­
pability allows any two processes in the network to es­
tablish communication under mutual agreement and 

logical 
channel 

INTERACTION 

SYSTEM 

, I 

I I 
, I 
I I 
I I 
• I 

I I 
I , 
, f 
• I 

• I I I 
• I 

--' I 

IPC 

SYSTEM 

/ 
MONITOR 

e 

Figure 3-An interaction system and a monitor communicating via the 
network IPC 

Interaction Monitors in a Distributed System 711 

transfer messages. The various interaction systems and 
monitors in the network would use this IPC. Figure 3 
shows two processes using this facility. From a logical 
viewpoint, a communication path or channel is established 
for the message flow. Depending upon the IPC scheme be­
ing used, the processes may have to know each other's 
names, port numbers, socket numbers, etc.! This requires 
that the interaction system should know which monitors 
are required by its local processes and what the addressing 
details of these monitors are. Some IPC schemes would re­
quire that a "connection" be established between an 
interaction system and the monitors. Since the interaction 
system would have a limited number of logical channels at 
its disposal, it would allocate these channels as a resource 
to the individual operations currently active, based on de­
mand and priority. 

NAME SPACES 

It should be possible for any set of processes in the net­
work to interact by referring to the same shared object. On 
the other hand, two totally independent processes belong­
ing to different users should not interfere with each other 
just because each of them declared a shared object with 
the same name. The basic requirement is that processes 
should interact if and only if they wish to do so. In this 
section, the general problem of managing the monitors in a 
network is discussed. 

Note, if an object is declared as being local to a program 
(although it is shared by the various dependent processes 
compiled as parts of the same program), then this declara­
tion is invisible outside of this program. The problem of 
name clashes arises only in the case of objects declared as 
being shared globally, and hence potentially accessible to 
separately compiled programs running anywhere in the 
network. It shall be assumed that the shared objects dis­
cussed below are global ones. 

A new monitor is created when a user declares a shared 
object with the attribute "NEW". This may be done in a 
job control language or as a system command. One may 
name any node of the network as the location of this moni­
tor, or else a default location will be provided. It is im­
portant to note that the interacting processes are unaware 
of a monitor's location; however, its location may be im­
portant for efficiency considerations. Any user may main­
tain his own supply of monitors by creating and deleting 
them dynamically. 

A naming scheme is described below that allows each 
monitor in the network to be identified uniquely. The 
name by which a monitor is known throughout the net­
work is called its external name. A process may refer to it 
using an internal name (relative to that process) which 
may be equated to the external name at run time. This is 
analogous to equating file names at run time. 

Every user in the network has a unique identification 
and all processes and monitors created by him are tagged 
with this identification. For a given user, there is a distinct 



712 National Computer Conference, 1975 

set of directories, one per type of shared object. A shared 
object occurs in exactly one directory. Effectively, the set 
of all user directories for a given type of shared object 
constitute a network-wide name space for shared objects of 
that type. When a process refers to a shared object, it need 
not specify its type since this can be found by the compiler 
from the context. 

Entries in a directory contain information'such as the 
physical locations of monitors and the access rights to 
them. When a new process is created, the local interaction 
system searches the network name spaces to find the loca­
tions of all the monitors required by it. Another approach 
is to perform the search for a monitor the first time it is 
referenced. The important point is that a search is not 
necessary each time a given shared object is referenced. 

The owner of a shared object may restrict access to it 
based on a password. He could also limit the operations 
that another user may perform on it. In the case of an 
event, for example, he may allow other users to wait on it 
but not cause it or delete it. This enables the following to 
be accomplished: 

(1) Any user may set up his own "logical network" of 
processes that interact using shared objects belong­
ing to him. He may dynamically alter this set of 
shared objects. 

(2) Two separate users will not accidentally interfere 
due to name clashes between their shared objects, 
since each user has his own distinct directories. 

(3) Under mutual agreement, processes of different 
users may interact to form larger logical networks. 
Monitors belonging to one user may be accessed by 
others subject to constraints imposed by the owner. 

To make it convenient to use a shared object's external 
name, one may implement "short hand" naming conven­
tions. Since the name space of a given type of object is a 
set of user directories, it forms a tree and any element in it 
may be referenced by its pathname. A user could be 
allowed to establish a reference point in the name tree and 
assume all pathnames to be relative to it. The reference 
point may be altered dynamically. Basically, this enables 
one to set up a "working directory". A working directory 
could also be specified as a set of sub-trees of the name 
tree and may include shared objects of other users. An ap­
propriate default working directory is the user's own direc­
tory. To make the working directory concept more power­
ful, an installation may maintain a user profile that 
defines this user's default working directory. A user would 
be able to change his profile. This subject is further ex­
plored in Reference 14. 

CONCLUSION 

A fundamental premise of this paper is that a network 
programmer would benefit from the availability of 
programming constructs that allow him to be unconcerned 
with the "lower-level" communication in the network. 

This paper discusses an approach for accomplishing this 
and uses conventional synchronization constructs as exam­
ples.2,3,7,8,13 With the use of such constructs, the network 
appears to be a single, large, multiprocessor system. 

A major goal to be accomplished is to develop network 
operating systems that make resource-sharing more effec­
tive.6 ,14,15 Programming constructs which are effective net­
work-wide would be helpful not only to users but also in 
the implementation of a network operating system. 

Several problems remain that need to be addressed in 
future work: 

(1) Better interaction constructs must be invented that 
make it easier to prove program correctness.9 

(2) If some of the interacting processes should fail, 
those remaining might be adversely affected. Re­
search is needed to prevent individual failures from 
propagating throughout the network. Perhaps, the 
various interaction systems should perform periodic 
"handshakes" with each other to detect node 
failures, and should continually interrogate the 
status of processes in their own respective nodes to 
detect process failures. Upon failure detection, a 
recovery would have to be coordinated. 

(3) Any resource-allocation system is confronted with 
the problem of deadlocks. Conventional algorithms 
for detecting and handling deadlocksll need to be 
adapted for distributed systems. Perhaps, a special 
monitor for the entire network could interrogate all 
other monitors to detect deadlocks. Either it could 
run periodically or other monitors could trigger it 
when suspecting a problem. 

Within the environment proposed in this paper, a 
system designer would have to keep the density of interac­
tion among processes low so that the message traffic in the 
network does not become unbearable. 

It would be desirable to make the interaction constructs 
extensible. This would allow a user to write his own moni­
tor and define appropriate operations for it. 

ACKNOWLEDGMENTS 

The author wishes to acknowledge the assistance of Mr. 
Joe Tuharsky for editing the manuscript and Ms. Sharon 
Bischoff for typing it. 

REFERENCES 

1. Akkoyunlu, E., A. Bernstein and R. Schantz, "Interprocess Com­
munication Facilities for Network Operation Systems," COM­
PUTER, June 1974. 

2. Brinch Hansen, P., Operating System Principles, Prentice-Hall, 
1973. 

3. Burroughs Corporation, "B6700 System Miscellanea," Form No. 
5000367, April 1974. 

4. Carr, S. C., S. D. Crocker and V. G. Cerf, "HOST-HOST Communi­
cation Protocol in the ARPA Network," SJCC, 1970. 

5. Crocker, S. D., J. F. Heafner, R. M. Metcalfe and J. B. Postel, 



"Function-Oriented Protocols for the ARPA Computer Network," 
SJCC, 1972. 

6. Farber, D. J. and K. C. Larson, "The System Architecture of the 
Distributed Computer System-The Communication System," Sym­
posium on Computer Networks, The Polytechnic Institute of 
Brooklyn, 1972. 

7. Fisher, D. A., Control Structures for Programming Languages, Ph.D. 
Dissertation, Carnegie-Mellon University, 1970. 

8. Haberman, A. N., "Synchronization of Communicating Processes," 
CACM, March 1972. 

9. Hoare, C.A.R., "Towards a Theory of Parallel Programming," 
Operating Systems Techniques, Academic Press, 1972. 

10. Malhotra, R, Process Synchronization in a Computer Network, pri­
vately circulated. 

11. Murphy, J. K, "Resource Allocation with Interlock Detection in a 
Multi-Task System," FJCC, 1968. 

12. Somia, Monique, "Synchronization Problems in a Computer Net­
work," International Computing Symposium, 1973. 

13. Spier, M. J., "Process Communication Prerequisites or the IPC­
Setup Revisited," 1973 Sagamore Computer Conference on Parallel 
Processing. 

14. Thomas, R H., "A Resource Sharing Executive for the ARPANET," 
NCC,1973. 

15. Thomas, R H., and D. A. Henderson, "McROSS-A Multi-Com­
puter Programming System," SJCC, 1972. 

16. Walden, D. C., "A System for Interprocess Communication in a 
Resource Sharing Computer Network," CACM, April 1972. 

APPENDIX 

To illustrate the notion of a shared object, some exam­
ples are discussed in this appendix. These are by no 
means exhaustive. The reader is referred to References 2, 
3,8,9, 13 for further study. 

Semaphores 

A semaphore may be used to represent a resource that 
has to be reserved before it can be used. If s is a sema­
phore, PROCEDURE(s) suspends the process until s is 
available and then the process is restarted and "owns" s. 
The PROCURE construct causes the local interaction 
system to send a request to the appropriate monitor. When 
a process wishes to relinquish control over s, it executes a 
RELEASE(s). The choice of which process wakes up in 
case several are wanting to procure s is undefined and it is 
assumed that this does not matter. 

The integer function PROCURE (s, t, U, v, ... ) has the 
"side-effect" of procuring exactly one of the semaphores in 
the argument list. The value returned denotes the relative 
position of the semaphore that was procured. A suitable 
use of this would be in a case statement as follows: 

CASE PROCURE (s, t, U, v); 

END CASE; 

In order to specify a time limit on the procurement 
operation, the integer function PROCURE «time limit>, 
s, t, U, v, ... ) may be used. If a timeout occurs, the value· 
returned is one. The integer function TRYTOPROCURE 
(s, t, U, V, ... ) returns a zero if none of the specified 

Interaction Monitors in a Distributed System 713 

semaphores is immediately available; it is similar to the 
PROCURE construct with the time limit set to zero. 

In a general situation, a certain maximum number of 
processes may be allowed to own a particular semaphore 
at any time. This maximum number is called the capacity 
of the given semaphore and may be defined by its owner. 
At any time, SUPPLY(s) returns the number of copies of 
s that are still available; QUEUESIZE(s) returns the 
number of processes contending for s. These functions 
could help a programmer in scheduling his "bids" for 
semaphores. 

Events 

An event is a type of synchronization object suitable to 
transmit timing signals to another process or to indicate 
that a certain condition has been satisfied. At any given 
time, an event e is either in the set or reset state. When a 
process does a W AIT( e) and e is already reset, it gets sus­
pended until e gets set. A message is automatically sent to 
monitor e who is responsible for informing all waiting 
processes when it's time to wake up. A process may wait 
on several events, including timeout, using the function 
WAIT «time limit>, e, f, ... ) which returns an integer 
value indicating which of the events occurred. The time 
limit is optional. 

Event e is set (occurs) when a process does a 
CAUSE(e). Once set, it remains set until a R~SET(e) is 
executed by one or the processes, and as long as it remains 
set no process will have to wait on it. The operation 
CAUSEANDRESET(e) will wake up all processes cur­
rently waiting on e and then immediately reset e. 

An interrupt I is a procedure that is ATTACHed to an 
event and will be triggered whenever that event is caused. 
When the procedure I is finished, control will be returned 
to the point where the process was interrupted. Several 
programs may attach one of their procedures to the same 
event and all of these will be triggered when the event oc­
curs. Since these are "soft" interrupts, there is an un­
predictable lag (in both real and virtual times) before the 
interrupt is actually felt. The monitor of an event keeps 
track of which interrupts are attached to it. A process may 
dynamically ATTACH or DETACH an interrupt from an 
event. 

Conditional regions 

Although semaphores and events allow a varie~y of 
interactions to be programmed, researchers are interested 
in developing constructs that enforce a better program 
structure. In sequential programming, a lot of work has 
been done to expose the trade-offs between "tight", 
unstructured programs and structured programs with 
provable properties. Similarly, in concurrent program­
ming, very highly asynchronous processes tend to be 
unstructured and often have non-deterministic behavior. 
Interaction constructs have been proposed that would dis-



714 National Computer Conference, 1975 

cipline the nature of asynchronous processing and help to 
structure systems with more provable properties. 

One of the shared objects proposed for this is called a 
region. If r is a region then consider the following code: 

WITH r DO C END 

Out of all processes that try to execute such a block, only 
one is allowed to "own" r and enter C at a given time. 
This way of implementing mutual exclusion allows for bet­
ter compile-time checking than is possible with the use of 
s~maphores. (A semaphore could be procured without be­
ing released, a condition that cannot be checked by a com­
piler.) 

A generalization of this is known as a conditional region. 

In this case, one may specify a condition involving r that 
must be satisfied in order to own r. For instance, 

WITH r WHEN P(r) DO C END 

In the above example, C will be executed only if P(r) is 
true and if no other process owns region r. Here, r may be 
of type Boolean, integer, character, etc., as declared. The 
compiler checks that r is not referenced without being 
owned. 

A more flexible approach might be to associate a condi­
tional region with an event and disallow a process to own 
that region until the corresponding event has occurred. 

Although conditional regions are of theoretical interest, 
they have not been implemented and, hence, there is not 
enough experience available on their usefulness. 



Medical and health care computing 

Area Director: 
Vaughn Alexander 
Texas Medical Foundation 
Austin, Texas 

The '75 NCC will provide an all-day forum during which physicians and com­
puter specialists will examine mutual problems and concerns. Emphasis will be 
on medical and health care users' needs. Problems, applications, and the future 
of medical computing will be assessed by physicians active in medical comput­
ing plus authorities from the information processing field. 

The day will begin with a discussion of past and present problems in medical 
information systems, followed by a presentation of medical applications 
systems. The first afternoon session will address the emerging area of modular 
medical applications on small computers. The final session will be a discussion 
of the future of medical computing, including the direction of graduate educa­
tion in the field. 

715 





Information processing needs and practices of 
clinical investigators-Survey results 

by NORMAN A. PAL LEY and GABRIEL F. GRONER 
The Rand Corporation 
Santa Monica, California 

INTRODUCTION 

Although medical researchers were among the first to 
pursue the promise of computerization, clinical investiga­
tors, namely physicians who conduct research into the 
biology of human subjects and who evaluate the efficacy 
of new therapeutic measures, have not shared even 
modestly in the benefits so far available. With the expecta­
tion that improved information processing techniques and 
facilities can improve the quality and efficiency of clinical 
research and ultimately patient care, The Division of Re­
search Resources (DRR) of the National Institutes of 
Health (NIH) has been sponsoring a scientific inquiry 
(called CLINFO) aimed at first developing a detailed 
understanding of the information processing needs and 
current practices of clinical investigators and then 
developing methods for generally and economically alle­
viating some of the most important needs. The CLINFO 
investigation team consists of clinical investigators (T. 
Graham Christopher, M.D. at the University of Wash­
ington, Arthur W. Nunnery, M.D. at the University of 
Oklahoma and Howard K. Thompson, Jr., M.D. at the 
Baylor College of Medicine), the authors and other in­
formation scientists at The Rand Corporation, and 
William R. Baker, Jr., the CLINFO Project Officer, and 
other staff members of the DRR. 

We have taken the approach that before we can effec­
tively recommend or develop computer-based aids for 
clinical investigators, our entire team must develop a com­
mon deep and realistic understanding of clinical investiga­
tors' backgrounds, working environments, practices, prob­
lems and expectations as well as a similar understanding 
of the costs, capabilities and reliabilities of present and fu­
ture computer hardware and software. To do this, we have 
informally discussed clinical research processes and a 
broad set of problem areas with many investigators and 
have conducted a formal survey! to collect additional ob­
jective data. Over the next three years we will develop a 
prototype minicomputer-based clinical-research data 
management and analysis system2 which we will evaluate 
in a few research centers.3 Only after we have tested a set 
of hardware, software, personnel and operating-procedure 
specifications, would we be prepared to recommend the 
widespread utilization of such a system. 

We began our investigation by observing and informally 

717 

interviewing more than 100 personnel at over a dozen 
clinical research sites. As a result, we identified the follow­
ing as areas that should be considered further: research­
data storage, retrieval and analysis; research center 
administration; research protocol generation; report writ­
ing; and locating potential subjects and tracking out­
patients. 

After carefully examining tentative approaches to these. 
problems, we hypothesized that present computer 
technology could have substantial impact on the clinical 
research community if addressed to the data management 
and analysis areas for the following reasons: 

• Good data management is required to ensure that 
complete, accurate sets of data are collected, that 
data are availa.ble for timely decision-making, and 
that information is accessible in a form suitable for 
analysis both during and following an experiment. 

• An experiment is of little value if the data collected 
are not thoroughly analyzed and interpreted. 

• Investigators often do not have the time, background, 
facilities, and staff for proper data analysis. 

Furthermore, although we did not find an existing com­
puter system that we felt adequately handled the investi­
gator's data management and analysis problems while also 
being sufficiently flexible, economical and accessible, we 
were pleased to find that several systems (e.g., 
PROPHET, TOD, MUMPS, GEMISCH4-8 and com­
mercial time sharing systems) had demonstrated, by deal­
ing with important aspects of these problems, that our 
preliminary goals were attainable. 

. We wanted to ensure that we were not being misled by 
our own biases, that we were not overlooking important 
problem areas and considerations, and that our recom­
mendations would be generally applicable to a broad set of 
investigators and clinical research centers who participate 
in NIH's General Clinical Research Centers (GCRC) 
Program. We also wanted to learn more about investiga­
tors' present utilization of computers. We decided that we 
could best accomplish these goals by conducting a formal, 
in-person sample survey involving a substantial number of 
clinical investigators and clinical research centers. This 
would also provide an opportunity to gather a data base 
for the initial design specifications of a computer system 



718 National Computer Conference, 1975 

that would assist clinical investigators in their data 
manipulation tasks if such a system appeared to be war­
ranted. 

The detailed results and a discussion of the survey 
instrument development, sample selection and survey 
execution are presented in Reference 1. It will suffice to 
point out here that the particular design and execution of 
a survey of user needs must be sensitive to the sociology 
and traditions which are inherent in the discipline under 
investigation. 

In choosing our sample GCRCs in which to interview 
investigators and to collect environmental information, we 
selected GCRCs in larger institutions known for their 
productivity. Analysis of our data shows that while the 23 
GCRCs surveyed represent 28 percent of the centers in the 
GCRe program, they represent higher percentages of the 
beds, annual publications, number of investigators using 
the GCRC, number of active projects, and annual number 
of research-patient days. 

A total of 89 clinical investigators participated in the 
survey. Although this is not a substantial number, those 
who were interviewed appear to the authors to be 
representative of the more active investigators at the more 
active research centers. 

CHARACTERISTICS OF THE INTERVIEWED 
CLINICAL INVESTIGATORS 

Below we have characterized the typical interviewed 
investigator, based on median or modal responses to a 
series of questions. 

Background and training 

A typical interviewed investigator received his MD in 
1959. 

He started using this GCRC in 1968. 
He is an endocrinologist. 
He is an associate professor. 
He does not have extensive training in math or statis­

tics. 
He has little or no formal or informal training in the use 

of computers. 

Modus operandi 

A typical interviewed investigator frequently develeps 
new laboratory-analytic methodologies. 

He has 5 research studies under way. This does not 
mean that the single investigator is working on 5 projects 
simultaneously, but rather that a numher of studies are in 
different states of completion. 

He has studied 28 inpatients and 13 outpatients in the 
past year. 

He works with two senior staff, two fellows and three 
technicians. 

He informally shares his unpublished data frequently 

within his institution and occasionally outside pis institu­
tion. 

He frequently stores his data in laboratory notebooks 
and on flow sheets. (Flow sheets are tabular data collec­
tion forms, generally with time as the horizontal axis and 
with variable or measurement names on the vertical axis. 
The flow sheets may be very formal and study specifics or 
they may be simple grids with dates and variable names 
entered by hand.) 

Use of calculators 

A typical interviewed investigator uses desk calculators 
and manual calculating methods. Seventy-four percent of 
the investigators stated that they or their staff frequently 
or almost always used desk calculators in the analysis of 
their research data, while 50 percent frequently or almost 
always used manual methods, including slide rules, 
nomograms and lookup tables in the reduction and 
analysis of research data. 

He has good access to a programmable calculator and 
uses it extensively. Of the investigators interviewed, 40 
percent reported that they had their own programmable 
calculator. Most of the investigators who had program­
mable calculators expressed great enthusiasm for them, 
werel>l"eased with the ease with which they were used, and 
had grown quite dependent on them. 

Use of computers 

Eighty-five percent of the investigators reported that 
they have access to computer centers for batch processing 
of their research data. But of these 76 investigators, only 
27 indicated that they ever used that facility. Most of the 
computer centers that were utilized to any extent (15 out 
of 25) were administratively within the medical center. 
Regarding interactive facilities, only 51 percent of the 
investigators stated that they did have access to them, and 
of these 44, only 19 reported that they or their staff ever 
used the facilities. In some cases, investigators did not 
know that there were facilities available to them. 

We tried to determine the major reasons that investiga­
tors did not use the facilities that were, at least 
theoretically, available. Responses fell into the following 
categories: Computer Not Needed In My Research-26%, 
Lack Of Understanding About Computers And Their 
Utility-20%, Lack Of Required Assistance-14%, Have 
My Own Computer-l0%, Administrative Prob­
lems-l0%, Physical Location Of Computer Is Incon­
venient-l0%, Miscellaneous-5%, Cost Of Computer 
Time-4%. Some typical comments recorded in response 
to this question included the following: 

• Difficulties with the logistics of getting data into the 
computer. The problems include specifying the data 
items, creating disk and tape files, preparing coding 
forms, transcribing data, and detecting and correcting 
errors. 



Information Processing Needs and Practices of Clinical Investigators 719 

• The investigator's methods are constantly changing so 
that he felt it would not be worthwhile to invest the 
required time in setting up an automated data han­
dling system. This perception partially results from 
the inflexibility of available provisions for handling 
variable numbers of repeated measures and specifica­
tion of limits. Also, given the investigator's back­
ground, financial support and available assistance, 
software development is formidable. 

• Incompatible media, e.g., the computer center can't 
handle the paper tape that is the output medium 
from the investigator's scintillation counter. 

• Investigator has only a small volume of data to 
analyze and feels the computer center represents an 
overkill. . 

• The investigator is not yet ready to use the computer. 
• Funds and/ or people are lacking. 
• The programs that the computer center makes 

available are not adequate to the investigator's 
problem. 

• Aside from hardware and software reliability prob­
lems, investigators particularly mentioned the lack of 
stability of computer centers, i.e., there had been 
changes in operating systems as well as administra­
tive changes that had obsoleted large programming in­
vestments. 

• The computer center doesn't understand the clinical 
investigator's needs. 

• The center is several miles away. 
• Long turnaround on programming; this is significant 

in conjunction with the need for special programs to 
set up data files, enter data, extract data and perform 
analyses. By the time the programming is completed, 
the investigator might have lost his train of thought, 
found an alternative solution, or gone on to another 
problem. 

100 100 ~-------=",,",""-----, 
Q) 

'0 80 
~ 

80 

'0 50 50 
C 
~ 
~ 

1000 0.1 10 100 
Number of subjects Number of ·admissions/subject 

100 100.------

Q) 

80 '0 80 

~ 
'0 50 50 
C 
~ 
~ 

.1 10 100 10 100 1000 
Duration of each admission (days) Total time subject is 

on a study (day.s) 

Figure I-Percentiles of some 'parameters of typical clinical studies, as 
reported by 89 investigators 

100~-----------, __ ---, 

~ 80 - - 700 - - - - -

~ 
'050 - -135 ---

c: 

'" u 

'" <L 

(a) Numeric data items per patient-admissian 

100 ~-------------=_-, 

'" ~ 80 

j" 
O~~~~~--~--~--~---J 
100 1000 10,000 105 106 107 

(c) Total numeric data items per study 

100 ~-------------:::::=----., 

4:80 --1215------

~ 
'0 50 - - 355 - - -

c: 

'" u 

'" <L 

(b) Numeric data items per patient 

Equations: 

(a) Entries/admission = (Entries/day) x 
(days/Jdmi$sion) + admission­
related entries 

(b) Total entries/patient = 
(a) x admissions/patient 

(c) Total entries/study = 
(b) x patients/siudy 

Figure 2-Percentiles of parameters of the typical clinical research data 
base 

THE CLINICAL -RESEARCH DATA BASE 

In determining the magnitude of the data base, we 
asked the respondent to focus on a single study that he felt 
was representative of his research. In most cases, the 
study was one in which the investigator was currently en­
gaged. 

Some of the results of these questions are shown in 
Figure 1. Forty-seven percent of the studies examined 
were inpatient, six percent outpatient, and 47 percent 
mixed. Many of the values in the tails of the "Number of 
Subjects" and "Total Time ... " distributions belong to 
the latter two classes. However, these values have little ef­
fect on the median and 80th percentiles. To handle 80 
percent of the reported studies, a computer system would 
have to provide (for each current study) storage for about 
75 subjects per study, with three or four admissions per 
subject, about two weeks per admission, with each subject 
remaining in the study for about a year. 

Another series of questions allowed us to compute the 
number of data items collected in a typical study. The cal­
culated frequency distributions are shown below in Figure 
2. While the 80th percentiles represent possible design cri­
teria it is assumed that these are underestimates. Since it 
is not always possible to make clear distinctions between 
data that are of a pure research nature and data that are 
required for the treatment of the patient, a useful com­
puter system would have to provide for the storage and 
retrieval of some nonresearch data. This would probably 
include patient identifying information, some medical his­
tory data, and some physical examination data. To be 
reasonably safe then, a system designer should think in 
terms of 100,000 items of numeric information (400K 
bytes), per study and 5,000 to 10,000 nonnumeric items 
per study (300K bytes). 

IMPEDIMENTS TO CLINICAL RESEARCH 

We and our colleagues had previously generated a 
model comprising 14 identifiable research processes. We 



720 National Computer Conference, 1975 

Rank as 
batt leneck Step 

Obtain support I'--'-':'-"'---'--'~~_~_~_~_--' 44 

Obtain literature 

Develop res. plan 

Obtain approvals t--~~--'--_-J 19 

Instruct assistants 

Prepare equip. 

Select & admit pats. 27 
~~--~----~~ 

Carry out exp. procedures 

Collect specimens 

Laboratory ana I • 

Organize & stare data 40 

Ana I yze data 47 

Report to sponsor f--' -,': .. -_,:'~',----,--,-,..........J 

Publish 

10 20 30 40 50 

% G & VG 

Figure 3-Percentage of GCRC investigators responding Great or Very 
Great (impediment) to a list of possible steps in the clinical research 

process 

asked the respondents to indicate the degree to which each 
of these process or steps unnecessarily impeded their re­
search. Carry Out Experimental Procedures And Care For 
Patients, Collect Specimens, and Carry Out Laboratory 
Analyses were rated low as impediments to research. This 
can be attributed to the fact that the studies were un­
dertaken in GCRCs which were specifically designed, in 
terms of personnel and facilities, to minimize such difficul­
ties. In our sample, we could find no convincing difference 
in responses to the "impediment" questions between com­
puter users and nonusers. Retrieve, Reduce, And Analyze 
Data received the highest median "impediment" score. 
This may be related to the fact that while widely used 
programmable calculators may have been quite sufficient 
for the data analysis tasks of the investigators, they were 
unable to lend much assistance in the areas of data manipu­
lation, storage, and retrieval. Figure 3, which illustrates 
how the interviewed investigators view their difficulties, 
can be used in setting priorities for exploring the problem 
areas in greater detail. The ran kings refer to the fre­
quencies with which the steps were named as the most 
severe bottleneck to research. 

THE NEED FOR A DATA-ORIENTED COMPUTER 
SYSTEM 

Several series of questions were aimed at determining 
the relative importance and the relative need for various 

features of a computer system for clinical research. The 
percentages of investigators who responded "frequently" 
or "almost always" to the question, "When you or your 
staff are analyzing your research data, how commonly do 
you perform the following procedure?" were: Graphing 
And Plotting-97%, Manual Transcription-96%, 
Descriptive Statistics-89%, Subsetting (i.e., selecting re­
search subjects with common characteristics)-57%, Com­
plex Statistics (e.g., regression analysis)-46%, Arithmetic 
Preprocessing Of Data-37%, and Modeling And Simula­
tion-12%. It is interesting to note that the most 
frequently performed tasks are also very amenable to 
com puterization. 

Another series of questions asked how much of a 
problem it was for the investigator or his staff to perform 
each of a list of data manipulation tasks and operations. 
Figure 4 shows the percentage of investigators who 
responded "great" or "very great" (problem) to the indi­
cated item. Only those items receiving scores of 25 percent 
or more are shown. Many investigators indicated that 
Develop Computer Programs represents a "great" or 
"very great" difficulty, but many others said it was not a 
problem because they never did it. 

We asked those investigators who used computers about 
the extent to which presently automated tasks would be 
more difficult without the use of computers. A typical 
response of those investigators who used computers for 
tasks such as complex statistical analysis and modeling 
and simulation was that without computers it would not 
be possible for them to pursue their current research pro­
grams. Some of the tasks that computer and program­
mable calculator users said would be "very much more 
difficult" without their tools were: Complex Statistics (38 
of 44 users who performed this task), Simple Descriptive 
Statistics (26 of 46), Subsetting (24 of 35), Sorting Re­
search Records (20 of 28), Finding All Patients With A 

Rank as 
impediment 

4 

3 

2 

5 

Develop computer programs 

Find all patients with 47"10 
particular characteristics ~.:......;;.""--'""'--'-~~~~ 

Complex statistical analysis 

Find all values of 
a single variable 

Add new measure to 
all research records 

Gather a II data for 
a single patient 

Update research records 

Explore records to test 
& generate hypath. 

o 25 50 

Figure 4-Percentage of GCRC investigators who rated various data 
manipulation tasks as being Great or Very Great problems 



Information Processing Needs and Practices of Clinical Investigators 721 

Particular Characteristic (19 of 28) and Modeling And 
Simulation (17 of 21). 

BENEFITS OF COMPUTER-BASED DATA 
MANIPULATION 

Another series of questions required that the investiga­
tor indicate the extent of his agreement with a series of 
statements which asserted that certain improvements (in 
data manipulation) could critically influence the per­
formance of his research. A majority of investigators indi­
cated that they agreed, or strongly agreed, with nine of the 
14 assertions. The improvements which apparently can 
critically influence the performance of clinical research 
are: More Insightful Ways of Examining Data (79% 
agreement), Easier Retrieval Of Research Data (73%), 
Easier Combination Of Old And New Data (71%), Easier 
Subsetting Of Data (70%), Detection Of Missing Or Inac­
curate Lab Determinations (65%), More Convenient 
Arithmetic Processing (60%), Reduced Need For 
Transcribing Data (57%), Easier Statistical Analysis 
(56%) and Quicker Notification Of Missing Samples 
(54%). 

Three of our assertions that did not meet with majority 
agreements are: More Accurate Control Of Sample Collec­
tion Times, Less Delay In Receiving Results Of Laboratory 
Determinations and More Accuracy In The Recording Of 
Laboratory Data. Again, this appears to reflect the investi­
gator's satisfaction with the sample collection and labora­
tory facilities which they have at their disposal. Also, the 
areas in which it was felt that improvement could have a 
critical effect on clinical research are those (named above) 
to which computer technology can make some substantial 
contribu!!ons. 

Other questions sought to determine to what extent the 
investigators agreed that improvements in these data 
collection and manipulation areas could have certain 
beneficial results. The potential benefits agreed to by a 
majority of the respondents were: Reduced Nonproductive 
Time That An Investigator Must Spend On A Study 
(85%), Greater Insight Into The Investigator's Research 
Data (84%), Reduced Elapsed Time Needed To Complete 
A Study (75%) and Increased Publishable Results (73%). 
The majority qf respondents disagreed with assertions that 
such improvements would reduce the required number of 
experiments, subjects or data samples. Thus, the investi­
gators felt that the improvements would be in the form of 
better and more efficient use of the available clinical ma­
terial rather than a reduction in the need for that ma­
terial. 

REQUIRED OPERATIONAL CHARACTERISTICS 

N ext, a series of questions asked specifically the extent 
to which the investigators agreed with the need for certain 
operational characteristics of a proposed computer system. 
Those features for which 50 percent or more of the 

Printed reports, 
I istings, tables 

Convenient physi cal 
access to a terminal 

Easily available 
graphs & plots 

Accept machine­
readable data 

Simple programming 
language 

Available from 
7am to 7pm 

Qui ck response 

Privacy of 
machine stored files 

T ext storage 
& text editing 

'" ·:'193% 

I 

o 25 50 75 100 

% A & SA 

Figure 5-Percentage of respondents stating that they agreed or strongly 
agreed with the need for specified features of a proposed clinical research 

computer system 

respondents answered "agree" or "strongly agree" are 
shown in Figure 5. 

Some of the most interesting results are among the fea­
tures that did not generate much enthusiasm. In 
particular, only 31 percent "agreed" or "strongly agreed" 
that visual displays of graphs and plots on a TV-like 
screen must be available. This is particularly significant 
in light of the degree to which graphing and plotting are 
performed as well as the expressed criticality of having 
more insightful ways of examining data. Our interpreta­
tion of this result is that a majority of investigators have 
had little experience with online graphic systems and were 
unfamiliar with their capabilities and advantages. This 

, would also be consistent with the heavy stress on the need 
for printed reports and printed graphs and plots. Another 
is that investigators prefer hardcopy plots, which have 
traditionally been prepared by technicians or data clerks, 
so that they can examine and compare them at their con­
venience. 

CONCLUSIONS 

Our conclusions are primarily drawn from our analysis of 
the objective responses, colored by our prior informal in­
terviews, visits to clinical research institutions, and dis­
cussions with the CLINFO clinical contractors; and by our 
conceptual view of the significant role that information 
processing plays in clinical research. 

The status quo 

Many investigators have and use small accessible com­
puters and programmable calculators for arithmetic 



722 National Computer Conference, 1975 

processing of their research data and for the computation 
of descriptive statistics. Those devices do not provide for 
the flexible storage or retrieval of research data files; their 
accessibility and their ease of use partially counter­
balance these deficiencies, however. 

The investigator has at least nominal access to large 
computer centers based administratively either at an af­
filiated university or at the medical school. These centers 
are little used by the researchers we surveyed. There ap­
pear to be three primary explanations for this. First, most 
investigators have had little or no training in the 
mathematical sciences or in the use of computers. 

Second, the computer centers can rarely provide the 
kind of interested and knowledgeable assistance that the 
clinical investigator requires. Most computer center staffs 
either are not aware of the needs of their local clinical re­
search communities or view them as unlikely prospective 
customers. Information -concerning the use of the center, 
available programs, methods of data entry, etc., usually is 
not available at a level useful to the uninitiated. 

Third, partially as a result of the conditions mentioned 
above, the investigator has little motivation to make what 
he views as a major investment of his career time to 
achieve the questionable advantages of machine-aided in­
formation processing. The barriers that he often faces in­
clude inadequate software, uncertainty about an unstable 
computer center environment, inconvenient geographic 
distance, slow turnaround (in both computer runs and spe­
cial programming), and ad hoc consultative assistance 
lacking continuity and compatibility. In addition, he views 
his information processing needs as rapidly changing and 
requiring great flexibility. As awkward and unresponsive 
as his manual methods may be, he can keep personal con­
trol over his hard-won research data, can peruse it without 
the need for an intermediary, and does not fear its loss due 
to a programming error or disk crash. 

As a result, the clinical investigator forgoes the potential 
of easy retrieval and manipulation of his study data. He 
also recognizes that the waste of his time and talents un­
necessarily prolongs the duration of his studies and 
probably reduces the quantity and quality of publishable 
results. 

Immediate need for people 

The survey results show that clinical investigators could 
make much better use of existing computational facilities 
if they had better access to well trained people who are ca­
pable of educating them about the use and capabilities of 
computers; who are able (on a long term basis if 
necessary) to assist them with data organization, data re­
duction, retrieval, and analysis; and who can promote 
their use of an existing facility while providing a realistic 
appraisal of its capabilities and shortcomings. Also, these 
people must be responsive to the investigator's needs and 
sensitive to problems unique to clinical research. 

Since few such well trained, dedicated people exist, ad-

ditional support should be provided for: 

• Training of laboratory and other personnel already 
participating in clinical research. 

• Utilization of existing institutions such as biostatistics 
or biomathematics departments and computer 
centers. 

• The establishment of national resources devoted to 
satisfying these needs. 

Long-term need for computer systems 

Based on our observations, substantial benefits would 
result from the development of a small, economical, ac­
cessible, widely-used computer system especially designed 
for the clinical research environment. Such a system 
would facilitate difficult data-oriented tasks that currently 
are not perceived as practical. A flexible system would en­
courage the sharing of data through the implementation of 
agreed on variable definitions, normal ranges, and data or­
ganizations while allowing the individual investigator to 
specify his own data entry, analytic and other procedures. 
Widely used systems, based on the same hardware and un­
derlying software would encourage the development of 
sharable computer programs, as appropriate, while still 
satisfying the specific needs of particular individuals and 
centers. It would be extensively utilized because of its ac­
cessibility and if it were accompanied by people to assist 
and educate the prospective users. Also, if its cost were 
compatible with the research center's budgetary 
constraints and ifit were under the center's administrative 
control, it would not be as subject to fiscal, administrative, 
and technical disruptions and uncertainties as are large 
computer systems operated by traditional computer 
centers. 

While a preliminary system design may be based on the 
information we have so far accumulated, only experi­
mentation in the clinical research environment will reveal 
the acceptability and value of a specific system design to 
clinical investigators. We will carry out such experimenta­
tion during the next phase of the CLINFO project. 

ACKNOWLEDGMENTS 

The research reported on in this paper was supported by 
the National Institutes of Health under Contract No. N01-
RR-2-2106. This survey would not have been possible 
without our earlier extensive discussions and information 
gathering with Drs. T. G. Christopher (U. of Washington), 
A. W. Nunnery (U. of Oklahoma), H. K. Thompson, Jr. 
(Baylor), and N. Z. Shapiro and W. L. Sibley (Rand); the 
guidance and participation of Drs. W. G. Walker (Johns 
Hopkins) and R. S. Goldsmith (formerly Mayo Clinic); 
the support and encouragement of Drs. W. R. Baker, Jr., 
W. DeCesare, W. F. Raub (NIH) and B. Schachtel (for­
merly NIH); the other interviewers E. Fairbrother and L. 
Heiser (Rand) and J. Farquhar and A. MacInnes (for-



Information Processing Needs and Practices of Clinical Investigators 723 

merly Rand); and the numerous clinical investigators and 
other clinical research personnel who spent their precious 
time with us. 

REFERENCES 

1. PaHey, N. A. and G. F. Groner, A Survey of Clinical Investigators 
and their Information Processing Activities, R-1539-NIH, The Rand 
Corporation, July 1974. 

2. Sibley, N. L., M. D. Hopwood, G. F. Groner and N. A. PaHey, A Pro­
totype Data Management and Analysis System for Clinical Investi­
gators: An Initial Functional Description, R-1621-NIH, The Rand 
Corporation, August 1974. 

3. Groner, G. F., M. D. Hopwood, N. A. PaHey, N. Z. Shapiro and W. 

L. Sibley, A Plan for the Development and Evaluation of a Data 
Management and Analysis System for Clinical Investigators, R-1542-
NIH, The Rand Corporation, August 1974. 

4. Ransil, B. J., "Applications of the PROPHET System in Human 
Clinical Investigation," AFIPS Conference Proceedings, Vol. 43, 
1974, pp. 477-483. 

5. Castleman, P. A., et aI., "The Implementation of the PROPHET 
System," AFIPS Conference Proceedings, Vol. 43, 1974, pp. 457-468. 

6. Fries, J. F., "Time-Oriented Patient Records and a Computer 
Databank," JAMA, 12,222, December 18, 1972, pp. 1536-1554. 

7. Greenes, R. A., A. N. Pappalardo, C. W. Marble and G. O. Barnett, 
"A System for Clinical Data Management," AFIPS Conference 
Proceedings, Vol. 35, 1969, pp. 297-305. 

8. Lloyd, S. C., B. A. Brantley, W. W. Stead and H. K. Thompson, "A 
Generalized Medical Information System (GEMISCH) for Practic­
ing Physicians," National Conference of the Association for Comput­
ing Machinery Proceedings, August 1971, pp. 684-692. 





The C.M.A. information base-A beginning of 
operational systems in Canada 

by JAN F. BRANDEJS 
The Canadian Medical Association 
Ottawa, Ontario, Canada 

" ... men who hold incommensurable viewpoints should be 
thought of as members of different language communities 
and their communicating problems be analyzed as problems 
of translation. " 

Thomas Kuhn: 
"The Structure of Scientific Revolution" 

HISTORICAL BACKGROUND 

Although we can trace the beginning of the pre-paid 
medical care in Canada as far back as the 17th Century 
(Master Surgeon contract to provide medical services to 
several families in the community of Ville Marie-now 
Montreal), the nationwide acceptance of pre-paid medical 
care insurance plans took a relatively short period i.e., 25 
years from 1946 to 1970.1 

The first government sponsored medical plan, however, 
was introduced in 1962 in Saskatchewan, against strong 
opposition from the Saskatchewan Medical Association 
which eventually resulted in the withdrawal of services 
and a doctors' strike. Saskatchewan physicians opposed 
the socialization of the profession and requested the 
necessary amendments to secure the freedom of choice for 
both the patients and physicians. The Socialist govern­
ment of the province was defeated, but the medical in­
surance plan was accepted by the newly elected Liberal 
government of the province because of the public appeal. 

The Federal Medical Care Act of July 1, 1968, em­
barked the country upon a costly program of universal 
health care. Health care costs in Canada in the mid-1950's 
represented about 3 percent of the GNP and is presently 
rising toward 7.5 percent or more.2 

The federal government's aim has been the "best" 
medical care for Canadians and has committed itself to 
sharing the expenditures with the provinces up to 50 
percent providing the following four criteria are fulfilled 
by provinces: 

(a) comprehensive coverage for all medically required 
services; 

(b) universal availability to all eligible residents of the 
province; there had to be at least 90 percent of the 
eligible population covered; 

(c) portability of benefits between provinces and 
elsewhere (in the United States and Europe); 

725 

(d) and it had to be publicly administered by the pro­
vincial government and non-profitable. 

At the present, all ten provincial governments have only 
a single paying agency, (commission or board) using well­
organized data processing for assessment of claims and 
billing purposes, and as a comprehensive data base for 
provincial, federal statistical and research departments. 
Both physicians and provincial medical associations ob­
tain reports comprised of details of every medical service 
submitted for assessment and payment. 

For many physicians, computerization and control 
represents "socialization" of medicine; for others, a threat 
to free market principles, despite the prevalence of the fee­
for-service remuneration. 3 In order to minimize the 
confrontation between government paying agencies and or­
ganized medicine during negotiations for fee schedules, 
working conditions and such, the Canadian Medical 
Association (C.M.A.) has been establishing a com­
puterized information base, which will contain both statis­
tical and narrative information relevant to medical care. 

The concept, development, structure, maintenance and 
utilization of the C.M.A. information base has originated 
from the early works of information scientists such as 
Luhn4 and Borko5 and is based on a free-text searching 
technique. 

A BRIEF ANALYSIS OF INFORMATION 
SYSTEMS 

Information systems, from the classical point of view of 
an information scientist, may broadly be structured into 
two levels: information storage and retrieval systems 
(ISR), and control and management information systems 
(MIS). Both types of systems are well-covered in terms of 
published materials. Surveys of bibliography on informa­
tion storage and retrieval systems may list well over 5,000 
items, and a recent survey of bibliography on management 
information systems consists of no less than 2,000 items.6 

In the past, information scientists, systems and manage­
ment specialists were deluded by computers, by the intri­
cacy of programming and by the refinement of interesting 
but not too practical mathematical and analytical 
methods. Therefore analyses of information flows within 
individual parts of systems resulted in total misunder-



726 National Computer Conference, 1975 

standing of the drastic changes under way.7 More im­
portant, the major goal of any information system, a satis­
fied user, has almost been omitted from the research, 
analysis, design, implementation, retraining and adjusting 
processes. For example, in the design of "total" hospital 
information systems (HIS), all aspects of hospital 
administration were included except the patient and his 
needs. 

Does this mean that viable information systems (both 
ISR and MIS) are a mirage which will never be achieved? 
Bishoff' in his work "Die Informationlawine" points out 
that there is an urgent need for effective information 
storage and retrieval systems due to the fact that informa­
tion in some areas of human knowledge doubles at the 
following rates: 

General information -every 10 years 
Information on chemistry -every 8 years 
Information on electronics -every 5 years 
Information on space -every 3 years 

The well-known "publish or perish" syndrome-a very 
important factor in the lives of all academics and re­
searchers as a means for promotion and fame, has 
contributed ~ignificantly to the abundance of information 
by the publication of many articles, papers and even 
books dealing with topics which have no relevance to the 
real life information. Dr. Shires, Dalhousie University, ob­
serves, "What is of greater concern is not the explosion (of 
information) but data pollution so that the information 
content becomes strangled."9 

Information scientists are aware of the emergence of the 
information explosion (or pollution) since Luhn's 
permutated indexing techniques developed in the early 
1960's. They tried to mechanize and later to automate li­
braries by means of better housekeeping which included 
the cataloguing, indexing and autoindexing, filing, search­
ing, ordering and information dissemination. Many 
systems for university libraries and other knowledge-based 
institutions have been launched, all but few seem to fall 
far below initial expectations. Only very recently (and 
after a decade of efforts), MEDLARS, a typical batch 
processing medical library system, offered an online ver­
sion of bibliographical search called MEDLINE. The 
general trend of library scientists has been to cope with 
mainly the methodological, and procedural aspects of the 
library rather than with the needs of the users. 

The Canadian Medical Association, Department of Re­
search and Development has been building a comprehen­
sive information base over the past two years in order to 
supply relevant information to its divisions, scientific 
councils and staff. The conceptual development of the 
C.M.A. information base has been designed on the follow­
ing, somewhat paradoxical, analytical findings of the state­
of-the art: 

1. Despite tremendous efforts in terms of money and 
thoughts, there are very few successful computerized 
information systems available to the user; 

2. In the rapidly increasing volume of printed ma­
terials, books, monographs, textbooks, journals, 
papers, etc., it appears that the content of knowledge 
is decreasing because of the lack of adequate quality 
measures; 

3. High expectations have been placed in computers, 
mathematical, linguistic and information applica­
tions, all but few are of very little use in terms of real 
world projects; 

4. It seems that the major reason for the past failures of 
information systems stems from the misunderstand­
ing of the end-user's needs in the current systems 
era.1O Until now all efforts were dedicated to the 
technology in the broadest sense, i.e., computers, 
communication, programming and terminals; 

5. Despite all the failures, there are a few successful ap­
plications which maintain the necessary level of op­
timism and promise for the future (e.g., ATSj370, 
QL System, JURIS, MARK IV etc.); 

6. Both researchers and practitioners have to accept the 
fact that traditional printed documents are, and will 
be for a long time to come, the prime source of in­
formation. 

In short, to avoid the past failures of many com­
puterized information systems, any viable approach to in­
formation processing, namely to both input and retrieval, 
must be human-oriented. It should follow the path of the 
learning processes, methods of research, methods of an­
notations, techniques of writing and similar intellectual 
activities. 

MANAGEMENT OF INPUT 

An ideal transformation of information into the com­
puter would be a direct input from the material prepared 
for publishing by means of a computer-aided typesetting 
or, in our case, from the tapes of government computers. 
The computer-to-computer input technique is still in the 
stage of new developments and therefore is, unfortunately, 
not yet available. The next best method of input to follow 
is that in which most scientists, technical writers, and re­
searchers have built their private, personalized informa­
tion storage and retrieval files aiding memory by notes, 
manual files, cards and so forth. When studying articles 
and monographs, or obtaining any information· in the 
sphere of a specialist's interest, the source of the informa­
tion, name of the work, index (keyword) and the content is 
registered in a m~re personalized way than the usual bib­
liographic annotation. An experienced user of information 
also tries to note the "flavor" of the content, namely the 
richness of the author's language, new ideas presented, 
contribution to knowledge or personal enrichment. Each 
user, however, may have different styles of building up the 
necessary knowledge, as well as, different approaches to 
this process of information storage. Therefore some sort of 
common classification is necessary. 

For example, the classification of inputs in the C.M.A. 
information base should meet the present needs and fu-



ture requirements of researchers, medical politicians, 
mainly practicing physicians, provincial divisions and 
C.M.A. staff. It eliminates, to a bare minimum, digital 
codes and uses free English text in most cases. (Exhibit 1) 
A decimal coding system composed of classes "0" through 
"9" seems to be a good choice fitting most C.M.A. research 
and information needs. Thus, group "0" is assigned to 
cover general knowledge, while group "9" represents a 
very specialized field of interest. An example of group 
classification is shown in Exhibit 1. This classification 
states boundaries of interest and the extent of the C.M.A. 
information base and acts as a common denominator for 
all users. To specify further users' needs and attach some 
quality yardstick to information stored, a sub-classifica­
tion of each group is required, as follows: 

Sub-Class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

o 

Content 

Phrases and expressions of elementary 
quality: good sentence structure, straight­
forward thinking of experienced practi­
tioners in the field. 

Phrases and expressions of inter­
mediate quality: richer language, 
expressions not so often seen. 

Advanced use of the language: fresh 
ideas expressed in new ways, perhaps not 
yet clearly understood by the reader and 
set aside for the second reading. 

Citations and quotations. 
Jokes and statements for warming up 

presentation. 
Formulas, algorithms and simple 

graphs. 

Criteria and tables. 
Headlines of interesting topics and 

ideas. 
Definitions, thoughts and glossary of 

terms. 
Bibliography and references. 

It should also be stressed, however, that these numeric 
codes are for the classification of stored information only 
and are not required in the query and information 
retrieval processes. 

The input coding form used is just a little more struc­
tured form of usual manual notes, excerpts and indexes. 
However, any kind of notes may be used if understood by 
the person entering the information. There are no rules or 
requirements for the input other than the identification of 
the group and subclass. 

Each input document consists of four entities: 

1. Group (Class) Information Number, e.g. OO-general 
knowledge or 60-economics 

2. Subclass Number, e.g. 9-ideas or 4-citations, and such 
3. Text of Document 
4. End-of-Document signal character 

The C.M.A. Information Base 727 

ACCESS TO THE C.M.A. INFORMATION BASE 

After proper identification through one of three types of 
terminals tested-two video (an IBM 3275 CRT and Bell 
Vucom I) or via a typewriter terminal (IBM 2741)-the 
users of the C.M.A. information base may access the com­
puterized information base. The search query may be 
entered in narrative form. For example: 

I WANT INFORMATION ON THE IMPACT 
OF INFLATION ON MEDICAL PROFESSION 
IN BRITISH COLUMBIA 

The system analyzes the statement for what it considers 
significant terms and searches the information base for all 
document references containing all or any of these terms. 
The common words such as I, WANT, ON, THE have 
been "stopped". This means they are regarded as non-sig­
nificant and the system will not search on them. 

It is preferable, however, to enter the search query as a 
string of significant words. 

IMPACT INFLATION MEDICAL PROFESSION 
"BRITISH COLUMBIA" 

A message to the user, 

YOUR SEARCH IS PROCEEDING 

is displayed. Within 3 to 30 seconds the information is 
displayed. If the search query contains, in addition to 
valid search terms, words that do not occur in the data 
base the message 

THE FOLLOWING WORDS IN YOUR QUERY DO 
NOT OCCUR IN THIS DATA BASE: 

BRITISH COLUMBIA 
TO RESTATE YOUR QUERY, TYPE "S". TO 
CONTINUE, PRESS "ENTER". 

is displayed. This gives the user the option of proceeding 
with the search or returning to the search mode to restate 
the search query. 

If the search query contains only words that have been 
stopped or words that do not occur in the information base 
the message 

THE WORDS YOU ENTERED ARE EITHER TOO 
COMMON OR ARE NOT FOUND IN THIS DATA 
BASE. PLEASE RESTATE. 

tells the user to restate the search query. 
The user may consult the dictionary to see what words 

occur in the information base and whether they have been 
stopped. 

Search terms can be combined using "OR", "AND" and 
"BUT NOT" logic. "OR" is represented by one (or more) 



728 National Computer Conference, 1975 

InFLATION 

Figure 1 

space(s). The command 

INFLATION CANADA 

means the user wants references to documents in which 
the words 'inflation' or 'Canada' occur. Figure 1 illustrates 
the "OR" relationship. 

"AND" is represented by & (ampersand). The com­
mand 

INFLATION & CANADA 

means the user wants information on both 'inflation' and 
'Canada'. Figure 2 illustrates the "AND" relationship. 

INFLATION CD 
Figure 2 

"NOT" is represented by % (percent sign). The command 

INFLATION % EUROPE 

means the user wants references to documents about infla­
tion but wishes to exclude those in which the word 
'Europe' also occurs. Figure 3 illustrates the "BUT NOT" 

INFLATIon EUI'np[ 

Figure 3 

relationship. Similarly, a mandatory "AND" (&) can be 
used to link groups of words. If the search is phrased 

MALPRACTICE & MEDICAL DOCTOR HOSPITAL 

the system will retrieve documents in which the word 
"malpractice" occurs and in which one or more of the 
three words "medical', 'doctor' or 'hospital' occur. The 
"&" merely requires that one of the terms on either side of 
the "&" symbol occur in the document. If the search is 
phrased 

MEDICAL & MALPRACTICE DOCTOR HOSPITAL 

the system will correctly retrieve information on 'medical' 
and 'malpractice', but may also retrieve documents in 

which 'medical' and 'doctor' occur or in which 'medical' 
and 'hospital' occur. 

QL PROGRAMING SYSTEMS 

The C;M.A. information base management is using the 
Quick Law (QL) Systems. QL Systems Limited retrieval 
system operates on IBM System/360 or System/370 con­
figurations under the IBM Operating Systems OS/MFT, 
OS/MVT, OS/VS1 and OS/VS2. The retrieval system 
consists of several program modules; all of these modules 
are written in System/360 Assembler Language. The File 
Build programs are also written in System/360 Assembler 
Language, except for the program which sorts the concor­
dance. For this latter program, the OS Sort/Merge utility 
program is used. The 'driver' program, which is used to 
create the input to the File Build programs, can be written 
in any System/360 programming language. Most of the.se 
'driver' programs are currently written on either COBOL, 
PL/1 or Assembler. 

There are three File Build programs. The first program 
generates the Text data set (the document itself), the Text 
Index file (a pointer to the document in the Text data set) 
and the concordance (a list of all words which appear in 
the information base). The second program sorts the 
concordance (produced by the first program) and creates 
the Dictionary data set and the Dictionary Index data set. 
The third program generates the Locator data set (each 
entry in this data set identifies a document section in 
which a particular term occurred, how many times the 
term appeared in this document section, and algorithm 
values which indicate the statistical significance of the 
term in the information base). 

Exhibit 2 illustrates the sequence of events involved in 
the creation of an information base. 

TEXT DATA SET 

The Text data set is made up of the text of the docu­
ment itself and directory entries. There is one 8-byte direc­
tory entry for each section of a document and documents 
can be subdivided into 8 sections. The directory entry for 
a section contains the following information: the directory 
block number, the length of the text section, the type of 
document section and the number of lines in the document 
section. These directory entries are appended to the end of 
each document in the data base. 

Within the text of the document itself, blanks (or 
spaces) are placed by a one-byte 'hash code'. This hash 
code varies according to the word it precedes. The hash 
code is used for both text searching and for automatic 
highlighting of terms. The use of a hash code before each 
word in the text (i) removes the need to store each possible 
phrase which occurs in the information base and its 
associated pointers (e.g., pointers to document sections) 
and (ii) removes the need to compare each entire word or 
phrase in the document. Instead, the retrieval system will 
look for hash codes which match the hash code associated 



with the terms of the search. This facility decreases the 
amount of time required for a search and also decreases 
the amount of direct access storage required. 

Text index data set 

The Text Index data set consists of one 4-character 
pointer (to the start of the document directory) for each 
document in the information base. 

Dictionary data set 

The Dictionary data set consists of dictionary entries 
and there is one entry for each term or word in the in­
formation base. The entry contains the following informa­
tion: the word (up to 16 characters), the number of times 
the word occurs in the information base, the number of 
documents which contain the term, a pointer to the locator 
data set, and a pointer (to another dictionary entry) which 
is used for synonyms. Each dictionary entry is 28 
characters long. 

Dictionary index data set 

The Dictionary Index data set contains pointers to the 
Dictionary entries. The presence of his file removes the 
need to search the dictionary entries for a particular 
search term. 

Locator data set 

The entries in the Locator data set are 12-character long 
and contain the following information: the number of 
times the term occurs in a section of a document, the 
number of the documents in which it occurs and 5 values 
reflecting the significance of the term in the information 
base depending on the method or algorithm used to com­
pute these values. 

The values are computed only once (when the informa­
tion base is built) so there is no need to repeat these com­
putations whenever a particular term is used in a search. 
There is one Locator entry for each document section in 
which the term occurred. No Locator entries appear for 
words which are common in the information base. 

TECHNOLOGICAL SYSTEMS 

Machine requirements 

The following configuration is the minimum machine re­
quirement for the assembly and/ or execution of the 
retrieval system programs: 

• one CPU IBM System/360 Model 40, or System/370 
Model 135, with core capacities of 50 K in addition to 
the core requirement for the Operating System. On 

The C.M.A. Information Base 729 

IBM 360 series computers, core may be Large Ca­
pacity Storage core rather than main core. 

• one console 
• one card reader and printer 
• one IBM 2314 or 3330 Disk Storage Facility (or 

equivalent device) 
• one IBM 3275 or IBM 2741 or teletype compatible 

terminal 
• one 2701, 2702, 2073, 3704 or 3705 communications 

controller 

Size of C.M.A. information base 

There are no rules for computing the space require­
ments and costs for a particular section of the C.M.A. in­
formation base. However, the following interrelated fac­
tors are significant: 

• the size of the text 
• the number of different terms which appear in the in­

formation base 
• the number of occurrences of the terms in the in­

formation base 
• the number of documents in the information base 

Generally speaking, the size and costs of the information 
base will vary directly with (i) the size of the text (ii) the 
number of different terms which appear in the informa­
tion base (iii) the number of occurrences of the terms in 
the information base and (iv) the number of documents in 
the information base. 

Once a certain size has been reached, neither the Dic­
tionary or the Dictionary Index data sets will expand. Ob­
viously, as documents are added, the Text and Text Index 
data sets will increase in size. The Locator data set will 
also expand, but much less rapidly that the size of either 
the Text or Text Index data sets. 

For a very large information base (i.e., an information 
base which has a large amount of text and many docu­
ments), the amount of storage overhead (the space oc­
cupied by the Text Index, Dictionary, Dictionary Index 
and Locator data sets) may be less than or equal to the 
amount of storage occupied by the Text data set. For a 
very small information base (i.e., an information base 
which has a small amount of text and few documents), the 
amount of storage overhead may be a factor of three or 
four times the amount of storage occupied by the Text 
data set. 

CONCLUSION 

This on-going research project of the Canadian Medical 
Association represents the advent of interactive, online 
computer-centered information sharing; a technological 
advance that is expected to change, and hopefully revolu­
tionize mental attitudes of researchers, medical practi­
tioners, health care politicians, administrators and 
students of systems and health care sciences. 



730 National Computer Conference, 1975 

Online computer-based information systems have only 
recently achieved sufficient technological maturity. It is 
the role of the end-user to implement new forms of crea­
tive information processing superior to the traditional 
batch data processing. 

REFERENCES 

1. Government of Canada, The Federal Medical Care Program, Na­
tional Health and Welfare, Health Insurance Directorate, Health 
Program Branch, Ottawa, 1974. 

2. Report of the Canadian Computer Task Force, Branching Out, Vol. 
2, Ottawa, 1972. 

3. Brandejs, J. F., The Health Care Plans of Canada, paper, The 
C.M.A., 107th Annual Meeting, Toronto, 1974. 

4. Magnino, J. J., IBM's Unique but Operational International In­
dustrial Textual Documentation System (ITIRC), International 
Congress on Documentation, Tokyo, 1967. 

5. Borko, H., Evaluation of the Effectiveness of Information Retrieval 
Systems, Proceedings of the IFIP Congress, 1962. 

6. Cuadra, C. A. (editor); Annual Review of Information Science and 
Technology, Vol. 1-7, (1966-1973), American Society for Information 
Sciences, Encyclopaedia Britannica, Chicago, Illinois. 

7. Ackoff, R. L., "Towards a Behavioral Theory of Communication," 
Management Science, Vol. 4, No. 218, 1958. 

8. Bishoff, J., Die Informationslawine, Oldenbourgh, Dusseldorf Wien, 
1967. 

9. Shires, D. B., Computer Technology in the Health Sciences, C. C. 
Thomas, Publisher, Springfield, Illinois, 1974. 

10. Brandejs, J. F., Health Informatics, internal publication, The Ca­
nadian Medical Association, Ottawa, 1974. 

EXHIBIT I-SECTIONS OF THE C.M.A. 
INFORMATION BASE 

Each section may have a different format of documents 
entered because C.M.A. information base is user-oriented 
and not library-oriented with a fixed structure of docu­
ments stored. 

For example, in 'CMA GEN', all kinds of information 
might be stored in free text form. The search will be 
oriented toward frequency of words searched for. On the 
other hand, in 'CMA SPE' will be only statistical tables, 
and only the headings are searched for. 

Documents need to be labeled and listed. For example, 
'GEN D l' will be a list of documents entered in the 
general section. Search will therefore be done in the follow­
ing way: 

Sign on: 'CMA GEN.' Search for any information, then 
ask 'Dl' which will give list and names of documents in 
the file. 

Information base sections: 

(a) GEN-general file containing: 
1. documents explaining information base structure 

and how to search information base, 
2. all documents which are general and applicable 

to all Councils and accessible to anyone, 
for example: 

(i) all topics in "The Way I See It" 
(ii) list of all conferences 

(iii) list of meetings in divisions and of affiliate 
societies 

(b) SPE-specialized data file containing: 
1. raw data-of any statistical significance 
2. data, compiled in tabular form 
3. tables of trends 
4. results of surveys classified as follows: 

SPE 0 National tables 
SPE 1 British Columbia 

2 Alberta 
3 Saskatchewan 
4 Manitoba 
5 Ontario 
6 Quebec 
7 New Brunswick 
8 N ova Scotia 
9 Prince Edward Island 

10 Newfoundland 
11 Northwest Territories 

and Yukon 
20 United States 
30 Europe 
90 World 

(c) CON-information file on-scientific councils 
containing: 
CON 0 Transactions-present 

statements 
Board of Directors 

index of policy 

CONI 
CON 2 
CON 3 
CON 4 
CON 5 
CON 6 
CON 7-8 
CON 9 

Council on Community Health 
Council on Medical Services 
Council on Medical Education 
Council on Medical Economics 
Membership Services 
Vacant 
R&D 

(d) EXL-exclusive information base only for C.M.A. 
use (blocked to outsiders) 

EXL 9-KIKO: each document is divided into 
four segments and each can be 
retrieved independently: 

segment 1 subclass (1 digit) 
segment 2 groups (2 digits) 
segment 3 KWOC or KWIC 
segment 4 text 

Detailed structure of EXL-KIKO 

Group 0 GENERAL AND BASIC KNOWLEDGE 
ABOUT MIS 

(all information related to computer-aided systems) 
00 General Management Sciences (concept of scien-

tific management) 
01 Computer-based MIS 
02 Hardware (computers) 
03 Software, including Data Base 



04 Information Systems for the Management of 
Computer Centers 

05 Computer-aided Medical and Health Care In­
formation Systems 

06 Soft-copy oriented (VMT) Information Systems 
07 Model base, Methodological Base, and Informa­

tion Retrieval Systems 
08 Education of Computer-based MIS Users 
09 Behavioral Aspects and Psychology of MIS 

Users. 

Group 1 INDUSTRIAL ENGINEERING 
10 General Knowledge of IE 
11-18 Vacant 
19 MIS Engineering 

Group 2 MIS FOR PRODUCTION 
20 Production-oriented MIS: general knowledge 
21-29 Vacant 

Group 3 MISCELLANEOUS 
30 Bylaws, acts, bills 
31 Meetings, manuals, directories, handbooks, 

tables 
32 Journals, reports, bulletins, records and 

pamphlets 

Group 4 VACANT 

Group 5 HEALTH CARE 
50 General ideas 
51 Management of Health Care and Nursing Care 
52 Medical Care (Biology) 
53 Lifestyle Health Care 

54 Environmental Health 
55 Health Policies; MEDICARE, Health services, 

Insurance, Group Practice 
56 Health and Medical Statistics 
57 Physician Information-(fees, distribution, 

classification) 
58 Vacant 
59 Privacy and confidentiality 

Group 6 ECONOMICS 
60 Economics in General and Budgets 
61 Medical and Health Economics and Expenditures 
62 Manpower, planning & needs 
63 National income & expenditures, and financial 

information 
64 
65 
66 
67 

Wages, prices and price index 
Annual reports, briefs 
General statistics 
Remuneration: fee setting, gross and net earnings, 
overhead 

The C.M.A. Information Base 731 

68 Collective representation and Negotiation 
69 GNP and Trends 

Group 7 DECISION-MAKING PROCESSES 
70 Mathematical-oriented D-M 
71-78 Vacant 
79 Theory of Policy Science 

Group 8 EDUCATION 
81 Education in General 
82-88 Vacant 
89 Recurrent Issues in Higher Education 

Group 9 KIKO (Knowledge In-Knowledge Out) 
90 Rules and Phrases 
91 General Phrases for good writing 
92-94 Vacant 
95 Who is Who? 
96-98 Vacant 
99 Pure Medical Terms 

EXHIBIT 2-CREATION OF A DATA BASE 





A comparative evaluation of automated 
medical history systems 

by EPHRAIM R. McLEAN with the assistance of STEFAN IE V. FOOTE 
University of California 
Los Angeles, California 

INTRODUCTION 

As the practice of medicine shifts from crisis intervention 
to the prevention of disease and the maintenance of 
health, the role of the comprehensive patient medical his­
tory becomes even more important than it has been for­
merly. 

With the need to establish a "data base" of information 
on the patient's general condition, the attending physician 
must spend anywhere from a few minutes to over an hour 
asking a variety of questions and recording the responses, 
either in long hand or by dictation (which must then be 
transcribed by a medical secretary). 

These questions range from those pertaining to family 
history (e.g., father died of a heart condition) and social 
habits (e.g., patient smokes two packs of cigarettes a day) 
to the patient's own medical background (e.g., history of 
jaundice) and current review of systems (e.g., the cardio­
vascular and musculo-skeletal systems). Also included are 
past hospitalizations and operations, medications the 
patient is currently taking, and some indication of why the 
patient is seeking medical attention in the first place (i.e., 
the chief complaint or problem). 

It should be noted that this history is but the first step 
in the fact finding and diagnostic process. In addition, the 
particular problem which the patient has must be ex­
plored in depth and a physical examination conducted. 
Based upon these findings, laboratory tests and radio­
logical exams may be indicated. After this, there may be 
more questions and more tests until the physician finally 
arrives at his conclusions as to the nature of the ailment 
and the therapy and medications necessary to treat the 
condition. Thus the collection of the history data is more 
of a prelude to the actual diagnostic process than an inte­
gral part of it. This is important, for while the physician 
has a central role in the decision on the diagnosis, he does 
not necessarily have to collect all of the information on 
which this diagnosis is based. Indeed, there are many 
examples of the delegation of these tasks to residents, 
nurses, and lab technicians. This "division of labor" 
allows each member of the medical team· to specialize in 
that phase of patient care for which he or she was trained. 

733 

It also helps define those areas in which technology can be 
advantageously applied. 

Although the medical history is but the first step in the 
delivery of health care, it is a vital first step. It, in con­
junction with the physical examination, provides a base­
line from which to begin care and with which to gauge 
changes over time. This "work-up," as the patient in­
terview and examination is called, is designed to give a 
complete picture of the patient's medical status, not just 
the problem of current concern. Unfortunately, because of 
the pressures of time and the desire on the part of the phy­
sician to get to the problem at hand, there is sometimes a 
tendency to focus exclusively on the particular problem 
and not ask all the routine history questions. The phy­
sician's busy schedule usually does not allow him the 
luxury of exploring every aspect of the patient's physical 
and mental condition. In every patient interview, a 
number of questions might be asked that would provide a 
more complete history, but there is simply not enough 
time for them. Fortunately, by training and by instinct, 
the experienced clinician is able to move quickly to the 
important; facts of the patient's condition and rarely does 
any harm result from the few items of data that are 
missed. However, from the patient's standpoint, this 
inability of the physician to listen to all minor complaints 
and problems can be disconcerting. 

Recently, the medical history has received attention 
from another quarter, that of appraisal of care. This 
increased scrutiny comes from two sources. First, the 
governmental agencies and insurance companies which 
function as third-party payers are concerned about the na­
ture of the care delivered as a basis for payment. Second, 
the utilization review committees and Professional Stan­
dards Review Organizations (PSRO) are concerned with 
the appropriateness and quality of care. Both of those 
groups are using the medical record-of which the history 
is a part-as one of the prime factors in their evaluations. 
Thus there is increased pressure for more complete 
records and documentation. However, at the same time, 
physicians are being pressed to expand care to 
underserved populations and to improve care to those al­
ready being served. In the face of these competing de-



734 National Computer Conference, 1975 

mands, it is understandable why the assistance of the com­
puter and information processing technology is being 
sought. 

AUTOMATED MEDICAL HISTORIES 

Although the eliciting of medical history data is most 
usually done by the physician, there are many instances 
where this task is performed by residents, nurses, or other 
medical assistants. These individuals question the patient, 
record the responses, and present the completed history to 
the physician for his review. A logical extension of this is 
for the patient to record his own history directly, thus 
eliminating the need for the third party. These self­
administered medical histories have been in existence 
since World War II, first with manual, pencil-and-paper 
questionnaires, and more recently with the aid of com­
puter processing. In this way the patient plays a more ac­
tive part in the creation of his medical record, a role which 
most patients are more than willing to play. As Dr. 
Lawrence Weed has pointed out,t the patient's time and 
active involvement is one of the most underutilized 
resources in medicine. 

As with any emerging technique, there is a wide range of 
implementations that have been tried. Some attempt to 
provide a complete history for the pJ:wsician, going so far 
as to suggest possible problems (i.e., quasi-diagnoses) and 
to recommend lab tests, while others perform only a basic 
screening or triage function or focus on a particular 
medical area (e.g., cardiology problems). 

There is a similarly large variation in the techniques of 
administration. The first medical history questionnaires 
were merely checklists which were filled out by the patient 
and then given directly to the doctor for him to scan. 
Later, some of these questionnaires were transcribed with 
word processing equipment like the IBM Magnetic Tape 
Selectric Typewriter (MTST) or keypunched for computer 
processing. The use of prepunched cards and mark sense 
forms have also been employed. With the advent of on-line 
systems, the possibilities for an interactive, conversational 
dialogue between the computer-based history system and 
the patient have become realized. With these, multiple 
levels of branching are possible, detailed explanations can 
be displayed when the question is unclear, and even 
foreign-language versions are easily implemented. In the 
next section, these various techniques will be described 
and .evaluated in more detail. 

TECHNIQUES OF ADMINISTRATION 

In t~eir comprehensive monograph on the Acquisition of 
the Hzstory Database, 2 Yarnall and Wakefield identified 
15 different design approaches and gave illustrations of 75 
different systems. Drawing upon their study and the 
published results of other efforts, including those of the 

author, * the following is a summary of the various tech­
niques of administration. For simplicity, they can be 
grouped into 4 major categories: (1) manual systems, (2) 
non-computer machine processed, (3) off-line computer 
processed, and (4) on-line computer processed. 

Manual systems 

The first medical history questionnaire to come into 
general use was the Cornell Medical Index (C.M.I.). De­
vised by Brodman6 in the late 1940's, it consists of a form 
containing 195 questions which is given to the patient im­
mediately before the office visit. Further processing is not 
required, although an effort was made at one point to in­
troduce a. computer-processed version.7 The examining 
physician quickly scans the patient's responses and then 
proceeds with his own questioning. Since its introduction 
the C.M.I. has undergone almost no changes in either it~ 
composition or in question wording. It continues to enjoy 
widespread popularity and it is estimated that more than 
300,000 are administered annually.8 

Another widely used questionnaire is the one of the De­
partment of Defense, used for screening recruits and in 
conjunction with periodic physical examinations for 
members of the armed forces. Known merely as DD Form 
88 and DD Form 89, these two documents are similar in 
concept to the C.M.!.; and although restricted in usage to 
the military, they have been used extensively in this 
context for over twenty years. 

The chief problem with manual questionnaires is their 
limited ability to provide for branching as a function of 
the results of previous questions. If there is more than one 
level of branching, the instructions can become quite com­
plex and confusing. This means that particular problems 
cannot be explored in any great detail. Also, the physician 
must scan through the entire questionnaire, for there is no 
summarization for him. An offsetting advantage, of course, 
is that these manual versions are quite inexpensive, cost­
ing less than a dollar apiece. 

Non-computer machine processed 

In an effort to provide a neat typed summary , which is 
missing from the preceding, attempts have been made by 
Kannefl and others to use word processing equipment like 
the IBM MTST. Inputting can be done directly from a 
questionnaire or in conjunction with special filmstrip 
equipment which is linked to an MTST. In this latter 
case, there are function keys which the patient uses to 
record his responses. 

In both of these approaches, the assistance or interven-

* These descriptions are drawn from a number of sources, including two 
studies conducted by the author at the Lahey Clinic in Boston Massa­
chusetts.3 ,4 For a complete list of references on the subject of techniques 
for administering medical histories, the author and co-author have pre­
pared a bibliography of some 410 items,S copies of which can be had by 
writing to him at the Graduate School of Management, UCLA. 



A Comparative Evaluation of Automated Medical History Systems 735 

tion of a nurse or secretary is needed. Also, the cost of the 
equipment must be considered; but it is not uncommon 
for many physicians, even in solo practice, to have word 
processors of some sort; and thus the cost can be shared 
with other applications. 

Off-line computer processed 

A logical extension of the manual questionnaires was the 
move to the keypunching of the responses and their sub­
sequent batch processing. This introduces the requirement 
for keypunch equipment and operators as well as the need 
for computer processing. For most physicians this means 
sending the work to a service bureau, with the correspond­
ing problems of long turnaround times, costs, and possible 
loss of confidentiality. And, as with all off-line modes, 
there is the potential source of error due to transcription 
mistakes. Even if the clinic or hospital is large enough to 
have its own computer equipment, as is true of the Lahey 
Clinic in Boston, there are still problems of cost (anywhere 
from $3.00 to over $10.00 per patient) and the inability to 
handle high volumes with reasonable turnaround times. 

One way to resolve the keypunch problem is to move to 
mark sense documents. This requires specially-prepared 
forms (which are fairly expensive to buy and difficult to 
modify) and special optical scanning equipment. However, 
the need to transcribe is eliminated and the Lahey Clinic, 
which has gone to this approach,4 has found the error rate 
to be quite low while at the same time achieving same-day 
turnaround (less than 5% of the forms require any manual 
intervention to insure successful processing). At the Mayo 
Clinic, Mayne lO reports similar success with the use of 
mark sense forms. 

In one of the major efforts in utilizing the computer in 
support of multiphasic health screening, Dr. Morris Collen 
at the Kaiser Permanente Medical Center in Oakland has 
made use of medical history questionnaires for more than 
twenty years.l1 In its present form, it consists of two parts: 
a deck of 204 prepunched cards designed for review of 
systems information with a single yes-or-no question 
printed on each card, and a pencil-and-paper question­
naire for past history. For the first part, the patient indi­
cates his response by dropping each card into the "yes" or 
"no" section of a divided letter box. The positive responses 
are then sorted and listed immediately for the physician's 
review. The responses on the questionnaire form are 
keypunched and are added to the patient's medical record 
later. 

A final development is the use of terminal-like devices 
which capture the patient's responses on magnetic cassette 
recorders. These units are linked to filmstrip or carrousel 
projectors or even to audio devices for the presenting of 
the questions. The resulting cassette can then be either 
mailed in or telephoned in for processing, with the results 
mailed back or printed in the doctor's office at a remote 
terminal. The turnaround times in the latter case can be 
almost equivalent to an on~line system, but at a much 
lower cost. 

On-line computer processed 

With the growth of multiprogramming and time sharing, 
it now becomes feasible to consider putting the patient 
"on-line." In a pioneering effort at the University of Wis­
consin, Slack and his coworkers12 developed the first on­
line computer-based medical history system. Using a dedi­
cated LINC laboratory computer, questions were 
presented to patients by means of a CRT display. At the 
end of the session, the results were summarized and 
printed out for the examining physician. The use of an on­
line mode provided the ability to have extensive branch­
ing. The response to one question would determine, to a 
limited extent, the next question that was to be asked. 

The use of multiple CRT devices, each under central 
computer control, is probably the most powerful of all ap­
proaches for collecting patient history data; but it is not 
without its problems. The keyboards are not typically 
designed for patient use, the resolution of the image on the 
screen may leave something to be desired, costs are high, 
and reliability may be a problem. As Yarnall has sug­
gested, "Expect headaches! (That's what your grant is 
for!)."2 

At the Massachusetts General Hospital, Grossman, 
Barnett, and others13 explored the use of Teletype termi­
nals in an interactive mode. As with Slack's work, this 
system also allowed extensive branching. However, be­
cause of the limited availability of terminals, the system is 
still on an experimental basis. 

Some of the work in off-line data collection is being car­
ried over into an on-line environment. The use of filmstrip 
projectors and back-projection carrousels (using either 
regular slides or microfilm) are now being operated under 
computer control. These displays offer better resolution 
than those of CRT's and extensive branching is still 
possible. With the use of minicomputers or "intelligent" 
terminals, this approach may prove to be the most de­
sirable in the long run. 

EVALUATION OF AUTOMATED HISTORIES 

Recognizing these wide variations in types of histories, it 
is difficult to compile a single list of advantages and disad­
vantages that would apply to all approaches. What would 
be an advantage from one standpoint (e.g., low cost) might 
be a disadvantage from another (e.g., insufficient detail). 
However, to fail to make any attempt at all would be to do 
a disservice; and so the following list must be read with 
the foregoing in mind. 

Advantages 

Time savings 

The argument given most frequently in support of self­
administered histories is that they save time. If the phy­
sician takes the patient's history himself, it is the doctor's 
time that is being saved. If the doctor dictates the history 



736 . National Computer Conference, 1975 

and thereby saves the time needed to write it out himself, 
there is still the time of the secretary who must transcribe 
the dictation. Depending upon the rate at which the doctor 
accounts for his time, the saving of even a few minutes 
could be worth several dollars. This time saving can be 
used to enable the doctor to see more patients or to use the 
extra time to delve more deeply into each patient's 
particular problem or problems. 

In this latter vein, there are a number of physicians who 
report that the patient-prepared histories give them a 
"head start" on their own questioning. They feel that they 
can go directly tc the patient's chief complaint because 
most of the routine questions have already been covered. 

Completeness 

Closely linked with the preceding is the ability of many 
of the automated medical history systems to give a more 
complete picture of the patient than is true of those 
generated by traditional means. This is particularly true 
where the doctor is pressed for time and can only 
concentrate on the main problem the patient has. Even in 
those cases where the doctor duplicates the previously­
administered medical history and reasks all the questions, 
there is still a feeling that the patient-produced version 
provides a check on the doctor's own questioning. More 
substantively, there are two areas where this possibility of 
greater completeness can be of distinct importance. The 
first has to do with the bringing to light of conditions 
which are medically important but completely unrelated 
to the patient's main problem. In such cases, it is possible 
that the secondary conditions might be overlooked in the 
process of arriving at the primary diagnosis. 

The second is closely related to the first. With the 
growth of the many medical specialities, physicians are, 
by choice and by training, focusing more and more upon 
particular problems and not on the whole patient. Thus a 
comprehensive medical history can serve to point out 
other problems the patient may have which may be far 
removed from the doctor's own specialty. This information 
can lead to the patient being referred to another physician 
or being rescheduled for another visit. 

Legibility 

The many jokes which ar~ made about physicians' 
handwriting might be funny if the subject were not such a 
serious one. No longer is it a case of the doctor who makes 
the entries in the record being the only one who has to 
read them. With the increasing need for a variety of phy­
sicians and health care providers to have access to the 
medical record, it becomes essential that it be readable. 
Here the computer-produced history provides a clear 
benefit over the handwritten version. 

Patient participation 

A concern which has been raised in some quarters is 
that although physicians may like the assistance that com-

puter-aided medical history systems afford them, patients 
may not. However, studies indicate that the reverse is 
true. 14 Some patients have even expressed a preference for 
the self-administered histories. There are a number of 
reasons for this attitude. 

With the pencil-and-paper versions of the history ques­
tionnaires, especially those filled out at home, patients like 
the less hurried atmosphere and the ability to take their 
time and answer each question carefully. Also, family 
medical records can be consulted and the labels of current 
medications can be checked for drug names, dosage levels, 
and so forth. Because most patients have come to expect to 
be able to spend only a brief amount of time with their 
doctors, the carefully-completed history reassures them 
that the doctor will have a complete picture of all of their 
problems. 

For the terminal-based versions, the ability to branch 
forwards and backwards, to have questions explained 
when they are unclear, and to have a complex machine 
patiently waiting for each response is a stimulating and 
exciting experience. 

Finally, there are some questions which are likely to be 
embarrassing; and oftentimes both patient and physician 
are glad to have them posed in a questionnaire or on an 
on-line system. 

Some physicians have even commented that the very 
act of responding to a series of history questions is bene­
ficial, for the patient is forced to think more concretely 
and specifically about his medical condition and is thus 
better prepared to answer the doctor's own questions. In 
other words, the patient becomes a better "historian" in 
terms of his ability to be a more effective participant in 
the doctor-patient dialogue. 

Predictive information 

As was pointed out earlier, the collection of medical his­
tory data is not designed to yield a diagnosis but to func­
tion as a prelude to this diagnostic process. However, there 
is evidence that some types of decisions can be made 
solely on the basis of the history data. These include the 
determination of the desirability of conducting certain 
laboratory tests or of scheduling appointments with other 
physicians (in a multiple-specialty group practice or hos­
pital setting), both prior to seeing the doctor for the first 
time.1s 

Research 

For many types of medical research, the medical record 
serves as an essential source of data. And for retrospective 
studies (reviewing past records for instances of certain oc­
currences), the need to have clear, complete, and readable 
history data can be crucial. If a researcher is looking for a 
possible relationship between coffee drinking and certain 
gastrointestinal disorders, and many of the records 
examined have no indication of the coffee intake, the 
investigation becomes that much harder. 



A Comparative Evaluation of Automated Medical History Systems 737 

In addition to such studies across populations, there is 
also the need to study individuals over time. These longi­
tudinal studies can benefit greatly by having detailed his­
tory data, particularly review of systems information, 
which can both provide a health status baseline and bring 
to light changes over time. 

By having a standardized data collection instrument, 
with the same question being asked of all patients in the 
same fashion, it becomes possible to research the data 
collection process itself. 16

,17 Certain questions may not in 
fact have the sensitivity or specificity commonly at­
tributed to them and should be replaced by others. Such 
new questions can be added to the system or questionnaire 
and then tested for validity. 

Utilization reviews 

In spite of the decidedly mixed reception that utilization 
reviews and PSRO's have received, it must be assumed 
that they (or something like them) will become a 
permanent fixture of the medical scene. Therefore, stan­
dardized histories can be helpful in enabling review com­
mittees to monitor patient care and evaluate the overall ef­
fectiveness of health care facilities. 

Disadvantages 

Costliness 

Although it is naturally hoped that one or more of the 
aforementioned advantages will offset the costs, it should 
be clearly recognized that substantial costs will be in­
volved. If a medical site chooses to develop its own system, 
there are developmental costs; and federal funds are be­
coming increasingly more difficult to obtain in order to 
help underwrite this cost. In off-line systems, with 
multiple-page questionnaires (some with more than 50 
pages), the cost of the questionnaire design and reproduc­
tion, especially for mark sense documents, can be high. In 
on-line systems, the program development and the design 
of the terminal displays may be even higher. And in both 
of these approaches, the time of the physician or phy­
sicians who are guiding the project must be taken into ac­
count. 

If use is made of one of the several commercially­
available systems, there are still the operating costs. These 
can include one or more of the following: computer time, 
supplies, keypunching, terminal rentals and communica­
tion charges, maintenance programming (not so much to 
correct "bugs" as to modify and improve the questioning), 
and the need for attendants to administer and monitor the 
system. 

Lack of flexibility 

There can be no question but that the most flexible ap­
proach to history taking is that involving a human being 

as the questioner. To achieve the benefits of standardiza­
tion, the corresponding cost is the loss of flexibility. If a 
preprinted questionnaire or prepunched deck of cards is 
used, a high degree of structure with regards to the ques­
tions is imposed, even though the options for administra­
tion (e.g., at home, in the waiting room, etc.) are quite 
flexible. On the other hand, several of the sophisticated on­
line systems are quite flexible in their questioning, but are 
very rigid in their need for computer terminals, typically 
at fixed locations and limited in their ability to handle 
peak loads. 

Lack of reliability 

The more sophisticated the system, the more vulnerable 
to interruption it is. Whether in a batch processed mode or 
real-time environment, if the computer "crashes," the 
processing of histories stops. Where the questionnaires are 
keypunched or optically scanned, there is the potential 
for input errors. And always there is the danger lurking of 
the possibility of a program or system "bug." It is quite 
possible, of course, that a proposed new history system is 
every bit as reliable (or unreliable) as the traditional ap­
proach which it is designed to replace; but a new innova­
tion must always meet a higher standard than its well-es­
tablished predecessor in order to be considered a success. 

Inaccuracy 

In determining accuracy, the question which must be 
raised is "Compared to what?" It is unlikely that any 
system for collecting history data will ever be as accurate 
as the best efforts of a skilled clinician. But what of the 
other extreme-a careless, inexperienced, or overworked 
doctor? 

Clearly, most present systems are not as accurate as 
they might be. They invariably contain false positives 
(reported conditions which the patient does not, in fact, 
have) and false negatives (the report of the absence of a 
condition which does actually exist). Fortunately, most 
systems err toward the former rather than the latter. 

Wordiness 

A direct outgrowth of this "'overreporting," that is, the 
reporting of trivial or nonexistent conditions (so that real 
problems will not be overlooked), is that the resulting his­
tory tends to be longer than it might otherwise be. This 
greater length or "information overkill" (sometimes as 
much as 3 single-spaced pages of 8Y2" X 11" print-out) 
naturally requires more time to read and thus tends to 
negate the time saving benefit. Attempts have been made 
to streamline the output and to suppress certain non­
essential data, but such efforts must be approached with 
great caution so that the benefits of completeness are not 
lost. 



738 National Computer Conference, 1975 

Impersonalness 

Although less of a problem than earlier feared, the de­
personalization or dehumanization of the doctor-patient 
encounter is a source of concern for both parties. So long 
as the self-administered history serves as an adjunct to the 
doctor's own questioning and examining, the problem 
should be minimal. But if it is perceived, either correctly 
or incorrectly, to assume a larger role, then greater 
resistance to its expanded use can be expected. 

Confidentiality 

Many physicians and civil libertarians are alarmed at 
the increasing loss of privacy and lack of confidentiality 
which is occurring with regards to the medical record. 
With the advent of computer-processed history data, there 
is a fear that this trend may accelerate. Because there are 
more people involved in the process than formerly (e.g., at­
tendants, keypunchers, operators, programmers, etc.), 
great care must be exercised to insure that no such feared 
abuses occur. 

Inappropriateness 

When all is said and done, it must be recognized that 
there will always be cases where the use of a self­
administered history is simply not appropriate. Such 
things as situations where the patient is unconscious, 
emergencies where action must be taken immediately, and 
finally patients whose educational level or literacy make it 
impossible for them to understand the questions-all these 
are instances where the use of an automated medical his­
tory system may not be appropriate. 

SUMMARY 

In light of the above discussion, it is easy to see that there 
is still much that is unresolved with regards to medical 
history systems. Costs are still high and many physicians 
are not yet convinced that there is a corresponding benefit. 
But as the reliability of the emerging systems improve, 
both from the standpoint of the hardware as well as the 
questions being asked, it can be expected that greater ac­
ceptance by the medical profession will follow. 

REFERENCES 

1. Weed, L. L., Medical Records, Medical Education, and Patient Care, 
The Press of Case Western Reserve University, Cleveland, Ohio, 
1969. 

2. Yarnall, S. R. and J. S. Wakefield, Acquisition of the History 
Database, (2nd edition), Medical Computer Services Association, 
Seattle, Washington, 1972. 

3. McLean, E. R., A Computer-Based Medical History System: Factors 
Affecting its Acceptance and Use by Physicians, unpublished Ph.D. 
Dissertation, Sloan School of Management, Massachusetts Institute 
of Technology, Cambridge, Massachusetts, 1970. 

4. Rockart, J. F., E. R. McLean, P. I. Hershberg and G. O. Bell, "An 
Automated Medical History System: Experience of the Lahey Clinic 
Foundation With Computer-Processed Medical Histories," Archives 
of Internal Medicine, Vol. 132, September 1973, pp. 348-358. 

5. McLean, E. R. and S. Foote, "The Collection and Processing of 
Medical History Data: A Bibliography of Manual, Automated, and 
Computer-Based Techniques," Information Systems Working Paper 
4-75, Graduate School of Management, University of California, Los 
Angeles, August 1974. 

6. Broadman, K., A. J. Erdmann, Jr., I. Lorge and H. G. Wolff, 
"Cornell Medical Index: An Adjunct to Medical Interview," The 
Journal of the American Medical Association, Vol. 140, June 11, 
1949, pp. 530-534. 

7. Brodman, K., A. J. Van Woerkom, A. J. Erdmann, Jr. and L. S. 
Goldstein, "Interpretation of Symptoms with a Data-Processing Ma­
chine," Archives of Internal Medicine, Vol. 103, May 1959, pp. 776-
782. 

8. Budd, M., H. Bleich, H. Sherman and B. Reiffen, "Survey of Au­
tomated Medical History Acquisition and Administering Devices. 
Part I, Questionnaires," Project Report ACP-4, Lincoln Laboratory 
(M.I.T.) and Beth Israel Hospital (Harvard Medical School), 
Cambridge, Massachusetts, December 31, 1969. 

9. Kanner, I. F., "Programmed Medical History-Taking with or without 
Computer," The Journal of the American Medical Association, Vol. 
207, January 13, 1969, pp. 317-321. 

10. Mayne, J. G., M. J. Martin, G. W. Morrow, Jr., R. M. Turner and B. 
L. Hisey, "A Health Questionnaire Based on Paper-and-Pencil Me­
dium Individualized and Produced by Computer," The Journal of 
the American Medical Association, Vol. 208, June 16, 1969, pp. 2060-
2068. 

11. Collen, M. F., "Periodic Health Examinations Using an Automated 
Multitest Laboratory," The Journal of the American Medical 
Association, Vol. 195, March 7, 1966, pp. 830-833. 

12. Slack, W. V., G. P. Hicks, C. E. Reed and L. J. Van Cura, "A Com­
puter-Based Medical History System," New England Journal of 
Medicine, Vol. 274, January 27,1966, pp. 194-198. 

13. Grossman, J. H., G. O. Barnett, M. T. McGuire and D. B. Swedlow, 
"Evaluation of Computer-Acquired Patient Histories," The Journal 
of the American Medical Association, Vol. 215, February 22, 1971, 
pp. 1286-1291. 

14. McLean, E. R., J. F. Rockart and J. H. G. Chaney, "Questionnaire 
Becomes Preadmission Tool," Hospitals, Journal of the American 
HospitalAssociation, Vol. 47, June 16,1973, pp. 56-59. 

15. Rockart, J. F·., P. I. Hershberg, J. Grossman and R. Harrison, "A 
Symptom-Scoring Technique for Scheduling Patients in a Group 
Practice," Proceedings of the IEEE, Vol. 47, November 1969, pp. 
1926-1933. 

16. Collen, M. F., J. L. Cutler, A. B. Siegelaub and R. L. Cella, "Relia­
bility of a Self-Administered Medical Questionnaire," Archives of 
Internal Medicine, Vol. 123, June 1969, pp. 664-681. 

17. Hershberg, P. I., C. Englebardt, R. Harrison, J. F. Rockart and R. B. 
McGandy, "The Medical History Question as a Health Screening 
Test: An Assessment of Validity," Archives of Internal Medicine, 
Vol. 127, February 1971, pp. 266-272. 



A protocol for evaluating computer systems 
for application in a physician's office 

by DANIEL D. BUTCHER, STEVEN G. JENKS, CURTIS P. McNEELEY 
Physicians Association of Clackamas County 
Gladstone, Oregon 

and 

ROBERT E. MAHAN 
Battelle 
Richland, Washington 

In this paper we present some of our experiences in the 
development of protocols for the evaluation of manual and 
automated medical information systems. The objective of 
this work has been to determine the feasibility of imple­
menting computer technology in the office practices of 
private practicing physicians in Clackamas County, 
Oregon. 

In order to effectively resolve our major objective, we es­
tablished two primary tasks, namely: 

• Evaluation and Documentation of Existing Manual 
Systems 

• Evaluation and Selection of a Computer System. 

These tasks, although inter-related are presented in the 
two sections of this paper. 

BACKGROUND 

On June 1, 1973, the Physicians Association of 
Clackamas County (P.A.C.C.) received a federal grant to 
determine the feasibility of cost-effective automation in 
the physician's office. The project, which subsequently 
came to be known as the Health Information Management 
Study (HIMS), was started on September 1, 1973. The 
HIMS Project is directly responsible to the P.A.C.C. 
Grant Committee, which in turn reports to the P.A.C.C. 
Board of Trustees. 

P .A.C.C. was established in 1938 and is sponsored by 
the Clackamas County (Oregon) Medical Society. This 
dispersed Health Maintenance Organization (HMO) offers 
prepaid group coverage with service provided on a fee-for­
service basis. In addition to a prepaid plan providing free 
choice of providers, P.A.C.C. has a "Protecting Circle 
Plan" which lists specific physicians, optometrists, 
physical therapists, pharmacies, medical laboratories, hos­
pitals, convalescent hospitals, and home health care 
agencies providing services under the plan. These 
providers are scattered throughout the county which IS 

739 

largely rural. To minimize costs to the patient the phy­
sicians of P.A.C.C. use local control and peer review. All 
underwriting losses are shared by member physicians. 

P .A.C.C. member physicians, recognizing that com­
munication problems exist because of the dispersed nature 
of their practices, felt that an improved information 
system needed to be implemented. This conceptualized 
system would provide them access to the same kind of in­
formation they would have if they all practiced in one 
building with a centralized record system with easy access 
to one another. Such a system would improve the quality 
of care delivered in several ways. For example, duplication 
of services would be minimized. Physicians would. have 
readily available access to information needed in a consul­
tation or referral, thus improving physician-to-physician 
communication; a physician seeing a patient in a facility 
outside his own office would have the information 
available which was needed to provide the best care 
possible. It was felt that an automated medical informa­
tion system would permit this kind of flow of information 
among participating physicians. With this in mind, 
P.A.C.C. physicians, in conjunction with Battelle, sought 
and received funding for such a research effort. 

A major goal of this research effort was to provide an ac­
curate comparison of current information systems and re­
lated costs to any future automated system. A format has 
been developed by HIMS which provides for a complete 
and logical description of an ambulatory medical practice. 
The format starts with a general description of each of the 
eight medical practices and includes detailed system 
descriptions and volume and cost statistics. 

The HIMS project concerns itself with those ambula­
tory health care facilities located in Clackamas County 
and which are members of P.A.C.C. It was not feasible to 
document all facilities involved; therefore, a sample was 
selected to represent the total group. The selection criteria 
used in the project included the number and specialties of 
the physicians in the facility, the patient volume, and the 
proximity to other medical facilities. The sample medical 
practices selected represented a cross section of the popu-



740 National Computer Conference, 1975 

AMBULATORY 
HEALTH CARE 

DELIVERY SYSTEf1S 

I I 
DIRECT INDIRECT (SUPPORTIVE) 

DELIVERY SYSTEMS DELIVERY SYSTEMS 

Patient Care System 

Management System 

Figure I-Health care delivery systems as found in the ambulatory health 
care setting (shaded area indicates those systems documented in depth) 

lation which included facilities in urban and rural settings, 
and those which varied in size, age, and specialty. 

DOCUMENTING THE MANUAL SYSTEM 

Orientation and system description 

The initial step in the HIMS documentation protocol 
was for an engineer to assume the role of a patient. This 
approach provided familiarization with the functions of a 
doctor's office and helped develop a positive rapport with 
the staff. While being processed as a patient through the 
health care facility, the engineer took notes concerning the 
flow of the patient and his associated information. The 
flow of information "triggered" by the patient was then 
converted to a patient-information flow diagram. This dia­
gram, which utilized standard flow symbology, was instru­
mental in breaking down the medical practices into their 
basic "systems". Experience in Clackamas County sug­
gests that a basic group of eight systems always exist in a 
medical practice. Figure 1 reflects their relationship to the 
total system, the medical practice. 

It was our early judgment that five of these systems 
(shown shaded in Figure 1) were likely to be immediately 
affected by any automation of information. These five 
systems were subjected to detailed examination and docu­
mentation. 

Protocol for detailed description 

There are nine elements in our description of each of the 
five systems in each medical office: 

1. System Definition and Objective 
2. Flow Process Explanation 

3. System Input Triggers 
4. System Input 
5. System Output Triggers 
6. System Output 
7. Physical Characteristics 
8. System Problems 
9. Sample of System Elements. 

Figure 2 is a flow diagram of how we complete these ele­
ments and ultimately pull together an integrated system 
description. While content of these elements is obvious in 
several cases, some explanations are necessary. 

Input and Output Triggers-elements 3 and 5-were 
events which caused a system to need or yield informa­
tion, respectively. The input of a system was defined as 
the entire information received and processed by it. 
Somewhat differently, the output of a system is the 
transfer device or instrument of communication contain­
ing information produced by the system. An example of a 
system output is a listing of one physician's scheduled 
patient encounters for a given day. 

The physical characteristics element included system lo­
cation, storage media and preparation method of the 
records, accessibility, labeling, and methods used to ar­
range or st~re the records. Also considered were time rela­
tionships between information receipt, filing and retrieval, 

I PLAY PATIENT & I 
GATHER SANPLE ELEMENTS 

, 
DRAW FLOW DIAGRAM I 

~ 
IDENTIFY OUTPUTS I 
OF ALL SYSTEMS 

REEVALUATE 

~ - SYSTEM -
SELECTION & I SELECT SYSTEMS 

I I DEFINITION TO BE DEFINED 

! , 
l ASSIGN OUTPUTS 

I""~m I I '""TIn I TO SYSTEMS I DEFINE 
SAMPLE SYSTEM 

ACCORDING TO SYSTEMS ELEMENTS PROBLEMS 

DEFINITION J I I I 

1 J ~ 

IDENTIFY 

,"""In I IDENTIFY IDENTIFY 

OUTPUT INPUTS & INPUT 
ADDITIONAL 

TRIGGERS SOURCES TRIGGERS 
OUTPUTS 

I 
BY SYSTEM BY SYSTEM BY SYSTEM 

t I DESCRIBE PHYSICAL 

CHARACTERISTICS 

t 
DESCRIBE THE FLOW 

OF INFORMATION 

FROM INPUT TRIGGER 

THROUGH OUTPUT 

t 
ASSEMBLE DETAILED I 
SYSTEH DESCRIPTIO,; 

Figure 2-Flow diagram of the steps used in system identification and 
detailed description 



and the retention criteria for a document in any given 
record keeping system. 

A problem list of the shortcomings of a given system was 
made for each facility. The problems were those identified 
by the physician, his personnel, and the individual doing 
the documenting. While this list was not exhaustive in 
each case, the collective list of problems was of significant 
value while examining automation alternatives. 

Measurement and analysis 

Thus far in our documentation, all efforts were centered 
around verbal data. Hard statistical and financial data 
were collected to form a solid data base for future com­
parison. Determining the cost of an office system included 
allocating staff and physician time to each of the defined 
systems, allocating floor space to each system, and allocat­
ing all expenses according to man-hour wage, overhead, or 
direct assignment. 

The HIMS approach to man-hour allocation involved in­
terviews with management and staff. A spread sheet was 
set up for all those employed (including physicians) at the 
office during the year, and every effort was made to ac­
curately assign the hours worked to the appropriate office 
systems encountered in an ambulatory medical facility. 
The physician was encouraged to log all of his time, 
including personal time, to allow a more complete analysis 
of his time utilization. 

Once the man hour assignments were determined, a 
floor plan of the clinic was obtained. At this point, as 
much floor space as possible (usually about two-thirds of 
the total) was allocated to the various office systems. The 
remaining (unassigned) floor space, which consisted of 
waiting rooms, rest rooms, and hallways, was then 
allocated to the systems in direct proportion to the pre­
viously assigned floor space. For example, if Patient Care 
areas amounted to 50 percent of the directly assigned area, 
then 50 percent of the remaining (miscellaneous) area was 
assigned to this same system. Careful evaluation and a lit­
tle inductive reasoning provided reasonably accurate allo­
cations of office areas where more than one system was in 
operation. 

The next step was to assign dollar values to the phy­
sician and staff time and floor space allocations. A copy of 
the annual (audited) financial report was the reference. 
This report reflects all expenses, and normally presents 
them in a detailed manner sufficient for immediate incor­
poration in the cost allocation effort. If an expense was at­
tributable to one or more identifiable systems, it was ap­
propriately charged to them. If, however, the expenses 
were rather broadly based (e.g., rent, fire insurance), they 
were assigned to the( office systems in direct proportion to 
the assignment of floor space. 

Volume statistics are equally as important as cost in­
formation when documenting any facility. Together, they 
provide the data necessary for evaluation of change. In 
pursuit of statistical data, HIMS first sought secondary 
sources where statistics had already been tabulated for 

A Protocol for Evaluating Computer Systems 741 

other purposes. Since the practices we were working with 
did not tabulate many statistics, a plan to collect data 
from primary sources was then designed and carried out. 

The primary objective of the collection effort was to de­
termine the volume of patients seen during a given period. 
The patient medical record (including active and inactive 
files) was selected as the most acceptable source for these 
data. Information pertaining to the description of the 
population served was also collected at marginal addi­
tional cost. This additional information included patient 
characteristics (e.g., address, sex, insurance, date of birth), 
encounter information (e.g., date, graphics, second party 
involved), and report information (e.g., date, type, source). 

In the HIMS effort many alternatives were considered 
concerning the method of sampling. It was decided that 
systematic sampling would be the simplest for data collec­
tors to administer, and would not involve serious distor­
tion of the statistics. The selection was done by counting 
patient records and taking every nth record, with n being 
the inverse of the sampling rate for that office. 

HIMS discovered that great care had to be taken when 
designing data collection forms which met the needs of 
both data collectors and those involved in tabulating the 
data. For the data collectors, the fields On the forms were 
arranged in the sequence that the collector would en­
counter the information, when going through the source 
document. The forms provided adequate space for writing 
legibility and accurate reading by tabulators. 

The importance of accuracy was impressed upon the 
collectors, and checks on the quality of the data were 
conducted regularly to keep errors at a minimum. Though 
the sampling methods were fairly rigid, individual judg­
ments were unfortunately made by data collectors in some 
instances. 

The data resulting from the HIMS statistics collection 
effort was entered into the computer at Oregon State 
University. File management programs were written in 
FORTRAN to extract and sort data from each of the files 
so that continuity of information about a given patient 
could be maintained. No patient names were used; patient 
numbers were assigned to maintain data organization. 

Once the cost, volume and general statistics were 
gathered and tabulated, there were almost infinite possi­
bilities for analysis. However, the present needs were for 
system costs and for several basic volume and growth 
statistics. All the collected data is stored on magnetic tape 
for possible future use. 

Discussion of problems 

Probably the most serious problem facing the Industrial 
Engineers working on this project was the obvious mean­
ing of "cottage industry". There are approximately 140 
physicians in Clackamas County working out of nearly 
seventy offices. The largest clinic in the county presently 
is made up of five physicians of various specialties. Thus, 
the size alone of these practices suggests the problem of a 
lack of internal documentation and standardization. While 



742 National Computer Conference, 1975 

many similarities were found when comparing systems of 
different offices, many more differences were documented. 

As would also be suggested by the relatively small size 
of these practices, statistics are neither needed nor main­
tained. Thus, the engineers were working in a "virgin" ter­
ritory, relatively untouched by computers, systems 
experts, or professional managers. 

Faced with this environment, the HIMS staff carried 
out plans to "soften" the blow of systematic analysis in 
these offices. With the obvious long range goal of automa­
tion clearly understood by the office staffs, the age old 
operational problems of the "efficiency expert" were an­
ticipated. Meetings were held with over sixty office person­
nel which thoroughly explained and discussed HIMS. The 
net result was a definite "supportive" attitude that has 
persisted throughout this study. 

The extensive physician involvement in this study was 
somewhat unique. This fact relates to the history of this 
study, which has the unique aspect of a group of phy­
sicians seeking out technical assistance in the area of au­
tomation, instead of the far more common reverse situa­
tion. Truly, the HIMS project represents a combined 
medical/ engineering approach to problem solving in the 
medical environment. 

While many other problems have been faced, one very 
interesting one has occurred, against which no known cure 
exists. Members of the medical profession are, at times, 
impulsive. This trait, combined with the intensive, de­
liberate exposure to automation occasioned by HIMS has 
resulted in "overpriming" some physicians. Several prob­
lems occur as a result of this situation. Examples 
experienced by HIMS include efforts by one physician to 
have a local computer service organization obtain a fran­
chise for one system he had seen, since he decided uni­
laterally that system he had seen, was for him. He felt 
HIMS would take too long to study the offices before im­
plementing a system. Another difficulty is the waiving of 
interest and support that occurs when the engineers finish 
documenting one office and move into another. This 
"withdrawal" of interest is not easy to restore, and can 
breed discontent throughout a medical group. HIMS 
practice to date has been to seek a careful balance 
between educating the physician in the applications of 
computers, necessary to obtain his judgment on potential 
value of the new system, and not educating him, which 
tends to alienate him and cause negative support. 

Summary 

The protocol presented in this paper can and has pro­
vided a comprehensive picture of private medical 
practices. It functions best in a cooperative mode, with the 
benefits being a mutual education of medical and systems 
personnel alike. Some traditional systems analysis prob­
lems do occur, but our experience indicates that they tend 
to be soluble to a high degree, pdssibly due to the higher 
than average education level of the personnel involved. 

COMPUTER SYSTEM SELECTION 

Selection constraints 

Before proceeding to the topic of developing a system se­
lection protocol, we should point out some of the 
constraints that we imposed on ourselves during the 
program. The most significant was the requirement that 
the system be largely composed of off-the-shelf 
components, especially the system software. We have been 
and continue to be far more interested in utilizing the best 
of available hardware and software than we are in 
developing new innovations to be tested. As a second 
constraint we elected to pursue an incremental, or 
modular approach to implementation as has been sug­
gested by Dr. G. O. Barnett. l Our purpose in this case was 
to provide a basic system which could be implemented at 
a reasonable risk (as opposed to a "total" system), but one 
which would provide a reasonable degree of open-ended­
ness so that it could be substantially expanded. Third, we 
set out purposefully to involve physicians and physicians' 
office staff in every major (and many minor) analysis, 
design, and implementation decisions. Since the ultimate 
acceptance or rejection of the system will rest on choices 
made by these people it is not just prudent, but necessary, 
to learn how to utilize their skills in assisting with the se­
lection process. 

Selection methodology 

The methodology (protocol) developed for use in select­
ing a computer system is based on comparing the perform­
ance of modem medical computer systems against the re­
quirements developed for P.A.C.C. The protocol includes 
four major elements which are: 

• Definition of System Performance Measures 
• Analysis and Specification of Requirements (Model­

ing) 
• Performance Analysis of Available Systems 
• System Selection. 

This methodology is broadly comparable to that 
surveyed recently by Timmreck.2 He defines the four steps 
as (1) analysis and specification of need, (2) request for 
proposals, (3) validation of proposals including system 
performance measurement and (4) actual system selec­
tion. It may be contrasted with selection criteria reported 
by Raymond3 and Giebink.4 There are several major dif­
ferences between our methodology and most others. 

First, the system performance measures have been de­
fined for a broad class of medical computing systems, 
namely real-time systems suitable for a geographically 
diverse group of physicians in a combination rural and 
suburban setting. 

The second difference in this methodology is that the 
definition of system performance measurement elements 



are presented from several different viewpoints; namely, 
the user, the computer scientist, and the business 
manager. The advantage to the user of this type of pro­
tocol is that he can develop an understanding beyond the 
technical performance of the system. Additional informa­
tion gained includes a measure of the type (or style) of 
vendor he is dealing with, for the user's acceptance of the 
system, for its expansion capability, and the many other 
factors that are a part of the total commitment involved in 
owning or using a computer system for medical applica­
tions. 

Third, we should stress that the selection process is not 
a simple four step process. It is a recursive process that 
must be repeated and refined. While we consider the basic 
four steps to be essential to every computer selection, we 
also recognize that each step can be approached in a 
simple manner or in a great deal of depth. We cannot, for 
example, tell every user that they should examine their re­
quirements in the depth that we have at P.A.C.C. It would 
not, for example, make any sense to spend $50,000 select­
ing a $20,000 system. We can suggest that performance 
measurement elements and a system model should always 
be established prior to any commitment to lease or buy 
either a computer system or service. It is left to the indi­
vidual user to determine the depth of investigation and 
analysis appropriate to his particular needs. 

System performance measures 

Performance measures are a set of measurable elements 
that characterize the system being considered. Perform­
ance measures should not be confused with performance 
specifications. By defining a set of measures we are simply 
generating a glossary of elements that are indicators of the 
performance of computer systems. Specifications are 
specific performance criteria which are used to describe 
the desired system in terms of the measurement elements. 

The performance measurement elements derived for 
P.A.C.C. are shown in detail in Appendix A of this report. 
Six major categories of measurement have been selected. 
They are: 

• Vendor Overview 
• Systems Performance 
• Applications Performance 
• Start-up and Expansion Capability 
• User Interface Performance 
• Cost. 

Vendor overview is intended to provide background in­
formation on each prospective 'system supplier. We have 
not set specific standards of acceptance in this area, but 
expect the information to be useful to P.A.C.C. in becom­
ing familiar with each specific company. Information 
collected for each vendor includes: 

• Corporate Profile 
• Product Profile 
• Health Care Experience. 

A Protocol for Evaluating Computer Systems 743 

Systems performance measurements are indicators of 
the fundamental design capability of the system. The use 
of evaluation criteria in this area can be eliminated or 
limited to a subset of the elements presented in some se­
lection processes. This is especially true for a medical 
group that is selecting a system to solve a specific, well-de­
fined problem such as taking patient-histories. In such a 
case, the evaluation may be carried out based on the 
quality of the applications programs, the user interface, 
cost, etc., without regard for the design of the system. 
System design is an important element in any comprehen­
sive information system, especially one that will have a 
county-wide impact as contemplated at P.A.C.C. 
Comprehensive, multiple-user systems are complex dy­
namic systems which must be flexible in design and opera­
tion, easy to maintain, and provide the necessary 
hardware and software support so that they can be 
modified to meet new and expanding needs. If existing 
systems are so designed that they do not meet the needs of 
the specific medical community where the system is to be 
used then the basic system design is a critical factor and 
should be considered. If the application is fairly simple 
and well proven then a prospective user of the system does 
not have to be so cautious. 

Systems performance is characterized by the basic 
design of the hardware and the system software available 
to the user. The major elements are: 

• Hardware Capability 
• Programming Languages 
• Operating System 
• Data Base Management 
• Utility (Support) Programs 
• System Upgradability 
• System Support 
• Stage of Development. 

Applications programs are the elements of the computer 
system that actually solve the end user's problems. It is 
the applications program that must be most closely tai­
lored to the specific user's needs and demands. Many 
examples of computer system failures can be directly 
traced to applications programs which solved the wrong 
problem or solved the right problem in an inferior manner 
(e.g., at an excessive cost for the task). It is of vital im­
portance that those who design the system (the computer 
types) and those who use the systems (physicians, nurses, 
business staff) work together in the analysis of application 
requirements, design, and use. It is extremely helpful to 
have access to a physician with a background in com­
puters to act as the intermediary for these two groups. 

Examination of available applications should focus on 
the scope, or breadth, of applications available and on the 
specific performance of applications packages. The follow­
ing classes of applications are being implemented or 
considered at P.A.C.C.: 

• Practice Management 
• Business 



744 National Computer Conference, 1975 

• Health Care (Medical) 
• Insurance 
• Communications (physician-physician, etc.). 

Start-up and expansion capability is of prime concern to 
the prospective user of a medical computing system. He 
must develop a plan for the effective implementation of a 
proposed system. It is desirable for the user to minimize 
his risk and capital expenditure by selecting the minimum 
hardware/software system that can be implemented to 
solve his current problems. At the same time, the system 
must be large enough to be capable of expansion to meet 
long range growth (both in the number of users, in the 
various types of applications programs, and in the popula­
tion served). It can be as much of a mistake to install a 
large system which is grossly under utilized as it is to in­
stall a small system that cannot be expanded to meet all of 
the important design needs. 

We are suggesting that the best approach is one that 
permits the modular expansion of the hardware/software 
system as the capabilities of the system expand. Our ap­
proach to this problem is to model both the full scale 
system and a start up system where the full scale system 
will meet the needs of our total user group (the physicians 
of Clackamas County, Oregon), but the start up system 
will begin with a small group of physician offices (say 7 or 
8). 

The growth and acceptance of medical computing 
systems depends largely on the establishment of effective 
man-machine communications. In a larger sense, the suc­
cess of the system depends on the performance of the user 
interface with the system whether that involves a user at a 
terminal, or a user attempting to change the system (via 
programming or administrative action), or a user attempt­
ing to understand the system (training and documenta­
tion). The performance of the system from the user's 
viewpoint can be measured in terms of (1) What is used 
(hardware), (2) How it is used (communication/display 
elements), (3) How information is protected (security), (4) 
When it can be used (hours of service), (5) How well 
people like it (human factors design), and (6) How well it 
is documented. The performance elements are listed as 
follows: 

• User Equipment (Hardware) 
• Communication/Display Elements 
• Security 
• Hours of Service 
• Human Factors Design 
• Documentation and Training. 

The cost of a medical computing system should be 
treated very carefully by the prospective buyer. Comput­
ing systems are not like conventional instruments such as 
X-ray machines and the like. They are complex and dy­
namic systems that require long term investments in 
personnel and expansion. Costs will vary substantially 
based on whether the user elects to purchase a computer 

service rather than installing his own system. In either 
case, estimates should be made for one-time costs and for 
the costs of recurring items. Design, implementation, test­
ing, operation, and maintenance costs should also be cal­
culated. Both personnel and facility costs should be added 
which will include terminal operators, central computer 
operators, programming staff (if any), management, and 
maintenance. Facility costs should not only include the 
facility to house the computer, but required improvements 
(power, air conditioning, etc.) and a cost associated with 
the space required for the terminal in each user's office. 

Analysis and specification of requirements 

Having defined the system performance elements we 
next begin to define performance requirements for each 
element. These requirements then become our model for 
the desired system. It is very useful to define two types of 
requirements: mandatory and desirable.5 In our case, we 
were able to reduce our analysis of vendor systems from a 
large number to only a few by the mandatory requirement 
that the system perform its major tasks on a real-time 
basis. 

Requirements were established largely by the P.A.C.C. 
Grant Committee working with HIMS staff engineers. 
Inputs to the effort included (1) data from the documenta­
tion effort described earlier in this paper, (2) observations 
of office practices and problems by HIMS staff engineers 
performing the documentation effort, (3) a comprehensive 
Delphi Survey60f physicians to determine their percep­
tions of information processing problems and their respec­
tive priorities, (4) a similar Delphi Survey of nearly 300 
physician employees, (5) site visits to a number of medical 
computer installations, (6) limited evaluations of several 
systems that were demonstrated on a limited scale at our 
site, (7) a review of vendor literature, and (8) review of the 
current open literature concerning medical computing 
systems. 

The results of the Delphi indicated that both physicians 
and their employees consider insurance claims processing, 
private billing, and internal control of both medical and fi­
nancial information to be of highest concern. To a lesser 
degree physicians were concerned with inter-office com­
munications. There was very little perceived need for 
some of the classical medical computing applications. The 
results of this study coupled with the documentation has 
led us to the following conclusion. The source of the un­
derlying operational problems of office practice can be 
largely attributed to the current structure of the medical 
and financial records system. Moreover, if the data 
contained in these records were organized and stored in a 
manner that promoted effective retrieval and use of the in­
formation required for (1) insurance and private billing, 
(2) medical care, and (3) physician-to-physician communi­
cations then many of the current (and costly) redun­
dancies of personnel and services could be reduced. 

The next major task undertaken was to translate these 



conclusions into computer system requirements. The 
P .A.C.C. Grant Committee, HIMS Staff, and Battelle 
began a series of workshop meetings that wete designed to 
develop a set of requirements in terms of the performance 
measures previously developed. We found that it was rela­
tively easy at this point to develop criteria (standards) for 
selection since some of the more difficult problems had al­
ready been solved. A consensus had been established by 
the Delphi Study. The documentation effort supported the 
consensus with hard data and provided the means by 
which the general problems identified in the Delphi Study 
were linked to specific office systems and protocols. The 
development of performance measures provided an educa­
tional opportunity to familiarize physicians with the 
characteristics of medical computing systems before the 
selection process began. And finally, the interaction 
process provided the time needed for a group of broadly 
diversified people to learn how to effectively communicate 
with one another. 

Performance evaluation 

Performance evaluation of currently available systems 
requires three steps: 

• Identification of Systems 
• Analysis of Systems 
• Selection or Evaluation. 

One of our continuing efforts has been to identify candi­
date systems for evaluation. A variety of techniques were 
used, some successful, some not. The least successful was 
the preparation of a letter to vendors describing our 
general needs. The most successful were references from 
people in the industry and identification in the open litera­
ture. Initial identification was followed by telelphone in­
quiry and if the system appeared suitable, by a site visit. 
At this point we established a screening process against 
our mandatory criteria. The following requirements were 
used: 

• The system must be primarily a real-time system. 
Some applications (such as billing) can be run off­
shift, but data entry must be on-line. 

• The system must be capable of supporting up to 100 
physicians in a time-sharing mode and in a diverse 
geographic environment 

• The system must have a background of established 
performance 

• The system must provide applications software 
• The applications must support both business and 

medical functions. 

Only four systems survived the initial screening process. 
The secondary screening process utilized the detailed stan­
dards developed by the HIMS staff, the Grant Committee, 
and Battelle. Side-by-side comparisons were made for each 

A Protocol for Evaluating Computer Systems 745 

system which resulted in the elimination of two more 
systems. In order to again refine the process, the final two 
vendors were asked to submit proposals for consideration. 
In addition, the Grant Committee reviewed the require­
ments and established the four most important elements 
which are listed as follows in descending order of im­
portance: 

• Cost 
• Scope of Business and Medical Applications 
• Human Factors Design 
• Hours of Computer Coverage. 

It should be pointed out that we did not systematically 
develop a weighting scheme for evaluation, largely because 
of the difficulty in assigning weights to all of the elements. 
Rather, we used the workshop meetings to develop a rela­
tive weighting scheme for selected elements based on 
interaction between the workshop participants. 

The final evaluation which resulted in the selection of a 
preferred system consisted of the repeat of the side-by-side 
comparison of each system plus the development and 
presentation of a complete set of cost breakdown sheets for 
each system which included a broad variety of lease, 
purchase, depreciation choices. 

SUMMARY 

We have presented a protocol for the systematic analysis 
and selection of a computer system for a diverse medical 
community. The process involves physicians, physician 
employees, industrial engineers, and computer scientists 
working in a collaborative atmosphere. As a result, a large 
sample of the medical community of Clackamas County is 
prepared to implement a computer based information 
system in 1975. 

REFERENCES 

1. Barnett, G. 0., "Massachusetts General Hospital Computer 
System," Chapter 17 in Hospital Computer Systems, Morris Collen 
(ed.), John Wiley and Sons, New York, 1974, pp. 517-545. 

2. Timmreck, E. M., "Computer Selection Methodology," Computing 
Surveys, Vol. 5, No.4, pp. 199-221, December 1973. 

3. Raymond, S., "Criteria in the Choice of a Computer System," Parts 
I and II, Journal of the American Medical Association, Vol. 228, 
Nos. 5 and 8, pp. 591-594 and 1015-1017, April 29 and May 20,1974. 

4. Giebink, G., Computer Selection for a Patient Information System, 
Health Data Management Systems, Denver, Colorado. February 
1972. 

5. Joslin, Edward 0., Computer Selection, Addison-Wesley, Reading, 
MA,1968. 

6. Health Information Management Study, Progress Report Volume I 
and II, March 31, 1974. 



746 National Computer Conference, 1975 

APPENDIX A-SUMMARY OF 
TECHNOLOGICAL/COST EVALUATION 
ELEMENTS 

I. VENDOR OVERVIEW 
A. Corporate Profile 

1. Parent Company 
2. Data Founded 
3. Number of Employees 
4. Employee Skill Mix 
5. Number of Active Customers 
6. Length of Customer Service 
7. Profitability 
8. Sales Volume 

B. Product Profile 
1. Type of Product(s) 
2. Completeness of Product Line 
3. Market Segment Serviced 

C. Health Care Experience 
1. Installed Systems 
2. Staff Experience 
3. Source of Medical Input 

II. SYSTEMS PERFORMANCE 
A. Hardware Performance 

1. Type of Hardware 
2. Configuration 
3. Central Processor 
4. Memory 
5. Major Peripherals 
6. Data Communications 

B. Programming Languages 
1. Language Types 
2. Programming Ease 
3. Standardization 
4. Portability 
5. Efficiency 

C. Operating System 
1. Type of System 
2. Scheduling 
3. Number of Tasks/Partitions 
4. System Compatibility 
5. Security 

D. Data Base Management 
1. Type of System 
2. File Structure 
3. Access Techniques 
4. Security 

E. Utility (Support) Programs 
1. Diagnostics 
2. Program Development Tools 
3. Other Available Programs 

F. System Upgradability 
1. Age 
2. Production Status 
3. Upward Compatibility 
4. Ease of Program Conversion 

G. System Support 
1. Vendor Support 

2. Maintenance Requirements 
3. Operation Requirements 
4. Space Requirements 
5. Power and Cooling Requirements 

H. Stage of Development 
III. APPLICATIONS PERFORMANCE 

A. Practice Management 
1. Statistics Reporting 
2. Peer Review 
3. Budgeting 

B. Business 
1. Aged Accounts Receivable 
2. Daily Transactions 
3. Post Accounts (Close Books) 
4. Trial Balance 
5. General Ledger 
6. Billing 
7. Payables 
8. Dictionaries 

a. Consumer 
b. Vendor 

9. Subsidiary/Special Accounts 
10. Edit (all other applications) 

C. Health Care 
1. Medical Records 
2. Scheduling 
3. Patient Histories 
4. ECG Analysis 
5. Diagnosis 
6. Laboratory 
7. Pharmacy 
8. Drug Interaction 
9. Training/Education 

D. Insurance 
1. Third Party Claims 
2. Third Party Receipts 
3. Claim/Receipt Justification 

E. Communications 
1. Message Switching 
2. Transferring Files 
3. Accessing File Subsets 

IV. START-UP AND EXPANSION CAPABILITY 
A. Minimum Break-even Configuration 
B. Expansion Capability 

V. USER INTERFACE PERFORMANCE 
A. User Equipment 

1. Input Devices 
2. Output Devices 
3. Miscellaneous Devices 

B. Communication/Display Techniques 
1. Interaction Protocol 
2. Response Time 
3. Error Control 
4. System Failure Recovery 

C. Security 
1. Responsibility 
2. Security Schemes 
3. Violation Detection 
4. Audit and Reporting 



D. Hours of Service 
1. Daily 
2. Nights 
3. Weekends 

E. Human Factors Design 
1. Operator Acceptance 
2. Language Requirements (Special Encoding) 
3. Training Time 
4. Space Requirements 

A Protocol for Evaluating Computer Systems 747 

5. Convenience of Use 
6. Office Disturbance 

F. Documentation and Training 
1. Systems 
2. Applications 
3. User 

VI. COST 
A. Time Shared Access 
B. Owning the System 





A clinical information system (CIS) for 
ambulatory care 

by CLEMENT Me DONALD, BHARAT BHARGA VA and DAVID JERIS 
Regenstrief Institute 
Indianapolis, Indiana 

INTRODUCTION 

In this paper we wish to present an evolving ambulatory 
care information system (CIS) which has been in use by 
physicians since July 1, 1973. The noteworthy features of 
this system include: 

1. Implementation in a high level interpretive language 
on a mini computer. 

2. Paper based (optically read turn-around documents) 
rather than electronic terminal I/O. 

3. Automated clinical surveillance (the computer works 
for the physician by searching out errors and danger 
conditions rather than being a passive repository of 
data). 

4. Data base management orientation to better cope 
with the constant companion of change. 

By ambulatory care we mean medical care provided 
in physician offices and outpatient clinics. We call the 
place where such care is given a Care Facility (CF). It 
might be noted that our host facility is part of a hos­
pital-and to some extent the CIS provides service to the 
hospital as well as the outpatient clinic. 

In the discussion which follows we distinguish between 
legislative and executive decisions. The former. is a deci­
sion to change operational rules. The latter decision is a 
decision to act based on pre-defined operational rules. The 
purpose of the CIS to be described is to do executive work 
at each level: the clinical, ancillary and administrative 
level, and to enlighten legislative decisions by providing a 
statistical overview of the system's operation. Because of 
our emphasis on ambulatory care, the clinical service 
modules do not serve inpatient care, the ancillary service 
modules do. 

THE CLINICAL INFORMATION SYSTEM 

System overview 

The CIS is designed to deal with a large, 200,000 active 
patient population at the administrative-ancillary service 
level and a smaller 40,000 patient subset of that popula­
tion at the clinical level. Our limits are based on both 

749 

mass storage considerations and the statistical realities of 
our hospital outpatient facility. The largest DEC sup­
ported mass storage device holds 43 million words or ap­
proximately 168,000 sectors. Ancillary services and 
administration require access to a fixed minimum of 
patient identification data. Patient registration requires 
approximately 100 bytes of storage per patient (depending 
upon the CF's needs, more or less storage could be re­
quired). Our target of 200,000 patients fits easily and oc­
cupies 40,000 sectors; larger populations would be feasible 
but are not necessary to our environment. Based on our 
projected average medical record size of 3 sectors, 120,000 
sectors allows for 40,000 patients. This limit seems severe 
in proportion to the size of active registry, however, all 
clinics do not have equal need for full clinical services. By 
propitious shifting of patients from active to inactive 
storage, these limits can be softened. We have not yet 
taken delivery of our large mass storage device and to date 
have not accumulated any experience with very large files. 
Thus we are not certain that the system resources will be 
able to support all of the activities we have planned for 
such a large patient population. 

Operational elements of an ambulatory care facility 

An ambulatory care facility deals with four populations 
of elements: patients, physicians, clinic and parameters. 
These elements must be duly registered in the CIS by 
name and necessary descriptive characteristics. For 
example, when a patient is registered, we record his name, 
hospital number, date of birth, race, sex and other charac­
teristics. The data base approach of the CIS allows flexi­
bility in the choice and the number of such attributes. 

The notion of a parameter and what should be 
registered about a parameter may not be obvious. By a 
parameter we mean any clinical observable, including 
treatments, tests, physical findings, items of information 
from the patient's history, and second order aggregates 
of preceding elements. Thus, "penicillin" is a parameter, 
"electrolytes" is a parameter which is second order be­
cause it subsumes four primitive parameters: sodium, po­
tassium, chloride and bicarbonate. The parameter set 
which describes a clinical universe varies from CF to CF. 
It represents the discrete descriptive approximation to a 



1& 
I 
i 0 

IX 

750 National Computer Conference, 1975 

I 
lb . 
1 .. 7··. J , . 5 
I .......... ~ 1:·8 .. ·· •... : i 

i· ~ 
1 t1 i Ij j 

1= =31==& .• ilill!l!l2 21f 
~AlffF~'~LllL.A~iJr~···~F'Ff~~~~·.f.6i~~~~;~~w ............ . 

lU] 

Figure 1 

continuous universe. For each parameter, its name, 
synonyms, type (whether tree, scalar, etc.), normal range, 
absolute range, units, and certain other characteristics 
must be registered before observations about that 
parameter can be accepted. 

The clinical information system and the care facility 

The CIS is designed to serve the CF at three levels: 
clinical, ancillary and administrative'. However, the main 
impact of CIS on the quality and cost of care is made by 
the services it provides at the clinical level. The clinical 
level also involves the most severe problems, hence, the 
emphasis is on the clinical level in this report. 

The inputs to the clinical record include all patient re­
lated information. This includes information gathered by 
the physician, by the nurse, by the lab, by radiology, and 
by other ancillary services. 

One must view separately the problems of trapping 
ancillary service data from those of physician acquired 
data. Ancillary service data can be trapped in two modes. 
The most efficient is via a computerized ancillary module. 

The alternative is for a clinic based clerk to enter such 
data either via optically read forms tailored to the statis­
tical distribution of test usage or via direct terminal entry. 

How to trap data produced by the physician during the 
clinical encounter? This is the thorniest problem. 
Grossman, et al. have developed an elegant approach 
involving standardized encounter forms and dictaphone 
transcriptions.1 We have taken a different tack. First we 
assume that most data trapping within the clinical envi­
ronment will be expensive since it involves in one way or 
another an expensive resource-the physician. Second, we 
assume that most of the data he collects is not of sufficient 
archival importance to justify high costs (for data of short 
term utility, his handwritten notes will suffice). Given 
these two assumptions, we let him decide what parameters 
are of archival importance to him and ask him to record 
observations for these on our optically read forms. He 
must distinguish between two classes of importance: con­
ditional or unconditional. In a general medicine clinic, the 
urine glucose might be designated as a conditionally im­
portant parameter under the condition that the patient is 
diabetic. Conversely, blood pressure would be declared un­
conditionally important given the proven consequences of 
hypertension and our ability to reverse them with treat­
ment. Parameters that are of declared importance to the 
clinician appear on the encounter form (Figure 1). Those 
that are unconditionally important always appear. Those 
that are conditionally important appear only when the 
specified conditions are met. The CARE language to be 
discussed later provides the mechanism for specifying con­
ditional relationships which vest importance on a given 
parameter. As one may notice from Figure 1, space limita­
tions constrain us to a maximum of sixteen important 
parameters on anyone patient. This has not been confin­
ing for our outpatient environment. 

For more detailed data input by the physician, two 
mechanisms are available. First, special turn-around docu­
ments can be tailored to an individual physician's data 
input needs. As many as sixty different parameters can be 
specified on a single form. Second, keyboard terminal 
entry is available. In addition, we are now developing a 
tree structured multiple choice form which can also be 
produced as a turn-around document. Our underlying bias 
is that much of the voluminous free text data found in the 
conventional medical record is not of sufficient archival 
value for computer storage, and thus these special input 
mechanisms will only infrequently be required. 
response to a patient visit in anticipation of a return. In 
this second case, there must be a delay between the 
patient encounter and report production to assure that 
outstanding test requests have been completed and 
returned to the system. 

Clinical reports 

The first report is the summary report (Figure 2). This 
report is a flow sheet displaying the time course of all 
recorded parameters. Physical findings, historica! data, 



A Clinical Information System (CIS) 751 

12··· NOV··· 74 02: :-:':7 PM (:322] 
MARION COUNT V GENERAL HOSP .A.E __ L.Za:r::= ••• 

2:3-.JAN 20-I"IAF< i8-"SEP 1<)···OCT 04-··DEC 1:~:-DEC 26-FEB 12-MAR 
/73 /73 /73 /73 /73 /73 /74 /74 

CLINIC 
PULSE 
8YS BP :;::: I TT I NI::;; 
D I AS BP SIT T I N(3 
WfIGHT 
FUNCTIONAL CLASS 
LEG SWELLING 
AM URINE GLU 
AI"! UF\IN~·. I<ETONi::S 
DF X TRO!:n I X 
E. R. VI:3ITS 
HYPOGLYCEMIA 
LOST wom::: DAY!::: 
# FT LESION::':; 

GL..U 
BUN 
NA+ 
1(+ 

CL 
C02 
BAND!::: 
POLYS 
LYMPH!~: 

MONOS 
EOSINS 
HGB 
HCT 
WBC 
CREAT 

MAALOX 
PHENOBAF<B I TAl. 
DIGITOXIN 
HYDROCHLOROTHIAZ 
CHLORDIAZEPOXIDF 
lENTE U 80 
LENTE '-' 100 
DYAZIDE 
FE 804 
TNG 1/150 
MULTIVITAMINS 

120 
74 

154 156 

25 
'~4 

152 
100+'· 
14:::: 

:3+.­
o 

2.00":" 
o 

360+'-
14:' 

o 

o 

4ti 
195 

O. 10 

10 
D/C 
54 

1 

4 
74<:' 
15+'· 

5 
2 

25 
::32 

130 
70 

15:3 
2..;-, 
2+.· 

O. 00 
o 

lie.+.­
o 
o 
o 
o 

24..;-
1::=::::: 
5. 5+.-
102 

140 
5. 9+.-
103 

28 

8. 7+.- 11. 1 +.- 12. 0 
2:::":·, :~:I:. •. ::. :::::=: 
~ 9 8. 4 7. 8 

1.2 

45 
195 

O. 10 

:30 

54 
1 

';ilOO 
1 
3 

25 
80 

1:30 
70 

15:::;: 
1 

O. 00 
o 

230":' 

45 
195 

O. 10 

::::0 

54 
1 

900 
1 
3 

25 
80 

140 
70 

156 

O. 10+.­
o 

200+.­
o 
o 
o 

25+'-
141 
5. 4+.-
103 

27 

11. 5+.­
:36,,;· 

45 
195 

O. 10 
50 
D/C 

54 
D/C 
D/C 

1 
D/C 

Figure 2 

treatments, lab tests, x-rays and other ancillary service 
measurements are all represented. Abnormal numerical 
results are flagged by arrows. In order to preserve the ma­
trix format, tree valued parameters are represented by a 
two letter c'ode which by convention is stored at the root 
node of every tree result. !3oth the state and trend are 

represented. The state is described as normal (N), 
pathologic (P), or different (D). The last category indi­
cates minor abnormalities or findings which are normal 
variants. The trend is indicated as better (B), worse (W) 
or same (S). 

The value of a flow sheet lies in its clear display of data 



752 National Computer Conference, 1975 

over time. Change and the rate of change, both of which 
are crucial determinants in medical decisions, are readily 
apparent. In addition to the standard total summary, the 
system provides summaries restricted to a specific time 
window or a specified set of parameters, the abnormal 
report which displays only abnormal parameters, the com­
pact report by which parameter trajectories for multiple 
patients are displayed on a single page. This latter report 
supports clinical legislative decisions by presenting data 
about a large number of patients in a compact form. Any 
of the above formats can be displayed on a CRT terminal 
in real time or printed on paper in batch mode. 

The second report referred to above is the encounter 
form. We have already alluded to this report which is a 
two-part turn-around document with many purposes. It 
supports the physician's assimilation of the patient's ac­
tive treatment states by displaying the patient's active 
treatment profile at the top of the form (Figure 1). Notice 
that the profile is actually a list of prescriptions as written 
by the physician. This is not by coincidence, since the en­
counter form is a constituent of the prescription process as 
we will see later. 

The CARE language 

Before discussing the third report provided as input to 
the clinical level, it is necessary to discuss the language by 
which the physician defines his executive rules·. The 
CARE language provides us with two capabilities, one 
which helps legislative decisions, the other executive deci­
sions. The language is interpreted by a keyword driven 
compiler written in BASIC-PLUS. The CARE language 
allows the user to specify clinical conditions and con­
sequent therapeutic or diagnostic actions in terms of if­
then-else constructs. The building block of the language is 
the parameter clause containing a parameter subject and 
one or more modifiers. There are two kinds of clauses, ac­
tion clauses and conditional clauses. For conditional 
clauses, the modifiers express restrictions on the temporal 
course of the parameter and the range of magnitudes or 
changes in magnitudes. Conditional clauses are linked by 
the Boolean operators "and", "or", in addition to temporal 
connectives "and followed by", "and preceded by" "and 
coincident with". "Then" and "else" can be used to relate 
conditional clauses to action clauses. The action clause in­
cludes a suggestion to do something in relation to the sub­
ject parameter and the justification for that suggestion. 
For example, "order urine glucose because of risk of meta­
bolic toxicity" is a valid action clause. 

A purely conditional CARE statement is an inquiry. In 
response to such an inquiry, the computer will provide the 
list of patient numbers for which the conditional state­
ment was true. Coupled with the compact summary and a 
statistical analyzer to be described later, we have a system 
for supporting legislative decisions in the clinical realm. 
What is the best treatment for hypertension (high blood 
pressure)? We can examine our experience to see. How 

valuable is the serum calcium as a screening test? We can 
look at the total number of serum calciums, the number 
that were abnormal and the consequent course of the 
patient. We can confirm intuitive impressions that a 
particular disease is too frequently escaping notice or that 
a particular therapeutic intervention is too often ineffec­
tive. We can do retrospective clinical research that has in 
the past required laborious hand perusal of thousands of 
pages of medical records. 

In summary, the inquiry capability in concert with its 
two support modules gives us access to the distributed 
wisdom otherwise locked up in a large number of indi­
vidual medical records. 

CARE statements containing a conditional and an ac­
tion clause have different functions than those containing 
only conditional clauses. We call them executive state­
ments because they serve executive functions. A common 
clinical task is to execute rules of the form: If a given con­
dition is detected, then initiate a given response. An 
examination of physicians' orders on any medical ward 
will reveal statements of the above form written to the 
nurse and attest to the fact that the physician need 
not be directly involved in all arcs from condition to 
response. For diabetics, we see orders written to adjust the 
insulin dosage according to the level of sugar in the urine. 
For heart patients, the physician writes to adjust the anti­
arrhythmic medication according to the number of extra 
beats demonstrated on the cardiac monitor. For a large 
number of conditions, he will ask to be called if the blood 
pressure drops below a specified level. All of these orders 
are written by the practitioner to be executed by the nurs­
ing staff conditioned on the value of one or more 
parameters. These are called standing orders. We envision 
a role for the computer analogous but more extensive than 
that just described-though perhaps not quite as inde­
pendent. In both inpatient and outpatient CFs, there are 
multitudinal tasks which can be described in terms of 
cookbook standing orders. These all involve a detection 
step and an action step. In general terms, there are many 
different classes of such tasks: the detection and response 
to a recent change in a parameter, the detection of a 
parameter abnormality which influences a drug's me­
tabolism and the consequent appropriate dosage adjust­
ment, the detection of adverse drug effects by regular 
checks on indicator parameters, and the initiation of the 
proper "work-up" of an isolated abnormality. We believe 
that such tasks constitute a significant burden on the 
primary care practitioner and are subject to error. By 
describing such tasks in terms of CARE statements, the 
burden can be transferred to the computer. It is clear that 
the computer (at the present) cannot physically accom­
plish the actions, thus the analogy with standing orders to 
a nursing service is not perfect. The computer can only 
produce a list of suggestions which must be executed by a 
human intermediary. We believe that at least initially the 
physician should be the intermediary and sieve the sugges­
tion~ for appropriateness. 

To give a feeling of the CARE language without going 



A Clinical Information System (CIS) 753 

==;'_,IF<VE' I LLAt'-lI=:E REF".=-F<T 

aA.E __ I.. __ Z_S_T • • 5.<= .• :3 H •••••• 

II::-:'='N::::':';; ~i: LIER MEA=:::;I_IR I NI=ii : 
URIC [ 31-0CT-72J TO MONITOR : DYAZIDE 

DIA::;; BP [ 2/':'· H FEB···74J TO MONITOR : DYAZIDE 

CAIJ"r' I ''':::'N::;::-;; : 
DIGITOXIN 

THIAZIDE DIUHETIC INCHFASED TOXICITY 
PHENOBARBITOL : DFCF<EASED EFFECT 

DYAZIDE 
BUN~ 24 =) INCR~ASEn RISK OF METABOLIC TOXICITY 

MIGHT REQUIRF CHANGING TREATMENf REGIMEN 
URIC= 9.8 & K+: 5.9 =) CAUSE OF METABOLIC TOXICITY 

MIGHT REQUIRE D/C~ING 
FE S04 

ANTACID:::;; DECREAS~D EFFECT 

I ... ..c C:C·--IAF..:T 

REFERFNCFS AVAILABLE THE TWO KF.Y RFFI::..HENCES: 
A PRACTICAL QUIDE TO DRUG USAGE. .. IN RFNAL FAILURE 

BENNFT ET ALL. JAMA 214: 14/.:.8-1475 
DRUG INfFRACTIONS 

HAN::::;TEN, LEA ~~ FI::BIGER I PHIL. 1'?73 
Figure 3 

into great deal of detail we present a few examples. Inade­
quately treated high blood pressure could be addressed by 
the following CARE statement: . 

If "dias BP" > 1 00 then iflast "BP meds" > 0 then 
increase "BP meds" because of under-treatment, 
else start "BP meds" because of absent treat­
ment. 

To declare that a parameter is important conditionally we 
write the following: 

If "diabets meds" then order "urine glucose" 

The application of these rules to a CF is accomplished as 
follows: The practitioner develops the set of CARE rules 
which reflect the needs of his own practice. These are used 

to analyze his patients in a process we call surveillance. 
Surveillance can be initiated by a patient visit or at 
regular intervals by the passage of time. At each sur­
veillance the patient's record is tested against the entire 
set of CARE statements. For a given patient, if the condi­
tions of an executive statement are satisfied, two types of 
information are saved: (1) the time and value of the 
specific parameters which are satisfied; and (2) the con­
sequent action clause. Two reports reflect this informa­
tion, the encounter form and the surveillance report. Test 
suggestions appear in the "orders" area of the encounter 
form to facilitate the ordering of that test as shown in 
Figure 1. Conditionally important parameters whose con­
ditions are met appear in the "observations" section to 
facilitate their entry into the system. 



754 National Computer Conference, 1975 

The surveillance report is best explained by example. 
Figure 3 shows such a report based on a limited set of 
CARE statements which relate to drug usage. Drug moni­
tors are suggested at the top of the report, drug interaction 
and test results with important therapeutic consequences 
appear under the caution heading. One might notice from 
the flow sheet for this patient (Figure 2) that the recom­
mendation to discontinue Dyazide was heeded. 

In addition to the support of executive decisions, the 
system assists the actual prescription writing process. The 
conventional prescribing function requires that the 
patient's name and address and the prescribing instruc­
tions be written once on an individual slip for each active 
medication. With the encounter form, only new or changed 
medications require writing. For maintenance medications 
to be continued, the physician marks a single bubble and 
initializes the preprinted prescription. Only drugs under 
the controlled substance act such as narcotics require a 
separate prescription. This exception causes little incon­
venience since they are rarely prescribed in an ambula­
tory setting. 

Throughout the discussion of the CARE level we have 
not mentioned diagnoses. Presently, we do not store them. 
Active development is proceeding at an international level 
on a diagnoses and complaint code for ambulatory care. 
We would prefer to wait until that solidifies before we 
commit ourselves to a large dictionary of diagnoses. Our 
plan is to present the active diagnoses as a list along the 
far right-hand column of bubbles in the bottom section of 
the encounter form. 

Operational experience 

The CIS has been in operation at the clinical level since 
July 1, 1973. Since then we have accumulated records on 
more than 2000 patients in four different clinics, the dia­
betes, the renal, one session of the general medicine, and 
the nurse clinician clinic, and have been providing the 
three previously mentioned reports for all patient visits to 
the above mentioned clinics. More than 200 different 
clinicians at varying professional levels-senior medical 
students, interns, residents, staff physicians and nurse 
clinicians-have been exposed to these reports in one or 
more clinics. These care providers have been cooperative 
and have complied to the rigid requirements for inscribing 
block print numbers on the input forms. In the diabetes 
clinic, the character error rate was 1.5% of which half 
were automatically detected by the optical reader. 

The time saved in writing prescriptions is spoken of by 
all the practitioners as being ample justification for use of 
the system, though the temporal savings have not been 
documented. In one study of eighty patient visits to a 
single staff physician, his average time per patient was 23 
minutes with the conventional record and 16 minutes with 
the computer record. The summary report is appreciated 
but only after the patient has accumulated a computer 
record of some substance. The surveillance report has 

been used in the diabetes clinic since November of 1973 
where it produced a measurable difference in physician 
response to abnormal lab results and the ordering of tests 
to monitor drug effectiveness. The acceptance of the phy­
sician in the diabetes clinic is remarkable because most of 
the care providers rotate on a monthly or bi-monthly 
basis. We had not expected the transition from standard 
record to the computerized version to be so smooth. 

Ancillary service modules 

As was mentioned previously, the most efficient method 
of trapping data which flows from the ancillary services to 
the clinical level is to computerize the ancillary services. 
This is our goal. At present we have two such systems in 
operation. 

The lab system has been reporting results to the ward 
since November of 1974. Information processing in the lab 
consists of a two cycle process. Test requests arrive at the 
lab grouped by patient. The requests must be re-organized 
to conform to the organization of the lab, that is, grouped 
by test station, each of which performs a single battery of 
tests. Common to every lab is the fact that an individual 
worksheet is produced for each work station. The 
worksheet is simply a list of patients whose samples are to 
be analyzed at a given work station. The analysis is done; 
the results are recorded on the worksheet, transferred to 
the request form (i.e., re-sorted by patient), and dis­
tributed to their originators. In our system, test requests 
are logged via a terminal. The worksheet is a turnaround 
document produced by the computer on which results are 
inscribed as block-print numerics for direct optical read­
ing into the computer. Both the initial and final sort is a 
computer rather than human sort. Multiple reports for 
multiple purposes (blood drawing lists, label, master logs, 
physician reports, ward reports, etc.) can be produced at 
will by specifying a command string. The system is 
flexible, robust and simple. 

At the present, all tests performed by the chemistry, 
hematology and portions of serology section are handled 
by the computerized system. Test results for patients 
whose records are maintained by CIS are saved for batch 
updates to patient records. 

The pharmacy module has been operatiQnal on a pilot 
basis since October 1974. A patient within the CIS 
presents his encounter form which bears his prescriptions 
to the pharmacy. After the necessary identifying informa· 
tion for the patient has been entered at the terminal, the 
computer cycles through all the active drug orders for the 
patient. These orders match the prescriptions printed on 
the encounter form, and the pharmacy clerk simply dis­
continues, repeats or changes the orders as the physician 
has indicated. New prescriptions are entered after all the 
active orders have been processed. For each prescription, 
the computer translates the prescription as written by the 
doctor (the sig.) into instructions to the patient, selects the 
tablet or bottle size from the pharmacy inventory which 



best fits the specified dosage, calculates the amount of 
medication to dispense, and prints a label for the medica­
tion bottle. Additional features aid the pharmacy in con­
trolling its inventory. 

SYSTEM IMPLEMENTATION 

Since space does not permit a total description of the 
implementation of CIS, we will limit our description to 
some of the distinguishing features. 

Data base management system (DBMS) 

With the exception of the patient's medical record file 
and a few minor files, all data storage and retrieval is 
driven by a table of file descriptions and performed by a 
single I/O function and a set of encode/decode functions. 
The data base is divided into a number of logical files 
which may be contained in one or more physical files. All 
records contained in a single logical file are of the same 
size and format. A record may be between 2 and 512 bytes 
in length and can be divided into as many as 128 fields. 
Fields are of 9 types, scaled integer (2 bytes), floating 
point, variable sized scaled integer (from 1 to 7 bytes), 
date, time, pointer, string, packed string (only alpha-nu­
merics) and bit string. Application programs access fields 
symbolically. Using the stored file descriptions, the I/O 
function determines the sector address, byte offset and 
length of the data requested. The data type is checked and 
the field is decoded if necessary. Records may be related 
in tree structured hierarchies (i.e. tree entry scheme).2 
The DBMS maintains all pointers for the application pro­
grams. From any record tree, a program can access fields 
in that record or fields in any record in the subtree below 
it. The I/O function performs error checking and provides 
some security in that only authorized programs are 
allowed to change the contents of a given logical file. For 
direct addressing of records by content, a hash table is 
cr~ated. A logical file is required for each hashed field. 

We have a set of utility programs for storing, editing, 
listing, sorting, rebuilding and packing the files main­
tained by the DBMS. A command language is used to 
specify the action to be performed, the path to be taken 
through the tree structure, and the fields to be accessed. 
The fields are specified by logical identifiers, and if we 
had the core space, could be represented by text names. 
Unfortunately, with our limitations numeric "names" 
must do. The application programmer does not enjoy the 
luxury of a command string. He must pass a variable 
length integer array to the I/O function. 

The advantages of this DBMS are twofold. First, file 
maintenance is simplified since common utility programs 
are used for all of the different DBMS files. And second, 
program code is decoupled from file structure. The time 
overhead to the system-is insignificant. We are I/O bound 
and the DBMS is efficient in its use of I/O. However, 

A Clinical Information System (CIS) 755 

there is a significant core space overhead required by the 
I/O function and the core resident file descriptions. 

The statistical module 

Since tallies, counts and averages are important to the 
legislative process at every level, we have developed a 
statistical processor for our data bases. Using a command 
string analogous to that presented above, one chooses the 
fields of interest from his logical file. Three different 
statistical outputs can be produced for each of the 
specified fields: (1) averages, (2) standard deviations, and 
(3) histograms. Histograms are defined over a partition of 
either equal or unequal spacing. A set of cut points is 
entered to define the desired partition. Averages and stan­
dard deviations are only defined for numeric fields. The 
histogram output can be generated for any field type, 
including strings. Thus, we can create histograms of the 
Lge of our patient population tallied over ten year inter­
vals, or that of the alphabetic distribution of names tallied 
over the letters of the alphabet. 

Many of our statistical questions are of a conditional na­
ture. For instance, one may not want the average blood 
pressure of the population, but the average blood pressure 
by patient age. The statistics module can produce such in­
formation. For conditional statistics, the user must specify 
conditional fields as well as target fields. A partition de­
fined by cut points must be specified for each conditional 
field. By sorting the records of interest by the conditional 
fields, the task of generating conditional statistics is 
converted into a simple repeated application of the process 
defined above. 

The statistical module can be used by all files in the 
CIS. For administration, it can provide work volume 
statistics by clinic, by parameter, by patient type, by 
time, etc. For the clinical lab, it can provide quality con­
trol statistics. For the clinician, it can provide drug usages 
statistics and the incidence of test abnormalities. 

Hardware and software 

The computer which supports the CIS is a Digital 
Equipment Corporation PDP 11/45 located in the 
Regenstrief Institute at Marion County General Hospital. 
The PDP 11/45 is a midi computer with a word length of 
16 bits and a cycle time of 300 nanoseconds. It operates 
as a time shared system available seven days a week, 
twenty-four hours a day except for periodic maintenance. 
Routine time sharing operations have been carried out on 
our system for more than two years. The central processor 
has 80K words of core memory, and 3.6 million words of 
disk memory. By the time this report is published, we will 
have acquired a 43 million word mass storage disk with ex­
pansion capability to 344 million words. The operating 
system, supplied by the vendor, is called RSTS/E. It 
provides a multi-user, interpretive environment for 
programming in BASIC-PLUS, which is a very powerful 



756 National Computer Conference, 1975 

extension of Dartmouth BASIC. It includes full string 
processing, flexible file handling, matrix instructions, 
Algol-like statements such as IF-THEN-ELSE, WHILE 
and UNTIL loops, and recursive subroutines. This lan­
guage was designed as an application's language and has 
shown itself to be very suitable to our medical applica­
tions. 

CONCLUSION 

In summary, we are in the process of developing a CIS to 
serve all levels of ambulatory care, and the ancillary 
service and administration levels of inpatient care. In 
contrast to other such developments, we rely on computer 
printed and optically read turn-around documents rather 
than keyboard terminals for data input. We feel that a 
CIS can be much more than a passive repository of data, 
that it can be actively involved in executive decisions, 
particularly at the clinical level. The CARE language was 
developed for that reason. The use of a computer from a 
family of minis and midis provides great market flexi­
bility for our system. At the lower end of the DEC PDP 11 
line are systems which could be afforded by small group 
practices, and at the upper end, we believe, are systems 

which will be able to support large outpatient clinics such 
as our own. We are happy with our choice of application 
language. The overhead of an interpretive language is no 
drawback in an I/O bound system such as ours; the 
increased programming efficiency more than makes up for 
the short-comings of BASIC-PLUS. 

We have not yet reached our goals. The data base must 
yet be extended to include diagnoses and narrative 
descriptions, the latter of which we will store in a tree 
structured code. Ancillary service modules are still to be 
developed for radiology, EKG, biopsy reports and nuclear 
medicine. Our patient population must be enlarged ten­
fold to encompass our -clinical target population. We ac­
knowledge that our goals are ambitious for a midi com­
puter and an interpretive language. However, our 
experience to date suggests that they are within reach. 

REFERENCES 

1. Grossman, J. H., et aI., "An Automated Medical Record System," 
JAMA, 224, pp. 1616-1621, June 1973. 

2. CODASYL Systems Committee, A Feature Analysis of Generalized 
Data Base Management Systems, May 1971. Available from ACM. 



An on-line centralized computer-coupled 
automated laboratory information system 
using touch-tone card dialer telephone and 
audio-response technology for test order entry 
and result retrieval* 

by ARTHUR E. RAPPOPORT, WILLIAM D. GENNARO and 
ROBERT E. BERQUIST 
The Youngstown Hospital Association 
Youngstown, Ohio 

INTRODUCTION 

An important element in the evolution of the American 
Health Care System is the emerging recognition that many 
patients currently being hospitalized can be treated ade­
quately on an ambulatory basis, thus relieving the 
pressure for hospital beds, reducing cost and eliminating 
the patients' separation from the home and family. Ambu­
latory Care Facilities (ACF) are being developed for these 
purposes in many medical centers. 

The diagnostic departments play an important role in 
such ventures and the clinical laboratory stands in the 
forefront of that effort. Successful laboratory participation 
in an efficient ACF depends on the ability to perform 
rapidly a wide spectrum of tests with maximum relia­
bility, accuracy and precision and to transmit promptly 
the results of those tests to the ACF physician to permit 
him to prescribe appropriate treatment without undue 
delay. In order to achieve maximum public acceptance of 
the ACF concept, it is necessary that the ambulant patient 
not be required to wait an inordinate period of time for 
examination by the physician, procurement and .testing of 
specimens, diagnosis and definitive treatment. The 
crowded, chaotic, Out-Patient Department of yesteryear is 
no longer necessary or acceptable.! 

The Youngstown Hospital Association (YHA) Labora­
tory Information System (LIS) has been evolving over the 
past 20 years in fortuitous anticipation of these develop­
ments and suggests appropriate solutions to many of the 
problems which are perceived in ambulatory medicine. 

The YHA comprises three, geographically separate, hos­
pital units; North (540 beds), South (450 beds), and Tod 
Babies and Children's (TBC) (75 beds). The North and 
South Units are five miles apart and TBC is about 1000 
yards from the North Unit. North and South possess 
conventional Emergency Departments which require ur-

* This project was supported by Grant No. HS 06-05 from the PHS 
Health Resources Administration and Bureau of Health Services Re­
search. 

757 

gently performed laboratory tests. TBC and the South 
Units have large, structured ACF's treating over 100,000 
patients per year. Upon completion of a current construc­
tion program at the South Unit including new nursing sta­
tions and an ACF, a marked increase in ambulatory care 
is anticipated. In order appropriately to respond to the 
swelling tide of in- and out-patient tests, the Department of 
Laboratories embarked a decade ago on a program to 
restructure its facilities and operating modes, and is now 
capable of mastering tomorrow's challenges.2 

LABORATORY INFORMATION SYSTEM (LIS) 

The LIS consists of six major sub-systems as follows: 

Centralization (Specimen collection and transport) 
Examination (Test performance) 
Documentation (Computerization) 
Communication (DIVOTS and terminals) 
Retention (Data storage and retrieval) 
Administration (Staffing, cost control, records, etc.) 

Centralization3
,4 

The Centralized Laboratory of the total hospital system 
is located in the North Unit and contains optimally sized 
staff and space, and sufficient equipment to perform most 
of the routine and special procedures required by all 
patients in all units of the YHA. Blood Bank donor 
processing and Serology testing are localized at the South 
Unit. 

The South Unit acts as a satellite but possesses suffi­
cient in-house staff at all times and facilities to perform all 
urgently required tests. In addition there are several phle­
botomists responsible for the collection of specimens. 
These are transported by hospital personnel in a frequent 
automobile shuttle to the North Unit Laboratory Triage 
area when they are merged with specimens collected from 



758 National Computer Conference, 1975 

YOUNGSTOWN HOSPITAL ASSN. 
Qirect Input yoice Qutput !elephone ~stem 

DIVOTS 

TOO Dill BlC------NORTH UNIT +---iSPECIMEN TRi\NSPORT~ SOUTH UNIT 
CENTRAliZED AlJTOMATED COMPUTERIZED CLINICAL I AAORUORY 

CI 
pi 
vi 

LI 
AI 
Bi 

935 

IIOoSPEC-IOENT ® lTf,IlI 

Flow Chart showing horizontal communication lines between the different departments of the various units. Vertical connections create a continuous, 
automatic, 2-way Laboratory Information System (LIS) 

North and TBC patients. The specimens are immediately 
logged into the Spec-Ident (see below), centrifuged and 
brought to the appropriate laboratory division for 
analysis. 

Without completely describing all details of this ~ub­
system, it is self-evident that centralization allowing large 
volume testing leads to considerable economy of scale in 
terms of enhancing personnel productivity, space and 
equipment utilization. Thus it justifies substantial invest­
ments in the large scale, automated, analytic and com­
puterized equipment to be described. 

Examination 

Laboratory tests are conventionally classified as 
Hematology, Biochemistry, Microbiology, Urinalysis, 
Blood Bank, Pathology and are carried out by registered 
Medical Technologists on specimens of blood, spinal fluid, 
urine, feces, and other human material under the supervi­
sion of clinical scientists and pathologists. 

Tests are performed in three major modes: Automated, 
semi-automated, and manual ("handraulic"). In Figure 1, 
SMA 4, 6, 12 are automated and the devices, pH meter, 
Fibrometer, Spectrophotometer, etc., are semi-automated. 
These electronic instruments are coupled on-line to the in­
laboratory dedicated computer by appropriate interfaces 
(SMART, INTFC) and multi-plexors. 

The computer (LDM-Laboratory Data Manager), 
manufactured by T & T Technology, Inc. (Madison, Wis­
consin), is built around the Data General Nova 1200 Mini­
computer. 

Automatic, machine readable specimen identification is 
achieved by ID (Spec-Ident), punched stub-card readers 
(below) which also communicate directly with the LDM. 
The test instruments emit a wide variety of digital; wave 
form or steady-state analogue, linear and non-linear 
signals and the data are reduced to final concentration 
either by hardware or software in the LDM. 

Results of manual tests such as Urinalysis, Blood typing 
and Bacteriology, are entered into the LDM by laboratory 



An On-Line Centralized Computer-Coupled Automated Laboratory Information System 759 

personnel through the use of Port-A-Punch cards or ter­
minal keyboards, or CMC/ST.8 

The automated and semi-automated devices permit 
complete hands-off performance, eliminating manual 
transcription of collection, loading or work lists, result cal­
culation and specimen identification, all functions carried 
out by the computer. 

Documentation-Computerization5 ,6,7 

The YHA centralized computer unit (CPU) consists of 
an IBM 370/135 System. Using CICS as a teleprocessing 
monitor, message switching is accomplished through ter­
minals and the other computers. All patient demographic, 
medical and fiscal information is on file (PMF). 

The IBM S/7 is a 20K mini-computer with a disk 
module, audio-response unit and possessing teleprocessing 
capability. One disk pack contains an 852 word audio-vo­
cabulary of medical and laboratory administrative words. 
Figure 1 also demonstrates the configuration of the 
telephone network between the various units, the LDM, 
the 370 and the S/7 computers and their terminals. 

The paperwork flow of a clinical laboratory may be 
divided conveniently into three major sectors. Front End, 
Middle and Rear End. 

Front End 

Front End Documentation includes the creation of the 
patient's basic demographic. data base within the CPU. 
This includes all of his salient personal data such as sex, 
age, address, clinical diagnosis, previous admission to the 
hospital, financial status, etc. These data are inputted on 
line into the CPU from Admitting or ACF through termi­
nals at the time of admission. The PMF is identified with 
a unique hospital number possessing a self-check digit; a 
non-detachable wrist band is applied. This bears a printed 
label describing the patient's identity and small pressure 
labels bearing the hospital number (infra). 

Order Entry Routine 

Physicians request tests from the laboratory by writing 
their orders in the patient's· medical record. The actual 
ordering process is accomplished by nursing ward person­
nel. At YHA we have created an audio-response 
system-DIVOTS (Direct Input Voice Output Telephone 
System) which permits the generation and transmission of 
those orders directly from ward or ACF to the laboratory 
by telephone-computer coupled technology. 

DIVOTS requires the use of Touch-Tone (T.T.), card­
dialer telephones located at the nursing stations (Figure 
1). Currently there are three trunk lines from the hospital 
switchboard connected by WE403E modems to the 
System/7. It also possesses a com~ercial line bypassing 
the hospital switchboard to permit physicians to use 
DIVOTS from their office or home or to insure privacy. 

Figure 2-Photograph demonstrating the Touch-One, Card-Dialer pad 
attached to a conventional rotary telephone. Note the insertion of the 
patients' Dial-A-Card in the reader. The physician is either ordering tests 

or listening to laboratory results. 

YHA is in a rotary telephone region and thus it is 
necessary that aT. T. pad, card-dialer accessory be at­
tached to all rotary phones on Nursing Stations, ACF and 
special treatment areas including CCU, ICU (Coronary 
Care and Intensive Care Units), Surgery, Dialysis and 
Emergency Departments (Figure 2). 

Physicians' offices have the option of using T.T. pads or 
a portable attachment which can convert a conventional 
phone to T.T. capability (Interface Technology, Inc.). 
This consists of a transmitter placed over the mouth piece 
and is attached to a battery-powered T.T. pad. Thus, any 
telephone anywhere can be utilized efficiently, eco­
nomically and rapidly. 

To order a test, the DIVOTS extension number is dialed 
on the rotary phone. System/7 responds with a vocal 
message to enter a specified request. A unique, previously 
prepared, patient;s dialer-card permits automatic entry of 
his hospitat number into the system which also may be 
done manually without a card. Within three seconds, the 
audio-response system verifies the identity of the patient 
by spelling out the first six letters of his name. Other data 
including the patient's ward and the time of the phy­
sician?s order, are entered followed by test identification 
numbers as listed in an available Directory. 

As soon as the test code is entered, DIVOTS states its 
name, thus verifying the request and assuring absolute ac­
curacy of the two most vital test reliability factors, the 
name of the patient and the name of the test. If incorrect 
numbers are entered, the word "Error" is heard. Special 
instructions may be added through appropriate code num­
bers. As soon as the transaction is completed, a printer 
located in the laboratory and connected to the IBM 370, 
may print that patient's demographic, logistic and test in­
formation on appropriately designed, sequentially 
numbered and prepunched stub-card requisitions (Figure 
3). 



760 National Computer Conference, 1975 

Figure 3-This displays a patient's wrist band, his Dial-A-Card and a completed DIVOTS requisition. The wrist band possesses human readable, 
patient identification data and bears pressure labels imprinted with the patient's hospital number. The Dial-A-Card has been punched with the same 

number. 
The left half of the requisition is the Audit file copy. The right half possesses six, pre-punched individual, stubs each bearing the patient's hospital 

number, name, location and tests requested. 

The patient's hospital number is automatically collated 
with the preprinted and punched requisition bearing the 
specimen number. This is accomplished as follows: 

The number of the first sequentially printed and 
punched, fan-folded requisition is initially entered into the 
370 manually, through the LDM. The 370 automatically 
merges the inputted requisition number with the patient's 
hospital number and thus achieves identification of each 
requisition according to the patient and his data base. 
This merge is continuously carried out and monitored au­
tomatically by the 370 on all subsequent patients' orders 
and requisitions. 

This process resembles the conventional method em­
ployed in industrial organizations where the employee's 
number and pre-numbered check are collated. The 370 si­
multaneously creates a record of this transaction which is 
sent to the LDM and to the billing files within the 370 for 
further processing. Thus, the patient's identity may be as­
certained from the specimen number in the LDM. The 
clock times of the physician's order and DIVOTS input 
are automatically noted and the elapsed time is calcu­
lated. 

Specimen collection and identification 

Laboratory personnel removes the pre-printed and pre­
punched requisitions from the printer. The requisition 
comprises an audit copy and six perforated stub-cards, 
each bearing the specimen number and the computer 
generated patient demographic information. The 
technologist goes to the patient and obtains the blood 
specimen. The printed identification data included on the 
patient's wrist-band are rechecked visually against the 
requisition. One of the pressure labels bearing the 
patient's hospital number previously attached to the wrist 
band, is removed and attached to the stub card permitting 
comparison with the printed hospital number and thus 
verifying the patient's identification. 

Various types of blood specimens in different tubes are 
collected. Stubs are attached to those tubes by means of 
special rubber bands. 

Upon return to the laboratory Triage area, the stub-card 
is inserted into the Spec-Ident which identifies and records 
the time of arrival. The specimen, with attached stub­
card, is then centrifuged if plasma or serum is required or 



An On-Line Centralized Computer-Coupled Automated Laboratory Information System 761 

remains as whole blood, i.e., for Hematology tests. The 
specimens are then distributed by Triage personnel to the 
testing divisions and the actual bench-side examination is 
carried out. 

In the automated and semi-automated, on-line systems, 
both specimen number and test data are merged and 
filed within the LDM automatically. Where manual test­
ing is performed, the results are written on cards by the 
technologists and these data are key-punched or the 
technologists enter results directly on Port-A-Punch cards. 
All cards are read into the LDM and transmitted to the 
370. 

Middle documentation 

Middle documentation may be roughly defined as that 
computer process which performs A/D conversion, peak 
picking, peak holding and similar types of data reduction. 
Through appropriate programs in the LDM, the instru­
mental outputs are compared with values of primary, 
reference standards and other materials, and computation 
of the patient's final results is carried out. Numerous 
quality control data checks are performed simultaneously 
to establish the accuracy and precision of the results and 
to create permanent records for validation. These results 
are collated with the specimen numbers and these data are 
merged with the patient's hospital number in the PMF in 
the 370. 

Rear end documentation 

After the test data are entered into the PMF, they be­
come available for transmittal to the physican. 

Interim results are printed at 12:00 noon daily on a Ward 
Report which is sent to all stations within the institution. 
The billing system is updated, exceptions are noted, and 
quality control reports are generated for permanent file. 

These printed reports are transmitted by messenger to 
the appropriate nursing stations. 

Communication 

Audio-response communication of results by DIVOTS 
can be achieved. As soon as the test is filed in the pa­
tient's PMF, DIVOTS may procure the results and trans­
mit them audibly to the inquiring physician as follows. 
DIVOTS is telephoned as described above, a different 
transaction code is employed and the patient's hospital 
numbers are entered. The physician's private identifica­
tion number is keyed in to permit only him to obtain the 
confidential medical information. He enters the test code 
and DIVOTS spells the patient's name, states the name of 
the test, the day the test was performed and the test 
results including the degree of normality. Physicians in 
the ACF, their offices or homes or, by long distance lines 
from distant locations, may interrogate the PMF at any 

time if knowledge of the patient's and test numbers is 
available. 

Autocall 

An important extension of DIVOTS rear end communi­
cation ability is the Autocall System which is used for: 

• Certain divisions of the hospital with a "high need-to­
know" factor such as CCU, ICU, Surgical Recovery, 
Emergency Room. 

• Certain requests such as Emergency, ("stat"), 
requests. 

• Specified substances or procedures such as Glucose, 
Potassium, drugs, Prothrombin time, etc. 

These have been identified in the 370. 
As soon as test results in any of these categories are 

transmitted by the LDM to the 370, the Autocall sub­
program is initiated. Since the patient's ward and its 
telephone number is known in the PMF, the 370 informs 
the System/7 to dial the telephone at that place. Upon 
answering the phone, the hearer hears a series of chimes 
from the audio-response disk, identifying it as a DIVOTS 
call. The hearer indicates recognition of DIVOTS by en­
tering the ward code. DIVOTS then automatically 
transmits the patient's name, the test name and the result 
repeatedly until the hearer hangs up. 

Autocall therefore represents a sophisticated yet eco­
nomical method of achieving automatic, rapid, and re­
liable data transmission to physicians requiring that in­
formation in situations where those data are of the highest 
medical importance. "Don't call us-we'll call you." 

Although DIVOTS represents a widespread audio-com­
munication system, there is also a network of CRT's in 
various places within the laboratory for test process con­
trol, data base maintenance and test result entry. Termi­
nals are also available in the South Unit for reading punch 
cards and printing patients' results on the Ward and 
Patient Summary Reports simultaneously with similar 
activities at the North Unit (Figure 4). 

Free narrative test reports such as Pathology diagnoses 
and consultations as well as any other free, unstructured 
reports and discussions, are entered into the PMF by 
means of the Communicating Magnetic Card/Selectric 
Typewriter (CMC/ST-IBM). These inputs are usually 
generated as byproducts of the transcription of the usual 
conventional pathology, EKG and microbiology reports, 
and thus represent a low cost, extremely efficient method 
of entering edited input. The magnetic card data are 
transmitted to the 370 by Data Sets through a dedicated 
dial-up port, shared with other CMC's in the institution.8 

A special printout of laboratory data for laboratory 
operations, permanent quality control records and statis­
tical data, are generated by the LDM Printer. 



762 National Computer Conference, 1975 

Figure 4-Note the availability of a CRT at the pathologist's microscope work-bench allowing him to retrieve the total PMF and Quality Control data 
thus allowing correlation between the anatomic findings with clinical pathology data. 

Retention (data storage) 

All current laboratory information is stored in the 370 
on disk and is immediately retrievable by DIVOTS, 
CRT's or printers. Each patient's laboratory record is 
retained during his entire period of hospitalization plus 15 
days after departure from the institution at which time the 
stored data is transferred to magnetic tapes for permanent 
files. 

The PMF may be interrogated at anytime. There are no 
paper files. 

Administration 

All Sub-systems exert an important impact upon the 
administration of the laboratory and thus, on the quality 
and cost of patient care, by increasing economy of opera­
tion and optimizing the productivity of the staff.9 Other 
benefits are: 

• Reduction of manual transcription of test requests by 
nursing personnel. 

• Elimination of time and expense in transporting 
requests from ACF and nursing stations of the labora­
tory. 

• Elimination of expensive forms. 
• Elimination of need for patient and test data input by 

keypunching or other terminals. 
• Reduction of elapsed time between initiation of 

request by physician and availability of laboratory 
results. 

• Elimination of all manual filing of millions of indi­
vidual paper reports by storage of these data on mag­
netic tape. 

• Creation of charges or credits for services auto­
matically accomplished when the test request is 
initiated and result filed. 

• Generation of important statistical and other 
administrative data as to the volume and types of 
procedures carried out. 

• Documentation immediately of quality control of test. 
• Achievement of maximum reliability of test data, 

patient and specimen identification. 
• Availability of systems for backup support in the 

event of technical instrument or computer failure. 
• Improving and accelerating the physician decision 

making process by furnishing him error-free data by 
phone wherever he may be . 

• Creating printed documentation of the reliability of 
all steps of the test path pursuant to ethical, 
professional and legal requirements of quality care, 



An On-Line Centralized Computer-Coupled Automated Laboratory Information System 763 

and according to the Rules and Regulations promul­
gated by Federal and State Laws (Medicare, Medi­
caid, Interstate Improvement Act of 1967 -CDC, 
HEW, Social Security) or institutions. 

The advent of Professional Standards Review Organiza­
tion (PSRO), the Inspection and Accreditation Program of 
the College of American Pathologists, and similarly or­
ganized programs dedicated to the improvement of labora­
tory performance imposes mandatory requirements to 
create and retain extensive records during the test perfor­
mance. These are automatically accomplished by appro­
priate software. In our completely automated systems, 
these requirements do not represent a significant added 
manpower, financial or systems burden. 

CONCLUSION 

From the foregoing, it should be obvious that the LIS and 
the Sub-systems which have been developed at The 
Youngstown Hospital Association are extremely useful in 
maximizing the functions of an ACF. We have described 
the need for, and means of, achieving rapid, error-free, 
patient and sample identification, procurement and trans­
portation to the centralized laboratory, rapid automatic 
performance of the test and prompt transmission of the 
test data to the attending physician in the ACF while his 
patient is still there and can benefit by appropriately 
guided treatment. Thus, we believe that the major 
professional impact of the Youngstown LIS is focused on 
the "physician decision-making process". 

Upon early receipt of the laboratory, EKG and other 
diagnostic information, his diagnosis may be confirmed, 
strengthened, changed or expanded and his treatment may 
be fine-tuned. Additional tests, other diagnostic (X-ray, 
EKG) procedures may be requested. The type, amount 
and form of medication may be reviewed, modified or dis­
continued. Consultation by other physicians may be 
requested. Admission to the hospital may be evaluated. 
All of the subtle decisions which underly professional care 
are buttressed by prompt availability of laboratory data. 

The fact that the turnaround time is so short implies 
that these decisions can lead to performance of any of 
these additional acts while the patient is still in the ACF. 
This reduces the number of visits and eliminates the need 
to return at later dates. 

Further studies are being carried out to determine the 
cost effectiveness, the systematic advantages and the 
technical requirements of the present system with the view 
of expanding the current LIS into a broader Medical In­
formation System (MIS) by including such Sub-systems 
as Pharmacy, Surgical Scheduling, Dietary and Patient 
Logistics. 

Industrial Engineering and Systems Design studies of 
this project are currently being carried out by members of 
the Department of Industrial Engineering of The 
Youngstown State University who, as Consultants, also act 
as our severest critics. 

REFERENCES 

1. Rappoport, Arthur E., "A Clinical Laboratory Designed for Limited 
Service," Hospitals, J.A.H.A., Vol. 41, pp. 59-63, February, 1967. 

2. Rappoport, Arthur E., James R. Hill and William D. Gennaro, "Si­
multaneous Performance of Twenty-Five Different Tests Per Minute 
in a Centralized Cybernetic Clinical Laboratory," Cybernetics, Arti­
ficial Intelligence and Ecology, Spartan Books, 1972. 

3. Rappoport, Arthur E., Wilbur R. Taylor and Richard P. Gaulin, 
"What the Modern Laboratory Must Include and Where to Put It," 
Modern Hospital, November 1973. 

4. Rappoport, Arthur E., "Laboratory Desigrr," Chapter 26, Laboratory 
Medicine, Harper & Row, 1973. 

5. Rappoport, Arthur E., "Computers, Information Retrieval and Data 
Storage," Laboratory Medicine, Chapter 23, Harper & Row, 1973. 

6. Rappoport, Arthur E., William D. Gennaro and Robert E. Berquist, 
"Two Decades of Evolution of Laboratory Information Systems at 
The Youngstown Hospital Association," AJCP, March, 1974. 

7. Rappoport, Arthur E. and William D. Gennaro, "Instrument Series: 
Report #26, Clinical Laboratory Computer Systems-Part III," Lab 
World, December 1974. 

8. Rappoport, Arthur E., Robert E. Berquist and William Gennaro, 
"The Communicating Magnetic Card as a Word Processor to Enter 
Pathology Narrative Reports and Clinical Laboratory Results into a 
Patient's Computer Record," Laboratory Medicine, in press. 

9. Rappoport, Arthur E. and William D. Gennaro, "The Economics of 
Computer-Coupled Automation in the Clinical Chemistry Labora­
tory of The Youngstown Hospital Association," Chapter 10, Com­
puters in Biomedical Research, Vol IV, 1974. 





Architecture for a graduate level educational 
program in the area of computer systems in 
medicine 

by LAURENS V. ACKERMAN 
Rush Medical School 
Chicago, Illinois 

and 

DANIEL K. HARRIS 
American Medical Association 
Chicago, Illinois 

INTRODUCTION 

A professional discipline, in its embryonic stages of 
development yields practitioners who, through interest 
and/ or circumstance, avail themselves of fragmented 
knowledge from other disciplines, synthesize intellectual 
common denominators, and apply these common denomi­
nators consistently to a multiplicity of problem situations. 
Eventually, the embryonic discipline will generate addi­
tional knowledge from within, which is. generally 
considered to be a necessary precursor to formal ac­
knowledgment by society that a new discipline has in fact 
emerged. 

The practitioners of a new discipline will, at first, be 
convenient instruments for use in sporadically occurring 
situations requiring the application of their specialized 
knowledge. Over time, however, sporadic needs may be­
come commonplace-more so than the practitioners 
trained to satisfy them. It is at this juncture-the transi­
tion of a profession from a convenience to a necessity that 
the mettle of the profession to produce qualified practi­
tioners is tested. 

The evolution of computer expertise in the medical envi­
ronment has tended to emerge according to the pattern 
suggested in the above scenario. The computer science and 
systems professionals serving the medical community 
represent a diversity of backgrounds, both educational as 
well as experiential. Due in part to this diversity, funda­
mental, qualitative norms of performance for medical 
computing professionals have not surfaced. Indeed, the 
sources of computer expertise to serve the medical com­
munity are difficult to identify because of the lack of 
educational patterns as well as educational institutions of­
fering programs in medical computer science. 

PROGRAM OBJECTIVES 

The purpose of the educational program described is to 
provide a structured, coherent, educational framework of 

765 

sufficient breadth to permit the development of 
professional expertise in one or more of the following 
health system areas. 

(a) Clinical systems development 
(b) Medical administrative systems development 
(c) Medical computer science 

As the central theme of the program is to train 
professionals in the many and increasing facets of medical 
computing, several corollary interests surface naturally. 
These additional interests include: 

(a) Establish the basis for continued research and 
development of medical computing systems. 

(b) Develop a reservoir of expertise sufficient to meet 
the medical computing needs of the ambulatory 
care environment in addition to those of the medical 
center environment. 

(c) Provid~ a basis for the development of continuing 
education programs for physicians and laymen with 
interests in medical computing. 

(d) Provide a dynamic model for medical schools and 
other educational institutions to consider as a start­
ing point in the development of similar programs. 

(e) Develop professionals capable of communicating at 
the medical, computational' and administrative 
levels in the development and administration of 
health systems. 

HISTORICAL CONSIDERATIONS 

The architectural components of the program offered 
for consideration have been influenced by the educational 
dynamics present in the commercial and biomedical 
engineering computer environments over the last twenty 
years. Analysis of these two apparently dissimilar environ­
ments reveals several commonalities which have combined 



766 National Computer Conference, 1975 

to cause the current pattern in medical computing educa­
tion and development. 

First, both the medical and business environments have 
tended to obtain computer expertise from apparently 
logical sources. In commerce, the accounting function 
served as the source of manpower and in medicine, 
biomedical engineering was selected (implicitly) to 
develop needed expertise. This "selection process" has 
resulted in a traditional de-emphasis of computer and 
associated disciplines as legitimate activities in their own 
right. Until recently, the computer or management science 
profession did not exist in the commercial environment. In 
the medical sector, the computer profession continues to 
be represented as an extension of the biomedical engineer­
ing function. As the use of the computer is increasingly 
extended in non-bioengineering areas, this orientation, at 
least in some quarters, is beginning to change. 

Secondly, computer education has had an on-the-job 
orientation at a period in time when the technological em­
phasis has been in developing new, more sophisticated 
computer hardware systems. The result has been that ap­
plications oriented programmers and systems analysts 
have tended to proliferate the same systems and applica­
tions under changing and more complex hardware con­
figurations. It is not surprising therefore, to be confronted 
with a widening gap between hardware capability and the 
capability of the programmer and analyst to utilize it ef­
fectively. 

Third, because the orientation in both medical and com­
mercial computing has been device and application 
oriented, the emphasis on the man/ machine interface has 
been decidely oriented toward the machine. Analysis of 
the influence on behavioral mechanics of the environ­
ments in which computers operate has not been an in­
tegrated component of the educational experience of com­
puter professionals. The trauma normally experienced 
when a "hospital information system" is implemented in 
what is generally acknowledged as a complex, interrelated 
human organization is not surprising. The experience in 
this regard suggests that instruction in the behavioral and 
organization dynamics of human organizations is at least 
as important to system success as instruction in computer 
programming and systems analysis. 

Finally, and perhaps most significantly, physicians, 
computer programmers and analysts, and administrators 
have tended to insulate themselves within their respective 
roles. Communicatio~ among functional entities is ham­
pered partially due to terminology differences and 
partially due to role isolation. Systems development tends 
therefore to be unilateral in thrust and execution. The hos­
pital information system is in actuality, an administrative 
information system. Clinical laboratory systems tend to be 
driven by individual computers without multiplexing ca­
pability for information exchange. 

PROGRAM ARCHITECTURE 

The program offered for consideration is graduate in na­
ture. It assumes a general knowledge of fundamental data 

processing concepts and requires a knowledge of com­
puter programming. Basic characteristics of the program 
are as follows: 

1. The program offers a Masters or a Doctoral degree. 
2. Program duration will vary from two years to four 

years, depending upon the candidate's academic and 
experiential backgrounds, as well as the type of 
degree sought. 

3. The program would be open to, and encourage the 
participation of, both physician and non-physician 
candidates. 

The program will offer a core series of courses in each of 
six major areas. These areas include: 

1. Computer Science 
2. Medicine 
3. Mathematics 
4. Administration 
5. Systems Architecture 
6. Computer Systems In Medicine 

A key element of the program is the integration of each 
basic area with all others. Thus, the physician will have 
the fundamental knowledge necessary for effective com­
munication with the administrator and computer scientist. 
The non-physician will be given essential medical 
knowledge necessary to communicate with the physician. 
Candidates in each area of interest, through the core 

GRADUATE PROGRAM 

OVERVIEW 

CLlN!CAL 

ENVIRONMENT 

I 
I 
I 

-;-



Architecture for a Graduate Level Educational Program 767 

courses, will be sensitized to the needs and terminology 
idioms prevalent in the other areas. 

Course offerings are structured to: (a) provide insight 
into fundamental concepts, (b) establish the framework 
for development of design techniques and (c) provide an 
opportunity for the candidate to apply concepts and 
design techniques in a live environment. 

Administrative component 

The core courses in the administrative component of the 
program are intended to provide the candidate with 
detailed insights into the structure and operating 
components of the administrative sector of the health care 
delivery system. Core courses dealing with finance, eco­
nomics and management activities as they relate to 
development of the health administration information 
base are presented. In addition to traditional administra­
tive material, students will also be presented material con­
cerning organization theory and analysis as well as the be­
havioral dynamics of group interaction in structured and 
unstructured environments. Thus, in addition to possess­
ing the ability to define and design administratively re­
lated medical systems, students will be expected to have a 
clear understanding of the environment which these 
systems are intended to influence. 

Systems component 

Courses offered in the systems component of the 
program are intended to provide the student with: 

(a) A fundamental appreciation of the concepts of 
systems theory and organization. 

(b) An insight into the inter and intra structural 
mechanics of systems. 

(c) An appreciation of systems techniques available for 
the development of clinical and administrative 
EDP information systems. 

(d) Insights into the man/machine interface vis-a-vis 
medical EDP systems. 

Students completing the courses in the systems 
component will be· expected to be capable of applying 
systems development techniques consistently in a multi­
plicity of medical design environments as well as integrat­
ing discrete components of the medical environment into 
coordinated development activities. 

Computers & medicine (administrative) component 

This graduate program component provides the student 
an opportunity to intensively study medical administra­
tive systems in various health care settings under varying 
conditions. Stress will be placed upon administrative 
medical systems whether in operation or in the process of 
being developed. Students will be given the opportunity to 

interact with systems designers and users. As system 
design requires optimization of available resources in the 
context of a given environment, students will be provided 
opportunities to design and program EDP systems stress­
ing design options and quality assurance mechanisms both 
in a machine and man/machine context. 

Medical component 

Cognizant of the extreme complexity of medicine, the 
program does not emphasize the use of computers in 
systems analysis of medicine. Rather, the student is pro­
vided a concept of the system that he is analyzing. Al­
though the system and computer person have many tech­
niques which are theoretically capable of analyzing a 
system, the reality of systems analysis requires a delicate 
intertwining of theory and practice to produce an opera­
tional and practical system. Both the computer scientist 
and systems scientist, plus the administrator, must have a 
knowledge of the system in which they are functioning and 
in this instance, that system is medicine. An objective of 
this educational pattern is to provide an understanding of 
some of the problems encountered by physicians and other 
paramedical personnel, and solve these problems in terms 
of methodologies taught in the program. To this end, the 
student will be provided a basic medical physiology se­
quence in what might be called disease states, taken from 
a system perspective (as that is the orientation of the 
students) approaching a point where the student will at­
tend grand rounds and understand the problems presented 
there. This represents a radical departure for most 
administrators and computer systems personnel who 
either feel caught up by the overwhelming difficulty of the 
medical sciences or feel more secure inside of their tradi­
tional roles. The medical component of the program, 
therefore, represents a unique opportunity for non-phy­
sicians to empathize and communicate effectively in the 
medical systems design environment. 

Computer science component 

Prior to entrance into the program, the student must 
demonstrate competence in a computer language as well 
as a basic understanding of fundamental computer 
technology concepts. Because of the balance between 
administration, systems, and medicine, with the computer 
as a unifying element, the student should gain knowledge 
of a business and a scientific language, probably COBOL 
and FORTRAN (with PLl, the extent depending on his 
interest). Additionally, there should be a comparative 
knowledge of other languages to permit the student to as­
certain which language should be used in a particular ap­
plication. Also, an important aspect of the student's educa­
tion will be medical data base design, as this will be the 
basic building block for systems, computer and medical 
applications. Finally, it is desirous that the student have 
knowledge (at the assembly language level) of one 
multiuser, time share system so as to have an idea of the 



768 National Computer Conference, 1975 

technical components in a large multiuser system em­
ployed in a hospital. 

Computers & medicine (clinical) component 

Inherent in the medical and administrative courses will 
be the various respective computer applications. However, 
in-depth courses in computers in clinical medicine are pro­
vided to aid the student in the development of design ca­
pability. The core section of this program is not intended 
to completely acquaint the student with the computer in 
clinical medicine, but it is thought very important to 
orient the student to some of the problems he is likely to 
encounter as well as possible alternate solutions. A course 
in clinical computer systems in medicine will specifically 
examine the computer as used in clinical activity. In 
pursuing this area the student will be required to develop 
a minimum level of competence in mathematics including 
matrix theory, statistics, and probability, in addition to 
demonstrating knowledge of current techniques in arti­
ficial intelligence and pattern recognition., Pertinent 
mathematical techniques addressing classification, cluster­
ing, automatic diagnosis, and decision techniques will be 
stressed along with current methods available to model 
medical knowledge. In addition to the theoretical level the 
student will also examine systems in use in university and 
nonuniversity hospitals and ambulatory settings in addi­
tion to examining various commercially available medical 
computer systems. 

. PROGRAM DESIGN 

Because of the interdisciplinary nature of this program 
there is room for both M.D. and non-M.D. candidates to 
matriculate into a variety of operational, research and 
teaching roles. The program is designed for a multitude of 
people with different backgrounds and interests, offering a . 
basic series of core courses enabling them to communicate 
at multidisciplinary levels and then follow various spe­
cialization tracks that emanate from the core. The M.D. 
candidates would not be required to take the physiology 
and disease system courses, but it is understood that the 
M.D.'s probably would require some remedial work thus 
equalizing the M.D.-non-M.D. course load. The tracks-are 
then divided into three thrusts which would include 
administrative, clinical. systems, and computer science. To 
provide students an experience in administrative and 
clinical live environments, internships are required of both 
types of students in both areas. Additionally there would 
be an activity called "Computer rounds," intended to at­
tract other members of the hospital to provide a purpose­
ful discussion. Inherent in this program is the concept that 
this is mainly an operational activity with provisions for 

students to gain a theoretical appreciation of concepts at 
work in the operational environment. The degree structure 
is organized to provide an "operational" and "theoretical" 
candidate with a similar core background. After ap­
proximately two years, the student would be given the 
choice of continuing his studies for a Ph.D. or elect to stop 
at a Masters and become active in the operational environ­
ment. The function of the Ph.D. is to educate a person to 
perform research in operational areas; whereas the 
Masters is established for an individual anxious to initiate 
activity in the health care environment without having to 
pursue the extended research of a Ph.D. activity. 

SUMMARY 

As was indicated earlier, the purpose of the educational 
program offered for consideration is to provide for a struc­
tured, coherent, educational framework of sufficient 
breadth to permit the development of professional 
expertise to influence advancement in the areas of clinical 
systems, medical administrative systems, and medical 
computer science. The root concept supporting the 
program structure is the emphasis of cross communication 
and training in the functional components of the health 
care delivery system. The computer, to be sure, does not 
represent an end point in itself. However, as the use of the 
computer proliferates in the health care community, the 
computer serves as a catalyst to draw heretofore isolated 
areas of the health care system into integrated focus, both 
conceptually and operationally. 

There are several alternative methods available to train 
the expertise necessary to fill a growing technological need 
in the medical community. Traditional "on-the-job" train­
ing programs, such as those often employed in the com­
mercial environment offer apparently fast solutions to the 
imbalance between supply and demand of medically 
oriented computer professionals. However, for reasons dis­
cussed earlier, these programs tend to lack consistency 
and depth, over the long term. 

The program architecture offered for consideration is 
intended to serve as a basic model for graduate programs 
in computer systems in medicine. As is the case with any 
model, it has built into it the type of flexibility necessary 
to accommodate a changing, dynamic environment. 
However, in so stressing the need for flexibility, it also 
recognizes the need for unanimity among health care 
functions traditionally isolated in operation. The coales­
cing point is the development of a rational, well integrated 
system. With the delivery of health care as the principal 
focus ... not administration, nor computation, nor 
theoretical medicine functioning as independent activities, 
but rather these important activities functioning in 
concert, as a whole. 



Day on banking-Today's challenge 

Area Director: 
William P. Stritzler 
AT&T 
Morristown, New Jersey 

Four two-hour sessions conducted by industry specialists and designed for 
middle managers of technical functions. An opportunity to gain insights into the 
emerging, exciting arena of Bank Data Processing. 

Sessions will cover the following: (1) Electronic Funds Transfer Systems-a 
panel of knowledgeable members of the financial community discussing 
E.F.T.S. issues and answers. Perhaps the most widely talked about and least 
understood major business and technological activity in the financial com­
munity today, E.F.T.S. transcends Banking and should be of interest to all in­
dustries. (2) Implications of communication based systems technology on bank­
ing. A panel identifying opportunities, problems and solutions in this important 
area of Bank Data Processing. This area may also be of interest to non-bankers, 
as broad technical issues will be discussed as well as their particular application 
to banking problems. (3) Banking back office paper problems and approaches 
to solutions. A panel discussing various manufacturer approaches to reducing 
costs in this highly labor intensive activity. Of interest to anyone with an 
interest in the solution of complex systems problems related to high volume 
labor intensive activities. (4) Data Base progress in banking today. A panel re­
viewing what has been accomplished and how. An opportunity to understand 
how a major industry is applying Data Base technology to help address its 
systems problems. 

All in all, a Day on Banking is designed to be of interest to any technical 
manager wishing to understand how one major industry is applying Data 
Processing technology to the solution of important business problems. 

769 





Area Director: 
Bertram Raphael 
Stanford Research Institute 
Menlo Park, California 

Innovative applications of computer science 

For many years much of the research frontier of computer science as 
represented, for example, by the activities of artificial intelligence laboratories, 
seemed preoccupied with esoteric mathematical studies (such as self organizing 
systems, algebraic theory of machines, or resolution theorem proving), "toy" 
systems (such as games, puzzles, children's blocks), or far-out science fiction 
goals (such as robots for space exploration). Now many of these same labora­
tories are applying the techniques they have developed in the past to important, 
short term, real world tasks-and uncovering significant new research problems 
in the process. By working in new interdisciplinary teams, the computer 
scientists and the applications specialists have begun to develop an evolving 
series of novel systems whose potential value to our society is tremendous. 

The Innovative Applications of Computer Science technical area at the 1975 
NCe will consist of four panel sessions, each aimed at discussing interesting 
computer-based innovations that can produce wide spread practical benefits 
within a few years. The first three sessions-Innovative Applications of Com­
puters in Education, Medicine, and Automation-describe some dramatic com­
puter-inspired changes that are occurring in those respective disciplines. The 
fourth session-Knowledge-Based Expert Systems-presents a major methodo­
logical viewpoint for much of this work, and some of its broader implications. 

771 





Innovative applications of computer science in 
medicine 

CHAIRMAN-G. ANTHONY GORRY 
Massachusetts Institute of Technology 

OVERVIEW-G. Anthony Gorry 

For a variety of economic, social and geographical 
reasons, there currently exists a mal distribution of medical 
expertise with respect to the needs of the population both in 
this country and perhaps more markedly abroad. The 
particular characteristics of the computer, its large 
memory and the industry of its computing engine, suggest 
the possibility of its use to provide replicable and dis­
tributable packages of expertise. Attempts to build such 
packages, however, until recently have been confined to 
rather sharply circumscribed medical problems. Success 
has been somewhat limited, and the net effect of this work 
has been small when compared to the problems which exist 
in the health care industry. Advances in computer science, 
and in particular in the domain of artificial intelligence, of­
fer hope that some of the major impediments to success in 
this area can be eliminated. This session will be concerned 
with current work in the area of computer science applica­
tions in medicine. Particular attention will be paid to the 
identification of the cutting edge of computer science .and 
artificial intelligence technology in medicine and to the 
major problems which as yet remain unresolved. 

Summary of Comments-Harry E. Pople 

One of the major difficulties to be overcome in dealing 
with real-world clinical problems is that of irrelevant data. 
The issue is not just one of erroneous reporting by patient 
or laboratory, although these are often unreliable sources of 
information. The problem of irrelevancy also arises in cases 
where all data is manifestly correct but is produced by 
two or more distinct causal mechanisms. In dealing with 
such cases, the skilled clinician focuses successively on 
various aspects of the problem, disregarding as he does so 
those findings that are irrelevant in each context. 

What enables the specialist so to perceive problems in the 
presence of extraneous and misleading data has been 
perhaps the most significant and perplexing question 
confronted in our research. Our results suggest that there is 
an underlying logic to the process, which can be program­
med, enabling computer-based medical diagnosis that ap­
proaches expert levels of performance. 

773 

Summary of Comments-Saul Amarel 

Computer systems with capabilities for convenient ac­
quisition and management of knowledge in a given domain, 
and with facilities for intelligently performing processes of 
interpretation, planning and theory formation, have the 
potential for significant impact on research and practice in 
Biomedicine. Work in artificial intelligence is now at a 
point where it can provide the basis for the design and im­
plementation of such systems. Advances in computer net­
working are opening the way for collaborative develop­
ments of such systems and for their shared utilization by 
groups of investigators across the country. In the last four 
years, we have been pursuing work along these lines at the 
NIH-sponsored Rutgers Research Resource on Computers 
in Biomedicine. During the past year our Resource has 
been actively participating in the computer-based 
SUMEX-AIM national network on artificial intelligence in 
medicine. An outline of our research activities will be 
presented with emphasis on work in Medical Modeling and 
Decision Making and in Modeling of Belief Systems. We 
have already obtained significant results in the areas of 
glaucoma consultation and in the modeling of common 
sense interpretation of social episodes. Results and 
experiences in these areas will be outlined, and future pros­
pects will be discussed. 

Summary of Comments-Bruce G. Buchanan 

Two computer programs that have been developed at 
Stanford University demonstrate different applications of 
computer science to medicine. Not only are the problem 
areas different but the methods of approach represent 
viable alternatives for many similar problems. The first 
program, named MYCIN (after the common suffix of 
many antimicrobial drugs), helps physicians diagnose in­
fectious diseases and devise appropriate therapy for them. 
It is an artificial intelligence program in which a large 
amount of expert knowledge has been stored in such a way 
that (a) the program's performance mirrors that of an in­
fectious disease consultant, (b) the program's reasoning can 
be explained either during or after an interactive consulta­
tion session, and (c) the rules in the knowledge base are 
easily understood and modified. 



774 National Computer Conference, 1975 

A second computer-based system, the MEDIPHOR 
System, has been developed for the prospective control and 
study of drug interactions in hospitalized patients. The 
system employs. a large, well-documented computer-stored 
data base of drug interaction information and a series of 
interactive programs to provide automatic notification to 
pharmacists, nursing staff, and physicians when 
potentially interacting drug combinations are prescribed. 
In doing this, it utilizes information entered at a central in­
patient· pharmacy to monitor drug use, create patient 
medication profiles, and generate drug interactions reports. 

Summary of Comments-David G. West 

In the past the biologist considered the computer to be an 
expensive tool for the exclusive use of the computer 
scientist. With the advent of minicomputer, data communi­
cation, picture display technology, and the increased so-

phistication of the user and the computer scientist, com­
puters are being used as integral parts of the experiment. 

For example, two of the problems being investigated at 
the Biomedical Division of Lawrence Livermore Labora­
tory are: to quantify normal and abnormal chromosomes 
by analyzing the DNA content of chromosomes in a cell; 
and to automate cancer detection by using a method of high 
speed analysis and physical sorting of cells and chro­
mosomes. To solve these problems we are utilizing two mul­
tidisciplinary approaches which include extensive use of 
the computer technology. In the first approach, scanning 
electronics collects picture data and the information for 
evaluation is extracted by interactive image analysis and 
statistics. The second approach uses the flow systems 
technology, analog electronics, computer automated data 
collection and curve fitting, and statistics to provide high 
speed on-line analysis. Our current results enable us to de­
tect a change as small as 8 X 10- 15 grams of DNA in a chro­
mosome, and to analyze and physically sort 1,000 cells per 
second. (This work was performed under the auspices of 
the United States Atomic Energy Commission.) 



An "intelligent" on-line assistant and 
tutor-NLS-SCHOLAR 
by MARIO C. GRIGNETTI, CATHERINE HAUSMANN and LAURA GOULD 
Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

NLS-SCHOLAR is an experimental system that uses 
Artificial Intelligence techniques to teach computer-naive 
people how to use the powerful and complex editor of NLS. * 
This teaching is accomplished by presenting a sequence' of 
lessons. During each lesson the student may interact with the 
system by asking and answering questions, performing tasks 
which are posed by the system, and performing tasks of his 
own choosing. Tasks are actually executed using our own 
implementation of NLS EDIT.** Those tasks which have 
been posed are evaluated by the system, and the student is 
given encouragement, advice, and assistance. 

NLS-SCHOLAR has been designed with the belief that 
procedural knowledge is best learned 'by doing' ;2-5 along with 
the BIP system6 it is an example of a new kind of Computer 
Assisted Instruction (CAl) system that integrates systematic 
teaching with the capability for the user to tryout what he 
learns on the very system he is learning about. 

NLS-SCHOLAR is designed so that it can also be used as 
an on-line help syste~ outside the tutorial environment, 
allowing users to ask questions arising in their actual work, 
with NLS-SCHOLAR being aware of what they are doing 
and answering accordingly. Thus the system can take the 
lead at first and fade smoothly into the background as users 
become pr~ficient. This capability of integrating on-line 
assistance and trai~ing is an extension to the traditional 
notion of CAL 

Although NLS-SCHOLAR is an almost entirely new 
system, it has been very heavily influenced by previous or 
concurrent work. First to be mentioned is SCHOLAR, *** of 

* NLS the On Line System, is a sophisticated modular system which is 
being ~sed increasingly as an aid in writing, re-organizing, indexing, 
publishing, and disseminating information of all kinds,1 It w~ developed 
by Douglas Engelbart and his co-workers at the AugmentatIOn Research 
Center of the Stanford Research Institute. 
** Our system has not yet been interfaced with the real NLS. NLS­
SCHOLAR uses LISP-NLS, a partial implementation of NLS's EDIT 
subsystem written in INTERLISP. The actual interfacing.wit~ NLS 
has been contemplated in LISP-NLS's design, and we hope It wIll take 
place in the near future. In the remainder of this paper we s~all refer to 
LISP-NLS as NLS, except where it is important to pomt out the 
difference. 
*** SCHOLAR conceived and first developed by the late Jaime R. 
Carbonell, is a~ interactive mixed-initiative CAl system dealing with 
the geography of South America.7•s It is capable of answering fre~ly 
interspersed questions posed by the user in the course of a tutOrIal 
session, and it uses teaching strategies similar to those of a good human 
tutor.9 

775 

which our system preserves the flavor and interaction 
characteristics. In terms of its underlying philosophy and 
approach our system owes much, in an explicit sense, to 
Brown's SOPHIE system,lO.ll while implicitly, by virtue 
of being written and developed in INTERLISP, the system 
is impregnated with the ideas that Teitelman embodied in 
the Programmer's Assistant. I2 NLS-SCHOLAR is an arti­
ficially intelligent system that can offer computer users 
stand-alone on-line help ranging from occasional assistance 
to full tutorial guidance and supervision. 

OVERVIEW 

NLS-SCHOLAR has the following capabilities: 

(a) When used in tutorial mode, it delivers a series of 
lessons designed for gradual understanding of NLS 
concepts and commands. Within these lessons, the 
system pauses to ask the student questions and to 
propose editing tasks for him to perform using NLS. 
A student's responses to questions and his performance 
of tasks are evaluated by the system and if he makes 
an error, the nature of his mistake is pointed out and 
appropriate action taken. For example, if a question is 
answered unsatisfactorily, NLS-SCHOLAR proposes 
another question of the same kind. If a task is per­
formed incorrectly, depending on the magnitude of the 
error, NLS-SCHOLAR either resets it for the student 
to try again, or asks him to proceed and try to fix his 
mistake, aided by the information NLS-SCHOLAR 
provides. 

(b) The user can formulate requests in relatively uncon­
strained English. The requests can be questions about 
NLS concepts or about the state of his work, requests 
for help in doing a task, or even NLS commands 
expressed in English. The- system is "aware" of what 
the user is currently doing so that his requests for help 
can be answered within the context of the problem he 
is working on. Thus NLS-SCHOLAR not only tells 
him "The general procedure is ... " but also "In your 
case, what you should do is ... ". 

(c) NLS-SCHOLAR has the ability to use a person's work 
space (the NLS file he is currently working on) to 
show him how to perform editing actions. This gives 
the system much of the flavor of a human tutor, as if he 
were taking the student's place at the terminal and 
saying "Watch me do it for you". 



776 National Computer Conference, 1975 

(d) NLS-SCHOLAR is very friendly. Students can ask 
questions whenever it is their turn to type, make 
mistakes safely, ask for help doing tasks, and give up 
and be rescued by the system. 

These capabilities allow people to learn from explanation, 
learn by doing, and learn by asking questions. The tight 
integration of these capabilities within a working environment 
makes NLS-SCHOLAR a powerful assistant to its users. 

DEMONSTRATING NLS-SCHOLAR'S CAPABILITIES 

The flavor of NLS-SCHOLAR is best conveyed by a 
demonstration protocol which was actually obtained on-line 
using the latest version of the system. First a few helpful 
comments: 

It is difficult to give a demonstration of a system's capabil­
ities "in vacuo"; questions asked by a student or by the 
system, as well as tasks proposed and evaluated, arise more 
naturally and make more sense in the course of a lesson. Since 
this is a demonstration protocol, our "student" (actually one 
of the authors) is very obliging and does the appropriate 
things at the right times to demonstrate specific character­
istics of the system. 

NLS-SCHOLAR uses two bodies of text as its working 
examples, one a breakfast menu and the other a dinner menu. 
In the course of a lesson, students learn how to change the 
contents (and appearance) of these menus by performing 
editing operations. Menus were chosen as examples because 
of their direct appeal and general intelligibility, and because 
the shortness of their entries makes them easy to work with. 

In the interest of brevity, * the protocol starts at a point 
well along in the student's learning of NLS-he has been told 
about NLS files, how to load them, print them, delete and 
insert statements, etc. He is about to be taught how to use the 
Substitute command to effect a change in the breakfast menu. 

<NLS-SCHOLAR>BREAKFAST.LNLS;1 1-0CT-74 03-50 CLH 
1 JUICE 

1A ORANGE 
1B GRAPEFRUIT 

2 CEREAL 
2A OATMEAL 

2A1 WITH RAISINS 
2B CREAM OF WHEAT 
2C CORN FLAKES 

3 EGGS 
3A SCRAHBLED 
3B FRIED 

3B1 SUNNY-SIDE-UP 
3B2 OVER-EASY 

3C BOILED 
4 BEVERAGE 

4A HOT CHOCOLATE 
4B TEA 

4B1 WITH LEHON 
4B2 WITH SUGAR AND CREAM 

4C COFFEE 

Figure 1: The BREAKFAST File 

* For a complete demonstration of the present capabilities of NLS­
SCHOLAR, see the protocols included in Reference 2. 

SUBSTITUTE WORD IN STATEMENT 

Before we end this lesson, I~d like to show you hOW to change the 
content of statements which have already been inserted in your file. 

You've learned how to correct errors by deleting an entire statement 
and inserting a new one in its place. The Substitute command may be 
used to change just a word or even a single character at a time. For 
example, here's how you can change a word in statement 2A1 so that it 
reads WITH DATES instead of WITH RAISINS. 

EDIT C: (Su )bstitute C: (W lord in C: (S ltatement at A: (2A1 
) «CR» ; 

<New WORD> T: (DATES)«CR»; 
<Old WORD> T: (RAISINS) «CR» ; 

Finished? YIN: (y) OK: «CR»; 
Substi tutions made: 1 
EDIT C: (Do )ne OK: «CR»; 

NLS-SCHOLAR performs a command for the student much as a 
human tutor would by leaning over the student and typing 
the command on the student's terminal. Parentheses enclose 
what the "tutor" actual ly "types", separating it from the 
echoes and responses printed by NLS. 
<CR> is just a symbol to denote that the "tutor" depressed 
the return key. The semicolon is NLS's echo to <CR>. 

You can see that I've specified that I want to substitute 
statement 2A 1 for another; the new word DATES is to be 
substi tuted for the old word RAISINS. 

word in 

(There is no restriction that the items substituted for 
one another be of the same length.) 

To do this I typed only 'Su W S 2A 1 <CR>' to produce the first line; 
typed 'DATES <CR>' and 'RAISINS <CR>' to produce the second and third. 
The remaining characters are all printed by NLS. 

NLS asks 'Finished?' since more than one substitution can be made at a 
time. If I had typed 'N' for no instead of 'y' for yes, it would have 
prompted for another <New WORD> and <Old WORD> pair. 

After I typed 'y' NLS asks for further confirmation with OK: 
to which I responded with a <CR>. 

When the command has been executed, NLS tells how many substitutions 
have been made. If there had been two instances of RAISINS in 
statement 2A 1, both would have been changed to read DATES. 

Statement 2A1 is now the current statement. Please print it. 

TASK 41 

EDIT C: I 
==>WITHDAT 

EDIT C: L 
2A OATMEAL 

EDIT C:_% 

2A1 WITH DATES 
EDIT C: Done OK: _; 

Student typing is underlined. 

The student confuses the \ command, which 
prints the current statement, with the / command 
that shows the current position of the control 
marker. Realizing his mistake, he fumbles with 
the other one-character commands he can 
remember. First he tries t which prints the 
previous statement (2A), and makes it become 
the current statement. 

Next the student depresses the LINE FEED 
key which echoes as %, giving him the next 
statement (2Al), making it current. 

You printed too many statements. 
This is what I wanted you to print: 

2A1 WITH DATES 

The task is evaluated. 

Please redo just the printing 
part of this task. Your file is unchanged. 

NLS-SCHOLAR is reaHy determined to get the student to review 
how to print the current statement. 

continuation of TASK 41 

EDIT C: *What command prints the current statement?* 

THE USER PRINTS THE CURRENT STATEMENT USING THE 
COMMAND. 

Fai ling to remember the appropriate one-character command, 
the student gives up and asks for help. 
Questions can be asked anytime it is the student's turn to type. 
NLS-SCHOLAR answers this question by retrieving information from 
its own internal, descriptive data base. 

continuation of TASK 41 

EDIT C: L 
2A 1 WITH DATES 

EDIT C: Done OK:_; 

QUESTIONS? 

The student chooses to ask no questions at this time. 



Try the Substitute command yourself by substituting the word 
OAT for CORN in the statement containing "CORN FLAKES". 

TASK 42 

EDIT C: *What statement contair'-'''. __ ~_COR1'I"?* 

THE STATEMENT CONTAINING "CORN" IS: 
2C CORN FLAKES 

The student wants to know what the correct statement number is 
for him to type. The system obtains the answer by actually 
looking into the student's work space -- the answer is not stored 
(it cannot be!) in the internal data base. 
The system intel'pl'ets correctly most of the 
pal'aphrases of this type of question, e.g. 

"What is the statement containing " 
"What statement contains " 
"Where is ... ", etc. 

continuation of TASK 42 

EDIT C: Substitute C: Word in C: ;;ltatement at A: ~; 
<New WORD> T: CORN; -
<Old WORD> T: OAT; 

Finished? YIN: Y OK :_; 
Substi tutions made: 0 
EDIT C: Done OK :_; 

The student switches around the new and the old words, 
so no change is made. 

You should have altered the file 
that this part of it 

2B CREAM OF WHEAT 
2C CORN FLAKES 

would look like this: 
2B CREAM OF WHEAT 
2C OAT FLAKES 

3 ••• 

But you did not alter the file. 

Please try to repair your 
mistake. The file is as you left it. 

continuation of TASK 42 

ilLS-SCHOLAR snou;s the student 
what the l'esuZt of this command 
should have been if he had 
performed the task cOl'rectly 
as opposed to the result which 
he obtained. With this 
information, the student 
aan "debug" his pe1"formance 
of the tasi-:.. 

EDIT C: Substitute C: Word in C: ,S.tatement at A:~; 
<New WORD> T: OAT; -
<Old WORD> T: c.o.B.N; 

Finished? YIN: .Y. OK:_; 
Substitutions made: 1 
EDIT C: I&!:JJL.OK:_; 

Now print your result. 

TASK 43 

EDIT C: Print OK:/C:_; NLS allows the student to type 
2C OAT FLAKES litHe 01' as much of each 

EGGS command as he likes, providing 
3A SCRAMBLED it is unambiguous ly denoted. 
3B FRIED Here he chooses to type all of it 

3B 1 SUNNY-SIDE-UP since the command is so short. 
3B2 OVER-EASY 

3C BOILED 
BEVERAGE 

4A HOT CHOCOLATE 
4B TEA 

4B 1 WITH LEI~ON 
4B2 WITH SUGAR AND CREAM 

4C COFFEE 
EDIT C: Done OK:_; 

You printed too many statements. 
This is what I wanted you to print: 

2C OAT FLAKES 

Please try to print what I 
wanted. The file is as you left it. 

continuation of TASK 43 

EDIT C: L 
2C OAT FLAKES 

EDIT C: !!9ne OK :_; 

Good. The noun "WORD" refers to the fact that whole words are 
invol ved, not just parts of words; but it does not imply that a single 
word only may be provided as either the <New WORD> or the the <Old 
WORD>. Use the Substitute command to change statement 2A 1 again, this 
time to read WITH BROWN SUGAR AND CREAM instead of WITH DATES and 
print your result. 

An "Intelligent" On-Line Assistant and Tutor 777 

TASK }~4 

EDIT C: Substitute C: vlord in C: Statement at A: 2.Ali 
<New WORD> T: ~TH_l?ROWN_~y'.G)\JL~ __ @ ___ ~R.~AI1; 
<Old iVORD> T: PJtTES; 

Finished? YIN: 1 OK:_; 
Substitutions made: 1 
EDIT C: Done OK: . .,; 

I wanted you to change 
this part or your rile: 

2A OATMEAL 
2A 1 WITH DATES 

2B 

into this: 
2A OAnlEAL 

2Al WITH BROWN SUGAR AND CREAM 
2B 

But you changed this part of it: 
2A OATHEAL 

2Al WITH DATES 
2B 

into this: 
2A OATHEAL 

2Al WITH WITH BROWN SUGAR AND CREAM 
2B 

I have restored the file as it was 
at the beginning of this task. Please start over. 

TASK' 44 

EDIT c: *How does one do this?* The student is lost 
and asks fol' he lp. 

THE USER TYPES "SUBSTITUTE ", FOLLOWED BY "WORD ", 
"STATEMENT ", "2A 1", <CR>, "BROWN SUGAR AND CREAM", 
<CR> , 
"DATES", <CR>, "yo, <CR>, ",", A <SPACE>, "DONE ", 
AND <CR>. 

NLS-SCHOLAR can show him what to do, as we l l as ... 

continuation of TASK 44 

EDIT C: *Please do it for me* 

• •• actually do it fol' him! 

EDIT C: (Substitute) C: (Word) in C: (Statement) at A: (2A1 
)«CR»; 

<New WORD> T: (BROWN SUGAR AND CREAM)«CR»; 
<Old WORD> T: (DATES)«CR»; 

Finished? YIN: (Y) OK: «CR»; 
Substi tutions made: 1 
EDIT C: (' ) 

2A 1 WITH BROWN SUGAR AND CREAM 
EDIT C: (Done) OK: «CR»; 

QUESTIONS? 

The student can summon NLS in order to pl'actice 
(0Z' just to pZay) without feaZ' of messing up his 
woZ'k. 

• •• USING A DISPOSABLE COPY OF YOUR CURRENT FILE 

EDIT C: frint OK:/C: ~tatement at A: ~; 
V: _; 

2B CREAM OF WHEAT 
EDIT C: ~bstitute C: Qharacter in C: .!2tatement at A: 2!l; 

<New CHARACTER> T: U; 
<Old CHARACTER> T: EA; 

Finished? YIN: Y OK:; 
Substitutions made: 2-

EDIT C: , 
2B CRUM OF WHUT 

The student Z'epZaced the characteZ's 
EA foZ' U. 



778 National Computer Conference, 1975 

EDIT C: Print OK:/C: Branch at A:~; 
V:_; - -

3 EGGS 
3A SCRAMBLED 
3B FRIED 

3B1 SUNNY-SIDE-UP 
3B2 OVER-EASY 

3C BOILED 
EDIT C: Substitute C: gharacter in C: aL:anch at A:,3.; 

<New CHARACTER) T: !.; 
<Old CHARACTER) T: =; 

Finished? YIN: l OK :_; 
Substi tutions made: 3 
EDIT C: Print OK: IC: C: Branch at A: :i!l.; 
V·· - -
3S-FRIED 

3B 1 SUNNY* SIDE*UP 
3B2 OVER*EASY 

EDIT C: QQne OK :_; 

· •• THROWING AWAY THIS COPY 

The student Leaves NLS l'stul'ning to the 
'QUESTIONS?' LeveL. The "Tl'ansparent ovel'Lay" on 
which he has scribbZed disappsal's without tl'ace. 

*Print branch 3B, please* Commands can bs issued in 
natul'aL Languags. 

• •• USING A DISPOSABLE COpy OF YOUR CURRENT FILE 

EDIT C: (print) OK:/C: (Branch) A: (3B) «CR»; 
V: «CR»; 

3B FRIED 
3B1 SUNNY-SIDE-UP 
3B2 OVER-EASY 

EDIT C: (Done) OK: «CR»; 

· •• THROWING AWAY THIS COPY 

The "Tutozl' dsmonstl'atss how to do it. 
Notice that the fiLe is in its originaL 
state. 

Readers familiar with NLS may fail to recognize it as the 
system depicted in the protocol. This is because NLS­
SCHOLAR teaches the use of a newly emerging version of 
NLS not yet generally available. 

REPRESENTATION OF KNOWLEDGE 

Much of NLS-SCHOLAR's knowledge is derived from 
data stored in a semantic network, and from a set of built-in 
routines that manipulate and retrieve that data in. response 
to queries. The semantic network is a data base of descriptive 
information represented in attribute-value format. It contains 
descriptions of actions and their purposes, descriptions of the 
procedures necessary to accomplish those actions, and 
descriptions of their effects and consequences. For example, 
the semantic network contains the description of the purpose 
of the Delete command as well as the description of the 
procedure for its use. English renditions of these attribute­
value representations are: "The purpose of the Delete 
command is to delete a structure unit", and "The procedure 
(for deleting a structure unit) is for the user to type the word 
DELETE, followed by the name of the structure unit, the 
address, and two carriage returns". 

The semantic network also contains many other kinds of 
representations, among them the definitions of concepts, the 
interrelationships between concepts (such as that a statement 
is an instance of a structure unit), and the sequence of 
commands necessary to perform each task correctly. 

The retrieval routines, taking a user's query as their 
starting point, look into the semantic network seeking 
information relevant to that query. For example, if a user 
wants to know what the line-feed command is used for, his 
question would translate into a query that would essentially 
mean: "Find the purpose of the line-feed command". The 
retrieval routines would attempt several different matching 
procedures that would eventually yield something like: "The 

purpose of the line-feed command is to print the next 
statement" . 

The retrieval process is assisted by built-in "reasoning" 
strategies which are called upon when the matching pro­
cedures fail. In fact, in many cases the desired information is 
not directly stored, but can be inferred from available 
information. For example, if the query were for the procedure 
for deleting a statement, the matching procedures would fail. 
However, the retrieval system would still be able to derive 
the answer via simple deductive inference: it knows that a 
statement is a kind of structure unit, and it knows how to 
delete structure units, therefore it can derive the procedur.e 
"Type 'DELETE', followed by 'STATEMENT', ... ". 

Mechanisms such as the ones just described are the seat of 
the abstract "thinking" abilities of NLS-SCHOLAR. As 
such, they are not yet very powerful, and much can be done 
to improve them.* However, it is important to stress here 
that there is more to "intelligence" than powerful manipula­
tion of symbols. 

People's intelligent behavior is not based solely on internal 
representations and conceptualizations and their attendant 
reasoning procedures. People's data bases are not only in 
their memories, neither are their retrieval "routines" solely 
introspective. We use the world as a data base, and our senses 
to retrieve information from it. I don't need to have in my 
head a representation of what is behind my chair; if I need to 
know, I can just turn around, look, and see! 

Because NLS-SCHOLAR deals with a "world" (the world 
of NLS) with which it shares much of its own being (i.e., it is 
a computer program that deals with another computer 
program), it was relatively easy to endow it with some of this 
latter kind of "intelligence". For example, to make NLS­
SCHOLAR "aware" of the state of a user's work, all we had 
to do was design it so that it could couple with NLS and use 
it as a sort of sensor of the "world" of the user's file. 

This coupling of two systems (NLS-SCHOLAR and NLS 
itself) constitutes an exceedingly powerful tool. First, it makes 
it possible for the user to ask questions not only about 
definitions, descriptions of procedures, etc. (such as "What 
does back statement mean?", "What command prints the 
back statement?", or "How do I print a file?"), but also 
about the ever-changing state of his work (such as "What is 
the content of statement 3A?", or "Where is the CM now?" 
or "Print just branch 3 for me"). Thus, in addition to 
searching for answers in a static semantic network we gain 
the ability to interrogate the dynamic "NLS world" as well. 

Second, this coupling provides an easy way of performing 
a type of "if-then" inference that would be very hard to 
perform deductively. Suppose a user asked something like 

"If I deleted statement 2B, what would then be the 
statement number of the statement containing 
"CORN"? 

Finding the answer by deductive reasoning is possible but 
difficult. Obtaining the answer by using NLS and "sotto 

* Much work has been done on this problem in the SCHOLAR system 
dealing with the geography of South America.' 



voce" deleting statement 2B and then seeing where the 
statement containing "CORN" ends up illustrates a powerful 
use of this coupling. * 

Third, it becomes possible to propose problems or tasks to 
a student and to evaluate his solutions in an interesting way. 
All the system has to do is access the correct sequence of 
NLS commands for the task, perform them on a fresh copy 
of the student's file, and then compare the results. 

Lastly, NLS-SCHOLAR can use its semantic network and 
reasoning routines to infer a procedure (such as how to 
delete a statement), use this information to construct an 
NLS command, and then execute that comrr:and. Thus it is 
able not only to describe procedures but also to synthesize 
NLS commands using this knowledge. 

OVERALL ORGANIZATION 

The overall organization of NLS-SCHOLAR is represented 
in Figure 1. There is an EXECUTIVE which controls and 
supervises the main functions of the system ( question 
answering, question asking, text delivery, and task moni­
toring), services their requests, and provides communication 
paths among them. When in tutorial mode, EXECUTIVE is 
driven by an AGENDA containing general instructions of 
what to do next (deliver text, perform a task as if a tutor 
were demonstrating how to do it, answer questions, evaluate 
a student's answers, etc.). 

TASK MONITOR decides how to call NLS. It can simply 
allow users to type their commands directly into LISP-NLS, 
it can make use of "tutor typing" of commands either 
retrieved from the data base or synthesized by Q/ ANSWER, 
or it can have these commands executed invisibly to the user. 

Q/ ANSWER is a facility for responding to a user's 
requests. Q/ ANSWER responds not only to questions whose 
answers are static (i.e. retrievable from the semantic network 
as in "Give me some examples of printing commands"), but 
also to questions which refer to what a user is doing and 
which have answers that are dynamic, i.e., that change with 
time. For example, the question 

WHERE IS THE "CORN"? 

must be interpreted as a call to NLS to find the address of the 
word "CORN" as it exists in the current file. To do this, 
Q/ ANSWER has to synthesize the appropriate NLS 
commands 

Jump Statement 0 (CR) 
Jump "CORN" (CR) 

have the context manipulation machinery save the user's 
environment, perform the commands invisibly, restore the 

* Winograd14 alludes to this inferencing mechanism in one of his 
SHRDLU protocols ("can a pyramid support a pyramid?" "I DON'T 
KNOW" "stack up two pyramids" "I CAN'T", and Brownlluses it to 
the fullest in his SOPHIE system. 

An "Intelligent" On-Line Assistant and Tutor 779 

Figure 1 

user's environment, and hand back the result of executing 
these commands to Q/ ANSWER which then generates a 
response. 

The parser in Q/ ANSWER is an adaption of the top-down, 
semantically directed parser described by Burton,lIi aug­
mented with capabilities that analyze and label the Case 
relationships3.16 existing between the main verb and the noun 
phrases of an input request. In addition it determines the 
general category that the request falls into (a request for a 
definition, procedure, address of some word in the current 
file, etc.). For example, the question . 

HOW DO I PRINT BRANCH 3A? 

parses into the form 

(QFIND/PROCEDURE ((AGENT USER) 
(VERB PRINT) 
(OBJ BRANCH (ADDR 3A»» 

Thus the interpretation of a request is a LISP function which 
can then be evaluated (executed) to retrieve an answer. That 
is, QFIND/PROCEDURE is a LISP function that takes a 
Case parsed sentence as its input, retrieves the correct 
response from the data base, and outputs the answer. In our 
case, the answer is: 

THE USER PRINTS BRANCH 3A USING THE 
PRINT COMMAND. PROCEDURE: HE TYPES 
'PRINT', FOLLOWED BY 'BRANCH' '3A', (CR), 
THE VIEWSPECS, AND (CR). ' 

Only the general procedure for printing a structure unit is in 
the semantic network. Q/ ANSWER instantiates elements 
specific to the request, in this case the specific structure unit 
'BRANCH' and the specific address '3A' (but not the 



780 National Computer Conference, 1975 

specific viewspecs because they were not stated in the 
request) . 

Q/ ASKING is a facility that generates questions for the 
user to answer. (Although this is not demonstrated in the 
protocol, the system occasionally asks questions as well as 
answering them.) If the student's answer is found to be 
correct, the lesson continues. If it is only partially correct, the 
part in error is pointed out and another question of the same 
type is generated. The student does not have to answer the 
question immediately; he can ask questions and obtain 
answers from the system, which will then remind him of the 
question it asked that is still unanswered. The following 
sample dialogue illustrates this facility. (Parts typed by the 
user are underlined.) 
WHAT STATEMENTS ARE IN BRANCH 3B? 
* 3B 1 and 3B2* 
CORRECT. HOWEVER, YOUR ANSWER IS 
INCOMPLETE. 
3B1 AND 3B2 ARE O.K. 
YOU COULD ALSO INCLUDE 3B. 
WHAT STATEMENTS ARE IN BRANCH 1'? 
*Give me a definition of a branch* 
A BRANCH IS A STATEMENT PLUS ALL ITS 
SUBS'l'ATEMENTS. 

NOW PLEASE ANSWER MY QUESTION. 
* 1, lA, and 1B* 
VERY GOOD 

Observe that only the question type is preselected; Q/ 
ASKING knows how to select valid branches right out of the 
user's file, and to generate questions accordingly. 

TASK EVALUATOR and ERROR REPORT base their 
analysis of a completed task on a state vector of five 
components: 

( 1) The commands used by the student. 
(2) A representation of the structure and contents of the 

file. 
(3) The position of the control marker. 
(4) The state of the "viewspecs" (what kind of a "viewing 

filter" was used to view the file) . 
(5) What the student actually printed. 

Each of these components defines a "specialist-reporter": 
a program that knows how to diagnose errors within its 
specialty and how to indicate to the student what was wrong. 
For example, the File Structure specialist-reporter compares 
the result of a student's execution of a task with the correct 
result and classifies the discrepancies into three cases: 
something missing, something extra, or something that has a 
different content. In each case, only enough information to 
show the discrepant parts is shown to the student ("I wanted 
you to change xx into yy, but instead you changed zz into tt"). 

CONCLUSIONS 

As computer systems grow in power, sophistication, and 
complexity, it becomes more and more difficult to become 

(or even remain) an expert in their usage. Many users prefer 
sticking to the outdated but familiar facilities offered by 
a new upward compatible system rather than learning to use 
the new, more powerful facilities. With the advent of large, 
geographically dispersed computer facilities, it becomes more 
and more difficult to get hold of the resident expert and ask 
him to look over one's problems. There is a real need for 
something to take these experts' places. We believe that the 
class of "intelligent" on-line assistants and tutors of which 
NLS-SCHOLAR is a prototype are a promising solution to 
this problem. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the work of Alan G. Bell 
who wrote LISP-NLS, of Gregory Harris who was responsible 
for the specialists-reporters, and of Joseph Passafiume who 
wrote the question asking module. This work would not have 
been possible without the contagious enthusiasm that ema­
nated from countless hours of discussion with John Seely 
Brown. To him, a very special "thank you." 

This work was sponsored by the AFSC-ESD of Hanscom 
Field AFB under Contract No. F19628-74-C-0088, and by the 
Personnel and Training Research Programs, Psychological 
Sciences Division, Office of Naval Research, under Contract 
No. N00014-71-C-0228, NR No. 154-330. 

REFERENCES 

1. TNLS Users' Guide, November 1973, obtainable from Augmentation 
Research Institute, Menlo Park, California 94025. 

2. Grignetti, M. C., L. Gould, A. G. Bell, C. L. Hausmann, G. Harris 
and J. J. Passafiume, Mixed-Initiative Tutorial System to Aid Us~rs 
of the On-Line System (NLS) , BBN Report No. 2969, November 
1974. 

3. Grignetti, M. C. and E. H. Warnock, Mixed-Initiative Information 
System for Computer-Aided Training and Decision-Making, ESD­
TR-73-290, September 1973. 

4. Goldberg, A., Computer-Assisted Instruction: The Application of 
Theorem-Proving to Adaptive Response Analysis, Technical Report 
203, May 1973. Psychology and Education Series, Stanford 
University. 

5. Kimball, R. M., Self-Optimizing Computer-As§isted Tutoring: Theory 
and Practice, Technical Report 206, June 1974. Psychology and 
Education Series, St.anford University. 

6. Barr, A., M. Beard, R. C. Atkinson, A Rationale and Description of 
the Basic Instructional Program, Technical Report 228, April 1974. 
Psychology and Education Series, Stanford University. 

7. Carbonell, J. R., "AI in CAl: An Artificial-Intelligence Approach t.o 
Computer Assisted Instruction," IEEE Transactions on Man­
Machine Systems, MMS-ll, New York, December 1970. 

8. Carbonell, J. R. and A. M. Collins, Mixed-Initiative Systems for 
Training and Decision-Aid Applications, ESD-TR-70-:~73, Novem­
ber 1970. 

9. Collins, A. M., E. H. Warnock and J. J. Passafiume, "Analysis and 
Synthesis of Tutorial Dialogues," in Advances in Learning and 
Motivation, Vol. 9, G. H. Bower, Ed., Academic Press, in press. 

10. Brown, J. S., R. R. Burton and A. G. Bell, SOPHIE: A Sophiscated 
Instructional Environment for Teaching Electronic Troubleshooting 
(An Example of AI in CAl), BBN Report No. 2790, March 1974. 

11. Brown, J. S. and R. R. Burton, "SOPHIE: A Pragmatic Use of 



Artificial Intelligence in CAl," Proceedings of the National ACM 
Conference, San Diego, California, November, 1974. 

12. Teitelman, W., et aI, Interlisp Reference Manual, Chapter 22, Bolt 
Beranek and Newman and Xerox Corporation, 1974. 

13. Carbonell, J. R. and A. M. Collins, "Natural Semantics in Artificial 
Intelligence," in Proceedings of the Third International Joint 
Conference on Artificial Intelligence, Stanford University, 1973. 
Reprinted in the American Journal of Computational Linguistics, 
1, 1974. 

An "Intelligent" On-Line Assistant and Tutor 781 

14. Winograd, T., Understanding Natural Language, Academic Press, 
1972. 

15. Burton, R. R., "A Semantically Centered Parsing System for 
Mixed-Initiative CAl Systems," paper presented at the Association 
for Computational Linguistics Conference, Amherst, Massachusetts, 
July 1974. 

16. Fillmore, C. J., "The Case for Case," in Universals in Linguistic 
Theory, (eds.) Bach and Harms, Holt, Rinehart and Winston, 1968. 





User requirements 

The issue 

Area Director: 
Richard G. Mills 
First National City Bank 
New York, New York 

Changed priorities and shifts in the Nation's economic and social environ­
ment have uncovered in the private sector a chronic and crippling shortcoming 
in the linkage between the developers and the consumers of technology. If major 
dislocations and unaffordable inefficiences in our economic system are to be 
avoided, this gap must be closed. 

The essential lacks are (1) means by which exploiters/consumers of 
technology and technology/-based products and services (who, after all, pay the 
bills) can specify requirements-the precise character and dimensions of 
needed technologies, and (2) willingness and ability of technology suppliers to 
meet those requirements in a timely, cost-effective fashion. Perhaps what is 
needed is a kind of "Market-research" feedback from, for example, the popula­
tion of commercial-banking computer users to the computer manufacturers that 
is effective in influencing the characteristics of the products that are sub­
sequently offered by those vendors to that set of users. 

Even more troublesome is the need for a more effective communication path 
from the employers of the manpower "product" of the college/university system 
to the decision-makers in that system that allows those bill-paying employers to 
specify the educational backgrounds and skill sets that they currently require. 

In the past, the effectiveness of technology users in "ordering up" needed 
technologies has been very poor. The suppliers have rushed in to fill the void, 
and for thirty years our direction and rate of development has been determined 
almost solely by the "push" of the technology developer, not the "pull" of the 
exploiter. The consequent waste of money, manpower and time has been high. 
Today such waste must be judged intolerable, yet it threatens to rise. 
Technology users must formulate and present requirements, and technology 
producers must respond to them. The problem is, how shall this change be 
brought about? 

The sessions 

This complex and difficult problem is treated in two parts. An initial session 
will offer two submitted papers, each addressing a particular rather specific 

783 



784 National Computer Conference, 1975 

technology-transfer issue. The second part will be a panel discussion among four 
distinguished and authoritative leaders in the management of technology. Be­
cause of the breadth of view of the panelists, there will be no explicit attempt to 
link the papers and the subsequent panel discussion. 

The papers will be the following two: "A Functional Approach to Turnkey 
System Procurement," by Wayne Churchman, University of Dallas, Dallas, 
Texas; and "Why Things Are So Bad for the Computer-Naive User," by 
William C. Mann, USC Information Sciences Institute, Marina Del Rey, 
California; 

The second session of the two-session Area will be a panel discussion among 
four distinguished men from various fields involving management of technology 
and of the process of its creation. This should be a stimulating and authoritative 
attack on the broad issue outlined above. 

The panelists will be Lewis M. Branscomb, Vice President and Chief 
Scientist of IBM Corporation, Armonk, New York; Chalmer G. Kirkbride, 
Science Advisor to the Administrator, ERDA, Washington, D.C.; William F. 
Miller, Vice President and Provost, Stanford University, Stanford California; 
George R. White, Vice President Corporate Product Planning, Xerox Corpora­
tion, Stamford, Connecticut. 

The intended audience 

The two sessions in this area address, from both a specific and a profoundly 
general viewpoint, a problem that has reached the proportions of a National 
issue. The "paper" session will treat specific topics from the computer 
technology / computer applications field, while the broad-guage and senior 
members of the panel have been invited to use the NCC as a platform from 
which to address the general issues of technology transfer. 

Every individual whose activities involve the development or use of new 
technology will be affected by what may become the first major reshaping of 
developer/user interplay since the days of World War II. Developers and users 
of computer-related technology will have an opportunity to anticipate the im­
pact of this reshaping on their specific areas of endeavor. 



Why things are so bad for the computer-naive 
user 

by WILLIAM C. MANN 
usc Information Sciences Institute 
Marina Del Rey, California 

This paper is about people's use of computers to get work 
done. Computers are tools that operate on symbols. Unlike 
many other tools, such as eggbeaters, telephones and au­
tomobiles, most people in our culture seem to regard com­
puters as alien, mysterious and inherently difficult to use. 
While some of this view is based on mere hearsay, it is 
nonetheless held by many who have had some experience 
with computer systems. 

Why? Because many computer systems are in fact alien, 
mysterious and inherently difficult to use. This is true 
even for interactive systems, where the opportunities for 
accommodation of users are the greatest and the technical 
history is the richest. 

When people first attempt to use computers, they find 
that they must communicate with them. They are 
confronted with a variety of "interfaces," each possessing 
a "language" and some conventions for abbreviation, 
spelling help, prompting and the like. There are too many 
such interfaces, and they are all different in arbitrary, 
unimportant and hard-to-remember ways, but these are 
superficial problems. A couple of iterations of thoughtful 
system reimplementation could reconcile them. 

Much worse, the interfaces share a common core of 
methods and demands which is itself alien, unlike any lan­
guage known to natural man. This problem i~· not at all 
superficial-it arises out of fundamental inadequacies in 
our usual methods for organizing computations and speci­
fying systems. Depending on one's preference, it can be 
described as a problem in technology or a problem of the 
subculture that carries the technology. We will describe it 
here as a technical problem. 

COMMAND LANGUAGES 

When we look at the facilities which system interfaces 
typically provide to their users, we find that they are al­
most exclusively command languages. Users can issue 
commands and supply command parameters. Other 
facilities of the interface are designed to aid in the selec­
tion and use of these commands. There is very little else .. 

The problem with command language forms is not that 
they are formally incomplete; they are not. Neither is it 
that they limit the users' accesss to the full diversity of the 
machines, although this happens. Neither are the prob-

785 

lems in any fundamental way problems of efficiency or 
cost. 

The basic difficulty, the source of this alienness and in­
tractability, is that commands are an extremely narrow, 
limiting subset of people's familiar range of expression. 
Radical specialization is required if a person is to express 
his desire for the accomplishment of some task entirely as 
a combination of commands. 

THERE'S MORE TO COMMUNICATION WITH 
PEOPLE THAN JUST COMMANDS 

If I wanted you to prepare an index of the books and 
papers in my office, I would first describe to you how I use 
them. This would give you some clues which would help 
you to distinguish a useful index from a non-useful one. I 
would talk about the urgency of the work, which would 
give you some clues about how to share your attention 
between this task and others. Then I would show you how 
to access the collection, and state whatever properties I ex­
pected the final results to have-order, format, index 
terms etc. At every point I would expect you to ac­
knowledge what you satisfactorily understood, and to dis­
cuss and obtain clarification on the rest. 

The result of our discussion would not be a complete 
task specification. Many aspects would remain un­
specified. I would expect that as you performed the work, 
some unexpected choices would become necessary, and 
that you would make some of those choices yourself based 
on your knowledge of my goals. 

Some Representative Interactive Computing Tasks 
and Processors* 

Task 

Information Retrieval 
System Manipulation 

Programming 
Text Editing 

Processors 

Dialog (R) 
Timesharing Operating 

Systems (many) 
APL,PLjl 
(many) 

* Most of these are PDP-IO programs, some of them peculiar to the AR­
PANET. But the problem is much more widespread, not confined to one 
class of machines or one subculture of computing. 
Dialog is a trademark of the Lockheed Corporation. 



786 National Computer Conference, 1975 

Text Formatting 
Computer Network 

Manipulation 
Message Processing 

Runoff, Script 
Telnet, FTP 

Sndmsg, Readmail 

Sample Statements from the Two-Person Indexing Task 

Goals and Purposes 
"I want· to be able to find things I have already read, 
and maintain a list of stuff I haven't read yet by topic, 
so that I can easily pick things to read." 

Examples 
"So you would index Speech Acts under Searle, and Or­
dinary-language Philosophy and Elocution." 

Description 
"The index should include several entry regions, by 
author and title and so forth, and a region of citations." 

Clarifications 
"I want all the papers indexed." 
"Do you mean the papers in the journals too?" 
"No." 
"OK." 

Hypothetical Conditions 
"Suppose I find two different papers with the same title 
and author." 

Functional Descriptions 
"The location code tells where the item is physically, 
within a couple of feet of shelf." 

Analogies and Comparisons 
"The authors section is like the white pages, and the 
subject section is like the yellow pages." 

Similarities and Differences 
"It's like a library card catalog, except that we're not us­
ing code numbering or cards." 

Refused Commands 
"I can't index the papers this week." 

I estimate that less than 5 percent or our communica­
tion would be in commands, requests or other directives. 
We would exchange descriptions of objects and processes, 
convey concepts using examples, and negotiate the mean­
ings of terms. We would discuss hypothetical, perhaps 
even impossible situations. You might not accept all of my 
"commands," not even all of the sensible ones. We would 
talk about goals and purposes for objects, actions and 
steps in the process. Analogies, similarities, differences 
and comparisons would all be used to express ideas. 

The point of this whole elaborate example is to 
demonstrate how easy it is to specify an information 
processing task by using language which hardly includes 
any commands or command parameters at all. It is even 
reasonable to expect satisfactory results (from a suitable 
interpreter) based on such a specification. 

Consider the hypothetical examples above, from this 

indexing task. We can observe several things about them: 

1. There is no easy translation for any of them into 
English commands. 

2. They represent kinds of communication that are not 
commonly provided for at all in people's access to 
computer systems. 

3. They are all different in purpose and apparent effect. 
4. They are natural to the task, as done by people. 
5. Several of them represent initiatives by the receiver 

of the task. 

The corresponding lessons for design of man-machine 
communication are: 

1. Accommodation of command languages (even an 
English language command subset) is a strong 
restriction on people's capabilities. It brings difficul­
ties that are not part of the basic task. 

2. Computer systems are commonly deficient in meet­
ing the information needs of users. 

3. Using commands is a small part of people's com­
munication repertoire. Since people cannot translate 
these other kinds of communication into commands 
easily, (1 above), non-command interaction methods 
need to be designed into systems. 

4. There are lots of different opportunities for major 
improvement. 

5. It might be helpful to give the system more initiative 
in communication than they typically have in cur­
rent practice. 

It is this diverse kind of communication that is familiar 
and tractable to the computer-naive person. Most people 
who could express this task in ordinary language would be 
unable to reexpress it entirely as a sequence of com­
mands. * The difficulty of translating a task into com­
mands is of course not confined to this example or this 
class of problems. 

For many people, being forced to translate their desires 
into commands is an unpleasant imposition, and is even 
felt as an attack on their established competence. For 
some, the difficulty is never overcome, and for others the 
use of computers becomes a thing to be minimized, 
whatever the supposed benefits might be. 

DESIGNING SYSTEMS FOR ORDINARY PEOPLE 

As a long-range goal, we should seek to develop interac­
tion methods that accept the full range of expression sug­
gested above. Below we consider how to expand· our stock 
of tools in these ways. 

* In fact, the computer professionals are the only group who can 
regularly do it on a variety of tasks. They provide, in the systems they 
build, tools that are congenial to their own conceptual habits, and alien to 
nearly everybody else's. 



A design approach for today 

We need to avoid overly optimistic expectations on 
systems currently in development-those that are based 
on command-language communication. Developing com­
mand languages and command help facilities is important, 
but mainly for the computer professionals and heavy users 
who have already adapted to command language de­
mands. 

Merely making easier command languages will not help 
the really computer-naive users very much, since it does 
not really address their problems. So in the near term we 
need ways to supplement the command structures of 
users' languages. Later we should seek ways to include 
commands as part of much more comprehensive schemes. 
We can expect a continuing expansion of the facilities in 
systems for the computer-naive user. How should that ex­
pansion be done? 

Three properties are especially important for the 
systems and programs currently being designed: 

1. Language structure that admits non-commands from 
the user. 

2. Intentional imitation of human dialogue at the users' 
interface. In order to end up accepting a broad 
diversity of the kinds of communication that people 
use freely, many steps of imitation will be needed. 
(This is not the same as shifting to natural language. 
Formal languages can be diversified in the right 
ways.) We can start now by strengthening the declar­
ative and descriptive parts of languages, allowing al­
ternative equivalent forms of expression and imitat­
ing the control structures seen in dialogue. 

3. Continuity with the currently available best practice. 
Although we must move beyond commands-alone, 
commands will always be with us and be important. 
There are extreme contrasts in the command styles 
of today's systems, and there are too many new, 
badly done interfaces. 

Design changes in the future 

There is a general lack of the kind of detailed knowledge 
of human communication that we need. Many of the 
things that people do in communication, including the 
entire list indicated above, are not understood well enough 
to support imitation. We lack a good scientifically es­
tablished model for the simplest case: successful com­
munication between two cooperating people. 

Having a good model of people's communication 
activities would be beneficial far beyond the sphere of 
computing. It would be a significant advance for 
psychology, for education, for the medical knowledge of 
communication disorders, for documentation and informa­
tion dissemination, for linguistics and other disciplines as 
well. It would speak to the strong intellectual interest of 
our century in epistemology. And it might eventually 
guide people into more effective communication with each 
other. 

Why Things are so Bad for the Computer-Naive User 787 

But just on the basis of the potential benefits in comput­
ing alone, making direct use of computers feasible and 
comfortable for broad classes of people, research in model­
ing human communication processes deserves a far higher 
national priority than it currently has. 

There are a few active research projects that are build­
ing the right kinds of models of human communication ca­
pabilities, in a framework relevant to computer system 
design. For example, in the automated consultant work at 
Stanford Research Institute, dialogue between a 
knowledgeable mechanic and an apprentice is being 
analyzed, with the intention of allowing similar dialogues 
to take place between an apprentice and an automated 
knowledgeable mechanic. 1 

In the Sophie instruction system currently being 
developed at Bolt, Beranek and Newman, Inc., a trainee 
in electronic fault diagnosis and repair interacts with a 
computer program.2 The program represents and manipu­
lates a circuit with hidden faults. The trainee can discuss 
hypothetical conditions, seek evaluations of guesses (of 
faults), cause measurements to be made, and ask ques­
tions, all in English. 

In the Protocol Analysis System II, developed at Car­
negie-Mellon University, a program analyzes a transcript 
of a student's remarks made while solving a problem, and 
thereby follows his progress.3 

The Dialogue Process Modeling work at Information 
Sciences Institute is building computer-program models of 
specific two-person interactions in English, analyzing the 
communication effects that people have on each other. 

Each of these efforts involves a computer responding to 
the language forms that people commonly use. None of 
them are restricted to command language interaction. 
Several of them have demonstrated capacity for effective 
response to a significant portion of English expression. 

These projects, and others like them, can multiply our 
understanding of the details of communication as people 
do it. The hope is that in the future there will be com­
fortable communication, with the kind of diversity that 
human dialogue has, commonly available on computer 
systems. 

REFERENCES 

1. Deutsch, Barbara G., "The Structure of Task Oriented Dialogs," 
Technical Note 90, SRI Project 1526, Stanford Research Institute 
Menlo Park, Calif. 94025; appeared in Proceedings IEEE Speech 
Symposium, Carnegie-Mellon University, Pittsburgh, Pa., April 15-
19,1974. 

2. Brown, John Seely, Richard R. Burton and Alan G. Bell, SOPHIE: A 
Sophisticated Instructional Environment for Teaching Electronic 
Troubleshooting (An Example of AI in CAl), Bolt, Beranek and 
Newman, Inc., Artificial Intelligence, Final Report (A.1. Report No. 
12),1 March 1974, pp. 24-25, 96. 

3. Waterman, D. A. and A. Newell, PAS-II: An Interactive Task-Free 
Version of An Automated Protocol Analysis System, Department of 
Computer Science, Carnegie-Mellon University, June, 1973. 

4. Winograd, Terry, "A Procedural Model of Language Understand­
ing," Computer Models of Thought and Language, W. H. Freeman 
and Company, San Francisco, California, 1973, pp. 152-186. 





Functional approach to turnkey system 
procurement 

by WAYNE CHURCHMAN 
City of Dallas 
Dallas, Texas 

The advent of the low cost minicomputer has extended the 
computer into many new application areas. Minicomputer 
systems are used in manufacturing control, laboratory au­
tomation, and industrial data acquisition and control ap­
plications where the high cost of computers have tradi­
tionally prohibited their use. In many of these growing ap­
plication areas, users want to purchase a fully developed 
hardware and software package which requires no further 
development and which provides guaranteed performance. 
This is the concept of the turnkey system. 

Turnkey computer systems are being offered today by a 
tremendous number of companies. Not only are they of­
fered by computer systems houses and by the manufac­
turers of minicomputer systems, but also by instrumenta­
tion and control systems companies which have tradi­
tionally served the markets where these computer systems 
are now being applied. Most companies in the turnkey 
systems business have approached a particular applica­
tion area by developing a standard base of computer 
hardware and application software which can be adapted 
to the specific requirements of a particular application. 
For a given application area, various companies may offer 
turnkey systems which are very similar from a functional 
and performance standpoint, but which differ markedly in 
terms of hardware and software approaches. 

A successful procurement procedure for a turnkey 
system must allow and encourage competitive bidding in 
which the bidders can take legitimate advantage of their 
applicable technology in both hardware and software. The 
procedure must include methods for specifying the system 
requirements, for selecting the system which best meets 
those requirements, and for contracting for the imple­
mentation of the selected system. 

The procurement procedure described here was 
developed by the City of Dallas, D~partment of Data 
Services, for use in the procurement of a minicomputer 
based real-time data acquisition and control system for 
the City's water distribution system. The technique is not 
specific to this application, however, and can be used for 
any turnkey system procurement. 

SYSTEM SPECIFICATION 

Specification of the system requirements is the key to 
any procurement procedure. Many users make the mis-

789 

take of using a physical specification of the type normally 
used to specify construction work. The physical specifica­
tion identifies the minimum physical requirements of the 
hardware and software in detail and is usually used in 
conjunction with a low bid system selection. Proposed 
systems which fail to meet a specified minimum require­
ment are rejected for non-compliance. 

This approach, while it works well for buying concrete, 
has inherent deficiencies when applied to the procurement 
of a turnkey computer system. The physical specification 
fails to consider the system as a single integrated entity, 
but rather considers each element of the system 
separately. Total system capabilities, as expressed by such 
measures as throughput or response time, are more signifi­
cant than the capabilities of individual component specifi­
cations, such as memory cycle time or number of registers. 

Physical specifications are often used as a matter of con­
venience. In fact, most physical specifications are written 
around one company's hardware and software. Such a 
specification obviously gives that company a tremendous 
competitive edge. The user may find that he has effec­
tively created a single source situation with a commensu­
rately high bid price. Even worse is the case where the 
physical specifications represent an amalgamation of the 
features of several systems. Either the user gets no bids or 
he pays the price for special development required by 
everyone to meet the specifications. 

The specification problem can be solved by the use of a 
functional system specification which places the emphasis 
on the functional and performance requirements of the 
system. The functional specification does not omit 
physical requirements. There is an obvious need for 
definition of the required system components. Physical re­
quirements are stated, however, as nominal specifications 
and are intended to provide a framework within which 
each bidder can propose the best integrated system to 
meet the overall functional requirements. 

The functional specification is not without its own set of 
problems; problems, however, which have solutions and 
which are worth the effort to solve. The first problem is 
that system selection becomes more difficult. If physical 
requirements are interpreted to be nominal specifications, 
proposals can no longer be rejected for non-compliance. 
Low bid system selection must be replaced with a 
cost/performance evaluation of the proposals. A detailed 
method f~r performing the cost/performance evaluation 



790 National Computer Conference, 1975 

will be discussed later. A second problem is that the flexi­
bility which the functional specification provides during 
the proposal process is not desirable, in fact is intolerable, 
as part of the contract for system development. The 
contract requires better definition than provided by a 
functional specification. The solution to this problem is a 
two phase contract in which technical- specifications are 
developed prior to the beginning of system development. 
This form of contract will be discussed in further <ietail. 

The functional system specification can be organized in 
a number of ways. The following organization includes all 
of the important elements of a functional specification: 

1.00 System Concept Summary 
An introduction to the required system and the ap­
plication for which it will be used. In addition, it is 
helpful to have a brief statement of work which 
describes the contractor's responsibilities. Special 
project requirements, such as user participation in 
the system development, should be described in this 
section. 

2.00 Physical Requirements 
A description of the required computer and pe­
ripheral equipment. Hardware specifications should 
be stated as nominal values. It is important to state 
any preferences the user may have and also to state 
any alternatives which the user sees as being ac­
ceptable. For example the specifications for on-line 
storage might state that either a fixed-head disc or a 
moving-head disc or a combination of the two types 
of storage would be acceptable, as long as they 
provide the required performance and functional 
capabilities. This section should specify component 
packaging requirements and describe where the 
equipment will be located. 

3.00 Performance Requirements 
A statement of the important system performance 
parameters. These may include system availability, 
throughput, response time, expandability, failure 
mode integrity, and any others which are important 
to the application. In the case of the water distribu­
tion system, the City included a subsection on 
performance requirements for the man-machine in­
terface. 

4.00 Functional Requirements 
A statement of what the system must do. The func­
tional capabilities described should give the bidder 
a clear idea of what the system must do without be­
ing too restrictive in terms of how the functions are 
accomplished. Again, preferences or examples can 
be used, but they should be represented as nominal 
requirements. 

5.00 Information Requirements 
A definition of the type and volume of data which 
the system must process. 

6.00 Implementation Requirements 
A detailed statement of the contractor's responsi­
bilities for system implementation. This section 
should detail requirements for project management, 
system development, installation, test, 
maintenance, training, and documentation. The 
schedule requirements should also be stated in this 
section. The requirements contained in this section 
may be interpreted literally, if desired, by including 
a statement in the request for proposals to that ef­
fect. As a matter of practicality, this approach is 
advisable. If all bidders are required to provide the 
same implementation services and to meet the same 
schedule, then the difference in bid prices should 
reflect only the difference in system capabilities. 

Writing a good functional system specification is not 
easy. The functional approach provides the desirable flexi­
bility to the system specification at the expense of adding 
the problem of interpretation. There is an increased re­
quirement for responsibility on the part of both the user 
and the bidder. The user must make sure that the specifi­
cation honestly represents the requirements of the system 
he is trying to buy. The bidder has a responsibility to 
propose a system which meets fully the intent of the 
system specification. 

PROPOSAL SOLICITATION AND EVALUATION 

Once the system specification has been completed, it is 
combined with a request for proposals (RFP) and general 
specifications to form the bid document. The general 
specifications will not be discussed in "detail here. Suffice 
it to say that this section of the bid document deals with 
the general requirements and conditions of the contract 
and is not specific to a particular system or a particular 
contract. 

The RFP is an important section of the bid document. 
The RFP must give the bidder a clear idea of the func­
tional nature of the specification and how it will be used in 
the evaluation of the proposals. It must also specify what 
information is required in the proposal, where and when 
proposals will be received, and the conditions of submit­
ting a proposal. Let us turn for the moment to the problem 
of proposal evaluation. 

Many schemes have been proposed for performing a 
cost/performance evaluation of computer systems. The 
problem is to come up with a way of relating the ca­
pabilities of a proposed system to the bid price of the 
system so that a single measure of cost/performance is 
available for comparison purposes. 

The most sensible approach to a cost/performance 
evaluation is one in which the capabilities of proposed 
systems can be compared in terms of dollars, which can 
then be directly related to the bid prices. Evaluation tech­
niques which develop some figure of merit for each system 



Functional Approach to Turnkey System Procurement 791 

in terms of a point total have one glaring deficiency: how 
is the point total to be related to the bid price? 

Proposed systems can be evaluated through the applica­
tion of evaluation criteria which represent, in quantitative 
terms, the importance which the user places on specified 
attributes of the computer system. It is also important to 
evaluate the vendor and the vendor's capabilities. This 
can be accomplished through the use of the same tech­
nique. 

The evaluation criteria identify items to be evaluated 
and an assigned dollar value for each item. The dollar 
value represents the maximum penalty which may be 
assigned for each item. Penalty assignment should 
consider the projected system life. Penalties may be 
assigned on a one-time or recurring basis, depending on 
the nature of the evaluation item, up to the maximum 
penalty specified for each evaluation item. 

The assignment of penalties is based on the existence of 
some deficiency which will require additional develop­
ment, purchase, or support; or a deficiency which will 
limit the useful benefits of the system. Penalty assign­
ments are based on a zero value for the proposal which 
best meets the specified requirements for each evaluation 
item, as stated in the system specification. A summation 
of the assigned penalties for each proposal is used in con­
junction with the bid prices to determine the successful . 
bidder. 

The specific evaluation items chosen will be different 
for every procurement but should relate closely to the or­
ganization of the system specification .. Vendor qualifica­
tions can be judged on the basis of the following evaluation 
items: 

A. Experience and Customer Ratings 
1. Installed systems of similar size and nature 
2. Standard computer hardware and software base 
3. Length of experience 
4. Specific application experience 

B. Company Resources 
1. Personnel 
2. Facilities 
3. Depth of resources 
4. Financial 

C. Support Capabilities 
1. Maintenance organization 
2. Location of maintenance support 
3. Software support 

In evaluating vendor qualifications, it is mainly a mat­
ter of looking at the risk which may be incurred in doing 
business with each vendor. Even though the user has a 
great deal of contractual protection when buying a 
turnkey system, there are certain irrecoverable costs to the 
user, due to project delays, if the contractor does not 
perform. In many cases support capabilities may be the 
overriding consideration. Support of a system can some­
times be crucial to its success. The user has to evaluate the 

risk associated with the vendor's continued support oJ the 
system over its projected life. 

Although no maximum penalties were shown for the 
evaluation items above, they must be determined and 
specified along with the evaluation criteria in the RFP. 
The maximum penalty selected should be consistent with 
the actual worth of the item and the importance of the 
item to the user. 

The assignment of penalties during the proposal evalua­
tion process is based primarily on information provided in 
the proposal. The RFP must describe what kind of pro­
posal is required. It is a good idea to specify both the 
content and the format requirements for proposals. This 
will make the evaluation task much easier. The following 
outline is suggested for the RFP: 

1.00 Invitation for Proposals 

2.00 Definition of Terms 

3.00 Proposal Requirements, Information, and Condi-
tions 

.01 General Information 

.02 General Form of Contract 

.03 Inquiries 

.04 Pre-bid Conference 

.05 Examination of Site of Work 

.06 Preparation of Proposals 

.07 Receipt and Opening of Proposals 

.08 Proposal Guaranty 

.09 Proposal Modification 

.10 Withdrawing ,Proposals 

.11 Irregular Proposals 

.12 Rejection of Proposals 

.13 Disqualification of Bidders 

.14 Statement of Qualifications 

.15 Technical Proposal Content and Format 

4.00 Consideration of Proposals 
.01 Proposal Tabulation and Evaluation 
.02 Proposal Presentations 
.03 Method of Proposal Evaluation 
.04 Evaluation Criteria 

5.00 Documentation Controls 
.01 Revision of the RFP and Specifications 
.02 Revision Notice 

6.00 Proposal Forms 

7.00 Contract Award and Execution 
.01 Award of Contract 
.02 Retention of Proposals 
.03 Return of Proposal Guaranties 
.04 Surety Bonds and Insurance 
.05 Sureties 
.06 Execution of Contract 
.07 Failure to Execute Contract 

8.00 Contract and Bond Forms 

There are many aspects of the RFP which have not been 



792 National Computer Conference, 1975 

discussed, but hopefully the outline provided above will 
indicate some of the necessary elements of an RFP which 
are not detailed here. 

FORM OF CONTRACT 

The final important element of the functional approach 
to turnkey system procurement is the two phase contract. 
As previously discussed, one of the problems presented in 
the use of a functional specification is that it does not 
provide sufficient definition for a contract to develop the 
system. The selected proposal may lend further definition, 
but may also contain sections which seem to conflict with 
the system specification or at the very least lead to am­
biguities. There is a need for a single document which 
specifies in detail the system and the work to be 
performed by the contractor. 

The first contractual phase is designed to provide the 
necessary definition in the form of technical specifica­
tions. Phase I of the contract is the final design phase dur­
ing which technical specifications are developed by the 
contractor in cooperation with the user. These technical 
specifications should satisfy the requirements of the 
system specification and should be specific to the 
hardware, software, and services offered in the contrac­
tor's proposal. 

It should be possible to complete the technical specifica­
tions in a fairly short period of time. The City allowed 
three months to develop the technical specifications for 
the water distribution system project. User approval of the 
technical specifications should be contractually required 
before further work commences on the project. The 
technical specifications developed during the final design 
phase, upon approval by the user, become the contractual 
basis for Phase II, the system development phase of the 
contract. 

The technical specifications are intended to be an am­
plification or extension of the requirements stated in the 
system specification and the offerings made in the contrac­
tor's proposal. Some requirements may be sufficiently 
detailed as presented in either the system specification or 
the proposal and may be repeated verbatim in the 

technical specifications. Other requirements should be 
developed during Phase I so that the technical specifica­
tions completely describe the hardware, software, and 
services to be provided by the contractor during the 
second phase of the contract. The following items should 
be included in the technical specifications: 

• Detailed specifications for all major equipment 
• Specifications of all necessary minor equipment 
• Final design and drawings for any special consoles or 

other hardware 
• Detailed system flowcharts 
• Complete functional descriptions of all computer pro-

grams including 110 requirements 
• Data base design 
• Display and report formats 
• Installatio~ drawings 
• Detailed test procedures 
• Detailed documentation standards 

A notice to proceed with Phase II, system development, 
is issued only after approval of the technical specifications 
by the user. If for some reason agreement cannot be 
reached between the user and the contractor on the 
technical specifications, the contract should contain a pro­
vision to pay the contractor for the work done with no 
further obligation to the user. The payment should be 
specified as a fixed fee in the contract and should not be 
excessively high. The contractor should be encouraged to 
make his profit during Phase II, not Phase I. 

CONCLUSION 

The functional approach to turnkey system procurement 
is designed to give the user a method to buy the best 
system for his application at the lowest price. It is cer­
tainly not the easy way out and demands a high level of 
interaction between the user and the vendor. In many 
ways, the procurement approach described here is simply 
a formalization of the interaction that must occur in any 
successful computer system procurement. 



The future of CAM systems 

by M. EUGENE MERCHANT 
Cincinnati Milacron Inc. 
Cincinnati, Ohio 

INTRODUCTION 

A recent Delphi-type forecast1 of the future of manufactur­
ing carried out by the International Institution for Produc­
tion Engineering Research (CIRP) resulted in 94 forecast 
events on which good consensus was obtained. Of these, 
24 or over one-fourth, strongly indicated that the com­
puter-integrated automatic factory would be a full-blown 
reality well before the end of this century. The three key 
events which summarize this aspect of that forecast are as 
follows: 

1. By 1980 (median), a computer software system for 
full automation and optimization of all steps in the 
manufacturing of a part will be developed and in 
wide use. 

2. By 1985 (median), full on-line automation and 
optimization of complete manufacturing plants, con­
trolled by a central computer, will be a reality. 

3. By 1990 (median), more than 50 percent of the ma­
chine tools produced will not have a "stand-alone" 
use, but will be part of a versatile manufacturing 
system, featuring automatic part handling between 
stations, and being controlled from a central process 
computer. 

Thus it is evident that the major event expected to occur 
in the future of computer-aided manufacturing (CAM) 
systems is the eventual implementation of such factories. 

What are the factors and incentives at work today that 
provide the motive power for such a major change in 
manufacturing? One is, of course, the fact that the 
technology needed for that change now seems feasible be­
cause of the rapid growth of the capabilities of the digital 
computer. However, equally important are the economic 
and social incentives. Both of these latter factors are 
contributing strongly to the prospects for early realization 
of the computer-integrated automatic factory. 

ECONOMIC INCENTIVES 

Manufacturing normally contributes approximately 30 
percent of the gross national product of modern in­
dustrialized countries. Yet, in spite of that, manufactur­
ing, although normally thought of as a highly productive 
and efficient activity, is not generally so. For example, this 

793 

is clearly true of batch-type metalworking manufacturing, 
which normally accounts for about 40% of total manu­
facturing employment. The mass production type manu­
facturing systems (e.g., automotive transfer lines, etc.) ac­
count for less than .25 percent of metalworking parts 
manufacture. In fact, 75 percent of such parts are manu­
factured in lots consisting of less than 50 pieces. Carter 
has revealed that, when the life of the average workpiece 
in batch-type metal cutting production shops is analyzed, 
only about 5 percent of its time is actually spent on ma­
chine tools and, of that 5 percent, only about 30 percent 
(or 1.5 percent of the overall time) is actually spent as 
productive time in removing metal. This result is 
illustrated graphically in Figure 1. This situation can 
hardly be called economic or productive. Further, it truly 
pinpoints the two main areas where by far the greatest 
improvement in the economy and productivity of metal­
working manufacturing can be made today. The first of 
these is reduction of time of parts in process in the shop, 
and thus of the resulting extremely high inventory of un­
finished parts on the shop floor, and of finished parts wait­
ing for others in process so that assembly of the product 
can proceed. It is evident from Figure 1 that this inventory 
could potentially be reduced by up to 90 percent. Result­
ing reduction of indirect capital and labor costs and 
improvement of productivity could be enormous. Here 
indeed is a major incentive to implementation of CAM 
systems and the automatic factory. 

The second area of potentially great improvement is 
that of percent machine utilization. The 30 percent ma­
chine utilization indicated by Figure 1 must be combined 
with the fact that the average machine spends ap­
proximately 50 percent of its time waiting for parts to 
work on (because of the 95 percent time in transit shown 
in Figure 1). As a result, the average machine tool in a 
batch-type shop is being utilized productively (i.e., is 
actually cutting metal) only about 15 percent of the time. 
Thus it is evident that this utilization could potentially be 
increased by 600 percent or more. Resulting reduction of 
direct labor and overhead costs and increase of produc­
tivity could be enormous. Obviously this provides another 
major incentive to implementation of CAM systems and 
the automatic factory. 

Another major economic consideration today is the 
rapidly rising cost of manufacturing labor relative to 
manufacturing productivity. This is illustrated by the data 



794 National Computer Conference, 1975 

TIME IN SHOP 

TIME ON MACHINE 
,.--'--., 

MOVING a WAITING 
95"10 

~----------~y~----------~ 
INCUT LESS THAN POSITIONING,LOADING, GAGING, IDLE, ETC. 

30"10 70"10 

Figure I-Life of the average workpiece in the average (batch-type 
production) shop according to Carter 

in Table I, for the major industrialized nations of the 
world, for the period 1965-1970. In the past four years the 
situation has become even more uneconomic than that 
shown in the table, due to the even more rapid rise in 
wages in the current inflationary world economy, and the 
notable failure of manufacturing productivity to increase 
at a; comparable rate. Quite evidently, this situation can 
only be reversed by improving the rate of increase of 
manufacturing productivity, decreasing the degree of labor 
intensiveness of manufacturing, or both. Both of these can 
be accomplished by increased implementation of CAM 
systems and therefore offer an additional major incentive 
to advancement of such technology. 

SOCIAL INCENTIVES 

Today, major social factors are also emerging which 
provide strong incentives for early implementation of 
CAM systems and the computer-integrated automatic fac­
tory. Among these trends, three sets of changing attitudes 
toward manufacturing are particularly significant, namely 
those of workers, those of employers, and those of govern­
ment. 

Concerning the first of these trends, there is a steadily 
increasing reluctance of workers to continue to expose 
themselves to the manufacturing environment. Thus 
today, in all the major industrialized countries of the 
world, there is an increasing shortage of manufacturing 
workers. This is heightened by the growing opportunities 
for and rewards in employment in the service industries. 
This trend is dealt with by BelP in· discussing the coming 
of the post-industrial society. For example, this type of 
trend occurred first in the field of agriculture. In the 
United States, as the manufacturing industry developed, 
the percentage of the work force employed in agriculture 
declined from 90 percent in 1790 to 4 percent today. 
Meanwhile, the percentage of the work force employed in 
manufacturing rose correspondingly during the 19th 
century. However, in recent years it has begun to de­
cline-from 30 percent of the work force in 1947 to 24.9 

percent in 1968. The U.S. Bureau of Labor Statistics 
projects that by 1980 the percentage will decline further to 
22.4, and a Rand Corporation forecast projects that by the 
year 2000 only 2 percent of the labor force will be em­
ployed in manufacturing. Quite evidently, this trend 
represents a major incentive to implementation of CAM 
systems for purposes of increasing the automation of 
manufacturing. 

Concerning the second of these trends in attitudes 
toward manufacturing, namely those of the employers, 
they are now clearly recognizing the human need for the 
nature of work to be such as to assure the worker of deep 
satisfaction from performing it (as well as freedom from 
unpleasant or harmful conditions). Thus much attention is 
being directed to methods of accomplishing this. Here the 
pioneering work of such investigators as Herzburg' on job 
enrichment is proving most useful. Herzburg's significant 
finding, illustrated in Figure 2, is that, while the so-called 
hygiene factors of a job (Le., company policy and adminis­
tration, supervision, work conditions, salary, etc.) can 
cause dissatisfaction if they are not satisfactory, they can 
do little to provide on-going job satisfaction. Instead, such 
satisfaction derives from the adequacy of the so-called mo­
tivator factors of a job (i.e., opportunity for achievement, 
recognition, responsibility, advancement, growth, etc.). 
The major feature of jobs which provide such opportu­
nities is participation in decision-making. Thus this trend 
provides a major incentive to implementation of CAM 
systems for purposes of accomplishing computer-based au­
tomation of manufacturing, in view of the endless opportu­
nities it offers for participation in decision-making through 
interactive type software programs and similar features. 
In addition, of course, the opportunity it offers for freeing 
workers from unpleasant, harmful, potentially dangerous 
or exhausting conditions on the job is tremendous. 

The third significant trend in attitudes toward manu-

TABLE I-Rates of Change of Productivity and Labor Costs in 
Manufacturing 

Average annual percent change, 1965-70 

Unit labor costs 

Output per Compensation National 
Country man-hour per man-hour currency U.S. dollars 

Belgium .......... 6.8 8.4 1.4 1.4 
Canada .......... 3.5 8.3 4.6 5.1 
France ........... 6.6 9.5 2.7 0.6 
Germany ......... 5.3 8.7 3.2 4.7 
Italy ............. 5.1 9.1 3.8 3.8 
Japan ............ 14.2 15.1 0.8 0.8 
Netherlands ...... 8.5 11.1 2.5 2.5 
Sweden .......... 7.9 10.6 2.5 2.5 
Switzerland 1 . ..... 6.2 6.2 0.0 0.0 
United Kingdom ... 3.6 7.6 3.8 0.2 
United States ..... 2.1 6.0 3.9 3.9 

1 Wage earners only. 
Source: Bulletin 1710, U.S. Department of Labor (1971). 



Factors characterizing 1844 
events on the job that led to 
extreme dissatisfaction 

Percentage Frequency 

40 30 20 10 

I 
ACHIEVEMENT 

I 
R[COGNITION I 
I I 

WORK ITSELF L 

I 
RESPONSIBILlTI[S I 

I 
ADVANC[ME~H L 

I 
GROWTHL 

I 
I 

! I SUPERVISION 

I I 
RELATIONSHIP WITH SUP[RVISORl 

I I 
WORK CONDITIONS I 

I 
SALARY I 

I I 

The Future of CAM Systems 795 

Factors characterizing 1753 events 
on the job that led to extreme sat., 
isfaction 

Percentage Frequency 
10 20 30 40 

I 1 I I I 

I 
I 

I 
• 

I 
J 

I 
I 

I 
I 

I I I 
I I COMPANY POLICY AND ADMINISTRATION 

I 1 I I 
I I I 

J 
I 

) 
I 

I 
I 

ALL FACTORS All FACTORS 
CONTRIBUTING CONTRIBUTING 

I I TO JOB DIS· TO JOB 
SATISFACTION SATISFACTION 

RELATIONSHIP WITH PEERS I I 

l'l I I 
PERSONfL LIFE q HYGlfNE 11<) 

I 

LI I R,LATIONSHIP WITH SUBOROINATES 1,8 I I 
MOTIVATORS 81 

I STATUS i I 
80"" 60 40 70 0 ?O 40 60 80"" 

jECURITY RATIO AND PERCENT 

-
Figure 2-Satisfaction and dissatisfaction factors in jobs according to Herzburg4 

facturing is the changed attitude which governments 
throughout the world are taking toward freeing workers 
from unpleasant, harmful, potentially dangerous or 
strenuous conditions. In most of the industrialized coun­
tries of the world, government is no longer playing the 
essentially passive role of requiring that, as technology to 
accomplish improved working conditions is developed, it 
be put to use. Instead it is now playing the very active role 
of requiring that such technology be developed. For 
example, in the United States, the relatively new Occupa­
tional Safety and Health Act in effect requires such things 
as: 

1. technology be developed to eliminate the necessity 
for a worker to ever insert his hand, arm, or any part 
of his body into a potentially dangerous area of a ma­
chine (such as a press) 

2. technology be developed to keep the noise level in a 
factory below 90 dBA (BollingeroS has excellently 
summarized the current status of the international 
attack on this and other aspects of the problems of 
noise in manufacturing). 

Here again, requirements such as these provide strong in­
centives to implement CAM systems for automation of 
manufacturing. 

PROGRAMS AND STRATEGY 

Most of the industrialized nations of the world today are 
aware of the foregoing powerful incentives to change the 
character of manufacturing through implementation of the 
automatic factory. Likewise, many of them are equally 
aware of the potential of the digital computer to accom-



796 National Computer Conference, 1975 

STEP IDEA NAKK-.... activitie.s 

1 PRODUCT- -g-
~ CONCEPTION 

2 CALC ULA Tl ON ~ ".E!!... '8£:.1 ~a."U ~" 

~ 
E 1>/.-

3 DESIGN t-8~~~ 
MACHINING- -r::::=::::::3-~~'- ~""~"I'\ 

4 SEQUENCE til SAWING TURNING MIL UNG 0 
5 SEQUENCE OF ~ ~ ~g: MACHINES 

CLAMPING- ~ 
6 -~ :::> DEVICE « 
7 SEQUENCE OF B r9:~ 

OPERATIONS ~~ 

~ 8 TOOL - -~.~ SELECTION 

9 CUTIING-DATA S~D ~.-~" Z E . ...:, >« 
10 TOOL-PATHS c:rl r=:r! r=1 ~g-5~ ....J 

a.. ...... ~~ 0 
POST- J.~~~~~!:f·i~t·.:!~ ~:!.l,:~ t-

Il :::> 
PROCESSING :--5.1 L!" « 
MACHINING ~ r4 E-:: z , 

12 8.fo~ 
~ 

WORK-PIECE 
Figure 3-Scheme for development of integrated manufacturing software 

according to Opitz6 and Nissen7 

plish this, and to thereby realize tremendous economic 
and social national benefits. That potentiality lies in the 
capability of the digital computer. That capability has 
powerful potential to provide both the hardware and 
software components of manufacturing with two essential, 
powerful faculties, namely: 

(1) on-line variable program (versatile) automation 
(2) on-line moment-by-moment optimization 

As a result, many countries have organized CAM research 
and development (R&D) programs of considerable scope 
to try to realize that potential in their own manufacturing 
industry. The main, long-range objective of these pro­
grams is, of course, eventual realization, in that industry, 
of the computer-integrated automatic factory. 

Although realization of the fully computer-integrated 
automatic factory, through implementation of the concept 
of the computer-integrated manufacturing system, is the 
long-range goal of the national programs, it is well realized 
that to get from today's industrial methods, know-how and 
installed equipment to that goal requires an evolutionary, 
rather than a revolutionary, process. The strategy being 
followed, therefore, is to develop and implement a series of 
viable, economic steps, in the form of shorter-range pro­
grams of R&D on CAM, each having two essential charac­
teristics, namely: 

1. Potential for sufficient economic return to justify it 
by itself and to generate the capital to support 
development and implementation of the next. 

2. Compatibility with eventual attainment of the goal of 
implementation of the computer-integrated auto­
matic factory. 

Out of the variety of such programs being pursued, the 
following seem to be receiving a major part of the atten­
tion and effort, world-wide: 

1. Integrated manufacturing software systems 
2. Group technology and cellular manufacturing 
3. Computer control 
4. Multi-station manufacturing systems 
5. The computer-integrated automatic factory itself. 

Integrated manufacturing software systems 

This program of CAM R&D is directed toward develop­
ment of modular, interfaced, compatible, CAM software 
systems for on-line computer-based optimization and 
eventual on-line versatile computer-based automation of 
complete manufacturing plants. The early economic pay­
off comes through application of the individual modules, 
as developed, to increasing on-line optimization of conven­
tional manufacturing plants. 

Both Europe and Japan are hard at work developing 
such software systems for their own use. For example, in 
Europe, West Germany and Norway are both developing 
national integrated software systems for metal cutting 
manufacturing. The "blueprint" for such is the diagram of 
Figure 3.6

•
7 The Japanese have indicated that they are bas­

ing their work in this field on pattern processing.s 

Group technology and cellular manufacturing 

This supplement to CAM consists of the layout and or­
ganization of a factory and its manpower and equipment 
on a part-family and product-line basis (rather than a 
functional basis), using group technology information con­
cerning geometrical and processing similarities between 
parts to establish the families. This has the eventual 
CAD / CAM benefit of providing a compatible, economic 
base for evolution of such factories through increasing use 
of hierarchical computer control and multi-station manu­
facturing systems. However, implementation of this tech­
nique provides immediate economic benefits from 
decreased manufacturing lead time, decreased inventory 
of parts in process, and increased job satisfaction of 
workers. 

This type of program is. being actively pursued in both 
Japan and Europe. Japan is developing its own national 
part classification system for use in establishing group 
technology families and is testing it in industry. In the 
Netherlands, the Metals Institute of TN09 is developing, 
and is testing in industry, a computer-based software 
system for automatic classificatiori of parts into group­
technology families and automatic layout of factories into 
group-technology cells based on those families. The system 
will also then carry out automatic production planning for 
manufacture of those parts and will eventually also 
provide automatic programming for numerically con­
trolled machining of them. In Britain much R&D and im-



The Future of CAM Systems 797 

MOLINS 3 AX IS TWIN-SPINDLE 
CONTINUOUS·PATH MAC-HINE 

UNIVERSAL MIL LING 
MACHINE 

PLATEN 
LOADING 

RUMBLING 
DEBURRING& 
WASHING 

D D 
CERROBEND 
BATH 

HIGH SPEED 
SAW 

PROGRESS 

FITTING. 
DRILLING & 
TAPPING 

PRE-STRETCHED ALUMINIUM 
ALLOY 12 WIDE 

MIDDLESEX N.C 100 

DRILLING MACHINE 

HAYES TAPEMASTER 

MASERATI 
MILLING MACHINE 

with 
VACUUM TABLE 

NEWALL JIG BORER 

D HYD.POWER 

UNIT 

N C I NSPECT ION 
MACHINE 

Figure 4-An advanced group technology NC manufacturing cell as implemented by FerrantPO 

plementation of cellular manufacturing is going on, both 
in universities and in industry. For example, Ferranti 
Ltd. lo in Edinburgh has been busily engaged in imple­
menting such in their manufacture of avionics equipment. 
Figure 4 illustrates one cf their cells utilizing numerical 

control (NC) for producing a family of box-like parts of 
the general character of that shown at the bottom right of 
the figure. By going to cellular manufacturing, Ferranti 
has reduced the through-put time of parts in process by a 
factor of approximately 5. 



798 National Computer Conference, 1975 

Figure 5-Basic framework of an hierarchical computer control system 
(i.e., direct numerical control system) for metal cutting manufacturing, 

according to Bj91rkell 

Computer control 

Much of the R&D on this aspect of CAM carried on in 
Europe and Japan is being given a particular emphasis. 
This emphasis is directed at evolution of computer nu­
merical control (CNC) and direct numerical control 
(DNC) in such a manner that, as these bring computer 
power to the group technology cells on the shop floor (for 
purposes, initially, of serving only a limited number of NC 
machines), the computer power is also used to accomplish 
dynamic scheduling, production control, machine and 
operator two-way communication with the computer, etc. 
This encompasses all the machines in the cell and not just 
the NC machines. Thus, significant economic benefits 
should become possible very early in the evolution. 

This type of program is being carried on very actively in 
both Europe and Japan. Figure 5 represents the Norwe­
gianll concept of the computer hierarchy appropriate to 
such. As CNC type minicomputer control of the individual 
machines in a cell is brought to bear at level 3, this in due 
time provides an economic basis for overall DNC of the 
cell at level 2 with a larger minicomputer. Eventually it 
becomes profitable to link all the cells in the factory with 
a large computer at levell, providing an initial basis for 
overall on-line optimization and automation of the factory. 
Japan is reported to have the largest number of 
CNCjDNC systems already operating in factories of any 
country in the world. The number is reported to be on the 
order of60. 

Multi-station manufacturing systems 

This program of CAM R&D involves evolution of the 
group technology cells in such a manner that, as the 
percentage of NC workstations operating under 
CNCjDNC in a cell increases, complete automation and 
the integration of tool and work handling and transfer 
within the cell as a whole becomes economically feasible. 

Such handling and transfer may be done by use of pallets, 
manipulators, or other means. For example, a metal cut­
ting multi-station manufacturing system or cell, suitable 
for operation under CNCjDNC, as conceived by Perry/2 
is shown in Figure 6. Thus, in time, each group technology 
cell is conceived of as evolving into a multi-station manu­
facturing system operating under CNCjDNC. 

Both the European nations and Japan have a number of 
different types of multi-station manufacturing systems 
under development. For example, a basic pallet-type 
system having four different variations for different types 
of part families has been developed in prototype form in 
East Germany.13 However, Japan is reported as having 
developed the largest number of such systems; the number 
is said to be approximately 10. 

The computer-integrated automatic factory 

This program of CAM R&D is of course the final step in 
the evolution, whereby, through gradual full implementa­
tion of a computer hierarchy and an integrated software 
system, operations in all cells and at other work centers 
within a plant are dynamically programmed and coor­
dinated for overall on-line optimization and automation of 
the plant's operations. This includes interfacing the 
system with computer-aided design in such a manner that 
initial programming of the automated optimum manufac­
ture of a product is generated in the design stage, with the 
design optimized for minimum cost of manufacture. 

The only nation to date having an announced national 
plan for accomplishing this by a given date is J apan.14 
Their· plan, which goes by the name "Methodology for 
Unmanned Manufacturing", calls for the development, 
construction and operation of a prototype "unmanned" 
machine-building plant by about 1980. The plant would be 
a 200,000 to 300,000 square foot factory staffed by a con­
trol crew of only about 10 persons, as compared to the 

Figure 6-A metal cutting multi-station manufacturing system or "cell" 
suitable for computer control, according to P erry'2 



normal complement of 700 to 800 workers. The cost of the 
project will be approximately $100 million. 

CONCLUSION 

It seems evident that the combination of the powerful 
technological, economic and social factors and incentives 
and the concerted national R&D programs active today 
will indeed make the computer-integrated automatic fac­
tory a reality well before the end of this century. Thus all 
of us who are engaged in advancing the state of the art of 
CAM systems have exciting and challenging opportunities 
ahead. Further, in view of the very substantial economic 
and social benefits which can come from implementation 
of CAM systems and the resulting eventual realization of 
the computer-integrated automatic factory, as described 
above, we have a major responsibility to direct our efforts 
toward cooperation on a national scale to attain that goal 
as rapidly as possible. 

REFERENCES 

1. Merchant, M. E., "Delphi-Type Forecast of the Future of Production 
Engineering," CIRP Annals, Vol. 20, No.3, pp. 213-225, 1971. 

2. Carter, C. F., "Trends in Machine Tool Development and Applica­
tion," Proceedings of the Second International Conference on 
Product Development and Manufacturing Technology, Macdonald, 
London, pp. 125-141, 1972. 

The Future of CAM Systems 799 

3. Bell, D., The Coming of the Post-Industrial Society: A Venture in 
Social Forecasting, Basic Book, New York, 1973. 

4. Herzburg, F., "One More Time: How Do You Motivate Em­
ployees?" Harvard Business Review, Vol. 46, No.1, pp. 53-62,1968. 

5. Bollinger, J. G., "Noise-An Industrial Pollutant of International 
Concern", CIRP Annals, Vol. 22, pp. 197-202, 1973. 

6. Opitz, H., "Integrated Information Processing in Industrial Produc­
tion," Proceedings, CIRP International Conference on Application of 
Computers to Manufacturing, Halwag, Berne, pp. 69-79, September, 
1969. 

7. Nissen, K. G., "AUTOPROS-Automated Process Planning System," 
ibid, pp. 47-53. 

8. Sata, T. and H. Yoshikawa, Some Aspects of Pattern Processing for 
Manufacturing Systems, unpublished CIRP report, August 28, 1970. 

9. Keus, J. A. and B. A. Schilperoort, "Group Technology and Au­
tomated Work Preparation for Conventional and Numerically Con­
trolled Machines," Metaalinstituut TNO Communications, No.7, 
pp. 3-11, February, 1973. 

10. Allen, C., The Formation and Operation of a Cell System, Paper No. 
1001, Fourteenth International Machine Tool Design and Research 
Conference, University of Manchester Institute of Science and 
Technology, September, 1973. 

11. Bjl6rke, f/J., On-line Numerical Control Systems, Paper No. CPA-05, 
CIRP Third International Seminar on Optimization of Manufactur­
ing Systems, Pisa, Italy, June, 1971. 

12. Perry, C. B., "Variable-Mission Manufacturing System," Proceed­
ings of the First International Conference on Product Development 
and Manufacturing Technology, Macdonald, London. pp. 314-333, 
1970. 

13. Tschink, K., New Manufacturing Systems for Small and Medium 
Batch Production, paper presented at Fourteenth International Ma­
chine Tool Design and Research Conference, University of 
Manchester Institute of Science and Technology, September, 1973. 

14. "Makers Plan Developing Unmanned Machine-Building Plant in 
Seven Years," Japan Economic Journal, June 19,1973.° 





Parts representation in CAD/CAM 

by IKUO OYAKE 
Oki Electric Industry Company Limited 
Tokyo,Japan 

INTRODUCTION AND BACKGROUND 

During this decade, numerical models of mechanical parts 
have been exploited along with the activities related to com­
puter aided design and manufacturing. Indeed, various types 
of engineering analysis in design have involved the represen­
tation problem of the object. NjC machining has required 
mathematical expressions of the surfaces to be machined for 
preparing the control information. Also systematical ap­
proaches to production require complete numerical repre­
sentation of parts to provide efficient and smooth interface 
between design and manufacturing. This paper will describe 
one approach to parts representation. and its applications. 

So far, the term computational geometry has been advo­
cated by A. R. Forrestl to denote the representation, synthe­
sis and analysis of shape information. Concerning surface 
delineation, S. A. Coons2 pointed out the problem as the one 
of 'minimum specification' in his theory, P. Bezier3 has pro­
vided an intuitive way of geometric construction, the so­
called Bezier polygon, and successfully implemented it in 
UNISURF.4 This procedure has been extended by W. J. 
Gordon and R. F. Riesenfeld. 5 They showed that Bezier's 
method utilized Bernstein polynomials and, in fact, that the 
success of his theory is attributable to the use of these poly­
nomials. Moreover, they have developed B-splines which 
possess the local modification property. Also, the advantage 
of parametric representation has been emphasized by A. R. 
Forrest; D. V. Ahuja and S. A. Coon6 have introduced ra­
tional polynomials in expressing conventional curves and 
surfaces such as a circle, a parabola, a sphere and so on. 

On the other hand, complete mathematical models of 
mechanical parts have been studied in parallel. The possible 
approaches in the APT environment have been summarized 
by M. M. Cutterman.7 N. Okin08 has exploited the half­
space approach and some set operations for parts construc­
tion and successfully implemented them in the TIPS-1 
system. 1. C. Braid and C. A. Lang9 have developed volume 
concepts in parts representation and established basic primi­
tives for the procedure of building bricks. The GIL languages, 
which are extensions of APL, have been developed by M. 
Hosaka1o for the design and drawing of 3-D objects. Also, the 
PADL languages for part and assembly description, includ­
ing tolerance facilities, have been investigated by A. A. G. 
Requicha, et al. 11 

The approach which will be explained in this paper aims 

801 

at the synthesis of various component surfaces and the con­
struction of complete parts representation. The category of 
component surfaces includes any free-formed surface in 
parametric form as well as conventional surfaces such as 
planes and cylinders. 

THE APPROACH 

Figure 1 depicts the functional aspects of the approach. 
Generally for the synthesis process, . topological data has to 
be specified to show how each surface adjoins the others. 
This specification usually requires a great deal of ability in 
3-D space recognition. The approach has been designed to 
minimize this task and replace the topological data by local 
values associated with each surface. Therefore, the designer 
need not know the surface boundaries of the final shape. The 
only data required is an interior point and outward direction 
for each surface (Figure 2.) 

Formulation of 3-D objects 

In this paper a 3-D object is a point set in 3-dimensional 
space which is bounded by a finite number of surfaces. This 
3-D object may be characterized by its vertices, edges and n 
surfaces. Consider Figure 3. The surface SRi is a closed 
region bounded by some of the other surfaces. Express the 
region of SRi by the sequence of the edges, eil, ei2, ... , 
eip, ... , eik. Then define as follows: 

MAT= (Eij) , where Eij =eip if eip is a common boundary 
of SRi and SRj; Eij = 0 otherwise. 

By the definition Eij, the i-th row vector forms the region of 
SRi. On the other hand, the j-th column vector reveals which 
other regions adj oin SRj. Of course, in the case of an ob­
ject, each column vector has the same edge elements as the 
corresponding row vector. Further, the orientation deter­
mined by the outward vector on eacb surface gives a direc­
tion to each edge of the region (Figure 3). Then, the con­
nectedness of an object is equivalent to the fact that the i-th 
column vectors have the same edge elements but the opposite 
direction as the i-th row vectors. This property of the inci­
dent matrix ]\lIAT will identify the topological relationships 
among the surfaces of the .3-D.object~ 



802 National Computer Conference, 1975 

{ 
COt·\PONENT t 
SURFACE I I 

j COMPON EtH } 
\ SURFACE 2 

~_S_YN._TH_E_S_I S_-J
1
-' 

{
COMPLETE PARTS} 
REPRESENTATION 

{ 
COt.lPON ENT } 
SURFACE 'T/ 

j I 
[TOPOLOGICAL DATA] 

Figure l-Functional aspects of the approach 

Construction of 3-D objects 

An n-sided object can be expressed by its set of n faces. 
The basic idea of the construction is to define the general 
space of possible solutions and then use an iterative method 
to find the object. 

Step 1. Each component surface has the following para-
metric equation, 

SCi = Fi(Ui, Vi), i ::::; n. 

l .. et Ni be a point on SCi interior to the final object. Then 
there exists ai and (3/ such that Ni = Fi(ai' (3i). Also let Vi 
be a vector directed outward from SCi, then the integer 1P 
can be determined for later use as follows: 

1P = sign ( (aFijaUi*aFijaVi) *Vi) 
Ui=ai 

Vi = {3i 

Step 2. Fix i. Then the set GEOMi= {SCinSCpnSCq I 
p~q} consists of a collection of curves (p=i or q=i) and 
points (p~i and q~i). Let CUVi be the set of all curves C 
in GEOl\1i such that at least two points in GEOMi lie on C. 
If CE CUVi, then C is divided into subarcs by the points of 
GEOMi which lie on C. Let Ic denote the set of these sub­
arcs. Finally, let ARCi = U1c, and define a graph: 

cEGEOMi 

GRAPHi= {IEARCi I I adjoins some other 

J E ARCi at each vertex of I}. 

I 
1 

1 I 
I I 
I I 
t. I 
\ ) Zl(v'\ //'/ , / 

\ // 

\, I // 
X ...... I ,,-...... ,1/ 

Figure 2-Specifications 

S j: COMPOHENT SURFACE 

V j : OUTWARD VECTOR 

H j :. 1 HTE~ 1 OR PO 1 NT 

Figure 3-3-D object 

Step 3. The topological aspects of GRAPHi are invariant 
under the mapping Fi-1• Define the graph GPHi in the 
(Ui, Vi) space as follows: 

GPHi=Fi-1 (GRAPHi) = {D I D=Fi-1 (I), 

1EGRAPH1i} (Figure 4.) 

A domain is a closed connected point set in the (Ui, Vi) 
space bounded by some of the edges in GPHi. If a domain 
contains no edge of GPHi in its interior, it is called a funda­
mental domain. BASEi is defined as follows: 

BASEi = {M IlVI is a fundamental domain in GPHi} 

Step 4. The boundary curve of lV1 in BASEi is denoted by 
al\1, which is a sequence of edges in GPHi. There exists one 
domain, say lVIo, in BASEi which contains (ai, (3i) in its in­
terior. Then the orientation of Mo can be determined so 
that the following expression (using the winding number in a 

!(tj,l3 j ) f 
r- ~ 

1 
, 

t 1 

-' 1---- ,----. I t 
I t 1 I 

, I 
~ ___ .. I • -- , 



1 
ENG I NEER I NG 

CALCULATION 

Parts Representation in CAD / CAM 803 

'I FOULE--'- - -- - -- - -I 1 rULE-l.------- ---l 
RA\,I DATA I *2 I *3 I *~ 
SET ,OF POINTU-I L COMPONENTSJ. u.. PART J.J ~ CL DATA ~ ~ 
PLANE _ ! -! J"REPRESENT- -L li- REPRESENT- i~! ! - -, J :...- HC TAPE 

CYLIN1DER' ETCL ____ ATION _____ J AnON L __ '" -l------J 
MODULE-2 
.-------------) *5 
I I MACH I N I NG 
I ,-JL- I INFORMAT!ON 

'--------L..-.l - ~ ~~-

*6 
"""------t---+-- DISPLAY 

__ ...I INFORMATION 

'f1 
MODIFICATION 

DATA 
TEKTRONIX MODIFICATION 

*i; THiS DATA IS USED 
IN CONSTRUCTING FILES. 

SCOPE DATA 

Figure 5-System flow 

complex plane) is equal to 1, 

Real ((2'l1"p)-1 1 (Z-ZO)-l dz) *IP, 
iJMo 

where Z=Ui+pVi (p is an imaginary unit). 

}\I10 will induce a unique orientation over the remaining 
fundamental domains (Figure 4). 

Step 5. The sum of two fundamental domains can be de­
fined if and only if they have a common edge. The boundary 
of the sum of Mj and Mk is expressed by: 

a(Mj+Mk) =aMj+aMk-aMjnaMk. 

Thus, the orientation of (Mj+Mk) is determined bv that 
of Mj and Mk. . 

The above discussion may be extended to more than two 
summations. Any domain, including 1\110, can be described 
by the following summation: 

DOMj =Mo+ (M j1+M j2+·· ·+l\1 jp ). 

The set of all the above domains is denoted by DOMAINi. 
Step 6. Let m be the following set of regions on SCi, 

m=Fi (DOMAINi) = {RAG I RAG=Fi(DOM), 

DOl\1EDOMAINi} 

Then the set of general possible solutions will be the product 
set: 

SPACE = Q1XQ2X ... xmx··· XQn. 

An iterative process is employed to search for a combination 
(RAG k1\ RAG k22, ... , RAGknn) which satisfies the prop­
erty of the incidence matrix. 

APPLICATIONS 

A die making system is one of the applications of parts 
representation. The overall view of a system in design and 
manufacturing of die cavities is shown in Figure 5. The file 
of parts representation is an input to the manufacturing 
module. In the case of N/C language systems where regional 
milling capability is available, the additional input informa­
tion will be a machining area, guiding lines, pickfeed values, 
clearance planes, a cutter configuration, tool axis and post­
processor related words. A multiclient program, CADDEF, 
which aims at design and fabrication for sheet metal stamp­
ings has been proposed by IIT Research Institute. In this 
program, finite element analysis on parts geometry is em­
ployed for mathematical simulation of die stamping processes. 

ACKNOWLEDGl\1ENT 

This work has been supported by the management and com­
puter science division of IIT Research Institute. The author 
is greatly indebted to Dr. Hunter Shu, who has provided 
constructive suggestions. Also, the author wishes to thank 
Dr. Kenneth Fox and Dr. Rodney Kosloski for their kind 
reviews of this report. 



804 National Computer Conference, 1975 

REFERENCES 

1. Forrest, A. R., "Computational Geometry," Proceedings of the 
Royal Society, London, A321. 

2. Coons, S. A., Surface for Computer-Aided Design of Space Forms, 
Project MAC, MIT, 1964. Revised to MAC-TR-41, 1967. 

3. Bezier, P., Emploi des 11,fachines a Commande Numerique, Masson 
et Cie, Paris, 1970. Second revised edition translated to English by 
A. R. Forrest, to be published by Wiley and Sons, 1972. 

4. Bezier, P., Procede de definition numerique des courbes et surfaces 
non mathematique; Systeme UNISURF, Automatisme 13, May 1968. 

5. Gordon, W. J. and R. F. Riesenfeld, "Bernstein-Bezier Methods 
for the Computer-Aided Design of Free-Form Curves and Surfaces," 
Journal of ACM, Vol. 21, No.2, 1974. 

6. Ahuja, D. V. and S. A. Coons, "Geometry for Construction and 
Display," IBM System Journal, Vol. 7, No.3 & 4,1968. 

7. Cutterman, M. M., Final Report, APT Numerical Description 
Study, Prepared for Sandia Corporation, Livermore Lab., Contract 
No. AT-(29-1)-789, lIT Research Institute, 1964. 

8. Okino, N., Y. Kakazu, and H. Kubo, "TIPS-I: Technical Informa-: 
tion Processing System for computer-aided design, drawing and 
manufacturing," Preprint of PROLAMAT' 73, Budapest, April 
1973. 

9. Braid, 1. C. and C. A. Lang, Computer-Aided Design of Mechanical 
Components with Volume Building Bricks, Computer Lab., Uni­
versity of Cambridge, England, 1972. 

10. Hosaka, M. and F. Kimura, Computer Processing of Solid Objects, 
University of Tokyo, Japan. 

11. Requicha, A. A. G., N. M. Samuel, and H. B. Voelcker, PADL-1.0: 
Part and Assembly Description Languages, TM-20, Production 
Automation Project, University of Rochester, 1974. 

12. Documentation for the CAM-I fourth Sculptured Surface Experi­
mental Release System, SSX4, lIT Research Institute, 1974. 

13. Kishi, H., 1. Oyake, Y. Shimura, K. Nagai, and T. Hatta, 
"OKISURF System," Proceedings oj the 11th Conference, Numerical 
Control Society, 1974. 

14. The CADDEF Program-Computer Aided Die Design and Fabrica­
tion for Sheet Metal Drawing, Project Proposal, lIT Research 
Institute, 1974. 



Two application programs which link design 
and manufacture 

by HENRY MERRYWEATHER 
Computer Aided Design Centre 
Cambridge, England 

INTRODUCTION 

The Computer-Aided Design (CAD) Centre at Cambridge, 
England has pursued a policy of cooperation with various 
industrial organizations to specify and develop computer 
programs which fulfil a variety of needs. These needs are 
dependent on the nature of the industry involved and have 
resulted in diverse application programs which include: vi­
sualization packages to assist architects to "see" the build­
ing they are designing before it is built; systems to assist 
the design and costing of chemical plant, and programs to 
generate the precision artwork for printed circuit boards. 

The application programs are developed by groups at 
the CAD Centre who have a specific responsibility for one 
sector of industry or one class of industrial problems. One 
group, the Industrial Engineering Group, is concerned 
with producing economically and technically sound links 
between the design and manufacture of components~ 
These links are contained in two packages and the purpose 
of this paper is to show: the programs overall characteris­
tics and the computer systems on which they are used; the 
way the packages have been developed and an outline of 
their facilities, and examples of the way the systems have 
been used. 

INDUSTRIAL ENGINEERING GROUP 
APPLICATION PROGRAMS 

The Industrial Engineering Group application packages 
are directed towards providing viable solutions to the 
problem of linking design and manufacture of a wide 
range of components. However, the provision of links 
between design and manufacture often encourage different 
methods of working within an organization and influence 
other parts of a manufacturing business such as marketing 
as will be seen when the application programs are dis­
cussed in greater detail below. Throughout the develop­
ment of the packages, industrial participation has been an 
essential ingredient and it is considered that this participa­
tion has been crucial because it ensured that the resulting 
computer programs do provide the facilities and ca­
pabilities required by genuine industrial needs. Further 
assistance towards the development of viable application 
programs has been the adoption of at least the philosophy, 

805 

if not the actual routines, of general purpose program aids, 
such as those associated with the production of drawings 
on the various graphical output devices (e.g., plotters and 
storage tubes) that are used. The assistance of general pur­
pose program aids is also seen as a substantial contribu­
tory factor towards succ~ssful application programs be­
cause it reduces both the cost and time scale involved dur­
ing the development time of the computer programs. The 
ability to move the group's programs readily from com­
puter to computer is a characteristic which is adhered to 
as much as is practicable. The portability of programs is 
necessary because it is intended that the programs can be 
supplied to those who require them and there are many 
different computers which have the necessary languages 
and operating systems. The use of Fortran IV and adop­
tion of general purpose program aids are seen as two 
essential ways of assisting program portability because 
Fortran IV is available on most of the computers which 
are in all other respects suitable for such programs and as 
general purpose software often deals with the computer de­
pendent problems such as are found with input and 
output, these difficulties only have to be overcome once. 

Apart from portability, another important criterion in 
the specification of the Industrial Engineering Group's ap­
plication packages is that they can be easily tailored for 
specific problems. This is considered important because, 
although generalized computer solutions can be written to 
solve a class of problems, the resulting program is often 
large and difficult to use. 

During the early stages of development, multi-access 
computers which consisted of a main or host processor and 
satellite computers were used to provide interactive 
facilities to pave the way for the more flexible forms of 
computer power that have come with advances in com­
puter technology. Now, as computer hardware costs have 
been reduced, relatively cheap but powerful mini com­
puters provide good interactive and economic running of 
these application programs while still permitting access to 
main frame computers when necessary. The response from 
the mini computer is ensured because it will be used in a 
dedicated manner with often only one user on the machine 
at any particular time. Thus, the mini computer is now be­
ing used for certain Design and Manufacturing problems 
in the same way that it has been used for some years to 
control one item or section of process plant. 



806 National Computer Conference, 1975 

Figure I-Examples of components suitable for ma,chining by the GNC 
system 

Two main application packages have been developed by 
the group, namely: 

GNC a method of verifying the design, produc­
ing nl c tapes and checking manufac­
tured components which are two and two 
and a half dimensional and 

POL YSURF a method of designing, drawing and, 
where appropriate, producing nl c tapes 
for three dimensional components 
particularly those which have doubly 
curved surfaces. 

The remaining parts of this paper explain, in more detail, 
the characteristics of these application programs. 

GNC 

Development of GNC 

The CAD Centre has always had the ability to produce 
drawings and therefore was often requested to plot the tool 
paths of tapes for nl c machine tools. This way of tape 
checking was found to be of only limited assistance be­
cause not all errors could be detected and even when er­
rors were found there was no ready means of making the 
necessary corrections. 

Thus, the concept of the GNC1,2 (Graphical Numerical 
Control) package was stimulated by the need to overcome 
the deficiencies of checking tool paths by plots from tapes 
for nlc machines. GNC was specified by active participa­
tion of three British companies (British Aircraft Corpora­
tion (BAC) of Weybridge, Plessey ·Co., and Midcast Nu­
merical Controls) who not only regularly met with CAD 
Centre staff but provided assistance in the form of com­
puter programs and nl c machine time. The overall specifi­
cation of the system was that it should: be suitable for two 

and two and a half dimensional components (Figure 1); 
simplify part programming; and reduce tape preparation 
lead time without incurring extra costs. 

It was decided to separate the production of nl c tapes 
into the three distinct stages of: definition of component 
geometry; description of machining pattern; post process­
ing and one stage would be checked before the next stage 
was started. The separation into three stages also meant 
that the component geometry could be specified by staff 
other than those usually involved with part programming. 
Such staff could well be part of the design team of the 
component who, because they designed the component, 
could more economically carry out the geometry definition 
in such a manner that it could immediately be used to 
describe a suitable machining pattern. 

It was decided to use an existing program called 
KCURVES3 for the component geometry definition be­
cause this was immediately availabl.e and portable. 

The program to describe the machining pattern was 
developed at the CAD Centre to be interactive, using the 
graphic capability of the storage tube terminal (Figure 2) 
to show the component and cutter path as it was 
generated. The output from the machining pattern 
program was arranged to be in a standard form so that 
whenever possible existing post processors could be used. 

As has been shown, the original brief of GNC was to 
provide a more cost effective method of producing nl c 
tapes. Successful use of GNC by the participating and 
other firms has shown that this brief has been achieved. 
Additionally it has been found that relatively small 
enhancements to the machining sequence program, enable 
accurate drawings to be produced using a flatbed plotter 
which provide both: an additional way of controlling ma­
chining because the precision plots can be used for ma­
chine tools with optical followers, and a method of check­
ing profiles because the profile of the machined 
component, e.g., a hob to cut gear wheels can be compared 
with the accurate drawing. 

Figure 2-Storage tube terminal with tape reader and punch 



Facilities within GNC 

The geometry definition program (KCURVES) allows 
components to be described as arbitrary combinations of 
parts of straight lines and segments of circles. The defini­
tion is carried out in the two stages of: definition of all the 
straight lines and circles required and description of how 
the parts of straight lines and circles are to be used. 

Most normal engineering components can be described 
because at least forty different ways of describing straight 
lines and circles are available. An example of the way the 
straight lines and circles are joined together is shown in 
Figure 3 which also demonstrates the particularly useful 
feature of being able to insert fillet radii between any two 
adjacent parts of the complete curve without defining 
these radii at an earlier time. A further option is the 
ability to fit a smooth curve through a series of points with 
a number of circles; this is particularly useful when 
profiles, such as aero foil and cam shapes, are defined as a 
table of points. 

The machining pattern program is interactive and the 
way this characteristic is used is demonstrated more 
clearly in the next section which describes GNC in use. 
However, the main features of the program are listed 
below: 

• automatic scaling and drawing of component curves 
for checking and reference 

• translation, rotation, reflection and repetition of 
geometry 

• calculation and display of offset profiles for use in 
cutter radius compensation 

• the ability to define part programming statements to 
describe cutter movements and associated data 

• animation of the tool movements in three orthogonal 
and· isometric views 

• editing the part program by inserting new statements 
and deleting those no longer needed 

• reprocessing the part program to produce APT-com­
patible cutter location data. 

P9 
.,..-I----... -----t-..::.- - - ~ .... 

/ 

/' 
/ 

"... 

KB RO·5 P9 T59 CF NAC 2 CF 1·0 NA510 CF T511 CF TS9 P9 EK 

Figure 3-Example of KCURVE definition 

Two Application Programs 807 

Figure 4-Checking geometry definition 

Example of the use of GNC 

To demonstrate how GNC can be used a sequence of 
figures have been prepared showing the various stages to 
machine part of one of the components shown in Figure 1 
from a solid block of aluminium. The component 
geometry was prepared using the KCURVES program, a 
detail of one of the pockets being shown in Figure 3. The 
geometry definition of the component is first checked by a 
drawing on the screen (Figure 4). After the selected cutter 
size, feed rates, height at which cutter will clear the metal 
and depth to which cutter must penetrate the metal have 
been specified (indicated by the row of numbers along the 
top of Figure 5) the setting point for the nl c machine is 
given (indicated by the "*,, at the bottom left hand corner 
of Figure 5). 

To remove the bulk of the unwanted metal, the centre of 
the cutter is controlled by movement of a cursor on the 
storage tube; this is called line milling. To prevent fouling 
of the finished profile, the cutter centre must remain a 

Figure 5-Initial setting of machining parameters 



808 National Computer Conference, 1975 

Figure 6-0ffset of component shown 

distance at least the radius of cutter from the final prpfile. 
To ensure this, an offset has been drawn equal to the cut­
ter radius as shown in Figure 6. 

Two successive movements, using the line milling 
facility of the system, were then carried out as shown in 
Figures 7 and 8, the cursor being used to specify the end 
point of each straight line movement. This way of using 
the cursor means that an operator can easily use his ma­
chining skills to specify the best movements to remove un­
wanted metal. This can be particularly valuable if special 
care must be taken because there are relatively fragile 
items in the component such as thin webs. 

The finished profile is obtained by one command where 
the cursor is used to indicate a start and finishing point as 
shown in Figure 9. The other two orthogonal views can be 
obtained as also can an isometric view of the entire tool 
path and component as shown in Figure 10. 

Figure 7-First move using line milling option 

POLYSURF 

Development of POL YSURF 

Many components and objects found in various indus­
tries ranging from shipbuilding to bottle making are dif­
ficult to design because their shape is sculptured i.e., it 
has a free form which cannot easily be defined. Tradi­
tional methods of designing such objects are usually im­
precise and may be restricted to the definition of a series 
of sections through the object as shown in Figure 11. When 
a component is manufactured from such a limited defini­
tion, the final detailed shape would be left until manufac­
tured. Thus, if the component were to be moulded, the 
final shape would be determined by the pattern maker 
who possibly would make no reference to the designer but 
would rely on some "accepted code of practice" within 
that particular industry. 

The fundamentals of computer techniques to overcome 
the difficulties of imprecise definition were developed as 
early as 1966.4 Work at several places within the United 
Kingdom has been carried out since that time. Of these, 
the CAD Centre was able to draw directly on the research 
and development experiences of Cambridge University 
and BAC, Weybridge to specify the POL YSURF5,6 system 
which (although still under development) can be used for 
the design and manufacture of a wide range of sculptured 
components. This research and development work showed 
that the inexact and incomplete definitions of components 
implied by traditional methods which simply define the 
geometry as a series of section lines, could be overcome by 
using mathematical equations to define the components' 
shapes. This solution had to be computer based because 
any practical mathematical definition needed a computer 
to carry out the necessary numerous calculations. 

To develop a satisfactory system, and to be satisfactory 
it was essential that designers and production personnel 
from industry could readily use the system, two main 

Figure 8-Second move using line milling option 



Figure 9-Cutting exact profile 

types of problems had to be overcome, namely: the solu­
tion of the necessary mathematics of handling the equa­
tions used, and finding the means of using the 
mathematical solutions. 

Both types of problem are important because poor 
means of using the mathematics would obscure the power­
ful tools that were provided and inadequate mathematical 
techniques would result in clumsy means of achieving 
satisfactory results. 

During the time POL YSURF was being developed, 
various industrial organizations actively participated by 
working with Centre staff on specific design and manu­
facturing examples. The industries were widely based so 
that the list of components which were used as test pieces 
include: 

• a shoe last 
• ship hulls 

Figure lO-Isometric view of component and complete cutter path 

Two Application Programs 809 

Section through Surface 

Sculptured Surface 

Figure ll-Sections through component with free form surface 

• bottle moulds 
• chair shells 
• cab for high speed train 
• turbine blades 
• car dash panel 
• jug mould 
• sailplane fuselage. 

In this way, pressure from demanding clients ensured that 
the POL YSURF system contained the necessary facilities 
which could be readily used. One consequence of using a 
computing means of defining components is that with the 
use of other computer methods which can generate half 
tone pictures of components (Figure 12), realistic pictures 
of the finished article can be obtained even before it is 
manufactured. This can be of great value during the initial 
marketing of the product as well as helping with the 
aesthetic appraisal of the design. 

Facilities within POL YSURF 

The POL YSURF system consists of three main modules 
which deal with the design of the component; drawing of 
the component,and production of tapes to control nl c ma­
chine tools. 

This modular structure enables different sections of the 
program to be run independently so that the system runs 

Figure l2-Computer generated half tone picture of instrument casing 
designed by POL YSURF 



810 National Computer Conference~ 1975 

Figure I3-Distribution of coordinate data of blade 

with the minimum of overheads and can be used in a va­
riety of specialized circumstances. The design module 
enables the component to be defined by the equations 
which not only apply to free form or sculptured surfaces 
but also to the more usual geometric forms such as planes, 
cylinders, cones and spheres. To assist the design, points 
can also be used as a means of checking whether or not the 
surface of the object passes through or near certain control 
positions. Geometric descriptions from the design stage 
can be stored for further manipulation by the design 
module to carry out any necessary refinements; the draw­
ing module; the nj c tape preparation module, and other 
programs which are needed for specialist tasks like 
analysis or production of pictures by other computer pro­
grams. 

The drawing module enables line drawings to be 
produced on a number of different graphic displays with 

Figure I4-Smooth boundary lines on modelled blade 

Figure I5-Sections through blade surface 

the following options: 

parts of, as well as, complete components to be shown 
different scales or orientations to be chosen 
different arrangements of views and perspective drawings 

to be selected 
outline drawings to be produced 
principal features to be included and 
sectional drawings to be obtained in any chosen plane. 

The nj c tape preparation module produces data suitable 
for standard post processors. Any area of the designed 
component can be cut by specifying the enclosing 
boundary as any combination of surfaces, planes, cones, 
cylinders and spheres. Additional options include differing 
cutting patterns and tool forms. The user must also 
specify the tolerance to which the surface must be cut. 

Figure I6-Finished blade and form machined using POL YSURF 



Examples of the use of POL YSURF 

An nl c machine tool supplier needed to demonstrate to 
a potential customer that the particular nl c machine was 
able to cut blades for compressors and turbines. The cus­
tomer had already designed- the blade and coordinate data 
was available at a number of points on both sides of the 
blade. Figure 13 shows the distribution of the points for 
one side of the blade. The POL YSURF system was used to 
fit a series of mathematical equations so that one equation 
applied to the area between each set of four points and 
there was continuity of position slope and curvature across 
the boundaries between adjacent areas. The resulting 
boundary lines between the areas can be seen in Figure 14 
and sections at various depths are shown in Figure 15. The 
nl c tape preparation module was then used to prepare 
tapes to cut the blade surface between the leading and 
trailing edge$ which were defined in the original data; the 
cone which defined the root of the blade, and the cone 
which defined the top of the blade. 

Two Application Programs 811 

The blade surface was then machined giving the form 
shown in Figure 16 which also shows a finished blade. 

ACKNOWLEDGMENTS 

The author would like to take this opportunity of thanking 
those from industry, universities and the CAD Centre 
whose cooperation and ceaseless efforts have made it 
possible to describe in this paper the successful techniques 
which are forging new links between the design and manu­
facture of components. 

REFERENCES 

1. Davies, K. J., "GNC-A Graphical N/C Processor," Pro c.· Prolamat 
73, North Holland Publishing Company, Amsterdam, 1973. 

2. Anon, ONC User Manual, CAD Centre, Cambridge, 1974. 
3. Anon, KCURVES User Manual, CAD Centre, Cambridge, 1974. 
4. Coons, S. A., Surfaces for Computer-Aided Design of Space Forms, 

MIT, MAC-TR-41, 1966. 
5. Flutter, A. G., POL YSURF, Ph.D Thesis, Cambridge University, 

1974. 
6. Anon, POL YSURF User Manual, CAD Centre, Cambridge, 1974. 





Automatic program synthesis-From CAD to 
CAM* 

by ROBERT T. CHIEN and TONY C. WOO 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 

INTRODUCTION 

The technology gap between design and manufacturing 
has stimulated a number of research projects whose com­
mon objective is to bring design specification into some 
form of procedure that specifies the manufacturing se­
quence and tool path. Most notably, there are two related 
areas of study-sculptured surfaces and process planning. 
The former is concerned with representing non-analytic 
surfaces in parametric forms so that points on a surface 
can be generated from the parametric equations as cutting 
tool locations. The latter is concerned with grouping 
conventional machine parts and describing the part in spe­
cial programming languages or representing them in codes 
to arrive at operation sequences, choice of machine tools, 
cutting data, and other information. 

It is recognized that differential geometry is a powerful 
tool for representing sculptured surfaces. Coons' and Be­
zier's methods1

,2 have led to many developments and suc­
cessful implementations of surface modeling systems with 
the use of computer graphics.3

,4 It is noted that there are 
logical operations in manufacturing, such as deciding the 
machining operations, or sequencing the operations, that 
cannot be represented in the framework of differential 
geometry alone. 

On the other hand, studies in the area of process plan­
ning are just as successful. There are currently many 
systems in existence that accept special format inputs and 
generate work orders in batch or interactive modes.5

,6,7 

Most of these systems deal with turned components by ex­
ploiting the symmetry of the part. Curiously enough, very 
little attention is given to the possibility of using designs 
done on computers as input to integrate the design and 
planning stages. 

We see the problem of computer aided manufacturing 
as that of transforming geometric information into proce­
dural information-from how something looks like into 
how it can be manufactured. We believe that there is 
enough information in a design to be processed auto­
matically and to produce procedures for manufacturing 
purposes, if a person (a process planner, a part program-

* This work was supported under the Joint Services Electronics program 
(U.S. Army, U.S. Navy, U.S. Air Force) under contract DAAB-07-72-C-
0259. 

813 

mer, or a machinist) can do so with the same amount of 
information given. 

In order to have a firm grasp of the problem, we have 
chosen three-dimensional machine parts as the problem 
domain. We feel there is sufficient structure in parts 
geometry and in numerical control machine tools for us to 
understand the problem and to develop the solutions. 

To state our objective, we wish to associate the cavities 
in a given machine part design with the appropriate ma­
chining operations, sequence them, and expand the opera­
tions into numerical control programs. 

DEVELOPMENT AND APPROACH 

The basic issue addressed in this paper is that the shape 
of an object suggests a procedure. The handle of a tea ket­
tle, a hammer, or a door knob suggest their functions in 
relation to the object they are attached to. Similarly, a fa­
miliar shape such as a hole in a machine part suggests 
drilling, a slot or a pocket milling. Our task is to attempt 
the construction of a manufacturing procedure from the 
shape information in geometry. 

We understand that during the design stage, an opera­
tion such as "side mill roughing" can be associated with a 
particular cavity being designed. Consider the simple case 
of a hole. It may seem that attaching a label "drill" to a 
graphical representation would solve our problem. Not 
exactly. There are other key information that must be 
available before such a "drill" subroutine can be called. 
For example, is the hole all the way through? If not, how 
should the workpiece be set up, or from what direction 
should the hole be drilled? Should the hole be drilled 
together with other holes? Are there other holes of the 
same size? These are some of the specific questions nor­
mally asked by a part programmer when examining a 
design. 

It would seem very convenient if a program can 
manipulate the representations of cavities at the level of 
bodies. As we learned in engineering graphics, a part can 
be visualized as a composition of simpler objects in an 
exploded view. This idea has been implemented in a com­
puter aided design system by I. C. Braid.8 Consequently, 
we assume an algebraic description of a machine part as 
obtained from Braid's system, i.e., in terms of a set of 



814 National Computer Conference, 1975 

Figure I-Create a slot by removing 

primitive bodies such as cubes and cylinders, and rela­
tions such as adding and removing. 

We see such a description as a very good way of telling 
to the computer how a machine part looks like, in a lan­
guage of bodies. It is interesting to note, however, that 
there are many ways in which the same machine part can 
be described using the same set of primitives and opera­
tions. This is not particularly surprising because we hu­
mans can express an idea in natural language in just as 
many, if not more, ways using different components such 
as words, phrases, and clauses, and different arrange­
mentsof the components. Our problem here is in inter­
preting a body description of a machine in such a way that 
different descriptions of the same object should have the 
same interpretation. 

To understand the problem of interpreting the geometry 
of a design, let us consider an example of a slot. A "slot" 
can be represented, as in Braid's system, by a negative 
body B1 initially transformed from a primitive cube (by 
scaling in the X direction, for example). If this negative 
body B1 is removed from a larger cube C1, a "slot" is 
formed. See Figure 1. The same object can be described 
by building up on both sides of the slot (yet to be formed). 
As in Figure 2, one could add two long blocks, B2 and B3, 
on a flat block B4. 

We have just seen two of the many ways of syntactically 
representing a cavity in a computer. In order for the com-

puter to carry out automatic operations such as using the 
right cutting tool, approaching the workpiece in the right 
direction, move the cutting tool a proper distance, it must 
first understand what it is going to cut. In other words, a 
program must first relate the geometry of a "slot" to in­
formation such as part surface, tool diameter, tool loca­
tions. 

PARSING THE DESCRIPTION 

A major concern in dealing with part descriptions is that 
it is a many-to-one geometry to machining concept map­
ping problem. In order to capture the intent of a design, 
we have constructed a grammar that transforms a design 
description into an internal representation in terms of ma­
chining operations. The grammar handles the six primi­
tive bodies (cube, cylinder, fillet, sector, tetrahedron, and 
wedge) and commands (translate, rotate, scale, copy, 
negate, combine, and intersect) used in Braid's system. 

Let us first analyze the structure of a design. We define 
an object (OBJ) as a concatenation of a modifier (MOD) 
and an object, where an object may be a primitive object 
or a modified object, and a modifier may be any combina­
tion of the three transformations-translation, rotation, 
and scaling. 

OBJ=MOD OBJ 
OBJ = primitive bodyjOBJ 
MOD=translatejrotatejscalejMOD 

Figure 2-Create a slot by adding 



An object can be operated on by copying, or negating it. 
We call the concatenation of an operation on a body an ob­
ject group (OG). 

OG=OP OBJ 
OP = copy j negate 

A machine part can be composed by joining several ob­
ject groups together either by combining and merging the 
surfaces of the bodies involved, or by intersecting and 
creating new surfaces. A part is therefore a string of object 
groups joined together. 

PART=OGJOIN OG 
JOIN =combinejintersect 

Having analyzed the structure of constructing a part 
from primitive bodies, we need to define the grammar for 
machining terminologies such as holes, slots, and pockets. 
Our grammar parses the design description by looking for 

""...----- ................ , 
/ \ 

~ ) 
t ' ..... - _./ t 

---- I 
I I 
I I 
I I 
I I 
\ J " / ....... ./ 

""'---------.,."" 
(0 ) 

/-<::-----;> ...... 
/ ' ...... // '\ 

~ ,,/' ..... ) 
I' '" ..... ./ I 
I "'(-----~ I 
I I I t 
I 

I I I 
I I I 

I I I I 
I I t I 
\ I I I 

..... I L/ 
..... '-----.,..,.,-

(b) 

(d) 
Figure 3-A hole procedure 

,,------~ 
I............ " "-
I ..... '" \ 
I r ................... ..A 
I XI 
I : // ''\1 
1""<, \ 
t ",,,,/ " .. /1 
t< .... , t I - ___ -::r I 
I I I 
I I I 
I I I 
I I I 
I I I 
I 1/ l ____ -.v 

Not 0 Hole 
(C) 

Automatic Program Synthesis 815 

possible constructs of such cavities. Since they are in the 
form of programs, they are best explained as decision 
procedures. 

We define a hole as a negative cylindrical object. A 
cylindrical object may be a modified primitive cylinder, 
e.g., a rotated and scaled cylinder. It could also be four 
sectors joined together forming a cylinder. See Figure 3b. 
Since joining four sectors together arbitrarily does not 
necessarily form a cylinder, as shown in Figure 3c, we look 
at the modifier for each sector involved to make sure that 
they are of the same size (the same scale modifier) first. 
We further note that rotating a symmetrical object with 
respect to a certain axis is a modulo operation. For 
instance, rotating a cube, scaled in the X-axis, 180 degrees 
around any of the three axes does not cause any change. 
Our program takes this into account and eliminates re­
dundant transformations that may occur in the design. We 
also check the translation of each sector involved to make 
sure that the surfaces "mate" in the right manner. When 
these conditions are met, our program concludes that there 
are four bodies in the description of a machine part that 
forms a hole. A third possibility of a hole is the intersec­
tion of a cube with four negative fillets, i.e., taking away 
the corners of a cube. See Figure 3d. A similar procedure 
for checking each body involved is carried out. 

Our program is context sensitive in that it not only 
checks the constituents in an algebraic expression of 
bodies and relations for a possible cavity, it also checks 
the relationship between the cavity and the body in which 
the cavity is supposed to reside. An example of this 
context sensitive aspect of our grammar is finding a rec­
tangular open slot created in the manner shown in Figure 
2. Our program first checks the scale, translate, and rotate 
modifiers of the two objects to make sure that there are 
indeed two parallel surfaces belonging to two different 
bodies flanking the "slot." It then concludes a cavity and 
checks for the size of the formed cavity with respect to 
the size of the two'objects creating it. See Figure 4b. If the 
cavity is too wide, program perceives the two blocks as 
some sort of "walls" and does not treat the cavity as a slot . 
Our program also recognizes the importance of the relative 
sizes and orientations of the two bodies creating the slot 
and the body on which the slot is intended. If the two 
bodies are too small, the possibility of a slot is rejected. 
Similarly, if the two bodies are not oriented correctly, as 
in Figure 4c, the result is not interpreted as a slot. 

MODEL OF NUMERICAL CONTROL MACHINE 
TOOL 

After the cavities are interpreted, the results are passed 
onto another set of programs that produces an internal 
representation of the cavities in terms of cutting tool, tool 
diameter, approaching and cutting surfaces, and toolloca­
tions in space. Very often, our program returns more than 
one way of machining a particular cavity. This informa­
tion is kept and saved for later processing. 

At present, we have a model of a numerical control ma-



816 National Computer Conference, 1975 

(a ) 

Not a Slot 

(b) 

Not a Slot 

(c) 

Figure 4-A slot procedure 

chine tool which has the capability of 3-axis drilling and 
milling. Our model is built around the idea of a negative 
cylinder propagating in space. There are three such 
cylinders corresponding to the shapes of the most ele­
mentary cavities created by a drill, a side mill" and an end 

mill. Strictly speaking, the cylinders differ only in the 
bases, i.e., they are pointed, flat, and spherical, respec­
tively. 

The model is a collection of programs that simulates the 
cutting motions of the three kinds of tools. A slot, for 
example, is modeled as a two dimensional propagation of a 
flat-based cylinder moving in a straight line or following 
an arc. The result is a list of tool locations. 

For bodies with complicated boundaries, such as a 
pocket with islands, a more general algorithm is needed to 
generate the tool paths. The basic ideas are partitioning 
the area enclosed and sequencing the partitions. This 
method is particularly useful in dealing with pockets with 
a concave boundary and with islands inside the pocket. 
Since the boundary is composed of line segments and arcs, 
local concavity points are first computed. They are next 
sorted according to their locations. The area enclosed is 
then partitioned into several regions with parallel line seg­
ments connecting the local concavities to the boundary. 
These regions are then traced and labeled. Since cutting is 
assumed in an increasing X, increasing Y manner, the 
regions form a lattice. They are partially ordered in the 
sense that a region cannot be cut unless the ones below it 
have all been cut. Lattice traversing algorithms have been 
developed for this purpose. The entire boundary including 
those for the islands is then digitized using scan-line 
conversion technique.9 The digitized boundary is then off­
set and sorted in the increasing X, increasing Y order; the 
points provide a zig-zag tool path that runs between the 
boundary of the pocket and that of the islands. 

In general, before these programs are called, more in­
formation on the cavity should be obtained. A special 
program for a specific kind of cavity is called to analyze 
the tool required. At present, there are ten sizes for each of 
the three types of cutting tools available. If, for instance, a 
hole is too large for drilling, an alternative machining 
method, milling in this case, is taken. In addition, the 
program checks what surfaces of the cavity in question are 
external, hence accessible to the cutting tool, and what 
surface the tool should reside on (the part surface in 
APT). If there is more than one possibility in which the 
tool could approach the cavity and does not penetrate 
other parts of the workpiece, they are reported to pro­
grams to be described in the next section. 

GROUPING AND SEQUENCING 

With the cutting tools selected, and the possible ap­
proach surfaces available, our program next sorts the ca­
vities into groups. Basically, the program attempts to use 
the same cutter as much as possible without another set­
up. 

The algorithm proceeds by first grouping all cavities ac­
cording to the plane on which their approach surfaces lies. 
This implies the number of set-ups. Very often, a cavity 
occurs in different groups because it may be cut from a 
number of directions. The multiple occurrence is first 



partially eliminated by considering the number of 
identical operations within a group. If there are less than 
three of the same kind, and if the group is not the last one 
in the list, the occurrences are deleted from the group. 
There may still be cavities occurring in more than one 
group after this operation. A semi-circular cut-out is an 
example. It can be interpreted as a hole and as a slot, thus 
it can be machined in more than one way provided the re­
quired cutting tools are available. The groups are next 
aivided into subgroups according to the type of cutting 
tool needed. An elimination of multiple occurrence may 
happen if there are less than three cavities using the same 
kind of tool. If multiple occurrence still exists, drilling 
operation is given the preference to milling. 

CODE SYNTHESIS 

Our code synthesizer is quite simple. It is APT-like and 
has two kinds of information. If a list of points is given to 
it, the result is a series of statements of the form: 

GOTO/Pi 

If a list of line segments and arcs are supplied, it produces 
statements of the form: 

GO* /Li%Li+1 

where the modifier, *, is to be replaced by LFT or RGT, 
and % is to be replaced by TO, ON, or PAST, depending 
on the angular relationships between Li and the segment 
preceding it Li-1, and the one following it, Li+1. A com­
puter graphics package is written that translates these 
statements into graphics commands, thus enabling one to 
visually examine the tool paths on a machine part. 

Automatic Program Synthesis 817 

CONCLUSION 

We view our system as a pilot study of a totally integrated 
manufacturing automation system. Our objective, as we 
indicated earlier, is to create an environment in which 
design information can be utilized to produce manufactur­
ing procedures directly and automatically. 

We have shown that the problem of manufacturing is 
one of transforming graphical descriptions into program 
descriptions. We have divided the problem into two 
stages-obtaining from the many ways of describing a ma­
chine part in primitive bodies a kernel description of a 
machine part in terms of cavities, and interpreting the 
cavities in terms of the capabilities of a numerical control 
machine tool. It is hoped that our work provides the basis 
for bridging the automation gap between design and fabri­
cation. 

REFERENCES 

1. Coons, S. A., Surfaces for Computer-Aided Design of Space Forms, 
MIT MAC-TR41, June, 1967. 

2. Bezier, P., Numerical Control-Mathematics and Application, John 
Wiley Sons, 1970. 

3. POLYSURF User Manual, Computer Aided Design Centre, 
Cambridge, England, 1974. 

4. SSX4 Sculptured Surfaces Project, Computer Aided Manufacturing 
International, Arlington, Texas, 1974. 

5. Bockholts, P., "TNO Miturn Programming System for Lathes," 
Proceedings of PROLAMAT '73, Budapest. 

6. Hellstrom, P., "An Interactive System for Operations Planning for 
Turning on Centre Lathes," Proceedings of PROLAMAT '73, 
Budapest. 

7. Sohlenius, G., "CAM-PRAUTO-DRILLING," Proceedings of CAM-J 
Congress, Hamilton, Ontario, Canada, May, 1974. 

8. Braid, 1. C., Designing with Volumes, Cantab Press, Cambridge, 
England, 1973. 

9. Metzger, R. A., "Computer Generated Graphic Segments in a Raster 
Display," Proceedings of SJCC, 1969, pp. 161-172. 





Automatic visual inspection* 

by WESLEY E. SNYDER 
University of Illinois 
Urbana, Illinois 

INTRODUCTION 

The growing popularity of automatic inspection tech­
niques was evidenced by the attendance at a conference on 
automatic inspection and quality control in Chicago last 
October.1 At that conference, several reasons were 
presented to justify the development and implementation 
of automatic industrial quality control systems. These in­
clude: (1) releasing workers from tedious or repetitive 
tasks, (2) enabling precise and continuous inspection in 
inaccessible environments or under hazardous conditions, 
such as measuring the thickness of hot steel, (3) improving 
inspection system reliability, and (4) improving inspection 
system predictability. 

Improving inspection techniques benefits a manufac­
turer in two ways. First, the finished product reliability is 
improved, and second, by inspecting during rather than 
after assembly, flaws can be caught earlier, resulting in re­
jection of a defective component rather than an expensive 
finished product. 

One type of inspection which was touched on only 
briefly at the Chicago conference was automatic visual in­
spection. Such inspection techniques were considered for 
the most part a thing of the future. Automatic visual in­
spection techniques have been investigated to some extent, 
however, and this paper is a report on such systems. 

For the purposes of this paper, it is convenient to 
restrict our definition of "visual" inspection from the 
broader "optical" inspection. Optical inspection could 
mean any sort of system using light. Many such applica~ 
tions are in use or under development, including especially 
the use of lasers. Visual inspection refers only to the' 
processing of two-dimensional arrays of data in a com­
puter's memory, where the numerical value of each array 
entry is a function of the light intensity at a corresponding 
point in a camera's image plane. Such images are easily 
obtained from television cameras, using analog-to-digital 
converters. 

An example of an automatic visual inspection system is 
a system developed at the University of Illinois which uses 
a computer to perform visual inspection of hybrid circuits. 

A primary motivation for developing this system was to 
examine certain programming theories and techniques. 
However, since those techniques are adequately described 

* Research supported by the Joint Services Electronics Program (U.S. 
Army, U.S. Navy, U.S. Air Force) under contract DAAB-07-72-C-0259. 

819 

elsewhere,2 we will not discuss them in this paper. Instead, 
we will describe the operation of the system and some of 
the "tools" which it used, such as color information and 
recursive region growing. We will then look toward the fu­
ture of such visual inspection systems. 

The system we will describe was developed on a PDP-
10, a large, general-purpose computer. However, for in­
dustrial applications of such systems to be cost-effective, 
they must be implemented on minicomputers. Thus, in 
our discussion of the future of such visual inspection 
systems, we will describe some ways in which high speed 
hardware and high powered software can be used on 
minicomputers. 

This paper is intended to provide the reader unac­
quainted with image processing some idea of the ap­
plicability of image processing to automatic inspection. 
This is not a complete state-of-the-art survey, in either au­
tomatic inspection or image processing, and those 
references included are usually chosen because they are 
easily readable and provide more extensive bibliographies 
themselves. 

HYBRID CIRCUIT INSPECTION-AN EXAMPLE 
OF AUTOMATIC INSPECTION 

Hybrid circuits are the middle ground between printed 
circuits and integrated circuits. In a printed circuit, only 
the conductors are printed onto a substrate, generally in 
the form of a metal film or "foil." The other components 
are individually mounted by pressing leads through holes 
in the board, and soldering these leads to the foil. 

In an integrated circuit, all the components are an inte­
gral part of a single piece of silicon crystal. Resistors, 
transistors, diodes and some conductors are implemented 
by diffusing impurities into the wafer. Metal conductors 
may also be deposited on the surface of the crystal. 

Construction of a hybrid circuit begins with a rigid, 
insulating substrate, generally some ceramic material. Re­
sistors and conductors are painted on by using a silk 
screen painting process and paints, which, when dry, will 
have different resistivities. 

Transistors, capacitors, and integrated circuits are then 
mounted and secured with solder or glue. 

Finally, wires are attached which will make the connec­
tion to a frame. 



820 National Computer Conference, 1975 

A major advantage of hybrid circuits is that they can be 
adjusted or tuned by changing the values of specific resis­
tors. A popular way to accomplish this adjustment is by 
trimming the resistor's area down with a laser until the 
circuit performs in a specific way. 

Visual inspection of hybrid circuits cannot be accom­
plished by simply checking for a point by point identifica­
tion with a prescribed model because the manufacturing 
process introduces numerous irregularities which are not 
defects. For example, in the soldering process the solder 
rosin may flow in unpredictable ways, discoloring the 
substrate and producing extraneous edges. Furthermore, 
the laser trimming causes lines to be present on the sur­
face of resistors, and these lines may vary greatly from one 
circuit to the next. 

Several of the items in a hybrid circuit also exhibit a 
visual property commonly described as "shininess". That 
is, they are almost perfect reflectors of light. This has the 
annoying effect that a shiny region cannot be 
characterized in terms of either its characteristic shape, 
color, or intensity, as all will change with changes in the 
lighting or viewing angle. 

The main characteristic of hybrid circuits which makes 
their analysis at all tractable is that although wires and 
straps and solder pads may obscure the view of 
components and may cast shadows, the circuit is pri­
marily two-dimensional in nature. 

In hybrid circuits factories, the visual inspection is 
generally performed by several inspectors peering through 
magnifying glasses or microscopes. Since the circuits can 
be tested electrically, by computer, for good or defective, 
yes or no, decisions, one major purpose of the human in­
spectors is quality control. They would like to determine 
not only whether a circuit is defective, but why it is defec­
tive so that corrective measures may be taken. 

The inspectors check for missing, misplaced or 
misoriented parts, bad solder bonds, and anything else 
which looks wrong. In the "anything else" category come 
globs of glue or solder dropped on some component, 
cracked substrates, etc. While humap inspectors may also 
use tweezers to check for mechanical continuity, this com­
puterized system is restricted to detecting errors by purely 
visual inspection. 

The inspection system 

The inspection system consists of two major parts, a 
learning portion and an inspection portion. 

The learning portion learns the characteristics of a 
particular hybrid circuit via a graphics display and a 
human teacher. 

Once the learning portion completes its task, it generates 
a model of the circuit. That model is a computer program 
which, when compiled, becomes the inspection portion of 
the system. The inspection portion can then be run on 
other circuits of the same type to check them for defects. 

Positioning of the circuit is accomplished via a simple 
jig which is positioned by "eyeballing." A pair of high 

intensity desk lamps provide lighting. Some typical 
messages from the system are: 

DEFECTIVE RESISTOR AT 35 121 
WIRE FROM 105 210 TO 36 240 IS MISSING 
SUBSTRATE IMPROPERLY ORIENTED 
NO DEFECTS DETECTED 

TOOLS FOR VISUAL INSPECTION 

Depending on the type of product being inspected, 
various algorithms can be used to derive significant 
characterizations or "features". Such features can be used 
for verification or recognition. The applications to recogni­
tion are surveyed well in a paper by KanaP and in Duda 
and Hart's book.4 

This section is a discussion of some of those tools. They 
include edge detection, region growing, and various 
intensity and color functions. This section does not cover 
all such tools. It is intended to provide only an indication 
of the types of operators available. Since the use of color 
has not received quite as much attention to date as the 
other types of tools, the problems involved in developing a 
suitable representation for color occupy a good portion of 
the section. 

Fourier techniques 

The two-dimensional Fast Fourier Transform provides a 
computationally efficient means for transforming between 
a spacial domain and a two-dimensional frequency 
domain. The transform of a well-defined spacial frequency 
will appear as a distinct feature in transform space. 
Fourier techniques are especially useful in inspecting 
products with highly repetitive patterns such as fabric. In 
such inspection, the presence of an undesirable frequency 
in transform space indicates a nonuniformity in the pat­
tern and consequently a defect. 

It is also possible to apply various filtering algorithms to 
the transform to reduce the effects of noise. 

Fourier transforms of images can also be taken 
optically,5 providing a decrease in computer loading. 

Template matching 

Template matching consists of comparing, usually by 
correlation techniques, a section of the image being 
processed with a stored "typical" image of a particular 
feature. Template matching may be used for feature loca­
tion by rotating or translating a particular template over 
the image to maximize the correlation. It may also be used 
for image or feature recognition by trying a number of 
templates and choosing the one which maximizes the cor­
relation. 

If the location of the feature to be checked can be 
precisely ascertained and there is little noise (in the form 
of meaningless variations in the picture) simple template 
matching is a fast and efficient way to inspect. 



Edge detection 

An edge in a picture is a sharp change in intensity 
usually corresponding to an edge of the object being 
viewed. It often occurs that the exact location of particular 
edges is crucial to the inspection process. For example, in 
inspecting printed circuits, the edge of the foil must be 
properly located to avoid short circuits (see Ejiri et a1.6 

and Finin7 for other work on inspecting PC boards). There 
are a number of edge detection techniques available, 
surveyed by Duda and Hart4 and Underwood and Ag­
garwal.B Edge detection is performed in the hybrid circuit 
inspection system by a sophisticated edge-detection and 
noise filtering algorithm developed by Huecke1.9 This 
operator can detect edges of a prespecified strength with a 
prespecified confidence. It returns the equation of the 
newly found edge, and other information about the nature 
of the edge. 

Region growing 

There are many instances where the boundaries of a 
region are either ill defined or meaningless. For example, 
in the case of detection of wires, the glaring edges which 
the system attempts to locate are amorphous globs having 
only a roughly elliptical shape. For this reason, region 
growing is more useful than edge detection. The region 
growing algorithm uses simple recursive expansion of a 
region about a "seed". The criterion for whether a point is 
in the region is that its intensity exceeds a prespecified 
threshold, and it has at least one of its neighbors in the 
region. The region grower can return a list of the boundary 
points and some of the properties of the region, e.g., area 
and perimeter. Various approaches to region growing can 
be found in Brice and Fennama10 and Yakimovsky and 
Feldman. ll 

The use of color 

Color information can also be used. One approach is as 
follows: First, the three pictures which were taken using 
the color filters are corrected for the spectral response of 
the filters and the vidicon (this correction is done during 
the picture taking process). The color of a point is then 
initially defined as a three component vector, <R,G,B> 
where R, G, and B are the intensities of the point as 
measured through the red, green and blue filters' respec­
tively. The magnitude of this vector is 

y'R2+G2+B2 

Division by this magnitude produces the "normalized 
color" of the point <r,g,b>. This triple, which is inde­
pendent of the intensity of the point, could be used as the 
internal representation for color. Other systems12 have 
used this representation. We did not because of the large 
memory requirements. 

The basic problems with maintaining and using the 
three-color representation are the extensive core require-

Automatic Visual Inspection 821 

ments, and the fact that it does not correspond neatly with 
any intuitive idea of "color" which the programmer or 
trainer may have. Thus it is desirable to represent the 
color of a point by a single number, rather than by three 
numbers. 

To achieve this objective, the following approach is used 
in the hybrid circuit inspection system: 

A color is more or less "saturated" depending on whether 
its white component is small or large. Thus, to remove the 
effect of saturation, the first step is to remove the white 
component. 

Define cw(white component) = min (r,g, b). Then, the 
"hue" is the vector <r-cw,g-cw,b -cw>. This is 
actually a two dimensional vector, since one of the 
components has been set to zero by subtraction. 

Define T (the total intensity remaining after subtrac­
tion) = 

(b -cw)+(g-cw)+(b -cw) 

Now, the new, normalized hue components (one of which 
is zero) are 

rn=(r-cw)/T 
bn=(b-cw)/T 
gn=(g-cw)/T 

The simple thing to do at this point is to consider the 
spectrum as a linear graph, on which we have two 
components at two different frequencies, and compute the 
average of those two frequencies, weighted by their respec­
tive intensities. This, however, leads to a problem. Sup­
pose the two components are of equal weight, red and 
blue. Then, if a simple weighted average of frequencies is 
computed, the result is a frequency in the green. People, 
however, do not see green in this circumstance, they see 
magenta. 

This problem is resolved by considering the spectrum to 
be a circle instead of a straight line. On such a circle, red 
can be located at an angle of zero degrees, green at 120 
degrees, and blue at 240 degrees. Thus, the average of red 
and blue comes out not in green, but somewhere between 
red and blue, as would be expected. A child describes ma­
genta as "reddish blue", the same result the computer ob­
tains using this approach. 

This approach is roughly equivalent to considering ~ 
point in the inside of the color triangle and extracting its 
hue by projecting it out to the closest edge of the triangle 
along a line connecting the opposite (zero valued) vertex 
with the actual color point. The color triangle is described 
well by Cornsweett3 along with many psychological and 
physiological aspects of color vision in people. 

Representing the hue by the angle subtended on this 
circle gives a single number representation of hue, and 
thence of color. 

But not quite, for hue is only meaningful for highly satu­
rated colors, i.e., those colors with a relatively small white 
component. If an object is basically white, its hue is mean­
ingless. Thus before using the hue as a test of color, one 
must first test the saturation to determine whether the ob-



822 National Computer Conference, 1975 

ject being viewed has any significant hue at all. Saturation 
is computed as follows: 

Define s (saturation) = 1- (r+b+g- 3*cw)/(r+b+g) 

This function, saturation, is a maximum for a pure color 
or pair of colors, and is zero for white. 

Whether hue or saturation is most me~ningful depends 
on the type of object being viewed. In all cases, the hue 
cannot be reliably used as a test of color unless the satura­
tion is high. Similarly, neither hue nor saturation is mean­
ingful unless the intensity is fairly high. However, given 
the a-priori knowledge that the saturation should be high, 
one need only test one number, the hue, to determine 
whether the color of a region is correct. 

Exactly how this representation is used depends on the 
characteristics of the object being inspected. The usual 
method is to identify the average hue of a region as a 
property of that region. 

Other work on color has been studied by Land and Mc­
Conn l4 and Tenenbaum et al. 15 

AUTOMATIC VISUAL INSPECTION USING 
MINICOMPUTERS 

Whereas the last section was primarily a discussion of 
some software techniques for image processing, this sec­
tion emphasizes hardware, for as soon as one attempts to 
apply the software techniques to real inspection problems 
at assembly line speeds, one is faced with the restrictions 
imposed by the type of imaging hardware being used. 
These restrictions are covered in more detail by Chien and 
Snyder. l6 

A tradeoff between speed, dynamic range, and resolu­
tion is essential when reading a TV picture into any 
storage medium. For example, it is impossible to read 
more than about 1008 bit intensity points per TV line into 
a minicomputer (having 16 bit words) in one field time of 
a TV scan. Such resolution is not sufficient for many 
tasks. A PDP-10, on the other hand, with its 36 bit word 
can support more than twice this resolution. The longer 
word length of larger computers appears to be necessary to 
get both speed and resolution. 

However, most industrial applications for computer 
vision are economically justifiable only if they employ a 
minicomputer. It is therefore desirable to consider how 
both the high resolution and speed can be achieved with a 
minicomputer-based system. 

Means for using minicomputers for computer vision 

It is initially tempting to solve this speed-resolution 
problem by simply buying fast memory. While such 
memories, generally made from solid-state components, 
are becoming less expensive and more readily available all 
the time, most minicomputer memory busses simply are 
not capable of supporting data rates as high as those we 
are considering and such high-speed memories are still 
relatively expensive. 

Another way to approach the speed problem is by 
restricting the field of view. If the number of points to be 
examined in anyone inspection is sufficiently small, then 
an image dissectorl7 can be used to interrogate picture 
points in a direct-access manner,or one may use restricted 
scanning of a vidicon. Units which use both approaches 
are commercially available, complete with minicomputer 
interfaces. 

Another way to solve this problem is to use a doubly 
ported memory on the minicomputer. In such a system, 
the memory actually consists of two memories and appro­
priate control logic to access them through different ports. 
Through the camera port, data enters both memories in 
parallel, making them appear as one memory which is 
twice as wide. Through the other port, the addressing is 
changed so that the two memories appear as interleaved 
minicomputer memory. Thus, by using such a doubly 
ported memory, it is possible to enter data at camera 
rates, retrieve it at minicomputer rates, and still make use 
of relatively inexpensive core memories. 

While such a system is attractive in its simplicity, it suf­
fers from not being generalizable. Having once established 
such a two-ported memory, one is likely to want to inter­
face other devices to that memory. Other than a TV 
camera, some potential devices might be a raster scan 
monitor, a graphics system, or high speed image process­
ing hardware such as a Fast Fourier transform taker. 

For this reason, a more general approach can be taken. 
This approach is based upon a high speed general purpose 
bus vaguely similar to the UNIBUS in a DEC PDP-ll. 
This high speed bus (HSB) is similar to UNIBUS in that 
data, address, and control functions are all carried on the 
same cable, and in that any device plugged into HSB can 
participate in data transfers to or from memory or any 
other device. 

Such a HSB should be designed with two major 
considerations: to allow parallel operations among devices 
on the bus, including in particular, memory reads and 
writes, and to make the bus a general, expandable bus 
which can be extended to many devices. 

CONCLUSION 

The engineer about to design a visual inspection system 
must make several decisions. He must first consider the 
visual aspects of the objects he is inspecting. What are the 
significant features? Large areas of uniform intensity? 
Edges? Is color an appropriate parameter? How critical 
are positional tolerances? Such questions determine the 
type of inspection algorithms to be used. 

How much resolution is needed to see fine detail? Is it 
necessary to inspect more than a very small region of the 
object at a time? What are the speed constraints? Must an 
inspection be completed in two seconds or two minutes? 
Such decisions, coupled with the speed of the processor 
and complexity of the inspection algorithms, may require 
random sampling or may allow inspection of every 
product. Such decisions also determine the selection of 
hardware. 



This paper has attempted to introduce the power and 
flexibility of visual inspection. We have shown one 
example of a fairly flexible inspection system using rather 
high-level software techniques. We have also tried to 
provide the potential user of visual inspection systems 
with appropriate references to guide his decisions on both 
software and hardware. 

REFERENCES 

1. Proceedings of the Conference on Automatic Inspection and Product 
Control, lIT Research Institute, Illinois Institute of Technology, 
Chicago, October, 1974. 

2. Snyder, W. E., Automatic Visual Inspection of Hybrid Circuits, 
Ph.D Thesis, University of Illinois, Urbana, Illinois, 1975. 

3. Kanal, L., "Patterns in Pattern Recognition: 1968-1974" IEEE 
Transactions on Information Theory. Vol. IT-20, 6, November, 1974. 

4. Duda, R. and P. Hart, Pattern Classification and Scene Analysis, 
John Wiley and Sons, New York, 1973. 

5. Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, New 
York,1968. . 

6. Ejiri, M., T. Uno, M. Mese, S. Ikeda, A Process for Detecting 
Defects in Complicated Patterns, Central Research Laboratory, 
Hitachi, Ltd. Kokubunji, Tokyo 185, Japan, 1973. 

7. Finin, T., "Tracking Wires on Printed Circuit Boards," Working 

Automatic Visual Inspection 823 

paper 52, Artificial Intelligence Laboratory, Massachusetts Institute 
of Technology, October, 1973. 

8. Underwood, S. and J. Aggarwal, Methods of Edge Detection in Vis­
ual Scenes, Information Systems Research Laboratory Technical 
Report No. 144., Electronics Research Center, University of Texas at 
Austin, 1973. 

9. Hueckel, M., "An Operator Which Locates Edges in Digitized Pic­
tures," Journal of the Association of Computing Machinery, October, 
1973. 

10. Brice, C. and C. Fennama, Scene Analysis Using Regions, Stanford 
Research Institute, Menlo Park, California, AI Tech note 17, 1970. 

11. Yakimovsky Y. and J. Feldman, "A Semantics-Based Decision 
Theory Region Analyzer," Proceedings of the Third International 
Joint Conference on Artificial Intelligence, Stanford, California, 
1973. 

12. Yachida, M. and S. Tsuji, "Application of Color Information to Vis­
ual Perception," Pattern Recognition, 3, pp. 307-323, 1971. 

13. Cornsweet, T., Visual Perception, New York, Academic Press, 1970. 
14. Land, E. H. and J. J. McConn, "Lightness and Retinex Theory," 

Journal of the Optical Society of America, 61, pp. 1-11. 
15. Tenenbaum, J. M., T. D. Garvey, S. Weyl, and H. C. Wolf, An 

Interactive Facility for Scene Analysis Research, Technical note 87, 
SRI Project 1187, Stanford Research Institute, Menlo Park, 
California, January 1974. 

16. Chien, R. T. and W. E. Snyder, "Hardware for Visual Image 
Processing," IEEE Transactions on Circuits and Systems, March, 
1975. 

17. Horn, B., The Image Dissector "eyes", Project MAC, Massachusetts 
Institute of Technology, Vision Flash 16, Cambridge, Mass., 1971. 





Automatic full-page formatting of technical 
primary journals 

by STANLEY E. BAMMEL 
Bammel Software Engineering 
Columbus, Ohio 

INTRODUCTION 

Computerized photocomposition has been in use for several 
years at Chemical Abstracts Service (CAS) with excellent 
results for the production of high-volume abstract and index 
volumes (i.e., secondary publications) of a relatively simple 
type. The functions performed by the computer include 
selection of information from a data base, automatic organiza­
tion of the material into the proper order, and formatting 
into composed units based on the data element types being 
processed. Simple hyphenation and justification are included, 
making use of arbitrary word ~reaks, but page make-up has 
required little more than breaking a continuous column of 
text into columns on a page. 

Recently the composition techniques were extended in 
order to develop a system for photocomposing chemical 
journals (i.e., primary journals) in behalf of the Books & 
Journals Division of the American Chemical Society. 

The overall approach to page composition is to break the 
problem into three parts: 

1. Hyphenation and justification of text, 
2. Layout of full-pages, and 
3. Composition of figures, tables, and equations. 

Full hyphenation and justification and full page make-up, 
including the placement of figures, tables, equations, etc., 
without human direction were required. The unique require­
ment was for automatic full page layout, and the design and 
implementation of the algorithm for part (2) is the subject 
of this paper. 

At this time, figures, tables, and equations are produced 
manually and pasted into blank areas left in the composed 
text. Future extensions to the journal composition system 
will be aimed at computerized photocomposition of these 
non-text elements also, reducing manual operations to as few 
as possible. The first implementation produces INORGANIC 
CHEMISTRY. 

GENERAL PAGE MAKE-UP RULES 

Based on longstanding manual practice, the page make-up 
rules for INORGANIC CHEMISTRY are highly stylized 

825 

but are not unusual for a technical journal. Text is placed two 
columns per page except for the heading of each article which 
is full-page width. Page depth is the same in all cases, and no 
blank area is permitted except at the end of an article when 
there is not enough room on the same page to begin the next 
article. Columns must be flush at the beginning and end of 
each article, at the top and bottom of each page, and below 
or above two-column-wide graphics. Text may not be broken 
in certain places; for example, a sub-heading and at least one 
line of text following must appear in the same column. 
Footnotes are placed at the end of each article. No non­
manuscript material, such as advertising, appears in the main 
body of the magazine. 

Minor graphics include equations and miscellaneous art­
work which are closely associated with the text and are 
designated as either "read-in" or "as-soon-as-possible." The 
former must always appear at a specific point in the text with 
no opportunity for adjustment, but the latter may, if 
necessary, be delayed a small distance after they are referred 
to. 

Major graphics are generally larger than minor graphics 
and have much more freedom of placement. Therefore they 
are treated very differently by the algorithm. There are 
several classes of them; for example, tables, figures, and 
charts are treated almost identically. Within each class, the 
author assigns a sequential identification number that 
determines the order in which they must appear in the 
article. Between classes there is no ordering; for example, 
Figure 5 could well appear before Table 2, but never Table 3 
before Table 2. A given major graphic may be referred to in 
the text in several places, but only the first instance (the 
callout) is taken into account in placing the graphic. Although 
it is desirable for a major graphic to appear near its callout, 
it may be forced to appear pages away, usually because other 
large graphics must be placed first, just as if the layout had 
been prepared manually. 

Major and minor graphics are always assigned to rectangu­
lar areas which are an integral number of columns wide. 
Graphics are never split between pages except for certain 
major graphics which may be larger than a page. The 
dimensions of graphics are fixed at the time of input and 
cannot be adjusted by the page make-up program; 

Above and below each graphic and between certain text 



826 National Computer Conference, 1975 

blocks appears vertical spacing which may be varied within 
a certain range in order to obtain correct vertical alignment 
of the columns. Occasionally when the normal range is not 
sufficient, extra spacing is inserted between paragraphs and, 
rarely, between lines. 

Other detailed page make-up rules will be mentioned in 
context as appropriate in the following description of the 
algorithm. 

THE PAGE MAKE-UP ALGORITHM 

As a preliminary step, all hyphenation and justification is 
performed by the computer before entering the page make-up 
algorithm. The latter then receives as input only an "abstract 
description" of the text which includes such data as the type 
of text (e.g., main text, subheading, footnote, etc.) and the 
number of lines in each block of text. (A block of text is one 
or more lines but never more than a paragraph.) Similarly 
for a graphic, the only entities which are input are the size, 
the type, and the location of the callout. 

It should be obvious that the total number of possible 
"acceptable" ways of formatting a given article may be very 
large. When layout is done manually, the selection of the 
layout is based on experience and skill in adjusting graphics 
and text into a form judged best for the specific article at 
hand. Although it would be technically possible to compute 
and evaluate all possibilities according to a set of placement 
quality criteria in order to choose the "best" one, it would be 
expensive. Furthermore, such brute force is not necessary 
since an efficient and effective heuristic procedure can be 
devised. The key to this or any other heuristic procedure is at 
each step to first select the most promising cases for further 
exploration and development rather than waste time on 
cases which are likely to prove unsuitable. In the algorithm 
developed at CAS, articles are formatted one at a time in the 
sequence in which they are to appear. Since the starting 
point of each successive article is dependent on the ending 
point of the previous article, the algorithm actually performs 
placement for an entire issue of a journal. For each article the 
algorithm falls naturally into three hierarchical phases, each 
invoking the next and all phases being performed for one 
page before advancing to the next page. The phases are as 
follows: 

Phase I: Selection of the set of major graphics to go on 
a page, 

Phase II: Placement of the selected major graphics on the 
page, and 

Phase III: Placement of text and minor graphics in the 
remaining unoccupied area. 

The overall algorithm is a backtrack procedure where each 
phase indicates success or failure to the phase which invoked 
it. For example, if Phase II indicates success, then Phase 1 
proceeds to the next page. Otherwise, Phase I selects the next 
best set of major graphics for the page in question and 
invokes Phase II again. Should Phase I in such manner 
exhaust all reasonable possibilities· for a given page, then it 
backtracks to the previous page (or as far back as necessary 

in the article) to select a set of major graphics which has not 
been tried. In a similar manner Phase II arranges on the page 
the set of major graphics selected by Phase I and then 
invokes Phase III. If Phase III succeeds, then Phase II 
indicates success to Phase I. However, each time· Phase III 
indicates failure, Phase II rearranges the -placement of the 
graphics on the page and invokes Phase III again. This can 
continue until there are no more distinct arrangements, in 
which case Phase II indicates failure to Phase I. The entire 
algorithm fails when all reasonable possibilities for the first 
page are exhausted. Experience tO'date indicates that this 
occurs rarely and when it does, it is generally for the same 
reasons that manual page make-up fails, for example, running 
out of text before placement of all graphics. The remedy is the 
same also-modify the article and reformat it. 

Phase I-Selection of graphics for a page 

Phase I is a tree search which selects sets of major graphics 
(referred to as "graphics" when clear from context) to be 
assigned to pages. Conceptually, the first page of the article 
is the first level below the root of the search tree, and each 
successive page is then one level lower. Each node represents 
a set of major graphics which is a candidate for assignment to 
the page corresponding to the level of the node. 

Each time Phase I advances to ~ new page of an article it 
computes and evaluates all possible sets of major graphics and 
then discards (i.e., "prunes" from the search tree) unpromis­
ing cases. The graphics available for placement must be 
chosen from those not already placed on previous pages. 
Simple size checks and the ordering restrictions usually rule 
out many of the sets a priori. 

From the reader's standpoint, the most important factor 
for convenience in reading is distance from the callout to the 
major graphic itself, and, other factors being equal, it is 
considerably more desirable· for the callout to precede the 
graphic rather than to follow it. If the callout cannot appear 
on the same page as the graphic, then the next best choice is 
to place the callout on a facing page. 

The most important factor, from the standpoint of 
achieving a feasible solution, is placing the major graphics as 
early as possible in the article. This is especially true with the 
large graphics which are naturally more difficult to handle. 
More of the text will thus be displaced towards the end of the 
article. This leaves more flexibility for rearrangement later 
within the article and makes it less likely that the algorithm 
will fail later, causing it to backtrack. This is a sort of global 
optimization strategy. 

Therefore, the.quality rating for a set is primarily based on 
these two considerations and is the sum of the quality ratings 
of the individual graphics in the context of the set. (The 
quality rating of a graphic cannot be computed independently 
of the set since the composition of the set may influence the 
location of the callout of the graphic.) The quality rating for 
an individual graphic is computed as follows such that the 
smaller the numerir.al value, the better the quality: 

1. If it is estimated that the callout will appear on a 
previous page, then 



Automatic Full-Page Formatting of Technical Primary Journals 827 

quality = - (area of graphic) - (area of text from 
the callout to the start of the current page) 

T'he quality will thus be represented by a negative 
value. 

2. If it is estimated that the callout will fall on the current 
page, then 
quality = - (area of graphic) 
A negative value again results. 

3. If it is estimated that the callout will fall on a subse­
quent page, then 
quality = 2 X (area of text from the start of the 

current page forward to the callout) 
The quality in this case will be a positive value. 

There are also secondary considerations, for example, if the 
callout should appear on the following facing page, a modest 
bonus is substracted from the quality rating. 

This simple scheme has given very good results, and there 
are other criteria, not currently implemented, which could fit 
in very naturally. For example, if it is desired that certain 
graphics appear together on the same page, then if they all 
occur in a set, a bonus (probably large) could be subtracted 
from the quality rating of the set; if not, a penalty could be 
added. This way the desired result will be strongly favored, 
but if it is impossible, page make-up is not prevented from 
proceeding normally. 

Phase II-Placement of graphics on a page 

Given a set of major graphics chosen by Phase I for a 
particular page, Phase II computes their placement on the 
page and indicates success or failure to Phase I. 

For placement and ordering purposes, two-column-wide 
graphics are counted in column. one and are all placed 
together at the top and/or bottom in order not to break up 
text in the middle. One-column graphics then go at the tops 
of the columns directly below any two-column graphics at the 
top of the page. A further restriction is that in a column, 
graphics must be contiguous (as well as ordered) with other 
graphics of the same class. For example, consider the follow­
ing sequences in a column: 

Valid: Figure 2, Table 1, Table 2, 
Valid: Table 1, Table 2, Figure 2, and 
Invalid: Table 1, Figure 2, Table 2. 

The set of graphics to be placed in column one is selected 
from the set of graphics assigned to the page in the same 
general way that the set of graphics for the page was selected 
from all the graphics remaining to be placed. That is, all 
possibilities are computed, illegal· and impossible configura­
tions discarded, and those remaining are given a quality 
rating so the best one(s) may be tried first. Selecting the set 
for column one then determines the set for column two. 

Legality checking includes size and sequence checking. For 
example, the sequence: Figure 1 (two column wide) , Figure 2 
(one column), Table 2 (two columns), Table 3 (one column) 
is illegal for column one since it is not possible to place all 

two-column graphics at the top and bottom and still have 
graphics ordered and contiguous within classes. Another 
legality check is that all two-column graphics must be 
assigned to column one. 

A major factor in computing the quality is, as noted before, 
distance from the location of a graphic to its callout in the 
text. The quality factor for each one-column graphic is 
computed by estimating the location of the callout so that if 
it appears in a later column, an appropriate negative value is 
assigned, otherwise a positive value. Since there is no choice 
for two-column graphics, they need not be rated. 

Phase III-Placement of the text 

After major graphics have been formatted, the text and 
minor graphics are placed in the unoccupied area by an 
algorithm which is global to an entire article. Except for two 
factors, the algorithm can be logically viewed as being 
performed after Phases I and II have found a complete 
major-graphic placement solution for the entire article. 
However, in actuality, Phase III proceeds page-for-page in 
step with the first two phases. This is because of two factors: 
(1) Phases I and II use the locations or estimated locations 
of callouts, which are dependent on placement of the text, in 
order to evaluate the qualities of graphic sets and (2) if there 
are no feasible ways to place the text, the algorithm backs up 
without Phases I and II having wasted time on subsequent 
pages. 

Due to the allowed variability of the spacing, it is usually 
possible to break a column of text in several places while 
satisfying the rule that columns must be flush at top and 
bottom. When more than one breakpoint from the previous 
column is considered, there are even more possibilities. A list 
of all such breakpoints is computed, and each breakpoint is 
evaluated by criteria such as closeness of spacing to optimum 
values and absence of widows. (A "widow" is generally a 
short line at the top of a column.) The global quality rating 
of each new breakpoint is the sum of the squares of the 
qualities of all previous breakpoints which occurred in the 
"path" to arrive at the new breakpoint. Frequently the same 
breakpoint will result via different paths. In such a case, only 
the path with the best global quality is retained. Then the 
list is ordered on the global quality and for each column a 
limited number (currently five) of the best are kept. The 
reason for using the sum of the squares is to rate a number of 
small deficiencies better than one large one. 

Balancing of columns at the end of an article is achieved by 
first estimating from the area of the remaining text and 
spacing ranges the maximum and minimum possible height 
of the balanced columns. This estimated range is enlarged by 
a small safety factor, and then all possibilities are tried 
starting from each of the breakpoints retained from the 
end of the previous page. Quality is computed essentially as 
before. The overall best text placement for the article is then 
the solution with the best global quality rating. 



828 National Computer Conference, 1975 

An example 

In order to simplify the presentation of the example, it will 
be assumed that Phase III operates column by column 
rather than global to the entire article. This does not alter the 
functions of Phases I and II. Other simplifications for 
illustrative purposes are to assume spacing is fixed and 
incorporated into the stated dimensions of the graphics and 
to evaluate graphic sets (in Phase I) by only the two primary 
considerations. It should also be noted that this example is 
somewhat atypical in that most often an article is formatted 
without any backtracking. 

Figure 1 shows the pages in the order in which they are 
processed and is approximately drawn to scale. Text is 
represented by dashed lines, graphics by rectangles, and 
callouts are indicated in the text. The current text area (TA) 
is found at the upper left hand of each page (in column 
inches) from the beginning of the article to the beginning of 
the respective page. (Note that the area of minor graphics is 
included in the text area.) The height of the printed area of each 
page is 10 inches. The dimensions of the graphics and location 
of callouts is given in Table I. Assume that footnotes start at 
27 column-inches and that the total length of the text is 30 
column-inches. 

A) TA= 0 PAGE 1 

::::::: DAB. 
1 

-------
----------------------------" --------------

F) TA= 17 PAGE 2 

: : FIG. 1 : : 

: : FIG. 2 :: 

D 
: : TAB. 2 : : 

B) TA= 17 PAGE 2 

_______ ,..-------. 
FIG. 2 :: FIG. T: : 

:: FIG.2:: 

G) TA= 17 PAGE 2 

I~G.' 

TAB. 2 

: : I:!G.: !: : : 

TABLE I-Dimensions of Graphics and Locations of Their Callouts 

Callout 
Location 
(column-
inches of 

Width Area text from 
Height (no. of (column- beginning of 
(inches) columns) inches) article) 

Table 1 3 1 3 16 
Figure 1 2 2 4 18 
Figure 2 5 1 5 21 
Table 2 7 2 14 26 
Equation 1 2 2 24 

The following commentary follows each page as, it is 
processed. (To derive the quality rating scheme see the 
description in Phase I and Table I.) 

A. Due to the ordering restrictions and the fact that 
two-column-wide graphics may not appear on the first 
page, the only possibilities for page 1 are: 

C) TA= 17 PAGE 2 

FIG. 2 
- - FIG. 2 - -

'-:-:-:-:-:-:--': 1 ~~ : ----I 
: : ~~ !: :: - - TAB. 2 - -

H) TA = 19 PAGE 3 

FIG. 2 D 
: :IA~·l:: 

: : FIG. 2 : : 

: :EQN. 1:: 

E) TA= 17 PAGE 2 

[~----
: : FIG. 1 : : 

: : FIG. 2 : : 

I) TA= 19 PAGE 3 

FIG. 2 

:: :FIG. 2: : 

Figure 1 



Automatic Full-Page Formatting of Technical Primary Journals 829 

(a) Tab. 1 
(b) no major graphics 

Quality Rating 

-3 
o 

Possibility (a) is tried and found acceptable. 

B. The possibilities for page 2 now are: 

Quality Rating for Each 
Graphic in Parenthesis 

(a) Fig. 1( -4), Fig. 2( -5) 
(b) Fig. 1( -4) 
(c) no major graphics 
(d) Fig. 1( -4), Tab. 2(18) 
(e) Tab. 2(18) 

Quality Rating 
(sum of individual ratings) 

-9 
-4 

o 
14 
18 

Note that the set: Fig. 1, Fig. 2, and Tab. 2 is not 
considered because it is too large to fit on the page. 
Possibility (a) is tried but is not found acceptable 
because equation 1 falls across a column boundary; 
therefore, Phase III fails. 

C. Phase II rearranges the graphics and this time Phase III 
succeeds. 

D. The possibilities for page 3 are now: 

(a) Tab. 2 
(b) no major graphics 

Quality Rating 

-16 
o 

Possibility (a) is tried first but Phase III fails because 
the rules do not permit a major graphic to appear on a 
page with only footnotes. Possibility (b) fails also 
because the amount of text is exhausted before all 
graphics are placed. (Not illustrated) 

E. The next possibility [(b) from step BJ for page 2 is tried 
but fails in Phases II and III because the read-in 
equation falls across the column break and there is no 
way to rearrange Figure 1. 

F. The next possibility [(c) from step BJ fails because the 
amount of text is exhausted before all graphics are 
placed. 

G. The next possibility [(d) from step BJ succeeds. 

H. The possibilities for page 3 now are: 

Quality Rating 

(a) Fig. 2 
(b) no major graphics 

Possibility (a) succeeds. 

-5 
o 

I. When the end of the text is detected and all graphics 
have been placed, Phase III balances the column. 

IMPLEMENTATION AND RESULTS 

The page-makeup algorithm was implemented in PL/1 
using structured programming techniques with design, coding, 
and debugging being accomplished in approximately one 
man-year. Except for the final stages, testing was greatly 
facilitated by printing on the line printer a mockup of the 
page layout in a format similar to that of Figure 1. 

As noted previously, the algorithm more often than not 
formats an article without any backtracking, as indicated by 
the fact that less than 25 percent of the pages formatted in 
intermediate stages of the algorithm are rejected before 
arriving at the successfully formatted issue. Utilization of the 
PL/1 Optimizing Compiler on an IBM 370/168 computer 
under operating system VS2, Release 1.6, with a test driver 
a 160K-byte region is required and run-time is approximately 
0.5 seconds per page. Use of the production routines necessary 
for accessing the data base raise these figures to about 210K 
bytes and 0.8 seconds per page. Final output is produced on 
an Autologic APS-4: photocomposition system. 

(The figures in the above two paragraphs do not include 
steps preliminary to and including hyphenation and justifica­
tion, nor do they include operation of the Photocomposer.) 

ACKNOWLEDGMENT 

The contribution of Thomas J. Funk is gratefully acknowl­
edged, in particular, for formalizing the page makeup rules 
and many helpful suggestions on the design of the algorithm. 
For further information concerning the work described in 
this paper contact the Director of Research and Development, 
Chemical Abstracts Service, Columbus, Ohio 43210. 





A simple technique for controlled on-line 
system stimulation 

by THOMAS E. BELL 
TRWSystems 
Redondo Beach, California 

and 

JO ANN LOCKETT 
The RAND Corporation 
Santa Monica, California 

INTRODUCTION 

Most performance analysis tools are developed with the 
objective of providing data in a general way, using flexible 
techniques, with confidence that analysts will sub­
sequently employ them in cost/ effective procedures. The 
inadequacy of this approach is reflected by the frequency 
of questions about which data to collect and how to use 
them. The problem is the initial emphasis on tools as an 
end in themselves rather than on analysis techniques. 1 

This paper describes research into analysis techniques 
for tuning on-line systems and the development of a 
hardware tool to facilitate analyses using these techniques. 
Although the potential for wider application of the tool is 
recognized, this was secondary to developing improved 
metrics, researching new methods for determining on-line 
system improvement, and understanding the performance 
relationships between on-line and batch systems. 

Tuning an on-line system often requires that loads, 
either natural or artificial, be input to measure system 
response. Natural loads have been found deficient for 
some purposes because their detailed characteristics affect 
performance dramatically. Since precise replication of a 
natural-loading situation cannot be attained, comparisons 
of system responses under different situations is nearly 
impos,sible. In contrast, a totally artificial load may have 
only limited applicability because it constitutes a signifi­
cantly lower level of demand than a normal, natural load 
unless expensive techniques are employed. In addition, an 
artificial load is seldom like the natural load.' This paper 
describes an alternative which combines the advantages of 
both natural and artificial loading. 

LOADING ON-LINE SYSTEMS 

An artificial load does not necessarily replicate real user 
activity. Therefore, work done at the National Bureau of 
Standards2 recorded the actual inputs from real users in 
order to subsequently submit them to the computer under 

831 

experimental conditions. In this way the reality of interac­
tions was maintained while the script remained constant 
to be input to a computer under alternative hardware or 
software configurations. However, everything was 
recorded, making analysis difficult under most conditions. 

A similar hardware device has been developed at the 
Mitre Corporation.3 It produces simulated inputs from a 
number of terminals and records all interactions. 
However, the work did not include an investigation of 
metrics; thus the Line Load Emulator records all data of 
possible interest. Similar devices are typically used by 
computer vendors in developing on-line systems and in 
debugging them. 

Software techniques are also employed in causing a 
computer system to respond as though real users are 
present. Some of these are university research tools (e.g., 
Stanford4

) while others are commercial products (e.g., Tes­
data Load Generator5

). Software tools are machine­
specific, but do not require expensive, special purpose 
hardware for operation. 

Two advantages of these load generation tools are their 
internal data collection facilities and their ability to 
operate in the absence of the real users for the system 
under study. They can, therefore, be used in computer ac­
quisition studies when little other information is available. 
They also have a series of limitations which seriously 
reduce their applicability in tuning studies, primarily:. 

• If hardware, they are expensive to acquire. 
• If software, they are usable on only one type of 

system, require significant operating system expertise 
in most cases, and may be expensive to acquire. 

• They usually disrupt operations. Hardware tools re­
quire interfacing to some central part of the computer 
system. Software tools require memory space on the 
system and may degrade performance independently 
of the load being added to the system. 

• They require considerable effort to design a script. 
Even minor script decisions may unexpectedly 
produce non-typical results. 



832 National Computer Conference, 1975 

DEVELOPING AN ANALYSIS APPROACH 

The impetus for our research was an investigation of the 
effects of removing equipment from the Rand computer 
system on two on-line systems.6 Since the purpose of the 
evaluation was to ensure that users not be adversely af­
fected by the proposed equipment modification, the 
responsiveness of the on-line systems was investigated. 
This posed difficulties since no data collection tools were 
readily available to evaluate these systems. Definition and 
collection of appropriate response times for the system 
which used interactive vector graphics terminals appeared 
to be quite difficult. Since this system was receiving 
minimal, noncritical use, we were able to use a restricted 
set of techniques employing judgments of human subjects. 

Evaluation of the other, more popular system provided 
an opportunity to explore new techniques of on-line 
measurement with the aid of a test instrument* which had 
been designed and employed at Rand for development and 
maintenance of the Videographics system.7 This evalua­
tion emphasized repeatedly determining the time required 
to process a fixed number of identical on-line requests. 
Several requests (using different types of system facilities) 
were employed. both before and after the change. The load 
on the system was totally natural except for the slight 
incremental loading due to the artificial load introduced 
by the measurement. This basic approach guaranteed us a 
realistic load (the advantage of natural loading) and also 
enabled us to exercise some control (the advantage of ar­
tificialloading) . 

The basic approach was to employ single commands 
rather than complex scripts and to obtain multiple sam­
ples of performance in the natural loading environment so 
that the effects of variability could be determined. U n­
fortunately, applying this approach even for further 
development, suffered from three deficiencies: 

1. Individual commands experienced extreme varia­
bility; even a few trivial responses with aberrantly 
long response times can make the system unac­
ceptable to users, but the average of a large number 
of responses does not reflect such extremes. Timing 
of individual commands is therefore necessary. 

2. The device that inputs the commands repeatedly 
would operate only with the Videographics System. 

3. The response to a command is often complex with a 
few characters being displayed immediately to in­
form humans that the machine recognizes their 
request. Therefore, the definition of the end of an 
interaction is more complex than simply "the first bit 
of the response message". 

* The test instrument was used during the development and later for the 
maintenance of the Rand Interface Block (RIB)7 which interfaced all the 
consoles with the IBM 1800 process controller. It provides a facility to set 
the bit configurations representing up to three keyboard characters and 
three control words. Then, acting as a terminal, it sends the message to 
the RIB while the bit pattern is viewed through an oscilloscope. The 
message can be sent out once or continuously at varying speeds. 

Continued research into this approach required that a 
device be developed and built to eliminate these problems 
so that investigations could be performed on a variety of 
machines. The investigations needed to be made with in­
dividual commands using carefully developed definitions 
of response time. The development of this device was 
closely associated with the development of the analysis ap­
proach since they represented two parts of the same 
methodology.8,9 In fact, the two types of development were 
totally integrated; when a problem was discovered by us­
ing the tool, a change in analysis approach often resulted, 
and changes in the tool frequently occurred as the meth­
odology evolved. 

METHODOLOGY RESEARCH 

Although our primary motivation was methodology 
development, we attempted to bias our work to be as ap­
plicable to normal situations as possible. We implemented 
a hardware device, the Rand Monitor/Stimulus-generator 
(RMS), that could be employed on any asynchronous 
system using the standard RS-232 interface. It interfaces 
between the terminal and communication lines as shown in 
Figure 1 and is a machine-independent device capable of 
stimulating the system with a prestored message and of 
measuring the response time for the message. It sends the 
same message repeatedly into the system by buffering the 
message and then sending it under clock control. The loca­
tion of the device permits the terminal to be used for com­
puter sign-on protocols and set-up procedures (by way of a 
bypass switch) as well as for in:Qut to the device buffers. 

Maintaining simplicity of operation and providing 
readily analyzable data permits the analyst to concentrate 
on a performance problem rather than on the characteris­
tics of the tool being used. The RMS, therefore, is not 
flexible enough to perform in all possible experimental 
designs or to collect all possible data on the operation of 
the system. However, simple tools such as the RMS can 
function quite satisfactorily if proper experimental design 
is used.lo,n 

Commands us. scripts 

Complexities inherent in other stimulation tools, due to 
their abilities to transmit elaborate scripts, were elimi-

T"miMI f-H MODEM ~ Compute' I 
RS - 232 RS - 232 
(interface) 

Connections in normal system 

T"m'",1 KB-ti MODEM ~ Comp""" I 
RS - 232 RS - 232 RS - 232 

Connections with RMS 

Figure 1-RMS placement 



A Simple Technique for Controlled On-Line System Stimulation 833 

nated in our methodology by allowing transmission of only 
single-line messages. This not only eased design and use of 
the tool, but it led to simple experimental designs and 
results that are easily interpreted. Times for individual 
commands can then be added together to obtain script 
response time, and the projected variance can be 
computed. 

The critical assumption is that the performance of the 
on-line system to a command is context-independent. That 
is, the response time of a command is independent of 
preceding commands. An example of a contrary case is 
the retrieval of a file; in some systems (e.g., Honeywell's 
TSS under GCOS) response time is shorter if the file has 
been referenced earlier during an on-line session. The 
analyst can ensure that this assumption is not restrictive 
by stating all such conditions and ensuring that they are 
met during tests. 

Average response time vs. frequency of satisfactory 
responses 

Identical average response times can be generated by 
entirely different distributions; user satisfaction will often 
differ among the distributions. In addition, an on-line user 
may not be able to distinguish between a response time of 
.1 second and one of .5 second; he may not care what the 
response time is as long as it is within 1.0 second. In such 
a case, a system with a constant response time of .9 second 
",ill be more satisfactory than an average response of .8 
second resulting from 14 percent of the responses requir­
ing 5 seconds and 86 percent requiring .1 second. A user 
who will leave the terminal if a response is in excess of 5 
seconds does not distinguish between 10-second and 3-
minute responses. A metric more meaningful than average 
response time for a specific command is the frequency of 
satisfactory responses. Examples of the use of this metric 
for a specific command might be: "faster than required" 
(less than 1.0 second), "satisfactory response" (1.0 seconds 
to 2.0 seconds), and "bad response" (over 2.0 seconds). 
The goal of an installation, with regard to its on-line 
system, should be to reduce the frequency of unsatisfac­
tory responses. In addition to being more useful, this 
metric dramatically decreases the data reduction prob­
lems inherent in many performance analyses. Rather than 
collecting each response time for a specific command, the 
number of responses which occur within ranges specified 
by the analyst are collected. 

Flexible definition of response time 

There is no universal definition of response time. Figure 
2 illustrates two possible definitions: carriage return to 
first character of the response* and carriage return to key­
board unlock. While arguments can favor either defini-

* This is usually stated as the first meaningful character-a somewhat 
ambiguous definition. J. Maranzano of Bell Telephone Laboratories has 
suggested the definition be directed toward the first character of the first 
output message.12 

Keyboard 
unlock 

Carriage 
return 

Keyboard 
unlock 

User t------+-typing-+-----+ Output +------

Think 
time 

Response 
-- time 

Response time 
Figure 2-Response Times 

tion, the utility of each varies according to the actual com­
mand being measured. For some commands (particularly 
those which are data dependent, device dependent, or re­
quire operator intervention), the first character of the 
response is a reasonable indicator of response. A user may 
be anxious to see the first part of the response and willing 
to wait for the operation tq be completed because of the 
characteristics (i.e., length, or complexity of the process). 
In contrast, a user inputting text is concerned with 
maintaining typing speed-an operation directly related to 
keyboard unlock. These two alternatives do not exhaust 
the possibilities; problems in specific systems may make 
other definitions more useful. 

Our early work on evaluating on-line systems indicated 
that a single, fixed definition of response would preclude 
investigating many on-line systems. A flexible technique 
for defining response was necessary to reflect the set of 
characters that indicate the beginning of a response. An 
arbitrary set of characters* is chosen to indicate the 
initiation of response timing. 

An unexpected characteristic found in some on-line 
systems was that completion of user input may be indi­
cated by characters other than a carriage return. For 
example, a single numeric character may constitute the 
total input from a user. In other cases a break character or 
some other single (or multiple) special character may indi­
cate completion of user input and that the computer 
should take over control of the interaction. The initiation 
as well as the termination of the measured interval must 
be arbitrarily definable. For consistency, up to three 
characters indicate that the measurement clock be started 
or stopped. 

THE RAND/MONITOR STIMULUS-GENERATOR 

Modes of operation 

The RMS operates under three modes: bypass, text 
entry, and transmit. When the monitor is in bypass mode, 
all inputs from the terminal pass directly to the communi­
cation line and conversely from the communication line to 
the terminal. This allows necessary protocols to be com­
pleted in a normal manner prior to monitoring. 

Text entry mode allows the buffers to be filled with 
characters directly from the terminal. In addition to the 

* A maximum of three characters was chosen-it has been adequate in 
all subsequent work. 



834 National Computer Conference, 1975 

80 
70.2 

70 

60 

~ 30 
Q) 

r: 
Q) 

Q.. 20 

10 

0-300 301 - 400 400 - 10,000 
Figure 3-Response time (msec) of text addition 

message to be sent, the characters designating "start tim­
ing" and those signaling the "stop timing" (possibly, first 
character back) are also input from the terminal. 

Transmit mode is used for transmitting the stored 
message at settable line rates of 110 through 2400 baud to 
match the system's rate. System response is determined 
while in transmit mode. Transmission can be performed 
manually or automatically. 

During transmission, characters are not necessarily sent 
out at the maximum speed allowed by the line rate. A 
restriction limiting transmission rate to the maximum 
might cause severe degradation of other users' ability to 
transmit over a common communication system. Simi­
larly, automatically transmitting a new request im­
mediately on receipt of a response could load the com­
puter to the extent that other users would note the situa­
tion and act abnormally; this would eliminate the ad­
vantage of testing the on-line system under normal, 
natural loading. An arbitrary delay time can therefore be 
specified between each character, and a separate time can 
be specified to delay the automatic transmission of a new 
message after response to an old one (providing a simu­
lated "think time"). 

Outputs 

Numeric output of response time and status lights 
initially appeared adequate-response time being output 
only upon request (by depressing a button). It was quickly 
determined that the time of each response and the elapsed 
time for the current response (for responses exceeding a 
few seconds) were also of interest to the analyst. 

The frequency counts and limits for each interval must 
be available during a test period for the analyst to de­
termine when the session should be terminated. Human 

abilities to estimate response times and frequencies of the 
various ranges of response times were found to be very 
poor. Analysts have a tendency to believe that a test has 
gone astray due to very good (or bad) response times and 
terminate the test unless they can obtain assurance that 
all is well. 

The rapidity of interactions in many tests taxes the 
abilities of analysts to understand what is happening. This 
problem was solved by installing a line of status lights in­
dicating when the RMS was waiting to transmit, transmit­
ting a request, waiting for a response, or receiving a 
response. 

METHODOLOGY EVALUATION 

Our proposed methodology for on-line system perform­
ance analysis asserts that an analysis can be performed by 
adding a marginal incremental load to the natural system 
load and measuring the response of the system to the 
incremental load. It further asserts that categorizing 
responses into a few ranges of responses enables the com­
putation of meaningful metrics. Finally, it asserts that an 
inexpensive, hardware device can interface to a variety of 
different computer systems. 

We evaluated these assertions by building the simple 
hardware device and successfully performing tests on 
three different computer systems (an IBM 360/65, an 
IBM 370/158, and a Honeywell 6050). The tests on the 
IBM machines evaluated the methodology as described 
and those on the Honeywell system evaluated the extensi­
bility of the methodology. 

Tests on IBM equipment 

The tests on IBM equipment concerned evaluating the 
WYLBUR text editor system. i3 This evaluation was an ex­
tension of earlier investigations of WYLBUR response 
time.6 One objective was to determine the stability of 
response time to commands for adding text to a working 
file. 

Figure 3 shows the result of a data collection effort in 

61% ----+-7% 32% 

40 38 

15% 117
%--

22222 22 

OJ 
.0 20 
~ 
z 

10 

100 200 300 400 500 600 

Figure 4-Response time (msec) of text addition 



A Simple Technique for Controlled On-Line System Stimulation 835 

TEST PLAN FOR EVALUATION OF TSS HYPOTHESES 

1. RMS PARAMETERS: 
WAIT = .500 
CHAR = .050 
XlviIT = (CR) 
TEXT = RUNH TSS #PRTFILE "06"(CR) 
RET = * 

PROCEDURE: 

/S-'~'1 I~. I.J() 

2 • RMS PARAMETERS: 

YFORT 
OLD PARAMS 
DELETE 1-5 
RESAVE 09 
XMIT (single) 

IS; /37 

TEXT = RUNH TSS #PRTFILE "06";01;02;03;04 (CR) 

PROCEDURE: 

18. O~/l, 17. 830 

3. RMS PARM-1ETERS: 

REMOVE 01;02;03;04 
XMIT (single) 

19.270 ,'7, 93S 18.110 

TEXT = RUNH TSS #PRTFILE "06";ONE "Ol;TWO "02'; 
THREE "03"iFOUR "04" (CR) 

PROCEDURE: 

REMOVE 01;02;03;04 
XMIT (single) 

18.lfl' /8.3"1' 
Figure 5-Completed Form for Honeywell Tests 



836 National Computer Conference, 1975 

which the response time intervals were 0-300 milliseconds, 
301-400 milliseconds, and over 400 milliseconds. Unlike 
the standard, prescribed procedure, each individual 
response time was recorded. Figure 4 shows the results in 
more detail; interactions with times in excess of 667 milli­
seconds were lumped together. 

Introspection reveals that we had been more interested 
in collecting significant counts than in setting meaningful 
limits with respect to human interactions. Subjectively, 
the on-line system responded poorly during the data 
collection for Figure 4, but only 17 percent of the 
responses could be classed as annoying or unacceptable. 
Limits of 0.67 seconds and 3.0 seconds would have been 
far more appropriate. Only a few long responses cause 
users to perceive the system as slow; analysts should set 
limits to determine system acceptability. 

Further observation indicated that user annoyance 
arose when several long responses occurred in a short in­
terval. The relevant variable appears to be the number of 
long responses per interval of elapsed time. Computation 
of this metric would require dumping the counters at fixed 
intervals; an alternative might be to determine the 
number of long responses occurring within a prescribed in­
terval after the first long response. 

Tests on a Honeywell 6050 

We also conducted a study which included the investiga­
tion of performance characteristics of a Honeywell 6050 
computer. Part of the study involved measuring certain 
elements of on-line systems in a totally controlled environ­
ment. Measurements included initiation/termination 
time, processor time, and elapsed time of CPU-bound and 
I/O-bound jobs while varying file characteristics and run­
time options. The series of tests employed the same 
synthetic benchmark job each time. This job produces 
data regarding elapsed time and processor time by interro­
gating the system internal clocks at appropriate intervals. 
These data were supplemented by those obtained from the 
RMS to determine the time of individual interactions. 

The program was carefully designed so that the RMS 
could be used to measure the time from the carriage 
return to the first output character to approximate initia­
tion time. We also used measurements of time terminating 
with keyboard unlocking (the appearance of an asterisk). 
To avoid having measured response time depend on the 
length of the output, speed of the terminal, and the buffer­
ing algorithm, we directed printed output onto a tempo­
rary disk file for subsequent printing. Figure 5 illustrates 
the procedure used for the tests and shows some of the 
data collected on the effects of file allocation on elapsed 
time. In this example, a CPU-bound job was run under 
three conditions: no files allocated, temporary files 
allocated, and permanent files allocated. 

In summary, effort was expended to separate irrelevant 
effects from those of interest. In addition, a specially 

designed application job was required to coordinate 
internal operations with external effects.· Without the 
RMS's flexible controlled input/ response-timing ca­
pabiiity, the tests could not have been performed success­
fully. 

CONCLUSIONS 

The methodology evaluation indicated that both the tool 
and the analysis approach performed well. The approach 
using a combination of natural loading and artificial load­
ing proved to be effective, but occasional totally artificial 
loading also proved useful. Employing repeated, identical 
stimuli provided samples with known statistical 
properties, but we only partly solved the problem of 
metrics. In only a few cases could we find instances where 
even a much more powerful monitor/stimulus-generator 
would have made our evaluations easier; simple tools like 
the RMS appear to be quite cost/ effective. Further work on 
the methodology would clearly be worthwhile, but im­
mediate application of results is both feasible and jus­
tified. 

As a result of concentrating on problem solution (rather 
than tool development) we produced an approach that has 
proved valuable in several empirical investigations. This 
simple approach depends on an inexpensive moni­
tor/stimulator which we developed. The combined result 
is a cost/ effective methodology to deal with the 
continuously important problem of tuning on-line systems. 

REFERENCES 

1. Bell, Thomas E., "Computer Measurement and Evalua­
tion-Artistry, or Science?" Performance Evaluation Review, Vol. 1, 
No.2, ACM, June 1972, pp. 4-10. 

2. Abrams, Marshall D., George E. Lindamood, Thomas M. Pyke, Jr., 
"Measuring and Modeling Man-Computer Interaction," First An­
nual SIGME Symposium on Measurement and Evaluation, Feb­
ruary 1973, pp. 136-142. 

3. Lambert, David W., "TSO Workload Generation Using A Remote­
Terminal Emulator," Proceeding of SHARE XLII, March 1974, pp. 
68-86. 

4. Baer, Peete, "Artificial Loading of On-Line Systems," Proceedings of 
SHARE XXXVIII, March 1972, pp. 224-230. 

5. Tesdata Systems Corporation, 553 Wisconsin Avenue, Chevy Chase, 
Maryland 20015. 

6. Lockett, J., "Computer Performance Analysis in Mixed On­
Line/Batch Workloads," AFIPS Conference Proceedings, Vol. 43, 
National Computer Conference 1974, pp. 671-676. 

7. Uncapher, K. W., The Rand Videographics System-An Approach to 
a General User-Computer Graphic Communication System, The 
Rand Corporation, R-753-ARPA, April 1971. 

8. Lockett, J. and T. E. Bell, The Rand Monitor Stimulus-generator: A 
Simple Approach to Response Time Analysis in On-Line Computer 
Systems, The Rand Corporation, R-1649-PR, 1975. 

9. Yoshimura, R., The Rand Monitor Stimulus-generator: Hardware I m­
plementation, The Rand Corporation, R-l714-PR, (to be published). 

10. Bell, T. E., B. W. Boehm and R. A. Watson, "Framework and Initial 



A Simple Technique for Controlled On-Line System Stimulation 837 

Phases for Computer Performance Improvement," AFIPS 
Conference Proceedings, Vol. 41, Fall Joint Computer Conference 
1972, pp. 1141-1154. 

11. Shetler, A. C., "Controlled Testing or Computer Performance 
Evaluation," AFIPS Conference Proceedings, Vol. 43, National Com­
puter Conference, 1974, pp. 693-699. 

12. Maranzano, J. F., "Proposal for a Definition of Response Time," 
SHARE Computer Measurement and Evaluation, Vol. II, 1974, pp. 
484-496. 

13. Fajman, R. and J. Borgelt, "WYLBUR: An Interactive Text Editing 
and Remote Job Entry System," Comm. of ACM, Vol. 16, No.5, 
May 1973, pp. 314-322. 





A heuristic approach to computer systems 
performance improvement, I-A fast 
performance prediction tool * 
by STEPHEN R. KIMBLETON** 
USC/Information Sciences Institute 
Marina del Rey, California 

INTRODUCTION 

The design, sizing and tuning of computer systems is a 
persistent, expensive, time-consuming, and difficult 
problem. An appropriate, integrated support methodology 
to support the needs of the computer center manager vis-a­
vis these issues is lacking. Although the performance 
literature related to this topic is voluminous, much of it is 
directed to the vendor rather than the computer center 
manager. 

Development of a methodology to support the computer 
center manager requires explicit consideration of the large 
variety of constraints which must be observed and should 
support: (1) determination of the reasonableness of exist­
ing performance, i.e., 'glitch' detection, (2) evaluation of 
the effects of system modifications and alterations, and (3) 
projection of the performance of new systems or systems 
with redefined functional requirements. The complexity of 
systems, constraints, and the resulting decision-making 
process precludes algorithmic approaches to 'good' system 
design. The well-structured nature of first order 
technological decisions, which can be divided into four 
categories: (D1) hardware configuration, (D2) software ca­
pabilities, (D3) job schedules, and (D4) file-device assign­
ments, suggests the feasibility of implementing heuristic 
(informed trial-and-error) approaches. The ability of such 
approaches to effectively solve complex problems is ap­
parent from the quality of current chess playing programs. 

Heuristic approaches require three capabilities: (1) 
performance prediction to determine the exact perfor­
mance of a given system processing a specified workload 
in accord with a given schedule, (2) system comparison to 
determine the more desirable of two system alternatives in 
the context of a given schedule and workload, and (3) stop-

* Preparation of this paper was supported by the Advanced Research 
Projects Agency under Contract No. DARCI5 72 C 0308, ARPA Order 
No. 2223, Program Code No. 3D30 and 3PIO, and the Office of Naval Re­
search, Information Systems Program under Contract NOOOI4-67-A-OI8I-
0036 (NR 049-311). 
** The views and conclusions contained in this document are those of the 
author and should not be interpreted as necessarily representing the of­
ficial policies, either expressed or implied, of the Advanced Research 
Projects Agency, the Office of Naval Research, or the U.S. Government. 

839 

ping time determination for terminating the iteration cycle 
implicitly defined by (1) and (2). 

This paper describes one approach to obtaining a very 
fast performance prediction methodology suitable for sup­
porting heuristic systems design. Possible comparison cri­
teria for scheduling batch computer systems are described 
in Reference 1. Identification of stopping time 
mechanisms can be safely deferred pending completion of 
a thorough exploration of the feasibility of this approach. 

PERFORMANCE PREDICTION REQUIREMENTS 

Development of a performance prediction mechanism 
,requires identification of: (1) objectives and information 
requirements, (2) accuracy requirements, (3) level of de­
tail, and (4) modeling technology. In this section, goals for 
each of these categories will be detailed. The remainder of 
the paper may be viewed as a demonstration of the feasi­
bility of their achievement. 

Objectives and information requirements 

Technological control decisions are reflected in the four 
decision categories (D1)-(D4) cited above. It follows that 
evaluation of alternatives requires knowledge of individual 
device utilizations and delays. Further, it is desirable that 
this information be broken out on a per job basis, a per 
shift basis, and as will be seen later, a per time segment 
(period of time during which the composition of the mix 
remains constant) basis. 

Accuracy requirements 

The difficulty of designing and implementing a simula­
tor is a function of the accuracy level required. The user of 
a simulator naturally seeks a very high accuracy level, say 
1 percent (that is I obs-predl /obs<.Ol where obs denotes 
the observed value of a statistic and pred denotes the 
value of the statistic predicted through usage of the simu­
lator). Vendors of current, commercially available simula­
tors use persuasive salesmanship to convince computer 



840 National Computer Conference, 1975 

c: ., 

400 

"U 200 

E ., 
>-. 

Vl 100 

10 20 40 

Average Processor Burst (ms.) 

Figure l-ASIM-ISIM system residence time comparison 

80 

center management that accuracy levels of 1 percent are 
readily obtainable-although the tuning required to 
achieve this level of accuracy mitigates against the utility 
of the simulator in investigating new configurations or in 
evaluating the reasonableness of existing performance 
(two primary uses for a simulator). Acceptance of a lower 
level of accuracy requires education of the user through 
identification of accrued advantages which typically in­
clude: reduction/ elimination of the need for calibration, 
increased speed of execution, and expedition of the verifi­
cation/validation process. Based upon discussions with 
managers, it is the author's conjecture that most users can 
easily tolerate an accuracy level of 20 percent. This paper 
hypothesizes, and partially verifies, that such an accuracy 
level can be achieved through usage of fast, analytically 
driven techniques. 

Level of detail 

Performance prediction techniques can be classified in 
terms of the basic level of detail incorporated: hardware 

c: 
a 

0 
N 

-
:J 

E ., 
>-. 

Vl 

1.0 

.8 

.6 

.4 

.2 

I 
I 

cI 

10 

/ 

/ 
/ 

/ 

_..o-_I~M _______ ~ 

"",""'--- AS\M 

" ~ 

20 40 80 

Average Processor Burst (ms.) 

Figure 2-ASIM-ISIM cost weighted system utilization comparison 

30 

25 
--:-

~ 
>-. 
0 20 ., 

Q 

a 
15 ., 

u 
a 

<>. 

., 10 

'" 0 

., 
> « 

40 80 

Average Processor Burst (ms.) 

Figure 3-ASIM-ISIM processor delay comparison 

(register), operating system, resource allocation, time seg­
ment, and job. Decreasing the level of detail decreases the 
potentially achievable level of accuracy as well as the cost 
of implementation and cost of verification/ validation of 
the simulation. Our objective is to achieve an accuracy 
level of 20 percent, and our assI"rtion is that this level 
of accuracy can be achieved through prediction of time 
segment performance and aggregation of the resulting 
statistics to achieve job and shift performance. This asser­
tion is unprovable. However, supporting evidence is pro­
vided in the comparisons detailed in Figures 1-5, included 
at the end of the paper. Although the 20 percent discrep­
ancy level is not achieved in all cases, non-achievement 
seems clearly due to usage of an approximation technique 
providing only lower bound estimators for processor 
utilization. Subsequent efforts directed to achievement of 
the desired tolerance level through development of 
improved processor utilization estimators seem very likely 
to succeed. Moreover, it will be noted that the level of dis­
crepancy decreases as the processor utilization increases. 

1.0 

.8 

.6 

.4 

.2 

-- ___ I~~ ____ ---o 

/ 
/ 

/ 

,,- .".. 

I 

I 
I 

I 
.! 

I 

10 20 40 

Average Processor Burst (ms.) 

Figure 4-ASIM-ISIM processor utilization comparison 

80 



A Heuristic Approach to Computer Systems Performance Improvement 841 

Modeling technology 

Prediction of system performance can be approached 
through either analytic or simulation techniques. Because 
of the limited information available from an individual 
analytic tool, analytic approaches have been relegated to 
the role of design tools used in gaining insight into 
subsystem tradeoffs and policy. Additionally, analytic 
models are occasionally used to estimate gross system 
performance characteristics through extensive aggregation 
of system components which is required for computational 
feasibility.2,3 The advantage of analytic approaches is their 
speed of implementation and execution coupled with rela­
tively low cost for developed models; the disadvantages in­
clude extensive simplifying assumptions, the feasibility of 
incorporating only a meager level of detail, the difficulty 
of understanding them without extensive training in 
modeling techniques, and the prevailing lack of reasonable 
user interfaces. 

Simulation approaches, in contrast, permit incorpora­
tion of almost any desired level of detail. Since there is a 
prevailing tendency to incorporate superfluous factors, 
and a great discrepancy between the rate at which events 
occur in a computer system (micro seconds-milli 
seconds) and the run time of a computer system 
(hours-days), most simulation models execute relatively 
slowly, e.g., 1-10 times faster than real-time. 

Analytic and simulation approaches can be regarded as 
two endpoints of a spectrum of possible approaches to 
computer system performance prediction. Intermediate 
points within this spectrum would blend simulation and 
analytic approaches in a desire to balance execution 
speed, output information, required input data, and ac­
curacy. The objective of this paper is to demonstrate that 
through proper development of an analytically driven ap­
proach, information essentially equivalent to that pro­
vided through current, commercially available simulators, 
can be achieved very quickly. Thus, the basic perfor:-

120 

100 

~ 
>-
0 80 

Q) 

C\ 

0 
~ 60 

-" 

C\ 

Q) 
40 

0> 
0 

Q) 

> « 
20 

10 20 40 80 

Average Processor Burst (ms.) 

Figure 5-ASIM-ISIM disk I/O delay comparison 

mance prediction requirement for implementation of a 
heuristic approach to computer system design, sizing, and 
tuning will have been achieved. 

ANAL YTIC PREDICTION OF SYSTEM 
PERFORMANCE 

Development of an analytic technique for predicting 
computer system performance requires identification of: 
(1) the precise analytic techniques to be used, (2) the 
input data required, (3) the output information sought, 
and (4) the techniques to be used to derive (3) from (2). 
Item (4) proves not to be straightforward since a variety of 
analytic techniques must be interrelated to obtain a ca­
pability which can provide output information competitive 
with that provided by a resource allocation level simula­
tor. Each of these issues will now be discussed in turn. 

Selection of basic analytic approach 

Two major approaches to modeling processor-I/O 
interaction within a computer system can be dif­
ferentiated through their representation of I/O delay. The 
queuing network approach represents I/O devices by their 
service time and obtains global system results (device 
utilizations and delays) in terms of these service times and 
the transition matrix guiding migration among I/O devices 
and the processor (also represented in terms of its service 
time). Alternative analytic approaches represent I/O 
devices in terms of total I/O delay and are provided by 
the machine repair model and an approximation tech­
nique termed the system process model.' 

Wide usage of the queuing network approach has been 
made in computer network analysis,5 communications 
system design,6 and computer systems analysis.7

,8,2 The 
results obtained via this approach have proved encourag­
ing and extensive research is continuing on a variety of re­
lated topics. Usage of this approach as the kernel of an 
analytically driven performance prediction mechanism 
proves difficult for two reasons: (1) representation of data 
path delays, and (2) computational complexity. The first 
reason reflects the fact that incorporation of data paths re­
quires a mathematical capability to handle queuing net­
works with correlated service times-a capability which 
currently appears to be in advance of the state of the art. 
The second reason reflects the fact that the complexity of 
the queuing network approach increases with the square of 
the number of nodes incorporated. Thus, published 
studies have found lumping of nodes necessary to reduce 
the dimensionality from the 50 or more resources compris­
ingthe typical large scale computer system to 5-10.2 

In I/O delay approaches, the input information is mean 
processor burst and mean I/O delay; the output informa­
tion is processor utilization and delay. The standard ma­
chine repair model assumes exponentially distributed 
variables and an iterative technique has been developed9 

for calculating the relevant statistics under the assumption 



842 National Computer Conference, 1975 

TABLE 1-J ob/System Descriptio~ (JSD) Components 

Exogenous ]SD Variables 

1. Name 
2. Time of Arrival 
3. Static Priority 
4. Job Due Date 
5. Job Setup Time 
6. Job Precedence Relations 
7. Number of Job Steps 

Endogenous ]SD Variables 

1. Processor Interaction 
1. Job Processor Requirements 
2. Processor Burst Description 
3. CPU/I/O Overlap 

2. Memory Requirements 

3. File List 
1. Number of Files Accessed by Job 
2. File Names 
3. File Access Count 
4. Data Transfer Size 

4. File Characteristics (For Each Listed File) 
1. File Device Location 
2. Latency 
3. Seek Time Distribution (for disks) 
4. File Size 
5. File Organization 

of non-exponentially distributed I/O delays. This tech­
nique has been successfully applied to computer system 
modeling in which the workload is characterized by an 
'average' job(s).l0 

The system process model4 uses a similar job characteri­
zation. Exponential assumptions are shown to constitute a 
natural midpoint for a wide range of distributional 
assumptions. The estimator of processor delay is inde­
pendent of the approximation used to obtain processor 
utilization; thus, alternative techniques for estimating 
processor utilization, including the machine repair ap­
proach, can be used. This computational technique has 
been used because of the straightforward nature of the cal­
culations which constitute the kernel computation used in 
developing an analytically driven performance prediction 
technique termed ASIM. 

I/O delay approaches naturally enable a hierarchical 
approach to calculation of system statistics in which I/O 
delay is first determined followed by evaluation of other 
system performance characteristic's. Since, as shown in the 
following section, the kernel calculation for I/O delay and 
processor utilization is relatively straightforward, the com­
plexity of the total computation is approximately linear in 
the number of devices comprising the system, and is thus 
competitive with simulation approaches for both large and 
small systems. 

DESCRIPTION OF AN ANALYTICALLY DRIVEN 
PERFORMANCE PREDICTION TOOL (ASIM) 

The major objective in the development of ASIM was 
fast prediction of the performance of a given system exe-

cuting a specified collection of jobs in accord with a de­
fined schedule. In this section we describe: (1) simplifying 
assumptions used in the initial ASIM implementation, (2) 
input data characterization, (3) output information 
developed, (4) conceptual steps involved in obtaining 
system performance statistics, and (5) accuracy/timing 
considerations. 

ASIM implementation assumptions 

The following eight simplifying assumptions were 
chosen to represent a compromise between code simplifi­
cation and demonstrating feasibility appropriate to actuai 
utilization in a computing environment: (1) a single 
processor system, (2) one data path per device, (3) zero 
setup times for jobs (both initiation/termination and 
disk/tape mount/ dismount times), (4) an jobs have equal 
priority, (5) one active data set per device per job, (6) no 
unit record equipment, (7) jobs use a fixed amount of user 
memory, and (8) a maximum of thirty drums, disks, and 
tapes; all drums are shared, a user specified number of 
disks may be shared, and all tapes are non-shared. 

Removal of the single processor assumption is possible 
at the relatively minor cost of requiring another (internal) 
list for each additional processor and incorporation of an 
estimator for processor contention impact on system 
performance. Explicit incorporation of data paths requires 
development of a suitable approach to representation of 
data path induced delay; existing models in the literature \ 
are oriented to static prediction and inappropriate to the,' 
objectives of this model. Removal of the remaining 
assumptions is a programming exercise (note that average 
working set size can be used for virtual memory systems in 
place of partition size for those systems based on a work­
ing set philosophy). 

ASIM input data 

The input data to ASIM consist of three files: (1) 
Job/System Descriptions, (2) System Characteristics, and 
(3) Switch Settings. Switch settings constitute a superset 
of the standard GASP switch settingsll which initialize a 
run and will not be discussed further. 

Table I indicates the components of a Job/System 
Description (JSD). As is apparent, a JSD is related to a 
synthetic module characterization of a job12

-
14 and consists 

of two components. The exogenous component describes 
the environment defined for the job and its relation to 
other jobs, while the endogenous component describes the 
resource requirements and utilization rates for an indi­
vidual job. Although automatic generation of JSD's is not 
currently feasible, careful examination of the more so­
phisticated accounting systems demonstrates the feasi­
bility of capturing these data through minor modifica­
tions. Indeed, SMF data are currently being utilized to 
generate input data for some currently available simula­
tors.15 

It should be noted that the JSD was so named since it 



A Heuristic Approach to Computer Systems Performance Improvement 843 

constitutes a viable description of the job only in the 
context of a given target system. In particular, no asser­
tion is intended that the same source code executed on 
systems produced by two different vendors will produce 
the same JSD's. 

Jobs are assumed to be initiated in the order indicated 
by the list of JSD's subject to three constraints: 
precedence satisfaction, arrival time satisfaction (a job 
cannot be initiated prior to arrival), and resource 
availability. If one of these constraints is unsatisfied, 
initiation is deferred pending its satisfaction. Further, no 
attempt is made to look ahead in the JSD sequence to de­
termine if another job could be initiated. It should be 
noted that this requirement is necessary in order to permit 
study of computer system performance as a function of 
the schedule. l It does not reflect current job scheduling in 
which both the operating system and the external schedul­
ing mechanism jointly share responsibility. Although the 
current approach to system scheduling has proven useful 
(perhaps unavoidable), in practice it greatly impedes de­
termination of the performance of a given computer 
system executing jobs in accord with a prescribed 
schedule. Accordingly, the approach which we have 
described has been implemented. Modification of this ap­
proach to more accurately reflect the characteristics of 
scheduling as implemented on an individual computer 
system is essentially a programming problem. 

Table II indicates the collection of information compris­
ing the system characteristics. Their determination is 
straightforward. 

ASIM output information 

Output information generated by AS 1M is aggregated 
into three categories: (1) job performance statistics, (2) 
shift performance statistics, and (3) time segment per­
formance statistics. The information in each category 

TABLE II-System Characteristics 

Number of Drums 
Number of Disk Drives 
Number of Tape Drives 
Number of Non-Shared Disk Drives 
Amount of Core Memory 
Rotation Time of Drum 
Number of Pages Per Drum Track 
Rotation Time of Disk 
Number of Pages Per Disk Track 
Total Number of Cylinders 
Minimum Seek Time 
Maximum Seek Time 
A verage Seek Time 
Tape Interrecord Gap 
Cost Per Unit Time of CPU 
Cost of Core Per Unit Time 
Cost of Drum Per Unit Time 
Cost of Disk Per Unit Time 
Cost of Tape Per Unit Time 

0* 
3 
o 
o 

100 
35.0000 

6 
16.6667 
5 

411 
10.0000 
55.0000 
30.0000 
o 

10.000000 
1.000000 
0.015000 
0.006800 
0.005000 

* Numbers are representative values used in the example. 

TABLE III-AS 1M Output Information 

Processor Utilization 
Processor Delay 

Memory Utilization 

Average Degree of Multiprogramming 
A verage I/O Delay 
Average System Utilization 

Individual Drum Utilization 
Individual Drum Delay 
Individual Drum Service Time 

Individual Disk Utilization 
Individual Disk Delay 
Individual Disk Service Time 

Individual Tape Utilization 
Individual Tape Delay 
Individual Tape Service Time 

consists of device utilizations and delays as shown in 
Table III together with some header information which is 
not given. For a job this header information includes job 
identification and for a time segment the collection of jobs 
in concurrent execution is displayed. 

ASIM performance calculations 

Let an event denote the time at which either a job initia­
tion or job termination occurs and let a time segment 
denote the time between two successive events. For a shift 
in which N jobs are processed, there will be at most 2N 
events and 2N-l time segments; the upper bound is 
reached for non-concurrent initiations. Since the composi­
tion of the mix is constant over a time segment, analytic 
prediction of time segment performance is in order. Stan­
dard aggregation techniques used for statistics accumula­
tion in simulation can then be used to develop job and 
shift performance. Additionally, time segment perform­
ance is captured since poor performance for a job implies 
poor performance for at least one time segment. Further, 
development of heuristic scheduling procedures requires 
knowledge of time segment performance characteristics l to 
evaluate the desirability of alternative job interchanges in 
heuristically seeking a 'good' schedule. 

Label the collection of jobs to be processed during a 
representative time segment J1, ... , In. Generation of 
processor delay and utilization requires generation of an 
average active and blocked interval for this time segment 
appropriate to this collection of jobs. 

Determination of average I/O delay requires care. In its 
calculation, an average processor burst which is simply the 
arithmetic average of the processor bursts for jobs J1, ... , 
In, is used. It is evident from the Job/System Descrip­
tions that knowledge of the JSD's for J1, ... ,In permits 
straightforward calculation of the probability of a 
reference to an individual device during the time segment 



844 National Computer Conference, 1975 

(assuming accesses are equally probable over a time seg­
ment). This probability, together with the average 
processor burst described above, permits a mathematical 
determination of upper and lower bounds for the interar­
rival times to a given device. (Determination of the mean 
interarrival time proves difficult since it is affected by 
device characteristics and queues; thus, its determination 
requires an iterative approach and was deferred in the 
interest of computational speed.) Given these bounds, 
bounds for device delay can then be obtained through 
queuing calculations. 

U sage of available device models within the literature is 
a natural objective which is precluded by their assumption 
of an infinite calling population. In practice, for batch 
systems, a degree of multiprogramming in the range of 3-6 
has been typical. 16 Further, the number of 'batch 
equivalents' in interactive systems has been observed to 
fall in this range since an average batch job is ap­
proximately the same system load as 10 average interac­
tive jobs.2 Clearly, such estimators are at best crude. 
Moreover, data on batch equivalents for non-university en­
vironments is not readily available although similar com­
putational approaches can be used. 

Because of the unsuitability of existing I/O device 
models, a technique described in Reference 17 for obtain­
ing the steady state queuing time distribution for the 
M/ G /1 finite capacity queue proved appropriate since it 
effectively proceeds by computation of results for an 
associated cyclic two server queue in which one server 
represents the processor and the other can be thought of as 
a generalized I/O device. Although data paths are not ex­
plicitly incorporated in the present version of ASIM, their 
incorporation is feasible in the approach described and an 
approximately linear complexity in terms of the number 
of devices is retained. 

Having obtained the delay for an individual device, 
average delay for all devices can then be obtained. This 
then permits determination of processor utilization U and 
the processor delay D via the following theorem: 18 

Theorem: 
Let A and B denote the average length of the active 

and blocked intervals of the process. For K ~2 concur­
rently executing statistically identical processes: 

(i) U>1-pK-1 
(ii) D=(K -J)AU(K) 

where p=Bj(A+B), and J=BjA denotes the ex­
pected number of active intervals which can be 
initiated during a blocked interval. 

Application of this theorem and the I/O results 
described earlier yields all device delays and utilizations. 
Determination of core utilization is a simple calculation. 

ASIM timing and implementation considerations 

For portability reasons, AS 1M has been implemented in 
a Fortran superset GASP.l1 Although GASP is a simula-

tion language, it was used for its output formatting and 
report generation capabilities rather than its list manipu­
lation capabilities. Retrospect suggests that direct coding 
of desired output capabilities and elimination of the GASP 
routines is feasible and would ease portability. 

Description of ASIM speed is misleading since it is a 
function primarily of the number of jobs executed during 
a shift rather than their duration. Thus, execution time is 
the sum of the time segment execution times which are ef­
fectively linear in the number of distinct devices 
referenced during the time segment. Consequently, overall 
execution time is nearly linear as a function of the number 
of jobs and distinct I/O devices. Typically, a time segment 
performance calculation requires approximately one 
second of processor time on a medium-sized computer 
such as TENEX. Thus, determination of performance 
statistics for a shift with 50 jobs requires less than two 
minutes of processor time. Although most shifts process a 
significantly greater number of jobs, many of these jobs 
require only very limited amounts of resources and are 
better represented in the aggregate rather than indi­
vidually, in view of assumption 3. 

Although the description of AS 1M calculations is rela­
tively straightforward, this reflects hindsight and is not 
represented in the current version which consists of ap­
proximately 1800 source statements. Knuth's remark to 
the effect that the best way to implement a program is to 
code it once, throw it away and code it again seems very 
appropriate. A new version is now being coded and the ob­
jective is to reduce the number of lines of source code to 
approximately 500. The next section provides some com­
parison information for ASIM evaluation. 

AN EXAMPLE AND SOME DIRECTIONS FOR 
FUTURE RESEARCH 

Evaluation of AS 1M is easier than evaluation of a simu­
lator since the objective is to demonstrate that information 
approximately as detailed as that obtained via simulators 
can be obtained while a significant increase in speed is 
also obtained. For comparison purposes, a resource alloca­
tion simulator (ISIM)19 was used. Figures 1-5 provide com­
parison information. These comparison statistics were ob­
tained for five identical concurrently executing jobs ac­
cessing three disks in a uniform manner and differing only 
in the length of the average processor burst which was 5, 
10, 20, 40 and 80 ms. Each job requires 1000 processor 
bursts, arrived at time 0, had no precedence or due date 
constraints, and was sufficiently undemanding in core re­
quirements to permit simultaneous initiation. 

Figure 1 indicates that the correlation between AS 1M 
and ISIM predictions (for a system whose characteristics 
are as indicated in Table II) was very good for gross statis­
tics such as the system residence time (elapsed time from 
initiation to termination of job). Further, Figure 2 shows a 
reasonable correlation between overall system utilization 
for ASIM and ISIM as represented in the system reward 
function (a dollar weighted device utilization statistic 



A Heuristic Approach to Computer Systems Performance Improvement 845 

computed over all four device categories). Figure 3 
demonstrates that the average processor delay also com­
pares well. Figure 4 shows that the comparison between 
processor utilizations is not as satisfactory as is also true 
for the comparison between disk delays as shown in Figure 
5. This discrepancy reflects the fact that for low access 
rates to I/O devices, the gap between the computed upper 
and lower delay bounds for individual devices is fairly 
wide. Indeed, the envelope between these two bounds 
contained the ISIM prediction in all cases. Thus, a refine­
ment of the I/O delay prediction technique is required 
and is perhaps the most important improvement needed. 
A major requirement for achieving this accuracy improve­
ment is developing an improved estimator for processor 
utilization, as is apparent from Figure 4. 

Collectively, this information indicates that the desired 
level of accuracy has been achieved for gross overall statis­
tics and that some refinement is needed for the device 
statistics. Thus, we argue that the basic feasibility of ob­
taining a 20 percent accuracy level has been shown and ef­
fort directed toward consolidation and improvement is 
merited. It is natural to consider the quality of the com­
parisons for non-statistically identical jobs. Surprisingly, 
the comparisons were slightly better and, in general, the 
accuracy of the predictions seems to improve with increas­
ing system complexity. 

Results obtained to date support the hypothesis that 
analytically driven performance prediction techniques 
providing significant speed advantages over those ob­
tainable via a simulator can be constructed. Further, the 
discrepancies between ASIM and ISIM appear due to 
inadequacies in existing analytic techniques rather than to 
fundamental deficiencies in the approach. Extensive ex­
ploration of the limits of this approach is clearly desirable. 

Discussion of ASIM speed is misleading since it is effec­
tively independent of the length of the job. For production 
batch environments in which the average job requires five 
minutes or more to execute, a claim of two orders of mag­
nitude faster than real-time is reasonable. For a university 
environment in which the average job requires two 
seconds of processor time this claim is clearly inappro­
priate; thus the restriction to production batch environ­
ments. 

U sage of ASIM is not restricted to batch environments 
provided that one is willing to represent the interactive 
load through an 'average' approach. Because the standard 
deviation of resource requests for interactive jobs is signifi­
cantly larger than the mean,2 development of upper and 
lower bounds seems more appropriate. 

The capabilities provided by ASIM permit essentially 
distinct approaches to two important issues: (1) computer 
system scheduling via heuristics as discussed in Reference 
1, and (2) centralized design and control of large net­
worked systems as discussed in Reference 20. The feasi­
bility of achieving practically usable results in either of 
these two areas is increased by the possibility of automatic 
gathering of ASIM input data through minor modifica­
tions to the accounting system on most large computer 
systems. Indeed, the information required can currently 

be gathered through post-processing of information pro­
vided by accounting tapes.1S 

ACKNOWLEDGMENTS 

The author would like to express his appreciation to Dr. 
Thomas E. Bell who critically reviewed an earlier draft of 
this paper, and to Mr. James Cochran who transferred 
ASIM to the Institute TENEX computer system and exe­
cuted all experimental runs. 

REFERENCES 

1. Kimbleton, S. R., "Batch Computer Scheduling: A Heuristically Mo­
tivated Approach," Proceedings of the Second Annual SIG­
METRICS Symposium on Measurement and Evaluation, Montreal, 
Canada, September 30-0ctober 2, 1974. 

2. Moore, Charles G., Network Models for Large-Scale Time-Sharing 
Systems, Technical Report No. 71-1, Department of Industrial 
Engineering, The University of Michigan, Ann Arbor, Michigan, 
1971. 

3. Hanssmann, F., W. Kistler and H. Schulz, "Modeling for Computer 
Center Planning," IBM Systems Journal, Vol. 10, No.4, 1971, pp. 
305-324. 

4. Kimbleton, S. R., An Approximate Analytic Technique for Hierar­
chical Computer System Modeling, 'ISIjRR-75-30, to appear April, 
1975. 

5. Kleinrock, L., Communication Nets, McGraw-Hill Book Company, 
Inc., New York, 1972. 

6. Kleinrock, L., "Analytic and Simulation Methods in Computer Net­
work Design," AFIPS Conference Proceedings, 1970 Spring Joint 
Computer Conference, pp. 569-579. 

7. Baskett, F., "The Dependence of Computer System Queues Upon 
Processing Time Distribution and Central Processor Scheduling," 
Proceedings of the Third Symposium on Operating Systems Prin­
ciples, October 1971, pp. 109-113. 

8. Buzen, J., "Analysis of System Bottlenecks Using a Queuing Net­
work Model," Proceedings of ACM (SIGOPS) Workshop on System 
Performance Evaluation, Harvard University, April 5-7, 1971, pp. 
82-103. 

9. Gaver, D. P., "Probability Models for Multiprogramming Computer 
Systems," Journal of the ACM, Vol. 14, No.3, July 1967, pp. 423-
438. 

10. Sekino, A., Performance Evaluation of a Multiprogrammed Time­
Shared Computer System, Ph.D. Thesis, MIT-Lincoln Laboratory, 
August 1972. 

11. Pritsker, A. A. B. and P. J. Kiviat, Simulation with GASP II, 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969. 

12. Buchholz, W., "A Synthetic Job for Measuring System Perfor­
mance," IBM Systems Journal, Vol. 8, No.4, 1969, pp. 309-318. 

13. Hamilton, P. A. and B. W. Kernigan, "Synthetically Generated 
Performance Test Loads for Operating Systems," Proceedings of the 
ACM-SIGME Symposium on Measurement ·and Evaluation, Feb­
ruary 26-28, 1973, pp. 121-126. 

14. Sreenivasan, K. and A. J. Kielnman, "On the Construction of a 
Representative Synthetic Workload," Communications of the ACM, 
Vol. 27, No.3, 1974, pp. 127-132. 

15. Edgecomb, G., SCERT Model Building System. User's Guide, 
Chemical Abstracts Service, Columbus, Ohio, September 1973, PB 
234934. 

16. Rodriguez-Rosell, J. and J. Dupuy, "Instrumentation for the Evalua­
tion of a Time-Sharing, Page Demand System," AFIPS Conference 
Proceedings, 1972 Spring Joint Computer Conference, pp. 759-766. 

17. Lavenberg, S. S., The Steady-State Queuing Time Distribution for 
the M/G/I Finite Capacity Queue, IBM Research Report RJ 1150, 
San Jose, California, 1973. 



846 National Computer Conference, 1975 

18. Kimbleton, S. R., "Performance Evaluation-A Structured Ap­
proach," AFIPS Conference Proceedings, 1972 Spring Joint Com­
puter Conference, pp. 411-416. 

19. Kimbleton, S. R., Interrupt-Free Computer System Simulator 
(lSIM) Description, USC/Information Sciences Institute Internal 
Document, 1974. 

20. Kimbleton, S. R., "Modeling Considerations in Computer Communi­
cation Resource Control," Proceedings of the Eighth Hawaii Interna­
tional Conference on System Sciences, January 7-9, 1975, Honolulu, 
Hawaii, pp. 95-97. 

21. Barlow, R. E. and F. Proschan, Mathematical Theory of Reliability, 
John Wiley & Sons, Inc., New York, 1967. 

22. Butler, M. K. and A. Hirsch, Use of the Argonne Benchmark Collec­
tion to Measure Computer System Performance, Argonne National 
Laboratory, Applied Mathematics Division, ANL-8127, September 
1974. 

23. Couger, J. D., "Evolution of Business System Analysis Techniques," 
Computing Surveys, Vol. 5, No.3, September 1973, pp. 167-198. 

24. Kobayashi, H., "Application of the Diffusion Approximation to 
Queuing Networks I: Equilibrium Queue Distributions," Journal of 
the ACM, Vol. 21, No.2, 1974, pp. 316-328. 

25. Lucas, H. C., "Performance Evaluation and Monitoring," Comput­
ing Surveys, Vol. 3, No.3, September, 1971, pp. 79-92. 

26. Muntz, R. R. and J. W. Wong, "Efficient Computational Procedures 
for Closed Queuing Network Models," Proceedings of the Seventh 
Hawaii International Conference on System Sciences, University of 
Hawaii, Honolulu, 1974. 

27. Organick, E. I., The Multics System: An Examination of its Struc­
ture, MIT Press, Cambridge, Mass., 1972. 

28. Boole and Babbage, Problem Program Evaluator, 1970. 
29. Teichroew, D. and H. Sayani, "Automation of System Building," 

Datamation, August 15, 1971, pp. 25-30. 



Computer design verification via software 
simulation 

by R. E. KARNES and W. A. CARTER 
IBM Federal Systems Division 
Huntsville, Alabama 

INTRODUCTION 

This paper describes the simulation approach* utilized in 
the design of a Large Scale Integration (LSI) computer. 
The objectives to be fulfilled via software simulation were 
verification of the computer design and the associated 
micro-code. Since no Vendor Technology Logic (VTL) 
breadboard was planned, the fulfillment of the objectives 
was critical to the success of the total design effort. The 
simulation approach supported not only the initial com­
puter design and introduction of micro-code to the design 
but also the verification of the design as implemented in 
detailed logic. 

A computer developed via the simulation approach 
described in this paper is the Hybrid Technology Com­
puter (HTC), a member of NASA's Space Ultra-Reliable 
Modular Computer (SUMC) family. The HTC is a micro­
program controlled, fixed point, general purpose computer 
whose design employs LSI circuit technology and packag­
ing tailored for advanced space applications. Logic 
technology for the HTC utilizes low power, bipolar cir­
cuitry contained in LSI chips with a capacity for 134 gates 
per chip. Figure 1 is a functional block diagram of a HTC. 

SIMULATION APPROACH 

The simulation approach utilizes both a high level mode 
of simulation and a low level mode of simulation. The high 
level mode of simulation supports programs written in a 
high level language similar to PL/1. These programs, 
called models, describe hardware behavior at a black box 
or functional level. Two examples of high level simulation 
models are shown in Figures 2 and 3. Figure 2 is a model 
of a hardware register. When the clock line changes from 
'1' state to '0' state and the register select line is a '1', the 
register delays a time amount estimated by the designer 
and then gates its output. Figure 3 is a model of Instruc­
tion Read Only Memory (IROM). When the address lines 
change, all array that simulates the read only memory 
contents is accessed and the data is output 100 ns later. 

These two examples are illustrated here because they 

* Work sponsored by the National Aeronautics and Space Administra­
tion, Marshall Space Flight Center, under Contract NAS8-14000. 

847 

are relatively simple and easily convey typical model 
construction and function. It should be realized, however, 
that there are some models containing complex logic and 
requiring as many as 400 high level statements. Within the 
scope of the simulation, 35 high level models were used 
that described the HTC. Table I identifies the models re­
quired to simulate the HTC, and lists the number of 
inputs and outputs and high level statements associated 
with each model. 

Low level simulation is simulation of the designer's logic 
at a logic block or gate level. The designer's output is LSI 
chip logic diagrams with up to 134 gates of logic. The logic 
diagrams for a chip form the low level simulation building 
block. Each low level chip design corresponds functionally 
to a high level model. The software also supports a mix of 
high level and low level simulation by providing facilities 
to interconnect the input/ output lines of high level models 
with the input/output lines of the low level chip logic. 

U sing the high level simulation capabilities, the HTC 
design was described entirely with the high level models. 
This high level model of the HTC allowed introduction of 
the micro-code to the hardware design early in the 
development cycle and provided a method for finding 
design problems and incompatibilities much earlier than a 
hardware breadboard would have allowed since chip logic 
design was not complete at this time. Utilizing the high 
level model, HTC diagnostic programs were simulated and 
the full computer instruction set verified. 

As the chips' low level (detailed logic) design progressed 
and became available, they were integrated into the 
simulation process. This was done in a step by step 
procedure. When a chip's detailed logic was complete, the 
corresponding high level model was taken out and the 
chip's detailed logic replaced its function in the simulator. 
This replacement procedure allowed a gradual yet con­
tinuing detailed verification of the computer design as the 
detailed logic became available. This process continued 
until the actual logic of the machine was implemented and 
verified and all the chip designs released to manufactur­
ing. 

The final detailed simulation of the HTC consisted of a 
total of 55 low level chips and 10 high level models. The 
high level models that remained in the simulation were 
primarily vendor devices, such as high- speed memories, 
that required no detailed verification. 



848 National Computer Conference, 1975 

{

Tags (12) 

Input/Output 10 Bus Out (16) 

10 Bus In (16) 

{

Tags (5) 
Test Support Test Bus Out (16) 
Equipment 

Test Bus IN (16) 

MROM 
OUT 

MROM OUT (64 Bits) 
,...-_ ....... _..,Machine Control (CTL) 

IR MROM 
OUT 

Figure 1-HTC block diagram 

PARTITIONING CONSIDERATIONS 

One of the most difficult and important decisions made 
in the early design phase of the simulation involved parti­
tioning of the simulation into models. More concisely, the 
question was "what function went in what model?" 

The first approach was to partition the models along 
functional lines. For example: main memory, arithmetic 
logic unit, and sequencer control unit were three of the 
partitions decided upon. The advantage of this type of par­
titioning was ease of description of model function, and 
ease of interconnection. Since the inputs and outputs of 
these models were already described in the functional 
block diagrams, the only remaining problem was deter­
mining how the outputs were generated. Once the al-

MODEL OF PRODUCT REMAINDER REGISTER (PRR) 

DCl PRMUX CHAR(16); 
DCl CLOCK CHAR(l); 
DCl SELECT CHAR(l); 
DCl PRR CHAR(16); 

DCl OlDClOCK CHAR(l) INIT('U'); 
DCl TEMP CHAR (16); 

1* START OF PRR MODEL 

IF CLOCK =OlD CLOCK THEN RETURN 
OlDClOCK=ClOCK; 

*1 

IF (CLOCK, = 'O')I(s ELECT ,='1') THEN RETURN; 
TEMP = PRMUX; 
CAll WAIT(XX); 
PRR = TEMp· 
END; , 

1* INPUT FROM PRMUX *1 
1* CLOCK LINE FOR PRR*I 
1* REGISTER SELECT LlNE*1 
1* REGISTER OUTPUT *1 

1* OLD CLOCK STATE*I 
1* TEMPORARY STORAGE*I 

1* CHECK FOR CLOCK STATE CHANGE *1 
1* IF CHANGE THENSAVE NEWSTATE*I 
1* RETURN UNLESS SELECTED ANDClOCKED*1 
1* SAVE PRMUX LINE STATE*I 
1* DELAY XX ns *1 
1* OUT PUT REGISTER CONTENTS *1 

Figure 2-PRR model 

gorithms for generation of outputs were obtained from the 
hardware designers these models could be developed 
easily. 

This type of partitioning did have one major disad­
vantage. Since some functional blocks consisted of several 
hardware chips, low level logic for all chips in a functional 
block were required to be ready before any of these chips 
could be integrated into the simulation. Since this could 
seriously delay the simulation of some low level chips, a 
modification of the original partitioning approach was 
necessary. Hence, those functional blocks which were com­
posed of more than one chip were broken down into an 
equal number of high level models. 

There were three types of exceptions to the splitting of 
functional partitions. The first of these exceptions was 

MODEL OF INSTRUCTION READ ONLY MEMORY (IROM) 

DCl 
DCl 

DCl 
DCl 
DCl 
DCl 
DCl 

ADDRESS CHAR(8); 
IROMOUT CHAR(16); 

OlDIN CHAR(8) INIT('UUUUUUUU); 
IROM (256) FIXED (16) EXTERNAL; 
TEMP CHAR (16) 
I FIXED BIN (31); 
ISUM FIXED BIN (31); 

1* START IROM MODEL *1 

IF ADDRESS = OlDIN THEN RETURN; 
OlDIN ~ ADDRESS; 
PACK (ADDRESS, 8, ISUB); 
CAll WAIT (100); 
I = IROM (lSUB+l); 
UNPACK (I.16,TEMP); 
IROMOUT = TEMP; 
END; 

1* IROM ADDRESS LlNES*1 
1* IROM 16 OUTPUT LINES *1 

1* IROM MEMORY*I 
1* TEMP STORAGE*I 

1* CHECK FOR ADDRESS CHANGE*I 
1* SAVE OLD ADDRESS STATE *1 
1* CONVERT ADDRESS TO BINARY FOR ARRAY*I 
1* DELAY lOONS -MAX IROM DElAY*1 
1* ADDRESS DATA FROM ARRAY *1 
1* CONVERT BINARY TO CHARACTER*I 
1* OUTPUT IROM DATA *1 

Figure 3-IROM model 



Computer Design Verification 849 

TABLE I-HTC High Level Models 

Model Inputs Outputs 
State-

, ments 

MROM - Micro- program Read Only Memory 12 64 40 
MREG - MROM Register 
IROM - Instruction Read Only Memory 
FCU - Function Control Unit 
ARCH - Architecture Unit 
AREG - Arch Register 
MUXA - ALU A-side MUX 
MUXB - ALU B-side MUX 
ALU - Arithmetic Logic Unit 
EALU - Extended ALU 
PRM - Product Remainder Mux 
MAM - Memory Address Mux 
MOM - Multiply Quotient Mux 
PRR - Product Remainder Register 
MAR - Memory Address Register 
MQR - Multiply Quotient Register 
SPM - Scratch Pad Memory 
SS - Single Shot 
10 - Input Output 
SIL - Storage Interface Logic 
AMUX - Address Mux 
SPRO - Storage Protect 
ADR - Storage Data Register 
DMA - Direct Memory A cces s 
ivIsP - Memory Support 
TRID - Tri-State Drivers 
PAR - Parity 
MMEM - Main Memory Array 
IREG - Instruction Register 
SPAM - Scratch Pad Address Mux 
TIME - Timing 
SCU - Sequencer Control Unit 
SEQR - Sequencer Register 
ICR - Iteration Control Register 
DCOD - Decoder 

Total Inputs / Outputs /Statements 

made for functional models composed of vendor off-the­
shelf devices. Since these devices, such as read only 
memories, were purchased and required no detailed design 
verification, these functional models were not subdivided. 

The next exception was made for functional blocks com­
posed of multiple chips of the same type. For example, the 
sixteen bit wide ALU was composed of eight 2-bit wide 
chips. Since all of these chips were identical, their low 
level logic would ali be ready simultaneously, and could be 

65 64 27 
8 16 17 

21 15 226 
29 16 210 
12 9 85 
63 16 70 
50 16 80 
41 19 114 

8 2 84 
56 20 III 

55 20 122 
52 16 61 
18 16 19 
18 16 18 
18 16 19 
23 16 56 

1 1 13 
24 17 400 
41 47 375 
34 28 79 

9 2 59 
42 32 67 
72 34 117 
26 42 79 
38 18 62 
18 1 55 
80 36 151 
19 32 68 
16 4 31 
24 8 126 
85 22 220 
14 12 20 

8 6 20 
5 8 46 

1105 707 3347 

integrated into the simulation together to replace the one 
high level functional model. 

The third exception was made for functional blocks 
which were known to consist of multiple chips but whose 
chip design had not progressed enough to identify the 
inputs, outputs, and functional partitioning of these chips. 
The major example of this type of functional block was 
main memory. The approach taken for this type of block 
was to begin with one high level model for main memory. 



850 National Computer Conference, 1975 

RIPPLE ROUTINE 

DCl LIMIT CONSTANT(6) FIXED; 
DCl RIPPLE (LIMIT) FIXED(16); 
DCl NEXT FIXED(15) INIT(O) 
DCl TEMPB FIXED (32); 
DCl DELAY CONSTAI\IT(60) FIXED; 
/* OUTPUT TEMPB * / 

IF NEXT> 0 
THEN IF RIPPLE (NEXT) = TEMPB 

THEN RETURN; 
ELSE; 

ELSE IF RIPPlE(1) = TEMPB THEN RETURN; 
IF NEXT = LIMIT 
THEN DO; 

MESSAGE 'RIPPLE TABLE EXCEEDED - DATA lOST'; 
RETURN; 

NEXT =E~~~T + 1; 
RIPPLE (NEXT) = TEMPB; 
CAll WAIT (DELAY); 
TEMPB = RIPPLE (1); 
NEXT = NEXT - 1; 
DO I = 1 TO NEXT; 

RIPPLE (I) = RIPPLE (I +1); 
END; 

Figure 4-Ripple routine 

As the design progressed, high level models were written 
for the components of main memory as sufficient informa­
tion became available, but no model was integrated into 
the simulation until all high level models which were to re­
place the original memory model were ready. At that time 
they were all integrated into the simulation. The cor­
responding low level chips could then be integrated as they 
became available. 

MODELING CONSIDERATIONS 

Once the partitioning into models and the assignment of 
inputs and outputs to these models were complete, the 
actual coding of the high level models was relatively easy. 
U sing the hardware designers functional description and 
his estimate of the time delay involved in generation of the 
outputs, the operation of the model was coded in the high 
level language. 

Although each model was different there were a few 
areas- common to almost all models. First, a check was 
made at the start of each model to insure that at least one 
input had changed from the last time the model was exe­
cuted. This eliminated redundant execution of the model, 
thus saving computer time. Next the outputs were 
generated using the current set of inputs. Quite often this 
generation took the form of a Boolean equation expressed 
in PL/I statements. When all outputs had been computed 
a test was made to determine whether any output had 
changed. If not, nothing more was done. 

Once the new outputs had been computed and had been 
found to be different than the last computed outputs, 
these outputs could still not be set on the output lines until 
the specified hardware delay had occurred. In order to 
delay outputs and also show any ripple that might take 
place due to new inputs, a ripple routine (see Figure 4) 
was used. When a new and different output was computed 
it was put in the next available position in an array and a 
wait was executed for the proper delay. After the delay the 
first element of the array was output, all other elements 

were moved down one slot and the next available entry 
pointer was decremented. This technique allowed several 
outputs to be computed before the delay time of the first 
element had expired and also allowed all of the outputs to 
be actually output at their correct time. 

TESTING 

The first stage in testing the simulation was testing of 
the individual models as they were coded. Aside from the 
normal syntax and keypunch error debug, test cases were 
run using generated input patterns to insure that the 
model being tested generated a predictable output at the 
proper time from the known input pattern. 

The next phase of testing involved groups of related 
models such as main memory, data flow, etc. Again, test 
cases were run with generated input patterns for this 
particular group of models. This phase of testing made ap­
parent any interconnection, polarity, or timing problems 
within the group of models. 

The final test phase involved the entire group of high 
level models. While the first two phases had been pri­
marily involved with debug of the models, this phase was 
primarily involved in debug of the micro-code and the 
hardware design of the HTC. 

In order to make the simulator as flexible as possible, 
all memory models-Instruction Read Only Memory 
(IROM), Micro-code Read Only Memory (MROM), and 
Main Memory (MMEM)-loaded their simulated 
contents fromS /360 OS data sets at execution time. This 
techniq ue allowed the micro-programmers to place the 
latest versions of IROM and MROM in a predefined data 
set and their latest versions were always included in the 
simulation. In order to change the contents of main 
memory, the job control language could merely be 
modified to point to a different data set. 

The basic philosophy used in final testing of the micro­
code and final design of HTC was developed around a self 
test approach. Since the HTC instruction set was the 
S / 360 set, it seemed apparent that the best debug pro­
grams would l?e S/360 diagnostics. Thus, the memory 
contents used in driving the simulation were various S /360 
diagnostic programs designed to test the particular areas 
of the HTC under test at that time. Since these diagnostics 
were designed to hang in a one instruction loop when a 
failure was detected, the simulation was designed to detect 
this occurrence and initiate appropriate action to alert the 
user. The simulation would print an error message, dump 
simulated memory, force the program counter to the next 
sequential instruction, and then continue. When, however, 
a user defined number of errors were detected or a user 
specified number of simulated time units was reached, the 
simulation was terminated. 

Simulation output consisted of several types of informa­
tion. First, the simulator generated certain error and in­
formation messages such as the previously mentioned one 
instruction loop message. In addition, all critical registers 



Computer Design Verification 851 

PROGRAM COUNTER: 0214, I NSTRUCTI ON: LA 
CURRENT SIMULATED TIME=0000011732NS 
SPMO = 0000000000000000 
IRG = 0100000100010000UUUUUUUUUUUUUUUU 
SDR = 0100000100010000 
CPSAR = 0000001000010110 
PRM = 0000000000000010 
ICREG = 000000 
CURRENT SIMULATED TIME=0000011800NS 
PRR = 0000000000000010 
MAR = 0000001000010100 
MQR = 0000001000010110 
MROMIN = U00100101111 
MREGIN = 0000000101011111011000010000100011100000010001001100000000000100 
CURRENT SIMULATED TIME=0000012132NS 
SPMO = 0000001000010110 
IRG = 01000001000100000000000000000011 
SDR = 0000000000000011 
CPSAR = 0000001000010110 
PRM = 0000001000011000 
ICREG = 000000 
CURRENT SIMULATED TIME=0000012200NS 
PRR = 0000000000000010 
MAR = 0000001000010100 
MQR = 0000001000010110 
MROMIN = 000100110000 
MREGIN = 1100001001110110010000010000100011100000010001001101000000000000 
CURRENT SIMULATED TIME=0000012532NS 
SPMO = 0000000000000000 
IRG = 01000001000100000000000000000011 
SDR = 0000000000000011 
CPSAR = 0000001000010110 
PRM = 0000000000000011 
ICREG = 000000 
CURRENT SIMULATED TIME=0000012600NS 
PRR = 0000000000000010 
MAR = 0000001000010100 
MQR = 0000001000010110 
MROMIN = 000100110100 
MREGIN = 1000001001111110010000010000100011100000010001001111000000000000 
CURRENT SIMULATED TIME=0000012932-000 
SPMO = 0000000000000000 

Figure 5-Trace of microcode execution 

such as the program counter, storage data register, instruc­
tion register, etc., were printed once in every micro cycle. 
This allowed a trace of micro-code execution and showed 
the results at key points. Figure 5 is an example of 'this 
type of output. Finally, in case of problems in which the 
error was not apparent, the user could ask for compiete 
timing charts of any input or output lines in the simula­
tion. These charts printed the value of the line and the 
current simulated time each time the state of that line 
changed. Using these print charts, almost any error could 
be traced to its source. 

CONCLUSIONS 

Several benefits were derived from the simulation ap­
proach. Probably the most significant benefit was the 
ability to discover costly errors before a single piece of 

hardware was built. The errors discovered were the type 
typically found during a hardware debug. They included 
timing, logic, polarity, micro-code, and design errors. An 
additional benefit was the ease with which the causes of 
these errors could be found because lines could be 
examined via simulation that could not be physically 
probed on an LSI chip. 

The objectives of the simulation, as stated previously, 
were verification of the computer design and micro-code. 
How well the verification was accomplished could not be 
answered until the HTC power on debug began. The time 
from initial power on of the HTC until debug was com­
plete was slightly less than one month with no design prob­
lems encountered. HTC debug was accomplished in this 
amount of time because the micro-code and hardware 
debug actually occurred in the previous months via 
software simulation. 





Synchronous microcomputer system for on­
board missile guidance and control 

by FRANK J. LANGLEYandJOSEPHJ. COONEY 
Raytheon Company Missile Systems Diu. 
Bedford, Massachusetts 

STATEMENT OF THE PROBLEM 

The design, development and production of missiles to 
. cover a range of presently defined missions with the ca­
pability of being upgraded to accommodate changing 
threat situations and advancing technology without major 
redesign, stresses the need for more modular guidance and 
control electronics possessing both physical and electrical 
flexibility features at lowest cost. 

Although programmable digital techniques have been 
shown to offer improved performance and greater flexi­
bility than traditional hardwired analog implementations, 
the direct substitution of a single, real-time, general-pur­
pose, digital computer to perform the on-board guidance 
and control task does not provide an optimum solution in 
many cases. While throughput can be readily satisfied for 
all missile types with a single, standard, mini-class com­
puter, an excessive performance margin results in the low 
and medium performance missiles, and, the centralization 
of a single computing unit presents form-factor incompati­
bilities across the range of missiles together with a poor 
electrical interface. In addition to the latter deficiencies, 
peculiar to the missile application, the design, assembly 
and checkout of major missile sections/functions (e.g., 
seeker, guidance, autopilot, attitude reference, um­
bilical/ command-link interface, warhead fuzing) as com­
pletely operational modules is not possible with a central 
computer design approach. However, the recent advent of 
low-cost, medium-speed microcomputer component sets in 
high-density N-channel metal-oxide-semiconductor (MOS) 
technology provides a form of programmable digital 
hardware, complete with support software, which allows 
more optimum system design tailoring at any stage in the 
life cycle without cost-penalty. 

REQUIREMENTS 

These are presented in two parts commencing with an 
overview of missile types, their distinguishing characteris­
tics and the nature of the guidance and control task 
viewed as a sampled-data system. This is then followed by 
a breakdow~ of the guidance and control functions for 
each missile type with the resulting computer loads 

853 

expressed in terms of the respective memory capacities 
and operation execution rates for specific instruction 
mixes. 

Missile types and characteristics 

Of the four major missile families, surface to surface, 
surface to air, air to ground and air to air, (A-A) the latter 
group was used as a basis for detailed requirements 
analysis, since missiles in this family cover a wide 
spectrum both in physical form factors and electrical 
performance characteristics. Data derived from these 
analyses were then augmented with the results of other 
studies in digital surface to air missiles and highly 
modular, multi-mission, air to ground weapons. 

At one end of the air to air missile spectrum are the 
small light-weight, short-range, single mission weapons 
designed typically for tail-chase engagements using passive 
infrared homing seekers. Mid-spectrum types include the 
larger, medium-range, high-performance missiles equipped 
with semi-active radar target seekers, and, at the upper 
end of the missile range, multi-mode missiles constitute 
the most sophisticated air to air weapons, incorporating 
semi-active and active radar seekers supplemented with 
command guidance from the launch aircraft. Figure 1 
illustrates form factor variations typical of the three m~in 
types of A-A missiles just described. The functional par~i­
tioning and arrangement of major component parts III 

tandem along the longitudinal axis becomes a design pre­
requisite in each case due to the rigid constraints of the 
fundamental air vehicle design. 

Figure 2 shows the relative compatibility of a single 
computer versus a multiple microcomputer system for on­
board guidance and control observing the previously out­
lined physical constraints. The improvements in 
subsystem autonomy and interface are clearly evident in 
the multiple microcomputer configuration. 

Sampled data guidance and control system 

From a digital sampled-data mechanization viewpoint 
an on-board guidance and control system appears as 
shown in Figure 3. 



854 National Computer Conference, 1975 

TABLE I-On-Board Missile Guidance & Control Functions 

IR RADAR MULTIMODE 
MISSILE MISSILE MISSILE 

MAJOR 
FUNCTION NO. SUB FUNCTION MIN MAX MIN MAX MIN MAX 

Sl BASIC T&S 

BASIC T&S WITH ESTIMATION 
TRACK & 

S2 RADOME COMPENSATION 
STABI L1ZA TI ON 

S3 HEAD AIMING (INITIALIZING) 

S4 GYRO & TORQUE DISTURBANCE COMPENSATION 

S5 LINEAR 9-STATE FEEDBACK CONTROL 

E5 LEAD-LAG NOISE FILTER 

STATE E1 FIXED GAIN FILTERS 

ESTIMATION E2 SWITCHED GAIN FILTERS 

E3 VARIABLE GAIN FILTERS (DECOUPLED KALMAN) 

E4 VARIABLE GAIN FILTERS (COUPLED KALMAN) 

GUIDANCE G1 PROPORTIONAL NAVIGATION 

G2 4-STATE LAW, RANGE DESENSITIZED 

A1 BASIC AjP 

A2 STRUCTURAL FILTERS & FIN MIXING 

A5 INDUCED ROLL REDUCTION 

Ah BAND-SWITCHED GAINS 

AUTOPILOT A9 GAIN DETERMINATION J 
A10 WITH AERO ESTIMATES (0) 

A13 GAIN DETERMINATION J -A14 WITH AERO ESTIMATES (FIN CROSS COUPLING) 

A15 GAIN DETERMINATION J 
. A16 WITH AERO ESTIMATES (SINGLE PANEL MODEL) 

11 A TTITUDE DETERMINATION 

12 VELOCITY DETERMINATION 

ATTITUDE 13 POSITION DETERMINATION 

REFERENCE 14 ANGLE OF ATTACK DETERMINATION 

15 AERO PARAMETER ESTIMATION 

16 MASS & BALANCE ESTIMATION 



IR 
MISSILE ~ 

S-SEEKER 18 AlP-AUTOPILOT 0t-T2f'\ "'--p------r�~W:-::'/H~1 A:2€ -ISO Ib ~!~~;~~~:~ 

U CA-CONTROL ACTUATOR 
_ APPROX LAUNCH WEIGHT 

9.5f1----

::II,~ o*f~ " ~ w;, i , i > ·"0," 

f--------- -~--------120fl:=j 

MULTI MODE T ~-ac W/H S: >.·I-SOOlb MISSILE O.~t CQI ,..--________ --L..._---'-_---'-I __ _ 

''--------14.0fl 
------.-~~-------------I 

Figure I-Air to air missile types and form factors 

Switches are shown with associated sampling rates at 
the inputs and outputs of all major functional blocks. The 
basic stability augmentation loop, formed by the autopilot, 
control actuators, control surfaces/ fins, aerodynamics and 
instrumentation (body gyros and accelerometers), requires 
sampling rates of 125 to 500 Hz depending on missile type 
and performance. An inner position feedback is shown as 
autonomous with the control actuator servos. Steering 
inputs to the missile flight system can originate from 
various on-board sources: target homing seekers, (e.g., 
radar, infrared, electro-optical), mid-course navigation 
sensors (e.g., inertial, Tacan, Tercom, Loran), and/or from 
the launch vehicle via a command guidance radio fre­
quency link. In all cases, these steering inputs require low 
sampling rates ranging from 10 to 20 Hz. The on-board 
target seeker shown in Figure 3 as a typical example, em­
ploys a target sensor mounted on a gimballed pl~tform 
which in turn is stabilized against missile body motion by 
a higher speed control loop (125-500 Hz) similar to that of 
the flight system. The target-sensor boresight error vector 
(EO), derived in the signal processor, becomes the common 
low frequency steering command to both the seeker 
head/ platform control subsystem and the estimation and 
guidance section for translation into acceleration com­
mands (Nc ) to the autopilot. 

Hence in terms of system timing, digital on-board 
guidanc~ and control systems are characterized by two dis­
tinct sampling/ update intervals, viz: 2 to 8 ms for body­
motion-related functions and 50 to 100 ms for steering or 
pointing commands. Further, since steering command 
rates are very slow and can originate from many different 
asynchronous sources, the flight system becomes the main 

TABLE II -Computer Requirements vs Microcomputer 
Performance-IR Types 

IR TYPES 

MICROCOMPUTER 
REQUIREMENTS THROUGHPUT 

MAJOR FUNCTION MEMORY "THROUGHPUT (MIX) BIPOLAR "" N-MOS 

HEAD CONTROL 120 25.0 (80/20) 300.0 20.0 

ESTIMATION & GUIDANCE 280 5.0 (70/30) 250.0 15.0 

AUTOPILOT 150 15.0 (92/8) 480.0 42.0 

"THR(~y~HPUT' ~~~~A~~~E~~;g~:~6~~/~~~~;Tlgp~i:il~~~,Oe~~.~6~ ?~::t;TlON 
MULTIPLY TYPES 

ASSUMING WORST-CASE MULTIPLY TIME (230 ~sec) 

Synchronous Microcomputer System 855 

TABLE III-Computer Requirements vs Microcomputer 
Performance-Radar Types 

RADAR TYPES 

MICROCOMPUTER REQUIREMENTS 
THROUGHPUT 

MAJOR FUNCTION MEMORY THROUGHPUT (MIX) BIPOLAR N-MOS 

HEAD CONTROL 700 60.0 (82/18) 320.0 22.0 

ESTIMATION & GUIDANCE 1000 20.0 (70/30) 230.0 15.0 

AUTOPILOT 520 100.0 (84/16) 340.0 24.0 

ATTITUDE REFERENCE 700 40.0 (82/18) 320.0 22.0 

system "clock" to which all system steering inputs must 
be synchronized. 

Computer functions and loads 

The specific characteristics of each major functional 
block shown in the generalized guidance and control 
system diagram of Figure 3 vary in degree of complexity 
according to missile type and performance. Table I gives a 
breakdown of the major functions with their respective ap­
plications across the range of air to air missiles. Minimum 
and maximum performance categories are also indicated 
for each class. A detailed discussion of these functions and 
their impact on missile performance is given in two recent 
publications (References 1 and 2) and therefore will not be 
repeated in this paper. In summary, the essential dif­
ferences between the six complements of functions . listed 
in the table lie in the degree of compensation of seeker er­
rors (radome refraction, gyro torque disturbances); the 
availability of missile/target relative motion data, includ­
ing acceleration, due to Kalman estimation techniques; 
the use of a more optimal guidance law based on the 
availability of improved target performance data; the use 
of an inertial reference system to provide missile perform­
ance data, and the resulting design of an autopilot which is 
both adaptive to the aerodynamic environment and com­
pe~sates for body bending and fin blanking effects .. 

Computer loads resulting from the above functIOns are 
summarized in Tables II, III and IV for each missile type, 
respectively. Memory requirements include word space for 
both programs and data bases. These loads were derived 
chiefly from algorithms and program listings used in cur­
rent and previous in-house digital missile development 
programs which employed a I6-bit minicomputer in single 
central computer system configurations. The remaining 
new algorithms were derived and sized in the same man-

TABLE IV-Computer Requirements vs Microcomputer 
Performance-M ulti-Mode Types 

MUTLI MODE TYPES -

MICROCOMPUTER 
REQU IREMENTS THROUGHPUT 

MAJOR FUNCTION MEMORY THROUGHPUT (MIX) BIPOLAR N-MOS 

HEAD CONTROL 900 160.0 (85/15) 350.0 25.0 

ESTIMATION & GUIDANCE 3000 60.0 (73/27) 240.0 15.0 

AUTOPILOT 2500 170.0 (86/14) 370. 27.0 

A TTl TUDE REFERENCE 670 220.0 (83/17) 330.0 23.0 



856 National Computer Conference, 1975 

SINGLE COMPUTER SYSTEM 

UMBI~ICAL 

SEEKER BODY 
SENSORS 

MOTOR 

MULTI-WIRE ANALOG & DIGITAL DISCRETE 

LEGEND: 

HCC - HEAD CONTROL COMPUTER 
WFC - WARHEAD FUZING COMPUTER 

AIC - AVIONICS INTERFACE COMPUTER 
APC - AUTOPI LOT COMPUTER 

MUTLIPLE MICROCOMPUTER SYSTEM 

SEEKER HCC WFC WAR 
HEAD 

UMBILICAL 
I 

AIC 

DIGITAL BUS (SERIAL/BYTE) 

BODY 
SENSORS APC MOTOR 

Figure 2-Single computer vs multiple microcomputer systems within missile form factor and assembly constraints 

ner, assuming the same simple machine architecture and 
instruction set. Throughput rates are based on the update 
rates previously discussed. 

Implicit in the above computer sizing data is the parti­
tioning of the total guidance and control task by major 
function, instead of by control channel (pitch, roll and 
yaw) as in conventional analog implementations. Parti­
tioning by major function stems from the single computer 
approach to the problem, and although the resulting com­
puter loads appear to be within the performance ca­
pabilities of the lower-cost medium-speed, N-channel MaS 
microcomputers for the small IR seeker missile, the 
throughput requirements become excessive for the other 
two types. On the other hand, bipolar microcomputers 
with increased power consumption and parts count exceed 
the IR missile throughput requirements by an order of 
magnitude and the performance required for the second 
type of missile by 3: l. 

Repartitioning the system by control channel, however, 
considerably improves the desirable match between the 

available performance of the lower cost MOS. computer 
hardware and the throughput requirements of the higher 
performance missile. Table V illustrates this point for the 
radar missile, and similar gains in cost, power and parts 
count could be expected for the multi-mode class using the 

rC0MWND L ________ --, 
L....!:'!:',.K_..J I 

I lO-20Hz 

I : 
L_,<-.r-:-:== 

NC 

I 
I I I 
I 125-500 Hz 1 • ___ -, I 

L ___________ - - - - - - L - - - - - --; AERO I- - - - - - ---' 
L ___ -l 

Figure 3-Digital missile guidance and control !>ystem 



same microcomputer as a common, programmable func­
tion unit/ cell, (Reference 3). 

MICROCOMPUTERS 

Of the many different types of microcomputers cur­
rently produced by semiconductor manufacturers, two 
common architectures are evident. One is characterized by 
a complete 4- or 8-bit central processing unit (CPU) 
packaged on a single large-scale-integrated-circuit chip, 
"CPU-on-a-chip", using metal-oxide-semiconductor (MOS) 
technology. The other form of microcomputer uses a 2- or 
4-bit register arithmetic and logic unit (RALU) module, in 
lower density bipolar device technology, which forms a 
common element or slice to build larger RAL Us up to 32 
bits in length. To form a complete CPU requires addi­
tional control memory modules and addressing circuits, 
enabling the design of a microprogram-controlled CPU 
with virtually any desired instruction set in contrast to the 
hardwired, fixed repertoire imbedded in the CPU-on-a­
chip version. Both types use a common input output bus, 
to/from the CPU, to which is coupled main memory and 
external device control modules, allowing direct memory 
access for data transfers without a programming burden. 

Table VI compares the parts complements of two 8-bit 
microcomputers, CPU-vs RALU-on-a-chip types, each 
incorporating 2048-words of program read-only memory 
(ROM) and 256-words of data read/write memory (RAM). 
Reductions in parts count and power consumption are 
typically 4: 1 for the higher density MOS computers 
together with approximately a 3: 1 reduction in cost, com­
pared to bipolar versions. CPU-on-a-chip types are slower 
(2JLs register-register add) than their RALU-on-a-chip 
counterparts «IJLs register-register add), and currently in­
clude no hardware multiply or divide instructions in their 
otherwise comprehensive instruction sets. Software mul­
tiply times can vary between 230JLs (16X8) to 33JLs (8 X8), 
depending on the degree of optimization possible for a 
given application. The longer period was assumed in deter­
mining the N-MOS computer throughputs given in Tables 
II, III, IV, and V. 

In summary, since the leading CPU-on-a-chip 
microcomputers are offered as complete component sets 
with the lowest parts count, together with the advantage of 
full support software, they constitute the most effective 
product of the two available microcomputer architectures. 
Further, the low cost, size, weight and power advantages of 
CPU-on-a-chip microcomputers constitute significant in-

TABLE V-Partitioning By Control Channel 
RADAR TYPES 

THROUGHPUT MICROCOMPUTER 
REQUIREMENTS THROUGHPUT 

MAJOR FUNCTION PITCH ROLL YAW N-MOS 

HEAD CONTROL 30.0 - 30.0 22.0 

ESTIMATION & GUIDANCE 10.0 - 10.0 15.0 

AUTOPILOT 30.0 30.0 30.0 24.0 

Synchronous Microcomputer System 857 

TABLE VI-Available Microcomputer Components 

CPU-ON-A-CHIP TYPES 

(HIGH-DENSITY P & N-MOS) 

CPU: 
RAM: 
ROM 

4 & 8 BIT 
256 x 4 

2048 x 8 

(I) 
(2) 
(I) 

CLOCK, I/O LATCHES/DRIVERS (6) 

RALU-ON-A-CHIP TYPES 

(MEDIUM-DENSITY BIPOLAR & MOS) 

RALU: 2 & 4 BIT SLICE (2) 
CROM: CONTROL UNIT COMPLETE (12) 
RAM: 256 x 1 (8) 
ROM: 256 x 4 (16) 

CLOCK, I/O LA TCHES/DRIVERS (2) 

8 BIT 10 DIPS, 5 WATTS, $200.00 8 BIT: 40 DIPS, 20 WATTS, $600.00 
COMPUTER:WITH FULL SUPPORT SOFTWARE COMPUTER: NO SUPPORT SOFTWARE AVAILABLE 

centives to reevaluate the missile guidance and control 
problem in the light of the availability and performance of 
such a versatile computing tool. 

SYSTEM DESIGN APPROACH 

As outlined earlier in this paper, the guidance and con­
trol of a missile using a digital system entails the repetitive 
sampling of body motion sensors and the computing and 
outputting of fin position commands at rates of between 
125 and 500 Hz to satisfy the basic stability requirements 
of the air vehicle. Maneuvering commands from 
target/navigation sensors, or remote sources via command 
data links, require sampling and inputting to the flight 
system at significantly lower rates of between 10 and 20 
Hz. Hence, any asynchronism between the latter data 
inputs and the higher speed stability loop inputs can be 
accommodated by temporary buffering and delayed ac­
cessing in synchronism with the next flight control cycle. 

The initiation and use of so-called "modes" is a con­
venient way of describing quasi-static missile performance 
changes which are required in response to pre-determined 
values of target/navigation sensor or command guidance 
data, the net result of which is typically: the use of data 
from an alternate sensor, (e.g., radar to IR); a change in 
sensor sensitivity; and/ or changes in autopilot gains and 
the gearing or response of the system to steering command 
inputs. Such performance changes can be accomplished 
through normal limit checks on sensor input data at the 
10-20 Hz rate, followed by changes, if necessary to stored 
missile performance constants regularly accessed at the 
125 to 500 Hz rate. 

From the preceding system design considerations it can 
be seen that a minimum form of general-purpose com­
puter would satisfy the system requirements. Specifically, 
a computer possessing a direct-memory-access (DMA) 
input-output channel for asynchronous data inputs, and a 
simple cyclic program, without real-time executive and 
interrupts, to perform the repetitive processing task. 
Further, to keep hardware at a minimum, a simple 8-bit 
byte-organized machine would suffice, provided that the 
required throughput could be maintained with multiple­
byte, higher-precision operations. In other words, the 
processing task lies within the province of a simple 
microcomputer. 

Figure 4 shows the missile guidance and control system 
of Figure 3 reconfigured with three "CPU-on-a-chip" type 



858 National Computer Conference, 1975 

TARGET 
SENSOR & 
SIG PRO~ 

10-20 Hz 

.---. 
ICOMMANDI 

LINK 

L,-.J 
INC 

1~20 Hz 

10-20 Hz 

Ir-- - -- HEAD CONTROL 1 I 1-1-- -- -- EsTiMA TIQNl I ::_-__ -_-:. .. AUTOPI LOrj 

I I 2-PORT 
PARALLEL 

I/O 

I 
I 
I 
I 
I MUX 

A-D/D-A 

ROM 

RAM 

I I --- GUIDANCE I I 
2-PORT 

I I PA~~gEL ROM I I 

I I I 1 I I 
I I 1 CPU I I 
I I I I 
I I I I 

CPU 

I I RAM I I 
I I I I 

2-PORT 
PARALLEL 

I/O 

MUX 
A-D/D-A 

ROM 

RAM 

CPU 

I 
I 
I 
I 
I 
I I 

L ____ --.J L ____ ~_J L - -- _J 

GIMBLD 
PLt..TFM 

125-500 Hz 

MASTER 
CLOCK 

BODY 
GYROS & 
ACCELRS 

CONTROL 
ACTUATORS 

Figure 4-Synchronous microcomputer guidance and control system 

microcomputer sets programmed and dedicated to: seeker 
head control, (tracking and stabilization), state estimation 
and guidance, autopilot and fin command generation, 
respectively. This form of system partitioning using me­
dium-speed, MOS microcomputers is compatible with the 
IR and lower performance radar-type missiles. 

TABLE VII-Performance, Parts Count, Power & Cost 

ONE 
FOUR MICROS 

COMPONENT PARAMETER MINI 
(8 81T EA) 

(16 BIT) 6701 8080 

THROUGHPUT 600.0 300.0 25.0 TO 120.0 
CPU PARTS 150 60 25 

POWER 24.0 24.0 14.0 

CAPACITY 1024 x 16 256x8EA 256x8EA 
RAM PARTS 16 32 8 

POWER 8.0 14.0 1.2 

CAPACITY ...4096 x 40 2048 x 8 EA 2048 x 8 EA 
ROM PARTS 160 64 4 

POWER 98.0 39.0 2.0 

PARTS 326 156 37 
TOTAL POWER 130.0 77.0 17.2 

COST $4500 $2500 $700 

THROUGHPUT: KOPs 
POWER: SECONDARY WATTS 
COST: COMMERCIAL (FOR DIRECT COMPARISON) 

Input-output transfer rates between the three computers 
are slow and amenable to a single-wire serial digital inter­
face of the type currently advocated for avionics system 
integration, (i.e., tri-service DAIS). 

Higp speed I/O interfaces occur only between the com­
puters which are physically colocated with their external 
devices i.e., gyros, accelerometers, position pickoffs, torque 
motor drivers and control actuators. 

System timing is governed by a master clock 
synchronized to the carrier frequency of the alternating 
current pickoffs thereby enabling peak sampling of the 
carrier and the elimination of hardware demodulator 
units. Two major timing templates are used to control and 
synchronize the sampling and processing cycles of each 
computer. One template employs minor intervals of 2-8 ms 
duration with steering inputs interleaved at 50 to 100 ms 
intervals for the head control and autopilot computers, 
while the other uses the longer interval alone to control the 
estimation and guidance computer. Upon completion of a 
data processing program each computer idles pending the 



synchronous transfer of processed data and inputting of 
new data samples. Further details of subsystem timing are 
described in the following section, based on a develop­
mental model of the head control section recently imple­
mented with an N-MOS microcomputer set. 

Table VII compares throughput, parts, power and cost 
of four 8-bit microcomputers, in bipolar and N-MOS 
technology, each with 256 words RAM and 2048 words 
ROM versus one 16-bit minicomputer with 1024 words 
RAM and 4096 words control ROM. From this com­
parison, it can be seen that extensive replication of higher­
density MOS computer hardware is possible beyond four 
computers (i.e., up to 16) before the cost, parts and power 
consumption of the higher-speed equivalents is reached. 

MICROCOMPUTER SEEKER HEAD CONTROL­
DEVELOPMENT MODEL 

The following describes the practical implementation of 
the head control function using a leading commercial N­
MOS microcomputer. This computer is scheduled for 
second-source production to military specifications in mid-
1975. 

The system (Figure 5), incorporates an Intel 8080 8-bit 
CPU module with associated ROM, RAM and I/O 
modules, (8 LSIC packages total), together with digitally 
controlled analog input and output multiplexers, to time 
share the single A-D and D-A convertor modules. 
Subsystem timing is governed by the synchronization 
logic. The need for phase-sensitive demodulators is 
avoided by sampling gyro outputs at the peak of the 
reference waveform. This is accomplished without the use 
of interrupts by synchronizing the system to the reference 
frequency. Figure 6 shows the timing of input and output 
operations with respect to the gyro reference frequency. 
From the timing diagram it can be seen that the computer 
is idle 44 percent of the time, enabling system cost to be 
further reduced by using this spare capacity to implement 
such gyro error compensation and signal conversion func­
tions described in the following paragraphs. 

Gyros are g-sensitive devices and therefore their. output 
is a function of both angular motion and linear accelera-

INITIALIZE/OPERATE 
PITCHPOS/RATE 
YAW POS/RATE 

~} GIMBAL CMDS 

~ ) ~~~~ TORQUER 

: } POT OUTPUTS 

~ } GYRO OUTPUTS 

: } POSITION CMD 

: } RATE CMOS 

Figure 5-Microcomputer head control subsystem 

Synchronous Microcomputer System 859 

INPUT CMD 
__ ~CJ~P~ __________ ~CJ=YL-_____________ IN 

POT POSITION P Y 

GIMBA\ORQUER CMD.----Cc::=:::::J=Y==:tn-1---------Tc::=::::J-p---4D:::L------~:T 

PICKOFF Y IN 

~OUT GYRO 
TORQUER CMD 

Figure 6-Microcomputer head control subsystem timing 

tion. ~lthough g-sensitivity can be reduced by careful 
balancmg and compensation, this results in an expensive 
c~mponent. Alternatively by permitting the gyro to have a 
hIgher but known g-sensitivity, approximately a 50 percent 
cost reduction can be realized. The accuracy equivalent to 
that of a low g-sensitivity gyro can be achieved in software 
by correcting the gyro output as a function of the linear ac­
celeration to which it is exposed. Since most missiles 
measure linear acceleration in airframe .coordinates for 
guidance and control purposes, this information can be 
used after coordinate transformation to provide the ac­
celeration component along the gyro input axis. The gyro 
output signal can then be corrected in the head control com­
puter as a function of the latter acceleration, resulting in 
reduced system cost. 

With the distribution of the guidance and control task 
among several computers, both the individual throughput 
and analog to digital (A-D) conversion rates are reduced 
c~mpared to a single computer configuration performing 
hIgh-speed, time-division-multiplexed operations. Low­
speed A-D conversion provides the option of performing 
the successive approximation operation by microcomputer 
subroutine and replacing the A-D converter with a simple 
comparator. The unknown voltage is then compared to the 
output of the lower cost D-A convertor unit with the result 
used to set the latter to a new value successively, until the 
equivalent digital value is determined. 

In addition to the above hardware cost reduction tech­
niques, incremental improvements in overall missile 
performance can be achieved in the head control computer 
by the substitution and/ or addition of program modules 
listed in Table I. 

CONCLUSIONS 

From the requirements analyses, product surveys, design 
trade-offs and experimental work reported in this paper, a 
synchronous, multiple microcomputer guidance and con­
trol system, of the form described, achieves a high degree 
of compatibility with the unique design constraints of the 
various missile families. 



860 National Computer Conference, 1975 

The availability of high-density, large-scale-integrated­
circuit, N-MOS microcomputer component sets allows the 
federation of separable guidance and control functions in 
compliance with the physical partitioning and modular 
construction of missiles without the size, weight, power 
and cost penalties formerly associated with the replication 
of computer hardware. Further, significant improvements 
in missile performance, design flexibility and logistic sup­
port are provided through the use of a common set of stan­
dard high-volume-production computer components, 
which in turn enables a standard digital interface to be es­
tablished between both the major missile sections and the 
avionics of the launch vehicle. 

Lastly, the federated computer system described 
permits the partial conversion of existing missile guidance 
and control systems to obtain the desired performance 
improvements without the trauma of a major redesign and 
consequently at low-risk and at incremental funding rates. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the guidance and sup­
port of Messrs. John J. Long, Dr. Bruce A. Hall, and 
Walter V. Trainor, in the preparation and critique of this 
paper, also Mr. David S. Siegel, Office of Naval Research, 
who initiated and supported the earlier work (Reference 1) 
which stimulated the follow-on efforts described herein. 

REFERENCES 

1. Modular Digital Missile Guidance System Study Raytheon Co., 
Missile Systems Division, Final Report June 30, 1974 Contract No. 
NOOOI4-74-C-0056, AD-784 969/8GA. 

2. Terzian, J. and W. Trainor, "Digital Missile Technology," 1974 
ADPA/A1AA Tactical Missile Conference, Canoga Park, Calif., May 
1-3,1974. 

3. Langley, F. J., "A Universal Function Unit for Avionic and Missile 
Applications," NAECON 1971, Dayton, Ohio, May 17-19, 1971. 



A new fourth generation of hybrid computer 
systems 

by ROBERT M. HOWE 
The University of Michigan 
Ann Arbor, Michigan 

and 

ALDRIC SAUCIER 
Hqtrs. US Army Materiel Command 
Alexandria, Virginia 

INTRODUCTION 

It has long been recognized that hybrid computer systems 
are more cost effective than digital computers in solving 
many types of dynamic problems. This indeed has been 
the reason for the sizable number of hybrid computer 
systems currently in operation. The one to two order of 
magnitude speed advantage which hybrid computers enjoy 
over digital computers in solving differential equations is 
due to the speed of the analog subsystem. This high speed 
results from the high bandwidth (up to 1 megahertz) of the 
analog components and the parallel configuration of the 
analog mechanization. 

Despite this speed advantage, hybrid computers have 
not enjoyed anywhere near the widespread use which one 
might have predicted. There are several reasons for the 
relatively lower popularity of the hybrid computer vis-a­
vis the digital computer. These include the greater diffi­
culty in programming hybrid computers, their limited ac­
cessibility to multiple users, expensive and limited 
problem-storage capability because of the analog patch­
boards, and relatively slower problem changeover charac­
teristics. 

Recently the U.S. Army Materiel Command sponsored 
a study program by several of the hybrid computer manu­
facturers to determine the characteristics of a next-genera­
tion hybrid computer system which will overcome the 
existing disadvantages of hybrid computation as listed 
above. The resulting AHCS (Advanced Hybrid Computer 
System) achieves this by replacing the analog patchboards 
by a digitally-controlled solidstate switch matrix and by 
use of a higher-level simulation language compiler which 
assigns analog components to problem variables and 
parameters. The switch matrix allows complete digital 
storage of hybrid problems and problem turnaround in 
milliseconds. This in turn makes hybrid computer shar­
ing through remote terminals a practical reality. The 
CSSL-type input language makes the programming as 
simple as digital programming using an identical language 

861 

and permits implementation of automatic scaling of the 
analog subsystem. 

In this paper we summarize the results of the study by 
one of the contractors of the Army Materiel Command, 
namely the Applied Dynamics Computer Division of the 
Reliance Electric Company. Prior to the study there has 
been considerable experience with a prototype 
electronically-patched hybrid computer system which has 
been operating for three years in the University of 
Michigan Simulation Center.! This computer consists of 
an Applied Dynamics AD Four analog subsystem in­
terfaced to a Digital Equipment PDP 9 digital subsystem, 
as shown in Figure 1. This system, which includes a ma­
trix of 768 switches for interconnecting 8 analog integra­
tors, 6 multipliers, and 32 coefficient devices, allows 
analog circuits for solving differential equations to be 
electronically patched and completely set up in less than 
20 milliseconds under PDP 9 control. Five remote 
graphics terminals are used to "time-share" the system. 
Each terminal user is able to request the solution of any 
analog problem stored in the digital computer. Problem 
parameters are entered interactively from the terminal, 
and high-speed solutions are displayed on a storage-type 
CRT as shown in Figure 2. Since problem setup takes only 
20 milliseconds and typical problem run times are under 
100 milliseconds, eac4 terminal ties up the hybrid com­
puter for such a short time that the mean response time 
from solution request to solution display at a given ter­
minal is a fraction of a second. A simulation-language 
compiler has also been developed for the system.2 From 
CSSL-type input statements the compiler selects analog 
components and generates the switch code necessary to 
patch the problem. 

This time-shared or, perhaps more properly, time-sliced 
auto-patch system with terminals at the University of 
Michigan (Applied Dynamics has installed three similar 
systems in the United States and Europe) provided useful 
background for the US Army Materiel Command (AMC) 
Advanced Hybrid Computer System (hereafter called the 
AHCS). Let us now turn to the results of the study. 



862 National Computer Conference, 1975 

Figure l-Hybrid computer system at the University of Michigan 
Simulation Center 

OVERALL ARCS CONFIGURATION 

Figure 3 shows a block diagram of one proposed version 
of the ARCS. At the bottom of the diagram is the modular 
analog computer with electronic patching which will be 
described in subsequent sections. Across the top of the 
figure are the user terminals for remote access. These can 
either be standard digital terminals with graphics ca­
pability (either storage or refresh CRT's) or can be spe­
cially-designed terminals for the ARCS. The user termi­
nals, as well as the maintenance terminal and a large 
digital computer, are all tied to the ARCS through the 
communications controller. Note that the user terminals 
can receive analog signals from the ARCS (dashed lines in 
Figure 3) although it is our feeling that digital communica­
tion, even for solution displays at the user terminals, will 

Figure 2-Autopatch terminal system 

in general be preferred. Even at telephone-line communi­
cation rates it will only take about a second for a typical 
solution display to be generated. Since the ARCS will 
compute solutions much faster than this, it is necessary to 
convert these solutions to digital form, store them tempo­
rarily, and transmit them through the communications 
controller to the user terminals for display. This is the 
purpose of the two analog to digital converter (ADC) 
systems, micro-computers, and associated mass storage 
devices shown in Figure 3. 

Also shown in the figure are two medium-sized digital 
computers connected through interfaces to the analog com­
puter and to the communication controller. These two 
digital computers share common peripheral devices (disk, 
line printer, tape drives, etc.) and are used to compile, 
allocate, schedule, and perform other tasks connected with 
set-up, check-out, and problem runs on the AHCS system. 
They are also used for performing digital computations 
associated with actual problems, such as digital function 
generation, equation integration, etc. Provision of two such 
digital computers as well as two micro-computers for solu­
tion storage and display adds redundancy and hence 
increases ARCS reliability. The large digital computer 
shown in Figure 3 can also be used for compiling. Let us 
now turn to a description of the most unique subsystem in 
the ARCS, namely the electronically patched modular 
analog computer. 

TRE SWITCR MATRIX 

A real key to the ARCS is a low-cost, high-reliability 
switch matrix to replace the analog patchboard. The 768-
switch matrix used in the prototype autopatch system cur­
rently in operation is implemented using discrete Field Ef-

BLOCK DIAGRAM OF PROPOSED 
AHCSSYSTEM 

Figure 3 

_ OIGITALCOMMUNICATION 

--- ANALOG COMMUNICATION 



A New Fourth Generation of Hybrid Computer Systems 863 

fect Transistors (FET) switches and driving-circuit 
components, although integrated circuit registers are em­
ployed for storing the switch-closure information for a 
given patch configuration. In the AHCS it is proposed to 
use Complementary Metal Oxide Semiconductor (CMOS) 
LSI circuitry for the analog switches and the switch-set­
ting registers. It appears that it will be feasible to mount a 
16 X 8 voltage-switch matrix plus associated digital 
registers on a single chip. The effect of finite switch "on" 
resistance (approximately 500 ohms) will be eliminated by 
terminating each of the 8 matrix outputs with voltage­
following amplifiers. The 16 matrix inputs come from low­
impedance operational amplifier outputs. Leakage current 
from "off' switches as well as capacitive coupling across 
"off' switches will cause negligible cross talk because of 
the low-impedance voltage sources driving the switch 
inputs. Normal range of the input and output voltages for 
the switch matrix will be + 10 volts. It is estimated that us­
ing such a specially-developed 16 X 8 LSI switch chip it 
would be practical to mount up to 5000 switches on a single 
printed-circuit card. 

MODULAR ORGANIZATION OF THE ANALOG 
SUBSYSTEM 

Every study of automatic patching in recent years has 
recognized the necessity of organizing the parallel 
processor into modules in order to reduce the number of 
switches required to allow interconnection of components. 
In defining the modular breakdown and the switch matrix 
within and between modules, one must take into account 
the types of problems which will be solved, the component 
and switch hardware cost and performance requirements, 
and the complexity of software needed for the compiler 
which converts the simulation language source program 
into component assignments and a scaled circuit. Because 
of the experience with the prototype autopatch AD-Four 
hybrid system at The University of Michigan Simulation 
Center, we feel that we have been able to perform the 
various tradeoffs needed to come up with the reasonable 
hardware-software compromise for configpration of a 
practical autopatch system. 

The system utilizes five general categories of modules, 
as illustrated in Table 1. The largest number of modules in 
a typical installation fall into the amplifier-module cate­
gory. As can be seen in the figure each amplifier module 
contains 8 summer-integrator amplifiers, 32 MDAC's 
(multiplying digital-to-analog converters), 8 multipliers, 
and 2 hard limiters. The function-generator module 
contains 16 two-variable digitally-set analog diode function 
generators. The resolver module contains 4 resolvers, each 
capable of either forward or inverse resolution. The logic 
module includes 16 comparators along with 16 parallel­
logic microprocessors. The miscellaneous module is simply 
that, a module type which contains components such as 
fixed function generators (e.g., log dfg's), time-delay ele­
ments, special programmable nonlinear functions, etc. All 
of the modules can be interconnected with the autopatch 

TABLE I-Modular Categories for the AHCS 

Type of Module 

Amplifier 

Function Generator 
Resolver 
Logic 

Miscellaneous 

Module Contents 

8 Summer-Integrators 
32 MDAC's 
12 RDAC's 
8 Multipliers 
2 Hard Limiters 

16 Two Variable 16X8 DFG's 
4 Resolvers 

16 Comparators 
16 Parallel-Logic Microprocessors 

Counters 
Shift Registers 
Flip Flops 
One-Shots 
Log DFG's 
Time-Delays 
Programmable Nonlinear Functions 

switch matrix used for both analog and logic signals, as 
will be described. Also, the modules can be connected to 
the digital computer or computers in the AHCS, as well as 
to external analog and digital trunks. References 9 and 10 
give a more detailed description of each of these modules. 

TYPICAL ANALOG EQUIPMENT COMPLEMENT 

Since the analog subsystem of the AHCS involves 
parallel mechanization, it is clear that there must be 
enough analog and parallel logic components to solve the 
largest problem envisioned for the computer. A typical 
system might have 40 modules total, consisting of 24 am­
plifier modules, 5 resolver modules, 5 function generator 
modules, 2 miscellaneous modules, and 4 logic modules. 
Such a system would include the following impressive 
component count: 

192 summer integrators 
192 multipliers 
768 MDAC's 
288 RDAC's 

48 hard limiters 
20 resolvers (80 additional multipliers plus 20 .sine-

cosine generators) 
80 two-variable function generators 
64 comparators 
64 parallel-logic microprocessors (logic function genera­

tors) 
64 16-bit up counters 
16 sequencer I timer I counter units 

The total number of switches needed to implement the 
automatic patching of the above system is over 100,000. 
Although this sounds like a prohibitively large switch 
count, the actual number of discrete components, using 
LSI technology (see The Switch Matrix Section), would be 
approximately the same as the number of components 



864 National Computer Conference, 1975 

used in the 768-switch matrix currently employed in the 
AD-Four autopatch system. The existing system has 
proved to be quite reliable in operation over the past three 
years in The University of Michigan Simulation Center. 

A typical large aerospace dynamics problem, the 
simulation in six degrees-of-freedom of an aircraft, has 
been used along with other example problems to de­
termine the adequacy of the proposed switch matrix and 
compiler algorithm. For the aircraft simulation problem, 
which required 8 functions of three variables, 7 functions 
of two variables, and 4 functions of one variable along 
with 7 resolutions, the following modules were needed: 5 
amplifier modules, 3 function generator modules, 2 re­
solver modules. 

A SPEED COMPARISON WITH ALL-DIGITAL 
COMPUTATION 

In order to provide a quantitative comparison between 
the speed capability of the AHCS and conventional serial 
digital computers, the number of digital operations (addi­
tions, multiplications, divisions, equivalences, etc.) cor­
responding to the various analog module operations were 
estimated.3 In this comparison it was assumed that a 
fourth-order Runge-Kutta integration formula was used 
for the digital mechanization, so that each problem func­
tion needed to be evaluated four times per integration 
step. It was concluded on this basis that 992 digital opera­
tions per integrator step are needed to match the ca­
pability of an amplifier module, 800 per step to match the 
resolver module, and 1984 per step to match the function 
generator module. To match the performance of the am­
plifier, resolver, and function generator modules in the 
Typical Analog Equipment Complement Section would re­
quire 37728 digital operations per integration step. 

If we further assume that approximately 20 integration 
steps per cycle of the highest problem frequency are 
needed for reasonable accuracy4 and the highest 
problem frequency which the AHCS can handle with 
reasonable accuracy is 1 Khz, then 37728 (20) 
(1000)=754,560,000 digital operations per second are 
needed to match the AHCS speed capability. This is some 
three orders of magnitude faster than all but the most 
powerful existing digital machines. 

Of course, the above comparison is not quite fair since it 
assumes that all the components within each AHCS 
Module are used, which in general they are not. To get a 
more reasonable comparison, we estimated the number of 
digital operations per integrator step for the six-degree-of­
freedom aircraft simulation described at the end of the 
Typical Analog Equipment Complement Section, and 
found the number to be 5456. This compares with 12512 
operations per step based on use of all components in the 5 
amplifier, 2 resolver, and 3 function generator modules 
needed for AHCS mechanization of the same problem. 
Thus to match a 1 khz AHCS problem frequency ca­
pability in simulating six-degree-of-freedom aircraft equa-

tions would require 5456 (20) (1000) = 109, 120,000 digital 
operations per second. Again, however, this is two to three 
orders of magnitude faster than existing serial digital ma­
chines. 

OTHER SYSTEM FEATURES 

In this paper we have concentrated on a description of 
the analog subsystem modules, electronic switch matrix, 
and computing speed capability of the AHCS. These result 
in the performance capabilities which give the system two 
to three orders of magnitude potential cost advantage over 
conventional digital systems in solving dynamic problems. 
However, to realize these savings the AHCS must over­
come the other traditional. disadvantages of analog and 
hybrid computation. In this section we discuss briefly how 
this will be done. 

Operation through remote terminals 

In order to improve computer accessibility and utiliza­
tion the AHCS will be operated through remote terminals 
on a time-sliced basis. As described in the Switch Matrix 
Section, digital data transmission between the central 
AHCS computer and the terminals will in general be used, 
thus allowing terminal tie-in through standard telephone 
lines over unlimited distances. Program input and editing 
will be accomplished at the terminal as well as graphical 
display of solutions. Because of the anticipated short 
response time (one second or less in many cases), AHCS 
operation through the terminals will be extremely interac­
tive. Some terminals may have local computation ca­
pability for off-line source program preparation and edit­
ing. Hard-copy capability in various forms (CRT display 
copy, x-y plotter, multiple-channel oscillograph) will also 
be available at the terminals. 

Simulation language input 

As stated earlier in the paper, the basic source program 
language for the AHCS will be a CSSL-type simulation 
language. Not only is such a language extremely easy to 
learn, but, very importantly, it can be used as a common 
language for both the AHCS and an all-digital check solu­
tion. This has already been accomplished for hand­
patched hybrid systems.5

,6 Having a digital check solution 
not only is useful as a check on the AHCS solution but is 
also needed to provide maximum variable ranges to es­
tablish scaling information for the AHCS compiler. An al­
ternate method for automatic scaling involves an interac­
tive scheme which stops the analog solution and rescales 
the appropriate variable following a variable overrange. 

It is proposed that other input languages (block dia­
grams, transfer function, etc.) would be overlays on the 
standard CSSL AHCS language. Conventional hybrid 
computation (combined use of analog and digital systems 



A New Fourth Generation of Rybrid Computer Systems 865 

while computing a solution) would also be a compiler 
mode of operation. As indicated earlier, however, the 
ARCS is designed to maximize the all-analog mechaniza­
tion capability in order to exploit system computing speed 
to the utmost. 

Dynamic relocation of modules 

As discussed in the Speed Comparison With All-Digital 
Computation Section, it is clear that the analog subsystem 
must be large enough to handle the biggest problem re­
quired to be solved on the ARCS. Obviously, many prob­
lems will be much smaller than this. For this reason the 
ARCS should have the capability of solving more than one 
problem at a time by simultaneously allocating different 
modules to different problems. The proposed switch and 
component numbering code makes this extremely easy to 
do without any requirement for recompiling when shifting 
a given problem over to different modules. Thus the 
ARCS will not only time-share in series but also in 
parallel. 

Continuous preventative maintenance 

One of the advantages of an electronically patched 
hybrid computer is the ease with which a diagnostic 
program can be implemented to check the proper func­
tioning of all the analog components and switches, and the 
speed with which such a program can be executed. This 
has already been done successfully for the AD-Four auto­
patch system and will be an integral part of the ARCS. In 
fact, with the dynamic relocation of modules described in 
the previous paragraph it is completely feasible to run 
diagnostic checks on any modules while other modules are 
used for solving problems. On a continual basis each 
module can be taken successively out of the ARCS inven­
tory and exercised with a complete diagnostic check, say 
every several minutes. Fault readout and interpretation 
can be accomplished through a standard terminal located 
at the ARCS site and assigned to maintenance operations. 
The built-in redundancy which such a scheme implies 
should provide the ARCS with a very high overall relia­
bility. 

CONCLUSIONS 

In this paper we have described a proposed fourth genera­
tion Advanced Rybrid Computer System (ARCS) with 
electronic patching and computing speed capability two to 
three orders of magnitude faster than conventional digital 
computers in solving dynamic problems. This computa­
tional speed plus fast problem turnaround (a fraction of a 
second) makes practical a sequential sharing of the ARCS 
through remote terminals. Also, dynamic relocation of 
analog subsystem modules makes parallel sharing 
possible, as well as. continual ru.~intenance checking. A 

PROPOSED ARMY MATERIEL COMMAND 
COMPUTER NETWORK 

WRIGHT -PATTERSON 
AIR FORCE BASE 

Figure 4 

PICATINNY 
ARSENAL 

CSSL-type input language along with automatic scaling 
capability allows users with no computer programming 

I expertise to learn very quickly the use of the system. Full 
graphics capability at the terminals along with quick com­
puter access and short solution times will allow a high­
degree of man-machine interaction in problem solving. It 
is estimated that cost of such a system will be comparable 
to existing hybrid computer systems with the same 
component complement. This is because of the utilization 
of CMOS LSI circuits and other IC technology in the 
ARCS. Since the proposed system overcomes the disad­
vantages of the present hybrid computers (difficult 
programming, manual scaling, poor turnaround time, etc.) 
it is felt that the ARCS, shared through remote terminals, 
will represent a major breakthrough in cost-effectiveness 
for solving dynamic problems. -

Figure 4 shows a proposed Army Materiel Command 
computer network using both pure-digital and also hybrid 
computer systems· in the 1978-79 time frame. Such a net­
work has the following operational advantages: (1) access 
to large-scale digital and hybrid computers by users who 
do not have on-site machines; (2) access to specialized pro­
grams or technology available at particular computing 
centers; (3) load-leveling among computer centers; (4) 
decreased computing costs; (5) increased computing 
power. The network also has the following managerial ad­
vantages: (1) greater ease and precision in identifying total 
computing workload requirements; (2) larger and more 
stable base from which to make workload projections; (3) 
ability to add capability to the network as a whole rather 
than at each individual installation; (4) computer power 
can be added in increments which more closely match re­
quirement; (5) responsiveness to "political" pressure to 
utilize fully the available resources by sharing computers. 

In summary, the distribution of computing power of a 
large scientific and engineering computer network, includ­
ing both pure-digital and hybrid computers, will provide 
both parallel and serial compabilities completely program­
mable from remote terminals. This in turn provides the 



866 National Computer Conference, 1975 

user with increased computer power and speed, and at less 
cost. 

REFERENCES 

1. Howe, R. M., R. A. Moran, and T. D. Berge, "Time Sharing of 
Hybrid Computers Using Electronic Patching," 1970 Fall Joint Com­
puter Cont, AFIPS Conf. Proc., Vol. 37, AFIPS Press, Montvale, N.J. 
1970, pp. 377-386. See also Simulation, Vol. 15, pp. 105-112, Sept. 
1970. 

2. Howe, R. M. and R. B. Hollstein, "Time-Shared Hybrid Computers: 
A New Concept in Computer-Aided Design," Proc. IEEE, Vol. 50, 
No.1, pp. 71-77, Jan., 1972. 

3. A Performance Comparison of All Digital Computation and the Ad­
vanced Hybrid Computer System, Internal ~eport, Applied Dy­
namics Div., Reliance Electric Co., Ann Arbor, Michigan, May 1974. 

4. Gilbert, E. G., "Dynamic Error Analysis of Digital and Combined 

Analog-Digital Computer Systems," Simulation, Vol. 6, No.4, pp. 
241-257, April 1966. 

5. Rigas, H. B. and D. J. Coombs, "Patch: Analog Computer Patching 
from a Digital Simulation Language," IEEE Trans. Comput., Vol. C-
20, pp. 1140-1146, October 1971. 

6. Rook, R. E., "Actran: An Analogue/Hybrid Compiler," Proc. 6th 
AICA Congo (Munich, Germany, Aug. 31- Sept. 4, 1970). 

7. Advanced Hybrid Computer Systems Technology Report; Project 
Leader, Aldric Saucier, HQTS US Army Materiel Command, June 
1973. 

8. Plan for an AMC Scientific and Engineering Computer Network 
Chairman, Dr. Ronald P. Uhlig and David L. Grobstein, HQTS US 
Army Materiel Command, August 1972. 

9. Advanced Hybrid Computer Systems Final Report, Army Contract 
DAAG39-74-C-0076, by Applied Dynamics Computer Division, 
Reliance Electric Company, Ann Arbor, Michigan, May 1974. 

10. Howe, R. M., "The Next Generation of Hybrid Computer System," 
National Electronic Conference, October 1974. 

11. McKechnie, R. M., "Generalized Vehicle Dynamics Program for 
Interactive Hybrid Computer Graphics," Computer Aided Design 
for Engineering Cont, June 1973. 



Design and application of electronically 
programmable LSI arrays 

by D. HAMPEL 
RCA 
Somerville, New Jersey 

and 

R. L. BARRON and D. CLEVELAND 
Adaptronics, Inc. 
McLean, Virginia 

INTRODUCTION 

It has been shown that arrays of calculating elements, pro­
viding various functions of their input variables, can be 
used as general-purpose signal processors. 1

-
9 Such elements 

could, in general, operate on binary, analog, or numerical 
inputs. Networks or arrays composed of elements in each 
of these domains have advantages in particular applica­
tions. The numerical processing element and its use in 
p:-ogrammablearrays is the subject of this paper. 

The major potentials of such arrays lie in their ability to 
perform reliable high-speed processing, and their ability to 
be used in adaptive control systems.10

-
12 

The function repertoire of the basic element has been 
defined as a family containing both linear and nonlinear 
multinomial expressions. The particular function of the 
element at a given time, its inter-connectivity within an ar­
ray, and the coefficients or weights of its multinomial 
terms are all controllable. These features provide an array 
of such elements with a high degree of flexibility, and 
allows such an array to be alternately programmed to 
solve a large variety of problems. Also, such an array can 
be "trained" in that it can rapidly accept different sets of 
weights and connection commands until it represents a 
transformation acceptable as a solution to a given 
problem. Although limited versions of such arrays have 
been built in hardware they have been simulated, for the 
most part, in software. This has often confined the ap­
plication of such arrays to off-line processing or experi­
mental work. With the objective of efficient array realiza­
tion an analysis of programmable array hardware require­
ments has been made, tradeoffs in its implementation 
have been completed, and an optimum architecture has 
been determined. Based on state-of-the-art LSI technology, 
projections as to array performance were derived. This 
derivation led, in turn, to the definition of a custom 
CMOS/SOS LSI circuit which would serve as a key in­
gredient in the processor of the element. This circuit arid 
its use in programmable arrays will be described. Exam­
ples of array applications in aerospace are presented. 

867 

PROCESSING ELEMENT AND ARRAY 
STRUCTURE 

A basic element is depicted in Figure l(a); the figure 
shows its major control and input and output signals. Such 
elements are, in general, structured in multilayered nets, 
as shown in FiEure l(b). The interconnection control, 
which is part of each element, but which appears func­
tionally between successive layers of elements, has inputs 
which can route the output signals of anyone element to 
the desired input of an element in the next layer. Each ele­
ment and interconnect switch in the array has sufficient 
memory for storing the function type it is to compute, the 
necessary weights or coefficients of its function, and the 
interconnect data. Hence, this programmable array can be 
considered as a distributed logic-memory processor capa­
ble of rapid reconfiguration and calculation of complex 
transformations. 

Before describing the element requirements and archi­
tecture, the three possible configurations of programmable 
arrays will be explained; these configurations are shown in 
Figure 2. In Figure 2(a), a net of dimensionjXk is shown 
fully populated, with each element containing an m-bit 
store for necessary function and control. This configura­
tion can process (or transform) j /2 inputs at a time and 
can be operated in a pipeline mode so that k sets of data 
are simultaneously operated upon in different layers. 

In Figure 2(b), a single layer of elements can be 
multiplexed to simulate a whole net. The memory of each 
element must now have km bits to provide the necessary 
control as the processor of the element acts, in turn, to 
realize each of the k layers. For any single problem_ the 
speed is the same as in Figure 2(a), but pipelining cannot 
be done. In Figure 2( c) a single processing element with 
jkm bits of storage can be used to process inputs within a 
layer and then successive layers. Provisions must also be 
made for storage of intermediate results in Figures 2(b) and 
(c); approach (c) will have l/j the speed of (b). 

It is envisioned that arrays of up to 256 elements (or 
equivalent) could provide the processing capacity for a 



868 National Computer Conference, 1975 

PROGRAMMABLE-FUNCTION ARRAY STRUCTURE 

ELEMENTS 

ARRAY OR NETWORK OF ELEMENTS 

INTERCONNECTION 
CONTROL 

OUTPUT Y = f (x) 

OUTPUT 

Figure 1-Programmable-function array structure 

vast majority of applications. Hence, the design, using 
either the configuration in Figure 2(b) or (c), will have the 
capacity for memory expansion to simulate nets of up to 
256 elements. These arrays will, in general, be loaded and 
controlled by a computer, but may have input/ output 
signal interfaces as well, as shown in Figure 3. As such, the 
programmable arrays can be considered as firmware, re­
configurable upon command, for high-speed processing. 

Element definition and description 

The basic numerical processing element of the program­
mable array will have the capability to perform the follow-

ing functions: 

PI Y= Wo+ WI WI 
P2 Y= Wo+ W1X1 + W~2+ WaX1X 2 
P3y= Wo+ W1X1+ W2X 2+ WaX1X 2+ W0l+ WSX22 
P4y= WoX2-XIX/ 
P5y= Wo+ W1X1+ W2X 2+ WaXs+ W0"4+ WSX5 

Functions PI, P2, and P3 are useful for general-purpose 
linear and nonlinear hyper-surface calculations or 
transformations. P4 was provided for realizing division by 
a recursion formula. P5, a linear combination of five 
variables, is ideally suited for digital filters and linear 
transforms, such as the FFT. Each of the five functions 
could be realized by specifying only one element. For 
example, PI could be used twice to realize P2, etc. How­
ever, substantially greater speed and efficiency is 
achieved by providing a micro-programmed control to 
optimally evaluate each function. 

The element will be given the capability of operating on 
32-bit floating-point values with a 24-bit mantissa and S­
bit exponent. It will also be capable of operating on fixed­
point values of up to 24-bits with increased speed and 
lower package count. 

The basic element is shown in Figure 4; it consists of an 
arithmetic processor, an element controller and random­
access memories (RAM's). 

The arithmetic processor performs additions, subtrac­
tions, and multiplications of the input variables and 
weights to compute the various polynomials. These opera­
tions may be either fixed or floating point, depending on 
the requirements of the array to be synthesized. Use of an 
iteration scheme permits division to be simulated with 
several elements. 

The element controller consists of a read-only memory 
(ROM) containing microinstructions for implementation 
of the desired polynomial repertoire and associated logic 
to translate these microinstructions into control signals 
for the arithmetic processor and address information for 
the RAM's. The RAM's contain the polynomial function 
selection and elment interconnection information, poly-

POSSIBLE ARRAY CONFIGURATIONS 

FULL NET (MAX. THROUGHPUT) FULL LAYER (MIN. DELAY) SINGLE ELEMENT (MIN. HARDWARE) 

m BITS 

SWITCH 

Figure 2-Possible array configurations 



Design and Application of Electronically Programmable LSI Arrays 869 

nomial weights, and input/ output variable storage for the 
element. Element interconnection is accomplished by 
specifying the RAM address of each required input 
variable. Output variables are stored in sequential RAM 
locations. If more than one element is used to simulate an 
array, the input variables might be stored in the RAM's 
associated with another element. In this case, one or more 
inter-element buses are provided to exchange data 
between elements. Since any element can access any pre­
viously generated output in this manner, complete inter­
connection flexibility is accomplished. An intra-element 
bus provides flexible data routing within the element. In 
operation, a computer "programs" each element by load­
ing the proper polynominal select codes, input addresses, 
and polynomial weights into the RAM's via the intra-ele­
ment bus. The computer then loads initial input variables 
into the variable memory via the intra-element bus, and 
provides an "execute" signal to the element controller. 

Each element controller will sequentially step through 
the previously trained portions of its associated memory, 
performing the desired element operations and storing the 
results in the variable memory. This execute phase is com­
plete when the elements detect a polynomial select code 
equivalent to a halt instruction. At this point the element 
controllers will output a "ready" signal to the computer. 
Upon receipt of the ready signal, the computer retrieves the 
output data by providing output addresses directly to the 
element controllers and receiving the output data via the 
intra-element buses. 

Design approaches 

Given the preceding operational constraints, what is the 
best technology and architecture to provide a good balance 
between speed and complexity or cost? The major 
hardware consideration impacting these criteria is the 
multiplier implementation. Two major organization types 
of elements were investigated, one using a high-speed 
parallel multiplier (with and without pipelining) and the 
other a high-speed serial/parallel multiplier. Estimates as 
to total chip count and speed were made for each ap­
proach and for variations within each approach. Available 

PROGRAMMABLE-ARRAY ENVIRONMENT 

CONSTANTS INTERCONNECTION 
I I 

INPUTS { OUTPUT 

Figure 3-Programmable array environment 

BASIC ELEMENT 

INTRA-ELEMENT BUS 

RAM's 

Figure 4-Basic element 

LSI and MSI IC's are considered along with key LSI mul­
tiplier chips which would have to be developed for the 
overall element realization. 

The necessary IC's to make the desired programmable 
arrays a viable processing scheme can be realized in a va­
riety of emerging technologies. Very-high-speed LSI multi­
pliers have been developed or are in development in both 
bipolar and CMOS/SOS form. 13

,14 The choice of IC 
technology for each section of the element is dictated by 
availability and performance of existing circuits (particu­
larly RAM's), as well as the best realization of any re­
quired new LSI development. These factors led to the 
definition of a CMOS/SOS serial/parallel multiplier chip 
compatible in speed and logic with associated control and 
memory. The serial nature of the design capitalizes on the 
"on-chip advantages" of SOS, and the high packing 
density of CMOS/SOS (compared to bipolar implementa­
tions) results in significant package-count saving. The 
parallel multiplier approach was based on an expandable 
8X8 CMOS/SOS array. Alternate parallel-multiplier ap­
proaches were considered too expensive or not a good 
match with the rest of the element. Although there are 
faster multipliers, utilization of their speed to achieve 
substantially higher element throughput would require 
more elaborate control logic and RAM's. For highest 
speed, a 24X24 bit parallel array multiplier, capable of 
pipeline (alternately referred to as reclocked or staged) 
operation can be used. The developmental 8 X 8 
CMOS/SOS multiplier with a 100 nanosecond response 
time can optimally form the building block of such a mul­
tiplier as well as alternate approaches.13

,14 

A 2-stage pipelined multiplier appears optimum for that 
unit, with intermediate storage provided by available 
CMOS registers. The effective utilization of such a multi­
plier depends on a considerable number of gates for bus 
switching for its access from the RAM's and for scaling for 
floating-point justification. The serial/parallel multiplier 
approach, basically a 1 X 24 accumulator allows for the 
realization of elements over a relatively large range of 
performance factors by means of multiplier duplication. 



870 National Computer Conference, 1975 

LSI SERIAL - MULTIPLIER CELL 

2 

ADDEND >-t---+t--::"LJ--+--r 

SIGN HOLD 

NEGATE 
PRODUCT 

MULTIPLICAND >-+----..... 

A B 
MULTIPLIER 

7 

C 

15 22 23 

16-PIN 
PACKAGE 

REGISTER 
CLOCK 

VDD 

VSS 

PRODUCT 
CLOCK 

RESET 

Figure 5-LSI serial-multiplier cell 

On the other hand, the parallel-array multiplier locks the 
design into relatively high speed and cost. 

This serial/ parallel multiplier approach will be 
described, and performance factors will be summarized 
and compared to the parallel multiplier. 

LSI serial multiplier cell 

The LSI serial multiplier cell that has been developed is 
shown in Figure 5. The cell shown calculates terms of the 
form ax+b, where a is the multiplicand, x is the multi­
plier, and b is the addend. The cell shown can handle ad­
dends and multiplicands in two's-complemented form of 
any desired length, and a multiplier in sign-magnitude 
form containing a sign bit and up to 23 significant bits. 
Cells may be cascaded to form higher-order terms or to 
handle larger multipliers. 

Multiplication is accomplished in the 23 adder/latch 
stages by successively adding the contents of the multipli­
cand. The outputs of stages 7, 15, and 23 are brought out 
so that the cell may be efficiently used with 8-, 16-, or 24-bit 
multipliers (the first bit is the sign). The output of stage 1 is 
used to gain immediate access to the product sign bit to 
facilitate complementing operations on the product. 

The multiplier register is divided into three serial-

in/ parallel-out registers to provide a good compromise 
between multiplier input leads and the time required to 
load the registers. 

The developmental cell contains the equivalent of 450 2-
input logic gates, and has been fabricated on a chip ap­
proximately 170 mils square by means of a double­
epitaxial silicon-on-sapphire CMOS process. The 
maximum clock rate is about 20 MHz. The cell utilizes 
single-phase clocks, a single power supply, is static in 
operation, and may be mounted in a 16-pin package. 

Fixed point element 

Figure 6 shows ten multiplier cells arranged as a 
processor to implement the general second-order 
multinomial (P3). Cell 1 functions as a 23-stage delay 
register, cells 2 through 6 function as multipliers, cells 7 
through 9 function as adder/multipliers, and cell 10 func­
tions as an adder/register. All six terms of the multi­
nomial are generated in parallel, and delays are matched 
so that a single clock is used for the entire processor. The 
ones complementer is used to convert the processor output 
to sign-magnitude form before storage in the X-Y variable 
RAM. Only the 23 most significant bits of the output are 
stored. (Truncation of the least significant bits and use of 



Design and Application of Electronically Programmable LSI Arrays 871 

a ones complementer for the conversion to sign-magnitude 
form will result in plus or minus one LSB error in the 
stored output.) 

To implement general-purpose arrays, gating must be 
added to route data from element to element. The element 
control logic can then control the intercell data flow to 
form any given polynomial in the repertoire. 

Floating-point element 

A floating-point arithmetic element can also be imple­
mented. Floating-point arithmetic requires handling of an 
exponent, scaling of mantissas so that bits of equal signifi­
cance are added together, and left-justification of the 
output mantissa (with corresponding correction of the 
output exponent) to retain the desired floating-point 
format. 

TRAINING AND ADAPTATION OF 
MULTINOMIAL NETWORKS 

We now consider the methods for training and adapta­
tion of multinomial networks that are constructed from 
the elements described above.12

,15 This is done with special 
search algorithms, generally off-line, to specify network 
configurations. Applications of multinomial networks 
generally involve operations with sensor data that are ob­
tained as a result of "observing" a physical object, 
process, or phenomenon. The classical approach to design 
of computer models for inferences and predictions from 
observations has been to determine all the relevant charac­
teristics, deterministic and/ or statistical, of the process be­
ing observed, and to use these measurements (and 
assumptions) in design calculations. Very often the struc­
ture of the model is presumed and the design takes the 
form of calculating the values of certain parameters. Even 
if the nature of the observed process changes, the structure 
of the model often does not change, but the parameter 

SERIAL FIXED - POINT PROCESSOR 

Wo 

"0 ... 0" (
W'S-2'S CaMP ) 
XI,X2-SIGN MAG 

WI 

"0100 ... 0" 
W2 

W3 

W4 

W5 

X2 

Figure 6-Serial fixed-point processor 

values are adjusted in response to measured changes in 
the inputs or in the outputs. 

In many important applications, the inputs (i.e., the 
observables) are difficult to describe analytically. The 
best or even a good structure for the model cannot be de­
termined a priori. In this case, it is desirable to have a 
model structure that can adjust to representative inputs. 
That is, the model is trainable both in its structure and in 
its parameter values. 

It is therefore desired to implement a general (usually 
nonlinear) function of certain input variables which we 
can call observables. Since little may be known about the 
characteristics of the observables, the parameters of the 
network are not known a priori. The network will have to 
be trained with representative inputs. The questions are 
now: 

1. How should the element parameters be adjusted? 
2. How should the elements be interconnected and what 

should their complexity (i.e., number) be? 

To make the ideas clear, suppose that the input consists of 
N observables, Xl> X2 , ••• ,XN' Also suppose that the output 
is a scalar whose value may be considered as the estimate 
of some property of the input process. In general, y will be 
some nonlinear function of the x/s as follows: 

y=f (Xl> X2, ••• ,XN) 

Polynomial (multinomial) approximation 

Under fairly general conditions, a function of N 
variables may be expressed in an N-dimensional Ma­
claurin series as follows: 

y = ao + L aiXi + L L aij XiXj 
i=l i=l j",l 

+ L L L aijk XiXjXk + . .. (2) 
i=l j=l k=l 

In the most general case, the coefficients, ao, ai' ••• , are 
functions of time, but for many cases of interest, the un­
derlying characteristics of the x's do not depend on time 
and consequently the coefficients are constants. 

Two questions which arise in the use of Equations (1) 
and (2) are: 

1. What should the observables or measurements Xi be? 
2. How many terms in Equation (2) will provide an ac­

ceptable approximation to the desired function, even 
though this (true) function is not known? 

The answer to the first question is: All those that are 
thought to have a bearing on the desired output are used 
initially, and the ones which trial shows to be of little use 
are discarded. The second question is answered adaptively 
by using a trainable nonlinear network whose complexity 
determines the number of terms in Equation (2). The 
trainable network consists of interconnected elements, 
each of which implements a simple nonlinear function of 



872 National Computer Conference, 1975 

v 

Figure 7-Two-Iayered network of elements 

two inputs. The total network can be trained to provide an 
acceptable approximation to Equation (2). 

A basic element of the learning network is the two-input, 
single-output device, illustrated in Figure 1 (and pre­
viously described) which implements the following func­
tion (P3) of its input Xl> X2: 

Y= WO+W1X1 +W~2+W3X1X2+W4X/+W5X22 (3) 

Networks of the basic element 

Suppose now we consider two layers of such elements as 
illustrated in Figure 7. It can be seen that each Zi contains 
pair-wise products up to degree four. Note that the first 
layer contains all possible pairs of three inputs Xl> X2, Xs. 

To implement a general multinomial (i.e., a polynomial in 
many variables) expression, the number of elements in 
each layer would have to grow as one proceeds deeper into 
the network. However, it is found empirically that ac­
ceptable approximations are obtained without this growth; 
in fact, the number of elements in successive layers will 
soon (after, say, two or three layers) decrease, until only a 
few are left as inputs to the final network component 
(which is an adder). 

The known data set 

N ow we turn to the matter of determining the coeffi­
cients of each network element and the number and inter­
connections of the elements. 

These tasks are accomplished with a "known" data 
base; that is, a data base for which the values of the de­
pendent variable are kn(')wn. The steps involved are: 

1. Optimizing the coefficients in each element of the 
first layer; 

2. Selection of those elements whose output is ac­
ceptable (rejection of poor performers); 

3. Repetition of the process for each layer; and 
4. A global optimization (adaptation) of all coefficients 

in all layers based upon the final output. 

The known data base is divided into three independent 

but statistically similar subsets: 

1. Fitting subset 
2. Selection subset 
3. Evaluation subset 

The fitting subset is used to determine the coefficients of 
the elements. The selection subset is used to reject the 
poor performers. The fitting and selection subsets are also 
used for the global optimization. The evaluation subset is 
used to estimate the overall performance. Since the 
evaluation subset was not used for network synthesis, the 
performance on this subset is an accurate estimate of the 
ability of the network to generalize to new, previously 
unseen data. 

Training the network 

The element coefficient determinations are based, in 
part, upon a least-square fit to a desired output. Other cri­
teria are of course possible and are often used. Employing 
a least-squares criterion, the elements are first adjusted by 
a matrix algebraic procedure and then by a recursive 
search (i.e., optimization) procedure. An outline of the 
steps follows. 

The fitting and selection subsets are used alternately in 
training each layer. The fitting subset is used first to es­
tablish the coefficients. The specific observables to be 
used initially have already been chosen. Let these be 
designated by Xh X2, XS, .•. , XN' These are arranged in 
pairs, Xb Xj; i, j=1, ... , N. There are N(N-1)/2 such 
pairs. Thus, the first trial will require N(N-1)/2 trainable 
elements (such as that shown in Figure 1). A pair of obser­
vables is sent to each element. The coefficients of the ele­
ment are determined using a recursive search procedure 
with a least-squares criterion. The procedure is repeated 
for each of the N(N-1) /2 elements. 

Not all of the pairwise combinations are of significant 
aid in extracting the desired information. The selection 
process, is inserted into the first layer, resulting in 
R(R-1)/2 pairs of inputs into the R(R-1)/2 initial elements 
of the second layer. The coefficients of each element in the 
second layer are determined as in the first layer. Then the 
selection subset is applied to the second layer. This will 
eliminate the unacceptable pairs from the second layer 
inputs. 

The process is repeated with succeeding layers until the 
error rate on the selection subset is minimized. Although 
further reductions in the error rate on the fitting subset 
are realizable by incorporating more layers, to do so would 
produce over-fitting of the fitting data. Eventually, a single 
output results from each of several disjoint subnetworks. 
These outputs are added to produce a single output. 

An example of the result of the training process up to 
this point is shown in Figure 8. In this hypothetical 
example, it is implied that at least 30 candidate 
parameters were initially inserted into the first layer. Only 
a few survived, as indicated. The figure shows that pair 



Design and Application of Electronically Programmable LSI Arrays 873 

(Xl" X28) interacts with pair (x4, xao). But pairs (xs, xs) and 
(X 18, X29) do not interact with each other or with the other 
pairs. Thus, there are three disjoint subnetworks whose 
outputs are added to produce a single output. 

There is a final step in the training process. This is a 
process of vernier adjustment, or "fine tuning" of the coef­
ficients. If the need for this vernier adjustment arises, it is 
because the coefficients of each element have been 
adjusted in the absence of interactions with other elements 
following them in the network. The optimum coefficient 
values may be different when these interactions occur. 
The fitting and selection subsets are also used for this final 
adjustment process. The vernier adjustment is' a global 
search and may use a random search technique to obtain 
the final values of the coefficients. The same global search 
adjustment may be used for subsequent adaptation of the 
network. 

After the final adjustment of coefficients, the evaluation 
subset is used to estimate the performance of the entire 
network. 

A voidance of overfitting is a key aspect of the training of 
learning networks. Good functional approximations to the 
fitting data subsets are obtained that are also good a~ 
proximations to the data in the separate selection subsets. 
This means that the networks are taught to generalize 
properly on their experience in fitting the points in the 
first subsets and that error rates in later uses will therefore 
be small. Without avoidance of overfitting, the networks 
would give deceptively small errors in approximating their 
first sets of data and then, in most cases, do poorly on sub­
sequent new data. We have all seen or heard of empirical 
models that appeared to have much promise initially, but 
that produced unacceptable errors when presented with 
new data; in most cases, such behavior is the result of 
overfitting. By using three independent subsets of the 
available data, taking care that each is statistically 
representative of the whole data base, the problem of 
overfitting is virtually eliminated and good advance esti­
mates of operational error levels of the models are ob­
tained. 

A corollary to the guarantee that models realized by 

Figure 8-Illustrative learning network 

learning networks are not overfitted is the fact that these 
models are smoothly-fitted functional approximations. 
From the mathematical standpoint, they are continuous 
and differentiable functions, and the derivatives of these 
functions are close approximations to the quantitative de­
rivative behavior of the real processes that are modeled. 
For this reason, one may compute numerical partial deriv­
atives of the form ay/aXi. These derivatives reveal the 
quantitative sensitivity of the modeled variable (y)-and 
thus of the process that has been modeled-to small 
variations about specified values of the network input 
variables. Once a process is modeled, or a curve fit, by 
computer algorithm, the hardware elements (array) 
described previously can be programmed for high-speed 
real-time evaluation of new data. 

AEROSPACE APPLICATIONS 

Aerospace applications of the array/network concepts 
presented above include: 

1. nondestructive inspection of structural parts 
2. trajectory predictions 
3. target signature classifications 
4. radar refractive index corrections 
5. detection of remote nuclear events 
6. voice data processing 
7. reconnaissance image processing 
8. electronic warfare 
9. avionics information systems 

The status of work in several of these areas will now be 
summarized briefly. 

Nondestructive inspection 

One of the most representative applications to aerospace 
systems of the array / networ k concepts presented in this 
paper is that of nondestructive inspection of critical 
structural parts of aircrafts or missiles. The classical 
problem in inspection by such means as ultrasonic testing 
is that small defects such as fatigue-induced microcracks 
may be masked by reflecting surfaces such as fasteners 
and component surfaces. Although much theoretical work 
has been done to attempt to characterize the pulse ~choes 
obtained from microcracks and other defects, no all em­
bracing theoretical formulation exists at this time. The 
adaptive training of a multinomial network offers an at­
tractive approach to the processing of pulse echoes in the 
complex signal environment typical of ultrasonic inspec­
tion applications. Data may first be gathered on test 
specimens having known properties and used to train the 
network in accordance with the procedures outlined above. 
Such work is progressing at the present time. It has al­
ready been demonstrated that the adaptive learning net­
work can be trained to classify correctly flat-bottom hole 
defects in 7075-T6 Aluminum test blocks, using 
transducers of various diameters and differing band-pass 



874 National Computer Conference, 1975 

characteristics, centered in the neighborhood of five mega­
hertz. As reported in Reference 16, in a total sample of 48 
flat-bottom hole defects, 46 were correctly classified by 
this technique. An important aspect of the use of the 
multinomial network method is that it is not necessary to 
specify a priori the classifier input parameters that are 
most informative for a given application. In the case of the 
ultrasonic nondestructive inspection application, 96 candi­
date waveform parameters were considered during net­
work training. Fifteen of these parameters were found to 
be relevant to the flat-bottom hole classification. These 
parameters are those that describe the overall shape and 
content (area) of certain parts of two waveforms computed 
from the pulse echo waveforms-the Power Spectrum and 
its log Fourier transform, the Cepstrum. Interestingly, 
maximum amplitude of the time waveform was not found 
to be a discriminating parameter when the transducer 
and/ or transmission medium were subject to variation. 
The resultant network structure found for flat-bottom hole 
defect classification consists of 13 elements containing a 
total of 78 coefficients, and implementing an eighth degree 
function of the 15 input variables. 

If application to the fatigue crack specimens is also suc­
cessful, the adaptive learning network will provide an in­
spection tool of great value to the maintenance of aircraft 
and missiles in the operational inventory. The work to 
date has already demonstrated that the new procedures 
allow one to synthesize signal processors that deal with 
waveforms from the real environment and that learn which 
parameters of these waveforms are the most relevant, while 
combining these parameters into an adaptively 
trained signal classifier. Other applications have been 
suggested for the methodology in the related areas of 
acoustic emission testing, computer-aided manufacturing, 
optimization of metal removing processes, control of forg­
ing and casting, inference of material physical properties 
from microstructure data, and forecasting of maintenance 
necessitated by stress corrosion deterioration of flight ve­
hicle structures. In each instance, the key point is that net­
works can learn to infer or predict from the natural data 
that are produced by the processes. These "natural" data 
may be records of process sounds, vibrations, deterioration 
due to corrosion, etc.-anything readily accessible for eco­
nomical instrumentation or recordkeeping. 

Trajectory predictions 

Successful R&D has been conducted for more than a 
decade for application of multinomial networks to the pre­
diction of aerospace vehicle trajectories. In summary, 
these investigations have established that the network 
methods are capable of inferring vehicle parameters, such 
as ballistic coefficients, quite accurately. Additionally, the 
networks make extremely fast, accurate predictions of ob­
ject trajectories. These predictions are comparable in ac­
curacies to the conventional procedures whereby equations 
of motion are integrated in serial computers, but are very 

much faster because of the computing speed of the parallel 
network structure. 

Target signature classifications 

Attention is being increasingly directed toward the auto­
matic classification of target signatures from single or 
multiple sensors. An example of this work is that of classi­
fying the sources of ground vibrations and/ or acoustic 
emissions monitored by sensors in air drop ordnance. 
Very promising results are being obtained in such work. 

Radar refractive index corrections 

Reference 17 presents a new approach to the problem of 
computing height correction for aircraft or other objects 
tracked by surface radars. The basic procedure, when us­
ing the multinomial network, is to operate a cooperative 
aircraft that is equipped with an accurate radar altimeter 
in those regions of airspace for which the true altitudes of 
unknown targets are to be obtained. The cooperative 
target is tracked and an adaptive learning network is used 
to model the relationship between observed range, eleva­
tion angle and azimuth angle, and the independently 
measured height of the cooperative target. It is then 
possible to interrogate the network very quickly whenever 
the true height of an unknown target is to be computed. 
The inputs to the network become the apparent range ele­
vation and azimuth of the unknown target, and the net­
work output is the estimated true height of that target. 
The structure and coefficients of the network are adjusted 
adaptively as atmospheric conditions change. The 
reference presents a comparison between the accuracy of 
this approach and that of the conventional procedure. The 
height error, using the new approach, is approximately YJ 
of the error obtained with the prior state-of-the-art 
method. 

Detection of remote nuclear events 

Reference 18. presents results of work performed to assess 
the accuracy of an adaptive learning network classifier for 
discrimination between remote underground nuclear 
events and deep-core earthquakes (which masquerade as 
nuclear events in many cases). The results show that 
nearly perf~ct discrimination between the two classes of 
remote events is obtained. 

Voice data processing 

The application of adaptive learning networks to the 
identification of spoken languages is discussed in 
Reference 19, which presents the results of an investiga­
tion into multinominal networks used to generate 
nonlinear features of 29 phoneme and phoneme-like 
parameters obtained from speech waveforms. The net-



Design and Application of Electronically Programmable LSI Arrays 875 

works are trained to discriminate between each pair of 
languages in the set of languages to be identified. The 
outputs of the networks are then input to a decision logic 
to identify which language is being spoken. In the case of 
five languages to be discriminated, this means that a 
group of nonlinear transformations is produced by 10 indi­
vidual networks, each of which maps the 29-dimensional 
input space onto a component of a 10-dimensional output 
space. The structure of a typical trained network is shown 
in Figure 9. The results of the cited investigation show that 
significant improvement is obtained in the accuracy of 
language identification and in insensitivity to idiosyn­
cracies of individual speakers. 

SUMMARY AND CONCLUSIONS 

Elements for use in programmable arrays have been de­
fined, and design approaches and performance indicated 
for alternate organizations. By giving an element the ca­
pability of evaluating one of five multinomial expressions 
with pre-set coefficients, upon command, and by providing 
means for interconnecting arrays of elements in various 
configurations, a number of signal processing functions 
can be realized. These include: 

Classification, Prediction and Control 
Hypersurface Computation 
Digital Filtering (Recursive, Transversal) 
Transformations 

The arrays can, in fact, be alternately and rapidly recon­
figured to do any of the above types of tasks. In that the 
transformation coefficients and multinomial degree and 
form can be readily controlled, an array can be trained to 
suit a particular situation. 

Two types of design approaches were studied for realiz­
ing the hardware of a programmable element, one based 
on a parallel-pipeline multiplier and the other on a serial-

Figure 9-Multinominal network classifier that discriminates between 
two languages. The x's and z's are phoneme and phoneme-like parameters 

from the special waveforms 

type multiplier. In each case the multipliers would be 
realized by appropriate custom LSI, CMOS/SOS multi­
pliers. 

Considering that some or all of the speed differences 
between the two approaches can be compensated for, when 

. required, by using a greater degree of parallelism in a net 
organization (Figure 2), the serial-multiplier approach was 
recommended for development. With a full 32-bit floating 
point (24-bit mantissa, 8-bit exponent) capability total of 
10 of the custom LSI CMOS/SOS serial-type multiplier 
packages supported by 15 packages accommodating 
custom LSI control chips, a full six-term multinomial of 2-

-inputs can be evaluated in 5.2 microseconds. For 16-bit 
fixed point capability the control chips reduce to two, and 
the computation period reduces to 2.9 microseconds. The 
random-access memory to support each element will 
depend on its degree of multiplexing. For a fully populated 
array, up to 3 RAM packages would be required per ele­
ment. 

The advantages of such arrays include: 

1. High-speed capability for general-purpose digital 
processing. The speed can be tailored by providing 
varying degrees of parallelism of the element in an 
array. 

2. Capability for relieving software problems. The array 
can be considered as firmware once a· set of coeffi­
cient and interconnect vectors have been found, or 
are known, for a particular application. 

3. Capability for providing fault-tolerant computing. In 
general, alternate coefficient and interconnect vectors 
exist to realize the same transformation. Hence, if an 
element in a fully populated array is faulty, 
reprogramming of the array is possible by by-passing 
any faulty element(s). The degree to which this by­
passing is done will, of course, depend upon the 
number of elements available and the complexity of 
the transformation. 

ACKNOWLEDGMENTS 

The guidance provided for this program by Mr. C. W. 
Gwinn of the U.S. Air Force Avionics Lab. is appreciated. 
Portions of this work have been performed for the Air 
Force Systems Command, United States Air Force, under 
Contract F33615-73-C-1089 to RCA with Adaptronics, Inc. 
subcontractor. The other portions of this work have been 
performed by Adaptronics, Inc. under the sponsorship of 
Armco Steel Corporation, RCA, the U.S. Air Force, and 
other organizations. Assistance of H. Urkowitz and D. A. 
Miller of RCA and A. N. Mucciardi of Adaptronics, Inc. 
in aspects of this work is acknowledged. 

REFERENCES 

1. Gilstrap, L. 0., Jr., H. J. Cook and C. W. Amstrong, Study of Large 
Neuromime Networks, Adaptronics, Inc. Fin. Rept. Contract 



876 National Computer Conference, 1975 

AF33(615)-5125, AF Avionics Lab., AFSC, AFAL-TR-67-316, 
AD#824 470, Dec. 1967. 

2. Gilstrap, L. 0., "Keys to Developing Machines with High-Level Arti­
ficial Intelligence," presented to ASME Design Conference, New 
York, April 22, 1971, (ASME paper #71-DE-21). 

3. Cleveland, D., "Hardware Realization of Trainable Multivariable 
Nonlinear Transformations," presented to Computer Designers 
Conference, Anaheim, Calif. January 19-21, 1971. 

4. Mucciardi, A. N., "Neuromime Nets as the Basis for the Predictive 
Component of Robot Brains," presented to ASC Fourth Annual 
International Symposium, Washington, D.C., October 8-9, 1970; 
Cybernetics and the Management of Ecological Systems, Robinson 
(Ed.), Spartan Books. 

5. Ivakhnenko, A. G. et aI., "Group Handling of Data in Identification 
of the Static Characteristics of a Multi-Extremal Plant," Soviet Au­
tomatic Control, 14,2,1969, pp. 30-37. 

6. Ivakhnenko, A. G. and Y. V. Koppa, "Stochastic Algorithms and the 
Group Method of Data Handling in Prediction of Random Events," 
Soviet Automatic Control, 14, 3, 1969, pp. 20-32. 

7. Ivakhnenko, A. G. and Y. V. Koppa, "Algorithm of the Group 
Method of Data Handling Using Linear Operators," Soviet Auto­
matic Control, 14, 4, 1969, pp. 50-58. 

8. Ivakhnenko, A. G., "Polynomial Theory of Complex Systems," 
SMC-1, 4, October 1971, pp. 364-378. IEEE Trans. on Systems, Man 
and Cybernetics. 

9. Hampel, D., R. W. Blasco and D. Cleveland, "Electronically 
Programmable LSI Arrays," NAECON '74 Record, pp. 134-141. 

10. Gilstrap, L. 0., Jr., "An Adaptive Research to Smoothing Filtering 
and Prediction," Proc. of 1969 NAECON, pp. 275-280. 

11. Barron, R. L. and C. W. Gwinn, "Applications of Self-Organizing and 
Learning Control to Aeronautical and Industrial Systems," 
presented to ASME Design Engineering Conference, New York, 
April 19-22, 1971. (ASME paper #71-DE-22). 

12. Barron, R. L., "Theory and Application of Cybernetic System: An 
Overview," NAECON '74 Record, pp. 107-118. 

13. Hampel, D., L. Micheel, K. Prost, "Threshold Logic Multiplier," 
NAECON 1973 Record, pp. 288-295. 

14. McIver, G. W., R. W. Miller, T. G. O'Shaughnessy, "A Monolithic 
16X16 Digital Multiplier," ISSCC Digest, Feb. 1974, pp. 54, 55. 

15. Barron, R. L., "Applications of Learning Networks in Computer 
Aided Prediction and Control," SME CAD/CAM Conference, Feb­
ruary 12, 1975. 

16. Mucciardi, A. N., R. Shankar, J. Cleveland, W. Lawrie and H. L. 
Reeves, Adaptive Nonlinear Signal Processing for Characterization 
of Ultrasonic NDE Waveforms, Interim Report, Task 1, Inference of 
Flat-Bottom Hole Size, Adaptronics, Inc. January, 1975. 

17. Barron, R. L., F. W. van Straten, and R. F. Synder, "Inference of 
Refractivity Structure and Generation of Ray Traces by Analytical 
and Adaptive Methods," 1975 NAECON, To be Presented. 

18. Mucciardi, A. N., Demonstration of Capability of Adaptive Learning 
Networks to Discriminate Automatically Between Earthquakes and 
Nuclear Explosions Based on Seismic Parameters, Adaptronics, Inc., 
ATN-76, April 23,1973. 

19. Mucciardi, A. N., E. C. Orr and R. Shankar, Discrimination between 
Five Spoken Languages by Trainable HypercompTM Network 
Classifier, Adaptronics, Inc. Final Report for RCA Corp., April 22, 
1974. 



Software reliability-A method that works 

by R. H. THAYER 
Space and Missile Test Center 
Vandenberg AFB, California 

and 

E. S. HINTON 
Logicon, Inc. 
San Pedro, California 

INTRODUCTION 

Software reliability is receiving increased attention from a 
broad spectrum of computer users as larger computer pro­
grams continue to be implemented in diverse and 
widespread areas. The reason is fundamental: software re­
liability has been poor on many large systems and poor on 
systems which have a high degree of human interaction. 

The Department of Defense has had several systems 
with significant software problems. Current Air Force 
systems have suffered development and maintenance diffi­
culties that were directly attributable to poor software re­
liability. The Strategic Air Command's command and con­
trol system (465L)1 and the F-111 Mark II avionics 
system2 are both examples of such systems. Many missile 
systems had software error problems that, at one time, 
gave program managers cause for concern. It is not 
surprising, therefore, that many attempts have been made 
by the Air force to improve the software reliability picture, 
especially in the space and avionics system areas. Several 
management and technical approaches, including those 
that have worked well for hardware, are being used and 
developed with varying degrees of success.3 

One of the most successful approaches to improving 
software reliability that the Air Force has used to date, 
particularly on highly critical real-time software, is the 
utilization of an independent software test agency, to 
perform analysis, testing, and overall evaluation on the 
system.4 ,5 

In fact, the improvement in reliability as a result of in­
dependent analysis and testing of software has prompted 
the Air Force to include the following policy statement in 
its new regulation, AFR 800-14, dated 10 May 1974: 

"Program Management Directives require, and 
Program Management Plans provide for: Establish­
ment of computer technical and managerial expertise 
responsive to the Program Office which is inde­
pendent of the system prime or computer program 
development contractor and, preferably, an organic 
capability of the Program Office. " 
Independence is the key ingredient in this analysis and 

877 

testing function, and in the context of the discussion, im­
plies that the function is accomplished by an agency 
whose sole purpose is the detection of errors in the 
developed software, i.e., the agency has no development 
responsibility. 

BACKGROUND 

The beginning 

The independent analysis and testing concept has been 
evolutionary in development, and it will continue to evolve 
as new and varied analysis and test techniques and tools 
are designed. Initial conception of the "independent" ap­
proach is believed to have been the result of critical 
software failures on early missile and space launches. The 
first application of the approach is believed to have been 
on the software associated with the Titan II and III during 
the 1962-1964 time period. 

In the critical area of missile flight safety, instances 
have been reported where range safety system software 
has failed causing costly delays of launch operations. 
Furthermore, software problems have been detected which 
could have produced a situation where a good launch 
would appear bad to the missile flight control officer. Such 
situations would require the destruction of an expensive 
vehicle and payload.6 

The costs associated with such failures prompted the 
use of, what in 1971 were then considered to be, drastic ac­
tions. The Air Force, considering the expense of failed 
launch missions, proceeded to hire an independent 
contractor to analyze the software in a "validation" 
process, prior to releasing the software for operational use. 
It was felt that an outside or fresh look at the software 
should reveal faults, whereas the development contractors 
and programmers were "too close to the problem" to come 
up with an objective analysis. This approach proved to be 
highly successful and this method of software validation 
has been used at Vandenberg AFB from 1971 until the 
present. 



878 National Computer Conference, 1975 

INDEPENDENT ANALYSIS AND TESTING 

Figure I-Software development process with independent analysis and 
testing 

Present usage 

The confidence gained from successful missile launches 
and other developments that utilized the dual contractor 
approach prompted continuing it as a standard procedure 
on critical, high-risk software packages. Examples of DoD 
systems which use and have used an independent agency 
for software testing and analysis are Safeguard, Minute­
man II and III, Titan, and B-l. 

In general, most of the independent analyses and testing 
performed to date have been done on real-time control pro­
grams. There are however, extremely critical programs, 
such as the real-time software that controls nuclear weapon 
systems, which have become prime candidates for testing 
and evaluation by an independent agency. This procedure 
is now standard Air Force practice on such systems and is 
prescribed in Air Force Regulation 122-9, dated 19 July 
1974. The fact is, that on the most critical software with 
which the nation is involved, that which controls nuclear 
weapon systems, analysis and evaluation by an agency in­
dependent from the software developer is mandatory. This 
strongly implies that it is one of the most effective known 
ways to achieve software reliability. 

DESCRIPTION OF THE INDEPENDENT 
TESTING AND ANALYSIS METHODS 

A software development life cycle is illustrated in the 
block diagram of Figure 1 and can be considered a chain 
of events beginning with a customers requirements and 
ending with the operation and maintenance of the software 
through the programs useful life. Independent Testing and 
Analysis, (IT&A), is a nonspecific set of analyses, studies, 
tests, and evaluations that is conducted by an independent 
agency on a computer program that are intended to verify 
compliance with requirements and 'show correctness of 

programming. IT &A does not absolutely guarantee verifi­
cation or correctness of software, but it improves confi­
dence that the program can be depended upon to perform 
reliably in an operational environment.4

,5 As illustrated in 
Figure 1, independent analysis and testing is most effec­
tive when applied across all phases of this development. 
From the developer's point of view, software development 
is a serial process with frequent iterative loops between ad­
jacent phases. The independent tester, on the other hand, 
is not in the direct chain of development, and he analyzes 
the output of each phase as to its ability to satisfy input 
requirements, e.g., specification to design, or design to cod­
ing. He performs this function for all phases as soon as the 
output becomes available, again with the sole purpose of 
detecting errors. 

INDEPENDENT TEST AND ANALYSIS WORKS 

Some proof 

Independent Test and Analysis can find errors that are 
not found through ordinary software testing. 

A software reliability study7 recently completed for the 
Advanced Ballistic Missile Defense Agency has pointed 
out the importance of early error detection. In the study 
report, software errors found through independent 
analysis on eleven separate projects were categorized as 
being catastrophic, serious, moderate or trivial. These 
categories were defined essentially as follows: catastrophic 
errors which would terminate the program execution; 
serious errors which could severely degrade the program 
performance but would not be fatal; moderate errors 
which would not have major impact on program perform­
ance; and trivial errors which would have no effect on 
program performance, e.g., flow chart did not match code, 
though code was correct. A summary of the errors dis­
covered, by severity, is shown in Table 1. 

Significantly, many errors which might initially have 
been considered trivial, if not discovered early in program 
development, would have created error conditions of much 
greater severity. Independent analysis discovered errors in 
released specifications that, at that time, were considered 
trivial because of the relative ease of correction, hence the 
553 trivial errors in the top row of Table 1. The effect of 
implementing those "trivial" errors into program design 
and code would have been to increase catastrophic, serious 
and moderate errors to the numbers shown in the bottom 

TABLE I-Effect of Implementation of Specification Errors on Eleven Software Projects 

ERROR SEVERITY 

CATASTROPHIC SERIOUS MODERATE TRIVIAL TOTAL ERRORS 

ERRORS DISCOVERED 21 149 479 553 1202 
EARLY IN SPECIFICATION 

ERRORS ANTICIPATED 36 200 558 408 1202 
AFTER IMPLEMENTATION 



row. Trivial errors would have decreased to 408 as they 
were reflected in more serious categories. 

These trivial errors were concerned primarily with re­
qirements and specifications. In fact, 31 percent of all 
non-trivial errors would have been attributable to errors in 
specifications. The significance of the independent 
analysis actions is pointed out by the fact that the specifi­
cations had been reviewed by the developer and had been 
released, and discovery of the errors came as a result of 
the independent review. 

Obviously, if the software specification contains an error 
with respect to the system software requirements, the cor­
rection will cost much less before design, coding and test­
ing are accomplished than after. For this reason, early es­
tablishment of the independent agency is likely to provide 
greater cost savings. 

Some more proof 

One data point that may provide some insight to quanti­
tative benefits of IT&A concerns the results of devlop­
ment, independent testing, and operational use of a highly 
critical, real-time control system.8

,9 Several hundred errors 
were found by the developer in two versions of three 
separate programs and corrected during development and 
initial testing. Such a situation could be considered 
normal on any large software development. 

However, sixty additional errors were found during 
IT&A, several of which would have been catastrophic. 
Since release to the operational agency, one error has been 
detected in one year's use. This error was non-critical. As 
another single example, this instance would tend to sup­
port the effectiveness of the use of an independent agency 
for testing critical software. 

And more proof 

A 25,000 word program, which was integral to the range 
safety system for Vandenberg AFB missile launches in the 
1960's, was completed and turned over to the Air Force. 
This program was operational for approximately eight 
years with many modifications being made in response to 
changing requirements. At that time, an independent 
agency was charged to perform detailed IT&A of the 
program and 20 errors were detected, seven of which were 
critical.6 In another case a new range safety system was 
delivered to Vandenberg AFB. This system, after undergo­
ing IT &A, was determined to be unready for operational 
use and subsequently had to undergo considerable modifi­
cation.1o 

More proof needed 

Although Independent Test and Analysis has proven to 
be an excellent method of finding software errors, there is 
little data available on the completeness of this approach. 
There are several reasons for the lack of data: one being 

Software Reliability 879 

the added cost for performance of testing beyond that ac­
complished by the independent test group. Since such test­
ing and resultant data are not available, a comparison of 
the software reliability (error-freeness) before and after in­
dependent testing is not quantitatively possible in this 
paper. 

Another reason comparative data is not available is that 
IT&A has only been accomplished on highly critical pro­
grams. Therefore, emphasis has been on performance of 
testing and achievement of reliability on a program by 
program basis, not on the gathering of data for analysis of 
how well the testing was done. 

Resealch into the overall problem of software reliability 
has begun to examine the various parameters associated 
with software development and testing which seem likely 
to affect reliability. One such study effort is being un­
dertaken by the Rome Air Development Center for the Air 
Force.3 It is hoped that the results of this and other 
analyses will provide enough data so that quantitative 
assessment of the software reliability associated with the 
various testing approaches will be possible. 

INDEPENDENCE TEST AND ANALYSIS 
TECHNIQUES 

Analysis and testing techniques have also been evolu­
tionary in their development. Early independent analysis 
consisted largely of "manual" code review, comparison of 
logic flows with listings and execution of modules 
whenever possible. These same techniques are still basic 
to the overall process, though many tools have been 
developed which automate many of its aspects. Examples 
of these tools are automatic flow charters, compare pro­
grams, logic/ equation generators, structure analyzers and 
timing analyzers. Table II lists several of these with their 
associated characteristics. 

Some of the more interesting work being accomplished 
in tool design and development is in the area of automatic 
verification systems, including test sequence generators, 
code segmenters, and path execution counters which 
gather statistics concerning program structure and path 
execution. Automated tools are now being developed and 
tested which analyze program structure and produce nor­
malized flow diagrams which represent the actual pro­
gram as if it were coded in accordance with the rules of 
structured programming. In addition, the test program 
then produces logic and arithmetic statements which 
represent the effect of the code execution. 

Analysis and testing processes have become more so­
phisticated as experience has been gained and· new tools 
designed. This is reflected in the increased use of simula­
tion as a testing tool. Modern test configurations may use 
a close~-loop system involving six-degree-of-freedom ve­
hicle models, environmental simulations, simulated 
system interfaces and, when actual flight computers are 
not available, interpretive computer simulations which 
run on general purpose host computers. These simulations 
may be modified forms of those used by the software 



880 National Computer Conference, 1975 

TABLE II-Software Testing Tools with Associated Characteristics 

TOOL 

Flowcharter 
Comparator 
Structure Analyzer 

Timing Analyzer 
Logic/equation generator 
Correctness proof 

Syntax Analyzer 
Test Sequence generators 
Path Execution counters 
Code segmenters 

PHASE USED 

Pre Execution 
Pre Execution 
Pre Execution 

Execution 
Pre Execution 
Pre Execution 

Pre Execution 
Execution 
Execution 
Pre Execution 

developer or they may be designed and produced by the 
IT&A agency for its sole use. 

WHY INDEPENDENCE 

The greatest single advantage of IT &A over the more 
conventional approach of having the developer perform all 
software testing is that a new and different point of view is 
established with regard to the reliability of the software. 
Development personnel must hold to cost and schedule 
constraints with the fundamental goal of "making it work, 
within cost and on schedule." Their philosophy is, and has 
to be, oriented toward showing that the software is correct, 
i.e., it performs all intended functions and performs no 
unintended ones. This is not the best frame of reference 
from which to detect software errors. The independent 
agency is brought aboard explicitly to analyze and test the 
developed software. His sole goal is to find errors and 
bring them to the attention of the developer so that they 
may be corrected. He assumes errors exist in the software 
and his whole reputation for thoroughness and effective­
ness rests on his being able to find them. With this point of 
view, the independent analysis and test agency has much 
stronger incentives to find all errors than the unaided 
developer. 

A beneficial side effect contributed by use of an inde­
pendent group is the establishment of a competitive at­
mosphere in which the developer, knowing his work is be­
ing independently checked, strives to make fewer errors, 
while the independent agency tries even harder to find 
them. The professional pride of each group contributes to 
the building of the competitive environment and software 
quality benefits as a result of the interacti0.11. 

Another advantage associated with independence in 
analysis and test is that the tendency for management (al­
ways success oriented) to curb test efforts in the hope that 
the software is "good enough" is greatly reduced. When 
development and testing are under common management 
control, pressures usually exist which dilute the effective­
ness of the analysis and testing function. An independent 
agency with a stated goal of detecting errors in the 
software being developed is in a stronger position with 
regard to management influence. 

INPUT 

Source Code 
Two versions of Source code 
Source code and pattern 

Source code & software probes 
Source code 
Source code 

Source code 
Source code 
Source code 
Source code 

OUTPUT 

Logic flow diagrams 
Locations of all differences 
Locations of all occurrences of 

specified pattern 
Module execution times 
Logic/Equations 
Statement of equivalence or non/ 

equivalence 
Syntax Error listing 
Test sequences 
Execution data 
Code segment designations 

A third advantage of IT&A results from the natural ef­
fects of specialized experience gained from "doing the 
job." Effective analysis of software documentation and 
code requires insight into requirements/ specification rela­
tionships, methods of functional allocation, code analysis 
techniques, and simulation capabilities. These are 
"learned" aspects of the analysis and test process. When 
an independent agency is available that specializes in this 
type of work, learning time is reduced and effective effort 
begins immediately upon assumption of the task. 

REDUNDANT PROGRAMMING 

Another, and somewhat related, approach to reliable 
software is redundant programming (also called parallel 
programming and dual programming).l1 This concept gets 
its name from the redundant systems used by the 
hardware engineers to increase hardware reliability. Here, 
two separate and independent programs, which can be 
executed independently to perform the same function, are 
produced by separate development teams; both programs 
are run at the same time on separate hardware systems or 
sequentially on a single system. In case of software failure 
of one system, the other system would take over. 

A less drastic approach is to again have two programs, 
functionally identical, developed by independent program­
ming teams. Here only one program would be used at a 
time and this could be parallel programming rather than 
redundant programming. One can be a back-up in case the 
other fails. Comparison of outputs can detect errors in one 
or both. Competition in development adds incentive for 
the production of a good program. Two knowledgeable 
groups are available for further effort in the area, 
eliminating the "sole source" situations. Two groups are 
more likely to establish a reasonable delivery time for the 
product than one working alone, again because of competi­
tive pressure. 

This approach also has the key ingredient of inde­
pendence. Completeness of testing through the use of au­
tomated tools is not implicit in this method, though it cer­
tainly could be incorporated by both programming teams. 
The parallel approach is the result of philosophy that pro­
grams are too complex to be tested "adequately," and that 



matching comparisons of results from the efforts of two 
separate programs designed to perform the same function 
is a valid and sufficient test. 

Overall, the advantages of parallel programming may 
outweigh the disadvantages, though the real question of 
how much this approach improves software reliability, has 
not been answered. Whether more independent testing on 
one program would produce higher reliability than normal 
development testing on two programs that are functionally 
the same is not clear. As software becomes more expensive 
and reliability more critical, both approaches may be used 
on the same development effort. 

DISTRIBUTION OF SOFTWARE DOLLARS 

In time of reduced budgets and spiraling costs, the con­
cept of dual analysis and testing, independent or not, is 
likely to raise the budgeteering eyebrows, and when dollar 
cuts are inevitable, such activity may get immediate 
nomination for the proverbial "ax." This is particularly 
true when management has not developed "software 
awareness." Expenditures for software have been increas­
ing dramatically, not only in an absolute sense, but rela­
tive to the associated hardware. According to the 
frequently-referenced Air Force Study/ published in 1972, 
software costs were three times that of hardware and the 
ratio was increasing continually. Based on the labor-inten­
sive character of software and the decreasing cost of ma­
chine processing capability, current inflationary trends 
will undoubtedly increase the software-to-hardware cost 
ratio even more rapidly than predicted. 

The referenced study also reported that, as an average, 
the effort expended on software was divided into three 
phases on a percentage basis as follows: design and 
analysis, 40 percent; coding, 20 percent; checkout and 
test, 40 percent. These percentages have now become al­
most classic throughout the software development com­
munity. However, they refer in general to the development 
costs incurred by the software development contractor. 
The concept of analysis and test of software by an inde­
pendent agency implies an additional cost of some mag­
nitude, though it may have a wide variance with respect to 

TABLE III-Relative Costs of Development and Independent Analysis 
and Test for Ten Programs 

INDEPENDENT 
DEVELOPMENT ANALYSIS & PER 

NAME SIZE COST (MM) TEST COST CENT 

A LARGE 750 252 33 
B LARGE 750 300 40 
C MEDIUM 337 142 42 
D MEDIUM 310 150 48 
E MEDIUM 112 37.5 33 
F SMALL 12.5 6.25 50 
G SMALL 12.5 6.25 50 
H MODIFICATION 125 50 40 
I MODIFICATION 650 450 69 
J MODIFICATION 300 112 37 

Software Reliability 881 

&L--------------
Development Cost Level 

10010 50150 01100 
DeveloperJlndependent Evaluator 

Effort Ratio 
Figure 2-Software reliability as a function of improvement dollars and 

developer / independent evaluator effort ratio 

the initial development cost, normally ranging from 30 
percent to 60 percent. The higher costs imply considerable 
analysis effort and increased use of specially constructed 
software test tools, whereas the lower costs are associated 
with a less active, more monitor-oriented activity. In one 
avionics software program, the independent monitoring 
activity was initially established at a 10 percent level, and 
was limited mostly to management support. Later em­
phasis was increased on independent analysis and test, 
and the relative percentage was raised to approximately 
30 percent. Costs associated with such analysis and test 
are shown for 10 software development efforts in Table 
III. 

The total dollars available for software development can 
be allocated in various ways. Assuming that reliability is a 
prime requirement in any software procurement, one 
should be able to add some amount to the developer's 
contract and achieve an incremental increase in error­
freeness. An alternative approach would be for one to take 
that amount and apply it totally to an independent 
contract. All intermediate variations are, of course, other 
alternatives. Which alternative is the most cost-effective, 
depends on several factors, such as status of documenta­
tion, uniqueness of system, and availability of test tools. 
Generalized relationships are depicted in Figure 2 which 
are believed to hold. In all cases, some level of reliability 
and dollar costs are basic as a result of the initial contract, 
i.e., a specific expenditure is indicated as a horizontal 
constant-dollar line in Figure 2. The curves indicate a level 
of specific reliability or error-freeness, and they show that 
by splitting the dollars spent to obtain significant software 
reliability improvement, one is more likely to achieve 



882 National Computer Conference, 1975 

higher reliability than by spending it on either the 
developer or the independent agency alone. 

The curves are likely to be assymetrical or skewed with 
respect to the 50/50 percent abscissa since several factors 
affected the specific cost relationships for a particular 
project. As an example, if the developer has not produced 
and maintained adequate documentation during the 
development process, an independent agency may have a 
difficult task when assigned to do analysis and testing. 
Funds for preparation of the documentation would likely 
be most effectively spent with the developer. The result 
might be the skewing of the curve for a specific level of re­
liability to the left. If adequate documentation is available 
and initial integration testing has been completed, the 
curve will probably be skewed right. 

CRITICAL SOFTWARE IN THE BUSINESS 
WORLD 

Computer software made its original debut in the field 
of accounting, and the greatest use of software still 
remains within the business world of commerce and in­
dustry. Military application of computers and their 
associated software began shortly thereafter and has 
steadily increased, not only in the business-oriented 
payroll and accounting areas, but more significantly, in 
the area of real-time control of complex equipment such as 
missile, satellite and aircraft avionics. The software in 
such systems frequently affects the safety of personnel 
and expensive equipment, and all reasonable steps are 
taken to insure its reliability. 

Though personnel safety is not normally involved in the 
operation of commercial software, the dollar costs 
associated with software failure can be significant. This is 
particularly true in view of the increased size of business 
systems, the increased use of remote time-sharing termi­
nals over widely distributed geographic locations and the 
trend toward control of fund disbursement directly by 
computer. Interactive systems with distributed time-shar­
ing terminals require complex system software and failure 
modes can take many forms which may not be obvious to 
the system user or management. As the complexity 
increases, the risk of failure also rises, and with fund con­
trol being handled increasingly by machine, risk of fiscal 
liability will undoubtedly increase.12 

For clarification, the definition of failure may require 
some rethinking as it applies to business-oriented software. 
However, the concept that software fails if it does not 
perform its intended function or it performs unintended 
functions, should serve equally well in both the military 
and commercial world. With that definition in mind, 
software that writes checks to fictitious companies for 
services not rendered could be said to fail, at least as far 
as management is concerned.13 It may be that the software 
has been deliberately designed to produce such unearned 
checks. In this case, though it might be highly reliable in 
the eyes of the programmer, management undoubtedly 
would have a different view. Of the various approaches 
tried by the military software managers to insure software 

reliability, the one most suited to preventing the insertion 
of an "intentional" error is the utilization of an inde­
pendent agency to perform an in-depth analysis and test of 
the program. In view of the increasing number of news ac­
counts regarding computer associated fraud or embezzle­
ment,13 and the difficulties that appear to be arising in the 
employment of computers in vote-counting, 14, 15 it is an­
ticipated that independent analysis and testing of software 
and associated systems will soon become commonplace in 
many areas in the business world. 

SUMMARY 

Although independent test and analyses does not guar­
antee absolutely error free software, it has become an im­
portant approach to achieving highly reliable software in 
the Air Force. It has been used successfully on many 
critical programs particularly those involved with missile 
and space systems. The independent aspect of the function 
is the key characteristic and it offers the advantages of a 
new and objective point of view, freedom from unrealistic 
management constraints and the opportunity for the 
software manager to use personnel experienced in software 
testing. 

Commerical software and computer systems have many 
characteristics which would tend to make independent 
analysis and testing attractive to the business world. Ex­
tensive application of the principle to critical commercial 
systems is anticipated for the near future. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the many informative 
discussions with James C. Alexander with regard to the 
history of operational software at Vandenberg Air Force 
Base. Acknowledgment is also given Ms. Barbara 
A villanoza for her excellent typing and redaction. 

REFERENCES 

1. Information Processing/Data Automation Implications of Air Force 
Command and Control Requirements in the 1980's, United States 
Air Force, 1972. 

2. F-III Flight Programs Support Study, General Dynamics Report, 
FCE-1152, Jan 1972. 

3. Thayer, R. H., Rome Air Development Center R&D Program in 
Computer Language Control and Software Engineering Techniques, 
RADC TR-74-8, April 1974. 

4. Rodrick, T. L., "Verification and Validation of Aeronautical Systems· 
Software," Proceedings of the Aeronautical Systems Software Work­
shop, April 1974. 

5. Wattenberg, R. E., "Independent Test and Evaluation," Proceedings 
of the Aeronautical Systems Software Workshop, April 1974. 

6. Burke, J. P., etal., Verification and Validation of the Vandenberg Pre­
diction System-Version 30, Logicon Report No R:SEA-71031-VIPS-
134 Oct 1971. 

7. Dana, J. A. and J. D. Blizzard, Verification and Validation for Ter­
minal Defense Program Software, Logicon Report No. HR-74012, 
May 1974. 

8. Fujii, R. U., el al., Command Data Buffer Operational Executive 
Program, Final Report, USAF Space and Missile Systems Organiza­
tion, Mar 1973. 



9. Fujii, R. U., et at., Performance Analysis and Technical Evaluation 
of the Minuteman Operational Targeting Program, Final Report, 
Secret Classification, USAF Space and Missile Systems Organiza­
tion, Nov 1974. 

10. Bartlett, J., et al., Verification and Validation of the Mobile Range 
System Impact Predictor, Logicon Report No R;DSj72-107/ 1141, 
Sept 1972. 

11. Glib, T., "Parallel Programming," Datamation, Vol 20, No. 10, Oct 
1974. 

Software Reliability 883 

12. Alexander, T. "Waiting for the Great Computer Rip-off," Fortune, 
Vol. 90, No.1, July 1974. 

13. Farr, W., R. T. Cooper, and J. Belcher, "Plot to Loot Los Angeles of 
$2.5 Million Fails, Los Angeles Times, Dec 8, 1974. 

14. Myers, E., "Election Day Log," Datamation, Vol 18, pp. 90-93. 
15. Farmer, J., "Computerized Voting: Many Happy Returns?," Com­

puter Decisions, Vol. 6 No II, November 1974,. pp 20-23. 





PART III 

INTERACTION WITH SOCIETY 





Education-Curricula-Training 

Area Director: 
Gopal K. Kapur 
Kapur and Associates 
Pleasanton, California 

During the past year interest and controversy in computer science and in­
formation science education and training has increased notably. The keynote 
addresses given by George Glaser at the 1974 National Computer Conference 
and'the 1974 EDUCOM in Canada have served to heighten this interest and 
controversy. Mr. Glaser's views stimulated an immediate controversy that has 
not yet subsided, as was demonstrated during the education seminars at the 
1974 ACM conference in San Diego. The courses presently being offered in 
colleges and universities have been both attacked and defended vigorously. 

We take the position that some good work is being done in the colleges and 
universities, but there is a need that can only be provided for by taking an in­
depth critical look at the present curricula coupled with cooperation by the in­
dustry in defining its needs. The four seminars offered reflect this concern and 
address to the problems faced by the educators and the users. 

The seminar, Undergraduate and Graduate Education in Computer Science, 
summarizes the good work being done in the colleges and universities. To 
balance the viewpoints presented in this seminar, another seminar, Data 
Processing Education-A View from Education-An Appraisal from Industry, 
presents a critical analysis of the existing data processing education while 
balancing this with the viewpoints of the educators. A third seminar, Computer 
Science Education for Majors of other Disciplines, has been designed for 
noncomputer professionals whose activities require them to interface with com­
puters. Areas covered include biologists, chemists, physicists, sociologists, 
ecologists, business administrators, linguists, architects, and teachers. The 
fourth seminar, Use of Computers in Education, under the sponsorship of 
AEDS, examines the use of computers in the educational process in primary 
and secondary schools, junior colleges and universities. 

887 





Realignment of objectives in information 
system degree programs 

by J. DANIEL COUGER 
University of Colorado 
Colorado Springs, Colorado 

INTRODUCTION 

Development of degree programs in information system 
analysis and designed lagged demand by nearly five years. 
Now the growth of these programs appears to be outdistanc­
ingdemand. 

Today's conditions dictate emphasis on quality of 
output rather than quantity. Considerable attention has 
been paid to content of curriculum and should continue, in 
such a dynamic field. 

Pedagogical techniques deserve equal attention. With 
the decrease in pressure to produce large numbers, 
academicians can reevaluate and strengthen teaching 
methods. This paper will review growth projections, exist­
ing degree programs and teaching methodology. 

DECLINE IN DEMAND 

In their recent study, Gilchrist and Weber 1 showed that 
previous estimates of demand for programmers has been 
overstated. Three national studies2 had forecast 1970 
programmer population at levels ranging from 200,000 to 
650,000. Bureau of Census studies in 19703 (a 20 percent 
sample of the U.S. population) extrapolated a programmer 
population that year of 161,377. Data from Labor Depart­
ment Area Wage Surveys of 1970 were extrapolated by 
Gilchrist and Weber, resulting in an estimated population 
of 158,000. They surmised, "this is in surprisingly close 
agreement with the Census and suggests that the 'true' 
figure is probably close to 160,000." 

The researchers then extrapolated programmer popula­
tion as shown below: 

Estimated Employment of Computer Programmers by 
Year for 1969 to 1973 Based on Area Wage Survey Data 

Year 
1969 
1970 
1971 
1972 
1973 

Number of Programmers 
150,000 
160,000 
170,000 
180,000 
180,000 

Gilchrist and Weber concluded: "A consequence of our 

889 

conclusion should be careful appraisals by educational 
administrators in both public and private sectors as to 
whether the large number of courses aimed at training 
programmers is justifiable on a vocational basis. 

"Fewer employment opportunities than had been 
forecast caused a very significant drop in the number of 
so-called 'Private EDP Schools,' and we wonder whether 
similar overproduction problems may not face the Junior 
and Community Colleges next as there has been a 
considerable increase in the number of data processing 
courses in those institutions." 

INCREASE IN SYSTEM ANALYST DEGREE 
PROGRAMS 

Although my literature search did not reveal recent pro­
jections on demand levels for system analysts and com­
puter scientists, the slowdown in the market for these posi­
tions over the past two years may be indicative of an envi­
ronment similar to that of programming. 

Data exist on the increase in degree programs to 
produce system analysts. A 1974 survey by the Computing 
Newsletter for Instructors of Data Processing* revealed 
that 38 schools** have implemented degree programs in 
business data processing. Another nine schools plan to im­
plement the program before 1976. The characteristics of 
implemented programs are revealed in the following tables. 

Thirty-eight schools have implemented degree programs 
to prepare persons to design and implement computer­
based information systems. As Table I shows, the titles of 
these programs vary considerably. However, the title "In­
formation Systems" predominates. 

The size of the Information Systems program ranges 
from five to 210 students at the bachelors level, one to 105 
at the masters level arid one to 20 at the doctorate level. 
Table II shows ranges of FTE students by program. It also 
depicts the number of programs by level: 28 bachelors 
level, 21 masters level and 11 doctorate level. 

The average program size is shown in Table III: BS 
(76.4 FTE), MS (24.2 FTE) and PhD (8.6 FTE). Faculty 
size varies from one to 15; median size is 3.5 FTE faculty. 
Table III shows the faculty/student ratio. 

* October, 1974, p. 1-8 (Box 7345, Colorado Springs, CO 80933). 
** List of schools provided in Appendix 1. 



890 National Computer Conference, 1975 

TABLE I-Titles of Degree Programs 
(38 Schools Reporting) 

Title Frequency of Use 

Information Systems 
Business Data Processing 
Computer Science 
Management Information Systems 
Information Sciences 
Business Information Systems 
Other (None Identical) 

8 
4 
3 
2 
2 
2 

17 

As might be expected of new programs, curricula vary in 
proportion to level of program. The 28 bachelors-level pro­
grams are quite similar in content, fairly closely relating 
to the model below, recommended last year by the A.C.M. 
(Association for Computing Machinery).4 The masters 
level programs more closely resemble the MBA option 
than the general program of the graduate level recom­
mendations of the ACM.5 PhD programs vary so much 
that a model cannot be approximated. 

RESPONSE TO DECLINING 
DEMAND/INCREASING SUPPLY 

The "golden era" of bountiful demand for data process­
ing professionals appears to have suffered a premature 
demise. It appears that the profession will exhibit the 
stable, yet undramatic growth of its sister professions in 
the technical field. 

However, there is little need to view this trend pessimis­
tically. Rather than concentrate on quantity, academia at 
all levels can now emphasize quality. 

Dr. Hans Hansen, in his introduction to a paper I 
presented in October at Wildbad, Germany, commented, 
"The Americans have been as interested in the approach 
to teaching as in the content of their teaching." I was the 
only American in attendance, speaking on the approach to 
teaching Production Information Systems in university­
level curricula. Dr. Hansen reiterated comments I'd heard 
many times in overseas travel. 

Are we overly concerned with pedagogy? A colleague at 
UCCS says that our job is "solely to impart the 

TABLE II-Number of Students in I.S. Program 
(38 Schools Responding) 

Range of FTE Number of Schools 
Students BS/BA MS/MBA 

1 - 10 6 
11- 30 6 12 
31 - 50 7 
51 - 75 3 
76 - 100 3 

101 - 150 5 
151 - 200 
Over 200 2 

PhD/DBA 

8 
3 

TABLE III-Information Systems Faculty-Student Ratios 
(34 Schools Responding) 

Degree 

BS/BA 
MS/MBA 
PhD/DBA 

Mean FTE Students 

76.4 
24.2 

8.6 

Students per Faculty FTE 

16.9 
4.5 
2.9 

truth-whether the students partake or not is their 
concern." A previous member of O!U faculty stated it a lit­
tle less eloquently, "The hogs don't care how they're 
slopped-just throw it to them and let them fight over it." 

To the contrary, most faculty I know place importance 
on effective teaching methods. They are interested in both 
teaching effectiveness and teaching efficiency. 

In a recent conference in Mexico a fellow speaker in­
troduced his presentation by criticizing some colleagues in 
his profession who lectured from notes "yellowed with 
age." He then proceeded to use transparencies which had 
been used for so long that the contents were difficult to 
read-they were "browned with age." 

N or are those of us who use computer technology im­
mune to pedagogical obsolescence. For one of my courses, 
I'm using forecasting programs which should have been 
improved before assignment to the students again this 
year-if I continue to procrastinate, the FORTRAN cod­
ing sheets in the program documentation may begin to 
yellow. 

h 
INFORMATIO'" SYSTHIS 

t______---Technological Concentration 
TERM 

Organizational Concentration-~ E 

UB2 UBI UCI 

1st Human and Operations Information 

Semester Organizational Analysis and Structures 
Behavior Modeling 

~ I I 
"'\ 1 1 

UC8 UA8 UC2 
2nd Programming Systems Computer 
Semester Structures and Concepts and Systems 

Techniques Implications 

I ~ I / I 
1 ~ 1 / 1 

UC9 UD8 UC3 
1st Computerware Information File and 
Semester Systems Communication 

Analysis Systems 

~ I / I 
~ 1 / 1 

2nd 
UD9 UC4 

Semester 
System Software 
Design and Design 
Implementation 

Figure l-ACM recommended undergraduate option in information 
systems 

J 



Unilateral emphasis on content 

On the other hand, we may frequently update content of 
our courses and neglect the means by which that informa­
tion is transmitted to students. Pedagogical approach 
should be reevaluated as frequently as content. Some 
instructors might appropriately be labeled by their 
students as demagogues rather than pedagogues. Dema­
gogical pedagogues structure the learning process around 
themselves rather than design a multiprong instructional 
approach that utilizes the best teaching medium for each 
topical area. 

For example, my experience is that students grow to 
understand forecasting techniques best by utilizing com­
puter-based forecasting models. Our students learn intra­
group dynamics best through application in teams playing 
our management game. However, portions of the statistics 
subject area require a combination of lecture and exercises 
to effectively instill both concepts and techniques. 

Improving effectiveness and efficiency 

Some academicians say that increased class sizes, im­
posed by the administration, exclude any teaching ap­
proach except lectures. I disagree. Examples to the 
contrary in the computer-assisted teaching programs have 
been developed at Florida State by Professor William 
Shrode (data programming instruction) and at the 
University of Illinois/Chicago City College by a team 
headed by Professor J ames McKeown (accounting instruc­
tion). These projects proved that both learning effective­
ness and instructor utilization were enhanced despite 
increased class size. 

Figure 2-ACM recommended graduate program in information systems 

Realignment of Objectives 891 

Other instructional approaches 

However, C.A.1. is not the only alternative. In the 
UCCS information systems course we make extensive use 
of video instruction. For example, students in my systems 
analysis and design course obtain 55 percent of their 
course credit for study of Deltak's multi-media (video, 
audio, printed materials) course outside class. They get 
their state-of-the-art knowledge through this means. In 
class discussions I can concentrate on concepts/techniques 
and future state-of-the-art subjects. We cover ap­
proximately 25 percent more material than was covered 
prior to availability of the multi-media course. 

Another example of teaching innovation is illustrated by 
VIEWIT. Many compiler construction courses do an ex­
cellent job of analyzing each phase but fail to "put it all 
together" in the student's mind-the whole as the sum of 
individual compiler phases is not easily understood. Texts 
suggest that the student should write his own compiler to 
best understand the process, but limitations of time and 
resources frequently make this impossible. To use an 
existing compiler as a model is not generally satisfactory, 
since understanding and compilation efficiency are at 
cross purposes with one another. The VIEWIT compiler 
was designed by Professors E. M. Henshon and N. E. 
Sondak (Worcester Polytechnic Institute) to serve as a 
model for the compiling process. It supports a modified 
version of the BASIC source language which offers 
reasonable processing power while being similar enough to 
keep the compiler design straightforward. A command 
language is supplied to allow the user to display the 
process which VIEWIT performs on the source program 
input. The VIEWIT compiler is implemented in 
FORTRAN. In addition, the various functional routines of 
VIEWIT are highly modular in construction so that they 
can be easily replaced to allow some sophisticated al­
gorithms to be used in the compilation or to allow exten­
sions to the original source language. 

CONCLUSION 

With the relief in pressure to produce large numbers of 
graduates, energy can be directed toward improving the 
quality of our programs. 

The dynamic characteristics of our field force a 
continuous reevaluation of curriculum content. We need to 
be equally concerned with our teaching methodology. Just 
as the cobbler's child is the last to be shod, we are often 
the last to use the computer to enhance our teaching. 

REFERENCES 

1. Gilchrist, Bruce and R. E. Weber, "Enumerating Full-Time 
Programmers," Communications of the ACM, October 1974, pp. 592-
593. 



892 National Computer Conference, 1975 

2. The State of the Information Processing Industry, AFIPS Press, 
Montvale, N.J., 1966. 
Gilchrist, Bruce and Richard E. Weber, "Employment of Trained 
Computer Personnel-A Quantitative Survey," Proc. AFIPS, 1972 
SJCC, Vol. 40, AFIPS. 
Occupational Outlook Handbook, 1970-71, Ed. U.S. Dept. of Labor, 
Washington, D.C. 

3. Detailed Occupation of Employed Persons by Race and Sex for the 

United States, 1970, U.S. Dept. of Commerce, Bureau of the Census, 
Washington, D.C., 1973. 

4. Couger, J. D., ed., "Curriculum Recommendations for Under­
graduate Programs in Information Systems," Communications of the 
ACM, December 1973, pp. 727-749. ' 

5. Ashenhurst, R. L., ed., "Curriculum Recommendations for Graduate 
Professional Programs on Information Systems," Communications of 
the ACM, May 1972, pp. 364-398. 

APPENDIX-LIST OF AACSB SURVEY PARTICIPANTS WITH INFORMATION SYSTEMS PROGRAM 

School 

University of Alabama 
Arizona State University 
University of Arkansas 
The Bernard M. Baruch College 
Boston College 
Bowling Green State University 
University of California 
University of California, Los Angeles 
University of Colorado 
California State University, San Francisco 

California State University, Sacramento 

Case Western Reserve University 
Dartmouth College 
University of Delaware 
Duquesne University 
Eastern Michigan University 
University of Florida 
Fordham University 
University of Georgia 
Harvard University 
University of Iowa 
Kent State University 
Louisiana Tech University 

University of Minnesota 
Mississippi State University 
University of Nevada 
New Mexico State University 
Northern Arizona University 
Northern Illinois University 
Northeast Louisiana University 
Ohio State University 
Purdue University 
The University of Rochester 
Texas A&M University 
Texas Tech University 
Temple University 
Tulane University 
University of Southern California 
Washington University 
Washington State University 
Western Michigan University 

Address 

University, Alabama 35486 
Tucson, Arizona 85721 
Fayetteville, Arkansas 72701 
17 Lexington Ave., N~w York, New York 10010 
Chestnut Hill, Massachusetts 02167 
Bowling Green, Ohio 43403 
Berkeley, California 94720 
Los Angeles, California 90024 
Colorado Springs, Colorado 80907 
1600 Holloway Avenue 
San Francisco, California 94132 
6000 Jay Street 
Sacramento, California 95819 
Cleveland, Ohio 41106 
Hanover, New Hampshire 03755 
Newark, Delaware 19711 
Pittsburgh, Pennsylvania 15219 
Ypsilanti, Michigan 48197 
Gainesville, Florida 32307 
Bronx, New York 10458 

, Athens, Georgia 30602 
Soldiers Field, Boston, Massachusetts 02163 
Iowa City, Iowa 52242 
Kent, Ohio 44242 
Box 5796, Tech Station, 
Ruston, Louisiana 71270 
Minneapolis, Minnesota 55455 
Mississippi State, Mississippi 39762 
Reno, Nevada 89507 
Las Cruces, New Mexico 88003 
Flagstaff, Arizona 86001 
DeKalb, Illinois 60115 
Monroe, Louisiana 71201 
Columbus, Ohio 43210 
West Lafayette, Indiana 47907 
Rochester, New York 14627 
College Station, Texas 77843 
Lubbock, Texas 79409 
Philadelphia, Pennsylvania 19122 
New Orleans, Louisiana 70118 
University Park, Los Angeles, California 90007 
St. Louis, Missouri 63130 
Pullman, Washington 99163 
Kalamazoo, Michigan 49001 



Undergraduate programs in computer science 

by NORMAN E. SONDAK 
Worcester Polytechnic Institute 
Worcester, Massachusetts 

Since the publication of "CurriCulum '68", that land­
mark report has been subject to numerous discussions, 
enlargements, and criticisms. An updated version of this 
work is currently under preparation. Some of the more sig­
nificant criticisms which were directed at the original 
report concern the lack of attention to the physical aspects 
of computer science, the limited consideration of data 
processing as a profession, and the absence of cours~s in 
the area of computers and their impact on society. The 
computer science graduate and undergraduate programs 
at Worcester Polytechnic Institute were developed an'd im­
plemented over the same time frame as "Curriculum '68". 
While the departmental computer science academic 
program was developing, Worcester Polytechnic Institute 
itself was simultaneously engaged in an exciting and 
unique experiment in undergraduate science and engineer­
ing education entitled the WPI Plan. 

The experience in this unusual milieu has served as a 
basis for the computer science undergraduate program 
now in effect at WPI. It is believed that the ideas 
generated by this symbiosis of a new academic discipline 
along with an unusual approach toward science education 
can be successfully incorporated in other computer science 
undergraduate programs to broaden and deepen the 
undergraduate exposure to computer science as a 
profession. 

The WPI Plan stresses the attainment of the Bachelor's 
degree through the demonstration of competence while 
allowing a broad freedom in course selection supported 
with academic advisory assistance. The basic B.S. degree 
requirements at the Institute are, along with course work, 
completion of a competency examination in the major 
field of study, qualification in a minor field of study (nor­
mally in the humanities), and two projects, one of which is 
in the major field, and the second, preferably one relating 
technology to society. As can be seen, the framework of 
the WPI Plan has led the Computer Science Department 
to quite naturally supplement some of the major short­
comings voiced about "Curriculum '68". 

The project activity has been particularly beneficial. It 
gives the undergraduate computer science major a 
perspective on the real world of computing. The depart­
ment has a number of projects developed in conjunction 
with local industry. In this respect, WPI is quite fortunate 
to be in close geographic proximity to a number of major 
computing equipment manufacturers and large computer 

893 

users, such as, Digital Equipment Corporation, Data 
General Corporation, Sanders Associates, and Honeywell 
Information Systems Division, as well as Norton Com­
pany and State Mutual Insurance Company. 

Actual projects have ranged from software verification 
to contributions to the design of a computer based in­
formation system for the juvenile court of Worcester. 
Student reaction to the projects both of the on and off 
campus varieties has been uniformly excellent. The 
experience of organizing and executing the computer 
science activities required is now of a much larger scope 
than normally encountered in regular course work and 
reaction by students is extremely positive. In addition, the 
exposure to various employers of computer science 
students is a fortunate side-effect for students and often 
leads to offers to join that firm upon graduation. Several 
of our outstanding students have been hired by local 
computing equipment manufacturers or computer applica­
tion firms as a direct result of their project activity. 

The requirement to produce and administer a 
competency examination in computer science has forced 
the department faculty to come to grips with a very dif­
ficult problem: defining the essence of computer science in 
such a manner that an undergraduate student's 
competency in this field can be quantitatively measured. 
This is difficult in any academic field of endeavor, but 
even more so in an area such as computer science with its 
dynamic growth and broad areas of applications. 

To accomplish this goal students are usually allowed to 
select one of three problems. These problems are designed 
to permit a broad latitude in the actual solution. The 
student can bring to bear wide ranges of knowledge and 
experience in developing the written answer to this portion 
of the competency exam. The second phase of the exami­
nation is an oral review. Here the student explains his 
written solutions or enlarges it after he has time to think 
about it. In addition, other concepts of computer science 
may be examined at this time. Our experience with the 
competency examination has been gratifying. The 
students usually think of it in advance as a traumatic 
experience, an obstacle to be overcome. But after taking 
the examination, the general comment has been that the 
examination was fair and helped crystalize many aspects 
of the profession of computer science that they had not 
thought about previously. 

The need for one to one advising as required by the WPI 



894 National Computer Conference, 1975 

Plan during the development of the undergraduate 
program for each student has also caused each member of 
the faculty to be intensely interested in the general aspects 
of an academic program in computer science, as well as 
employment opportunities or graduate school availability. 

In total then, the unusual and innovative aspects of the 
WPI Plan along with the basic core curriculum have 
caused our students to receive a much more individualized 
and broader education in computer science than the tradi­
tionallock-step program might have allowed. 

From the employment point of view, the results have 
been also positive. We have a limited base as far as num­
bers of graduates from the Plan are concerned, however, 
those students graduating to date have had little difficulty 
obtaining the types of jobs they have wanted. In general, 
they have had several offers to select from. Thus far, most 

of the students have gone to work with equipment vendors 
in the local area such as Digital Equipment, Data 
General, and Honeywell. But a significant number are be­
ginning to join major insurance, banking, and other fi­
nancial institutions as well as manufacturing plants in the 
region. 

The practical project activity, a careful and indi­
vidualized advising system and a continuous examination 
and concentration by the department on what they 
consider to be the essence of computer science is certainly 
transportable to any computer science undergraduate 
program. This concern and commitment by computer 
science departments should improve the probability of 
employment for their graduates and help to effectively 
answer a number of criticisms leveled at current computer 
science programs by employers. 



Graduate education in computer science and 
its relationship to industry 

by M. C. YOVITS 
The Ohio State University 
Columbus, Ohio 

There are a number of different focal points which 
characteri~e various graduate programs in computer 
science. Some of these programs are theoretical and 
mathematically oriented. Some programs are organized 
around management or business applications, some 
around computer systems, some around information 
storage and retrieval, and so forth. Many examples of 
these and other orientations for graduate computer science 
programs can easily be provided. 

At Ohio State we have decided to build a broad base for 
our various programs in computer and information 
science, the name we have chosen as most descriptive of 
our program at Ohio State. This broad base encompasses 
most of the various possible focal points for computer 
science. It is only with such a broad interrelated set of pro­
grams and objectives that graduate students can be ade­
quately educated to solve general industrial types of prob­
lems. Furthermore, the breadth of the programs and 
faculty makes for an exciting and dynamic environment 
not otherwise found. 

We have developed fourteen fields of specialization 
which our Ph.D. students can use either as major or minor 
areas of specialization. These are: 

1. General theory of information. 
2. Information storage and retrieval. 
3. Theory of automata and theory of computation. 
4. Artificial intelligence. 
5. Pattern recognition. 
6. Computer programming, including system program-

ming. 
7. Theory and processing of programming languages. 
8. Digital computer architecture and organization. 
9. Numerical analysis. 

10. Man-machine interaction and systems. 
11. Formal and computational linguistics. 
12. Management information and systems. 
13. Biological information processing. 
14. Social, economic, and psychological aspects of in­

formation production and processing. 

Students can also choose minor areas of specialization 
from other appropriate departments having common 

895 

interests with the Department of Computer and Informa­
tion Science. 

Ohio State University is a large, diversified university, 
and furthermore it is the only State University in Ohio 
which gives a wide range of Ph.D.'s. Accordingly, the De­
partment of Computer and Information Science has a 
sizable graduate program of slightly less than 200 
students. Roughly 75 percent of these graduate students 
enter the program with the objective of earning a Master's 
degree and then leaving to take employment. We consider 
these students to be professionally oriented and thus 
consider our degree program at the M.S . .level to be pri­
marily a professional degree. The total number of students 
who have been graduated with Master's degrees now 
number well.in excess of 250. These graduates have taken 
employment, mostly in systems type of work in one form or 
another, with many different industrial, governmental, and 
non-profit organizations around the country and even 
abroad. 

The Master's students currently have seven different 
options which they can pursue and which define their ob­
jectives. These are: 

1. Theoretical Foundations 
2. Information Systems 
3. Computer Systems 
4. Numerical Analysis 
5. Operations Research 
6. Biomedical Computing and Information Processing 
7. Administrative Science 

All students, regardless of the option selected, are re­
quired to take a set of courses chosen from a prescribed 
core. The student then completes his course of study with 
about 15 quarter hours of electives from a group of courses 
specific to each particular option. Courses in the core in­
clude: 

1. Mathematical Foundations of Computer and In-
formation Science . 

2. Advanced Seminar in Computer and Information 
Science 

3. Principles of Man-Machine Interaction 



896 National Computer Conference, 1975 

4. Numerical Analysis 
5. Advanced Computer Programming 
6. Digital Computer Organization 
7. Introduction to Linguistic Analysis 
8. Modern Methods of Information Storage and 

Retrieval 

From these, with certain restrictions, the student must 
choose 29 quarter hours. In addition, the student is re­
quired to take 10-15 hours of mathematics and statistics. 

The Master's degree program is of considerable interest 
to industrial organizations. From conversations which I 
have had with recruiters and technical managers, I am 
told that our students perform well. What is more im­
portant, the industrial organizations continue to come 
back year after year asking for more of our Master's 
students. In general, our Master's students have had little 
difficulty finding the job of their choice. Graduates who 
visit the campus after working for a period indicate that 
they are well pleased with their education and feel that 
generally it has been good preparation for their jobs. 

In a recent poll of our Master's graduates, we found that 
59 percent of our graduates felt that their backgrounds 
were superior to those of their colleagues and 36 percent 
felt that they were comparable. Further details on this poll 
may be found in the reference by Kerr and Kalmey.l 

At the same time, we also have a large Ph.D. program 
with a steady state output of about 15 per year. Although 
as we know academic positions are now plentiful in com­
puter science, I feel that this situation will change in the 
near future as universities undertaking new and expanded 
computer science programs complete their staffing. Ac­
cordingly, we recognize that most of our Ph.D. graduates 
must expect to find employment in industry or govern­
ment. Thus far, in the three years that we have been 
awarding Ph.D.'s approximately 50 percent have taken 
non-university positions. 

We believe that the type of broad program which we 
have developed in computer and information science with 
a good fundamental component, yet with considerable in­
volvement with applications, is of particular interest to in­
dustry. Our students know the basic fundamentals and 
are, as well, involved with and understand many applied 
problems and general applications. These students 
generally have the breadth and the understanding to solve 
problems. This is the type of graduate that industry is 
looking for. What is more, they should be prepared to 
solve many different types' of problems, not only narrowly 
defined problems. 

One of the main ways that a program such as ours can 
interface with industry is through the recruiting 
process-our graduates will be hired by industry. 
However, in a relatively large urban setting there are 
many other ways to establish relationships. For example, a 
number of our students are able to find part-time employ­
ment in local industrial and non-profit organizations while 

they are studying. In many cases we are able to fill these 
jobs through the Department as a type of graduate 
assistantship. In some cases, these part-time positions lead 
to full-time jobs after graduation. Furthermore, additional 
interactions take place through employees of many in­
dustrial organizations in the area who enroll in our 
graduate program. 

Other interactions which take place with industry in­
clude consulting on the part of our faculty and the use of 
adjunct faculty from industry to help us teach some of our 
courses. The adjunct faculty are important to the educa­
tional program in a number of different ways, but there 
are two in particular that we feel are most important. 
Foremost is the fact that adjunct faculty can bring to our 
students the real industrial problems and we try, where it 
is possible and mutually agreeable, to develop courses for 
the adjunct faculty that emphasize these problems. It is 
primarily through courses of this type that our students 
can learn about the real world. Unfortunately, because of 
their responsbilities in their own organizations, it is not al­
ways possible to find available faculty who are able and 
willing to teach on a regular basis. 

A second way in which adjunct faculty from local in­
dustry can be very helpful is in helping to staff our eve­
ning program. Many of our students who are employed 
in local industry find that it is most convenient to take 
courses in the evening. Accordingly, we have developed a 
growing evening program and are able to use adjunct 
faculty from local industry to help staff this program. This 
arrangement turns out to be mutually satisfactory to all 
parties concerned. The adjunct faculty are generally more 
available in the evening. 

Finally, other important relationships which are most 
useful in fostering an interaction are: inviting indu!3trial 
people to present colloquium talks on current areas of 
interest and developing short courses for industry as the 
need occurs either on the university campus or at the in­
dustrial site. 

In summary, we believe that the interaction with in­
dustry is essential for both our Master's and our Ph.D. 
students. We believe that preparation for industrial posi­
tions is essential for most of our graduate students, and a 
part of our curriculum is geared in that direction. A broad 
and dynamic graduate program enhances this type of an 
education. Further interactions of importance both to the 
university and to industry take place through the use of 
adjunct faculty to teach courses and the use of our faculty 
for consulting. Enrollment in our courses of students from 
local industry is another important catalyst. 

REFERENCE 

1. Kerr, D. S. and D. L. Kalmey, "The Bachelors and Masters Com­
puter Science Graduate," Submitted to the 2nd World Conference on 
Computers in Education, 1-5 Sept., 1975. 



The role of continuing education in computer 
· SCIence 

by WALTER J. KARPLUS 
University of California 
Los Angeles, California 

In the present context, "Continuing Education" refers 
to formal courses offered to active professionals for pur­
poses of career development rather than with an academic 
degree objective. The general need for continuing educa­
tion in a rapidly evolving field such as Computer Science 
is so well accepted as to require no further justification at 
this time. Rather, it is the purpose of this paper to 
consider the diversity of approaches to advanced educa­
tion outside the conventional academic framework and to 
comment on current attitudes and trends. 

FORMAT 

The overwhelming majority of participants in Continu­
ing Education programs are employed on a full-time basis 
either in industry or by government agencies. Usually the 
employer contributes most if not all of the tuition and 
expenses incurred by the student. It is necessary therefore 
that the format of the Continuing Education program take 
into account the needs and preferences of the employer as 
well as of the student, particularly as they relate to time 
lost from work. There appear to be three basic approaches 
to the scheduling of Continuing Education courses. 

Periodic lectures 

The student attends formal presentations either weekly 
or bi-weekly over a period corresponding to a college 
semester or quarter. Frequently, the material offered in 
such courses corresponds closely to the material offered 
during the daytime to regular college or university classes, 
and occasionally credit earned in such courses can be used 
toward academic degrees. . 

Short courses 

The student attends an intensive series of lectures ap­
proximately seven hours per day for a consecutive period 
of days. Some short courses last only two days while others 
span a two-week period. Such courses. usually bear no 
direct resemblance to academic offerings and are 
frequently taught by "stars" in their technical specialty. 

897 

Retreats 

A group of students are housed at a relatively remote lo­
cation for a period of one to four weeks and receive inten­
sive instruction, approximately five or six hours per day, 
from a battery of lecturers. The formal lectures are 
generally supplemented by evening programs and work­
shop sessions. 

LOCATION 

Depending upon the subject matter and the demand, 
Continuing Education programs are presented at a variety 
of sites. 

College campus 

Most Continuing Education programs are offered on 
college or university campuses, taking advantage of 
available classroom, library, and computer facilities. For 
many colleges this constitutes a convenient way of utiliz­
ing their buildings during the evening hours and during va­
cations; some universities have allocated special class­
rooms and buildings exclusively for Continuing Education 
programs. 

In-plant 

Many large companies have found it expedient to offer 
Continuing Education programs for their own employees 
either in their own facilities or nearby. These courses are 
usually taught in part by specialists on the staff of these 
companies and in part by imported lecturers. 

Road-show 

One or a group of lecturers presents essentially the same 
short course at a number of locations throughout the 
country and occasionally overseas. Usually, these pro­
grams last two or three days and are offered in large urban 
centers such as New York, Washington, D.C., Los Angeles, 
etc. 



898 National Computer Conference, 1975 

MOTIVATION 

Most students enroll in Continuing Education programs 
in order to advance their professional career. Depending 
upon the student's specific job responsibilities and upon 
his maturity, different approaches to the subject matter 
may be appropriate. Some Continuing Education pro­
grams try to strike some sort of balance between ap­
proaches so as to accommodate a broader range of par­
ticipants. Usmilly, however, it is possible to identify one of 
the following as being the major objective of the presenta­
tion and the major motivation for the participant. 

Depth 

The purpose of such a program is to present the latest 
advances in a highly specialized area. The student should 
have considerable familiarity with the general subject and 
desire to learn of the latest advances in the field. The 
instructor, usually a well-known authority in a specialty, 
supplies copious notes including information not readily 
available in the literature. The short course format is the 
most logical vehicle for such a course, and numerous 
universities and many private organizations offer such 
programs either on campuses or on a "road-show" basis. 
These courses are pitched to various levels of 
professionals, but most emphasize depth in exploring 
highly specific issues. During the academic year 1974-75 
UCLA, for example, is offering over thirty short courses in 
the Computer Science field alone. As described in more 
detail elsewhere, l approximately one half of these courses 
are taught by university professors while the other half is 
offered by recognized authorities in industry. Most of the 
courses run for five consecutive days, although there are a 
few three-day and a few two-week programs. 

Breadth 

Here the student generally desires to round out and at 
the same time update his technical education by taking 
college type courses. Most frequently, the material offered 
in the course is only indirectly related to his present work 
assignment, and the student looks to the course as an aid 
to changing his technical specialty or to advance himself 
within his organization. Although some of these courses 
may manifest a mathematical depth considerably greater 
than that found in most short courses, the general ap­
proach taken by the lecturer is to provide complete 
upon the latest advances. UCLA offers approximately 
twelve such courses in the Computer Science· area each 
academic quarter. Some of these are introductions to 
programming, but most correspond to courses offered to 
juniors and seniors in Computer Science during the regular 
school session. All of these courses are presented using the 
"periodic lecture" format, with class meetings of two to 

three hours every week for a twelve-week term. In general, 
the teachers of these courses are less distinguished than 
those offering short courses, and the tuition on a per hour 
basis is less than one-third of that for most short courses. 

Overview 

Here the audience is comprised primarily of middle and 
upper level managers and executives. Usually the student 
will have earned a Bachelor's or Master's degree in a 
technical area fifteen to twenty years earlier; but because 
of job pressures he has been unable to remain up-to-date 
and to explore newly-emerging technical disciplines. Such 
a student will expect to be briefed on the significance of 
new developments and to obtain a perspective over the 
interrelation of currently fashionable devices and tech­
niques. He is not interested in absorbing a large number of 
facts or in learning new skills. For this purpose the 
"retreat" format appears to be the most suitable. The 
manager physically absents himself from his job for a 
number of weeks and essentially emerses himself in a 
carefully planned and coordinated program. For many 
years, UCLA offered a program of this type entitled 
"Modern Engineering for Engineering Executives". Last­
ing from four to six weeks the program was offered in a 
resort-like location to a class of approximately thirty 
executives. More recently, a similar program has been of­
fered on a private basis to executives and managers of 
companies such as IBM, Boeing, Texas Instruments, and 
a number of others. 

CURRENT TRENDS 

Fifteen years ago most Continuing Education programs 
were of the "periodic lecture" variety. Today the short 
course format appears to be the most widely accepted. 
From the student's point of view a short course constitutes 
a welcome change of pace from his regular work 
routine-an opportunity to mingle briefly with his peers 
from other companies, and a stimulus to engage in self­
study. From the point of view of organizers of Continuing 
Education programs, a short course usually attracts a 
higher level and therefore a more affluent audience, and 
the compact scheduling of the lectures facilitates the ob­
taining of top-notch lecturers. The latter usually find 
short course programs far more lucrative than any other 
teaching opportunity. By contrast, the students usually 
find that a course offered along the "periodic lecture" 
format comes as an addition to his day-to-day responsi­
bilities, necessitating one evening of attendance and at 
least one additional evening of self-study per week. Such a 
course therefore requires a much longer-lasting and serious 
motivation than the short course. As a result, attendance 
at "periodic lecture" programs appears to be diminishing, 
while short course programs are on the ascendance. 



The Role of Continuing Education in Computer Science 899 

Another current trend is toward formal recognition of 
Continuing Education programs. A number of universities, 
including UCLA, offer special certificates for the comple­
tion of a specified number of Continuing Education 
courses. Throughout the nation the concept of the Con­
tinuing Education Unit, (CEU) is gaining increasing ac­
ceptance. One CEU is earned for every ten hours of Con­
tinuing Education class contact and provides a formal 

record and recognition of the student's participation in 
Continuing Education programs. 

REFERENCE 

1. Ingersoll, Alfred C., "Continuing Education and The Computer 
Scientist," The UCLA Computer Science Department Quarterly, 
Volume 2, Number 4, October 1974, pp. 13-20. 





The role of computer science minors in 
undergraduate and graduate curriculums 

by GERALD N. PITTS and BARRY L. BATEMAN 
Texas Tech University 
Lubbock, Texas 

It has been estimated that over 200,000 computer re­
lated jobs went begging in the United States in 1974 be­
cause of lack of qualified college graduates. Both Industry 
and Government are concerned about the lack of practical 
knowledge of college graduates. A national survey esti­
mated that 95 percent of all undergraduate business majors 
had to be re-educated to the tune of $8,000 each on the 
average before they could be considered productive 
workers. 

Many academic disciplines such as business, engineer­
ing, mathematics, etc., have recognized this problem and 
have begun to offer a limited number of computer-related 
courses in each discipline. These attempts have not been 
fruitful because of the lack of computer science expertise 
of the instructors. This is to be expected because a 
professional cannot be an expert in every academic field. 
In other words, engineers normally do not attempt to 
teach English, Biology, etc., in the Engineering discipline. 
It therefore seems reasonable to develop computer science 
minors for related disciplines, administered by the com­
puter science discipline exclusively. 

Many universities have developed computer science 
major disciplines, but few have concentrated on the need 
for computer science minor programs since the primary ef­
fort for most academic discipline developments is in the 
major course areas. Much effort goes into cultivating 
students with majors in computer science (in some cases 
"luring" students from related disciplines). Some 
generalized courses (non-major) are sometimes created to 
boost student credit-hours for the department such as in­
troduction and survey courses. This type of protective 
development further alienates related disciplines from 
computer science. 

Courses should be developed with specific related dis-

901 

ciplines in mind for providing the greatest benefit of com­
puter knowledge to that discipline. This type of course 
development (minor in computer science) such as 
developed at Texas Tech University, Lubbock, Texas, is 
inherently interdisciplinary. A program of approximately 
18 semester hours of computer science has proven to 
provide a sufficient base of computer science knowledge. A 
core of courses that include the most commonly used com­
puter languages (FORTRAN, COBOL, BASIC, 
ASSEMBLY) should be taken before more specific dis­
cipline-related courses are taken. The languages provide a 
basic understanding and appreciation for computer 
processing, logic, and applicability. Specific applicability 
can then be provided for each separate discipline. 

Not all computer-related jobs require the broad range of 
computer science knowledge which is normally provided 
to computer science majors, but basic computer 
knowledge applicable to the application area is of use. 
Students minoring in computer science at Texas Tech are 
encouraged to engage in actual practical application of 
computer knowledge of their particular discipline. Local 
industry has an indepth appreciation of the value of the 
computer science minor program at Texas Tech and are 
involved in hiring these students as well as providing feed­
back to the department about lacking areas. The Texas 
Tech Medical School utilizes a good many mathematics 
and engineering majors for computer operations, 
maintenance, programming and systems analysis. Several 
manufacturing firms utilize a large number of business 
majors for computerized accounting, inventory control, 
and production control program development and 
maintenance. Computer science minors in an interdisci­
plinary environment should be considered as a viable al­
ternative to computer science training. 





Computer science education for majors of 
other disciplines 

by J. A. ARCHIBALD, JR. 
State University of New York 
Plattsburgh, New York 

INTRODUCTION 

There is an old saying that a specialist is a person who 
"knows more and more about less and less." It would be 
nice to believe that that saying, if ever true, is no longer 
true. Our world does not consist of little, isolated problems 
and situations which exist totally independent of their sur­
roundings; it consists, rather, of a massive set of intercon­
nected and interrelated objects and events. While, on the 
one hand, practical considerations make it necessary to 
isolate subsystems for the purposes of conducting detailed 
study, on the other hand a subsystem cannot be fully 
understood without understanding its interfaces with and 
relationships to its environment and the other systems 
with which it is associated. Indeed, we are witnessing the 
beginnings of this type of interdisciplinary activity with 
the present levels of interest and trends in biochemistry, 
biophysics, and biomathematics, l as well as in some of the 
modern approaches to the study of the environment. Thus, 
we recognize that educational programs can no longer ad­
dress themselves to single, isolated disciplines. Indeed, the 
approach to higher education needs to be interdisciplinary 
to a degree never before appreciated. The present need is 
not for a scientist with a monolithic perspective who has 
majored in a traditional discipline in a traditional man­
ner, but rather a scientist with an interdisciplinary 
perspective who has studied in a broad, interdisciplinary 
program with an area of specialization. Computer Science 
must contribute, effectively, to broad, interdisciplinary 
programs for individuals specializing in a wide variety of 
fields. We must address ourselves to two primary 
considerations with equal vigor: the development of spe­
cialized understandings for the practice of Computer 
Science, and the development of generalized understand­
ings to aid in the practice of other disciplines. We must 
present a degree program that includes sufficient study in 
the other disciplines to enable the new practitioner to par­
ticipate effectively and innovatively with professionals 
from other disciplines in the solution of problems, and we 
must provide sufficient instruction to majors in other dis­
ciplines that they will be able to understand the rela­
tionships between the respective disciplines and the role 
and utilization of Computer Science in the solution of 
problems in their disciplines. In both cases) more em­
phasis needs to be placed upon interfaces. The need for 

903 

such action has been mentioned many times in the past.2
,3 

The responsibility of providing appropriate programs for 
majors was commented upon in an earlier paper.4 The 
second responsibility, Computer Science for majors of 
other disciplines, is discussed herein. 

THE NATURE OF COMPUTER SCIENCE 

Before we can really discuss the question of how Com­
puter Science interfaces with other disciplines (and 
therefore how Computer Science Education interfaces 
with education in other disciplines), we must get some 
idea as to just where the interfaces are. In some manner 
we must come to grips with exactly what is Computer 
Science. Regretfully, there is no universally accepted 
definition. In what follows, we will not supply a definition 
either, but rather present an indication of breadth. 

Professor Knuth has suggested that Computer Science is 
the study of algorithms.5 This suggestion is, regretfully, too 
narrow. Computer Science certainly includes the study of 
algorithms. It also includes the study of problem solving, 
the study of information, the application of algorithms to 
the solution of problems, and the design and utilization of 
devices capable of using algorithms to solve problems. 
Within the concept of the "study" of algorithms, we must 
certainly include the design, representation, translation, 
and (design and use of languages for) communication of 
algorithms. Within the concept of the "study" of informa­
tion, we must certainly include the nature and design of 
information structures, as well as the meaning of informa­
tion. 

There are some who will argue that Computer Science is 
a wholly contained subdiscipline of some other more 
conventional discipline, like mathematics or electrical 
engineering or business administration. (These trends 
have, in many places, led to the inclusion of Computer 
Science "sub-departments" within larger departments in 
more conventional disciplines.) These notions should also 
be rejected as being too narrow. Computer Science spreads 
out over several related disciplines, and shares with these 
disciplines certain sub-disciplines that traditionally have 
been located exclusively in the more conventional dis­
ciplines. Within this category are such things as numerical 



904 National Computer Conference, 1975 

analysis and statistics-included without the implication 
of removing them from mathematics. 

It is also possible to recognize within Computer Science 
certain types of conventional splits, such as abstract 
versus applied Computer Science, and theoretical versus 
experimental Computer Science. 

The point is that in the training of the interdisciplinary 
scientist with specializations in specific areas, broad views 
as to the limits of each discipline must be taken. Recogniz­
ing this, the practitioners of Computer Science, one of the 
newer disciplines, must be careful not to unduly limit 
themselves. 

THE DEVELOPMENT OF AN 
INTERDISCIPLINARY PERSPECTIVE 

A new philosophy, be it an interdisciplinary perspective, 
or any other type of departure, is not simply assumed by a 
static department-it must be planned for during a period 
of growth. When adapted in this manner, it influences the 
qualifications sought in new appointees, and gains 
permanence with the arrival of the new faculty. In the 
case of Plattsburgh State, the interdisciplinary require­
ments were recognized before the establishment of the De­
partment. A committee was formed from among interested 
members of some of the various departments with which 
computing is associated. Included were the Departments 
of Physics, Chemistry, Mathematics, Biological Sciences, 
and Administrative Science and Economics, as well as the 
Division of Education. The perspective of this committee 
was that of Computer Science as a supportive discipline to 
their own areas of interest. A Computer Science degree 
program was, at this time, of only secondary interest. With 
this perspective clearly in view, the committee set out to 
search for full-time (applied) Computer Scientists to be 
appointed to the new Department. In the search that 
followed, greater emphases were placed upon professional 
activity in industry, including experience and accomplish­
ments, than upon the more traditional academic activities. 
The two individuals who were appointed as a result of this 
search had a total of over twenty years of professional 
experience in industry, most of which was research 
oriented. Their formal educations, including advanced 
degrees, were in mathematics and physics. Their 
experiences were in the areas of numerical applications, 
nuclear physics, biophysics, physiology, and computing 
systems. The important point was that these individuals 
had an applications oriented, interdisciplinary perspec­
tive. The Department thus formed from the members of 
the old committee ( as part-time members) and the new 
full-time appointees was created with the desired 
philosophy. All subsequent additions have reflected this 
philosophy. Each new appointee has come not only with 
adequate academic credentials, but also with strong in­
dustrial experience. 

DEVELOPMENT OF THE SUPPORT PROGRAM 

At the outset, our perspective was Computer Science in 
support of the other sciences. This perspective was heavily 
physics oriented, and was concerned with several general 
types of tasks: 

1. the calculation of numerical approximations to the 
solution of systems of (partial) differential equations 
which exactly describe the activity of complex 
physical systems, 

2. the calculation and analysis of numerical approxima­
tions of systems of (partial) differential equations 
which form deterministic models that approximate 
even more complex physical systems, 

3. the development, verification, and use of stochastic 
(Monte Carlo) simulation models that approximate 
physical systems, 

4. the analysis of data obtained from measurements of 
actual physical systems, and 

5. the analysis of data obtained from the use of sto­
chastic simulation models of physical systems. 

Given these types of activities, it was obvious that our 
support program would need to provide certain very spe­
cial items: 

1. a thorough indoctrination in programming for scien­
tific applications (i.e., FORTRAN), 

2. a thorough understanding of the application of a wide 
variety of statistical techniques, and the utilization of 
established statistical procedures, 

3. a thorough understanding of the applications of a 
wide variety of numerical methods for the solution of 
algebraic and differential equations. 

With these requirements in mind, our first courses were 
established. At this point, they were intended primarily as 
support for students in science and mathematics-we had 
no degree program. Our initial courses were: 

1. Introduction to Computer Science I. This is a 
thorough course in elementary and intermediate 
FORTRAN programming-intended to prepare the 
student to make effective use of FORTRAN in sup­
port of other disciplines, with a side objective of be­
ing able to read the FORTRAN programs of 
others-with no intent to include more than the bare 
essentials of computing fundamentals. 

2. Introduction to Computer Science II. This is a course 
in advanced FORTRAN techniques plus a thorough 
indoctrination into the fundamentals of computing, 
and an overview of various aspects of applied Com­
puter Science. 

3. Computer Analysis of Statistical Data. This course 
was originally designed as a second course in statis­
tics, concentrating on the characteristics, signifi­
cance, and utilization of common statistical tests and 



Computer Science Education for Majors of Other Disciplines 905 

distributions studied through the use of experimental 
data. 

4. Simulation and Modeling. This course concerns itself 
with the formulation and utilization of models which 
represent various kinds of systems, and includes 
techniques such as Monte Carlo, as well as an 
overview of simulation languages. 

5. Introduction to Numerical Methods. This course 
provides an in depth study of certain numerical 
processes, with emphasis upon error analysis. 

With these courses, we were able to contribute, posi­
tively, to the major programs of students in science and 
mathematics. While the original thinking had been 
physics oriented, the various courses were widened to in­
clude applications from other of the sciences (specifically 
biology and chemistry). This was the result of two things: 
the natural exchange of ideas among the members of the 
Department (which included chemists and biologists) and 
the assignment to our students of independent projects 
from their major. Actually, the latter requirement resulted 
in the full-time Computer Scientists being involved with 
faculty members from outside of the Department. We 
were actively serving the needs of both faculty and 
students in other disciplines, such as biology and 
chemistry. In so doing, we found not so much a need for 
additional course content, but rather for a broadening of 
illustrative problems and examples. We did place more 
emphasis upon such things as probability and statistics, 
and the application of computers to genetics, community 
and population studies, chemical, physical, and nuclear 
reaction studies, determination of physical and chemical 
properties, ecological systems, and molecular structure 
studies. 

The full-time Computer Scientists also had their own 
perspectives widened by working with members of the Di­
vision of Education and the Department of Administrative 
Science and Economics, holding joint appointments in 
Computer Science, as well as with concerned members of 
the Department of Psychology. The thrusts here were pri­
marily statistical, and, to a lesser extent, simulation. The 
specific interests that the Department was led to as a 
result of these relationships were in the areas of business 
applications, artificial intelligence, linguistic analyses, eco­
nomic systems, and environmental studies. These led 
directly to the establishment of undergraduate courses in 
Non-Numeric Methods, Artificial Intelligence, and an In­
troduction to Electronic Data Processing (cross-numbered 
under Administrative Science). In addition, the Simula­
tion and Modeling course was cross-numbered in the Envi­
ronmental Studies program, and a graduate course was es­
tablished in Computer Applications in Education (cross­
numbered in the Division of Education). A summer work­
shop in the Simulation of Environmental Systems has also 
been arranged. 

The program for majors of other disciplines was then 
completed, at the graduate level, with the institution of 
two introductory graduate courses, one for in-service 

teachers who wished to upgrade their own competencies to 
be able to teach computing courses in high school, and one 
for liberal arts graduate students who wished to use com­
puters in research. Of necessity, as graduate courses,they 
contained a lot more of both breadth and depth than the 
undergraduate courses, including subject material from 
several different undergraduate courses in one package. 

The final event in the development of this interdisci­
plinary approach toward strengthening programs for ma­
jors of other disciplines came with the canceling of the 
statistics offering (Computer Analysis of Statistical Data) 
in favor of including the content in the Statistics offerings 
of the Department of Mathematics, and having it offered 
by a joint appointee. 

CONTINUING DEVELOPMENT AND PROSPECTS 
FOR THE FUTURE 

In more recent times, we have actively sought out 
colleagues of other disciplines to develop, jointly with 
them, an understanding of how computers may be effec­
tively used in their disciplines. We have also continued 
to collaborate on significant student projects. These have 
'given us the input that we need to keep our courses rele­
vant to the practice of these other disciplines. They have 
also resulted in our gaining some small degree of 
competence in the other disciplines-a result for which we 
are most grateful. 

In order to support this interdisciplinary thrust, we 
have also kept communication lines open with people in 
the industrial practice of the discipline concerned. This is 
done by building upon our personal contacts from our in­
dustrial careers, and through participation in professional 
meetings catering to audience groups beyond the college 
and university campus. 

RELATIONSHIP TO THE MAJOR PROGRAM 

As stated previously, the orientation of the Computer 
Science Department at Plattsburgh is toward applications. 
Accordingly, when the major was established, it was hoped 
that graduates would be able to make significant 
contributions toward the application of Computer Science 
to the problems of other disciplines. Thus, the support 
courses described above, plus an area of concentration 
from a quantitative discipline, were included in the degree 
requirements. The package was completed by the addition 
of certain courses intended only for Computer Science ma­
jors, e.g., Machine Language Programming, Programming 
Languages, Discrete Structures, and Operating Systems. 
This program has already been described in detail. 4 

It is noted that a new, business oriented program, is 
under development. 

CONCLUSION 

A major, and often neglected, responsibility of any 
academic department, is to provide a strong program of 



906 National Computer Conference, 1975 

support courses for the majors of other disciplines. If this 
is properly done, it can also form the basis for an applied 
major program. In a discipline with a high potential for in­
terdisciplinary applications, such an approach is essential. 

REFERENCES 

1. Proceedings, Symposium on the Mathematics of Large-Scale Simula­
tion, Society for Computer Simulation, 1974. 

2. Gaskell and Klamkin, "The Industrial Mathematician Views his 
Profession: A Report of the Committee on Corporate Members," The 
American Mathematical Monthly, Vol. 81, 1974. 

3. "Industry Reaction to Computer Science Education," SIGCSE 
Bulletin, Vol. 6, No.1, February, 1974. 

4. Archibald, J. A., Jr. and M. Katzper, "On the Preparation of Com­
puter Science Professionals in Academic Institutions," AFIPS 
Conference Proceedings, Vol. 42,1974. 

5. Knuth, D. E., "Computer Science and its Relation to Mathematics," 
The American Mathematical Monthly, Vol. 81, 1974. 



Data base education for students of 
management 

by R. CLAY SPROWLS 
University of California 
Los Angeles, California 

INTRODUCTION 

One major field of study in the Graduate School of 
Management at UCLA is in Computers and Information 
Systems (CIS). This major has evolved from a single 
course on Electronic Computers in Business introduced in 
1957 to one with more than a dozen courses devoted to 
some aspect of education about computers and informa­
tion systems. The Announcement of the School describes 
the program as "designed to provide students with the 
basic conceptual framework and tools of analysis 
necessary for the design, implementation and.control of in­
formation systems. These studies have the goals of train­
ing students to develop and implement management in­
formation systems-especially those using computers-for 
a variety of organizations both public and private .... In 
particular, the computer and the many technical advance­
ments th:at have accompanied its development have had a 
major impact upon information systems design. Therefore, 
students are expected to acquire a basic understanding of 
computer technology and terminology and a competence 
in computer programming. Beyond this, students may 
pursue studies in computer systems analysis, management 
of EDP activities, design of computer-based management 
information systems, modeling and computer simulation, 
and generalized data base' management systems." 

The Professional Master's Program (PMP) for students 
majoring in Computers and Information Systems in typi­
cally a two year program. The program consists of N u­
cleus studies, Common Knowledge Requirements, a 
Concentration in CIS and Electives. The depth and the 
breadth of the total program are indicated by the listing of 
the basic studies in each part of the program. 

Nucleus courses that are required of all students in the 
first year of the program are: 

Individual Decision Making 
Managerial Decision Making 
Complex Systems: 

Methods of Analysis 
Problem Identification and Solution 

The second year Nucleus is an Integrative Field Study 
Project that is of two quarter duration. Teams of students 
are placed in a consultant-client relationship with organi-

907 

zations to work on strategic management problems. The 
subject matter of the Field Study is not necessarily related 
to the students' Concentration. Many projects do deal with 
computer systems or information systems and they give 
additional experience to the student whose major interest 
is CIS. 

All students must demonstrate proficiency in the Com­
mon Knowledge Requirements. They embrace the follow­
ing studies: 

Accounting and Finance 
Computer Programming (APL) 
Managerial Economics 
Organizational Behavior 
Model Building 
Statistics 

Some of these are mini-courses that run for only half of a 
regular Quarter and carry only two units of University 
credit. 

The Concentration in Computers and Information 
Systems includes required and elective courses from 
among the following: 

Computer Data Processing 
Computer Programming Methods 
Computer Simulation 
Advanced Computer Simulation 
Simulation of Operational Systems 
Computer Systems Analysis 
Computer-Based Management Information Systems 
Data Base Management Systems 
Special Topics in Computing 
Information Systems 
Information Systems for Planning and Control 
Measurement in Information Systems 
Special Topics in Information Systems 

The topic of this paper-data base education-must be 
viewed in the context of the Concentration in CIS and the 
two year PMP program as they are briefly described in 
this introduction. 



908 National Computer Conference, 1975 

WHY DATA BASE EDUCATION? 

Data base management systems are an increasingly im­
portant aspect of commercial data processing activities. 
Prc.;ram products with names like ADABAS, DMS; 
EDMS, GIM, IDS, IDMS, IMS, REALITY, S2000, and 
TOTAL are being vigorously marketed by their vendors. 
Business firms and government agencies are committing to 
three to five year DBMS projects with price tags often 
running into the millions of dollars. It appears that every 
respectable business with any commitment to the com­
puter in its information processing activity is at least rais­
ing the question: "Should we go data base?" This environ­
mentis the professional constituency of the management 
school, especially that portion of the school that directs its 
attention to computer education. It now appears that 
every respectable management school with any commit­
ment to the computer in its program of studies may also 
have to raise a similar question: "Should we provide data 
base education?" This paper takes the position that the 
answer to the latter question is Yes. It withholds judgment 
about the answer to the first question. 

Computer science departments regularly teach about 
data structures. They even infer important uses of these 
structures for "data bases" and for "management in­
formation systems." Doubly-linked lists and rings and in­
verted lists are a part of the vocabulary of computer 
science students. Management students mayor may not 
get instruction about data structures. They may only be 
exposed to the sequential structures of the standard file 
processing approaches to business data processing that 
still so dominate. Yet, the commercial world for which 
they are preparing is moving in the direction of using these 
structures via data base management systems in imple­
menting computer-based information systems. Both 
groups, but especially the management students, need 
some education geared to the practical world of business 
where DBMS are already in place. A new era in data 
processing is emerging. It implies a new way to look at the 
role and use of the computer in business. It places a new 
demand upon the curriculum of management schools with 
any program now relating to computer education or with 
any program now being planned. 

THE DBMS COURSE OUTLINE 

The data base course that is part of the CIS Concentra­
tion has evolved from a Special Topics course first offered 
in 1967. Different offerings over the years have em­
phasized readings in the literature, student interviews with 
vendors about their systems, interviews with users about 
their experiences, etc. The DBMS course was institu­
tionalized to regular course status in about 1971. The 
major topics of the present course and the order in which 
they are presented appear in the following list. 

1. Contrast the application and the data base approach 
to data processing. 

2. Review data storage organizations with emphasis 
upon list structures. 

3. Develop a further rationale for data bases that use 
these data structures. 

4. Present an overview of DBMS characteristics that: 
(a) leads to a one page Student Fact Sheet with 

which to summarize any system; 
(b) summarizes different existing systems using the 

Fact Sheet; 
(c) underlies assignments to review new systems. 

5. Review the CODASYL DBTG Report of April, 1971, 
and subsequent extensions and recommendations for: 
(a) its relationship to systems studied in (4); 
(b) the record and set architecture recommenda­

tions. 
6. Design a student-sized data base with: 

(a) one application example worked out for use by 
all students; and 

(b) other examples from which students may select 
to develop their own data base. 

7. Implementation of the student data base including: 
(a) defining the data base in the DDL of one system; 
(b) preparing test data; 
(c) writing application programs using the DML or a 

query language available in the system; 
(d) loading a test data base on a computer and exe­

cuting application programs or queries utilizing 
the test data whenever and wherever access to 
the DBMS can be obtained. 

8. Review the role of the Data Base Administrator. 
9. Review the role of the Data Dictionary/Directory. 

The course is covered in one ten-week quarter. Suffice it to 
say that it is one Quarter of hard work. In its most recent 
offering in the Winter Quarter, 1975, twenty four students 
enrolled, with backgrounds ranging from those whose only 
computer experiences had been within the University to 
professional system analysts and programmers with as 
much as a decade of experience. 

A STUDENT DATA BASE 

The design of a student-sized data base (part six of the 
course outline) is a critical part of the learning experience. 
A project that includes design and implementation is the 
heart of the course. It is based upon the author's 
longstanding convictions that (1) computer education in 
management schools must involve the computer; and (2) 
that a project in which the student does something, 
however small, is a more valuable learning experience 
than reading about what someone else has done. This is 
especially true in the study of data bases where the initial 
question, "How do we begin?" is a major hurdle in DBMS 
development. 

The data base design starts with a short scenario about 
an application area. Management questions that demand 
data from the data base for management decision-making 
are posed. These yield the relationships and accesses that 



are necessary to define an initial data base. This initial 
design is then subject to a number of revisions, . some of 
which are necessary merely to keep the data base in 
bounds. An example is the purchasing function of a busi­
ness firm. It is used as a model for students to follow in 
the data base course while they develop their own data 
base from a similar scenario and questions in another ap­
plication area. 

The purchasing department of a firm is staffed with 
BUYERS who authorize PURCHASE ORDERS for the 
purchase of a single COMMODITY from a SUPPLIER. 
The supplier fills the order and sends an INVOICE to the 
purchaser for payment by a certain PA YMENT DATE. 

This scenario is obviously an oversimplification of the 
real business world. It is complicated enough to make an 
interesting data base and small enough to be wieldy. 
Management may ask a number of questions during the 
decision-making processes that arise in the purchasing 
function. A few simple examples are: 

1. What purchase orders has a buyer authorized? 
2. What purchase orders have been placed with a sup-

plier? 
3. What invoices are due for payment to a supplier? 
4. What is the invoice status of a given purchase order? 
5. What invoices are due to be paid on a particular 

date? 
6. What total invoice amount is due to be paid by the 

end of the month? 

These six questions are a very small subset of the very 
large number of queries that can be posed by manage­
ment. They are sufficient to develop a student data base. 

Each question implies both an entry point into the data 
base and a relationship between two entities in the data 
base. Other questions would imply relationships among 
more than just two entities. These would be dealt with in 
subsequent revisions. The accesses and relationships that 
stem from just the six questions are listed by question 
number. 

1. Enter at buyer and relate purchase orders to that 
buyer. 

2. Enter at a supplier and relate purchase orders to that 
supplier. 

3. Enter at a supplier and relate invoices to that sup­
plier. 

4. Enter at a purchase order and relate invoices to that 
purchase order. 

5. Enter at a date and relate invoices to that date for 
payment. 

6. Enter at the end-of-month date and relate invoices to 
all prior dates from today's date. 

A data base diagram of the different entities, data base 
entry points and relationships implied by the short 
scenario and the six questions is shown in Figure 1. Here is 
a first approximation to a data base design that derives 

Data Base Education for Students of Management 909 

BUYER 

INVOICE 

SUPPLIER 

PAYMENT 
DATE 

Figure I-Purchasing data base records and relationships 

from management data needs to answer management 
questions. 

Figure 1 implies different record types for Buyer, Sup­
plier, Purchase Order, Invoice and Payment Date. These 
must be fleshed out with data elements that are 
representative of management needs. Students are already 
used to defining them as a part of their other computer 
studies. After a number of iterations of the data base 
"design" a final decision is made that freezes it for the 
"implementation. " 

The next step is to select a DBMS and define the data 
base in its DDL. It is at this step that students may go in 
different directions, although as a practical matter', one 
might select one system as the "course system." The 
CODASYL DBTG Report and a CODASYL or 
CODASYL-like system is a place to start. Whether one 
agrees with its recommendations or with vendors who take 
a different view, the DBTG recommendations are being 
widely followed. The Report is having an impact and 
management students must be aware of this impact. If one 
follows the DBTG specifications, this means defining the 
Schema: the Record types. and the Sets. The data base 
diagrammed in Figure 1 has five different record types 
and (just incidentally) five different sets. 

The purchasing data base definition illustrates Owner 
and Member record types of DBTG. It has one Owner 
record type (Supplier) that is the owner of more than one 
set. It has two Member record types (Invoice and 
Purchase Order) that are a member in more than one set. 
It has one record type (Purchase Order) that is a member 
in one set and an owner in another set. The data base does 
not illustrate multiple record types in a set but this rela­
tionship is unnecessarily complicated in an initial student 
project. 

The owner-member relationships expressed by the set 
derive from the initial design that came from the manage­
ment questions. Students still have to deal with the set 
order, that is, whether the member record occurrences are 



910 National Computer Conference, 1975 

to be stored in a sorted sequence or whether new records 
will be added to the set in a time-dependent sequence like 
first-in/first-out or last-in/first-out. They must also deal 
with duplicate records and whether they will be permitted. 
They must deal with the possibility that member records 
should contain owner pointers and the tradeoff between 
the additional additional storage allocated to the pointer 
and the computer time to follow a chain of member 
records to find the owner. Although not a very practical 
consideration in a student data base, the question is 
nonetheless important. A number of CODASYL or 
CODASYL-like implementations are already being 
marketed. The data base description defined as records 
and sets is easily translated into the specific DDL of one 
of them. The exact forms of the DDL are spelled out in 
vendor manuals and these are usually readily obtainable. 

The next step is to define the data forms for the dif­
ferent record types and prepare test data. This in itself is 
a valuable learning exercise because the data must match 
the different entities in the data base. Buyer records must 
contain buyer keys and supplier records supplier keys that 
are known and will be used in the purchase order and the 
invoice. A purchase order must have valid buyer and sup­
plier keys. An invoice must reference a supplier that is de­
fined in the data base and the commodity and purchase 
order that are also defined. The payment date in an in­
voice must be a date that is in the calendar implied by the 
payment date record. Devising test data is a non-trivial 
task in the data base environment. 

Finally, the data must be loaded into the data base. 
Some systems provide load utility programs. For others, 
one must write load programs in, say, COBOL to enter 
data into the data base. Application programs can then be 
written using the DML or a Query language to process the 
data in the data base. This step obviously implies access 
to a computer. 

One can stop with a CODASYlrlike system. A richer 
educational experience is provided when different 
students can work with different systems. The purchasing 
data base has been defined in a number of different 
DBMS and is available to students as a model for them to 
follow. Two DBMS that provide striking contrasts with 
the DBTG architecture are ADABAS and S2000. 

ADABAS is a partially inverted file system and Figure 1 
implies only four different record types in it because the 
payment date in the invoice can be inverted to establish 
the access and relationship to invoices. The ADABAS 
notation is completely different from that of COBOL that 
is the basis of the DDL for most CODASYL-like systems. 
It provides a loader for the initial test data. It has a 
limited query language, ADASCRIPT. It contrasts also 
with the DBTG Schema by making many of the rela­
tionships in the application program or query through the 
inverted lists rather than in the data base description. 

The S2000 data base system forces one to revise the 
data base model shown in Figure 1 to accomplish the same 
accesses and relationships. The data base is defined in a 
single hierarchical format. One must decide what is to be 

at the top of the hierarchy. Supplier seems to be the 
logical choice for this place in the purchasing data base 
with purchase orders repeating for each supplier and in-
voices repeating for each purchase order. Since S2000 is 
also an· inverted system, access is established by defining 
certain data elements as keys. This includes the payment 
date in the invoice. The single hierarchical structure of 
S2000 places the buyer data in each purchase order so 
that, whereas it is separate in both prior systems, it is now 
a redundant item in each purchase order record. 

The point is that contrasting systems provide a richer 
educational experience. One can pick and choose from 
among a dozen systems to make the contrasts or avoid 
them as one sees fit. 

A critical assumption underlying the student project is 
that an operating system is available. Without access to a 
system, the project stops short of an implementation. An 
implementation on a computer is desirable but not 
necessary. The project can end with a description in the 
DDL, with test data and with simulated queries or ap­
plication programs. This is a valuable learning experience 
that suffers only because one is never quite certain that 
the data base is defined correctly, that the data will load 
and can be processed correctly. A project could stop short 
of even the data base description in the DDL of an exist­
ing system and still provide students with substantial 
learning. In this case, the DBTG Schema is probably the 
wisest choice because it emphasizes an approach that 
many vendors are following. 

In short, one may "implement" Part 6 of the course 
outline in a number of ways. Design of a simple data base 
from a short scenario and a list of questions is a must. 
Description in the DDL of some system adds a real-world 
flavor to the project. Loading the test data base and run­
ning application programs or queries against it is the ulti­
mate test that the whole data base really hangs together. 
The satisfaction that derives from this ultimate test is not 
present when one aborts the project at the design or 
descriptive stage. 

REACTION TO THE DATA BASE COURSE 

Student reaction to the data base course in its present 
form is consistently that it is a lot of work. The general im­
pression is also that the work is worthwhile because it 
provides an in-depth understanding of data base develop­
ment although on a small scale. This is in addition to 
rather broad knowledge about DBMS characteristics and 
the descriptive materials that abound. Computer science 
students, even in prior offerings have been known to say 
that for the first time they understood the importance of 
the different structures they had studied and why they 
had studied them in the first place. During the Winter 
Quarter, 1975, some students were initially turned off be­
cause the course materials presented to them were the 



next-to-final draft of chapters in a forthcoming book. 
Other students seemed to delight in finding errors in the 
same ch~pters. Student projects defined five different ap­
plication data bases in the DDL of nine different DBMS. 

The most recent "community" reaction is perhaps best 
summarized by the willingness of a number of different 
companies' to provide access to a DBMS on their com­
puter. Implementations that included loading data into 
the data base and accessing either with an application 
program or a query language included the UNIVAC DMS 
1100, ADABAS, S2000 and Xerox EDMS. Both vendors 
and users cooperated in this venture and programs have 
been run in both batch and terminal based systems. The 
support can be interpreted not only as support for this 
course but also for the general need for DBMS education 
in management schools. 

Data Base Education for Students of Management 911 

SUMMARY 

This paper takes the position that data base instruction is 
a necessary part of management education within the 
framework of broader computer and information system 
studies in management schools. It has presented the out­
line of a specific course that offers not only descriptive 
coverage of DBMS but insists also upon a laboratory 
project in which students design, describe, and implement 
one small data base in an existing system. Community 
support to provide access to systems so that students may 
load a data base and process it is both welcome and 
heartening. Perhaps this approach and some of its details 
will be useful to others who are thinking about data base 
instruction and how it should be a part of "Computer 
Education for a Computerized Age." 





Computers in architectural education 

byJENS G. POHL 
California Polytechnic State University 
San Luis Obispo, California 

THE "ART" OF BUILDING DESIGN 

It is perhaps difficult to understand that even today the 
design of the built environment is best described as an 
"art" rather than a "science." The designer or architect is 
an artist who relies heavily on creativity and intuition to 
solve technological problems. 

The individual components, such as structure, cladding, 
mechanical and electrical services, furnishings, fittings 
and finishes, which are available for the design and 
construction of buildings have all been developed and 
tested in a scientific manner and may therefore be 
classified under the heading of technology. However, the 
occupants of buildings are people whose behavior, needs 
and expectations are governed by innumerable social and 
cultural interactions, many of which are not easily de­
fined. The establishment and analysis of the interrela­
tionships between the large number of technological 
components and an even larger number of behavioral pat­
terns is the formidable task of the architect. Faced by the 
apparently insurmountable problem of analyzing (and 
perhaps optimizing) an almost incomprehensible number 
of largely undefined variables, it is no wonder that the ar­
chitect has in the past and continues today to use intuition 
(or shall we call it creativity) to overcome the shortcom­
ings of existing scientific methods. The fact is, that even 
today the range of operation research techniques available 
to the designer is entirely inadequate for solving, let alone 
optimizing, a complex building design system. 

Perhaps the design systems could be simplified? In the 
past, this appealing approach has led to some horrendous 
failures. Simplification may be achieved by reducing the 
number of variables in the problem system. However, this 
cannot be accomplished successfully without full 
knowledge of the relative importance of not only the 
variables themselves, but also the interactions between the 
variables. Unfortunately, the state-of-the-art in the social 
and behavioral sciences cannot provide the architect with 
a comprehensive set of defined variables, ranked or un­
ranked. 

The alternative approach, which consists of subdividing 
the design system into a large number of often complex 
subsystems (e.g., structure, environmental control, user 
functions, etc.) to be solved more or less in isolation, has 
been more successful. For example, this piecemeal ap­
proach would allow the natural and artificial lighting 

913 

design of a building to be completed independently of the 
design of the structural support system. There remains, 
however, the problem of determining the nature of the in­
terface between each of the subsystem solutions. 

It is this second approach which is in common use in ar­
chitectural practice today. Scientifically based procedures 
have been developed for solving many of the subsystem 
problems which make up the building design system. All 
of these procedures are readily computerized into interac­
tive and non-interactive software packages. Unfortunately, 
the integration of these separate solutions into one 
optimized design solution cannot be computerized prior to 
the development of considerably more sophisticated inter­
face procedures. Existing operation research techniques 
appear to be entirely inadequate for the optimization of 
large building design systems. 

COMPUTERS IN ARCHITECTURAL PRACTICE 
TODAY 

The adoption of even the most elementary computer ap­
plications in architectural practice has been slow. Faced 
with the overwhelming complexity of the design system, 
the architect has tended to assume the role of a coordina­
tor responsible for the integration of the various subsystem 
solutions mostly prepared by specialist consultants, such 
as structural engineers, electrical and mechanical 
engineers, building economists and construction engineers. 
This is particularly true for the design of large commercial 
buildings, where the final integrated design is very much a 
compromise solution based on fact, presumption and a 
considerable amount of intuition. The inability to rely on 
established numerical methods for the final and most im­
portant stage of the design process has made most ar­
chitects inordinately suspicious of all mathematically 
based design procedures. It is therefore only natural that 
the same suspicion should have carried over to the "com­
puter," which has in the past been represented to the ar­
chitect as a high speed calculator rather than a powerful 
data-processing and simulation tool. 

To make matters worse, a number of early computer 
users in the contracting field experienced critical setbacks 
in their efforts to implement computer-based operations. 
At times, this has led to the complete rejection of com­
puters as timesaving tools by individual contracting com-



914 National Computer Conference, 1975 

TABLE I-Typical computer applications in the building industry 

TYPE OF 
PROFESSIONAL SERVICE 

Regional survey: 

Land use planning: 

Transportation planning: 

Infra-structure planning: 

Building development 
feasibility study: 

Project time scheduling: 

Site analysis: 

Design brief development: 

Establishment of activity 
and space relationships: 

AVAILABILITY OF 
COMPUTER PROGRAMS 

Abundance of programs 
dealing with the anlysis 
of census and survey 
information. 

Inventory programs capable 
of classifying land charac­
teristics, mostly using 
overlay techniques. 

Large scale mathematical 
simulation models which 
enable user to experience 
visual movement through 
designed space, also over­
lay and support facilities 
analysis and design pro­
grams. 

Mostly design programs 
dealing with district 
heating, cooling, water 
supply and waste disposal. 
Programs dealing with the 
integration of services 
are as yet scarce. 

Programs normally based 
on local building regula­
tions and specific building 
types, such as residential 
and connnercial. 

Numerous programs 
available to analyze 
and update PERT networks. 

Contour analysis and cut 
and fill calculations 

Report generating programs 
with the ability to estab­
lish correlations, contra­
dictions, and omissions. 

Programs capable of form­
ing activity and space 
interaction matrices 

MOST APPROPRIATE 
COMPUTER FACILITY 

Batch-processing 

Batch-processing 
with access to 
plotter. 

Time-sharing with 
access to graphic 
display units for 
simulation programs. 
Batch-processing 
with acc~ss to plot­
ter for inventory 
and overlay programs. 

Time-sharing with 
access to graphic 
display unit desir­
able (Batch-process­
ing with access to 
plotter for some 
applications). 

Time-sharing 

Time-sharing 
(Batch-processing 
for large projects). 

Batch-processing 
with access to plotter 

Batch-processing. 

Batch-processing or 
time-sharing if input 
and output not large 



Comparative space 
groupings: 

Comparative heating-cooling, 
ventilation, lighting, acoustic 
and structural analyses: 

Preliminary cost analysis: 

Preparation of design 
drawings: 

Structural design: 

Environmental design 
(acoustics, lighting, heating­
cooling and ventilation): 

Design and integration 
of mechanical and electrical 
services: 

Detailed cost estimate 
based on design drawings: 

Preparation of 
specifications: 

Computers in Architectural Education 915 

TABLE I~(continued) 

Two and three-dimensional 
layout optimization 
programs. 

Increased availability of 
programs which establish 
environmental and struct­
ural design guidelines. 

Programs in which the 
accuracy achieved is 
related to the degree of 
detail of the input. 

Small number of recently 
developed programs allow 
graphic display unit to be 
used as sketch-pad. Pro­
grams are often linked to 
data bases incorporating 
fittings and standard 
drafting symbols. Abun­
dance of perspective 
programs with and without 
ability to delete hidden 
lines. 

Abundance of comprehensive 
and specific programs 
mostly directed toward 
structural analysis rather 
than design. 

MOstly batch-processing 
programs, although the 
number of interactive 
time-sharing programs is 
rapidly increasing. 

Many design programs, but 
very few deal with the 
relationships between two 
or more support services. 

Programs mostly owned by 
large design offices, 
construction firms and 
cost consu1tants. 

Complete specification 
service provided by 
specialist firms* 

Time-sharing 
(Batch-processing 
if user interaction 
not required). 

Time-sharing. 

Time-sharing. 

Time-sharing with 
access to graphic dis­
play unit for design 
process. Batch-pro­
cessing with access 
to plotter for 
presentation drawings. 

(Batch-processing for 
very large programs). 
Time-sharing. 

Time-sharing. 

Time-sharing (Batch­
processing with access 
to plotter for layout 
drawings). 

Time-sharing. 

Batch-processing with 
access to high speed 
printer. 



916 National Computer Conference, 1975 

Preparation of working 
drawings: 

Development of bidding 
strategies: 

Project scheduling: 

Equipment records and costs: 

Accounting, payroll and 
record keeping: 

Development of progress 
cost reports: 

Interior planning and space 
utilization reports: 

TABLE I-(continued) 

Few programs available to 
date, due to the require­
ment of comprehensive data 
bases incorporating materi­
als, fittings, doors, win­
dows and standard construc­
tion details4 

Small number of interactive 
construction management 
games, which enable the 
user to develop bidding and 
scheduling strategies on 
the basis of simulated 
condi tions. 

Large number of CPM and pre­
cedence diagram programs 
available. These programs 
are capable of generating 
calendar time schedules and 
allocating manpower and 
equipment resources. 

Resource leveling and 
allocation programs 
require large computers 
and are normally based on 
CPM network analysis. 

Many programs available, 
which are based on time card 
input and prepare payroll 
checks, financial statement 
and productivity reports. 

Programs normally record 
direct and indirect costs 
in various categories and 
prepare progress claims 
at monthly intervals during 
the construction phase of any 
size building project. 

Typical programs allow 
building plans to be trans­
ferred from drawings to com­
puter, to form the basis of 
new layout designs and their 
comparative evaluation (e.g., 
department stores). 

Time-sharing (prefer­
ably with access to 
digitizer to transfer 
dimensions and quanti­
ties directly from 
drawings to computer). 

Time-sharing. 

Batch-processing 
(time-sharing may be 
economical for small 
construction projects) 

Batch-processing. 

Batch-processing •. 

Time-sharing and 
batch-processing. 

Batch-processing in 
conjunction with 
digitizer to transfer 
existing layout from 
drawing to computer. 



panies. In most cases these teething problems can be 
traced to the existence of poor communication channels 
between the construction expert and the computer spe­
cialist. Typically, the computer specialist would embark 
upon the development of a program, blissfully unaware of 
th~ fundamental characteristics of the building industry. 
HIS only source of information would have been a 
construction expert who neither appreciated the type of in­
formation required for the production of a meaningful 
~rogram, nor had the ability to foresee the interpretation 
hkely to be placed on his information by the computer 
specialist. Inevitably, the end result was a computer 
program which did not save time and yet required the 
contractor to adopt a most costly office procedure. These 
unfortunate circumstances forced some early pioneers of 
computer applications in the building industry to become 
staunch supporters of traditional practices. 

Fortunately, today the question is no longer whether ar­
chitects should make use of computers, but rather, how 
can they best capitalize on existing computer capabilities? 

The typical computer applications listed in Table I are 
all related to the solution of subsystems within the overall 
building design systems. Applying computers to isolated 
tasks, in this manner, is not necessarily cost effective. The 
real benefits are obtained when these separate tasks are 
linked together by a common data base. Unfortunately, 
many obstacles stand in the way of the development of 
central data bases in the architectural profession. The flow 
of infor~ation in the building industry is complicated by 
the relatIvely large number of decision makers involved. 
The architect is only one principal in a large open system 
mcorporating the building owner, structural engineer ma­
terial supplier, fabricator, mechanical and electrical 
engineer, landscape architect, contractor and, in most 
countries outside the U.S., the quantity surveyor or build­
ing economist. Each of these decision makers speaks a 
slightly different language requiring a certain amount of 
translation.1 Simplification of the open system shown in 
Figure 1 by the addition of a central computerized data 
base (Figure 2), presupposes the existence of a high degree 
of standardization. It is only during very recent years that 

r-------- -
I 
I 
I :r 
I I -1 
II I 
II I 
II I 
II I 
I I 1 I 
I I II 
II II I: II 
II II 
I I ) I 

IL- --------------------------- : L _______________________________ ~ '-------~,~ 

Figure I-Typical open building industry system 

Computers in Architectural Education 917 

trends have become apparent, which suggest that the 
building industry is at last undergoing the painfully slow 
process of preparing and adopting uniform standards, 
codes, regulations, and documentation and information 
classification systems. 

ARCHITECT-COMPUTER COMMUNICATION 

Architects communicate most efficiently with scale 
drawings and sketches, and therefore require access to 
computer systems incorporating graphic devices, such as 
plotters, digitizers, light pens and cathode ray tubes. In 
addition, a high degree of interaction is desirable for most 
architectural computer applications. While interactive 
time-sharing systems are· now widely available to the 
building industry, computer graphics systems are thinly 
spread and relatively expensive. As far as the educational 
sector is concerned, few schools of architecture have access 
to even the most elementary graphics facilities. In the 
minority of cases where a university can claim a graphics 
capability, more than likely the utilization of this ca­
pability is severely limited by the absence of adequate in­
terface facilities between the graphics system and the 
other batch-processing and interactive time-sharing com­
puter facilities available on campus. 

Perhaps the architect's need for "interactive" computer 
systems requires further explanation. The design process 
involves long decision chains coupled with the progressive 
evaluation of information sets, in which each decision 
stage may affect both the type of information to be 
considered and the evaluation procedure. In this situation, 
there is a critical need for direct interaction between ar­
chitect and machine. Firstly, the architect cannot afford to 
pause in the decision sequence while cards are punched 
and a program is processed in batch mode. Secondly, the 
architect must be able to change the sequence of the deci­
sion chain without modification of the computer program. 
Ideally, the computer might become a partner in the 
design process, with the ability to respond intelligently to 
the proposals made by the architect. In the absence of 
computers with some degree of artificial intelligence, the 
interactive time-sharing system appears to provide the 
best vehicle for satisfying the rapid response requirement. 

SHOULD THE ARCHITECT "PROGRAM" THE 
MACHINE? 

Architectural educators have been asking themselves 
this question for some years now. Their task would be 
made so much easier if there existed a set of standard 
computer programs used on a day-to-day basis by the 
building industry. Unfortunately, the very existence of 
such standard programs would severely limit the applica­
tion potential of computers. Developments in design 
methods over the past few years have demonstrated the 
strong influence of computers in shaping the meth­
odologies of the 1980's. At the same time, present and 



918 National Computer Conference, 1975 

STRUC TURAL ENGINEER 

BUILDING OWNER 

MATERIAL 
SUPPLIER 

,----'------, 

ott er 

FABRICATOR 

LANDSCAPE ARCHITE.~ __ _ 
t;:;:==;:===:'\ 

~ 
ot ter 

~~ - - - - ------ -.- ---, 

~ 
10 t t er 

CONTRACTOR 

I , 
QUANTITY 

SURVEYOR 

Figure 2-A computerized information system 

future developments in computer technology are likely to 
provide the building industry with tools so powerful that 
they will have a profound influence on the scope and effec­
tiveness of the services offered by the practicing 
professional. It is essential that the architect should have 
direct input in this development process and actively par­
ticipate in the formulation and coding of programs, which 
will embody the most suitable planning, design and 
construction methodologies. The prospective building 
owner of the 1980's is likely to expect not one or two but 
eight to ten alternative design solutions for a major build­
ing complex, each alternative to be based on a detailed 
analysis of a large volume of accurate information. To 
achieve this standard of service, the architect must have 
access to comprehensive data bases and fast retrieval 
systems. There is no doubt that the computer will 
constitute the most inexpensive means of providing both. 

It would be a grave error to look upon the computer as 
no more than a high-speed desk calculator or super slide 
rule. One of the most inspiring capabilities of the com­
puter is its ability to "simulate" entire systems and 

perform long sequences of operations. The effect of a 
single computer program in influencing the end product 
will therefore be much greater than has been the case with 
the application of less powerful design and planning tools 
in the past. To ensure that the control of the various plan­
ning and design processes continues to be exercised by the 
designer, the latter will need to be actively involved in the 
development of computer programs. In short, the practic­
ing architect will require not only a general knowledge of 
computer systems, capabilities and limitations, but also a 
working knowledge of at least one computer language. Dis­
regard of this requirement will eventually lead to a serious 
loss of influence. and credibility of the architect. Unfortu­
nately, some minor symptoms of a lack of professional 
foresight and responsibility in this area are already today 
a fact of life. There is a sizable number of computer pro­
grams in use today, particularly in educational institu­
tions, which are of unknown origin, which have been sub­
jected to virtually no testing and which are based on 
unexplained and sometimes erroneous theories. To make 
matters worse, the untrained user tends to be extremely 



gullible and will often allow the most incredible computer 
results to override sound judgment based on experience 
and common sense. 

WHAT SHOULD BE TAUGHT? 

The need to train undergraduate architecture students 
in the computer field was first recognized by schools of ar­
chitecture in the middle 1960's. In those early years, most 
architectural educators with little or no knowledge of com­
puters found themselves at a complete loss to develop and 
implement in-house computer courses. Under these cir­
cumstances, it was found to be most convenient to place 
this responsibility into the eager hands of mathematics, 
science and computer science departments. In fact, it was 
most common at that time· as it is still today in some 
schools of architecture, for computer course material to be 
considered an adjunct to if not synonymous with 
mathematical topics, such as calculus. 

The Boston Computer Conference of 1964, the first 
formal gathering of computer enthusiasts in architecture, 
was attended primarily by a group of young architectural 
educators from the greater Boston-Cambridge university 
complex.2 These pioneers were looked upon by their senior 
colleagues, and indeed by the profession at large, as 
misguided theoreticians with a warped view of architec­
ture. Quickly the term "computer freak" was coined in 
academic circles, as a form of resistance to the possible 
insurgence of this new electronic monster into the inner 
precinct of architecture, namely the design process. 
Naturally, this atmosphere was not conducive to the 
systematic evaluation of potential computer applications 
in schools of architecture, nor did it lead to the careful 
structuring of effective computer courses. 

A decade later, with most of the early paranoia dissi­
pated, it is high time that architectural educators should 
re-examine the structure and content of existing computer 
courses. Which of the following instruction levels3 is most 
appropriate for architecture students? 

(1) A general descriptive course dealing with a variety 
of typical computer applications. 

(2) A descriptive course which deals not only with 
typical computer applications, but also provides the 
architecture student with a working knowledge of a 
number of existing computer programs. 

(3) A description-implementation course which also in­
corporates elementary computer programming. 

(4) A complete computer programming course incor­
porating also detailed application information. 

(5) A rigorous computer science course. 

In a general descriptive course (i.e., course (1» the 
student learns little or nothing about computer systems, 
but gains only a general knowledge of existing computer 
applications in the profession. This type of course tends to 
be ineffective and unconvincing, while providing the 

Computers in Architectural Education 919 

student with little information and no experience for 
hands-on operation at a later date. Although the student 
comes into direct contact with computers in course (2), he 
is forced to use programs which he does not fully under­
stand. This is a very dangerous situation and could easily 
lead to the acceptance of computer results without ade­
quatecontrol over the accuracy of the program. Course (3) 
allows the student to develop simple programs and under­
stand existing programs. Not only does this type of course 
emphasize the importance of checking programs for logic 
and syntex, but it also forces the student to define the 
problem in a definitive manner. This course meets most 
closely the special requirements of architecture students. 

Course (4) is more suitable as a follow-up elective 
course, for the interested architecture student who wishes 
to gain more in-depth computer knowledge for possible 
specialization after graduation. A rigorous computer 
science course (i.e., course (5» is not suitable for architec­
ture students at any undergraduate level, since it would 
unnecessarily make programmers of the students. 

WHO SHOULD TEACH? 

Many computer applications in architecture are so 
strongly interwoven in the design process, that the com­
puter is not just a tool, but an integral part of the design 
methodology. In this respect, computer applications often 
form the very basis of the development of new design 
methods. From this point of view alone, it is most im­
portant that the computer course should be offered in­
house rather than by an outside school or department. 
Moreover, computer service courses are normally offered 
to students in a wide range of majors, with the result that 
programming examples tend to have little direct relevance 
to any particular major. Experience has shown that archi­
tecture students, in particular, find it difficult to separate 
the programming aspects in advanced mathematical 
examples, since they are unfamiliar with both the 
mathematics and the computer programming. Finally, 
there is the important consideration of faculty participa­
tion in an in-house computer course. Not only does the in­
house course provide an 0pPClrtunity for faculty training, 
but it also encourages the integration of computer applica­
tions in concurrent and subsequent non-computer courses. 

A CASE STUDY 

The computer course presently offered in the School of 
Architecture and Environmental Design, California 
Polytechnic State University, San Luis Obispo, has been 
developed to meet the specialized requirements of under­
graduate students in architecture and related majors. The 
School of Architecture and Environmental Design is the 
largest school of its kind in t.\1e United States with a total 
enrollment of around 1500 students. While the school of­
fers undergraduate degrees in architecture, architectural 
engineering, city and regional planning, landscape archi-



920 National Computer Conference, 1975 

A RCHI TEe TU RE 

Figure 3-Computer course structure in the School of Architecture and Environmental Design of the California Polytechnic State University, 
San Luis Obispo 

tecture and construction engineering, the architecture 
program carries by far the largest portion of the enroll­
ment. All students are required to take a two credit unit 
computer course during their sophomore year. 

Approximately 120 students are enrolled in the com­
puter course each quarter. To avoid unnecessary duplica­
tion and yet retain a strong tutorial emphasis, the course is 
divided into a one hour lecture and a three hour tutorial 
sequence each week. The lecture is attended by all 
students concurrently, with the subject matter shared 

among participating faculty for presentation. In this man­
ner, each instructor is encouraged to develop his or her 
interest area into a comprehensive lecture series. 

The tutorial sessions are attended by approximately 24 
students and are intended to extend the lecture material, 
as well as provide assignment assistance on a group and 
individual basis. The course is designed to introduce 
students with no previous knowledge of computers and 
computer applications in architecture to the capabilities 
and limitations of computer systems and their utilization 



in environmental design, with the following specific objec­
tives: 

• To provide students with a general understanding of 
computer hardware and the peripheral units which 
are normally combined in batch-processing, interac­
tive time-sharing, remote job entry and graphical 
computer systems. 

• To explore the existing capabilities and limitations of 
computers in relation to existing and potential archi­
tectural applications. 

• To familiarize students with existing computer ap­
plications in architecture and, in particular, the range 
of computer programs available to students in the 
school. 

• To acquaint students with the esoteric vocabulary 
which has been developed as a byproduct of the 
growth of computer applications in all fields. 

• To provide students with a working knowledge of one 
computer language (e.g., FORTRAN IV, BASIC, 
etc.), to enable them to code relatively simple com­
puter programs and understand listings of existing 
programs. 

• To introduce students to procedures for defining prob­
lems and structuring information prior to computeri­
zation. 

• To familiarize students with computer program docu­
mentation and checking procedures. 

Emphasis is placed on the development of user 
experience by the student and the integration of this newly 
gained knowledge in concurrent and subsequent courses. 

While it is not intended for the architecture student to 
become a computer expert, follow-up elective courses are 
offered both within and outside the school for those 
students who wish to extend their knowledge in this field 
(Figure 3). 

Course content 

Computer languages, by and large, have been developed 
for scientists to facilitate the solution of mathematical 
problems involving complex and repetitious calculations 
requiring little input and output capability. Most archi­
tectural problems, on the other hand, require only a 
modest degree of computing power, but depend on the 
transfer of large quantities of data (i.e., numeric and 
alphameric) to and from the machine. In addition, the ar­
chitect has in the past and will continue to rely largely on 
graphical means of communication. To date no computer 
language specifically designed for the solution of archi­
tectural problems has been developed. 

If we follow the commonly accepted classification of 
computer languages into machine-oriented, procedure­
oriented and problem-oriented, then it is without doubt 
the procedure-oriented language which most closely fulfills 
the solution needs of an architectural problem. Of the half-

Computers in Architectural Education 921 

dozen or so major procedure-oriented languages available 
today, FORTRAN IV was selected to form the basis of the 
course. The principal reason for this choice being the 
availability of FORTRAN on almost every substantial 
computer system, today. From time to time, BASIC has 
come under serious consideration, not because of its sim­
plicity, but because it is often the only language available 
on low cost mini-computer and programmable calculator 
systems. 

The course, as it is taught now, incorporates ten lectures 
structured in the following manner: 

FIRST WEEK: Introduction: What are computers and 
how do they work? Computer languages and computer 
systems. 

SECOND WEEK: Fortran IV: Statement types; integer 
and real constants and variables; operators; functions 
and expressions; ARITHMETIC statements; STOP and 
END statements; PRINT statement (Watfor compiler). 

THIRD WEEK: Input and Output Statements: Example 
No.1 batch-processing program (Watfor compiler); 
READ, WRITE and FORMAT statements; time-shar­
ing terminals as input and output units; Example No.2 
time-sharing program. 

FOURTH WEEK: Transfer Statements: Unconditional 
GO TO statements; conditional IF statements; COM­
MENT statement (time-sharing and batch-processing); 
Example No. 3 time-sharing program. 

FIFTH WEEK: Graphics: Computer graphics in architec­
ture; large graphics systems, minicomputers and 
programmable calculators. 

SIXTH WEEK: Graphics (Cont.): Hewlett-Packard 9830 
graphics system. Site Planning: Computer application 
in site analysis and mapping; application of the GRID 
(batch-processing) program. 

SEVENTH WEEK: Site Planning (Cont.): Application of 
the GRID (batch-processing) program. 

EIG HTH WEEK: Repetition: The DO statement-acting 
as a counter-acting as a number generator-con­
trolled by program user; Example No.4 time-sharing 
program. 

NINTH WEEK: Arrays: What are arrays? Comparison of 
arrays and simple variables; DIMENSION statements, 
arrays in input and output statements; Example No.5 
time-sharing program. 

TENTH WEEK: Data Files: Data file input statements; 
data file entry under the EDIT subsystem; data storage 
and retrieval; Example No.6 time-sharing program. 

These lecture topics are strongly reinforced by tutorials, 
during which the subject matter of the previous lecture is 
extended by suitable programming examples, typical 
executions of existing programs, films, demonstrations of 
in-house computer facilities and visits to the University 
Computer Center. 

In addition, students are required to submit one assign­
ment each week. All of the assignments require access to 
the University computer facilities with emphasis on the 



922 National Computer Conference, 1975 

**ASSIGNMENT NO. 8** 

Develop a TIME-SHARING computer program capable of estimating 
construction costs based on the name, quantity and unit cost 
(1. e., rate) of each material nominated by the user. 

Program to calculate individual material costs and provide a 
total cost estimate for the building. 

(Limit program to a maximum of 20 materials and 20 characters 
per material name.) 

Build a safeguard into the program so that unit costs (Le., 
rates) cannot exceed $100. 

Figure 4-Typical computer programming assignment 

interactive time-sharing system. Assignment topics cover a 
wide range of architectural subjects and include program­
ming exercises (Figure 4), as well as the execution of a va­
riety of existing programs (Figure 5). 

Support material 

At the time of implementation of the course a review of 
available publications revealed a singular lack of any 
comprehensive computer textbook suitable for under­
graduate architecture students. Existing texts could 
generally be divided into three categories. 

DESCRIPTIVE texts written for the practicing architect, 
which describe areas of architectural utilization of com­
puters, but do not address themselves to problem defini­
tion and programming. 

USER-ORIENTED texts written for computer users in a 
number of disciplines, such as engineering, social 
science and psychology, but not architecture. 

SPECIALIST computer science texts. 

To overcome this problem, a textbook incorporating 
both a description of computer. hardware, computer 
systems, implementation alternatives and elementary 
FORTRAN IV programming was prepared and published 
by faculty instructing in this area.4 

During the early implementation period of the course, it 
was recognized that the type of computer program useful 
to the building designer could not be developed by the ar­
chitect during the design process. Therefore, to facilitate 
the integration of computer applications into all phases of 
the architecture degree program, the school immediately 
embarked upon the establishment of an architectural 
program library. With an abundance of batch-processing 
computer programs commercially available from other 
educational institutions and industry, the limited need for 
this type of non-interactive program was soon satisfied.5 

Unfortunately, the same situation did not apply to interac­
tive time-sharing software. Even today, there is a singular 
lack of commercially' available architectural time-sharing 

programs, and the few programs which are offered for sale 
by computer service bureaus are well outside the financial 
means of the entire California State University and 
Colleges System, let alone an individual school. Faced 
with this situation the School of Architecture and Environ­
mental Design undertook the time-consuming task of 
software development. Over a period of two years faculty 
and senior students were able to develop more than 20 
major interactive time-sharing programs, ranging from the 
design of environmental control systems (i.e., natural and 
artificial lighting, acoustics and heat transfer) to 
structural analysis, computer-aided design and construc­
tion management games. Each program is carefully docu­
mented (i.e., program name, language, author, disclaimer, 
program description, limitations, operating instructions, 
input and output, theoretical basis) and, after a period of 
testing, groups of programs are formalized into printed 
manuals.6 These manuals are available to students at 
production costs through the University bookstore. The 
school has now obtained approval from the University to 
market these computer programs commercially, and it is 
hoped that in the near future sales profits will in 
themselves sustain the entire program development opera­
tion. 

Computer facilities 

The school presently has access to the following com­
puter systems: 

1. BATCH-PROCESSING (LOCAL): IBM 360/40 
computer system with 180 K (approx.) core storage, 
1100 lines per minute printer, 1000 cards per minute 
reader, 300 cards per minute punch, three disc 
drives, controller and tape drive. 

2. TIME-SHARING (BATCH OR RJE): IBM 360/20 
computer system with 8 K core storage, 315 lines per 
minute printer, 120 cards per minute reader and 90 
cards per minute punch, which serves principally as 

""ASSIGNMENT NO.7"" 

Use the TIME-SHARING program HEAT1 to determine the number of air-changes 
required to maintain a temperature of 85°F inside of building space which 
has two (2) surfaces (i.e., east and south walls) exposed to direct solar 
radiation. 

SURFACE LENGTH WIDTH IIINDOWS CONSTRUCTION ""EXT. AIR 
(HEIGHT) (YES/NO) AREA (OF WALL) TEMP. 

east wall 20 ft. 12 ft. yes 

south wall 30 ft. 12 ft. 

*(Design your own system 0'£ construction) 

*" (Air temperature in shade is 83
0

F) 

80 ft
2 

"(free choice) 140
0

F 

"(free choice) 1200 F 

How many air-changes are required to maintain a temperature of 75°F inside the same 
building space? 

Figure 5-Typical assignment requiring the execution of an existing 
computer program 



Computers in Architectural Education 923 

CONNECT TIME LIMIT FOR 7 PORTS 

,5600 

51.00 

5200 I 

I 5000 

1.800 I 
1.600 J\ I ( 

'400 
/ \ I 

7 \ I 1.200 

'000 
)\ 7 \ I 

3800 / \ 7 \ I 
/ \ I \ I 3600 

.AI \ / \ I 31.00 
~ \ / Y ~ 3200 

\( \ I " ....... Un i ver si ty 
3000 

\ I 2800 

2600 
V 

2/,00 

2200 
57% 69% 51% 61% 70% 80% 1.3% 90% (Port utilizatiDn)-1 

2000 39 % 

1800 / ... 35 /0 / 1600 ~ 

~ 1400 / \ / 
-' 310/0; 7 \ / ..... 7200 

7 \ ~ t-- 1000 
(.J 1 ~o/() I 38o/~1f \ UJ 800 
<: ) '2 ,)0/0/ 

1(21% "- .. School of Architecture & 
<: 600 
<::> / "-. ~ Envircnmental Design 
lJ 400 .3 / . 

200 
6% 

tI) 
~ Q:: 

::x:: 
F'72 W'73 Sp'73 S'73 F'73 W'71. Sp'71. S'71. F ' 71. Time Period .2 

*1 7 Ports ? va ilabl e .an av~rage of 13hr s. per day for 7 days a week. 
*2 Each tIme perIod IS equal to 9 e f f e c t i v e ins t r u c t i 0 na I week 5 • 
*3 Percentage of to fa I unil(ersity time- sharing usage. 

-
Figure 6-Time-sharing computer usage by the School of Architecture and Environmental Design at the California Polytechnic State University, 

San Luis Obispo 



924 National Computer Conference, 1975 

a Remote Job Entry terminal to the State University 
Data Center CDC 3300 dual processor installation. 

3. TIME-SHARING (INTERACTIVE): Central time­
sharing network supported by a CDC 3170 dual 
processor computer installation located at California 
State University, Northridge. Of 96 ports distributed 
among the 19 campuses of the California State 
University and Colleges System, seven (7) ports are 
available on this campus. 

4. GRAPHICS: Until recently the university leased an 
IBM 2250 graphics terminal connected to the local 
IBM 360/40 computer system. This has now been re­
placed by a mini-computer graphics system consist­
ing of a PDP 11/35 processor, two display tubes and 
a 36 in. CAL-COMP drum plotter. A second CAL­
COMP plotter is presently supported by an IBM 
1130 computer system at a nearby community 
college, under a limited time exchange and verbal 
agreement. In addition, the school owns a Hewlett­
Packard 9830A programmable calculator which sup­
ports a digitizer, plotter, cassette tape unit and 
printer. 

The utilization of these facilities by the school has 
increased steadily during the past three years. However, 
by far the most dramatic increase in usage has been in the 
interactive time-sharing field, where the school now uses 
over 40 percent of the entire time-sharing capability 
available to the University (Figure 6). This extraordi­
narily high usage level has been achieved despite the satu­
ration of all computer systems on campus and the 
presence of strong computer science and engineering de­
partments. 

PROJECTIONS FOR THE YEAR 1980! 

By far the most critical problem facing the continued 
development of computer applications in the School of Ar­
chitecture and Environmental Design at the California 
Polytechnic State University, San Luis Obispo is the com­
plete inadequacy of the existing computer facilities 
available on and off campus. Despite the frequent break­
down of teletype and CRT terminals, the university nor­
mally achieves a time-sharing port utilization in excess of 
85 percent. At the same time, job turnaround times on the 
RJE and local batch-processing systems are in the order of 
10 to 15 hours and often reach 30 hours toward the end of 
each academic quarter. 

Conservative estimates based on a detailed analysis of 
courses offered by the school indicate that by 1980, archi­
tecture students will require approximately 1,000 time­
sharing connect hours per week (i.e., 40,000 hours per 
year), with access to at least 58 ports (i.e., based on 17 
hours of time-sharing availability per day). These esti­
mates presuppose that the time-sharing system will have a 
graphics capability, supported by suitable input-output 
devices at each fifth port. 

In addition, by 1980, the availability of large data bases 
will have become an integral component of architectural 
computer applications. The full utilization of such data 
bases will require greatly improved system interfaces, to 
facilitate the transfer of data from one computer system to 
another. For example, a user will expect to be able to ac­
cess a regional land-use data base on an interactive time­
sharing system, transfer a sizable parcel of information to 
a larger computer system and process this information us­
ing a data analysis program of the capability of SYMAP, 
in batch mode. 

It would appear that university computer center 
managements, in general, are not fully aware of the im­
plications of an almost explosive increase in computer 
usage by non-computer science students. There is no doubt 
that during the next decade computer science depart­
ments, which now hold the privileged position of principal 
computer user on most campuses, will relinquish this posi­
tion to users of library programs, such as students major­
ing in social and behavioral science, business administra­
tion, agricultural science, engineering, medicine, biological 
sciences and architecture. This change in user distribution 
will necessitate university computer centers to broaden the 
scope of their services by providing increased assistance to 
non-computer science users. Moreover, some attention will 
need to be given to the streamlining of job entry 
procedures. For example, in the California State 
University and Colleges System students wishing to access 
library programs under the RJE batch system are nor­
mally required to submit at least five control cards with 
each job (e.g., the SYMAP program may require up to 20 
control cards). Needless to say, the architecture student 
learns absolutely nothing about environmental design by 
struggling with the interpretation, punching, assembly and 
debugging of half-a-dozen unnecessary control cards. 

From a more radical point of view, consideration might 
be given to the complete reorganization of computer 
facilities in universities. At the present time, university 
computer centers carefully guard their right to centralize 
computer facilities, in particular processors. It may be dif­
ficult to continue to uphold this policy in the 1980's. 
Processors are neither the most expensive components of a 
computer system, nor do they normally require a great 
deal of maintenance. Peripheral devices, such as line 

. printers and plotters, on the other hand, account for a 
sizable proportion of both capital and maintenance costs 
of a computer system. It may be argued that centraliza­
tion of these units in a computer center, accessed by 
pro<{essors distributed around the campus, could 
contribute greatly to a more flexible and user responsive 
computer service. 

REFERENCES 

1. Reiners, W. J., "Computers in Building," Building, Vol. 219 (6656), 
Dec. 11, 1970 pp. 131-44. 

2. Miller, W. R., "Computers in Architecture," Datamation, Sept. 15, 
1971 pp. 20-6. 



30 Gero, J 0 So, "Computers and the Architecture Student," R.A.I.A. 
News, April 1970, Royal Australian Institute of Architects, Sydney, 
NoSoWo, Australiao 

40 Pohl, Jo Go and Jo Conrad, User-Guide for Computers in the Archi­
tectural Profession, 1974, Published by the authors-547 Stanford 
Drive, San Luis Obispo, CA 93401. 

Computers in Architectural Education 925 

50 Chapman, Ao Jo, User-Guide for Architecture Students-Batch Com­
puter Programs, Vol. 1, 1974, EI Corral, California Polytechnic State 
University, San Luis Obispo, CA 934070 

60 Pohl, Jo Go, User-Guide for Architecture Students-Time-Sharing 
Computer Programs, Vol. 1, 1974, EI Corral, California Polytechnic 
State University, San Luis Obispo, CA 934070 





Making computers safer 

Area Director: 
Donn B. Parker 
Stanford Research Institute 
Menlo Park, California 

As computer technology accelerates in use and application, the supportive 
functions that make the technology safe to use lags behind. Four of these func­
tional areas are to be addressed by sessions in the conference. 

The need for attention to be given to these areas has become real and threats 
have increased to the extent that great harm to people, organizations, and insti­
tutions has been experienced already or is imminent. This is occurring as com­
puters proliferate into sensitive and vital parts of society. This computerization 
of many activities has often inherently increased the safety of performing those 
activities without any special effort or concern for safety. However, people and 
organizations are not prepared to cope with new hazards computer technology 
has created. But in all areas of penetration by the computer, at least the 
potential for increasing safety and well being has increased many-fold. It 
remains for scientists, technologists, and decision-makers to exploit that 
potential to elevate the safety and well-being of society to new heights. 

At this conference, an opportunity to engage in information and opinion ex­
change on making computers safer will be provided in sessions in the areas of 
technological methods, good practices in computer environments, auditing and 
professional responsibilities. 

• Technological methods of making computers safer are foreseen as the 
result of long term research, but the time lag between research solutions 
and general use is discouragingly slow. 

• Good practices in computer environments is basic to the safe use of data 
processing facilities. Documentation of good practices such as the new 
AFIPS System Review Manual on Security, to be closely examined in this 
session, could be the best means of establishing general use of ,good 
practices. 

• Auditing must be recognized as an essential function within the computing 
environment to assure management that safeguards are adequate in data 
processing. 

• Professional responsibilities in making computers safer take many forms 
including certification of knowledge, licensing, establishment of 
competence, ethical considerations, employee responsibilities and the 
societal image. 

All those issues make up our look at this problem of making computers safer. 

927 





Secure computer operation with virtual 
machine partitioning 

by CLARK WEISSMAN 
System Development Corporation 
Santa Monica, California 

BACKGROUND AND MOTIVATION 

In an earlier paper,! I noted the extremes to which one 
commercial company, System Development Corporation 
(SDC), has. gone to satisfy its disparate security/privacy 
requirements; this may be typical of at least one-half of 
the industry. In brief, the solution is to have two CPUs; 
six different operating systems, including two custom 
products; six user classes from research and development 
to a Corporate Management Information System; and four 
blocked-time periods, i.e., Periods Processing, per ma­
chine. This distasteful Periods Processing (PP) solution is 
the only choice for demanding facility operators, short of 
not processing sensitive data, and the only one accepted 
by the U.S. Department of Defense. 

PP is economically and procedurally unsatisfactory, 
wasting under-utilized machine and human resources, and 
disruptive to normal job flow, turnaround, and personnel 
productivity. A sound economic solution is offered by 
multiprogramming systems; however, they are unaccepta­
ble because they have demonstrated vulnerability to acci­
dental data leakage and planned intrusion.2 Clearly, a 
single system that satisfies the comprehensive security 

-requirements of (1) foiling data theft, (2) system corruption 
attempts, and (3) denying legitimate service by sabotage of 
military secrecy, government privacy, industry proprietary 
and individual civil rights applications is beyond today's 
state of the art.3 A compromise solution between the 
extremes of PP and shared resource multiprogramming is 
needed and is within the reach of current technology. 

The compromise solution is not relaxed standards for 
system security, but diminished user-process functionality. 
If user processes cannot share data nor inter-communicate 
in any manner, but can only share the physical bare 
hardware, an incorruptible multiprogramming system can 
be built. And that system will be a useful alternative to 
PP. It is the thesis of this paper that Virtual Machine 
(VM)4 executive software is just such a compromise 
solution. 

A VM-based system ruggedly isolates possibly hostile 
user processes by encapsulating them in individual VM 
environments that limit data sharing, interprocess (i.e., 
inter-VM) communication, flaw propagation, and exploita­
tion from other VM "partitions." The strength of this 
thesis was tested in a recent, joint experiment by IBM and 

929 

SDC, using VM/370. Methodology and results of this 
experiment are described elsewhere,5 but summarized 
later in this paper, as the basis for a security-Hardened, 
No-Sharing (HNS) retrofit version of VMl370. But first, let 
us look more closely at the characteristics and the trade­
off advantages and disadvantages of PP and VM. 

PERIODS PROCESSING AND VIRTUAL MACHINE 
DESCRIPTIONS 

In PP security, a physical security perimeter is estab­
lished to encapsulate a given computer environment from 
external threats. All boundary crossings are carefully 
examined and regulated by human and machine devices. 
Analogously, with VMs, a security perimeter, i.e., a VM 
environment which restrains that process from breaking 
through the security perimeter of any other VM, is 
established around each user process. All boundary cross­
ings are interprocess calls and context (i.e., job) switches 
between a VM and the executive Control Program (CP). 
Such crossings are regulated by software and machine 
devices. 

Neither security scheme mentioned above is perfect: 
humans fail; machines fail; software fails; security fails; 
interlopers mount more sophisticated attacks. Each secu­
rity scheme has advantages and disadvantages. 

Periods processing profile 

The Defense Contracts Administration's Industrial Secu­
rity Manual and numerous commercial publications define 
good practice for PP facility operation. There are four 
important elements. 

Physical perimeter 

A physical perimeter is established to enclose the 
restricted area. Fences and walls are built. Special vaults 
are created to store sensitive media. All entry is controlled 
through established checkpoints. For higher degrees of 
security, electromagnetic radiation leakage from the area 
is reduced by shielding. Where denial of service threats 
are of concern, self-contained power, air conditioning, 



930 National Computer Conference, 1975 

water, and other consumables are established and stock­
piled. Finally, emergency equipment (e.g., fire retardants) 
are provided to detect, alarm, and treat hostile conditions. 

Clearance level setup 

When the restricted area is to be dedicated to a 
classified level, the area is procedurally raised to that level 
in designated steps. First, all uncleared and unauthorized 
personnel are removed from the area. All unclassified 
media are filed or inventoried and, in all cases, clearly 
labeled. The computer is stopped, the job stream aborted, 
and a ritualistic memory cleansing begun. The computer 
and its telecommunications configuration is changed, as 
necessary, to sever any direct physical link to areas 
outside the security perimeter. Dial-up phone equipment is 
disabled or switched to encryption mode. At this point, the 
area is sealed off and clearance is raised to "system high." 
The vaults are opened; classified media are removed; the 
classified system master is loaded from the vault-stored 
tape or disk library; and the classified job is run, stand­
alone. All input media have been previously inventoried; 
any job-produced output subsequently is labeled and 
inventoried also. 

Access controlled perimeter crossing 

All users, I/O media, or digital communications crossing 
into or out of the restricted area are scrutinized for 
identity, authentication of identity (e.g., badge or key), and 
authorization (i.e., clearance). All media are labeled and 
logged; digital communication is encrypted. 

Sanitization between time periods 

After each classified job, the area must be "sanitized" 
for the next user by destroying all memo~y residue of the 
prior job. If the next job is also classified at the same 
level, clearing memory, and I/O media control is sufficient. 
If the area is to be downgraded, then the inverse of 
clearance level setup is employed. Waste is destroyed; 
media are logged and vaulted; memory is cleared, includ­
ing the typewriter and printer ribbons, and equipment is 
reconfigured. 

It is important to realize the inconvenience and cost of 
these PP -procedures. Setup and sanitization times typi­
cally run 30 minutes, with the CPU idle and unusable for 
that time. In addition, the "uniprogramming" mandate 
underutilizes the CPU further, and all that CPU waste is 
charged to the classified user and eventually back to his 
employer or contract. But that is not all; further 
uncalculated costs are borne by that user in a i2-to-24 
hour turnaround time since PP, typically, is twice a day 
(morning and evening). Then, there are the costs to the 
unclassified users who are unable to use the facility during 
PP, or were disrupted by PP during their prior use. 

VM /370 characteristics 

An alternative PP mode of computer operation, which is 
used at some large facilities having multiple machines 
available, is to dedicate the different machines to different 
security levels, and to operate each one at its level 
continuously all day. This mode saves all the set-up and 
sanitization time and permits some multiprogramming of 
like-clearance jobs. This multiple machine mode of opera­
tion is primarily the thesis of this paper in the sense that 
the physical machines are replaced by virtual machines. 
The virtual machines are simulated on a single-equipment 
configuration, thereby making the benefits of the security 
scheme available even to small installations. 

The heart of VMl370 is the Control Program (CP) that 
divides the S/370 hardware, by simulation, into a multiplic­
ity of virtual machines that are identical in program 
execution to the bare S/370 hardware. A VM has a virtual 
CPU, virtual memory, virtual I/O channels, virtual devices 
such as "minidisks," and virtual unit record equipment, 
i.e., spooling. The CP can configure the VMs differently, 
based on a directory-stored definition of each VM. It 
dynamically maps and simulates these virtual resources on 
the physical hardware. 

Because the VM acts as a bare S/370 machine, a VM 
user can operate any software that runs on S/370, includ­
ing applications, DMS, and other operating systems (gener­
ically noted herein as VMOS), such as: OS, DOS, VS, and 
even the CP itself. (This recursive VM property is of 
theoretical and practical R&D interest as a completeness' 
test of a system's security architecture.) Conventional 
operating systems do not have this capability. The CP 
displays an unusually "clean" interface that is unambigu­
ously and identically presented to each VM user process. 
It is conceptually simple, small, and contains little more 
than is necessary to simulate and allocate S/370 hardware 
resources equitably among the concurrently operating 
VMs, i.e., multiprogrammed S/370. Furthermore, unless 
special intercommunication provisions are made in the CP 
or in VM configuration definitions, each VM is an 
independent machine, isolated, compartmented, unaware 
of any other VMs, and potentially able to operate at 
security levels different from other VMs in a manner 
analogous to 'the physical, multiple machine, PP security 
mode mentioned previously. 

VM and PP comparison summary 

Figure 1 illustrates the salient characteristics of VM and 
PP modes of secure facility operation. Right and left 
diagonals of the Pros and Cons Matrix summarize the 
tradeoffs between the security schemes. 

PP offers DOD acceptance, standard OS systems with 
the best OS performance compared to VM's restricted 
VMOS capabilities needed to suppress sharing features, 
performance loss to CP overhead, and added equipment 
investment, including multiple unit record gear and more 
disks needed to avoid sharing. However, VM can yield 
lower operating costs through shared-use multiprogram-



Secure Computer Operation with Virtual Machine Partitioning 931 

VM PP 

MULTI-PROGRAMMING BEST OS PERFORMANCE 

PROS LOW O&M COST LOW INVESTMENT COST 

SHARED COST/USER STANDARD OS CAPABILITIES 

OPS CONTINUITY 000 SOP 

PERFORMANCE LOSS/VMOS STANl)-ALONE 

CONS ADDED INVESTMENT COST HIGH O&M COST 

RESTRICTED VMOS CAPABILITIES HIGH USER COST 

NEED ACCREDITATION OPS DISRUPTION 

Figure I-Salient VM and PP tradeoffs 

ming and continuity of operation. The avoidance of 
operational disruption to set up and sanitize PP is 
considered the greatest asset of VM in facility manager 
and user convenience. 

STEPS TO SECURE COMPUTER OPERATION WITH 
VM PARTITIONS 

Current virtual machine systems are not secure. There 
are no Secure SubSystem (S3) applications; systems opera­
tors, programmers, and maintenance personnel have 
greater knowledge and an increased opportunity to attack 
the system than the transaction-oriented applications 
users. Figure 2 assimilates these facts into a feasible long­
range, four-stage strategy to secure, virtual-machine-based 
multiprogramming computer operation. 

Stage 1: physical perimeter 

Stage I establishes the physical security perimeter for 
PP previously described. Stage I is the important physical 
security foundation for the later stages, which introduce 
procedural and software controls to partition the physical 
perimeter into multi-level security environments. 

Stage II: composite perimeter 

The objective of Stage II is to supplement and extend 
the physical perimeter with procedural controls that divide 
the user population into two disjoint classes: system users 
and application users. For a given installation, no individ­
ual should be a member of both classes, nor should system 
and application users be permitted to use the computer 
concurrently. Each class should have its own PP or 
dedicated machine. System users should always operate 
with a stand-alone system to protect them from one 
another. However, applications users may be allowed to 
run multiprogramming if: 

• Systems and program-development are prohibited. 
• They are identified, authenticated, and authorized 

application users. 
• They only use "accredited" Secure SubSystems (S3). 

The security principle embodied here is the compart­
mentalizing of users to reduce their interaction and to 
contain any leaks. Since the operating system is insecure, 
we force system users into separate PP compartments 
separate from the applications they might exploit. Applica­
tion users are not familiar enough with the operating 
system architecture to be able to corrupt or exploit it. In 
addition, we compartmentalize them within an S3 that 
further constrains their unauthorized actions and dimin­
ishes the risk during their concurrent system use. 

The feasibility of building an S3 is still being debated in 
the R&D community and beyond the scope of this paper.3 
However, technical opinion is favorable if three conditions 
are met: 

• The S3 is a highly restrictive, transaction-oriented, 
formally specified command and query language appli­
cation. 

• The application architecture subjects each transaction 
to security access control checks. 

• The S3 implementation is verified as complete and 
correct. 

Stage III: software perimeter 

Stage III further extends the security perimeter with the 
CP, also called a Virtual Machine Monitor (VMM), soft­
ware-defined virtual machine environments, as described 
previously. Since these VMs are non-sharing and non­
communicating compartments, Stage Ill's system and 
application classes can safely be multiprogrammed in their 
own dedicated VMM, thereby eliminating PP altogether. 

Stage IV: logical perimeter 

Combining Stages I, II, and III yields Stage IV. 
Whereas Stage III permitted multiprogramming and shar­
ing of the physical hardware resources, Stage IV extends 
the dialectic and. permits the sharing of logical resources 

A LONG-RANGE SECURITY STRATEGY 
STAGE I STAGE II STAGE III 

PHYSICAL PERIMETER COMPOSITE PERIMETER SOFTWARE PERIMETER 
PHySiCAL........ PHYSICAL PHYSICAL 

PERIODS 
PROCESSING 

.SYS HI 
• HOMOGENEOUS 

MUL TIPROG RAMM ING 

~: 

~ .:::. 
& 

(:: 
~ I 

/ I L _______ J 

SOFTWARE (S3) 

• SYS HI 
• MULTI COMPARTMENT 
• MULTIPROGRAMMING 

VMM is the Virtual Machine Monitor 
vme is virtual machine environment 
NCP is Network Control Program 
S3 is Secure SubSystem 

r---------~ 

IVIRTUAL MACHINE / I 
:ENVIRONMENTS /' I 
I / I 

'" I ,--1 : 
;: I I VMM I vme : 
~ I J.---t. I 
~ , 'I 
"!I I " I 

1/ , I I£. ________ ~lI 

• MULTI-LEVEL PHYSICAL 
RESOURCE SHARING 

.MULTIPROGRAMMING 

Figure 2-A long-range security strategy 

STAGE IV 
LOGICAL PERIMETER 

PHYSICAL---.... 

I> - -" 
: '- APPLICATION,' : 

: " s3 ,~ : ~ 
I '\----( : ~ 
10THERI VMM I NCP I ,{~ 
I S3 ~ __ ..:. S3; ~ 
I, 'I 
I ' FILE , I 
1/ S3 ',I IL ________ >1 

.MULTI-LEVEL LOGIC ~N 
RESOURCE SHARING E 

.MULTIPROGRAMMING T 

.NETWORKS S 
r ~ 
I ,/ I 
I , I 
I __ / I 

I ' 0.( I 
I : OTHER ~NCP I 

: ,OS I 53 : 

I '- -"", : 

I ',I L _________ " 



932 National Computer Conference, 1975 

for seyeral reasons: 

• The physical perimeter protects against external 
abuse. 

• The VM protects against internal attack. 
• An S3 provides correct use of designated transaction 

resources. 
• An S3 within a VM within a physical perimeter can 

allow safe intercommunication between VMs and be­
tween accredited secure subsystems. 

Once safe VM-VM communications can be assured, spe­
cialized S3 can be constructed to share logical system 
resources, such as, a File S3 or a Network Control 
Program (N CP) sa. 

This security strategy is logical and incrementally builds 
upon earlier accomplishments. It provides a road map to a 
secure, flexible future while maintaining secure compati­
bility with the past. However, it is not an accepted 
solution. DOD and other stringent security-concerned 
organizations await proof of its safety. Since no Stage IV 
systems exist, we can only assess its security potential by 
examining the closest facsimile Stage III system availa­
ble-VM/370. 

A SECURITY ANALYSIS OF VMl370 

Last year, a joint project was formed between IBM 
Research, Yorktown Heights, New York, and the System 
Development Corporation, R&D Division, Santa Monica, 
California, to conduct experiments and empirically analyze 
the security of VMl370. The results are being processed 
for detailed publication, but some general data regarding 
the experimental method and results are available. 5 In this 
section, an overview of the issues and findings is given. 

Flaw hypothesis methodology 

The basic security analysis technique employed in the 
experiment is the SDC-developed Flaw Hypothesis Meth­
odology (FHM), fully described elsewhere.6 Essentially, the 
method asserts the "truth" of system capabilities ex­
pressed in computer code, design logic, and user manuals, 
and then explores counterarguments that negate the truth. 
A flaw is just such a counterargument and proves the truth 
assertion false. The flaw d~monstrates that the asserted 
capability is really some different, unassessed capability. 
The resultant capability may be exploited to exceed, 
circumvent, or neutralize security controls. The exploita­
tion of one or more such flaws is a system penetration. 

The method emphasizes finding flaws, not exploiting 
them. Such penetration efforts are largely comprised of 
producing I/O support code to move unauthorized informa­
tion in and out of the system. Comprehensive flaw finding 
requires three stages: generation of an inventory of 
suspected flaws, i.e., "flaw hypotheses," confirming the 
hypotheses, and generalizing the underlying system weak­
ness for which each flaw represents a specific instance. 

Figure 3-SDC security analysis method 

Figure 3 pictorially illustrates the method via movement 
of a flaw hypothesis through the three stages. At the left of 
the figure, various "flaw generators" produce the flaw 
hypotheses. These generators are essentially heuristics for 
spotlighting system areas that have high flaw potential. 
The "cerebral fIlter" is the first of three screening sieves 
to confirm the flaw; it represents the collective wisdom of 
the analysis team. The next sieve is "desk checking," 
using documents and listings to prove the flaw; the bulk of 
the flaws are confirmed at this sieve. The last sieve is 
"live testing" of flaws that have a high vulnerability risk, 
or where complex logic is more easily probed by machine. 
Finally, confirmed flaws are "inductively" studied to 
uncover generic classes of flaws. Such classes become 
new flaw generators and close the analysis loop. 

Experimental results: VMI370 security strengths 

We found VM/370 to be securable and a potentially 
excellent resource sharing system, when compared to more 
conventional operating systems, and. we believe that the 
virtual machine organization best suits the requirements of 
a multilevel security installation. This belief is based upon 
several findings. 

The architecture of VMl370 isolates the CP and user 
VMs very well in three fundamental ways. First, the 
address space of all entities-CP and each VM-are 
disjoint and dynamically mapped into real memory by the 
Dynamic Address Translation (DAT) hardware. It was not 
possible to break out of a VM address space to access 
alien, system, or residue data by CPU programs alone. 
Second, the CP and VM run in different hardware 
operating states-S/370 Supervisor and Problem states, 
respectively-with privileged instructions reserved to the 
Supervisor state. The CP-VM interface is elegantly simple, 
just a privileged instruction execution trap. There are no 
complex system calls or parameter passing. Furthermore, 
the VM is not dispatched until the trap processing is 
completed by the CP, thereby avoiding memory restoration 



Secure Computer Operation with Virtual Machine Partitioning 933 

and asynchronous complexity. Special CP treatment is 
given 1/0 traps to allow the VM to have virtual I/O. The 
VM's Channel Control Word (CCW) is copied into CP 
memory, given a static security analysis (e.g., device 
address legality, memory address bounds check), and 
translated according to the VM's address space. This 
elegant solution to secure I/O prohibited most penetrations 
that were attempted during our experiment; however, the 
complexity of S/370 I/O did allow opportunities to outsmart 
the checking, which are discussed in the next section. 

Third, VMl370 pays careful attention to formal authori­
zation mechanisms. All users must be known to the system 
by ID numbers that they must authenticate by password. 
Satisfactory identification guarantees the user an author­
ized level of access, and it is only to the VM predefined 
for him in the VM/370 directory. This feature restricts 
users to preassigned environments controlled automatically 
by software. By extension, this feature can define the legal 
VMOS and application subsystem perfectly consistent with 
the S3 compartmentalization called for in Stage IV of the 
security strategy. Finally, there is no need for on-line 
operator functions, operator messages, or an operator and 
his console, since CP only defines VMs for others to 
employ. (The individual VM VMOS may require an 
operator station, as defined by its configuration in the CP 
directory description, but such a station is contained in 
capabilities to just its VM environment and hence can be 
viewed as just another on-line user. This is precisely, in 
fact, why most VM configuration definitions equate the 
user and operator terminals.) The security importance of 
this feature (or lack of feature) cannot be overestimated 
when you consider the discretionary authority of the 
computer operator in most conventional systems. It is a 
standard penetration attack to inveigle the operator to give 
unauthorized privity. The lack of such a feature makes 
VMl370, operator "spoof-proof." 

Experimental results: VMI370 security weaknesses 

Originally, many penetration attempts were possible 
with VM/370. The standard release contains these flaws 
and is not secure. These flaws include implementation 
(coding) errors, design oversights, design exceptions, and 
compromises that depart from the sound architectural 
design of the CPo One such example is the "Virtual = 
Real" option, which effectively suppresses the CP's dy­
namic address translation (and hence the security isolation 
it affords) to allow higher performance I/O for channel 
programs that require dynamic address computations. 

Almost all flaws require the indirect aid of a channel 
program, running asynchronously, i.e., overlapped, with 
the VM. Various II 0 side effects can be directed to 
interfere in calculable ways with the CP-VM interface. For 
example, since the CP-VM interface is a response to 
privileged instruction traps, many of the parameters 
"passed" by VM to CP are "by reference" back into the 
VM's memory. 1/0 side effects can overwrite and effec­
tively change these parameters after they are legality 
checked, but before they are used by the CP. 

The VM/370 sharing mechanisms are another source of 
flaws. These include mini-disks, temporary memory, and 
spooling. Again, I/O programs were needed to exploit the 
inadequate isolation provided by these mechanisms, which 
must not exist or which must be designed differently in a 
security-hardened system. 

Finally, the CP is vulnerable to unrestrained resource 
allocation requests that preempt real memory, devices, 
and I/O channels to choke the system to death. Nearly all 
contemporary systems are vulnerable to such denial-of­
service attacks. 

Though all of these flaws are ultimately software design 
and implementation errors and thus correctible, they 
reveal interesting architectural and design problems of 
general interest to future systems and of particular interest 
to VM/370 hardening efforts. 

TOWARD A SECURITY-HARDENED VM SYSTEM 

Until more formal mathematical proof techniques are 
perfected, the Flaw Hypothesis Methodology is an effective 
security analysis technique that should be applied to 
determine the security of any future security-hardened 
system. It is my criteria for security adequacy. 

A security-hardened, no-sharing (HNS) VMI370 

Currently, a hardened version of VMl370 can be ob­
tained by repair of the generic flaws uncovered in the VMI 
370 security analysis experiment. Retrofit strategies are 
generally futile for conventional operating systems; how­
ever, our experimental evidence supports the soundness 
and practicality of the repair approach for VM/370. 

The target objective of the HNS VMl370 would be a 
Stage III level of performance. All VM sharing and 
cooperating features can be disabled in the CP to increase 
compartmentalization. For example, spooling can be 
dropped in favor of multiple unit-record equipments, and 
VMs can be given dedicated disk packs to avoid mini-disk 
pack sharing. Decreasing the I/O vulnerabilities will be 
difficult, but significant progress can be made: first, by 
improving CCW translation to prevent self modification; 
second, by passing all parameters "by value," which 
requires the CP to copy all parameters into its protected 
memory space before legality checking and use. The CP 
already follows this good practice in most instances. Third, 
asynchronous attacks are prevented by imposing a very 
simple scheduling rule: "Dispatch a VM if and only if 
there is no 1/0 pending or already running for the VM." 
The performance penalty is insignificant for this non­
overlap rule because overlap among VMs is still available. 
Fourth, threshold limits and clock timeouts can add 
significant preemption checks to ~ounter resource choking 
attacks. Fifth, decommit the Virtual = Real feature and 
impose dynamic address translation for all memory refer­
ences. 

Finally, all design, implementation, and operational 
flaws must be corrected and are correctable. These 



934 National Computer Conference, 1975 

changes collectively form a sound foundation for a secu­
rity-hardened VM/370 that could gain DOD accreditation 
for multi-level secure multiprogramming. 

Future VM system prospects 

A more fundamental understanding of secure system 
architecture is needed. Issues needing clarity include: 
secure 110, safety of passing parameters "by value" versus 
"by reference," the side effects of parallelism by collusive 
VMs, a satisfactory spooling solution, and fair, non­
preemptive resource allocation schemes. Improved meth­
ods of assuring secure implementation are also required. 

Work is in progress at a number of R&D organizations 
that are exploring these iss ues in concert with the virtues 
of virtual machines.7 Because of its conceptual simplicity, 
a Virtual Machine Monitor (VMM) can be pared to its 
essentials and made quite small. This dual asset of 
simplicity and small size makes a VMM an attractive 
candidate for consideration by the emerging technology of 
formal correctness proofs. When formal correctness proofs 
are subsequently coupled with a good mathematical model 
of the security adequacy of a VMM, the VMM research 
comes closest to a universally acceptable solution to 
secure computer multiprogramming and achievement of 
the Stage IV secure system of the future. 

ACKNOWLEDGMENTS 

This report could not have been written without the 
enthusiastic support, ingenuity and competence of my 
colleagues Dick Linde and Ray Phillips at SDC, and Dick 
Attanasio, Les Belady, Joel Birnbaum, and Peter Mark­
stein of IBM. I have also melded ideas from discussions 
with consultants Jim Anderson and Jerry Popek. 

REFERENCES 

1. Weissman, C., "SDC Need for a Secure Multilevel Classified 
Computer Facility," SDC SP-3700, March 1973. Presented at IBM 
Data Security Symposium, Cambridge, Mass., April 1973. 

2. Branstad, D. K., "Privacy and Protection in Operating Systems," 
Computer, Vol. 6, No.1, January 1973. 

3. Anderson, J. P., "Computer Security Technology Planning Study," 
ESD-TR-73-51, October 1972. 

4. Buzen, J. P., and U. 0, Gagliardi, "The Evolution of Virtual Machine 
Architecture," Proc. AFIPS NCC, Vol. 42, June 1972, pp. 291-299. 

5. Belady, L. A. and C. Weissman, "Experiments with Secure Resource 
Sharing for Virtual Machines," SDC SP-3769, May 1974. 

6. Weissman, C., "System Security Analysis/Certification Methodology 
and Results," SDC SP-3728, 8 October 1973. 

7. Proc. on Protection in Operating Systems, Institute de Recherche 
d'Informatique et d' Automatique (IRIA), International Colloques, 
Rocquencourt, France, August 1974. 



The cost of computer privacy 

by JEROME LOBEL 
Honeywell Information Systems, Inc. 
Phoenix, Arizona 

INTRODUCTION 

A little over one year ago, Honeywell Information Systems 
accepted an invitation to sponsor an important research 
project at Harvard University dealing with the subject of 
computer privacy. This work which was completed 
recently was performed by Dr. Robert C. Goldstein as 
partial fulfillment of his Doctoral Degree at Harvard. 

BACKGROUND 

Before looking at the results of this research project, let's 
examine some of the basic problems that gave vent to this 
important study. In particular, let's consider the meaning 
of the terms "computer privacy," "computer security" 
and "personal data." 

Computer Privacy refers to the concern that an indi­
vidual and/ or an organization may have about who has ac­
cess to their personal data. Computer Security addresses 
the need to protect all of the parts of an information 
system from any form of loss, destruction or unauthorized 
access or modification. It has been generally conceded, 
that the privacy of the information in a system cannot be 
adequately assured without the implementation of a va­
riety of computer security safeguards. 

On the other hand, both the Federal Government and 
various State Legislatures have enacted or are proposing 
to enact specific laws to assure that computer systems will 
not infringe upon the public's "right to privacy." Unfortu­
nately, the merging of the ideal security safeguards, with 
the ideal legislation has not yet been achieved. The com­
plexity of the problem is in no small way responsible for 
this dilemma. 

As an example of this complexity, consider the HEW 
definition of Personal data: "All data that describes any­
thing about an individual, such as identifying characteris­
tics, measurements, test scores; that evidence things done 
by or to an individual, such as records of financial transac­
tions, medical treatment, or other services; or that afford a 
clear basis for inferring personal characteristics, such as 
the mere record of his presence in a place, attendance at a 
meeting, or admission to some type of service institution." 

Public pressure is being felt throughout almost every 
legislature in the land-to do something about this 

935 

problem-with the preference being: "Let's not have the 
problem to begin with." 

As an example, the October 2, 1974 issue of Com­
puterworld contained an article describing the strong pri­
vacy stand taken by the Republican Research Committee 
Task Force on Privacy, which is the policy making arm of 
the Republican Party in the House of Representatives. 

The committee recommended that "all rules pertaining 
to the collection of information should cover Databanks in 
both the public and private sector, not just governmental 
Databanks." On the other hand, the following statement 
in the committee report seems to recognize that too much 
regulation could also be a problem: "Despite 'their 
potential for abuse, Databanks remain an inescapable fact 
of life in a society growing more complex and more 
technological. The task force does not oppose Databanks 
as such, but favors strong safeguards against their 
misuse." 

Landmark federal privacy legislation has recently been 
passed. The new law commonly referred to as the Privacy 
Act of 1974 (Public Law 93-570) includes a number of 
very important computer user ramifications. For instance, 
the new law specifies that: 

1. The Government has within 10 days (excluding 
Saturdays, Sundays, and legal public holidays) to ac­
knowledge in writing the receipt of a request from an 
individual for amendment to his records; 

2. The requirement to notify publicly (in the case of the 
Government in the Federal Register) at least an­
nually the existence and character of the system of 
records; 

3. Agencies establish appropriate administrative, 
technical, and physical safeguards to insure the se­
curity and confidentiality of records and protect 
against any anticipated threats or hazards to their se­
curity or integrity; 

4. Agencies establish procedures for the disclosure to an 
individual upon his request of his records or informa­
tion pertaining to him; 

5. Agencies establish fees to be charged, if any, to an in­
dividual for making copies of his records excluding 
the cost of search and review of the records. 

We can already predict that major administrative diffi­
culties and expense may come in providing records to indi-



936 National Computer Conference, 1975 

viduals. The expense of handling the request for a copy of 
their record including the assurance of identity of the indi­
vidual, search, copy, and mailing are only a small part of 
the cost. What is often overlooked is the problem of long, 
drawn out discussions and arguments with the individual 
regarding a requested change to their records. For 
example, about 25 percent of the people employed in credit 
companies are already involved in these functions under 
the new lending laws. 

Unfortunately, we are still operating in an environment 
that contains more "Unknowns" than "Knowns." Here 
are a few examples: How many people will request a copy 
of their records? To what extent will the new laws trigger 
strictly curiosity type inquiries? How many people will 
now want to see records that may be associated with a 
refusal of credit or a job turn-down? 

At the moment, it appears that only actual experience 
will reveal precise answers to many of these pertinent and 
cost related questions. Research, however, may provide us 
with at least some idea of the total cost ramifications of 
new computer privacy legislation. 

It is important to note that the social advantages of com­
puter privacy legislation have already been well re­
searched, and are not so often the primary issues being de­
bated. Like most social programs, however, cost will be 
one of the determining factors in the implementation 
process. 

STUDY OBJECTIVES 

The Goldstein Report* referred to earlier is one of the 
most comprehensive studies of proposed computer privacy 
legislation made to date. The object of the study was to 
evaluate the potential impact of proposed privacy legisla­
tion on computer users, Databank developers, and on the 
computer manufacturing industry. In addition, the study 
was designed to assist legislators with weighing the merits 
of alternative privacy bills. 

This research project is particularly significant since it 
is the first to so thoroughly examine proposed privacy 
legislation in relation to associated cost ramifications. 
Most computer privacy research performed prior to this 
study focused on problem identification, and on legislation 
justification from mainly a moral; legal or philosophical 
point of view. The practical approach and research results 
of this study adds materially, therefore, to our knowledge 
of another part of the computer privacy and security 
problem area. 

IMPACT MODEL AND APPROACH 

Goldstein approached this research project into the cost 
of computer privacy by setting up a computer simulation 
model to examine the impact of a large set of possible 

* Honeywell Information Systems is in the process of publishing Dr. 
Goldstein's report "The Cost of Privacy." Copies may be ordered from: 
Honeywell Information Systems, 40 Guest Street, Brighton, Mass. 02135. 

regulations upon the personal data system of six typical 
computer user organizations. 

RESEARCH SITES 

The six research sites included: 

• A system operated on behalf of a large network of hos­
pitals. 

• An on-line system operated by a State Government 
Agency containing identification information on 
people who have been arrested in that State. 

• A law enforcement system operated by a State Police 
Group. 

• A system operated by a large consumer credit organi­
zation. 

• A personnel system for an organization with about 
10,000 employees. 

• An on-line system operated by a large casualty In­
surance Company. 

The model was constructed in such a way as to make it 
possible to test the impact of a particular set of regulations 
upon various sets of system characteristics. In other 
words, the 29 attributes* ascribed to the model could 
reflect a system already designed and running, or simply 
the specification for a proposed information system. 
System attributes consisted of such data elements as the 
number of new data subjects added per year, the average 
size of a record, the number of system users, etc. 

REGULATORY REQUIREMENTS 

The overall impact model actually consists of a number 
of separate models, one for each regulatory requirement. A 
Regulatory Requirement is a specific, operationally­
oriented step that the operator of a personal data system 
would have to take under the provisions of one or more 
pending bills. 

According to Goldstein, an incomplete survey earlier 
this year revealed that there were 45 bills on this subject 
pending in the US Congress, and another 50 under 
consideration in 23 states. 

The model, however, contains 20 basic legislative pro­
posals* for regulating personal data systems. The 
proposed regulations were derived from an analysis "of 
existing laws, a large number of pending proposals for 
legislation and the general computer-privacy literature." 

The impact model, therefore, operates on: 

• 20 Regulations 
• 29 System Attributes 
• 6 Typical information systems 

In addition, each of the regulations would apply to any or­
ganization that maintains an administrative automated. 

* Reference: The Cost of Privacy-Robert C. Goldstein 



personal data system. The following are the regulations 
used in the model: 

• Data Supply Obligation Notification 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall inform an indi­
vidual asked to supply personal data for the system 
whether he is legally required, or may refuse to sup­
ply the data requested, and also of any specific conse­
quences for him, which are known to the organization, 
for providing or not providing such data." 

• Consent for Additional Use 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall assure that no 
use of individually identifiable data is made that is 
not within the stated purposes of the system as 
reasonably understood by the individual, unless the 
informed consent of the individual has been explicitly 
obtained." 

• Check Usage Authorization 
"Access to an individual's record shall be permitted 
only for purposes that have been explicitly authorized 
by him. Authorization of particular uses would be oIr 
tained at the time the data is originally collected, and 
possibly, in the case of subsequently developed ap­
plications; at a later time." 

• Maintain Usage Log 
"Any organization maintaining an AdmInistrative Au­
tomated Personal Data System shall maintain a com­
plete and accurate record of every access to and use 
made of any data in the system, including the 
identity of all persons and organizations to which ac­
cess has been given." 

• Record Existence Notification 
"The operator of a Personal Data System must 
promptly notify new data subjects of the fact that a 
record is being started concerning them and must no­
tify all subjects of the existence of their records once 
a year." 

• Record Existence Inquiry 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall inform ari indi­
vidual, upon his request, whether he is the subject of 
data in the system, and, if so, make such data fully 
available to the individual, upon his request, in a 
form comprehensible to him." 

• Record Uses Inquiry 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall inform an indi­
vidual,· upon his request, about the uses made of data 
about him, including the identity of all persons and 
organizations involved and their relationships with. 
the system." 

The Cost of Computer Privacy 937 

• Data Accuracy 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall maintain data in 
the system with such accuracy, completeness, timeli­
ness, and pertinence as is necessary to assure ac­
curacy and fairness in any determination relating to 
an individual's qualifications, character, rights, op­
portunities or benefits that may be made on the basis 
of such data: and eliminate data from computer-ac­
cessible files when the data are no longer timely." 

• Additional Data 
"The addition to a record of some items of informa­
tion that are not currently included may be required. 
This would be necessary whenever the record, without 
the additional information, might be misleading and 
result in unfair decisions detrimental to the data suIr 
ject." 

• Data Accuracy Inquiry 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall maintain 
procedures that (i) allow an individual who is the suIr 
ject of data in the system to contest their accuracy, 
completeness, pertinence, and the necessity for retain­
ing them; (ii) permit data to be corrected or amended 
when the individual to whom they pertain so 
requests; and (iii) assure, when there is disagreement 
with the individual about whether a correction or 
amendment should be made, that the individual's 
claim is noted and included in any subsequent dis­
closure or dissemination of the disputed data." 

• Subject Claim Storage 
"When there is a dispute between a data subject and 
the operator of a Personal Data System over whether 
or not a requested change is to be made in the suIr 
ject's record, his claim (shall) be noted and attached 
to his record for subsequent dissemination. Most of 
the legislative proposals based on this report have ad­
ditionally provided that the Databank operator may 
limit the subject's claim to one hundred words if 
assistance is provided in expressing it compactly." 

• Subject Claim Dissemination 
"Any claim filed by a data subject shall be included 
whenever the disputed data is subsequently disclosed. 
This would require, first, the modification of all 
record retrieval programs to provide that the claim 
field be retrieved in response to any inquiry. In addi­
tion, the need to process an extra, and rather large, 
field will increase the amount of computer time and 
data transmission time associated with each transac­
tion." 

• Retroactive Claim Dissemination 
"Data system operators (shall) be required to send 
such claims or the revision of a record which obviated 
the need for a claim to all past recipients of a record." 



938 National Computer Conference, 1975 

• Record Transmission 
"Any organization maintaining a record of indi­
vidually identifiable personal data, which it does not 
maintain as part of an Administrative Automated 
Data System, shall make no transfer of any such data 
to another organization without the prior informed 
consent of the individual to whom the data pertain, if 
as a result of the transfer, such data will become part 
of an Administrative Automated Data System that is 
not subject to these safeguard requirements." 

• Consent to Transfer Data 
"No individually identifiable information (shall) be 
transferred to a system where a lesser degree of pro­
tection would be afforded without obtaining the prior 
informed consent of the subject." 

• Legal Process Notification 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall assure that no 
data about an individual are made available from the 
system in response to a demand for data made by 
means of compulsory legal process, unless the indi­
vidual to whom the data pertain has been notified of 
the demand." 

• Physical Security 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall take reasonable 
precautions to protect the data in the system from 
any anticipated threats or hazards to the security of 
the system." 

• Employee Training 
"Any organization maintaining an Administrative Au­
tomated Personal Data System shall take affirmative 
action to inform each of its employees having any 
responsibility or function in the design, development, 
operation or maintenance of the system, or the use of 
any data contained therein, about all the safeguard 
requirements and all the rules and procedures of the 
organization designed to assure compliance with such 
requirements. 

• System Assurance 
"Any organization operating a Personal Data System 
must be able to ensure that its system is in com­
pliance with all of the regulations. For this purpose, a 
Databank operator would, presumably, establish an 
audit staff responsible for monitoring the perform­
ance of the system." 

• Public Notice 
"It is necessary to have a mechanism for publicizing 
the existence and characteristics of Personal Data 
Systems so that people will be able to determine what 
systems may have records on them and whether it is 
important to find out. Specifically, anyone proposing 

to establish a new system would be required to 
publish a notice to that effect long enough in advance 
to permit affected individuals a reasonable time for 
comment. The same type of notice would be required 
prior to any enlargement of an existing system. In ad­
dition, notice of the existence and character of all 
systems operated by an organization would be re­
quired once a year." 

Not all of the proposed regulations have a representation 
in the impact model. The work and the outcome of the 
modeling are important, however, if for no other reason 
than the fact that this report identifies the scope of the 
proposed computer privacy legislation in the US and the 
extremely high price that developers of Databanks will 
probably have to pay to implement and operate such 
systems within the confines of the planned laws. 

SYSTEM RESOURCES 

Once each regulatory requirement was specified, Gold­
stein carefully defined each basic category of system 
resource and the related cost that might be incurred to 
satisfy a particular requirement. The five basic system 
resources or functional elements that were used in the 
model included: 

• Manpower 
• Data Storage 
• Computer Processing 
• Data Transmission 
• Capital 

Each of these is further subdivided in order to recognize 
differences in capabilities and cost. A distinction is also 
made between resource expenditures needed only at the 
time of system development as opposed to costs 
continuously incurred for operating purposes. 

For the most part, the model consists of equations 
representing the demand of some requirement for some 
resource. Or as an economist might say, the equations are 
"production functions"; to the extent that they specify the 
amount of some input required to achieve some objective 
as a function of various system characteristics. 

RESEARCH FINDINGS AND CONCLUSIONS 

The conclusions derived at in the research report are 
extremely informative. As an example, a number of the 
proposed requirements would impose a nominal cost upon 
the computer user. Included in this category would be 
such regulations as: 

• Check usage authorization 
• Maintain usage log 



• Data accuracy 
• Additional data 
• Subject chain storage 
• Subject chain dissemination 
• Data transfer consent 
• Public notice 

It is pointed out that even though a regulation might be 
very inexpensive to comply with, the difficulty surround­
ing its actual accomplishment might be formidable if not 
impractical. In addition, an analysis of the- impact model 
results reveals that law enforcement systems would sus­
tain the highest compliance costs of the organizations that 
participated in the study. 

For all six test sites, initial system compliance costs 
varied from 11 percent to 512 percent of original total 
system implementation cost. Added operating costs varied 
from 11 percent to 222 percent of original system imple­
mentation cost. The average annual cost of compliance per 
subject for the six test sites varied from 57 cents to six 
dollars and 97 cents. The average cost per compliance 
transaction varied from 15 cents to 9 dollars and 64 cents. 

Another conclusion that can be drawn from the pre­
viously described research study is that cost alone is no 
basis for an analysis of the impact of proposed privacy 
legislation. Cost does lend perspective, however, to the 
overall difficulty of compliance. In addition, it is clear 
that several of the most expensive regulations appear to of­
fer the most protection to the individual, and therefore 
should not be abandoned for cost reasons alone. 

For all test sites, physical security, employee training, 
and the data supply requirement would imply highest 
conversion cost in that order. The highest continuing cost 
regulations were: 

• Record existence notification 
• Data accuracy inquiry 
• Record use inquiry 
• Physical security 
• System assurance 

If one were to summarize the overall conclusions arrived 
at in the report, the following tend to be the most signifi­
cant: 

• Government and the Public 
First, as far as the Government and the public are 
concerned: 

-Is the increase in privacy worth the cost? 
ANSWER: In all probability there will be some sig­
nificant reduction in business and Government effi­
ciency. However, if the legislation is carefully 
worded so as to allow grace periods for compliance 
and exception-oriented responses (such as allowing 
dissemination or other use of personal data if a 
response to notification is not received in a 

The Cost of Computer Privacy 939 

specified time period) privacy legislation can be 
tolerable and beneficial. 

• Data Processing Industry 
Second, what position should the data processing in­
dustry take with regard to proposed computer privacy 
legislation? 

ANSWER: The gist of research study conclusions 
in this area is that privacy legislation should 
constitute a challenge and opportunity to equip­
ment suppliers. In particular, there is reference to 
such product opportunities as: 

- User and terminal identification devices 
- Larger and faster direct access storage devices 
- More secure computers featuring better access 

control mechanisms 
In addition, the computer itself may offer a solution 
to the control of the added manual and clerical costs 
that can arise from the proposed privacy legislation. 

• Data Bank Operators 
How serious would the compliance. problems be to 
Databank operators if the proposed privacy legisla­
tion is enacted? 

-The report certainly does not minimize the prob­
lems of technical feasibility, cost, or the addi­
tional capability that probably would be re­
quired to comply with the new regulations. 
Under the best conditions, compliance will be 
tough, and the more regulation, the tougher it 
maybe. 

On the other hand, Dr. Goldstein has done 
everyone a favor by pointing out the many 
things that a computer user can do to greatly 
minimize the impact of the regulations. 

-Important Examples Include: 
• Paying subjects a nominal fee for the use of 

their data. 
• Lobby for changes to the proposed legislation 

to make them more livable. 
• Make certain that the data processing industry 

understands the need for new hardware and 
software products capable of handling com­
pliance problems in a more cost-efficient way. 

• Arrange for the passing on of the additional 
compliance costs incurred to those people or 
organizations that initiate the inquiries or the 
addition of a personal data record. 

• Don't put so much personal data into the 
system to begin with .. 

Finally, we need to consider how important it is when 
discussing computer privacy problems to examine the 
issues through different lenses. As an example, look at how 
our perspective changes if we switch from. the lens of a 
data processing or systems professional to that of John Q. 
Citizen. The answer to the computer privacy problem cer-



940 National Computer Conference, 1975 

tainly relates to the amount of concern and ingenuity we 
apply both as professionals and as individuals. 

In addition, have you ever stopped and asked yourself 
the question: What you can do in your own installation to 
reduce or even eliminate the need for more regulation? 
From a practical standpoint, the initiation of better se-

curity and internal controls would be a good place to start. 
After all, in more cases than not the public has a very le­
gitimate right to complain when a system does not display 
reliability, integrity or fairness. In other words, the ma­
chine or the system should not be blamed for a problem 
that one or more of us caused in the first place. 



Insuring individual's privacy from statistical 
data base users· 

by MOHAMMED INAM UL HAQ 
State University of New York at Stony Brook 
Stony Brook, New York** 

INTRODUCTION 

"Privacy is the claim of individuals, groups or institutions 
to determine for themselves when, how and to what extent 
information about them can be communicated to others."! 
The problem of privacy arises when people are asked to 
provide personal information either on a mandatory or 
voluntary basis. The persons about whom the data are col­
lected may be apprehensive that unscrupulous individuals 
could gain both economic and political advantage over them 
through access to their personal information. Data collecting 
agencies often conduct surveys to collect data to use for 
statistical purposes. In a mandatory survey, the respondent 
cannot refuse to submit the data. Still, collecting agencies 
realize that the real foundation of reliable statistics is public 
cooperation and not the threat of prosecution. In a voluntary 
survey, the collecting agency has no power and nothing to 
offer but the general benefits that can accrue to the public 
from the information.2 It promises respondents that data will 
only be disclosed for statistical purposes. In both cases, the 
collecting agencies can better accomplish their aim if they 
can assure the respondent that their privacy will be respected. 
Many agencies use computers to store collected data. The 
computer provides a central source of information available 
to many different users. In addition, the information can be 
retrieved very quickly. However, there are many problems 
which are associated with the security of computerized in­
formation such as: validity of the user, clearance of system 
personnel and safety for masquerading, electromagnetic 
pick up, wiretapping, browsing, piggy back entry, etc.3 ,4,5,6 

Even if these problems did not exist, and assuming that 
the collecting agencies have good intentions and intend to 
allow their users to ask only statistical queries about the 
stored data, their promises are not sufficient to guarantee 
that there will be no disclosure of any individual's personal 
information. Hoffman and Miller7 have shown that a user 
can combine the answers to some specific statistical queries 
and his previous knowledge about an individual's personal 

* This work was supported by National Science Foundation Grant 
# GJ 28177 while the author was a student in Department of Computer 
Science. 
** Present address: High Impact Ant.i-Crime Program, 38 Halsey Street, 
Newark, New Jersey 

941 

information to find out more about that individual. There­
fore the problem considered is to determine the conditions 
which guarantee that a user who is allowed to ask only 
statistical queries cannot be successful in obtaining any more 
information about any individual than he already has. Be­
fore suggesting a solution to this problem, some illustrations 
to show how disclosure may occur and some definitions are 
reproduced from an earlier paper by the author.8 

DEFINITIONS 

A characteristic is a piece of information. It has a name and 
a value. For instance, (Name, Zalkind) and (Age, 26) are 
characteristics. Let N l , N 2, ••• , be names and for each Ni 
there exist values V il, V i2 •••• A characteristic C ij is a pair 
(Ni, V ij). A family of characteristics Fi is a set of all char­
acteristics having the same name N i • 

The group of persons about whom the information is 
collected is called data persons. A record r i is a set of all 
characteristics collected about a data person Pi. A data 
base is a set of records of all data persons. 

A query is a statistical question which can be asked about 
the data base. A query is formed by taking the conjunction, 
disjunction and negation of characteristics. These operations 
are denoted by A, V, -. Formally a query is defined as: 

(1) A characteristic standing alone is a query. 
(2) If q is a query then- (q) is a query. 
(3) If ql and q2 are queries then (ql V q2) and (qd\ q2) 

are queries. 
(4) Nothing else is a query. 

Where no confusion arises, parentheses will be eliminated. 
The retrieved set Rq of a query q is the set of all data 

persons who have those characteristics in their records which 
are implied in q. The semantic of a query q is, because of a 
statistical data base, "How many data persons have all the 
characteristics which are implied in q?" The answer to the 
query q, denoted by A q , is the cardinality of the retrieved set. 
Rq. A data base together with a procedure for limiting the 
access to the data base for statistical purpose will be re­
ferred to as the "System". A query is a permitted query if it 
is permitted by the system; otherwise it is a restricted query. 



942 National Computer Conference, 1975 

A user of the system may obtain information about some 
of the characteristics of some data persons by using mechan­
isms not involving the system. For example, a user may know 
the town in which a particular data person lives. Such in­
formation plays an important role in the security of the data 
base if the data base contains characteristics with the same 
name "Town". 

A user's supplementary knowledge is a set of information 
about the data base and all other information which can 
be derived from it that a user knows from a source other 
than the system. It consists of the following: 

(1) The set of supplementary queries (Q8): It is the set of 
queries whose answers are known to a user. An ele­
ment of this set is a supplementary query. 

(2) Supplementary data base: It is the set of all known 
records, where a known record is a set of all char­
acteristics of a data person which are known to a 
user. 

(3) The set of supplementary properties: It is the set of 
properties of the data base which are known to a user. 

An example of a supplementary property is that a user 
may know that the answer to a query ql is the sum of the 
answers of the queries q2, q3 and q4. In essence, a user may 
know relations which will be helpful in finding the answer to 
a restricted query. 

Disclosure is defined as: Disclosure occurs if a user can 
enlarge his supplementary knowledge by adding some in­
formation about the data base which is not permitted by the 
system. 

Statistical disclosure occurs if a user can enlarge his set of 
supplementary queries, by adding a restricted query. 

Resultant disclosure occurs if the answer to a restricted 
query can be computed from the answers of permitted queries 
by using the properties of the data base which are known to a 
user. Resultant disclosure is a special case of statistical dis­
closure in which the set of supplementary queries is empty. 

Positive personal disclosure occurs if a user can enlarge his 
supplementary data base by adding a characteristic to some 
record. 

A user of the system may know from his supplementary 
knowledge that a data person does not have a particular 
characteristic. If a data person does not have a characteristic 
Cij, then it will be referred to as that he has a negative char­
acteristic which will be denoted by -Cij• Clearly a negative 
characteristic is a piece of information. In fact, knowledge of 
negative characteristics coupled with the property of the 
family of characteristics may be used to obtain a positive 
personal disclosure. Hence, a record in a supplementary 
data base may also contain negative characteristics (nega­
tive characteristics are not included if they are redundant). 

Negative personal disclosure occurs if a 'user can enlarge 
his supple:tnentary data base by adding a negative character­
istic which is not redundant, to some record. 

Personal disclosure is said to occur if positive personal 
disclosure and/or negative personal disclosure occurs. 

EXAMPLES OF PERSONAL DISCLOSURE 

Example 1 

Let q = (Soc. Sec. #, SS116) , Aq = 1. Let the user's sup­
plementary knowledge include that he knows a person p 
whose Soc. Sec. # is SS116 and the fact that Soc. Sec. # is 
unique for each data person. As A q = 1, there is a personal 
disclosure that p is a data person. 

Example 2 

Let q2 = (Major, Math.) 1\ (Marital Status, Married), 
A q2 =O. Therefore there is no data person who is majoring 
in Math. and is married. Knowing that the only alternative 
of married is single and if a user knows from his supplemen­
tary knowledge a data person who is majoring in Math.; he 
can conclude that the person is single. 

Example 3 

Let qa= (Major, Compo Sc.) 1\ (Sex, Female), Aqa=5. 
Let q8= (Major, Compo Sc.) 1\ (Sex, Female) 1\ (Housing 
Status, On Campus), Aqs=5. Therefore a girl who is major­
ing in computer science lives on campus. Hence, if a user 
knows a girl who is majoring in computer science, then he 
can conclude that she lives on campus. Therefore there is a 
personal disclosure. 

EXISTING SOLUTIONS 

Reed9 has suggested a method to keep individual records 
protected by distorting the information in records which are 
available for statistical summaries. His method does not 
insure security for personal disclosure in cases such as il­
lustrated in the examples. HansenlO has suggested a method 
which decreases the chances for disclosure by giving an ap­
proximate answer to a query rather than exact number. He 
also mentioned an approach in which the answer to a query 
is computed on a sample data and then multiplied by the 
sampling factor. These methods decrease but do not eliminate 
the chances for disclosure. Fellegill has suggested an algo­
rithm to check the occurrence of a personal disclosure. Not 
only is his method very cumbersome, but it does not work 
in all cases as it stands. S The necessary and sufficient con­
ditions for statistical and positive personal disclosure in a 
specific case, have been given in an earlier paper.s We are 
now suggesting a solution to this problem by defining the 
conditions which are necessary and sufficient for statistical 
disclosure in a general case, and also for positive and/or 
negative personal disclosure in a specific case. 

STATISTICAL DISCLOSURE 

It is obvious that some of the queries cannot be permitted 
if personal disclosure is to be prevented. But if some of the 



Insuring Individual's Privacy from Statistical Data Base Users 943 

queries are not permitted then it becomes necessary to 
assure that the answer to a restricted query cannot be com­
puted from the answers of permitted queries. The following 
theorem provides the necessary and sufficient conditions for 
the answer of a query to be computed from the answers of 
other queries. 

A query q, in general, partitions the set of all data persons 
into two sets, namely the set of those data persons who are 
included in the retrieved set of q, and the set of those who are 
not. Therefore, a set Q of n queries q1, q2, . . . , qn partitions 
the set of all data persons into 2n disjoint sets where a typical 
set contains all those data persons who are simultaneously 
included in the retrieved sets of k out of the n queries and 
not included in the retrieved sets of the other n- k queries in 
Q. One of these sets is the set of all data persons who are not 
included in the retrieved set for any qEQ. Excluding this 
particular set then there are 2n -1 sets called the partition 
sets induced by Q. The set of partition sets induced by Q 
is denoted by P Q and will be referred to as the set of partition 
sets. A partition set is denoted by p. Let L= I PQ I where 
I P Q I is the cardinality of the set P Q. If q E Q then the re­
trieved set of q is the union of some (Possibly all) of the 
partition sets; therefore A q=C11 P11+D.! I P21+" '+CL I P L I 
where for all i, Ci is either zero Or one. Also, if p is a partition 
set, then p is a retrieved set of a query which is a conjunction 
of queries qi* such that either q/ or the negation of q/ 
belongs to Q. 

A set of queries Q is a dependent set if there exists a query 
qiEQ such that the answer to qi can be computed from the 
answers of the queries which belong to Q; otherwise it is an 
independent set. A dependent set is a minimal dependent 
set if no proper subset of it is a dependent set. We may refer 
to minimal dependent set as a dependent set. 

Theorem I: The answer to query q' can be computed by a 
user from the answers of the independent set Q of queries if 
and only if: 

(i) P Q = PQulq'} and is known to a user. 
(ii) I Q I = I PQ I 

Proof: See Appendix I. 
The theorem means that the answer to a query q' can be 

computed from the answers of the independent set Q of 
queries if and only if the query q' does not induce a new 
partition which is not induced by the set Q of queries, and 
the number of such queries is equal to the number of the 
partitions induced by Q. Hence, if a query q is not permitted 
and induces a new partition which is not induced by the set 
of permitted queries then the answer to the query q cannot 
be computed from the answers of the permitted queries. 

A user may know that the answer to a query cannot be 
greater than some number and! or he may know that it 
cannot be less than some other number. The lower bound of a 
query q denoted by Lq is defined as the greatest non-negative 
integer, n, known to a user such that Aq~n. Similarly the 
upper bound of a query q denoted by U q is the smallest non­
negative integer, n, known to a user such that Aq::;n. Let 

aq denote the number of data persons who a user knows are 
included in Rq. 

Theorem II: There is a statistical disclosure if and only if 
there exists a restricted query q' and an independent set Q of 
queries such that the following hold: 

(i) PQ=PQu{q'} and is known to a user. 
(ii) There is a unique integer solution to the set of equa­

tions LVPiEPQ bij I pj I = B qi, VqiE Q where L qi ::; 
Bqi ::; Uqi and bij = 1 if Pj~Rqi and zero otherwise. 

Proof: See Appendix II. 

Example 4 

Consider a set Q of queries qi, i = 1 to 5. Let the retrieved 
sets of q2, q3, q4 and q6 be the disjoint partitions of the re­
trieved set of q1. Let a user know that aq1 = 14, Uq1 = 16, 
aq2 =2, Uq2 =4, A q3 =3, A q4 =4, A q6 =5. It can be easily seen 
that condition (i) is satisfied but condition (ii) does not 
hold since there are three sets of values for q1 and q2, namely 
(16, 4), (15, 3), (14, 2) which satisfy the equations. Hence, 
there would not be statistical disclosure. However, if for 
instance either aq1 = 16 or aq2 =4 then these equations have a 
unique solution. And hence, there would be statistical dis­
closure. In these cases, there are unique values for q1 and q2 
which satisfy condition (ii). 

PERSONAL DISCLOSURE 

The examples of disclosure show that some of the queries if 
permitted would cause personal disclosure. The following 
theorems explore the conditions under which a query or a set 
of queries can cause personal disclosure. Some definitions are 
needed: 

A query is a simple query if it is formed either by a single 
characteristic or by taking the conjunction of characteristics. 
A query qi is a refinement of a query qj if there exists a query 
qk which contains at least one characteristic that appears in 
qi but not in qil such that qi=qj/\qk. Furthermore if qk 
contains only one characteristic, then it is said to be an ele­
mentary refinement. Consider a query q. Let no character­
istic which appears in q belong to the family of character­
istics F i = {C i1, C i2, • • • , C in}. Let Q be the set of queries 
derived from the query q by refining it such that qj = q /\ C ij 
for j = 1 to n. The set Q is said to be a set of elementary re­
fined queries of q and the set {q, q1, q2, ... , qn} is said to be 
an elementary family of queries. A family of queries can be 
recursively defined as follows: 

The set Q of queries is a family of queries if either it is an 
elementary family, or it is obtained from a family Q' by 
replacing a query q E Q' with the set of its elementary refined 
queries. 

The common ancestor query q of the family Q is denoted 
by q and the set of all its descendent queries from the family 
Q is denoted by Q. A family of queries Q = {q, q1, q2, ... , qn} 
is said to be a disjoint family if the sets Rqu Rw ... , R q,. 



944 National Computer Conference, 1975 

form disjoint partitions of the set R q• The following theorems 
are based on the following assumptions: 

(1) A user is allowed to ask only simple queries. 
(2) The only relation among queries which holds for a 

data base is the family relation and this relation is 
disjoint. 

(3) User's supplementary knowledge is: 

(i) A supplementary data base. 
(ii) A set of supplementary queries. 

(iii) Knowledge of the fact that each data person has 
one and only one characteristic from a family of 
characteristics. 

The following lemma asserts that the conditions which guar­
antee that no negative personal disclosure is possible, are 
stronger than the corresponding conditions for positive 
personal disclosure. 

Lemma: For a data base in which a data person can have 
one and only one characteristic from a family of character­
istics, there is no positive personal disclosure if there is no 
negative personal disclosure. 

Proof: Clearly if a user determines that a data person 
p E Rqi, then he can conclude that pEE Rqi, where qi and qj 
belong to the same set of elementary descendent queries. 
The existence of such a query qj is guaranteed, else there 
cannot be a positive personal disclosure. This proves the 
lemma. 

The following definitions and notations are needed. A 
data person p is said to be a candidate if a user knows that 
p E Rq and does not know whether or not he is included in 
Rqi> where qi is a direct descendent query of q. Let aq_qi 
denote the number of data persons who a user knows are 
included in Rq and not included in R qi. Let Qk denote the set 
of all the queries whose answers are known to a user. It can 
be seen that there is a negative personal disclosure (Le., 
a user can add a negative characteristic in supplementary 
data base by using the results obtained from the system) if 
and only if there exists an elementary family Q = {q, q1, 
q2, ... , qn} and a data person p such that the user knows from 
his supplementary knowledge that p E Rq and can conclude 
that pEE Rqi, where qiEQ. 

Theorem III: There is a negative personal disclosure if and 
only if there exists an elementary family Q = {q, q1, q2, ... , 
qn}, such that the following hold: 

(i) aq>aq- qi 

(ii) Aqi=aqi 
(iii) qiEQk 

Proof: See Appendix III. 
The theorem states that there is a negative personal 

disclosure if and only if there exists an elementary family 
Q and a query q i E Q such that there is a candidate in the 
family and the user knows all the data persons who are in­
cluded in the retrieved set of qi. From the theorem, it be­
comes obvious that a user's supplementary knowledge plays 

a very important role in generating personal disclosure. 
Especially if a user has no supplementary knowledge about 
any data person (i.e., his supplementary data base is empty), 
then all those queries which do not disclose the identity of 
a data person can be permitted, irrespective of their answers 
and still there will be no personal disclosure. 

Example 5 

Consider example 2. Let q2' = (Major, Math.) 1\ (Marital 
Status, Single), and q7= (Major, Math.) Let Q= {q7, q2, q2'} 
be the disjoint family in which q7 is the ancestor query. 
Since in example 2, aq7 = 1, aq2 =0, condition (i) of the 
theorem is satisfied. Also since A q2 = 0, conditions (ii) and 
(iii) are satisfied. Hence, there is a negative disclosure that 
the data person is not married. 

Let Qp denote the set of all permitted queries. Let M be 
the maximum number of data persons who a user knows are 
included in the data base. The following theorem provides 
sufficient conditions for no personal disclosures: 

Theorem IV: There is no personal disclosure if the following 
hold: 

(i) qE Qp=}Aq~M. 
(ii) There is no statistical disclosure. 

Proof: See Appendix IV. 
Theorem IV may be used for implementing a simple 

model for a secure system. M is introduced as a maximum 
number of data persons known to a user. In a practical situ­
ation, it is very hard to choose M. However, it may be desir­
able to assume an upper limit for it. Once M is chosen and 
assuming that the user's set of supplementary queries is 
empty, a set of queries whose answers are not less than M 
may be selected for a possible set of permitted queries. 
From this set, its largest subset is chosen which guarantees 
that there will be no resultant disclosure if this set is per­
mitted. Theorem IV then insures that in permitting this set 
of queries there will be no personal disclosure. 

CONCLUSION 

The theorems which are proved in this paper provide a means 
to check whether or not a statistical information retrieval 
system is secure from personal disclosure. It should be noted 
that in a data base in which the disjoint family relation 
holds, if a query is not permitted then at least one of its 
direct descendent queries cannot be permitted either. 
Otherwise, a user could add the answers to all of the direct 
descendent queries and find out the answer to the original 
query. In turn, one of the descendent queries of that de­
scendent query must be restricted, and so on. Thus, if a 
query is not permitted then that query will propagate at 
least one query in each of its descendent families which 
cannot be permitted. Hence, the number of restricted queries 
grows very rapidly. 



Insuring Individual's Privacy from Statistical Data Base Users 945 

ACKNOWLEDGMENTS 

I am thankful to Professor A. J. Bernstein and Professor J. 
Heller for advising me in this work. Professor Bernstein 
also helped me in verifying proofs of the theorems. I am 
indebted to Professor R. B. Kieburtz as well as Professor 
H. Gelernter and Professor D.H. Tycko for their continuous 
encouragements and sympathetic behavior with me. 
My special thanks are for Mr. Alan Zalkind, Executive 
Director, High Impact Anti-Crime Program, who gave me 
the opportunity to present this paper. 

REFERENCES AND BIBLIOGRAPHY 

1. Westin, A., Privacy and Freedom, Atheneum, New York, 1968 
2. Federal Statistics, Chapter 6, Vol. I and Chapter 5, Vol. II. 
3. Hoffman, L. J., "Computer and Privacy: A Survey," Computing 

Surveys, Vol. I, Number 2, June 1969. 
4. Petersen, H. E., and R. Turn, "Systems Implications of Infor­

mation Privacy," AFIPS Conference Proceedings, 1967 Spring Joint 
Computer Conference, pp. 291-300. 

5. Turn, R., and H. E., Petersen, Security of Computerized Infor­
mation Systems, Rand Corporation Technical Journal, The Rand 
Corporation, Santa Monica, California. 

6. Ware, W., "Security and Privacy in Computer Systems," AFIPS 
Conference Proceedings, 1967 Spring Joint Computer Conference, 
pp. 279-282. 

7. Hoffman, L. J., and W. F., Miller, "Getting a Personal Dossier 
from a Statistical Data Bank," Datamation, May 1970, pp. 74-75. 

8. Haq, M. I., "Security in a Statistical Data Base," Proceedings of 
the American Society of Information Science, 1974 Conference, Vol. 
11, pp. 33-39. 

9. Reed, I. S., "Information Theory and Privacy in Data Banks," 
AFIPS Conference Proceedings, 1973 National Computer Con­
ference, pp. 581-587. 

10. Hansen, M. H., "Insuring Confidentiality of Individual Records in 
Data Storage and Retrieval for Statistical Purposes," AFIPS 
Conference Proceedings, 1971 Fall Joint Computer Conference, pp. 
579-585. 

11. Fellegi, I. P., "On the Question of Statistical Confidentiality," 
Journal of the American Statistical Association, March 1972, Vol. 67, 
Number 337, pp. 7-17. 

12. Boruch, R. F., "Security of Information Processing-Implications 
from Social Research," AFIPS Conference Proceedings, 1972 Fall 
Joint Computer Conference, pp. 425-433. 

13. Rothman, S., "The Protection of Privacy and Security in Criminal 
Offender Record Information Systems," AFIPS Conference Pro­
ceedings, 1972 Fall Joint Computer Conference, pp. 423-424. 

14. Turn, R., and N. Z., Shapiro, "Privacy and Security in Data Bank 
Systems-Measures of Effectiveness, Costs, and Protector-Intruder 
Interactions," AFIPS Conference Proceedings, 1972 Fall Joint Com­
puter Conference, pp. 435-444. 

15. Comber, E. V., "Management of Confidential Information," AFIPS 
Conference Proceedings, 1969 Fall Joint Computer Conference, pp. 
135-143. 

16. Peters, B., "Security Considerations in a Multi-Programmed Com­
puter System," AFIPS Conference Proceedings, 1967 Spring Joint 
Computer Conference, pp. 283-286. 

APPENDIX I-PROOF OF THEOREM I 

Proof of if part: Let Q = {ql, q2, . . . , qn} and P Q = (PI, 
P2, ... , pd. Condition (i) implies that A q, = L7=1 Cr 1 pj 1 

where Cj is either zero or one and is known. Aql can, there­
fore, be computed if for all Cj:;=:O the 1 pj I's are known. Also 

where for all 1 SiS nand 1 sj S L, bij is known. Condition 
(ii) implies that L = n. As these equations are independent, 
there is a unique solution for 1 pj I's. Hence, 1 Pi I's are 
known. Therefore the answer of q' can be computed. 

Proof of only if part: Suppose that the answer of q' can be 
computed from the set Q of independent queries and con­
dition (i) and/or condition (ii) does not hold. Condition (i) 
does not hold means that PQ:;=:PQU{ql}. Then PQU{ql} is 
formed by partitioning at least one of the partition sets, say 
Ph into Pi' and p;', where Pi' is contained in the retrieved set 
of q' and P;' is not contained in the retrieved set of q'. Con­
sider a modification to the data base in which a single person 
who is included in Pi' of the original data base is moved to 
P;' in the modified data base. Since the information known 
to the user i.e., Aq/s remains the same, he would conclude the 
same answer for q' which would be incorrect. Therefore 
condition (i) is necessary. Condition (ii) does not hold 
implies that L:;=:n, where n= 1 Q 1 and L= 1 PQ I. If n>L, 
then L of the simultaneous equations (1) carr be solved to 
find 1 Pi I's, for j=1 to L. The remaining A qi, L+1sisn 
can, therefore be computed from the answers of ql, q2, ... , 
qL. Thus, Q is not a set of independent queries which is a 
contradiction. If n<L then the set of simultaneous equations 
(1) do not have a unique solution. Hence, the answer of q' 
cannot be computed uniquely. This completes the proof of 
the theorem. 

APPENDIX II-PROOF OF THEOREM II 

Proof of if part: It can be shown as in the proof of theorem 
I that if condition (ii) holds then 1 Pi I's are uniquely de­
termined. From theorem I, condition (i) implies that the 
answer of q' can be computed; hence, there is a statistical 
disclosure. 

Proof of only if part: Let there be statistical disclosure 
about the set Q' of queries. Let q' E Q'. This part is proved by 
using the method of proof by contradiction. In order to ob­
tain the contradiction, a modified data base is designed from 
the original data base such that the modified data base is also 
a valid data base and both data bases are indistinguishable to 
a user. Now assume that condition (i) and/or condition (ii) 
does not hold. If condition (i) does not hold then the same 
arguments as those used in the proof of theorem I can be 
given which lead to a contradiction. Hence, condition (i) 
is necessary. If condition (ii) does not hold, then at least two 
sets of values for 1 Pi I, j = 1 to L, exist which satisfy con­
dition (i). Consider a modification to the data base by alter­
ing the answers of set Q' of queries by changing the values of 
1 Pi 1 's and keeping all the information the same. Conse­
quently, the user will conclude the same answers for the set Q' 
of queries which would not be correct. Hence, there is a con­
tradiction. This completes the proof of the theorem. 



946 National Computer Conference, 1975 

APPENDIX III-PROOF OF THEOREM III 

Proof of if part: Condition (i) implies that there is at least 
one candidate in family Q. Let that person be denoted by k. 
Conditions (ii) and (iii) imply that the user knows all the 
data persons who are included in Rqi• Therefore he can 
conclude that k \£ Rqi• Hence, negative personal disclosure 
occurs. 

Proof of only if part: Let there be a negative personal dis­
closure about a person p, i.e., there exists qi such that the 
user can conclude that p \£ Rq;, given that he already knew 
that p E Rq, where q is the ancestor query of qi. Let Q = 

{q, ql, q2, ... , qn} be an elementary family which contains 
q and qi. Hence, there is a candidate p such that aq>aq_qi. 
Therefore condition (i) is satisfied. Now assume that con­
dition (ii) does not hold, i.e., Aqi>aqi. This implies that there 
exists a data person, say U 1, who is not known to the user 
and U1 E Rqi. The fact that negative personal disclosure ha~ 
occurred implies that there is at least one data person, say 
U2, who is included in one of the sets Rqll Rq2, ... , Rqi- ll 
Rqi+ll ... , Rqn, and the user concluded that p= U2 (i.e., 
that data person p is the same as data person U2). Assume 
that U2 ERqi, j~i. Consider a modification to the data base 
in which two data persons, U1 and U2, who are included in 
the retrieved set Rqi and Rqi in the original data base, are 
now moved to Rqi and Rqi respectively in the modified data 
base. As the information known to the user remains the same 
he would still conclude that p\£ Rqi which would be incorrect: 
Hence, there is a contradiction. Therefore condition (ii) is 
true. Now assume that condition (iii) does not hold, i.e., 
qi\£ Qk. There exists at least one more query, say qil from the 
set Q such that qj' \£ Qk; otherwise the user can find the answer 
of qi from the linear relation which exists in a family of 
queries. Consider the two cases. qi' is q or qi' E Q - {q d. In 

each case, a modification to the data base can be made by 
moving the data person U2 to R qi and varying the answers of 
queries from the family Q such that the information known 
to the user does not change. Therefore, the user would 
conclude the same result, that data person p\£ Rqi for the 
modified data base, which would be incorrect. Hence, there 
is a contradiction. This completes the proof. 

APPENDIX IV-PROOF OF THEOREM IV 

Proof: As the conditions for no negative personal disclosure 
are stronger than positive personal disclosure, the theorem 
is proved for negative personal disclosure. Let Q be an ele­
mentary family which contains qi. Assume that there is a 
negative personal disclosure that a data person k \£ Rqi , 

given that the user already knew that k E Rq. By theorem III, 
then aq> aq_qi and A qi = aqi and is known to the user. There 
can be two cases: 

1. Aqi<M. 
2. Aqi~M. 

Consider case 1. As there is no statistical disclosure, 
QpUQs=Qk, where Q8 is the set of supplementary queries. 
Hence, if condition (i) is true then for all qE Qk if Aq<M 
then q E Q8' Consequently, there is no negative personal dis­
closure since all the information is known to the user from his 
supplementary knowledge. Consider case 2. By the defini­
tion of M, aqi can at most be equal to M. By the condition 
(ii) of theorem III, Aqi is therefore equal to M. But then 
condition (i) of theorem III does not hold. Hence, there can 
be no negative personal disclosure. Therefore, the theorem is 
proved. 



Computers, security, and the audit function 

by NORMAN R. NIELSEN 
Stanford Research Institute 
Menlo Park, California 

INTRODUCTION 

As the role of computation spread in the world of com­
mercial data processing and in the world of organizational 
administration, concern and attention were directed 
toward such matters as programming techniques, com­
puter capabilities, and computer performance measure­
ment and evaluation. However, because computers be­
came increasingly essential to the conduct of an organiza­
tion's daily activities, and because these systems 
frequently controlled vast amounts of organizational 
resources, the computer became an object of attack. In 
some cases the organization was the target; the computer 
was the means to attack it. In other cases personal gain 
was the goal; the computer was merely the means for 
misappropriating corporate assets. Parker! has chronicled 
more than two hundred cases of computer-related crimes. 
Therefore, concern has recently been focused on the se­
curity of computer installations and the maintenance of 
computer system integrity. In 1974 both AFIPS2 and the 
National Bureau of Standards3 have published guidelines 
for computer security. 

The organizational auditor has long been involved in one 
fashion or another with the auditing of applications 
processed in whole or in part by computer systems. Until 
recently, though, his concern has been with the application 
itself, not with the computer system. Great faith was 
maintained in the basic integrity of computer systems. 
Now, however, the growing incidence of computer-related 
crimes has shattered that faith. The auditor must also 
concern himself with the basic security of the organiza­
tion's computer facilities and with the means by which the 
integrity of the systems is maintained. Thus, the auditor is 
rapidly being thrust into an area in which he has tradi­
tionally had little expertise or responsibility. 

COMPUTER SECURITY 

Four developments have served to bring concern about 
computer security to the forefront today. It is these 
developments that are rapidly pushing the auditor into the 
midst of the computer security problem. 

947 

The growing role of computing 

Computers are becoming an integrated part of the 
operations of many organizations. Computer systems 
schedule daily work flows and product assembly se­
quences in manufacturing. In the transport industry, res­
ervations, traffic movement control, and crew and equip­
ment scheduling are computer-based. Banks are critically 
dependent upon overnight computer processing, so that 
they may open their doors the following morning. Govern­
mental organizations rely upon computers for the 
disbursement of funds and the maintenance of records 
concerning their constituent citizens. 

The computer has thus become a vital cog in most orga­
nizations. The period of time during which an organization 
could continue to exist in the face of the cessation of com­
puter processing will, of course, vary from organization to 
organization. However, the time periods are all short in 
relative terms, and these periods are tending to become 
shorter every year. Thus, security as related to the 
continued availability of these computer systems to serve 
their organizations takes on particular importance. 

Computer files as assets 

Computerized files of data are in many organizations 
becoming synonymous with the assets recorded in them. 
Thus, a bank's files of account balances are just as much 
"cash" as the depositors' actual funds. A few bits changed 
in a file can yield as much real money as an armed rob­
bery. The same holds true for payment systems associated 
with accounts payable, payroll, claims, dividends, pen­
sions, and credit account balances in other organizations. 

Even computerized files that do not represent cash 
assets are frequently valuable organizational assets in 
need of protection. Mailing lists are a classic example of 
this type of asset and have already been the target of 
thefts. 

Privacy 

Privacy is a distinct concept that must not be confused 
with security. However, the privacy of data cannot be 
assured on an insecure system. That is, a secure computer 



948 'National Computer Conference; 1975 

system is a necessary, but definitely not a sufficient, con­
dition for maintaining the privacy of personal information 
stored in computer files. 

Today there is a great deal of interest in the privacy of 
the individual and of data relating to the individual.4 Bills 
concerned with privacy have been introduced in both the 
House and the Senate during the past legislative session, 
and numerous bills have been introduced in the various 
state legislatures. Although very little of this legislation 
has yet become law, it is clear that additional legislation 
will be forthcoming in this area. While the immediate im­
pact of new laws is likely to focus on privacy considera­
tions per se, there will necessarily be a derivative impact 
on computer facility security and system integrity require­
ments. 

EXPANDED AUDIT ROLE 

The fact that the security of a computer facility can no 
longer be taken for granted and the integrity of a com­
puter system can no longer be assumed is leading to a 
much broader role for auditors in an organization's EDP 
operations. Considered below are six areas where much 
greater auditor participation is now required. 

Physical security 

Because of the critical role played by computing in most 
organizations, the auditor must take steps to verify that 
appropriate levels of physical security surround the com­
puter facility. Consideration must be given to fire detec­
tion and extinguishing equipment, to pumps and alarms, 
to air conditioning equipment and air intakes, to power ca­
bles and communication lines, to window areas and wall 
construction, to activities and hazards in neighboring 
buildings and adjacent floors, and to cleanliness of operat­
ing areas. 

Procedures (and training in the use of those procedures) 
are just as important as physical facilities. Personnel must 
know how to respond in an emergency, to protect the 
safety of employees as well as to. protect equipment and 
data files. Emergency equipment must be tested on a 
regular basis. Clearly, it is not the auditor's responsibility 
to develop procedures and to carry out such tests. 
However, he must determine the adequacy of the equip­
ment and the procedures that have been developed for 
safeguarding the facility, and he must verify that the 
procedures are being adhered to properly. 

Access control 

An organization's computer facility cannot be sealed off 
from the outside world, for a variety of personnel and ma­
terials must regularly move in and out of it. Again, the au­
ditor must be concerned with the adequacy of the 
procedures for controlling such movements and with the 

verification that these procedures are being followed faith­
fully. 

The most obvious area of concern is the movement of 
personnel. This includes not only regular employees, but 
also maintenance personnel, temporary employees, visi­
tors, deliverymen, and so on. Further, unrestricted move­
ment to all areas within a controlled area is unlikely to be 
necessary or desirable, requiring the establishment of 
proper access controls within the basic controlled area. 

Controlling the movement of materials in and out of the 
controlled area may at first glance seem straightforward. 
However, there are many subtleties. Bombs have been 
shipped into computer rooms in boxes thought to contain 
paper for the printers. Waste and spoiled outputs hauled 
away in the trash have often yielded valuable or sensitive 
information to scavengers. Tapes or printed reports can 
easily be concealed in a briefcase or on the person of an in­
dividualleaving a facility. 

Changes in computing technology in the past few years 
have added a new dimension to access control. It used to 
be that data inputs were physically shipped to the com­
puter facility from the user departments or branches. 
Authenticating the input materials and controlling the dis­
tribution of outputs was relatively easily accomplished. 
Now, however, much of the input and output process is 
conducted over telecommunication lines. Ensuring the 
identity of incoming requests is a much more difficult 
task. This is true even when dedicated rather than dial-up 
telephone lines are being used. It is not surprising that a 
variety of research, such as that of Evans, Kantrowitz, and 
Weiss;5 Purdy;6 and Friedman and Hoffman7 has been 
conducted in this area. 

Operating procedures 

A variety of operating procedures have a direct impact 
on the security and integrity of an organization's computer 
facility and data files, so the auditor must extend his 
concern into this area as well. 

Separation of duties has long been a key tenet in the 
manual handling of financial transactions. However, the 
extension of this concept to cover the automatic handling 
of transactions within data processing systems has not al­
ways been made. 

Further, the data processing operation itself requires 
some additional types of separation that have heretofore 
been foreign to the auditor. Production run scheduling and 
control, computer operations, and data library responsi­
bilities must be separated. Even in environments where a 
single employee is quite capable of performing these 
duties himself, the combination of responsibilities must be 
avoided. Many of the cases of computer abuse studied by 
Parker l resulted from an uncontrolled combination of 
responsibilities. 

The procedures that must be examined by the auditor 
can become fairly technical in the operations area. For 
example, the safeguards over the improper or erroneous 



scratching of data files can be critical, as can the 
procedures controlling the rotation of tapes to off-site 
backup storage facilities. Operating concerns even extend 
into the computer system itself, covering such items as file 
access protection from unauthorized requests, tape label 
recognition to guard against operator vol ume-mounting er­
rors, and memory protection features in inultiprogrammed 
systems. 

Programming 

Programming represents the heart of a computer 
system, and it places two different types of requirements 
upon the auditor. First, as for the areas mentioned pre­
viously, a number of procedures need to be examined with 
respect to their impact on system security and integrity. 
These include the development and use of programming 
standards, the enforcement of documentation standards, 
the independent testing and examination of new software 
(systems, applications, modules, or simply patches to 
existing programs), and the independent operation of that 
software on the production computer system. 

The separation of duties goes beyond the aforemen­
tioned split among development, test, and operation. The 
development of programs is (with today's technology) an 
inherently "buggy" process. Thus, there needs to be a 
separation of the production computer system from the 
development system, of the production files from the test 
data. Privacy considerations are likely to lead to the afore­
mentioned test group being delegated the responsibility to 
provide programmers with "sanitized" test data, data that 
are like "live" data but that do not contain meaningful 
identification such as actual names or addresses. 

The second type of responsibility for the auditor in this 
area concerns the program design process. Computer 
programming technology is such that a wide variety of 
functions can be included in a program at little cost if 
planned for in the original design. However, it is often pro­
hibitively expensive to include any of the same functions 
after program development has been undertaken. Thus, it 
is critical that the auditor play a significant role in the 
program design process. It is at this point that he must 
seek to include the proper programmatic control features 
and to add the necessary audit trails to facilitate his audit­
ing of the system when it becomes operational. The 
continued integration of functions within the computer 
system often leads to the loss of customary audit trails, 
but the technology is such that the auditor cannot afford 
to wait until he notices that the audit trails have vanished. 

Personnel 

Many aspects of this area are already familiar to audi­
tors, including employee bonding and employee back­
ground investigations. However, surprisingly little is done 
to make the data processing employee realize that he is iIi 
as much a position of trust as is the employee of a bank 

Computers, Security, and the Audit Function 949 

trust department. A great deal of confidential or sensitive 
information passes through the computer system, and the 
employees frequently have access to it. Consideration 
must also be given to the protection, following an em­
ployee's termination of employment, of the program 
developments and sensitive data previously exposed to 
him. 

Normally, considerations of employee relations and 
unionization are not particularly the province of the audi­
tor. However, the vast concentration of organizational 
assets in computer systems and the critical role played by 
computers in the daily affairs of organizations, coupled 
with increasing attempts at unionization in the data 
processing field,S do have an impact on the assessment of 
system security, operability, and integrity. 

Recovery 

Disaster is an unpleasant subject, which is often the 
reason why human beings do not plan for it. Yet, disasters 
can and do happen. Thus, the auditor must be concerned 
with his organization's ability to recover and resume 
normal operations. The usual considerations include 
backup power supplies, spare equipment or excess ca­
pacity, off-site data storage, and backup computers (on­
site, at other locations, or even in other organizations). 

However, technology is making the assurance of ade­
quate backup in the event of major disaster an increas­
ingly difficult task. The development of large, centralized 
computer systems, particularly those with extensive 
telecommunication links, has resulted in systems that are 
expensive to replicate and in applications that are difficult 
to move from one site to another because of communica­
tions or other special requirements. This frequently results 
in a disaster plan that is simply a prayer that disaster will 
never strike. 

THE COMPUTER AS AN AUDIT TOOL 

The computer is not solely a villain in adding to the 
problems confronting the auditor; it also brings tools that 
can aid him in carrying out his responsibilities. Computer 
power has greatly enhanced the controls that can be em­
ployed in application programs, in monitoring system 
processing, and in controlling and logging facility access. 
Computer power has also greatly increased the types of 
tools available in conducting an audit. The following three 
types are illustrative. 

Audit software 

In the past several years many software packages have 
been developed for use in auditing computerized systems. 
These packages have primarily been intended to permit 
the auditor to access computer files independently with a 
minimum of effort, for the purpose of sampling, totaling, 



950 National Computer Conference, 1975 

listing, comparing, and so on. Conceptually, these tools 
provide no functional change in the work of the auditor; 
he merely uses the computer to "read" the files that he 
can no longer read manually and to automate the com­
putations on those files that for many years were 
performed manually. A very good description and com­
parison of the more commonly used audit software that is 
available may be found in Adams and Mullarkey.9 

Dummy branch 

The model division or dummy branch is a very powerful 
tool for the auditor that provides a conceptually different 
auditing approach. The' auditor can introduce test transac­
tions into the system through the dummy branch without 
having to back them out, without impacting regular com­
pany operations, and without introducing the additional 
control problems associated with audit personnel making 
direct changes to company records. The dummy branch 
also provides a mechanism for testing strings of previous 
transactions for a particular account, salesman, or branch 
to see whether the previously obtained results are repli­
cated. 

Despite the power of the dummy branch as an audit 
tool, it is not widely used today, largely owing to time and 
cost considerations. However, the path of technological 
development of computing may well remove or reduce this 
limitation (see A udit Implications below). 

Contextual audits 

Computer processing, coupled with more extensive com­
puter-based data files, is permitting auditors to make 
contextual audits across time periods and operating divi­
sion boundaries rather than having to examine a record or 
transaction in isolation, out of context. Thus, for example, 
an adjustment made to a payroll record falling within 
certain limitations will be accepted as legitimate, since er­
rors are made and do have to be corrected. However, 
should that adjustment figure be repeated each pay pe­
riod, there would be cause for further investigation. Simi­
larly, the on-duty time of transportation operating person­
nel can be correlated with equipment dispatch records and 
with the independent records of other types of crew 
members serving on the same equipment. Thus, the audi­
tor can bring to bear tools of much greater power in the 
conduct of his audit investigations. 

AUDIT IMPACTS OF COMPUTING TECHNOLOGY 
CHANGES 

The items discussed in the previous sections reflect 
developments that affect the work of the auditor today. 
However, the situation is not static. Computing technology 
is continuing to change rapidly, and the changes will have 
an impact on computing styles, which, in turn, will affect 
security and audit requirements. Therefore, it is im-

portant to consider some of the prospective changes and 
their derivative impacts. 

These prospective changes are examined below in four 
steps. First, the changes in the technology used in various 
computer system components are examined. Then the im­
pacts of these changes on the use of these components are 
explored. Next, the collective impacts of these changes on 
computer system design (hardware, operating systems, 
and applications software) are treated. Finally, the deriva­
tive implications of these system changes on the audit 
function are discussed. 

Prospective technology changes 

Recent advances in solid-state circuitry are rapidly be­
ing incorporated into currently manufactured computer 
systems. It is forecast that development trends in large­
scale integrated (LSI) circuitry will continue, leading to 
memory and processor components that are smaller, 
faster, and cheaper. The use of LSI circuitry will also aid 
equipment reliability and maintainability. Not only does 
the use of LSI permit more fault detection and correction 
hardware to be included in the equipment design, but its 
packaging and reduced circuit costs permit circuit failures 
to be isolated and replaced at the chip level rather than at 
the circuit level. As a result, memory and processing equip­
ment should not only be more powerful and cost effective 
but also more reliable in operation and more readily 
repaired when inoperable. 

A variety of trends are forecast in the area of I/O and 
data transmission equipment. Magnetic storage media will 
probably retain their dominant role. However, storage 
density should continue to increase, and storage cost 
should drop. Access times and transfer rates should 
continue to improve. Printer' technology is likely to ad­
vance significantly in the nonimpact area, providing much 
faster output rates, as well as graphic and image reproduc­
tion capability. The devlopment and use of programmable 
front-end communication processors is expected to 
continue, so communication processors may soon become 
an integral part of most standard systems. Digital com­
munication circuits will become much more common, per­
mitting not only reduced costs but also faster, more re­
liable communications. 

Relative progress in the software area is not expected by 
many to be nearly as striking as that in the hardware area. 
Operating systems on medium- and large-scale computers 
are expected to grow larger and more complex as they are 
called on to provide additional services. In addition, more 
design emphasis will be placed on system integrity and se­
curity considerations. Thus, the processing power required 
to support the operating system should continue to 
increase. Program development will continue to constitute 
a large part of the total cost of computing. Although there 
are a number of changes on the horizon that 'should 
improve programmer effectiveness, these developments 
are not likely to have as significant an effect upon cost as 
hardware developments. Hence, programming should be-



come relatively more expensive. The use of microprogram­
ming capabilities for support purposes is expected to 
spread, permitting more effective use to be made of 
hardware for particular applications, as well as facilitating 
certain types of program development. 

Impact on usage 

The increased speed and reduced cost of circuitry 
should support the trend toward faster and more powerful 
processors within the main product lines of computer 
manufacturers. More applications should thus 'become 
feasible, either through reduced cost or through reduced 
processing time. This should assist the spread of on-line 
processing systems in many commercial areas. 

However, these developments in circuit technology will 
also benefit minicomputer systems. More capable mini­
computers will be able to perform many of the functions 
now thought to require a larger, general purpose computer. 
Capability coupled with the low cost of such minicom­
puters should facilitate the distribution of computing func­
tions within an organization (see Impact on System Design 
below) and should permit greater specialization or dedica­
tion of equipment to particular applications. 

The miniaturization of circuitry, in combination with low 
component costs, will probably lead to the incorporation of 
greater logical capabilities within equipment. This will ap­
ply not only to I/O devices and equipment control units but 
to terminals and user interface equipment as well. Thus, 
much more editing, formatting, and error correction could 
be handled at the terminal rather than at the computer. 
Microprocessors should continue to proliferate as a tool in 
support of additional equipment capabilities. 

Technological developments should also result in faster 
memories to operate with the faster processors. In addi­
tion, forecast cost reductions will permit much larger stan­
dard memory sizes. Although larger memories will 
facilitate program development and will permit more effi­
cient program execution, they will also support a 
continued need for complex multiprogrammed operating 
systems, with all the overhead and protective mechanisms 
associated with serving multiple users "simultaneously." 

The availability of larger volumes of on-line random ac­
cess storage at lower cost will probably facilitate greater 
use of on-line systems, as well as greater integration of an 
organization's files. Continued system integration implies 
a further loss of traditional audit trails, unless specific 
steps are taken to design audit trails and controls into in­
dividual applications. 

Advances in I/O equipment should enhance many ap­
plications. More input should be possible via mechanical 
scanning without reliance on human keystroking. Image 
input as well as output should become possible, permit­
ting, for example, an image of the pay-to-the-order-of line 
from a check to be input and subsequently printed on a 
customer statement. With the incorporation of increased 
logic in terminal devices, more input errors should be 
caught and corrected at the time of input, eliminating 

Computers, Security, and the Audit Function 951 

more costly error detection and correction in downstream 
processing. 

Networking should be facilitated by the availability of 
digital communication links, as well as by the greater use 
of front-end processors. This should enable more accurate 
communication as well as more appropriate "human inter­
faces" to be developed for systems. Front-end processors 
will also facilitate the shifting of loads to other processors 
(e.g., in the event of equipment failure), permitting more 
reliable service to be offered with a greater service 
availability. 

Operating systems are expected to offer additional 
services to programmers and users. This should help to 
reduce the growing cost of program development, but it is 
likely to do so at the cost of larger operating systems and 
increased use of processor cycles. However, the additional 
functions performed for the user are likely to be 
considered worth the cost, particularly in view of the ex­
pected decrease in computing costs. 

Programming costs are expected to remain relatively 
high, even though many attempts will be made to reduce 
them. In addition to new operating system support fea­
tures, further specialized software systems are likely to be 
developed to facilitate development and production usage 
in particular application areas. Use of data base manage­
ment software should become more widespread, aiding or­
ganizations in dealing with increasing volumes of readily 
accessible files. Greater use of structured programming, 
chief programmer t~ams, and similar approaches is an­
ticipated and should improve programming quality and 
cost effectiveness. 

An interesting expected trend is the increasing use of 
hardware to aid software systems. Thus, specialized micro­
programs or "firmware" should be increasingly used to 
adapt computation to support certain types of processing. 
These tools should facilitate regular program development 
as well as program execution. 

Impact on system design 

The changes and developments discussed in the pre­
vious two sections are likely to support two opposing 
trends in the overall architecture or structure of computer 
systems: a trend toward central systems and an opposing 
trend toward distributed systems. Short of some unex­
pected developments, it is anticipated that both types of 
systems will proliferate, the choice depending on the 
particular circumstances confronting an organization. 

Central systems 

Economies of scale for both capital equipment and 
operational support, more powerful systems, and more ca­
pable software should facilitate the development of what 
might be termed central computer systems. Such systems 
are characterized by an aggregation of one or more large­
scale processors or multiprocessors that are linked 
together at a single location. Most computing takes place 



952 National Computer Conference; 1975 

at this central site, and most files are stored there, ac­
cessible to all the computers. Users throughout the organi­
zation can input data and receive outputs via terminals at­
tached to a telecommunication network. The key distinc­
tion between this form of system organization and the dis­
tributed form (see below) is that processing capability and 
data files are stored at a single location in a star network 
rather than being distributed geographically and hierar­
chically throughout the network. It is interesting to note, 
however, that telecommunications can playa major role in 
either form of network. 

The central type of system organization will favor an in­
tegrated file system. Given the cost and performance data 
mentioned above, the availability of all files to all the 
processors in one location should push an organization 
toward broader and more integrated file usage. In a 
similar manner, application processing steps should show 
increasing integration, making for more effective process­
ing. 

Centralized processing can have an advantage over dis­
tributed computing in that there need be no coordination 
of processing between hierarchical levels, no transfer of 
.files between locations, and so forth. The central system is 
also better able to playa load-leveling role, since more 
averaging can take place on a large system than on a 
number of smaller systems. On the other hand, a central 
system of equivalent capacity is likely to run more heavily 
loaded, since a greater portion of its power must be used in 
support of the operating system. 

Other impacts include the greater variety and sophisti­
cation of services that can be made available to users of 
such a system and the ability of a facility to attract more 
capable staff members. Currently, large powerful com­
puter systems are viewed by computing professionals as 
being the more attractive systems on which to work. His­
torically, more new developments and more exciting 
activities have been associated with these systems. To the 
extent that this continues, the use of such "advanced" 
computing systems should be a positive factor in recruit­
ment. 

Distributed systems 

The decreasing cost of hardware, coupled with enhanced 
capability, should facilitate the development of what 
might be termed distributed computer systems.lO,n Such 
systems are characterized by a distribution of computa­
tional capability, both geographically and hierarchically. 
That is, certain types of processing may be done on small 
local computers, while other types of processing (or por­
ti6ns of processing steps) may be forwarded to more ca­
pable processing equipment at a higher level. 

Distributed systems can follow a variety of patterns. 
Hierarchies may be defined by the relative computational 
power at each level or by the files or file contents available 
at each level. Individual processors may handle a variety 
of jobs or be dedicated to particular applications. 

An additional impetus toward distributed computing 
may come from privacy and security considerations. 
Present-day operating systems are notoriously vulnerable 
to penetration. This poses a particular problem in connec­
tion with the central systems, for "all" users and "all" 
files are on the same system, with only the operating 
system preventing unauthorized access to files. The dis­
tributed design has the advantage of a simpler (and 
potentially more secure) operating system and of some 
physical barriers to file access. This may prove to be a 
powerful selling point in a world that is becoming more 
and more concerned about computer security and data file 
privacy. 

A distributed system can have several impacts. The 
greater specialization of the use of each computer can 
reduce the complexity required in the operating system. 
Thus, less memory and storage space need be devoted to 
the operating system; fewer computer cycles will be 
needed to run it; less effort will be needed to develop it; 
and more security "holes" can be avoided. 

The greater modularity that can be built into a dis­
tributed system can permit greater system flexibility. 
Growth can be accommodated by adding processors or by 
replacing processors incrementally. Failures have less of 
an impact on total performance, since a larger fraction of 
the total system remains operable. When many smaller 
processors are employed, it may be economically possible 
to switch in a replacement or standby processor to take 
over the function of the disabled one. 

Distribution mayor may not entail greater use of com­
munication equipment, depending on the application. 
Processing performed locally reduces the need for com­
munication to a central system. However, the passing of 
information and file data between hierarchical levels can 
entail greater communication requirements for certain 
designs. 

Although moving data around a distributed network re­
quires more emphasis on network security and control, 
such a network can lead to enhanced security. Efficient 
message switching and data flow requirements lead to 
greater standardization of requests, controls, and 
procedures for within-system communication. This struc­
ture, coupled with simpler system logic, can provide a 
positive increment to system security. 

Audit implications 

The prospect of the above developments has a number 
of implications for the auditor. These implications are dis­
cussed in three areas: those that relate to all systems, 
those that relate to central systems, and those that relate 
to distributed systems. 

General 

The continued decrease in the cost of computing should 
be beneficial to the auditor. Running tests or programs 



should become cheaper; running times should be reduced 
by the greater power of computing equipment. Larger 
samples should be possible without impacting ongoing 
operations more severely. Further, it may become possible 
to use tools never used previously in an organization be­
cause of their cost. The use of a dummy branch is a case 
in point. 

The expected loss of audit trails will require greater in­
volvement by auditors in the program development 
process. Without audit intervention, audit trails are likely 
to continue to be absorbed into more integrated processing 
steps, leaving fewer intermediate outputs. Further, with 
the probable continued high cost of software development 
and modification, it is imperative that appropriate audit 
trails be built into new software at the design stage rather 
than having to be retrofitted after development. 

It is likely that many more security features, as well as 
monitoring tools and facilities, will be contained in com­
puter operating systems. These have great potential for the 
auditor, but it will be necessary for him to learn how to 
use these facilities effectively and to incorporate their use 
into own auditing procedures. 

Central system 

The integration of data files should lead to greater use of 
data base management and report generation systems. Al­
though these should ease data base access problems, their 
use will make more files readily accessible by more indi­
viduals. Use of these systems will also permit data from 
several files to be combined with much less effort, an ac­
tion that could lead to more serious invasions of privacy. 

The complex operating systems of large central systems 
will probably continue to have security weaknesses that 
can be exploited by possible penetrators. Thus, it will be 
more difficult for auditors to ensure the integrity of com­
puter systems. Further, the greater number of programs 
and files on such a system should make the facility a more 
inviting target. 

The proliferation of terminals at scattered locations, 
each having direct access to a system with so much in­
formation available, poses another problem. Greater atten­
tion will have to be paid to the physical access control for 
these terminals, as well as to the logical control over what 
can be accomplished by them. 

Backing-up such a central system can pose problems be­
cause of the telecommunication interfaceS'· at a single site 
and the large size of a "unit" of computing. Thus, the 
availability of a computer at another location will not suf­
fice for backup purposes without a great deal of advance 
planning and (probable) contingency hardware expense. 

Although processing capabilities and peripheral equip­
ment capabilities are likely to reduce the audit trails 
available as a processing byproduct, the effect will be 
somewhat more pronounced in the central system. With 
less coordination between levels or nodes, there will be less' 
need and opportunity for intermediate logs to be created. 

Computers, Security, and the Audit Function 953 

Distributed systems 

The frequently simpler logic of the distributed systems 
should make audits easier and provide greater assurance 
that processing is proper and that file integrity is being 
maintained. The organization of a distributed system 
provides both greater opportunity for audit monitoring 
and additional audit tools. In particular, the expected 
reduced cost of minicomputers, in conjunction with 
enhanced capabilities, should bring the development of an 
audit computer into the realm of feasibility. Such a com­
puter could be integrated with the distributed system; yet 
it could enhance the desired isolation of audit programs 
and functions. 

The possibility of more file movement and system­
initiated transfers of programs and data within a dis­
tributed system should increase the importance of network 
design and management. Network protection will become 
more critical. Although all programming might be handled 
centrally and distributed to remote processors, a single in­
dividual with physical access to a processor at a remote lo­
cation could load substitute programs and do considerable 
damage to the network. 

Control can be a problem in distributed systems, since 
remote locations cannot always be staffed and operated at 
the same level or to the same standard as a central 
facility, owing to the smaller scale of the operation. Thus, 
more care may have to be . exercised in this area, and 
increased audit attention may be required. 

SUMMARY 

The growing role of computing in many organizations, the 
evolution of computer files into significant assets, and the 
derivative impact of privacy considerations are leading to 
a much greater concern for computer security and com­
puter system integrity assurance. These developments are 
impacting the auditor, adding to his computing-related 
responsibilities in the areas of physical security, access 
control, operating procedures, programming, personnel, 
and recovery. However, computer techniques have also 
provided additional control and audit tools to assist the 
auditor. 

Computing technology is not static, and future changes 
in computing technology will affect the manner of com­
puter use and hence the computer security facilities and 
requirements of the future. These changes will, in turn, 
impact the auditor, placing new demands (as well as pro­
viding new opportunities) for him to ensure the security 
and integrity of his organization's computing systems, 
data, and operations. 

REFERENCES 

1. Parker, D. B., S. Nycum, and S. S. Oura, Computer Abuse, Stanford 
Research Institute, Menlo Park, California, November 1973, 131 pp. 

2. American Federation of Information Processing Societies, System 
Reveiw Manual on Security, AFIPS Press, Montvale, New Jersey, 
1974,109 pp. 

3. U.S. Department of Commerce, National Bureau of Standards, 



954 National Computer Conference, 1975 

Guidelines for Automatic Data Processing Physical Security and 
Risk Management, Federal Information Processing Standards 
Publication 31, June 1974, 92 pp. 

4. French, N. and E. Holmes,"Privacy Issue Stirring on, off the Hill," 
Computerworld, Vol. VIII, No. 43, pp. 1-2,6, October 23, 1974. 

5. Evans, A. Jr., W. Kantrowitz, and E. Weiss, "A User Authentication 
Scheme Not Requirip.g Secrecy in the Computer," Comm. ACM, Vol. 
17, No.8, pp. 437-442, August 1974. 

6. P~rdy, G. B., "A High Security Log-In Procedure," Comm. ACM, 
Vol. 17, No.8, pp. 442-445, August 1974. 

7. Friedman, T. D. and L. J. Hoffman, "Execution Time Requirements 

for Encipherment Programs," Comm. ACM, Vol. 17, No.8, pp. 445-
449, August 1974. 

8. Schwab, B. and M. Thompson, "Unionism in Data Processing," 
Datamation, Vol. 20, No. 10, pp. 61-62, 64, 69, October 1974. 

9. Adams, D. L. and J. F. Mullarkey, "A Survey of Audit Software," J. 
Accountancy, Vol. 134, No.3, pp. 39-66, September 1972. 

10. "In Your Future: Distributed Systems?," EDP Analyzer, Vol. 11, 
No.8, pp. 1-13, August 1973. 

11. Joseph, E. C., "Innovations in Heterogeneous and Homogeneous Dis­
tributed-Function Architectures," Computer, Vol. 7, No.3, pp. 17-24, 
March 1974. 



Area Director: 
Susan H. Nycum 
MacLeod, Fuller, M uirand Godwin 
Los Altos, California 

Legal aspects of computer management 

The area "Legal Aspects" has particular appeal to computer supervisors and 
managers, facility directors, comptrollers, personnel and labor relations officers 
and others concerned with the management responsibilities of computer 
technology . 

The sessions will focus on identifying legal problems that managers may en­
counter in their daily activities and discuss some of the approaches to them that 
have proved successful and the pitfalls to be avoided when a situation arises. 

The first session, legal responsibilities in buying, using, selling data process­
ing, will be chaired by Robert P. Bigelow, Boston attorney, who has been active 
in the computer law field for 20 years. Mr. Bigelow is a noted lecturer and 
author of numerous publications including Computer Law and Tax Report, the 
Computer Law Service, a multi-volumed treatise on computer law, and co­
author of a forthcoming book, Your Computer and the Law. The session will 
deal with contracts, protection of proprietary rights and non-contractural 
responsibilities for computer use. Richard L. Bemacchi, partner in Irell & Ma­
nella, Los Angeles, and co-author of Data Processing Contracts and the Law will 
address contracting problems. Mr. Bigelow will discuss proprietary protection 
and Susan H. Nycum, member of MacLeod, Fuller, Muir and Godwin, Los 
Altos, participant in the NSF Computer Abuse Study and co-author of Your 
Computer and the Law, will discuss non-contractural responsibilities for com­
puter usage. 

Sherwood Lewis, Assistant Corporate Counsel of Sanders Associates, Inc., will 
chair the session on Antitrust and Regulatory Aspects. This session will 
examine antitrust and regulatory developments in data processing and telecom­
munications having immediate bearing on the data processing user and data 
processing operations. Emphasis will be placed on Government litigation and 
regulation, with comment on the effects of private actions, in both data process­
ing and communications. 

Mr. J. Thomas Franklin, partner in Sweeney and Franklin, Boston, will dis­
cuss Antitrust Activities in data processing. Mr. Lewis will examine regulatory 
and antitrust actions in telecommunications affecting data processing. 

Roy N. Freed, Boston attorney, author of Computers and Law, A Reference 
Work, and national authority on computers and law is chairman and sole 

955 



956 National Computer Conference, 1975 

speaker of the session, "A Guide to Computer-Related Tax, Insurance, Re­
cordkeeping and Labor Questions." Mr. Freed is noted for his practical ap­
proach to these complex and important issues facing EDP management. 

The final session chaired by Ms. Nycum will bring the previous session 
chairmen together to view the future trends of the law and computer interface 
with an emphasis on international developments. 

Each session will provide opportunities for interaction between the speakers 
and the audience. 



International dialogue 

Area Director: 
Vinton Cerf 
Stanford University 
Stanford, California 

Any Conference the size of NCC attracts specialists from all over the world. 
Indeed scattered in the various technical sessions are contributions from people 
in Japan, Canada, England, Germany, France, and Brazil. In addition to this 
individual participation, there is a set of four sessions focusing on topics that 
were found to be of special interest to non U.S. participants. They are stan­
dardization, especially the computer connection to communication networks, 
but also for input/output and software. We have arranged four sessions, with 
significant non-U.S. participation to articulate these areas. 

The initial session (#44) provides a status report on public packet switching 
networks. In the last decade, packet switching has grown from an experimental 
idea to a commercially viable communication medium. The emergence of the 
value added carriers in the U.S. and of packet switched public nets in other 
countries, underlines this development. The panel will explore some of the 
technical, political, and economic issues facing these new carriers, as viewed by 
those who are supplying the service. Of special interest is the interconnection 
issue, particularly in an international context. 

The next session (#50) turns to the policy questions that arise. The quality 
and reliability of existing telecommunication services will have to improve to 
meet the new needs, and policies concerning interconnection, sharing, tariffs, 
regulation, and balance of payments, to name a few, may have to change too. 
Even our institutional organizations may be affected by the need to cope with a 
vastly improved and more interconnected world wide telecommunications 
system. This panel will explore some of the short and long term policy issues 
which must be resolved before international data communication becomes as 
accessible as voice communication is today. 

The third session (#56) turns to the economics of interface standards. Com­
puter interface standards have been supported by many manufacturers and 
users as the means of reducing system cost and increasing flexibility. Others 
claim that standards will increase costs and damage the computer industry. 
This panel of independent U.S. manufacturers and users will discuss some 
problems and benefits of interface standardization. 

The final session (#63) will extend the discussion of interface standards to the 
international arena by including panelists from Western Europe and Japan. 
They will also include some discussion on software standards to round out the 
day. 

957 





Determination and analysis ofa standard 
interface model derived from a medium speed 
line printer 

by GARY E. JONES 
ODEC Computer Systems, Inc. 
Warwick, Rhode Island 

INTRODUCTION 

The need for the development of a standard interface for 
computer associated equipment is a subject that requires 
investigation based on analytical facts rather than emotion. 
To establish a baseline for the definition of an interface 
model, a medium speed line printer utilizing 22 interfaces 
for a given printer model provides adequate interfaces for 
investigation. Such a model has many similarities relative 
to any interface consideration. All data presented is factual 
and represents an actual functioning interface to a control­
ler. Most interfaces are associated with terminals, mini­
computer or medium scale computers. 

ANALYSIS OF INTERFACE DIFFERENCES FOR A 
MEDIUM SPEED LINE PRINTER 

A consideration of the differences between all interfaces 
makes it possible to analytically investigate the many 
parameters present. Such a parameter study gives insight 
to the significance of a standard interface. 

Hardware requirements and limits 

The connectors and cable requirements for the interface 
circuitry vary greatly between controller manufacturers. 
Changes in connector configurations cause cabinet modifi­
cations, extra paper work and manufacturing configuration 
control. Such necessary complications add cost to the 
product to satisfy the varied customer requirements. 

One variation associated with the connector is pin 
assignments. Out of the 22 interfaces being considered, 16 
different pin configurations exist. The number of pins 
contained in the various connectors is a low of 22 with 
three coax, and a high of 50 pins. Of the actual pins used, 
a low of 20 and a high of 32 was present. 

Three physical size differences of connectors occurred. 
A further complication was the use of both alpha and 
numeric pin designations. Connector variability causes 
extra definition and paper work requirements. 

959 

Functional definitions and variations 

The interchange of data between the printer and control­
ler may be basically defined to consist of a minimum 
number of control functions. Table I lists general printer 
control functions and the occurrence data. It can be seen 
that only the data strobe and basic data line signals are 
present in all interfaces. Such signal variations cause 
configuration differences and extra paper work require­
ments. 

Table II lists the total functions utilized. No one 
interface utilizes all of the functions listed in Table II. The 
various functions defined for each given interface require 
design changes from minor modifications to entire printed 
circuit board design. 

Options 

Certain of the functions included in Table II are 
considered to be optional requirements. Such requirements 
add speed advantages or economic impact and should be 
considered as a variable even in standard interface defini­
tions. 

The VFU (Vertical Format Unit) variation between 
teletype and IBM type paper tape is not an optional 
requirement. However, the~' difference between a two 
channel unit and a 12 channel unit requires considerable 
circuit design differences. Extra cost is associated with the 
12 channel unit and the interface requirement for 12 
channel is the most complex. The Vertical Format Unit is 
used for programmed control of paper movement. 

Different character fonts allow speed advantages for 
given data format requirements. This difference in func­
tion is significant ~ enough to be included in option defini­
tion. 

Interface signal title variations 

Table III lists the total interface signal titles utilized. 
Variations in signal titles with respect to controller require­
ments causes cable wire run list differences and schematic 



960 National Computer Conference, 1975 

TABLE I-General Printer Control Functions 

FUNCTION 

Alarm Condition 
Character Ready 
Data Lines 1-6 
Data Lines 1-7 
Data Strobe 
Line Ready 
On Line 

STANDARDIVARIES 

Varies 
Varies 
Varies 
Varies 
Standard 
Varies 
Varies 

changes. Table IV lists the signal titles that are associated 
with the interface defined to be standard by the printer 
manufacturer. The standard interface has been utilized 
with over 75 unique customer's controllers. The 21 other 
interfaces considered include various combinations of 
connector differences, functional differences, and signal 
title differences. The various levels of change cause paper 
work differences. Table V lists the interface model param­
eters with respect to the interfaces considered. It is 
evident that a standard interface definition would reduce 
costs by elimination of much of the workload as defined by 
Table II and Table V. A standard interface utilizing signals 
definition similar to Table IV and a definition of cable and 
functions would greatly reduce the need for the many 
configuration differences required. 

ANAL YSIS OF REASONS FOR INTERFACE 
DIFFERENCES 

The reason for the ma,ny different ways of doing a 
similar function is directly related to the many different 
printers available. Each printer manufacturer selects 
unique functions and cable requirements. Other peripheral 
manufacturers respond likewise. A system manufacturer is 

TABLE II-Total Functions Utilized 

Automatic Print 
Automatic Print and Paper Advance 
Differential Interface-Line Driver/Receiver 
Feed After Print 
Feed Before Print 
Motor Off Delay 
Negative Logic 
Paper Jam Detection 
Paper Runaway 
Paper Tear Detection 
Positive Logic 
Print on Command 
Serial/Parallel Interface 
Special Termination Resistors 
Special Test Character 
2 Channel VFU (IBM/TELETYPE) 
12 Channel VFU (IBM/TELETYPE) 
48 Character Set 
64 Character Set 
96 Character Set 

* OPTIONAL 

ACK 
Alarm 
~ 
Alarm Serial 

TABLE III-Total Interface Signal Titles 

Belt Mtr in Speed 
Buffer Rdy 
Buffer Ready 
Buffer Ready Serial 
Char Rdy 
Character Ready 
Data Bit 1-6 
Data Bit 1-7 
Data Bit 1-7 
Data Strobe 
Data Strobe 
DSTB 
EOPL 
VFU Channel 1 
VFU Channel 2 
VFU Channel 8 
Gnd 
Master Reset 
MA-STAT 
On Line 
On Line 
Paper Out 
PE 
Print 
Ready 
Select 
Serial Data 
+5V 

then faced with connecting a number of peripheral units to 
a controller. Once the selections are made, a cable and 
connection requirement emerges. As competition grows, 
the system manufacturer becomes interested in attempting 
to mutilize other peripherals, mostly due to either eco­
nomic or reliability considerations. Figure 1 shows four 
printers connected to four controllers illustrating the 
requirements that may be imposed on a printer manufac­
turer to be competitive. Referring to Figure 1, the 
following relationships are determined. 

Printer A has three interfaces with interface Al consid­
ered to be a standard interface of the printer manufac­
turer. The standard interface for Printer A is compatible 
with controller 1 and controller 2. Interfaces A2 and A3 
are compatible with controllers 3 and 4 respectively. 

TABLE IV-Standard Interface Signal Definition 

Alarm 
Belt Motor in Speed 
Buffer Ready 
Data Bit 1-7 
Data Strobe 
Line Ready 
Master Reset 
On Line 
Paper Out 
Ground 
+5V 



Determination and Analysis of a Standard Interface Model 961 

Printer B utilizes four unique interfaces to be compatible 
with the four controllers. 

Printer C 1 standard interface is compatible with control­
ler 3 and controller 4. Interfaces C2 and C3 are compatible 
with controllers 1 and 2 respectively. 

Printer Dl standard interface is compatible with control­
ler 1 and controller 2. Interfaces D2 and D3 are compatible 
with controller 4 and controller 3 respectively. 

Figure 1 shows that a printer standard interface as 
defined by the printer manufacturer is not compatible with 
other printer standard interfaces, and therefore not com­
patible with all controllers. 

It is also shown in Figure 1 that each controller accepts 
four different printers identically or demands a standard 
interface. In order for all printers to be compatible to all 
controllers, a total of 13 interfaces is required. A standard 
interface theoretically could reduce the number to 1 
interface. Typically, many independent printer manufac­
turers are required to design many different interfaces to 
be competitive. It is not uncommon for controller manufac­
turers to also design many different interfaces to be 
compatible with printers and other devices. In order that 
controllers second source devices without change to the 
system, many interface circuit designs are required. 

Printer standard interfaces 

Most independent printer manufacturers establish a 
standard interface. The standard interface is compatible 
with a certain number of controllers. In all cases where 
the standard interface is incompatible, unique interfaces 
occur. Considering a sample of customers that included 
the 22 unique interfaces, 75 customers utilized the stand­
ard interface described in Table IV. This would mean that 
competitive printer manufacturers would have to modify 
their interface to become a second source. Of all printer 
manufacturers, it is unlikely that any standard printer 
interface of one manufacturer would be compatible with 
any other manufacturer's standard printer interface. This 
fact insures that a lot of design will be necessary to insure 
compatibility to a number of controllers. 

TABLE V-Interface Model Parameters 

Schematics 
WRL 
50 Pin Connector 
37 Pin Connector 

DRAWING 

22 Pin-3 Coax Connector 
Alpha Pin Designation 
Numeric Pin Designation 
Physical Configuration-Connector 

PW A Assembly Drawings 
Interface Cable 
PW A-Artwork 
Mini-Computer Additional Interfaces 

NO. OF VARIATIONS 

14 
12 

3 
15 
12 
11 
5 

Figure I-Controller to printer interface 

Printer mini-computer interfaces 

Many times two different interfaces are required to be 
compatible with mini-computer interfaces. In such cases, 
the printer standard interface is fed into a number of 
unique interfaces to be compatible with the many mini­
computer types now available. Due to the lack of a 
standard mini-computer interface specification, at least 
five different external interfaces (for a given medium speed 
line printer) are required to be compatible with all mini­
computer types. 

SUMMARY 

By analyzing the compatibility requirements for a single 
line printer, it can be seen that a great many varieties of 
interfaces exist. Most interfaces are unique to certain 
customers and are a second source to other printer 
manufacturers. In order to have a practical interface 
definition, operational definitions must be considered. 
Once the software programs for a controller are estab­
lished, the printer must be designed to be compatible. 
Therefore, functional operations must be standardized 
along with connector definition and printer functions. In 
order for a printer standard to be established, a standard 
for controllers must also be established. In fact, a 
controller standard should be established prior to a printer 
standard consideration. Since each printer manufacturer 
has established a standard interface, not compatible for all 
controllers, it is evident that if a controller standard 
interface existed, the standard printer interface would be 
compatible. At the very least, a specification for standard 
interfaces would allow efficient design due to the evalua­
tion of all parameters. At present, new conditions occur 
with such frequency, that total stabilization of interface 
designs is highly unlikely. As long as a manufacturer is a 
first source, the interest in a standard interface would be 
low. However, if the same manufacturer had interest in 
becoming a second source, the interest now may be high. 



962 National Computer Conference, 1975 

Second sourcing of components met with initial resistance 
from component manufacturers. However, due to eco­
nomic pressures from users, second sourcing of compo­
nents is now very common. In order to second source 
components, a standard specification for the component 
was generated. The same basic situation applies to com­
puter systems. It is true that the definition of the standard 
is more' complex; but a definition can be accomplished. As 
long as the user and the manufacturer are willing to 
change design a,,!1d configuration, the pressure to define a 

standard interface will be lacking. The most important fact 
associated with the standard interface question is that 
extra cost is required if a standard is not generated. The 
cost of the extra design is, in most cases, totally unneces­
sary if a standard is established. When the user and 
manufacturer understand the unnecessary waste and cost, 
pressure will be applied to establish a standard interface. 
A standard interface specification would be as practical to 
a printer manufacturer as a component specification would 
be to a component manufacturer. 



nfais/FID world inventory of abstracting and 
indexing services 

by TONI CARBO BEARMAN 
National Federation of Abstracting and Indexing Services 
Philadelphia, Pennsylvania 

BACKGROUND 

The National Federation of Abstracting and Indexing 
Services (nfais) is a Federation of not-for-profit organizations 
and government agencies that are engaged in abstracting and 
indexing. The Federation was incorporated in 1958 under the 
name of National Federation of Science Abstracting and 
Indexing Services; the word Science was dropped from the 
name in 1972, thus broadening the membership to include 
services in the humanities and the social sciences. There are 
currently more than thirty member services. There is no 
individual membership in the Federation. 

The g03ls of the Federation are to assist the member 
organizations in their efforts to improve their services and 
operations; to act as a communication forum for members; 
to undertake specific projects on behalf of members that no 
one single member organization would undertake alone and 
that would be clearly useful to the majority of member 
organizations; and to act as a national spokesman for the 
collective member organizations. 

The Federation Internationale de Documentation (FID) 
is an international organization consisting of national mem­
bers drawn from many countries of the world. The organiza­
tion became federated in 1924. The aim of FID is to promote 
research and development of documentation through inter­
national cooperation in the fields of science and technology, 
social sciences, arts and the humanities. 

Both Federations have published directories of abstracting 
and indexing services. This paper describes an international 
project undertaken by these organizations to develop a world 
inventory of abstracting and indexing services. This project 
will merge the previously published information, add informa­
tion on additional services, develop a machine readable record 
of the information, and provide periodic updates to the file. 

Since abstracting and indexing services of the world 
constitute secondary information sources from which can be 
obtained important information about primary publications 
in all subject areas and in many different languages, knowl­
edge of these services is essential to everyone interested in 
keeping up with the world literature in any subject area. 

963 

INTRODUCTION 

The purposes of the joint nfais/FID project are: 

1. to provide a machine readable inventory file of 
information on the world's abstracting and indexing 
services with the capability of cross indexing and 
sorting the file to provide printed publications and 
other specialized services; 

2. to provide a guide to abstracting and indexing ·services 
as a machine readable data base in a format that is 
capable of being searched by subject, country, 
language, and other characteristics; 

3. to provide a detailed, authoritative world-wide printed 
directory of abstracting and indexing services which 
can be used by librarians, information specialists, and 
researchers as a bibliographic tooJ.1 

Work on the Joint Project commenced in mid-1971 with 
the FID effort funded by UNESCO UNISIST and the nfais 
effort funded by the National Science Foundation Office of 
Science Information Service under GN-28849. 

OUTLINE OF nfais/FID PROJECT 

1. To merge and update the data already contained in 
two guides published by FID and nfais. 

2. To collect current data on indexing services in 
science, technology, the social sciences and the 
humanities. 

3. To compile the data in machine readable form and 
develop software that provides for periodic input 
updating and searching of the file. 

4. To publish a revised printed directory of abstracting 
and indexing services. 

5. To develop promotional materials to describe the 
availability of the special services that might be 
generated from the mechanized data base. 

6. To establish procedures to update and maintain the 
data base after the funded project is completed. l 



964 National Computer Conference, 1975 

PROGRESS TO DATE 

Criteria and Size of File 

A set of explicit criteria and a series of guidelines were 
developed that establish standards for inclusion of a service 
in the inventory by Jane Collins of the Library of Congress, 
Science and Technology Division, who has been working as a 
consultant on this project. These refer to such characteristics 
of services as number of items included each year, whether 
the service is still being published, how frequently the 
service is published, what other services are available in that 
specific subject area, etc. :Many services which were included 
in one of the published guides were rejected for inclusion in 
the inventory because they failed to meet one or more of the 
criteria. Early estimates of size of the file have been proven 
to have been too large. The file contains approximately 2,500 
records. 

DATA ELEMENT DEFINITIONS 

The data elements to be included in the Inventory have 
been identified and defined. A list of 101 data elements 
grouped into 11 main classes for the printed services and an 
additional seventy elements in three additional classes for the 
machine readable services define the file (copy attached). As 
far as possible, existing codes were used to identify specific 
elements. For example, the American Society for Testing and 
Materials' (ASTl\1) journal Coden has been used for the 
identification of journal titles (with provision for the later 
addition of the International Serial Number, ISSN) and the 
codes used by the Library of Congress MARC system to 
identify country of publication and language have been used. 

COMPUTER BASED SERVICES 

In developing the criteria for inclusion of services in the 
Inventory, it was agreed that services produced in forms 
other than printed (e.g., microfilm, computer tape, etc.) 
should be included. The previously published Gw:des had 
limited coverage to printed publications, and specified publi­
cations issued in other forms in the supplementary notes. In 
developing the plans for the Inventory, it was agreed that all 
services with a uniquely identifiable title should receive a 
separate main entry in the Inventory and be identified with 
its corresponding printed service, if one exists, by cross 
references. At this time, there are some 200 services in 
machine readable form, approximately 90 of these are sections 
of either Excerpta M eclica or the French P.A.S. C.A.L. system. 

The expanded data element list mentioned above is applied 
in describing the machine readable services. The additional 
elements for these services were based on those used in the 
American Society for Information Science Special Interest 
Group on SDI Survey published by the American Institute 
of Physics2 the directory prepared by the FID /TM Com­
mittee and published by the CSIR Library in South Africa3 

and the directory published by the OECD. 4 

INPUT 

A special coding sheet, called a Q/IS form (for "question­
naire/input sheet") was developed, and supplementary sheets 
for the machine readable services were designed. The records 
were input at FID using a Dura paper tape machine, which 
was later replaced by a Forester device. The paper tape has 
been converted to magnetic tape by the subcontractor, 
Illinois Institute of Technology Research Institute, which 
has also developed all the software needed for building and 
searching the file. 

LIBRARY OF CONGRESS PARTICIPATION 

In 1972, nfais negotiated with the Library of Congress to 
obtain assistance from a Library of Congress staff member on 
a contract basis to assist with the project. This arrangement 
provided for checking the Q/IS forms for accuracy; resolving 
questions generated at FID and nfais by reference to the 
source document or using bibliographic resources; and locat­
ing services to be input into the file. 

THE MACHINE READABLE INVENTORY 

The Inventory is expected to contain information on 
approximately 2,500 abstracting and indexing services, 
approximately 200 of which are in machine readable form. 
There will be approximately 500 additional entries which will 
be cross referenced from one title (for example, a former title 
or an alternate title) to the main entry. The data will include 
specific information on the following general areas: (1) title, 
(2) publisher, (3) history, (4) frequency, (5) price, (6) 
contents, (7) indexes, (8) language, (9) media, (10) comple­
mentary services, and (11) subject. In addition, for the 
machine readable services, data on the following will be 
included: (1) search elements, (2) data elements present, 
and (3) tape specifications. 

The file will be maintained on magnetic tape which will be 
available for searching by bona fide researchers for a fee. The 
details of this have.not yet been worked out, but it is expected 
that the file will be a valuable research tool because of the 
comprehensiveness of the project and the search capabilities 
built into the file. A person interested in identifying those 
services in English and French, for example, issued since 1970 
on the subject of Toxicology, which cover serials literature 
and patents should be able to have the file searched and 
receive a list of services specifically on his topic. 

In keeping with its policy of supporting the use of extant 
standards, nfais has specifi~d that the tape be available in 
accordance with the American National Standards Institute 
(ANSI) Z39.2-1971. Physically, the tape will be in ASCII 
code (see X3.4-1968), on 9-track 800 bpi density (see ANSI 
X3.22-1967) and labelled in accordance with ANSI 
X3.27-1969. 

The printed directory is expected to be available January 
1976. The printed volume will have detailed information on 
all the services included in the Inventory and will also include 
various indexes to the entries, such as subject, country, UDC 



nfais/FID World Inventory of Abstracting and Indexing Services 965 

number and publisher. Only the most up-to-date information 
on each service will be included in the printed directory. 
Before pUblication of the directory, complete information 
contained in the file for each service will have been sent to 
each publisher asking for corrections and updating. Based on 
these responses, the information will be revised so that all 
data in the printed directory will be the best information 
obtainable as of 1975. 

UPDATING THE DIRECTORY 

Procedures are currently being worked out to provide 
updates to the master file on a regular basis, so that the 
machine readable inventory will be periodically updated. The 
mechanism for updating the printed volume has not yet been 
determined. One possible method is the use of the FID and 
nfais newsletters to provide monthly and bimonthly updates, 
respectively, for the printed directories. This listing in the 
newsletters would be for partial information only. The 
complete information would be added to the machine file. 

QUESTIONS AND SUGGESTIONS 

The author would welcome information on new abstracting 
and indexing services for consideration Jor inclusion in the 
Inventory. Also, queries about the project and requests for 
announcements of the final products are welcome. 

DATA ELEMENT DEFINITIONS FOR 
MACHINE-READABLE SERVICES 

010-310 Same as for printed services. 

350 PRICE ELEMENTS 
351 Available for purchase 

Indicate Y if yes. Specify: Not available for purchase. 
Include limitations, e.g., available only to non-profit 
institutions. 
FIELD Limited 

352 Available for lease 
Indicate Y if yes. Specify: Not available for lease. 
Include limitations as in 351. 
FIELD Limited 

353 Current files price 
Price of service's current files in domestic currency ... 
Same as 370 for printed services. Specify any 
restrictions. 
FIELD Limited 

354 Price for back files 
Price of service's back files in domestic currency in 
country of publication. Year is always to be included. 
Use special table for currency. See note above in 353. 
Specify any restrictions. 
FIELD Limited 

355 Price for sample files 
Price of sample files in domestic currency in country of 
publication, year is always to be included. Use special 

table for currency. See note above in 353. Specify any 
restrictions. 
FIELD Limited 

356 Royalty fees 
Price of royalty fees in domestic currency in country of 
publication, year is always to be included. Use special 
table for currency. See note above in 353. Specify any 
restrictions. 
FIELD Limited 

357 Price differentiation for type of use or type of user 
Specify if there is any price differentiation for type of 
use or type of user (e.g., not-for-profit or for profit 
institutions or royalty fees charged for external use. If 
none, write none. List the prices, themselves, in 353-356 
above. 
FIELD Limited 

358 Other 
Specify other prices as in 353 above. 
FIELD Limited 

390 Price Notes: 

601 

602 

603 

604 

605 

606 

* 

Additional information concerning price not identified 
as a specific element. 
FIELD Open 

400 CONTENT ELElIfENTS 
Same as for printed services. Note that 440 information 
will probably have to come directly from the publisher. 

500 INDEX ELEMENTS 
Same as for printed services. 

500 LANGUAGE ELElIfENTS 
Same as for printed services. 

600 SEARCH ELEMENTS* 
Enriched titles containing added terms 
Enriched titles containing added terms. Give average 
number of added terms per title, if known, otherwise 
indicate Y-yes. 
FIELD Fixed (3) 
Average number uncontrolled key,vords selected by 
indexers per document. 
Give number if known, otherwise indicate Y -yes. 
FIELD Fixed (3) 
Average number descriptors from a controlled thesaurus 
per document. Give number if known, otherwise indi­
cate V-yes. 
FIELD Fixed (3) 
Number, subject headings/document 
Average total number of subject headings per docu­
ment. Give number if known, otherwise indicate Y -yes. 
FIELD Fixed (4) 
Number classification scheme categories/document 
Average number of categories from classification scheme 
per document. Give number if known, otherwise indi­
cate V-yes. 
FIELD Fixed (3) 
Classification scheme 

From published guide or information provided by 
publisher. 



966 National Computer Conference, 1975 

Name of classification scheme used, e.g., LC or UDC. 
FIELD Limited 

607 Source for subject headings, descriptors, key words 
Full title of source or sources used for subject headings, 
descriptors or key words. Include publisher, city and 
year as in 005. 
FIELD Limited 

608 Average number of short phrases or word strings 
describing content per document 
Give number if known, otherwise indicate Y-yes. 
FIELD Limited 

609 Other subject heading search elements 
Specify. 
FIELD Open 

OTHER DATA ELEMENTS 

610 Personal author 
Personal author, first author only. Indicate Y-yes, if 
first author is present. 
FIELD Fixed (1) 

611 Additional authors 
Personal authors in addition to first authors. Indicate 
Y -yes if present. 
FIELD Limited 

612 Corporate author 
Indicate Y-yes if corporate author (e.g., society, 
institution or conference as document author) is 
present. 
FIELD Limited 

613 Author affiliation 
Indicate Y-yes if the name of the institution or society 
with which the author is affiliated is present. 
FIELD Limited 

614 Author address 
Indicate Y-yes if the address of the personal author is 
present. 
FIET jD L1:m1:ted 

615 Corporate author address 
Indicate Y-yes if the address of the corporate author is 
present. 
FIELD Limited 

616 Document title 
Indicate Y-yes if the title of the document (e.g., title of 
the article, book or report) is searchable. 
FIELD Limited 

617 Documentlanguage 
Indicate Y-yes if the language of the document is 
searchable. 
FIELD Limited 

618 Document date(s) 
Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

619 Country of publication 
Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

620 Serial title 

Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

621 CODEN 
Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

622 ISSN 
Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

623 Bibliographic reference (volume, issue, page of a given 
document) 
Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

624 Accession number 
Indicate Y-yes if the date(s) of the document is (are) 
sea.rchable. 
FIELD Limited 

625 Report number 
Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

626 Patent number 
Indicate Y-yes if the date(s) of the document is (are) 
searchable. 
FIELD Limited 

627 Title of cited printed service 
Indicate Y-yes if the title of the printed service 
corresponding to the tape service and cited by the tape 
service is searchable. 
FIELD Limited 

628 Issue of cited printed services 
Indicate Y-yes if the issue (i.e., issue number or month 
of issue) of the printed service corresponding to the 
tape service and cited by the tape service is searchable. 
FIELD Limited 

629 Year of cited printed service 
630 Citation of printed service 

Indicate Y-yes if the citation (i.e., volume number and 
pages) of the printed service corresponding to the tape 
service and cited by the tape service is searchable. 
FIELD Limited 
631 through 633 are to be used for those services 
( e.g., Good Res. Repts.) which are formed from the 
combination of other abstracting/indexing service!? The 
term, "source services" refers to those services (e.g., 
S.T.A.R. and N.S.A.) which are combined to form the 
service. 

631 Source service journal title(s) 
Indicate Y-yes if the title(s) of the source service(s) is 
(are) searchable. 
FIELD Limited 

632 Source service journal year 
Indicate Y-yes if the year of the source service journal 
is searchable. 
FIELD Limited 



nfais / FID W orId Inventory of Abstracting and Indexing Services 967 

633 Source service journal citation 
Indicate Y-yes if the citation (i.e., volume number, 
issue number and pages) of the source service journal is 
searchable. 
FIELD Fixed (1) 

634 Other searchable data elements 
FIELD Open 

635 NOTES: Additional information concerning the other 
searchable data elements not identified in a specific 
element. 
FIELD Open 

636 Abstract 
FIELD Fixed (1) 

650 MEDIA ELEMENTS 

670 Machine readable tapes 
Indicate Y-yes if service is available on tape. 
FIELD Fixed (1) 

680 Other 
Specify in what machine readable medium the service 
is available other than tape (e.g., disk). 
FIELD Open 

685 DO NOT USE 
690 Media notes 

Additional information concerning the form of the 
service not identified as a specific element. 
FIELD Open 

700 COMPLEMENTARY SERVICE ELEJI!IENTS 

Search programs and SDI programs 
770 SDI programs 

Indicate V-yes if SDI programs are available. 
FIELD Limited 

771 Retrospective search programs 
Indicate Y -yes if retrospective search programs are 
available. 
FIELD Limited 

772 Source for programs 
Give the name and address of the person who is the 
source for programs. Follow the instructions in 146 for 
the name and the instructions in 120 for the address. 
FIELD Open 

773 Country code 
ISO TC46 Draft Standard, October, 1972. This code 
should be identical with the one used by the U.S. 
National Center for ISDS. 
FIELD Fixed (3) 

774 Programming language for search programs 
Indicate the programming language (s) used for the 
search programs as listed in the publisher's brochures 
or obtain this information from the publisher. 
FIELD Open 

775 Hardware configurations for search programs 
List the hardware configuration required as listed in the 
publisher's brochures or obtain this information from 
the publisher. 
FIELD Open 

776 Cost or range of costs for search programs 

Give the cost or range of cost for the search programs 
(both SDI and retrospective available) in U.S. dollars. 
FJELD Open 

777 SEARCH PROGRAMS AND SDI NOTES 
Additional information concerning the search programs 
and SDI programs not identified as a specific element. 
FIELD Open 

778 NOTES 
. Additional information concerning complementary 
service not identified as a specific' element. 
FIELD Open 

800 SUBJECT ELEMENTS 
Same as printed service. 

830 Subject Notes 
Additional information concerning subject not identi­
fied as a specific element. 
FIELD Open 

901 Code 
Indicate the name of the code or codes used for the 
tapes. 
FIELD Limited 

902 Density 
Indica te the tape density in bytes per inch. 
FIELD Limited 

903 Magnetic tape width 
For magnetic tape only, indicate the width of the tape 
in inches. 
FIELD Limited 

904 Number of tracks (magnetic tape) 
For magnetic tape only, indicate the number of tracks. 
FIELD Limited 

905 Parity (magnetic tape) 
For magnetic tape only, indicate the parity. 
FIELD Limited 

906 Number of tracks (paper tape) 
For paper tape on~y, indicate the number of tracks. 
FIELD Limited 

907 Number of columns (punched cards) 
For punched cards only, indicate the number of 
columns. 

908 Labels present 
Indicate 1 if labels are present, zero if they are not. 
FIELD Fixed 

909 Labelstandard 
Indicate the standard used for the label, if one is used. 
FIELD Limited 

912 Blocked/unblocked 
Indicate if the tapes are blocked or unblocked. If they 
are blocked give the length in bytes (give maximum, if 
varying). Give the length of a byte in bits. 
FIELD . 

913 Reel size 
Indicate the size of the diameter of a reel of tape in 
inches. 
FIELD Fixed (2) 

914 Reellength 
Indicate the length of a reel of tape in feet. 
FIELD Fixed (3) 



968 National Computer Conference, 1975 

915 Character set 
Indicate the number of unique characters. Indicate 
whether upper case only or both upper and lower case 
characters are present. Specify any other information 
concerning the character set. 
FIELD Open 

916 Required auxiliary files 
Specify any auxiliary files (e.g., dictionary tapes, cross 
reference tapes) that are required for the use of the 
service. 
FIELD Open 

917 Optional auxiliary files 
List any optional auxiliary files which are available. 
FIELD Open 

918 Documentation source 
Give the name and address of the person who is the 
source for documentation for the service. Follow the 
instructions in 146 for the name and the instructions in 
120 for the address. 
FIELD Open 

919 Country code 
ISO TC46 Draft Standard. October, 1972. This code 
should be identical with the one used by the U.S. 
National Center for ISDS. 
FIELD Fixed (3) 

920 TAPE SPECIFICATIONS NOTES 
Additional information concerning tape specifications 
not identified as a specific element. 
FIELD Open 

REFERENCES 

1. Keenan, S. and M. Elliott, "World Inventory of Abstracting and 
Indexing Services," Special Libraries 64: (No.3) pp. 145-150, 
March 1973. 

2. Survey of Scientific-Technical Tape Services. Compiled and edited 
by Kenneth D. Carroll. New York, American Institute of Physics, 
1970 (AlP ID 70-3; ASIS SIG/SDI 2). 

3. Computer Tape Services in Science and Technology. Compiled by 
CSIR Library. Pretoria, South Africa, Council for Scientific and 
Industrial Research, 1970 (For FID/TM Committee). 

4. Inventory of Major Information Systems. and Services in Science 
and Technology. Paris, OECD, 1971. 

BIBLIOGRAPHY 

Abstracting Services: Volume 1, Science, Technology, Medicine, Agri­
culture; Volume 2, Social Sciences and Humanities. Federation Inter­
nationale de Documentation, The Hague, Netherlands 1969. 

Abstracting Services in Science, Technology, Medicine, Agriculture, 
Social Sciences, Humanities. Federation Internationale de Documenta­
tion, The Hague, Netherlands 1965. 

Computer Tape Services in Science and Technology. Compiled by 
CSIR Library. Pretoria, South Africa, Council for Scientific and 
Industrial Research, 1970 (For FID/TM Committee). 

A Guide to U. S. Indexing and Abstracting Services in Science and 
Technology. National Federation of Science Abstracting and Indexing 
Services, Washington, D. C. 1960 (out of print). 

A Guide to the World's Abstracting and Indexing Services in Science 
and Technology (Report No. 102). National Federation of Science 
Abstracting and Indexing Services, Washington, D. C. 1963 (out of 
print). 

Inventory of Major Information Systems and Services in Science and 
Technology. Paris, OECD, 1971. 

Survey of Scientific-Technical Tape Services. Compiled and edited by 
Kenneth D. Carroll. New York, American Institute of Physics, 1970" 
(AlP ID 70-3; ASIS SIG/SDI 2). 

UNISIST; Study Report on the Feasibility of a World Science Informa­
tion System. United Nations Educational Scientific and Cultural 
Organization and the International Council of Scientific Unions. Paris, 
France 1971. 



Computing applied to societal problems 

CHAIRMAN-DONALD L. THOMSEN, JR. 
SIAM Institute for Mathematics and Society 

OVERVIEW-Donald L. Thomsen, Jr. 

The panel will present problems from three societal fields 
where computing has made significant contributions. The 
first field is cultural evolution, which is concerned with 
how both biological characteristics and new ideas spread 
throughout a society. Next, from that aspect of the envi­
ronmental field which is concerned with waste, computer 
applications to ocean disposal will be discussed. The final 
presentation will concern programs for allocation of fire 
companies; this will be followed immediately by a com­
puter demonstration at which time those attending may 
themselves operate the computer program. Throughout 
the session the panel will stress the usefulness and ap­
plicability of their investigations to the needs of society. 

The Interaction Between Biological and Cultural 
Processes (Abstract of presentation)-Marcus Feldman 
and Luca L. Cavalli-Sforza 

Most studies of evolution concern the genetic system 
and evolution occurs through changes in gene frequencies 
in populations. The study of the dynamics of phenotypes 
which can be specified, for example, at a cultural level has 
only recently been initiated. In the present work, we 
present a theory for both genotypes and culturally de­
termined phenotypes. The individuals in the population 
have a cultural character and a defined genetic type. Both 
are transmitted by the parents, or members of the group 
to which the parents belong. The cultural character can be 
under natural selection. It is shown that selection on the 
cultural character can cause evolution at the biological 
level, as in the change of gene frequencies. The studies 
were based on new applications of classical theories of re­
cursion systems as well as on numerically based computer 
work. 

Computer Applications to Ocean Disposal Research and 
Engineering (Abstract of presentation)-Robert C. Y. 
Koh 

969 

The role played by computers in three areas related to 
the technology of disposal of wastes (either waste water or 
waste heat) to the ocean is discussed. First, the computer 
is necessary in the development and implementation of 
mathematical models for the purpose of predicting the ef­
fects of discharge on the environment. Unfortunately, this 
is limited at present primarily by a lack of adequate 
understanding in the basic processes involved making 
most models of only limited usefulness. To enhance this 
understanding, laboratory investigations are being un­
dertaken, Thus the second area where computers are used 
is in laboratory data analysis sometimes on a real time 
basis. The third area where computers are used is in the 
analysis and interpretation of field monitoring data. This 
is important in assessing the impact, in establishing the 
background levels and the adequacy of various water 
quality standards. Examples of applications to actual 
systems will be discussed. 

Programs for Allocation of Fire Companies (Abstract of 
presentation)-J an M. Chaiken 

Municipal fire departments routinely make long-term 
planning decisions concerning the location of fire stations. 
Capital expenses related to these decisions are ordinarily 
not large compared to the department's budget, but the 
manning costs can amount to $200,000 per unit per year. 
Thus the objectives in planning station locations include 
minimizing the total number of units while providing 
certain minimum levels of coverage for all parts of the 
city. In addition, the average response time to fires in the 
city, and the equity of response time among different 
areas of the city, are relevant criteria. 

The New York City-Rand Institute has designed and 
tested several computer programs that assist municipal 
agencies in planning fire station locations. The principles 
on which they operate, data requirements, and output will 
be described. The programs will be available for operation 
by the audience at the conclusion of this session. 





AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES, INC. (AFIPS) 

OFFICERS AND BOARD OF DIRECTORS 

President 

Mr. George Glaser 
225 Warren Road 

San Mateo, California 94402 

Secretary 

Dr. Dick Simmons 
Data Processing Center 

Texas A & M 
College Station, Texas 77843 

Miss Jean Sammet 
IBM Corporation 

Executive Director 

Dr. Robert W. Rector 
AFIPS 

210 Summit Avenue 
Montvale, New Jersey 07645 

ACM DIRECTORS 

Vice President 

Mr. Paul W. Berthiaume 
Electronic Associates, Inc. 

185 Monmouth Park Highway 
West Long Branch, N.J. 07764 

Treasurer 

Mr. Marvin W. Ehlers 
Square D Company 

Executive Plaza 
Park Ridge, Illinois 60068 

Mr. Richard B. Blue, Sr. 

545 Technology Square 
Cambridge, Massachusetts 02139 

TRW Systems Group 
Scientific Data Processing Lab 

One Space Park-R3/1098 
Redondo Beach, California 90278 

Dr. A. S. Hoagland 
IBM Corporation 

Dept. 29A-Bldg. 910 
P.O. Box 1900 

Boulder, Colorado 80302 

Mr. James B. Sutton 
Cummins-Allison Corp. 

1900-27th Avenue, S. 
Homewood, Alabama 35209 

Mr. Willard J. Holden 
P.O. Box 2278 

Sunnyvale, California 94087 

IEEE DIRECTORS 

Mr. Thomas N. Pyke, Jr. 
Institute for Computer Sciences 

and Technology 
National Bureau of Standards, Bldg. 225 

Washington, D.C. 20234 

Dr. S. S. Yau 
Department of Computer Science 

Northwestern University 
Evanston, Illinois 60201 

DPMA Directors 

Dr. Carl Hammer 
Univac Federal Systems 

2121 Wisconsin Avenue, N.W. 
Washington, D.C. 20007 

Mr. Walter A. Johnson 
Consolidated Paper Company, Inc. 

P.O. Box 50 
Wisconsin Rapids, Wisconsin 54494 



Society for Computer Simulation Director 

Mr. Frank C. Rieman 
Computer Sciences Corporation 

1101 San Antonio Road-Suite 202 
Mountain View, California 94040 

American Institute of Aeronautics 
and Astronautics Director 

Dr. Robert R. McCready 
Vought Systems Division 

P.O. Box 5907 
Dallas, Texas 75222 

American Statistical Association Director 

Mr. James Filliben 
Statistical Engineering Laboratory 

National Bureau of Standards 
Washington, D.C. 20234 

Instrument Society of America Director 

Mr. Theodore J. Williams 
Purdue University 

102 Michael Golden 
West Lafayette, Indiana 47907 

Society for Information Display Director 

Dr. C. P. Crocetti 
Rome Air Development Center-XP 

Griffis Air Force Base, New York 13441 

Association for Education Data Systems Director 

Dr. Sylvia Charp 
The School District of Philadelphia 

Board of Education 
5th and Luzerne Streets 

Philadelphia, Pennsylvania 

Association for Computation Linguistics Director 

Dr. A. Hood Roberts 
Center for Applied Linguistics 

1611 N. Kent Street 
Arlington, Virginia 22209 

American Institute of Certified Public Accountants 
Director 

Mr. Donald Adams 
AI CPA 

666 Fifth Avenue 
New York, New York 10019 

American Society for Information Science Director 

Mr. Robert J. Kyle 
1066 McConnell Drive 
Decatur, Georgia 30033 

Society for Industrial and Applied Mathematics Director 

Dr. D. L. Thomsen, Jr. 
SIAM Institute for Mathematics and Society 

97 Parrish Road, South 
New Caanan, Connecticut 06840 

Special Libraries Association Director 

Mr. Herbert S. White 
Stechert-MacMillan, Inc. 

7250 Westfield 
Pennsauken, New Jersey 08110 

Institute of Internal Auditors Director 

Mr. William E. Perry 
The Institute of Internal Auditors 

5500 Diplomat Circle 
Orlando, Florida 32810 

NATIONAL COMPUTER CONFERENCE BOARD 

President 

Mr. George Glaser 
225 Warren Road 

San Mateo, California 94402 

Vice President 

Mr. Paul W. Berthiaume 
Electronic Associates, Inc. 

185 Monmouth Park Highway 
West Long Branch, New Jersey 07764 

Treasurer 

Mr. Marvin Ehlers 
Square D Company 

Executive Plaza 
Park Ridge, Illinois 60068 

DPMA Representative 

Mr. James Case 
Dylakor Computer Systems, Inc. 

2222 Corinth Avenue 
Los Angeles, California 90064 

ACM Representative 

Dr. Smith Dorsey 
Rockwell International 

Mail Code AA 54 
3370 Miraloma 

Anaheim, California 92803 

IEEE Representative 

Dr. Merlin Smith 
T. J . Watson Research Center 

P.O. Box 218 
Yorktown Heights, New York 10598 



SCS Representative 

Mr. Ralph Wheeler 
Lockheed Missiles & Space Co. 

P.O. Box 504 
Sunnyvale, California 94088 

AFIPS Representative 

Dr. Sylvia Charp 
The School District of Philadelphia 

Board of Education 
5th and Luzerne Streets 

Philadelphia, Pennsylvania 

NATIONAL COMPUTER CONFERENCE COMMITTEE 

Mr. Jeffery D. Stein, Chairman 
On-Line Business Systems, Inc. 

One Embarcadero Center 
San Francisco, California 94111 

Mr. Jerry L. Koory 
9537 Texhoma Avenue 

Northridge, California 91324 

Dr. M. M. Astrahan 
IBM Research Laboratory 
Monterey & Cottle Roads 
San Jose, California 95193 

Dr. Henry S. MacDonald 
Bell Labs 

Murray Hill, N.J. 07971 

1975 NATIONAL COMPUTER CONFERENCE 
CHAIRMAN 

Mr. Donal A. Meier 
2756 Mountain View Drive 

Escondido, California 92027 

Mr. Al Hawkes 
Computer Horizons 

53 West Jackson Blvd. 
Chicago, Illinois 60604 

Dr. Harvey L. Garner 
Moore School of Electrical Engineering 

University of Pennsylvania 
Philadelphia, Pennsylvania 19104 

Mr. Russell K. Brown 
Moore Paper Company 

P.O. Box 805 
Houston, Texas 77001 

1976 NATIONAL COMPUTER CONFERENCE 
CHAIRMAN 

Dr. Carl Hammer 
Univac Federal Systems 

2121 Wisconsin Avenue, N.W. 
Washington, D.C. 20007 



1975 NATIONAL COMPUTER CONFERENCE 
COMMITTEES 

General Chairman 

Donal A. Meier 
Consultant 
Escondido, CA 

Controller 

Lynn Maxson 
IBM Corporation 
Los Angeles, CA 

NCCC Representative 

Jerry L. Koory 
On-Line Business Systems, Inc. 
Beverly Hills, CA 

Pioneer Day Coordinator 

Ev Bonney 
Dartmouth College 
Hanover, NH 

Exhibits Chairman 

Stephen Bowers 
General Automation 
Anaheim, CA 

Chairman 

Stephen W. Miller 
Stanford Research Institute 
Menlo Park, CA 

Vice Chairman 

Irwin Derman 
National BankAmericard, -Inc. 
San Mateo, CA 

R. Stockton Gaines 
The RAND Corporation 
Santa Monica, CA 

Paul Glaser 
Transaction Technology, Inc. 
Los Angeles, CA 

Local Promotion and Publicity Chairman 

Andrea Graham 
Xerox Corporation 
Inglewood, CA 

International Chairman 

Patricia MacKenzie 
TRW Systems Group 
Redondo Beach, CA 

Special Events Chairman 

Ross Penne 
University Computing Center 
Los Angeles, CA 

Local Arrangements Chairman 

Mary Rich 
Informatics Mark IV Systems Company 
Canoga Park, CA 

Registration Chairman 

Dennis Sossi 
TRW Systems Group 
Redondo Beach, CA 

TECHNICAL PROGRAM COMMITTEE 

Paul Malik 
United Airlines 
San Francisco, CA 

Richard A. Marciano 
Stanford Research Institute 
Menlo Park, CA 

Thomas Murray 
Del Monte Corporation 
San Francisco, CA 

Norman Pobanz 
Bechtel Corporation 
San Francisco, CA 

Anthony I. Wasserman 
University of California 
San Francisco, CA 



SPECIAL ASSISTANTS TO THE PROGRAM COMMITTEE 

Paul L. Armer 
Center for Advanced Study in the Behavioral Sciences, 
Stanford, CA 

Richard G. Canning 
Canning Publications 
Vista, CA 

David Jasper 
Control Data Corporation 
Minneapolis, MN 

Tosiyasu L. Kunii 
University of Tokyo 
Tokyo,Japan 

Peter Lykos 
Illinois Institute of Technology 
Chicago,IL 

Joseph G. Rubenson 
Stanford Research Institute 
Washington, D.C. 

TECHNICAL PROGRAM AREA DIRECTORS 

Vaughn Alexander 
Texas Medical Foundation 
Austin, TX 

Glen Bacon 
IBM Corporation 
San Jose, CA 

Vinton Cerf 
Stanford University 
Stanford, CA 

Edgar F. Codd 
IBM Corporation 
San Jose, CA 

Robert F. Daly 
Stanford Research Institute 
Menlo Park, CA 

John J. Donovan 
MIT Sloan School 
Cambridge, MA 

Ugo O. Gagliardi 
Honeywell Information Systems 
Waltham, MA 

Glyn H. Jones 
Burroughs Corporation 
Mission Viejo, CA 

Earl C. Joseph 
Sperry Univac Defense Systems 
St. Paul, MN 

Gopal Kapur 
Consultant 
Pleasanton, CA 

Theodore Laliotis 
Fairchild Systems Technology 
San Jose, CA 

Donald C. Lincicome 
Control Data Corporation 
Sunnyvale, CA 

Robert Merrell 
Burroughs Corporation 
Detroit, MI 

Richard G. Mills 
First National City Bank 
New York, NY 

Susan Nycum 
MacLeod, Fuller, Muir and Godwin 
Los Altos, CA 

Edward J. Palmer 
President, DPMA 
Boston University 
Boston, MA 

Donn B. Parker 
Stanford Research Institute 
Menlo Park, CA. 

Bertram Raphael 
Stanford Research Institute 
Menlo Park, CA 

William Stritzler 
AT&T 
Morristown, NJ 

Bruce Wrigley 
Travelers Insurance Co. 
Hartford, CT 



SESSION CHAIRMEN 

Alshuk, Thomas J. Eastman, Charles M. Morrison, John R. 
Archibald, Julius A., Jr. Estrin, Gerald Moshman, Jack 

Barnett, G. Octo Farber, David J. Nelson, Eldred 
Barsamian, Harut Fife, Dennis W. Nycum, Susan H. 
Barton, Robert Frank, Howard 

Oliver, Paul Bateman, Barry L. Freed, Roy N. 
Bell, Thomas E. 

Gaines, R. Stockton Patterson, G. Stuart 
Berthiaume, Paul 

Gilchrist, Bruce Paul, Richard L. 
Bigelow, Robert P. 

Gorry, G. Anthony Perry, William E. 
Blois, Marsden S., Jr. 

Greenfeld, Norton Plagman, Bernard K. 
Brandejs, Jan F. 

Guiteras, Joe J. Rockart, John F. Buzen, Jeff 
Russo, Paul M. 

Carlisle, James Hammer, Michael M. 
Saltzer, Jerome H. Case, James A. Joseph, Earl C. 
Shelly, Gary B. Case, Richard P. Joyce, James 
Shneiderman, Ben Cashman, Thomas J. 

Kahn, Robert E. Smoot, Oliver R. Cerf, Vinton 
Charp, Sylvia Kaspar, Hans 

Taulbee, Orrin E. Kay, Alan Codd, Edgar F. 
Kernighan, Brian Thayer, Richard H. 

Cohen, Leo J. 
Kolence, Kenneth W. Thomsen, D. L., Jr. 

Cotton, Ira W. Traweek, B. Ray 
Crowe, Susan Laliotis, Ted Treu, Siegfried 
Curran, Alex Lewis, F. Sherwood 

Uhrbach, Harold Curtis, Kent K. Lindstrom, E. E. 

Dahm, David M. London, Ralph L. Vallbona, Carlos 

Davis, John C. Lowenthal, Eugene I. Van Trees, Harry L. 

de Picciotto, Sami Madnick, Stuart E. Walden, David C. 
Dolotta, Ted McKee, Watson, Jr. Walker, Rob 
Donovan, John J. Mills, Richard G. Wasserman, Anthony I. 
Dorf, Larry Moehrke, Don Weiner, Hesh 

Woo, TonyC. 
Wortman, David 



DISCUSSANTS, MODERATORS AND PANELISTS 

Allen, John R. Gilchrist, Bruce Notley, M. Garth 
Altshuler, Gene Gluckson, Fred A. Nunley, Leonard J. 
Amarel, Saul Goldberg, Adele 

Otto, William 
Anderson, Robert B. Goldman, Jay 
Anderson, Robert H. Golomb, S. W. Papert, Seymour 
Astrahan, Morton M. Good, Donald I. 

Ream, Norman Goodkin, Norman M. 
Balzer, Robert W. Goodman, David Rice, Rex 
Bernacchi, Richard L. Gosden, John Ritchie, Robert W. 
Bernstein, M. I. Robbins, Galen P. 
Binford, Thomas O. Habib, Stanley Roland, Donald 
Bloom, Naomi L. Hamming, R. W. Rosen, Charles A. 
Bonner, Roy F. Harder, Donald C. Rosenblatt, B. A. 
Bower, Cal Hays, William R. Rowe, Barry D. 
Boyd, D. L. Hopper, Grace M. Rubey, Raymond 
Brandejs, Jan F. Howard, Philip C. 

Scanlon, Robert 
Branscomb, Lewis M. Howe, W. Gerry 

Schlesinger, Stewart 
Brooks, Ruven Jerman, Max Schneidman, Arnold 
Brown, John S. Johnson, Clay T. Shuey, Richard L. 
Brown, Robert R. Johnson, Thomas H. Smagorinsky, Joseph 
Brunner, Theodore F. Jordan, Dale Smith, D. M. 
Buchanan, Bruce Judenberg, Joseph Sondak, Norman 
Burrows, James 

Standish, Thomas A. Kaplan, Alan 
Callan, Robert W. Kapur, Gopal Steel, T. B., Jr. 
Camuso, John Karpl us, Walter Stonebraker, Michael 
Candlin, James E. Keller, Arnold Suchoff, Benjamin 
Carr, Eugene Kephart, Horace L. Testa, Charles 
Chapman, Mary A. Kirkbride, Chalmer G. Tsichritzis, Dionysios 
Charney, Jule G. Kirkley, John 
Clapp, Fritz H. Kiviat, Philip J. Uncapher, Keith 
Connole, Anthony W. 

Vick, Charles 
Couperus Jitze Lee, Jerome 

Viemeister, Peter E. 
Courtright, Benjamin F. Lewis, Don 

Davis, Keagle 
Lilly, Don Walls, Dale 
Liskov, Barbara H. Ware, Willis H. 

Denning, Peter Litherland, H. K. Wegbreit, Ben 
DeRose, James F. Lord, Kenniston W., Jr. West, David 
Dickson, R. S., Jr. Lubert, Marvin Wessler, Barry D. 
Dilligan, Robert J. Luebbert, William F. Whidden, Phillips 
Dunn, Robert M. Lundell, Drake White, George R. 
Dwyer, Tom Lynch, William C. Wilner, Wayne T. 
Elspas, Bernard Madden, William Wilson, Kent 
Epstein, Hank Maloney, James C. Wilson, Robert G. 
Evans, W. J. Martin, William A. Witte, J uergen 

Feigenbaum, Edward A. McLeod, Dennis, J. Worsley, Alice F. 

Fenwick, William Merchant, Eugene Ying, Charles 
Feth, George C. Metz, Douglas Y ourdon, Edward 
Fields, Craig I. Miller, Donald S. Y ovits, Marshall 
Fikes, Richard E. Miller, Terry 

Zahn, Charles T. 
Fletcher, Dennis Miller, William F. 

Zilles, Stephen 
Forshay, James Moffett, Thurber J. 
France, N. A. Muntz, Richard Zobrist, Dale W. 

Garabedian, Robert J. Nevins, James L. 



Abrams, Marshall D. 
Alexander, Vaughn 
Allan, John J. 
Alshuk, Thomas J. 
Archibald, Julius A., Jr. 
Aron, J. D. 
Arterbery, Yivian 
Atwood, Delbert 
Aupperle, Eric M. 

Bacon, Glen 
Baer, J. L. 
Baker, Robert L. 
Barnett, G. Octo 
Barr, Avron 
Barsamian, Harut 
Bateman, Barry L. 
Beaudrex, Paul 
Beckett, J. Terry 
Bedard, F. 
Belady, L. A. 
Bell, Thomas E. 
Berner, Robert 
Beradino, Al 
Berra, P. Bruce 
Blackmore, Steven J. 
Blanc, Robert P. 
Blois, Marsden Scott, Jr. 
Boehm, Barry W. 
Bonine, Ken C. 
Booth, Taylor L. 
Bouknight, W. Jack 
Bowie, J. R. 
Branco, Cosmo 
Brandejs, Jan F. 
Brandon, Dan 
Branstad, Dennis K. 
Brooks, Ruven 
Brown, Russell 
Burchfiel, Jerry D. 
Burdge, Geoffrey L. 
Burke, Ed. 
Butler, James M. 
Buzen, Jeffrey P. 

Campaigne, Howard H. 
Canning, Richard G. 
Cardenas, Alfonso F. 
Carlisle, James 
Carlson, Eric D. 
Carter, William C. 
Case, Leon R., II 
Casey, Richard G. 
Cashman, Thomas J. 
Cerf, Vinton 
Chamberlin, Donald D. 
Charp, Sylvia 

REVIEWERS 

Cheek, Robert C. 
Chen, Tien Chi 
Chu, Wesley W. 
Chu, Yaohan 
Clapp, Fritz H. 
Codd, Edgar F. 
Corley, Melvin R. 
Cotton, Ira W. 
Couperus, Jitze 
Courtright, Benjamin F. 
Crowe, Susan 
Curran, Alex 

Dahm, David M. 
Daly, Robert F. 
Davidson, Charles H. 
Davidson, Ed 
Davis, John C. 
Donovan, John J. 
Dorf, Larry 
Douglas, John 
Drane, Douglas 
Dudgeon, D. 
Duncan, Karen A. 

Eastman, Charles M. 
Eckhouse, Richard H., Jr. 
Ehardt, Joseph L. 
Elman, Stanley A. 
Elspas, Bernard 
Estrin, Gerald 

Fabry, R. S. 
Falk, G. 
Farber, David J. 
Feng, Tse-yun 
Ferrari, Domenico 
Fife, Dennis W. 
Fikes, Richard E. 
Foster, Caxton C. 
Frank, Howard 

Gagliardi, Ugo O. 
Gaines, R. Stockton 
Gantner, George E., 
Gault, Charles 
Gibb, Kenneth R. 
Giloth, Paul K. 
Gimball, James 
Glaseman, Steven 
Glaser, Paul 
Glick, Norman 
Glorioso, Robert M. 
Goldberg, Adele 
Goldberg, Mark 
Golomb, Solomon W. 
Gorman, Don 
Grampp, F. T. 

Gray, James N. 
Greenblott, Bernard J. 
Greenes, Robert A. 
Greenfeld, Norton R. 
Guiteras, Joseph J. 

Habermann, Nico 
Habib, Stanley 
Hammer, Carl 
Hammer, Michael M. 
Hamming, Richard W. 
Harmon, John C. 
Harrison, Malcolm C. 
Harter, M. D. 
Hawyrlko, Warren P. 
Helgeson, Duane 
Hernon, James A. 
Highland, H. J. 
Hoffman, Lance 
Hollingworth, Dennis 
Hong, Se June 
Hook, Harvey O. 
Hopper, Grace M. 
Horne, William J. 
Houston, Rick 
Hsiao, David K. 
Hsiao, Mu Y. 
Hudak, John 

Jacks, Edwin 
Jones, Glyn H. 
Joseph, Earl C. 
Joyce, James 

Kahn, Robert E. 
Kandel, Abraham 
Kapur, Gopal K. 
Karpl us, Walter 
Kaspar, Hans 
Kay, Alan C. 
Keller, Robert M. 
Kelly, John 
Kernighan, Brian W. 
Kimbleton, Stephen R. 
Kimme, Charles 
King, W. Frank 
Kirshenbaum, Frank 
Kleir, Richard 
Koeppen, Karl 
Kolence, Kenneth W. 
Kozik, Eugene 
Krause, Kurth W. 
Kroeger, Joseph 
Kroeger, Joseph 
Kunii, Tosiyasu L. 
Kuo, Frank F. 

Laliotis, Theodore 



Lawrie, D. H. 
Lazar, Leonard M. 
Ledin, Victor 
Lee, Jerome 
Lee, John A. N. 
Lincicome, Donald C. 
Linden, Theodore A. 
Lindstrom, E. E. 
Link, C. H. 
Lipow, Myron 
Lippincott, Phil 
Lippman, Michael D. 
Liskov, Barbara H. 
Liu, Jane 
Liu, Leonard Y. 
Lividini, Joseph 
Lorie, Raymond A. 
Lowenthal, Eugene I. 
Lucus, Brian G. 
Ludwig, Herbert 
Lum, Vincent Y. 

Madnick, Stuart E. 
Madron, Beverly B. 
Maloney, James C. 
Manning, Eric 
Manola, Frank 
Marcantonio, Angelo R. 
Marrigan, Robert J. 
McCluskey, Edward J. 
McDonald, Clement 
McElvain, Kay 
McFarland, Clay 
McKee, Watson M., Jr. 
McKeeman, W. M. 
McLeod, Dennis J. 
Mehl, James:W. 
Merrell, Robert . 
Merwin, Richard E. 
Metcalfe, Robert 
Miller, Cnarles 
Miller, Stephen W. 
Mills, Richard G.L' ,.,' 
Minsky, N aftaly 
Moehrke, Don 
Montgomery, Christine 
Morrison, John R. 
Moshman, Jack 
Murray, Edward 
Myers, Willard L. 

Nelson, Eldred 
Nelson, John M. 
Nicols, A. J. 
Nilsen, Ragnar 
Nycum, Susan H. 

Oliver, Paul 
O'Neil, Nathan D. 

Osher, William 
Osterwell, L. J. 
O'Toole, James A. 

Palermo, Frank P. 
Palmer, Edward J. 
Parish, Randall Mel 
Parke, Benjamin G. 
Parker, Donn B. 
Pehrson, Dave 
Perry, William E. 
Pickens, Kenneth E. 
Pinkston, John 
Pitts, Gerald N. 
Plauger, P. J. 
Popek, Gerald J. 
Postel, Jon 
Prescott, Lee R. 
Press, Barry 
Prokop, J. S. 
Purdy, J. Gerry 

Ramamoorthy, C. V. 
Raphael, Bertram 
Rauscher, Tomlinson 
Reines, Jose 
Reisner, Phyllis 
Reiss, Russell A. 
Rettberg, R. 
Riedel, Earl W. 
Riggs, George 
Ringuette, Robert J. 
Ritchie, D. M. 
Rittersbach, George H. 
Rockart, John F. 
Rodriquez-Rosell, Juan 
Roland, Donald E. 
Russo, Paul M. 

Saltzer, Jerome H. 
Sassenfeld, Helmut M. 
Scanlon, J. M. 
Schlegel, C. T. 
Schoen, Alfred 
Schroeder, Michael D. 
Schroeder, Russell W. 
Schultz, Gaymont 
Schuster, Stewart A. 
Scott, J. L. 
Scott-Morton, Michael 
Secrest, Richard.D. 
Sevcik, K. C. 
Shelly, Gary B. 
Shiao, D. K. 
Shneiderman, Ben 
Short, Gerald E. 
Sibley, E. H. 
Sickel, Sharon 
Siewiorek, Dan 

Simmons, Richard B. 
Sloan, Martha E. 
Smith, Diane 
Smith, Eugene B. 
Snyder, Art 
Squires, Stephen L. 
Stanford, W. Donald 
Stanton, Michael 
Stonebraker, Michael 
Stritzler, William 
Swenson, Richard J. 
Szygenda, S. A. 
Szymanski, Thomas.G. 

Taulbee, Orrin E. 
Taylor, Robert 
Thayer, Richard H. 
Thompson, Howard K. 
Thomsen, Donald L., Jr. 
Toong, Hoo-Min D. 
Traiger, Irving L. 
Treu, Siegfried 
Tsichritzis, Dionysius 
Tuel, William G. 
Tung, F. 
Turn, Rein 
Turpin, Terry 

Vallbona, Carlos 
Van Trees, Harry L. 
Varaya, Pravin 
Vick, Charles 

Waite, William M. 
Wakerly, John 
Walden, David C. 
Walford, Robert B. 
Walker, Rob 
Wasserman, Anthony I. 
Watson, W. Joe 
Watt, Jim 
Weingarten, Frederick W. 
Welker, Nancy 
Wexelblat, R. L. 
Wicheal, Don 
Williams, Richard 
Wilner, Wayne T. 
Winkler, Stanley 
Wiorkowski, Gabrielle 
Withington, Frederic G. 
Wolf, J. 
Wong, E. E. 
Woo, Tony C. 
Woods, W.A. 
Wortman, David B. 
Wrigley, Bruce 
Wulf, William A. 





Abramson, N., 203 
Ackerman, Laurens V., 765 
Alexander, Vaughn, 715 
Amarel, Saul, 773 
Amelio, Gilbert F., 515 
Anacker, W., 529 
Anderson, Leroy H., 33 
Archibald, Julius A., Jr., 903 

Bachman, Charles W., 569 
Bacon, Glen, 495 
Baer, J. L., 467 
Baird, George N., 301, 313 
Bammel, Stanley E., 825 
Barron, R. L., 867 
Bateman, Barry L., 901 
Baumgart, Bruce, 589 
Bearman, Toni Carbo, 963 
Beeler, M., 245 
Bell, Thomas, E., 831 
Berlekamp, Elwyn R., 497 
Berquist, Robert, 757 
Bhargava, Bharat, 749 
Binder, R., 203 
Boyce, Raymond F., 447 
Brandejs, Jan F., 725 
Br:andin, David H., 253 
Bressler, R. D., 551 
Buchanan, Bruce, 773 
Burchfiel, J., 245 
Butcher, Daniel D., 739 

Caine, Stephen H., 271 
Carlson, Eric D., 487 
Carter, W. A., 847 
Cerf, Vinton, 957 
Chaiken, Jan M., 969 
Chamberlin, D. D., 425,447 
Chanson, Samuel T., 645 
Chasen, S. H., 613 
Chien, Robert T., 813 
Chou, Wushow, 119 
Churchman, Wayne, 789 
Cleveland, D., 867 
Codd, Edgar F., 377 
Cook, M. M., 301 
Cooney, Joseph J., 853 
Couger, J. Daniel, 889 
Crandell, George M., Jr.; 675 
Crowther, William R., 161, 551 

Daly, Robert, F., 107 
de Balbine, Guy, 319 
Denning, Peter J., 283 
Donovan, J~hn J., 673, 681 

Eastman, Charles M., 603 
Eckl, John, 129 
Ellis, G. W., 541 

Farber, David J., 695 
Feldman, Marcus W., 969 

AUTHOR INDEX 
Ferrari, Domenico, 645 
Fischer, Walter A., 23 
Flynn, Michael J., 85 
Foote, Stephanie V., 733 
Forgie, James W., 137 
Fralick, Stanley C., 233, 253 
Frank, Howard, 109, 217 
Freedman, Daniel, 665 
Freeman, Peter, 329 
Fries, James F., 479 
Frisch, Ivan T., 109 

Gagliardi, Ugo 0., 549 
Garrett, James C., 233 
Gennaro, William D., 757 
Gerla, Mario, 129 
German, Steven M., 369 
Gillis, A. K., 535 
Gitman, Israel, 217 
Glanz, Z. H., 577 
Gordon, E. Kent, 271 
Gottlieb, Doron, 453 
Gould, John D., 439 
Gould, Laura, 775 
Gray, J. N., 425 
Greenblott, Bernard J., 623 
Greim, P. D., Jr., 265 
Grignetti, Mario C., 775 
Groner, Gabriel F., 717 
Gutentag, Louis M., 681 

Hagerth, Steven A., 453 
Hampel, Daniel, 867 
Harris, Daniel K., 765 
Harrison, Christopher, 253 
Heart, Frank E., 161,551 
Held, G. H., 409 
Hinton, E. S., 877 
Hoff, Marcian E., Jr., 55 
(Hoffman, G. E., 535 
Holmes, W., 301 
Holt, George A., 687 
Housmann, Catherine, 775 
Howe, Robert M., 861 
Hoyt, P., 301 
Hsiao, Mu Ye, 623 
Hughes, W. C., 541 

Jenks, Steven G., 739 
Jervis, David, 749 
Johnson, A., 301 
Johnson, C. T., 509 
Jones, Gary E., 959 
Jones, Glyn H., 263 
Jones, Louise H., 91 
Joseph, Earl C., 621 

Kahn, Robert E., 177 
Kapur, Gopal K., 887 
Karnes, R. E., 847 
Karplus, Walter J., 897 



Kidall, Gary H., 99 
Kimbleton, Stephen R., 839 
Kleinrock, Leonard, 143, 187 
Koh, Robert C. Y., 969 
Kohli, J. P., 47 
Kondo, H., 459 
Kraley, M. F., 551 
Kuo, Franklin, 203, 253 

Laliotis, Theodore A., 1 
Lam, Simon S., 143 
Langley, Frank J., 853 
Lehot, Philippe G. H., 453 
Lemmond, C. Q., 541 
Levin, K. D., 473 
Liccardo, Michael, 75 
Lincicome, Donald C., 587 
Linde, Richard R., 361 
Liskov, Barbara H., 285 
Lividini, J., 603 
Lobel, Jerome, 935 
Lockett, Jo Ann, 831 

McClure, Robert M., 85 
McDonald, Clement, 749 
McKenzie, Alex A., 161 
McLean, Ephraim R., 733 
McLeod, Dennis J., 397 
McNeeley, Curtis P., 739 
McQuillan, John M., 161 
Madnick, Stuart E., 581, 681 
Mahan, Robert, 739 
Malhotra, Rajiv, 709 
Mann, William C., 785 
Mantey, Patrick E., 487 
Marill, Thomas, 389 
Meldman, Monte J., 397 
Merchant, M. Eugene, 793 
Merlin, Philip M., 695 
Merryweather, Henry, 805 
Michel, A., 551 
Miller, Lance A., 657 
Mills, Richard G., 783 
Morita, Hiroshi, 561 
Morgan, Howard Lee, 473 
Mylopoulos, J., 403 

Nakamura, F., 459 
Nehnevajsa, Jiri, 637 
Nelson, James C., 629 
Nelson, R. H., 535 
Nielsen, Norman R., 947 
Neuhauser, C., 85 
Newman, Sandy, 41 
Noguchi, Kenichiro, 561 
Nycum, Susan H., 955 

Ohnishi, Isao, 561 
Okinaka, A., 203 
Oliver, Paul, 301, 309 
Oyake, Ikuo, 801 

Ornstein, S. M., 551 
Ozkarahan, E. A., 379 

Palley, Norman A., 717 
Palmer, Edward J., 671 
Parker, Donn B., 927 
Parks, H. G., 541 
Pitts, Gerald M., 901, 
Plauger, P. J., 281 
Plum, Thomas, 665 
Pohl, Jens G., 913 
Pople, Harry, 773 
Possin, G. E., 541 
Pouzin, Louis, 701 
Presser, Leon, 291 

Rabinowitz, Henry S., 453 
Rallapalli, Krishna, 67 
Raphael, Bertram, 771 
Rappoport, Arthur E., 757 
Reisenfeld, Richard, 597 
Reisner, Phyllis, 447 
Retz, David L., 165 
Rothnie, James B., Jr., 417 
Russo, Paul M., 21 

Saucier, Aldric, 861 
Sawyer, Gary, 15 
Schuster, S. A., 379,403 
Shneiderman, Ben, 653 
Smith, Grant, 681 
Smith, K. C., 379 
Snyder, Wesley E., 819 
Soden, John V., 675 
Sondak, Norman, 893 
Speliotis, D. E., 501 
Sprowls, R. Clay, 907 
Standish, Thomas A., 287 
Stern, Dale, 389 
Stem, Henry C., 687 
Stoker, Douglas, 603 
Stonebraker, M. R., 409 
Strauss, Jon C., 343 
Stritzler, William P., 769 

Taulbee, Orrin E., 637 
Thayer, Thomas, 335 
Thayer, R. H., 877 
Thomas, John C., 439 
Thomas, Robert R., 351 
Thompson, P. M., 577 
Threewitt, Bruce, 3 
Tobagi, Fouad, 187 
Tomlinson, R., 245 
Toong, Hoo-Min D., 567 
Traiger, I. L., 425 
Treu, Siegfried, 637 
Tsichritzis, D., 403 

ul Haq, Mohammed Inam, 941 



van Slyke, Richard, 217 
Verhofstadt, Peter, 67 

Walden, David C., 161 
Wasserman, Anthony 1., 297 
Wax, D., 203 
Wegbreit, Ben, 369 
Weiss berger , Alan, 9 
Weissman, Clark, 929 
West, David, 773 
Weyl, Stephen, 479 
Whiting, John, 41 
Wiederhold, Gio,; 479 
Wilson, R. H .. 541 

Withington, Frederic G., 633 
Wong, E., 409 
Woo, Tony C., 813 
Wrigley, Bruce, 671 
Wyland, David C., 63 

¥ oshida, I., 459 
Y ourdon, Edward, 277 
Yovits, Marshall C., 895 
Ypma, John E., 523 

Zahn, Charles T., Jr., 293 
Zilles, Stephen N., 279 
Zloof, Moshe M., 431 


	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	000027
	000028
	000029
	000030
	000031
	000032
	000033
	000034
	000035
	000036
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983

