
TMS99105A and TMS99110A
16-Bit Microprocessors

Preliminary Data Manual

ADVANCE INFORMATION

This document contains information on a
new product. Specifications are subject
to change without notice.

NOTICE

Texas Instruments reserves the right to make changes at any time in order to improve

design and to supply the best product possible. Information contained in this publication

is believed to be accurate and reliable. However, responsibility is assumed neither for its

use nor for any infringement of patents or rights of others that may result from its use.

No license is granted by implication or otherwise under any patent or patent right of

Texas Instruments or others.

Copyright © 1982

Texas Instruments Incorporated

TABLE OF CONTENTS

Section TItle

1 . INTRODUCTION
1.1
1.2

Description
Key Features

2. ARCHITECTURE
2.1 Memory Allocation. 2
2.2 Block Diagram and Flowchart . 3
2.3 Arithmetic Logic Unit. .. 10
2.4 Internal Registers .. 10

2.4. 1 Program Counter ... 1 0
2.4.2 Status Register. .. 1 0
2.4.3 Workspace. .. 10
2.4.4 Context Switching .. 13
2.4.5 Access of PC, ST, and WP .. 13

2.5 Macrostore. .. 13

3. MEMORY INTERFACE
3.1 Definition. .. 14
3.2 Memory Interface. .. 16

3.2. 1 Memory Write Operations. .. 16
3.2.2 Memory Read Operations .. 1 7
3.2.3 Extended Memory Addressing. .. 17
3.2.4 Direct Memory Access. .. 19
3.2.5 Memory Wait-5tate Generation. .. 20

3.3 Processor Internal Cycle Indication. .. 21
3.4 Applicable Bus Status Codes. .. 22

3.4.1 Memory Read Cycle Codes. .. 22
3.4.2 Memory Write Cycle Codes. .. 22
3.4.3 Hold Acknowledge Code - HOLDA .. 22
3.4.4 Multiprocessor Interlock Code - MPILCK .. 22
3.4.5 Macrostore Accesses 23

4. INTERRUPT STRUCTURE
4.1 TMS99000 Interrupt Structure. .. 23
4.2 Interrupt Level 0 and Reset ... 26
4.3 Non-Maskable Interrupt (NMI) ... 27
4.4 Interrupt Level 2 .. 27

4.4.1 Arithmetic Fault Interrupt ... 28
4.4.2 Macroinstruction Detection (MID) Trap. .. 29
4.4.3 lIIegalinstruction (lLLOP}lnterrupt 29
4.4.4 Privileged Opcode Violation Interrupt. .. 30
4.4.5 Applicable Bus Status Codes 30

5. TMS99000 INPUT/OUTPUT INTERFACE
5.1 Description. .. 30
5.2 Single-Bit 110 Operations 34
5.3 Multiple-Bit Seriali/O Operations. .. 35
5.4 Parallel 110 Operations. •. 36
5.5 Applicable Bus Status Codes. .. 36
5.6 External Instructions .. 37

6. PRIVILEGED MODE ',' , 37

iii

7. MACROSTORE INTERFACE AND OPERATION
7.1 Description
7.2 The Macrostore Interface : .. 38

7.2.1 Timing. .. • .. 38
7.2.2 Wait States. • .. 38
7.2.3 Organization. .. 38
7.2.4 Modes of Operation .. 39

7.3 Macrostore Capabilities .. 40
7.3.1 Entry Procedure . • .. 40
7.3.2 Exit Procedure ... " 42
7.3.3
7.3.4
7.3.5
7.3.6

Macrostore Execution .. 42
Subroutine Branch and Return. .. 47
MID Opcodes in Interrupt Routines . " 47
Testing For External Macrostore 47

8. ATTACHED PROCESSOR INTERFACE. .. 47

9. PIN DESCRIPTION. .. 52

10. INSTRUCTION SET
10.1 Definition. .. 56
10.2 Addressing Modes ... 56

10.2.1 Workspace Register Addressing, R .. 56
10.2.2 Workspace Register Indirect Addressing, * R .. 56
10.2.3 Workspace Register Indirect Autoincrement Addressing, *R + 56
10.2.4 Symbolic (Direct) Addressing, @LABEL 57
10.2.5 Indexed Addressing, @TABLE(R) .. 57
10.2.6 Immediate Addressing. .. 57
10.2.7 Program Counter Relative Addressing. .. 57
10.2.8 110 Relative Addressing .. 58

10.3 Terms and Definitions 58
10.4 Status Register Manipulation .. 59
10.5 Instructions. .. 64

10.5.1 Dual Operand With Multiple Addressing Modes for Source and Destination. 65
10.5.2 Dual Operand With Multiple Addressing Modes for Source Operand. 65
10.5.3 Signed Multiply and Divide Instructions. .. 66
10.5.4 Extended Operation (XOP) Instruction 67
10.5.5 Single Operand Instructions 68
10.5.6 BIND Instruction ... 68
10.5.7 Multiple-Bit 110 Instructions. .. 68
10.5.8 Single-Bit 110 Instructions. 69
10.5.9 Jumplnstructions ... 70
10.5.10 Shift Instructions ... 70
1 0.5.11 Immediate Register Instructions. .. 71
10.5.12 Internal Register Load Immediate Instructions. .. 71
10.5.13 Internal Register Load and Store Instructions .. 71
10.5.14 Return Workspace Pointer (RTWP)lnstruction .. 72
10.5.15 External Instructions 72
10.5.16 Bit Manipulation Instructions 73
10.5.17 Double Precision Arithmetic Instructions. .. 73
10.5.18 MIDOpcodes .. 74

10.6 Instruction Execution. .. 74
10.6.1 Microinstruction Cycle. .. 74
10.6.2 Opcode Prefetching .. 74
10.6.3 TMS99000 Instruction Execution Times. .. 75
10.6.4 Bus Status Code Sequence 78

iv

11 . TMS991 05A/TMS9911 OA PRELIMINARY ELECTRICAL SPECIFICATIONS
11.1 Absolute Maximum Ratings 93
11.2 Recommended Operating Conditions. 93
11.3 Electrical Characteristics 93
11.4 Clock Characteristics. .. 93

11.4.1 Internal Oscillator... 93
11.4.2 External Clock .. 94

11.5 Timing Requirements , 95
11.6 Switching Characteristics. .. 95

12. TMS99000 MECHANICAL SPECIFATIONS
12.1 TMS991 05A/TMS9911 OA - 40-Pin Ceramic Package. .. 101
12.2 TMS991 05A/TMS9911 OA - 40-Pin Plastic Package. .. 101

APPENDIX A TMS991 05A Supplement 103
APPENDIX B TMS9911 OA Supplement .. 105

LIST OF TABLES

Table No. Title Paga

1 Dedicated Workspace Register .. 1 2
2 Bus Status Codes. 1 5
3 Interrupt Level Data .. 24
4 Error Interrupt Status Bit Assignments .. 28
5 External Instruction Codes. .. 37
6 Macrostore Operating Modes. .. 39
7 Macrostore Entry Vectors .. 41
8 Instructions with Two-word Opcodes .. 42
9 Dedicated MRAM Register Functions (WP bits 11 to 15 are all zero) .. 43
10 Bus Status Codes Associated with WP Value (WP bits 11 to 15 not equal to zero) 44
11 Evaluate Address Instruction .. 45
12 Jump on Pending Interrupt. 46
13 Pin Description ... 53
14 Symbol Conventions ... 58
1 5 Status Register Bit Definitions .. 59
16 Instruction Execution Times. .. 76
17 Example Instruction Sequence for an A * R1 +. R2 .. 78
1 8 Source Addressing Mode Sequences. .. 79
1 9 Instruction Execution Sequences 80
20 Interrupt and Macrostore Trap Sequences. .. 91
21 Attached Processor ifF Sequences 92

v

LIST OF FIGURES

Figure No. Title Page

1 Word and Byte Formats .. 2
2 Map of Main Memory Address Space .. 3
3 Block Diagram of TMS99000 .. 4
4 TMS99000 Flowchart. .. 5
5 Status Register Field Assignments .. 1 1
6 Workspace Register Usage ... 11
7 Workspace Pointer and Registers .. 1 2
8 Macrostore Memory Address Space .. 1 4
9 Memory Interface .. 1 6
10 Memory Write Cycle Operation. .. 1 6
11 Memory Read Cycle Operation .. 1 7
1 2 Functional Segmentation Logic. .. 1 8
1 3 TMS99000 Extended Addressing. .. 1 8
14 TMS991 05A or TMS9911 OA to TlM9961 0 Memory Mapper Interface 19
15 Memory Cycle - DMA HOLD Operation. .. 20
16 Wait-State Generation For Memory Bus Cycles .. 21
17 Multiprocessor Interlock Timing - ABS, TSMB, TCMB Instructions 23
18 Interrupt Sequence. .. 25
19 Reset Sequence. .. 26
20 NMI Sequence. .. 27
21 I/O Address Map .. 31
22 TMS99000 I/O Interface .. 32
23 TMS99000 1/0 Timing - Input Operation .. 32
24 TMS99000 1/0 Timing - Output Operation .. 33
25 Wait-State Generation for 1/0 Cycles. .. 34
26 Single-Bit 1/0 Address Development 35
27 LDCRISTCR Data Transfers. .. 36
28 Address Map of Macrostore 39
29 Attached Processor (AP) Interface .. 48
30 AP Interface Timing

(A) Transferring Control to AP .. 49
(B) Regaining Control from AP .. 50

31 Pin Assignments 52
32 Overlapped Instruction Execution. .. 75
33 Internal Oscillator. .. 94
34 External Oscillator .. 94
35 Switching Times Load Circuit. .. 96
36 Clock Timing Parameters. .. 96
37 Memory and Internal Cycle Timing Parameters 97
38 1/0 Cycle Timing Parameters 98
39 Interrupt, Hold and APP Timing Parameters. .. 99
40 Hold Cycle Timing Parameters .. 99

vi

REFERENCE
ABS
AID (bus)
AlATCH
AP
APP
AUMS
AUMSl
BlWP
BST
ClKOUT
CRU
DMA
DOP (bus code)
EIST
EVAD
GM (bus code)
HOLD
HOLDA (bus code)
lAO (bus codel
IllOP
INT A (bus code)
INTREO
10 (bus code)
lOP (bus codel
lDCR
lDD
LOS
lST
lSW
MEM
MID(bus code)
MPILCK
MSW
NMI
PC
PSEL
RD
RESET (bus code)
RTWP
R/w
SBO
SBZ
SOP (bus code)
SOPl (bus codel
ST (bus code)
STCR
TB
TCMB
TSMB

WS
WEIIOClK
WP
XOP

LIST OF ACRONYMS, COMMANDS AND CODES

DEFINITION
Absolute value
Address data bus
Address latch
Attached processor
Attached processor present
Arithmetic logic unit, Macrostore access MPILCK inactive
Arithmetic logic unit, Macrostore access MPILCK asserted
Branch and load workspace pointer
Bus status code
Clock output signal
Communications register unit
Direct memory access
Destination operand transfer
Error interrupt status
Evaluate address instruction
General memory transfer
Self-explanatory
Hold acknowledge
Instruction acquisition
Illegal operation
Interrupt acknowledge
Interrupt request
I/O transfer
Immediate data, symbolic address
load CRU, output instruction
Long distance destination
long distance source
load status
Least-significant word
Memory cycle
Macroinstruction detected
Multiprocessor interlock
Most-significant word
Non-maskable interrupt
Program counter
Memory page select
Read enable
Reset. RESET input is pulled low
Return from subroutine or interrupt
Read/Write
Set bit to one
Set bit to zero
Source operand transfer, MPILCK inactive
Source operand transfer, MPILCK asserted
Status register update
Store CRU input instruction
Test bit
Test-and-clear memory bit
Test-and-set memo", bit

Workspace
Write enable and inverted I/O clock
Workspace pointer
Extended operation

vii/viii

1. INTRODUCTION

, . , DESCRIPTION

The TMS99000 series is a third generation family of single-chip 1 6-bit micrroprocessors and advanced
peripherals, using N-channel silicon-gate SMOS technology. The TMS99000 family of processors offers un­
precedented speed and a powerful instruction set that is an opcode-compatible enrichment of the TMS9900 and
TMS9995 instruction set. These processors build on the unique memory-to-memory architecture that was
pioneered at Texas Instruments and feature multiple register files, resident in memory, to permit faster response to
interrupts and increased programming flexibility.

The TMS99000 family includes two microprocessors, the TMS991 05A and the TMS9911 OA, which are iden­
tical except for specialized programmations of the on-chip Macrostore memory. The ROM macrostore in the
TMS9911 OA microprocessor contains floating point instructions as part of the machine language instruction set.
The TMS99105A microprocessor contains RAM macrostore while the TMS99110A contains both RAM and
ROM macrostore.

Texas Instruments manufactures a complete set of MOS and TTL integrated circuits to provide memory and logic
functions for the TMS99000 system. The system is fully supported by software and a complete prototyping
system.

All references in this document, unless explicitly indicated, refer to all members of the TMS99000 family of
microprocessors.

'.2 KEY FEATURES

• 1 6-bit instruction word

• Memory-to-memory architecture

• Instantaneous access to 256K bytes of memory

• 84-instruction superset of TMS9900 instruction set

- SIGNED multiply and divide
- Long-word (32-bit) shift, add, subtract

Load status register, load workspace pointer
Stack support - branch and push link, branch indirect
Multiprocessor support - test, test and clear, test and set

• Privileged mode

• Macrostore* emulation of user-defined instructions

• Status signals to identify processor activity

• Interrupt acknowledge signal

• Arithmetic fault interrupt

• Illegal instruction interrupt

• 16 prioritized hardware interrupts

• 16 software interrupts (XOPS)

• Programmed 1/0

• DMA compatible

• Bit - , byte - and word-addressable 1/0

• Multiprocessor system interlock signal (hardware support for indivisible operations on semaphores)

• Attached processor interface

• N-channel silicon-gate SMOS technology

• 167 nsec machine cycle time

• On-chip clock generator and oscillator

• Milcroatore i. a trademark of Texas Instruments Incorporated

1

• 40-pin package

• Single + 5 volt supply

2. ARCHITECTURE

2.1 MEMORY ALLOCATION

The memory word of the processor is 1 6 bits long as shown in Figure 1 . Words are assigned even-numbered ad­
dresses in memory. The contents of each memory word can also be treated as two bytes of eight bits each. The in­
struction set supports both word and byte opar-ations. A 1 6-bit address is explicitly manipulated by all memory ad·
dressing modes, but only the 1 6-bit word address Is provided to the memory system. This allows direct addressing
of 64K bytes of memory space, referred to as the logical address space. The instantaneous address reach of the
processor may be increased to 266K bytes using the techniques described in Section 3.2.3.

MSB

I 0 I
SIGN
BIT

LSB

,~--------------~ ~--------------~/ V

MSB

SIGN
BIT

MEMORY WORD (EVEN ADDRESSI

LSB

2 3 4 5 6

,'-______ ,. ___ .,.,A,-___ -.. ,. ___ .,/

V V
EVEN BYTE ODD BYTE

FIGURE 1 - WORD AND BYTE FORMATS

Byte instructions may access either byte as necessary. Byte instructions involving workspace register data
operate on the most-significant byte (even address in Figure 1) of the workspace register, and leave the least­
significant byte (odd address) unchanged. The two bytes in a register can be swapped using the SWPB instruc­
tion. Additionally, since the workspace resides in memory, the least-significant byte of a register may be address­
ed, if desired, using any of the general memory addressing modes.

The processor memory map (Figure 2) shows the locations in the memory address space for the interrupt and XOP
trap vectors, and the non-maskable interrupt (NMI). All remaining memory space is available for programs, data,
and workspaces.

2

AREA DEFINITION

INTERRUPT VECTORS

XOP SOFTWARE
TRAP VECTORS

GENERAL MEMORY FOR
PROGRAM.DATA,AND

WORKSPACE REGISTERS

NMI SIGNAL VECTOR

MEMORY
ADDRESS

0000

0002

0004

0008

003C

003E

0040

0042

007C

007E

0080

FFFA

FFFC

FFFE

MEMORY CONTENTS

WP LEVEL 0 INTERRUPT

PC LEVEL 0 INTERRUPT

WP LEVEL 1 INTERRUPT

PC LEVEL 1 INTERRUPT

"I-'

WP LEVEL 16 INTERRUPT

PC LEVEL 16 INTERRUPT

WP XOPO

PC XOPO

"""
WP XOP16

PC XOP 15

GENERAL MEMORY AREA

MAV BE ANY
COMBINATION OF
PROGRAM SPACE
OR WORKSPACE

WP NMI FUNCTION

PC NMI FUNCTION

FIGURE 2 - MAP OF MAIN MEMORY ADDRESS SPACE

2.2 TMS99000 BLOCK DIAGRAM AND FLOW CHART

.. I'-

.. ~

The block diagram of the processor is shown in Figure 3. A flowchart, representative of the processor functional
operation, Is shown in Figure 4.

3

1t -I 1--.-
!II"- XTAL 1

WAIT-8TATE LOGIC MEMORY CONTROL

CLOCKS
I--- XTAL2

L. .-
INTERRUPT ::

~CLKOUT

AND INT MICROCONTROLLER
INT REQUEST LOGIC - I 1

1 t
-'- I ...

r---- MICRO L IR --- 0
L II:

~ r--+ JUMP --- Z
0

I
(J

STREG -L, >
II:
0

tJ~
::&

: CONSTANT I
w

ST ::&
IJI

I:i 0(

rl ALU I SHIFT I

~. > LOGIC COUNT [

~
w

I L Q MQREG -,..

"j-
~ ALU

~ :;) "-::& 1= III jJ ~ II:
~ .. 0 :;)

II: :;) IJI :;) (J
(J 0 IJI

ietSHIFT"}-J ~ ~ ~
IlL II:

CD TREG ~ 0 IJI IJI :;) II:
Q, w 0

~
L - CD

I ::& .. I WP -
I PC L L

III

~ DREG r:- i
is

I
MAREG ~

L ~ ~ ..
r. e- li:

KREG 0

--- II:

~ f-- --- ::& ~ -
~ L::t BYTE SWAPPER J.-

SBUS

PBUS

+
ADDRESS/DATA I/O

FIGURE 3 - BLOCK DIAGRAM OF TMS99000

4-

YES

YES

EXTERNAL INTERRUPT
LEVELS 1-15

YES

VECTOR @OOOO(1SI
MASK4-0000

VECTOR@FFFC(1SI
MASK4-0000

VECTOR @00081181
MASK4-0001

VECTOR @OOOO(181
MASK+OOOO

VECTOR @4 ClCO-31
MASK 4-

ACTIVE LEVEL - 1

FIGURE 4 - TMS99000 FLOWCHART

5

SAVE OLD WP
INWR13

CLEAR ST7 -1 1
AND LOAD NEW

INTERRUPT
MASK INTO
ST12-ST15

NO

COMPLETE EXECUTION
OF CURRENT !NSTR.

«WRITE RESULTS)

SET FAULT
FLAGEIST4

SET FAULT
FLAG EIST14

FIGURE 4 - YMS99000 FLOWCHART (CONY'DI

6

FETCH NEXT INSTRUCTION
USING NEW PC

PCe-PC+2

NO

LOCK IN ACTIVE
INTERRUPT REQUEST

START EXECUTION OF NEW
INSTRUCTION. UPDATE PC

IF JUMP. FETCH OPERANDS

FIGURE 4 - TMS99000 FLOWCHART (CON'O)

7

YES

YES

NO

VECTOR@OOOI(1S)
READNEWWP

WR13 OLDWP
WR14 OLDPC
WR1S OLDST

WP WR13
PC WR14
ST WR1S

NO

YES

PC_PC-2

LOCK IN ACTIVE
INTERRUPT

REQUEST ICO-3

FIGURE 4 - TMS99000 FLOWCHART (CONT'D)

8

NO

PC_PC-2

USE
RTWP
>384

USE
RTWP
>382

USE
RTWP
>380

SET ILLOP FLAG
EIST13

FIGURE 4 - TMS99000 FLOWCHART (CONCLUDED)

9

2.3 ARITHMETIC LOGIC UNIT

The arithmetic-logic unit (ALU) performs all arithmetic and logical operations required during instruction execution.
These operations include addition, subtraction, AND, OR, exclusive-OR and complement. A separate comparison
circuit within the chip performs the logical and arithmetic comparisions needed to control bits 0, 1 and 2 (Figure 5)
of the status register. Byte operations are performed in the most-significant half of the ALU. The least-significant
half of the result in byte operations is left unchanged. This conveniently permits the status circuitry used for word

operations to be used for byte operations as well.

2.4 INTERNAL REGISTERS

2.4.1

2.4.2

2.4.3

The following three internal registers are accessible to the programmer:

• Program Counter (PC)

• Status Register (ST)

• Workspace Pointer (WP)

Other internal registers that perform instruction acquisition and execution are inaccessible to the programmer.

Program Counter

The program counter (PC) is a 1 5-bit hardware register that contains the memory address (or external Macrostore
address; see Section 7) of the instruction word following the currently executing instruction.

Conceptually, the PC is a 16-bit register that functions as a count-by-two counter with the least-significant bit
(LSB) hardwired to O. Since instructions are constrained to word boundaries, the processor reads the instruction
word from the location pOinted to by the PC, and increments the contents of the PC by two in preparation for the
next instruction fetch. A program branch is performed by replacing the contents of the PC with the address of an
instruction word located in memory or Macrostore. All jump, branch and context-switching instructions alter the
PC in this manner.

Status Register

The status register (ST) is a fully-implemented 16-bit internal register whose contents signify the results of
arithmetic and logical comparisons, indicate program status conditions, and supply the arithmetic fault interrupt
enable and the interrupt mask to the interrupt priority circuits. Each bit position in the register represents a par­
ticular processor function or condition. Figure 5 illustrates the bit position assignments. Certain instructions, when
executed, use the status register to check for a prerequisite condition; others affect the values of the bits in the
register; still others load the entire status register with a new value. This last case occurs when an LST, RTWP or
XOP instruction is executed. Other conditions causing a new status to be loaded are (1) an interrupt, and (2) return
of system control from an attached processor (Section 8) to the host system. After the new status has been load­
ed, an ST bus status code is output along with bits 7 to 11 of the updated status register.

The effect of each individual instruction on the contents of the status register is described in Section 10.5. The in­
dividual status register bits are identified in Section 10.4 along with the conditions affecting each bit.

Workspace
A workspace is a block of 16 contiguous words in memory that contains frequently-accessed data and addresses.
The location of the workspace is defined by t~e workspace pointer register. internal to the processor, which con­
tains the address of the first word in the workspace.

Each word in the workspace is treated as an individual 16-bit general-purpose register. Workspace registers (WRs)
contain data and addresses, and function as operand registers, accumulators, address registers and index
registers. During interrupts and certain instructions, however, particular WRs are assigned the special roles
described in Table 1. As indicated in the workspace map in Figure 6, all 16 WRs manipulate data and addresses,
.but only WRs 1 through 1 5 can be used as index registers.

10

o 1 2 3 4 5 8 7 8 9

UNDEF

13 14 15

(XOP) EMULATE ENABLE

ARITHMETIC FAULT
INTERRUPT ENABLE

--------MAP SELECT

'------PRIVILEGED MODE

'-------XOP IN PROGRESS

'--------PARITY (ODD NO. OF BITS)

'--------ARITHMETIC FAULT

...... ------CARRY OUT

'---------EQUALITB INDICATOR

'----------ARITHMETIC GREATER THAN

'---------- LOGICAL GREATER THAN

FIGURE 6 - STATUS REGISTER FIELD ASSIGNMENTS

REGISTER

0

1

2

3

4

5

8

7

8

9

10

11

12

13

14

15

DATA OR
ADDRESSES

INDEX
CAPABILITY

FIGURE 8 - WORKSPACE REGISTER USAGE

11

TABLE 1 - DEDICATED WORKSPACE REGISTERS

REGISTER

NUMBER CONTENTS USED DURING
0 Shift count (optional) Shift instructions (SLA, SRA, SRC, and SRL)

Multiplicand and MSW of result Signed multiply

MSW of dividend and quotient Signed divide

MSW of floating point accumulator Floating point operations

1 LSW of result Signed multiply

LSW of dividend and remainder Signed divide

11 Return address Branch and link instruction (BL)

Effective address Extended operation (XOP)

12 CRU base address CRU instructions (SBO, SBZ, TB, LDCR, and

STCR)

13 Saved WP register Context switching (BLWP, RTWP, XOP,

recognized interrupt, NMI, and RESET), ex-

ternal process

14 Saved PC register Context switching (BLWP, RTWP, XOP

recognized interrupt, NMI, and RESET), ex-

ternal process

15 Saved ST register Context switching (BLWP, RTWP, XOP,

recognized interrupt, NMI, and RESET), ex-

ternal process

WORKSPACE POINTER REGISTER
ADDRESS
IN MEMORY

WORKSPACE
REGISTER
NUMBER

I WP 1-1---..

THE MICROPROCESSOR ADDS THE CON­
TENTS OF THE WP TO TWO TIMES THE
WORKSPACE REGISTER NUMBER TO DERIVE
THE ADDRESS IN MEMORY OF THE REGISTER.
WORKSPACE REGISTERS ARE ALWAYS
LOCATED AT EVEN ADDRESSES SINCE THEY
FALL ON WORD BOUNDARIES.

(WP)+OO -
(WP) +02 -
(WP)+04 -
(WP)+06 _

(Wj»+08 _

(WP)+OA -

(WP)+OC_

(WP)+OE -(WP) + 10 -(WP) + 12 -
(WP) + 14 -
(WP) + 16 -(WP) + 18 -
(WP)+1A -

(WP)+1C -

(WPl+1E -

FIGURE 7 - WORKSPACE POINTER AND REGISTERS

12

WRO

WR1

WR2

WR3

WR4

WR5

WR6

WR7

WR8

WR9

WR10

WR11

WR12

WR13

WR14

WR15

2.4.4

2.4.5

The location of the workspace in memory is defined by a hardware register, internal to the processor, called the
workspace pointer (WP). The WP contains the address of the first workspace register (WRO). Conceptually, the
WP is a 16-bit register with the LSB hardwired to O. As indicated in Figure 7, the memory address of WRn,
n=0,1 , ... ,15, is calculated as (WP) +2n. *

Context Switching

The processor's memory-resident workspace is a particularly valuable featur.e in applications that require frequent
context switches. A context switch is a change from one program execution environment to another such as
takes place during a subroutine call or an interrupt. Since the workspace registers already reside in memory,· the
processor performs a context switch simply by saving its three internal registers, the WP, PC and ST, in memory
and fetching the new WP and PC from memory.

The processor realizes a similar time savings in returning from an interrupt or subroutine. The original context is
restored by simply replacing the contents of the WP, PC and ST with the values saved in memory.

The instructions that result in a context switch include BLWP (branch and load workspace pointer),.RTWP lretum
from subroutine or interrupt) and XOP (extended operation). A device interrupt, arithmetic fault interrupt, privileg­
ed opcode violation, illegal instruction error, a RESET or an NMllnon-maskable interrupt) also causes a context
switch by forcing the processor to trap to a service routine.

Access of PC, ST. and WP

System control can be transferred from the processor to an external device such as an attached processor or
maintenance panel. During the transfer of control, the processor writes the contents of its WP, PC and ST to
memory where they can be accessed and modified by the external device. Upon return of control to the processor,
the WP, PC and ST are updated with the modified values from memory. The details are presented in Section 8.

2.5 MACROSTORE
The TMS99000 addresses a 64K byte memory address space, which is logically distinct from the main memory
address space. This memory space, which is called Macrostore, is logically differentiated from the main memory
space through a bus status code output by the processor.

The TMS99000 has reserved the first 4K byte addresses for on-chip Macrostore memory. Of this 4K byte space,
there are 1 K bytes of ROM and 32 bytes of RAM implemented on the initial versions of the TMS99000. The
TMS991 05 does not utilize its on-chip ROM; however it does provide the 32 bytes of RAM eliminating the exter­
nal RAM requirement in many cases where external Macrostore memory is provided. Other versions of the
TMS99000 family provide preprogrammed functions in the on-chip Macrostore ROM (e.g. TMS99110 floating
point). All members of the TMS99000 family can address external Macrostore memory for prototyping and ap­
plications requiring more than the 1 K bytes of on-chip ROM.

Macrostore memory space implements added functions or instructions through emulation routines written in stan­
dard machine code. The Macrostore address space is entered through the attempted execution of a subset of the
unused opcodes called macroinstructions. When attempted execution of the macroinstruction takes place, the
processor traps to a specified location within the Macrostore. It is the Macrostore-resident software's responsibili­
ty to decode and perform the emulation of the function or instruction. A Macrostore memory map is shown in
Figure 8. Section 7 describes the interface and use of the Macrostore memory space .

• Enclosing WP in parenthesis means that the contents of WP ara being r.farred to.

13

AREA DEFINITION MEMORY MEMORY CONTENTS
ADDRESS

>0000

32 BYTES ON-CHIP RAM

>001E
>0020

>07FE

>0800

INTERNAL MACROSTORE
ENTRY TABLE

ADDRESSES (ALL BUT >0812 -------------RAM MAY BE MAPPED >0814
EXTERNALL YI

1 K BYTES ON-CHIP ROM

>OBDE
>OBEO

>OFFE

>1000

EXTERNAL MACROSTORE
ADDRESS

USER'S ROM AND RAM

>FFFE

FIGURE 8 - MACROSTORE MEMORY ADDRESS SPACE

3. TMS99000 MEMORY INTERFACE

3.1 DEFINITION

The processor pin functions are described in Section 9. Several of the pins have dual or multiple functions deter­
mined by the state of the ALATCH, MEM. and bus status code (BST1-BST31 outputs. Processor operations involv­
ing the transfer of data utilize the time-multiplexed address and data lines. These lines, along with the correspon­
ding control signals, comprise the local bus interface of the processor. The local bus interface is used to perform
memory. DMA, input/output. external Macrostore. and attached processor operations.

The term. bus cycle, describes the sequence of handshake operations necessary to complete the transfer of one
datum over the local bus. The beginning of each bus cycle is marked by a positive ALATCH pulse, during which an
address is output on the bus, and MEM and the bus status code become valid. Each particuiar type of bus cycle is
indicated by its own unique bus status code (Table 21. A read or write operation is indicated early in the cycle by
the RIW output. The R/W output acts as an early predictor of whether the AD buffers will tristate when in the data
bus mode (after the falling edge of ALATCH). The R/W output is different from traditional R/W indic;ators in that
the R/W output provides direction indication for both memory and non-memory cycles. During memory write
operations, Riw remains at a low level throughout the memory cycle. During memory read operations. RiW re­
mains at a high level throughout the memory cycle. l:he R/W output may be used to enable the direction on various
data bus buffers. The R/W output also provides an early indication of the RD output such that whe~R/Wis high at
the beginning of the cycle. RD will be taken low by the processor after ALATCH goes low. If R/W is low at the
beginning of the cycle. the RD output will remain high after ALATCH goes low. Following the falling edge of the
ALATCH pulse. the bus is used either to perform a write operation or is forced to the high-impedance state for a
read operation. The bus status. R/W. and MEM outputs remain stable throughout the duration of the bus cycle.
and either the WE/IOCLK or Ri5 output may be pulsed low to perform a write or read operation.

14

TABLE 2 -BUS STATUS CODES

BST
MEM- 1 2 3 NAME DESCRIPTION OF BUS ACTIVITY

L L L L SOPL Source operand transfer with MPILCK asserted.

L L L H SOP Source operand transfer. MPILCK is inactive.

L L H L lOP Immediate data or second word of two-word instruction, or symbolic address.

L L H H IAQ* Instruction acquisition. First word of instruction is fetched from memory.

L H L L DOP Destination operand transfer.

H L H INTA Interrupt acknowledge. Active during the WP and PC fetch for an interrupt or XOP.

L H H L WS Workspace transfer (or multi-word transfer beginning with WR15, and Ts=O).

L H H H GM General memory transfer.

H L L L AUMSL Internal arithmetic-logical unit operation or macrostore access with MPILCK asserted.

H L L H AUMS Internal arithmetic-logical unit operation or macrostore access. MPILCK is inactive.

H L H L RESET Reset. The RESET input is pulled low.

H L H H 10 I/O transfer

H H L L WP Workspace pointer update due to BLWP, RTWP, LWP, XOP, APP entry, APP exit or interrupt. The
new workspace pointer is on the address bus.

H H L H ST Status register update due to LST, RTWP, XOP, APP exit or interrupt. Bits 7-11 of the new status
are on the address bus. This occurs prior to the fetch of the next instruction.

H H H L MID Macroinstruction detected. APi> is sampled when READY is high.

H H H H HOLDA Hold acknowledge.

'Due to opcode prefetch, IAQ for the next instruction may be output before the result of the current instruction is stored.

During bus cycles dedicated to internal functions, the RD and WE/IOCLK outputs remain high and R/W goes low:
no transfer of data takes place, although a bus status code is output. During these operations, the activity of the
ALATCH and address-data lines is as described in the previous paragraph.

For convenience, reference will occasionally be made to the "address bus" and "data bus" as if they were
separate lines. The reader should remember that address and data are, in fact, multiplexed over the same physical
lines.

The basic time unit of the local bus interface is the machine state, which has a duration of one CLKOUT period. A
bus cycle minimally requires one machine state to complete but may be extended by some integral number of ad­
ditional machine states.

Bus cycles can be extended by the READY input signal. READY is manipulated by external logic to permit the pro­
cessor to work with slow memory or I/O devices. The additional machine states generated by the READY signal
are called wait states. It should be noted that wait states may be generated even during internal ALU cycles as in­
dicated by the bus status codes.

Three types of bus cycle are distinguished: memory, I/O and internal. During a memory or I/O cycle, a data transfer
takes place on the local bus accompanied by either the WE/IOCLK output signal. During all cycles R/W also is out­
put to give an early indication of readlwrite at the start of the cycle and continues to be active until the end of the
bus cycle. Either RD or WE/IOCLK is active during an internal cycle involving an access of external macrostore.

During inter~ machine cycles, which are not Macrostore cycles (as defined by the bus status codes AUMSL and
AUMS), the RD and WE/IOCLK outputs remain inactive high. Memory and non-I/O cycles have a minimum duration
of one machine state, and a 110 cycle has a minimum duration of two machine states. A memory, 1/0 or internal cy-

15

cle can be extended by an arbitrary number of wait states by pulling the READY input low. Note that because in­
ternal cycles can be wait-stated, care must be exercised in the design of external READY control logic to avoid
wait-stating internal cycles that are not Macrostore cycles.

3.2 MEMORY INTERFACE

3.2.1

The signals used in the interface to system memory are shown in Figure 9.

MEM

-
R/W

JI ~ V ADDRESS/DATA (0·15)
1\ j

'I " ALATCH

WE/IOCLK

T MS99000
RO

MEMORY
CPU READY SYSTEM

HOLD

~ BST(1·3) ,;
FIGURE 9 - MEMORY INTERFACE

Memory Write Operations

The timing for a memory write cycle is shown in Figure 10. At the beginnin~he cycle, the processo~erts
ALATCH, outputs the address and PSEL on the address-data lines, and pulls MEM low. Concurrent with MEM go­
ing low, R/W goes low to give an early indication of a memory write cycle. The CPU then pulls ALATCH low, out­
puts the data word on the address-data lines, -and asserts WE/IOCLK. The cycle may be extended by wait states
using the READY signal, as described in Section 3.2.5.

(31

I
CLKOUT I \ I

I I
=v1(lI X ~ A/DBUS (21

I I

ALATCH -0 h
I

PSEi.. BSTl-BST3 :::X I
VALID CODE X

I I

:::) I
MEM I

I I

---J I
RtW I

I
1

iii5 I
I
I
I

WE '---I
I I MEMORY

:- WRITE -I"
I NO WAITS ,

NOTES:
(1) Address and PSEL are valid.
(2) Memory write data valid.
(3) READY is sampled at this time_

(31 (31

l I
I \

(2)

VALID CODE

\ I
MEMORY WRITE

ONE WAIT-STATE

FIGURE 10 - MEMORY WRITE CYCLE OPERATION

16

I
I

I
lC::::)C

I

~
I
I
X
I

l
I

j-
I
I

!
I
1
I

I
.,1

I
I

3.2.2 Memory Read Operations
The timing for a memory read cycle is shown in Figure 11. At the beginning of the cycle. the processor asserts
ALATCH. outputs the address and PSEL on the address-data lines. and pulls Main low. The RIW output goes to a
high level to indicate that the cycle is to be a memory read operation. The processor then pulls ALATCH low.
forces the address-data lines into the high-impedance state. and pulls RD low to enable the read data from memory
onto the address-data lines. The cycle may be extended by wait states using the READY signal. as described in

Section 3.2.5.

~) ~) ~)
__ --__ I I 1

I \ I , I \\. ___ oJr-
--..-~ I I

CLKOUT

I I I I I

ALATCH

:::::xm:J(-12) - -O-)CTiT)(- - - - - (2) - - - - - - - -a-Y:---Y- --
I I 1 I .'---'
1 (3) I (3) 1
~ T\ "---

A/D BUS

I I I
I I 1

PsEi.. BST1-BST3 ::::x VALID CODE Y VALID CODE Y,.----

3.2.3

I I I
MEM ~ ___ ~I ___________________ I ______________________________________ I~I~:::::~

I 1
I 1

R/W ~ ~~--------
1 I

RD I \ I \
I

WEIIOCLK
I I ,.- MEMORY -I-READ
I NO WAITS
I

NOTES:
(1) Address and PSEL are valid.
(2) Bus is in input mode (drivers are tristated).
(3) Memory read data must be valid at indicated CLKOUT edge.
(4) READY is sampled at this time.

MEMORY READ
ONE WAIT STATE

FIGURE 11 - MEMORY READ CYCLE OPERATION

I

1
~

I
I

Extended Memory Addressing __
Several techniques are available for extending the address reach of the processor. These techniques use the PSEL
and bus status codes (BST1-BST3) to provide for extended address reach by defining additional 64K byte pages
of memory based 'on information output by the processor during every memory cycle.

3.2.3.1 Memory Paging

Status bit 8 of the status register is inverted and multiplexed on the PSEL/DO/OUT pin. PSEL may be used as a
17th address bit to select between two pages of 64K bytes for a total address reach of 128K bytes of physical
memory.

The PSEL signal output occurs concurrently with the memory address when ALATCH is active high. The following
instructions force the PSEL output to the high state regardless of the value of ST8 of the status register:

• RrWP return from interrupt

• XOP extended operations (software trap)

• All interrupts

• All I/O instructions

17

In addition, the LST (load status) instruction can modify the PSEI. output if the state of STB of the status register is
changed by the instruction. The long distance sourceldestination instructions (LOS, LOO) cause the PSEL to be in­
verted from the previous state during the source or destination access by the instruction following LOS or LOO,
respectively. (see Section B.3).

3.2.3.2 Functional Segmentation

In addition to paging capability using the PSEL output, memory may be segmented functionally into an instruction
segment and a data segment. Referring to Table 2, the bus status codes lOP and IAQ may be decoded to create a
segment-select line for differentiating between references to the instruction segment and the data segment. Note
that BST3 is a "don't care" during the decode operation. The decoding necessary to distinguish between
references to data and instruction segments is shown in Figure 12. Figure 13 illustrates the hierarchy of a 256K
byte physical memory system utilizing the memory paging and functional segmentation techniques.

:=;';:::;":~:"::~"---ID INSTR~ON/DATA
. MEM

FIGURE 12 - FUNCTIONAL SEGMENTATION LOGIC

MAIN MEMORY SPACE

PAGE 0
(64K)

I
INSTRUCTION

SEGMENT
(64K)

I

PAGE 1
(64K)

I

\~--------------------~ - V
256K BYTES

PAGE 0
(64K)

i
DATA

SEGMENT
(64K)

I

FIGURE 13 - TMS99000 EXTENDED ADDRESSING

3.2.3.3 Memory Mapping Techniques

PAGE 1
(64K)

J

The TMS99000 may utilize the TIM9961 0 memory mapper (SN7 4LS61 0) device to extend the address reach of
the processor to 16 megabytes. The TIM9961 0 device contains 16 12-bit map registers, which ere selected by
the TMS99000's four most-significant address lines. These 12 bits are output from the TIM9961 0 and appended
to the address bus as the most-significant address lines. Thus, mapped pages may reside on any 4K-byte address
boundary.

18

3.2.4

The PSEL output may be used to enable/disable the operation of the memory mapper. If PSEL is connected to the
MM pin of the mapper circuit, the mapping of the internal map registers occurs only when PSEL is low. When PSEL
is inactive high, the four address bits present on the register-select inputs are passed through to the outputs un­
changed. This allows for correct operation when interrupt or XOP (extended operations) vectors are fetched from
predefined locations.

The TMS99110 contains two instructions which are designed to facilitate operation with a TIM9961 0 memory
mapper. They are Long Distance Source (LDS) and Long Distance Destination (LDD). These instructions are
described in more detail in the TMS99110 supplement (Appendix B). The LOS and LDD instructions invert the
PSEL output when performing source and destination operand fetches of the following instruction. This allows an
instruction to reach operands outside the boundaries of the current page. Figure 1 4 illustrates the interface
between a TMS99000 and the TIM99610 memory mapper.

TMS99000
MPU

MAP ENABLE

DATA BUS

ADDRESS BUS

TIM99610
MEMORY
MAPPER

FIGURE 14 - TMS99105A ORTMS99110A TO TIM99610 MEMORY MAPPER INTERFACE

Direct Memory Access

The processor provides the signals necessary to allow DMA devices to directly transfer information to and from
the system memory. To gain control of the local bus interface, the DMA device sends a hold request to the pro­
cessor by pulling the processor HOLD input low.

The timing for the hold cycle is presented in Figure 15. Assume that HOLD is pulled low during a memory write cy­
cle, as indicated in the example of Figure 15. As soon as the ongoing cycle is complete, the processor responds to
the HQ[5 signal by outputting a HOLDA bus status code (MEM, RlW and BST1-BST3 are all driven high); this
signals its impending surrender of the local bus to the DMA device. The bus status code is held only for a quarter
state, long enough to be latched externally on the falling edge of ALA TCH. As soon as ALATCH has made its high­
to-low transition, the following output signals are forced to the high-impedance state: MEM, R/W, BST1-85T3,
VVE/ii5CtK, RD and the address-data lines. At the beginning of the next machine state, the ALATCH signal is
driven high for a quarter state, after which it also is forced to high impedance. These lines remain in the high im­
pedance state for the duration of the hold cycle. The CLKOUT output line, on the other hand, remains active
through the hold cycle. The DMA device takes control of the local bus and performs its transfer or transfers of data
to or from main memory. When the DMA device has completed its transfers, it deactivates the HOLD signal. The
processor responds by removing the HOLDA bus status code, and leaves the hold state to resume processing.

19

3.2.5

CLKOUT

A/D BUS

ALATCH

BST(1-3)

MEM

R/W

(1) (1) (1) (1) (1) (1) (1)

~~j (2): hi-z I :
~---- - - ----- - ----- --X:::X;;:--x:::J<.
I, I 1 I (3) I hi-z I : (4)
~T----.- ----.-------~

1 I I • hi-z I :
J(I -I - - - -. - - - I - - -, - - - ,- - -X x::::

I I I hi-z, , ""\ r---- -- ---- --- -- ----~
• I·' · ""-__ ---'r ____ .:. ___ ~-~ , '-/~----

I . hi-z I -----
I I I ----
I I I

~----
I I I ~
'\~~--------------------~I

hi-z

1 (1)

1 I
I PRIOR I HOLD CYCLE I
1 STATE 1 ... 41--- MAY BE ANY NUMBER OF CLOCKS ------4 1
I (WRITE I I
I SHOWN) 1 I

NEXT
STATE
(READ SHOWN)

NOTES:
(1) CLKOUT edge at which HOi::D is sampled.
(2) Tristate all outputs except ALATCH as follows:

• BST(1·3) and RtW are first driven high to indicate hold acknowledge, and then tristated.
• MEM, Ro, WE, and R/Vii are first driven high, and then tristated.
• The data bus is tristated as is.

(3) ALATCH is first driven high, and then tristated.
(4) All outputs become active again.

FIGURE 15 - MEMORY CYCLE - DMA HOLD OPERATION

The processor samples HOLD at the falling edge of each CLKOUT pulse. Sampling of HOLD occurs even while the
MPILCK (multiprocessor interlock) bus status code is being output (Section 3.4.4) in order to reduce worst-case
DMA latency.

If HOLD is asserted at the beginning of a reset operation, the processor requests no memory cycles until HOLD is
removed. This permits automatic DMA loading of memory after power up. When HOLD and RESET are pulled low
at the same clock edge, the RESET bus status code will be output prior to the HOLDA bus status code and for as
long as RESET remains active low.

If the READY input signal is low when HOLD is released, the hold cycle is extended with wait states until READY is
allowed to go high.

Memory Wait-8tate Generation

The READY input is held low to extend memory, I/O, and internal bus cycles by an arbitrary number of wait states.
Wait states continue to be generated until READY is released (j.e., allowed to go high). Wait state generation for
I/O cycles is presented in Section 5.

READY is low during the first machine state of a memory cycle, however, the cycle is extended by one wait-state.
If READY continues to be held low, the memory cycle is extended by additional wait-states until READY goes high.

20

External Macrostore accesses are treated as a special type of internal cycle. These cycles can be extended with
wait-states by pulling READY low (see Section 7).

The timing for wait state generation during memory cycles is shown in Figure 16. This same technique may be
used for machine cycles which are neither memory nor I/O cycles (Le. internal cycles). Thus care must be taken
when designing circuitry controlling the READY input. As indicated in the figure, READY is sampled at the falling
edge of CLKOUT.

(1) (1) (2) (1) (2)

.rvV- I I I I
CLKOUT J\.J)-/}F ~ I

I I
ALATCH f\ ~ ~

I I I I I
I I I I I

READY YmMY'<Di YWXmO. 111 WXX XXlOOCXXXXWY 'QOOQ(
(3)

I I I I I I I I I

NO WAIT STATE ONE WAIT STATE ONE WAIT STATE
GENERATED BY READY GENERATED BY WAITGEN

NOTES:
(1) First sample time of READY during bus cycle.
(2) Second sample time of READY during bus cycle. Additional wait states are generated by keeping READY low at this and subse­

quent sample times.
(3) XXXXXX denotes don't care.
(4) READY is sampled on non-memory as well as memory cycles.

FIGURE 16 - WAIT-STATE GENERATION FOR MEMORY BUS CYCLES

3.3 PROCESSOR INTERNAL CYCLE INDICATION

The bus status code output by the processor distinguishes internal cycles from memory and I/O cycles. Referring
to Table 2, the AUMSL, AUMS, RESET, WP, ST, MID, and HOLDA codes indicate the particular type of internal cy­
cle in progress. The AUMS or AUMSL code is output during accesses of external Macrostore.

The MPILCK (multiprocessor interlock) condition is signified by SST = 000 and can remain in effect during an inter­
nal cycle, as indicated by the AUMSL bus status code.

Each internal cycle begins with an ALATCH pulse. During an internal cycle, a low READY signal will generate wait­
states. Activity on the local bus interface during internal cycles is discussed in Section 10,6.4.

21

3.4 Applicable Bus Status .Codas

3.4.1

3.4.2

3.4.3

3.4.4

The bus status codes that are relevant to the interface between the processor and system memory are described
in the following paragraphs. Each bus cycle - memory, I/O or internal - is accompanied by a bus status code con­
sisting of the MEM and BST1-BST3 output signals, as indicated in Table 2. The bus status code for each bus cycle
becomes valid during the ALA TCH pulse at the beginning of the cycle and remains valid through the remainder of
the cycle. An access of internal Macrostore is classified as a special type of internal cycle and is accompanied by
the AUMS or AUMSL bus status codes.

Memory Read Cycle Codes

For all memory read cycles. MEM is active low. The bus status codes (from Table 2) differentiate the following
types of memory read cycles:

• IAQ - instruction acquisition

• lOP - fetch data from the instruction stream (immediate operands. symbolic addresses. or second word of a
two-word instruction)

• SOP - source operand

• SOPL - source operand with MPILCK asserted

• DOP - destination operand

• INTA - fetch of interrupt or XOP trap vector (WP and PC), including NMI and reset

• WS - workspace (Note that the WS bus status code will occur only when workspace register addressing is
used. When the workspace is accessed via other addressing modes (Le., symbolic). the WS code will not be
output.)

• GM - general memory

During an indivisible (semaphore) operation, the MPILCK bus status code becomes active at the start of the source
operand read cycle (Section 3.4.4).

Memory Write Cycle Codes

For all memory write cycles. MEM is active low. The bus status codes differentiate the following types of memory
write cycles:

• SOP - source operand

• DOP - destination operand

• WS - workspace (Note that the WS bus status code will occur only when workspace register addressing is
used. When the workspace is accessed via other addressing modes (Le. symbolic), the WS code will not be
output.)

• GM - general memory

Hold Acknowledge Code - HOLDA

The processor outputs the HOLDA bus status code (Table 2) upon relinquishing the local bus in response to an ac­
tive HOLD or APP input signal.

Multiprocessor Interlock Code - MPILCK

The MPILCK bus status code provides a means for implementing an indivisible test-and-set mechanism. Such a
mechanism is required to insure system integrity in applications in which multiple processors communicate by
means of semaphores located in shared memory. Whenever the processor outputs the MPILCK code, external
logic inhibits memory accesses by the other processors in the system. The MPILCK signal is indicated by BST1-
BST3 =000 (refer to Table 2), and is output during execution of the ABS (absolute value), TSMB (test and set).
and TCMB (test and clear) instructions. as shown in Figure 1 7. The MPILCK code becomes valid during the source
operand fetch (indicated by the SOPL code in Table 2) remains active through the internal cycle (AUMSL). and is
removed as the next cycle (either an SOP or WS) begins.

22

ALATCH .J' f\ " 1\ r\ r

BST(1-3) ::x §OPL 121)(AUMSL X SOP 121)(IAQ x AUMS x::

3.4.5

I I (I
I FETCH ALU WRITE I FETCH NEXT I LAST STATE I
I OPERAND OPERATION: ABSOLUTE I INSTRUCTION I OFABS I
I FOR ABS ABSOLUTE VALUE I I INSTRUCTION I
I INSTRUCTION VALUE I I I
I I
I 1
I +--INTERLOCKED READ/MODIFY/WRITE .. I (1)

NOTES:
(1) The SOPL or AUMSL code indicates that the lock is in effect through the next bus cycle.
(2) If Ts=O (register source operand), an interlock will not be parformed. WS will appear instead of SOPL or SOP.

FIGURE 17 - MULTIPROCESSOR INTERLOCK TIMING - ABS, TSMB, TCMB INSTRUCTIONS

The MPILCK code is not output if the source operand for an ABS. TSMB or TCMB instruction is located in the
workspace. In this case, the SOPL-AUMSL-SOP bus status code sequence described above is replaced by WS­
AUMS-WS.

The TMS99000 does not inhibit the sampling of HOLD while MPILCK is active; the processor will respond to the
HOLD signal by replacing its MPILCK bus status code with the HOLDA code and entering hold. Using the MPILCK
signal to inhibit contention for shared memory is therefore not sufficient to insure the integrity of systems which
allow DMA devices to modify semaphore locations. In such systems. DMA devices must monitor MPILCK to avoid
asserting HOLD during indivisible operations.

Macrostore Accesses

,
The AUMS or AUMSL (arithmetic logical unit or Macrostore) bus status code is used to indicate either a
Macrostore access or an internal processing cycle; i.e .• the same status code is used for both types of operation.
The AUMS or AUMSL bus status code serves to distinguish accesses of external Macrostore from I/O accesses or
accesses of the user's main memory. A complete description of Macrostore accesses is given in Section 7.

4. INTERRUPT STRUCTURE

4.1 TMS99000 INTERRUPT STRUCTURE

The TMS99000 provides 16 interrupt levels, each supported by its own trap vector located in memory. The trap
vector for each interrupt level is a two-word structure containing the WP (first word) and PC (second word) values
of the service routine. When an interrupt occurs, the ensuing context change causes the processor's internal PC
and WP registers to be loaded with the values from the corresponding trap vector. The locations of the trap vec­
tors for the 16 interrupt levels are given in Table 3. Interrupt level 0 is the highest priority. and level 1 5 the lowest.
The reset function uses level O. Level 2 is reserved for the illegal instruction trap. the privileged opcode violation
trap. and (at the user's option) the arithmetic fault trap. The occurrence of the arithmetic fault and privileged viola­
tion interrupts (when unmasked) causes the external maskable interrupts to be ignored until after the context
switch for these interrupts has occurred. Levels 1 through 15 can be used for external device interrupts; level 0
can also be used for external interrupts if external hardware is provided (Section 4.21.

23

TABLE 3 - INTERRUPT LEVEL DATA

VECTOR LOCATION MASK VALUES VALUE MASK SET
INTERRUPT (MEMORY ADDRESS DEVICE TO ENABLE TO UPON TAKING

LEVEL INHEXI ASSIGNMENT (ST12 THRU ST1 &1 THE INTERRUPT
(ST12·ST1 &1

RESET 0000 External o through F 0
ILLOP 0008 Internal (see Note 4) 1

NMI FFFC External o through F 0
ARITHMETIC 0008 Internal (sea Note 2, 3) 1

FAULT
PRIVILEGED 0008 Internal (see Note 3) 1
VIOLATION

0 0000 External o through F 0
(see Note 1)

1 0004 External 1 through F 0
device

2 0008 External 2 through F 1
device

3 OOOC " 3 through F 2
4 0010 " 4 through F 3
5 0014 " 5 through F 4
6 0018 " 6 through F 5
7 00lC " 7 through F 6
8 0020 " 8 through F 7
9 0024 " 9 through F 8
A 0028 " A through F 9
B 002C " B through F A
C 0030 " C through F B
D 0034 " D through F C
E 0038 " E and F D

(Lowest F 003C External Fonly E
priority) devica

NOTES: (1) Level 0 cannot ba disabled.
(2) Arithmetic fauit Intarrupt Is genarated internal to the Alpha snd is enabled/disabled by bit 10 of the stetus register.
(3) The occurrence of the arithmetic fault and privileged violation interrupts (when unmasked) causes the external maskable interrupts to be ignored

until after the context switch for these interrupts has occurred.
(4) The ILLOP (illegal in"structlon) Interrupt is generated intemai to the 99000 and cannot be disabled by the interrupt mask.

External device interrupt requests are transmitted to the processor through the INTREQ and ICO·IC3 input pins.
The interrupt level, in the range 0 to 1 5, is encoded on the four IC (interrupt codellines, and the interrupt request
is generated by pulling INTREQ low. Figure 18 shows the timing for the external interrupt interface. Activation of
the INTREQ input causes the processor to compare the interrupt code, ICO·IC3, with the interrupt mask in bits 12
through 15 of the status register. If the level of the pending interrupt is less than or equal to the enabling mask
level (higher or equal priority interrupt), the processor recognizes the interrupt and initiates a context switch as
soon as the current instruction completes execution. The processor then fetches the new context (WP and PCI
from the appropriate trap vector and at the same time forces the PSEL output high, as indicated in Figure 18. Our·
ing the fetch of the new WP and PC values, the INTA (interrupt acknowledge) bus status code (Table 2) is output.
Next, the previous context, consisting of the WP, PC and ST values from the interrupted program is stored in WRs
13, 14 and 15, respectively, of the new workspace. Status bits 7 through 11 are cleared to insure that the
arithmetic fault interrupt enable (ST1 01, map enable (ST8), and privileged mode (ST7) status bits are not carried
over from the interrupted program. Next, the processor forces the interrupt'mask to a value that is one less than
the level of the interrupt being serviced, except in the case of a level 0 interrupt, for which the mask is set to all
zeros. This mechanism insures that the service routine for an external interrupt of level 1 through 1 5 will be inter·
rupted only in the event that a higher'priority interrupt request is received. Upon switching to the service routine,
the processor inhibits further interrupts until the first instruction of the service routine has been executed.

24

CLKOUT ----"--f\
I

(1)
I

(1)
I

ALATCH -~
I I I

BSTI1-3) XiA['"V VARIOUS)("T[")(\.~~

ICIO-3)

NOTES:

(2) I ONE I
--.. CLOCK ~11)

I -XY1bOOMXYYXM\ MOCWXWWYYtllCYXXXXSOMMOOMC-
,..
_ ..)OOOOOOOOOO(X-_

LAST STATE OF
PREVIOUS
INSTRUCTION

IALWAYS THE NEXT
STATE AFTER IAQ)

I STATUS I FETCH: FETCH: WP
I UPDATE I NEW I NEW UP-
: I WP I PC I DATE

I I

I SAVE
I OLD
I Wp,
I PC,ST

14)~1 CONTEXT SWITCH SEQUENCE
IAUMS STATES NOT SHOWN)

I FETCH
I NEXT
I INSTRUCTION
I

I
c.-­
I

(1) iNTREci and ICIO-3) are first sampled during the lAO cycle, but If walt states occur in the cycle that follows the lAO cycle, samples will continue to
be teken until one clock before the end of that cycle. Only the last sample taken is examined by the processor's interrupt logic to determine whether

to teke the interrupt. SampHng occurs at the high-to-Iow transition of CLKOUT.
(2) The prafetchad Instruction will be discarded when the interrupt is accepted.
(3) INTREO Is not sampled during the first Instruction fetch following the interrupt context switch sequence.
(4) Bus cycles, during which the AUMS bus status code is output, are omitted from the figure for simplicity.

FIGURE 18 - INTERRUPT SEQUENCE

In order to insure recognition of an interrupt request, the request should remain active until acknowledged either
by software in the interrupt service routine or by hardware keyed to the INTA bus status code. If a software inter­
rupt acknowledgment is used, the interrupt service routine must reset the interrupt request before the routine is
completed. If hardware interrupt acknowledgment is used, the interrupting device must monitor four bits of the
address bus IA 1 O-A 13) to determine which interrupt level is being acknowledged. In the event that an interrupt
level is shared by more than one device, a hardware or software priority scheme must identify the interrupting
device.

The interrupt code on the ICO-IC3 inputs will continue to be sampled as long as INTREQ remains active low. If the
code specifies an interrupt level that is disabled initially by the interrupt mask value, the INTREQ input can be held
low until the processor alters the mask to a value that allows the interrupt request to be recognized. The external
interrupt interface is synchronous. The ICO-IC3 inputs must be stable during the falling edge of CLKOUT at which
time they are sampled.

The interrupt vector is typically read from memory, but the system can be constructed so that the interrupting
device itself supplies the interrupt vector via the memory bus. In this case, a hardware decoder triggered by the IN­
TAbus status code and address bits A 10 to A 14 (these indicate the interrupt level and whether the WP or PC
value is being read) enables the interrupting device (and disables memory) when the processor fetches the.inter­
rupt vectors.

Should the service routine for one interrupt level be interrupted by another interrupt of higher priority, a second
context switch occurs to service the higher-priority interrupt. When the service routine for the higher-priority inter­
rupt is complete, an RTWP instruction is executed to resume processing of the lower-priority interrupt. All inter­
rupt service routines should terminate with the RTWP instruction to restore the context of the interrupted pro­
gram.

25

4.2 INTERRUPT LEVEL 0 AND RESET

NOTES:

The level 0 trap vector is utilized by both reset function and the level 0 external interrupt. The reset function is ac­
tivated by pulling the RESET input low. As indicated in Figure 19, the processor samples FiE'SET on each high-to­
low transition of CLKOUT. The RESET signal causes the processor to cease instruction execut~ at the end of the
current bus cycle, and the WE/IOCLK, RD, and MEM signals are forced inactive high and RIW is forced low in­
dicating the AD bus will tristate. The processor remains in this state until RESET is released.

CLKOUT

ALATCH

BST(1-3) ::x (1))((.,
I I
I I

RESET ,
MEM J(X

RD W ~

WE '<KY W

)((1) X
I

(2) I

X 7

~

W

RESET

I

'0 (3)

~ INTA X INTA XWP

\
I

I \..r'-l

START CONTEXT
SWITCH FOR
RESET

(11 The bus Sfetus codes during these cvcles depend on the instruction being performed at this time.
(21 iiESEi'is sampled at every hlgh-to-Iow CLKOUT transition. iiE'SET is required to be active-low-for a minimum of three sample times 80 that the se­

quence can occur correctlv.
(31 The reset context switch begins two CLKOUT cvcles after RESET is sampled as having returned to the inactive-high level.

FIGURE 19 - RESET SEQUENCE

When RESET is released, a context switch to the level 0 service routine is initiated. The processor acquires the
new WP and PC values from the trap vector located at memory address 0; it stores the old WP, PC and ST values
in the new workspace; and it clears all status register bits and all internal error interrupt status bits to O. If NMI is
not active, the processor fetches the first instruction of the reset service routine. Otherwise, the NMI trap occurs
after the context switch for the reset trap completes, but before the first instruction of the reset routine is ex­
ecuted.

A level 0 external interrupt is requested by pulling the processor'~ INTREQ input low while ICO-IC3 are all low. In
general, the use of the level 0 interrupt requires that the request be removed when the INTA bus status code is
output. Otherwise, the interrupt will be accepted a second time since it cannot be masked, and the return context
will be lost. Note that the level 0 external interrupt is not the same as RESET but rather an external nonmaskable
interrupt which uses the same trap vector as RESET.

26

4.3 NON-MASKABLE INTERRUPT INMII

The NMI cannot be masked out. It is enabled by all values of the interrupt mask. The NMI implements ROM
loaders, single-step and breakpoint fu~ons for maintenance panels, and other user functions. An NMI request is
generated by pulling the processor's NMI input low. This signal and its associated function are named "LOAD" in
some previous 9900 family products.

An NMI request is handled according to the basic interrupt timing sequence described previously. The timing for
the NMI is presented in Figure 20. As shown in Table 3, the NMI trap vector resides at memory address FFFC. The
interrupt mask is automatically cleared when an NMI occurs.

CLKOUT

ALATCH

BST(1-3) .:x IAQ X
(3)

VARIOUS X ST X INTA X INTA X WP

NMI

lONE I
-.I CLOCK 14- (1)

J
XYYXXYlfYIYXDW\

ICIO-31

NOTES:

LAST STATE OF
PREVIOUS
INSTRUCTION

I STATUS J FETCH: I FETCH I
I UPDATE I NEW I NEW I
I Iwp I PC 1

J I 1
I

UP­
DATE
WP

1 STORE FETCH
I OLD NEXT

I WP,PC 1 INSTR
ST I

--+I CONTEXT SWITCH SEQUENCE
I
1'-­
I I IAUMS STATES NOT SHOWN)

(1) NMi is always sampled but will not be acknowle!!.a!.d until after the lAO cycle.
(2) After an NMI context switch has been initiated, NMI can remain active-low indefinitely without causing another NMI request to be generated. In

order to generate another NMI request, iiiMi must be taken inactive high and be sampled at least once at the inactive level before being activated
again. (NMI is sampled on the high-to-Iow transition of CLKOUT.)

(3) The prefetched instruction will be discarded as soon as the NMI request is recognized.

FIGURE 20 - NMI SEQUENCE

The processor almost always grants NMI request immediately following completion of the current instruction. The
only exceptions to this statement are user-defined instructions emulated in Macrostore that use opcode >0384 to

exit Macrostore (described in Section 7).

4.4 INTERRUPT LEVEL 2

The level 2 trap vector is used for external interrupts as well as for the following internal trap conditions:
arithmetic fault, illegal instruction, and privileged opcode violation. Sampling of the level 2 external interrupt (anc:j
of all other interrupts as well) is delayed until the end of each instruction (Figure 18) to facilitate non-ambiguous
error reporting. An error detected by external logic during execution of an instruction will be recognized (if level 2
interrupts are enabled) before the next instruction is executed. The PC value stored during the level 2 context
switch points to the instruction following the one which generated the error. The external level 2 interrupt should
be reserved for system errors such as memory faults and access violations. A memory error generated by the in­
struction prefetch should be delayed for one non-DMA bus cycle by external logic to insure that the memory error
is associated with the prefetched instruction rather than with the instruction preceding it.

21

4.4.1

The error interrupt status bits are located at the I/O addresses shown in Table 4. Appropriate bits defined in
Table 4 are set at the time the error occurs. A level 2 interrupt request is generated as long as any bit in the error
status register, except the ILLOP (illegal instruction) flag, is set. The ILLOP flag is set under control of Macrostore
emulation software, as described in Section 4.4.3. The error status bits can be examined by the level 2 interrupt
service routine to determine the cause of the interrupt. The active bit(s) must be reset using a bit I/O operation
(SBZ or LDCR) to acknowledge the condition and remove the interrupt request. This is not strictly necessary in the
case of the ILLOP flag since it does not generate an interrupt request.

TABLE 4 - ERROR INTERRUPT STATUS BIT ASSIGNMENTS

1/0 ADDRESS

ERROR FLAG INPUT BIT OUTPUT BIT

PRIVOP (privileged violation) >lFDC >1FDC

ILLOP (illegal instruction code) >1FDA >1FDA

AF (arithmetic overflow - ST 4 and ST1 0 on) >1FC8 >1FC8

Each bit is individually cleared by writing a 0 to the bit, e.g., by means of an SBZ or LDCR instruction. When 1/0 in­
put operations are performed, the external IN input line is ignored. Writing a 1 to I/O address locations> IFCO to
> IFC7 will cause all three flags (PRIVOP. ILLOP and AF) to be set to 1. Writing a 1 to > IFD3 or > IFD4 will set the
ILLOP or PRIVOP flag to 1, respectively.

When a level 2 interrupt has occurred, the level 2 service routine reads the I/O error interrupt status bits using the
STCR or TB instruction to identify the source of the error. The interrupt is cleared by writing a 0 to the appropriate
bit. The error interrupt status bits are automatically cleared by executing any of the following operations:

• RSET instruction

• Reset function (external device pulls RESET input low)

• I/O output operations to the bit(s) I/O address.

Arithmetic Fault Interrupt

The TMS99000 can be programmed to generate an interrupt when an overflow occurs during an arithmetic opera­
tion. This permits arithmetic fault checking to be performed without software overhead. The arithmetic fault inter­
rupt is controlled using three programmable flags: bits 4 and 10 of the status register (Table 15) and AF of the er­
ror interrupt status bits (Table 4). ST4 is the arithmetic fault flag and is set to 1 whenever an overflow occurs.
ST1 0 is the arithmetic fault enable bit and is set or cleared by the programmer to enable or disable. respectively.
the arithmetic fault interrupt. AF of the error status register is automatically set when both ST 4 and ST1 0 are 1 .
When set and the interrupt mask is greater than or equal to 2, AF generates a level 2 interrupt request, which is.
handled according to the standard interrupt sequence described in Section 4.2.

If an arithmetic overflow occurs while ST1 0 is 1 and the interrupt mask contains a value in the range 2 through
15, a level 2 interrupt occurs directly upon completion of the instruction causing the overflow. The PC value saved
during the reSUlting context switch is the address of the first word of the instruction immediately following the in­
struction that caused the overflow.

The level 2 interrupt service routine must check ST4, ST1 0 of the saved status register in the routine's workspace
register 15 (WR15) and AF to determine that the interrupt was caused by an overflow. The service routine, which
is invoked by the arithmetic fault interrupt, must clear the AF bit and either bit 1 0 or bit 4 of WR 1 5 before return­
ing to the routine which caused the overflow. If this procedure is not followed, the arithmetic fault will falsely oc­
cur immediately upon the completion of the RTWP instruction.

Should the level 2 interrupt service routine be interrupted, in turn, by a higher-priority interrupt, the arithmetic fault
condition is retained in AF until the program explicitly clears it. Similarly, ST4 and ST1 0 are preserved when the
status register is saved during the context change; they are restored upon return from the higher-priority interrupt.

28

4.4.2

4.4.3

Macroinstruction Detection (MIDI Trap

The MID trap permits the detection of illegal opcodes and the emulation of opcodes not defined in the processor in­
struction set. Emulation can be performed either in hardware or software. Hardware emulation takes place using
the attached processor interface discussed in Section 8. Software emulation routines are contained in the
Macrostore, described in Section 7.

The acquisition of an undefined opcode during an instruction fetch causes an MID trap to occur immediately
before the processor attempts to execute the instruction. A list of the opcodes, which cause the MID trap, are
listed in Section 1 0.5.1 9 and consists of all opcodes undefined in the basic instruction set of the processor.
These are referred to as MID opcodes. The XOP instruction is also ~eated as an MID opcode in the event that bit
11 of the status register is set to 1 .

Whenever the processor detects an MID opcode in the instruction stream, a check is made to determine whether
an attached processor is prepared to execute the instruction.

If not, program control is transferred to the external Macrostore in the case of the TMS99105 or internal
Macrostore in the case of the TMS9911 0 to allow the instruction to be emulated in software (see Section 4.4.41.

The sequence of actions that takes place during an MID trap is as follows. Upon detecting an MID opcode, the pro­
cessor outputs an MID bus status code (MEM = 1 , SST = 1101. If an attached processor is prepared to execute the
instruction, it responds to the MID status code by pulling the processor's APP input low. If APP remains inactive,
program control is transferred to the Macrostore. The PC saved during the context switch points to the word
following the MID opcode. If the MID opcode is followed by immediate data or address information, the emulation
routine can use the saved PC value to access this information. In a likewise manner the program may use the sav~
ed workspace pointer (WPI to access operands in the calling routines workspace.

The MID trap is non-maskable. and is higher in priority than any other interrupt except the reset function (REsET
active lowl. An MID opcode always results in an MID trap regardless of the value of the interrupt mask. If an NMI
request is received at the same time that an MIDopcode is detected, the MID trap sequence will take place first
and be followed immediately by the NMI sequence before the attached processor or Macrostore software begins
to emulate the MID instruction. This permits the NMI input signal to control single-stepping in conjunction with
MID opcodes and microcoded processor opcodes alike.

When a user program attempts to execute an MID opcode that is defined neither by an attached processor nor by a
Macrostore emulation routine, the Macrostore software should detect this fact and initiate a level 2 interrupt. This
is accomplished by the special form of the RTWP instruction (opcode >03821. which causes the processor to set
the ILLOP bit of the error status bits and then exit Macrostore memory space. This provides an indicator to the
level 2 trap routine undefined opcode violation. If Macrostore is disabled at Reset, then an MID opcode will
automatically cause the ILLOP bit to be set and a level 2 trap to occur.

Illegal Instruction IILLOPllnterrupt

The illegal instruction interrupt is a result of a Macrostore exit through the execution of the special form of the
RTWP instruction (opcode >03821 when in Macrostore (section 4.4.21. The level 2 interrupt routine can identify
the illegal instruction interrupt by interrogating the ILLOP bit of the error status bits.

This method is not reliable in detecting illegal instructions within level 0 or level 1 interrupt routines. The context
linkage may be lost if two successive level 0 or level 1 external interrupts occur unless a software stack is created.

The ILLOP trap permits the system to respond to illegal opcodes. When an illegal opcode is first encountered, the
processor performs two preliminary checks before setting the ILLOP error interrupt status flag and vectoring to the
level 2 interrupt routine. First, the processor outputs the MID (macro-instruction detected I bus status code to
determine whether an attached processor is prepared to execute the instruction. If not, the processor transfers
control to the emulation software in Macrostore to determine whether it recognizes the opcode. If this test also
fails, the opcode is illegal. The Macrostore software sets the ILLOP flag and returns control to the user's program
in main memory. The processor traps immediately to the level 2 interrupt routine before it has a chance to resume
execution of the user's program. Once the trap has occurred, the level 2 interrupt routine checks the ILLOP flag to
determine if the trap was caused by an illegal instruction. The ILLOP interrupt is non-maskable.

29

4.4.4

4.4.5

For further information, refer to the discussion of MID opcodes in Section 4.4.2.

Privileged Opcode Violation Interrupt

When a privileged opcode violation occurs, as described in Section 6, PRIVOP, the error interrupt status bit is set
and, if the interrupt mask is greater than or equal to 2, generates a level 2 interrupt request. The offending instruc­
tion is permitted to complete any operand fetches it requires, but following detection of the violation, all further at­
tempts to write to the 1/0 address space are inhibited. As soon as the offending instruction completes execution, a
level 2 interrupt takes place unless the interrupt mask value is 0 or 1 . The trap sequence for the level 2 interrupt
consists of a standard context switch, after which program control is transferred to the level 2 service routine. The
routine checks the PRIVOP bit to determine if the interrupt was caused by a privileged opcode violation. PRIVOP
should be cleared by the service routine before returning; otherwise, another level 2 interrupt will occur upon
return unless the interrupt mask is set to a value of 0 or 1 .

If a privileged opcode violation occurs while the interrupt mask is 0 or 1, the level 2 interrupt is disabled and does
not take place. The PRIVOP bit is still set, and any write operations attempted by the offending instruction are in­
hibited as before. Execution of succeeding instructions will occur normally, however, until the interrupt mask is
set to a value of 2 or greater, at which point the PRIVOP bit, which has remained set, causes a level 2 interrupt to
occur.

Applicable Bus Status Codes

The INT A (interrupt acknowledge) bus status code is output by the processor to indicate that a reset, NMI, XOP (if
ST11 =0), external interrupt or any of the level 2 interrupts is in progress. The INTA is output during the fetch of
the WP and PC values from the trap vector for the interrupt or XOP.

If desired, the INTA bus status code can be used as a signal to automatically acknowledge an interrupting device.
The acknowledgment signal is generated by hardware external to the processor that can recognize the INTA code
and determine the interrupt level by decoding address bits A 10 through A 13.

5. TMS99000 INPUT/OUTPUT INTERFACE

5.1 DESCRIPTION

The TMS99000 provides both bit-serial and bit-parallel 110 to meet the requirements of both bit, byte and word
peripheral applications. TMS99000's 110 is a command-driven direct 110 interface that supports bit, byte and
word data transfers. The 110 address space contains 32768 peripheral input locations, and 32768 output loca­
tions. The first 16384 110 addresses (input or output) are bit locations accessed in bit-serial fashion; the last
16384 1/0 addresses are word or byte locations (as specified by the user) accessed in bit-parallel fashion. Figure
21 provides the 1/0 address map for the TMS99000.

30

0000

BIT-SERIAL I/O SPACE
(MSB OF BASE ADDRESS IS 0)

- -
8000

BIT-PARALLEL I/O SPACE
(MSB OF BASE ADDRESS IS 1)

NON-PRI VILEGED I/O ADDRESS SPACE

1BFE

1 COO

1EC4

1ECE

1FCO

1FEO

-

9BFE

9COO

PRIVILE GED I/O ADDRESS SPACE

EXTERNAL
INSTRUCTIONS

ERROR STATUS
INTERRUPT BITS

- - -
7FFE

FFFE 1 __________ __

BIT ADDRESS = BASE
ADDRESS IN WR12 +
BIT NUMBER* 2

WORD OR BYTE ADDRESS
= BASE ADDRESS IN WR12

FIGURE 21 - 110 ADDRESS MAP

The I/O interface utilizes the same signal lines as the interfaces for main memory and external Macrostore, as in­
dicated in Figure 22. The 1/0 address space, however, is logically distinct from the memory and macrostore ad­
dress spaces. The timing for 1/0 read and write operations is presented in Figures 23 and 24. 1/0 operations are ac­
companied by the 1/0 bus status code (MEM = 1, BST = 0 111 to distinguish them from accesses of memory or ex­
ternal Macrostore. (In fact, only two signals, MEM and BST2, are required for this purpose; see Table 2.1

31

MEM

R/W

A II..

~ AID OliN ;AlD 11-141 ;AlD 15 (OUT);;

... ALATCH -
T MS99000 WEIIOCLK -

RD

READY

BST(1-3) -'\
vi

FIGURE 22 - TMS99000 I/O INTERFACE

(4) (4) (4)

..AJ0- ~ CLKOUT
I I I I

AID BUS :xLX2-'iKX: :::xr:x2-XOO:::X2-XiX)C
I I I I I

ALATCH .f\
I I

BST1-BST3 :x x::::. :J< X x:::.
I I I I I

MEM J c: J c:
I I I I

RD ~
WE/IOCLK

I

R/W J 'CO J c:
I I I I
I I I BIT n BIT n+ 11

SINGLE BIT MULTIPLE BITS,
NO WAITS NO WAITS

NOTES:
(1) Valid address, PSEL high (internal ST8 = 0)
(2) 8us in input mode (drivers are tristated)

I/O
SYSTEM

(4) (4)

.AJV-0-
I I

:::xi:X2---xocx:
I I

~
I I

~ x::::
I r

={
I

SINGLE BIT
ONE WAIT

c:
I
I

(3) If MSB of address is 0, I/O bit must be valid on DOli/IN. If MS8 of address is 1, 1/0 word must be valid on A/D(0-15), and 1/0 byte on A/D(0-7).
(4) READY is sampled at this time.

FIGURE 23 - TMS99000 I/O TIMING - INPUT OPERATION

32

CLKOUT

AID BUS

ALATCH

BST1-BST3

MEM

RD

WEIIOCLK

R/W

NOTES:

(3)

.rvV-
I I

.:xr::x:I:XX
I I

..f\ __ _

I I
)(__ X::::

I

c:
I

I

~ -\ J--
I I
I I
SINGLE BIT
NO WAITS

(3) (3)

~
I I I

I I

=1----'.~-F

I

~
I I I i I (-

BIT n BIT n + 1 I

MULTIPLE BITS
NO WAITS

(3) 13)

JVV-V-
I I

J(!JC2 xx:
I I

~
I I

y c:
I I

c::
I

I
\ r-
~. --' I

SINGLE BIT
ONE WAIT

}-

(1) Address is valid, and PSEi. is high !internal ST8 =0).
(2) If MSB of address is 0, then valid I/O bit is on D15/0UT. If MSB of address is 1, then valid 110 word is on A/D(O-15), and I/O byte is on A/D(0-7).
(3) READY is sampled at this time.

FIGURE 24 - TMS99000 I/O TIMING - OUTPUT OPERATION

Each I/O cycle begins with an ALATCH pulse, the falling edge of which latches externally the 1 5 address bits AO
to A 14 and the PSEL page select signal. If AO, the MSB of the address, is 0, a bit-serial 1/0 operation is performed;
if AO is 1 during an LOCR or STCR instruction, a bit-parallel (byte or word) I/O operation is performed. The PSEL
output signal is forced high during all 1/0 cycles regardless of the actual state of ST8 of the processor's status
register (Section 2.3.2). Following the ALATCH pulse, data is input or output on the address-data lines and R/W is
taken high or low to indicate whether an input or output operation is to be performed. Serial I/O accesses utilize the
AOIOOIIN line for reads, and the PSEL/015/0UT line for writes. Parallel I/O operations utilize all 16 data lines
(00-015) for word transfers, and the first eight (00-07) for byte transfers. 1/0 write operations are accompanied
by a low pulse on the WEIIOCLK output; I/O read operations are accompanied by a low pulse on RD.

The minimum-length I/O cycle is two machine states (two CLKOUT periods) in duration. If, during the second
machine state of a 110 cycle, READY is low, the cycle is extended by one wait-state. Holding READY low
generates additional wait-states until READY is taken high prior to the high-to-Iow transition of CLKOUT. Figure
25 illustrates the relationship between I/O wait states and the READY line.

33

NOTES:

(1)
I

CLKOUT ./\...r\.r
I

ALATCH -" ___ _

READY XXXXXXXY 'UiX
(3) I

NO WAIT STATE

(1) (2)
I I

J\.f\..r\J
I I

-"-------"-­I I

ONE WAIT STATE
GENERATED BY READY

(1) First sample time of READY in I/O cycle.
(2) Second sample time of READY in 110 cycle. Additional wait states are generated by keeping READY low at this and subsequent sample times.
(3) XXX XXX denotes don't care.

FIGURE 26 - WAIT-STATE GENERATION FOR 110 CYCLES

The TMS99000 instruction set contains five I/O-oriented instructions. Three of the 1/0 instructions are used to
perform single-bit operations in the first 16384 bits of the 1/0 address space. (See Figure 22.) These are the TB
(test bit), SBO (set bit to one) and SBZ (set bit to zero) instrtlctions. The remaining two 1/0 instructions perform
mUltiple-bit operations in either bit-serial or bit-parallel fashion, depending on which half of the 1/0 space is being
addressed.

5.2 SINGLE-BIT I/O OPERATIONS

The single.bit instructions facilitate the testing and for modification of a particular bit in a device. The three single­
bit 1/0 instructions, TB, sao and saz, are executed as follows. The TB instruction reads the bit from the address­
ed I/O location onto the AO/DOIIN line. and this bit is placed in status register bit 2 (EQI. The sao instruction out­

puts a one on the PSEUD15/0UT line, and the SBZ outputs a zero on this line.

The processor develops the address for a single-bit I/O operation from the base address contained in bits 0 to 14
of WR12 and from the signed displacement field contained in bits 8 to 15 of the instruction. As indicated in
Figure 26, the signed displacement * 2 is added to the base address to generate the effective I/O address output
onto the bus. The displacement allows two's complement addressing from base - 1 28 through base + 1 27. Note
that for single-bit I/O instructions, SBO, saz, and TB, the most-significant bit of WR 1 2 does not affect the opera­
tion (Le., no parallel operations).

34

FIGURE 26 - SINGLE-BIT 110 ADDRESS DEVELOPMENT

5.3 MULTIPLE-BIT SERIAL I/O OPERATIONS

The STCR and LDCR instructions specify multiple-bit 1/0 operations. The starting address in 1/0 address space is
loaded into WR12 prior to executing STCR or LDCR. When the MSB (bit 0) of the address in WR12 is 0, the
transfer is performed in bit-serial fashion rather than in parallel. During a multiple-bit, bit-seriall/O transfer, the first
bit is read from or written to the address pointed to by bits 0 through 14 of WR 1 2. Consecutive bits are read from
or written to 1/0 locations separated by an address increment of + 1. The contents of WR12 are not altered by ex­
ecution of the serial STCR or LDCR instructions.

A multiple-bit serial 1/0 transfer is represented in Figure 27. Although a full 1 6-bit transfer is indicated in the
figure, any number of bits from one to 1 6 can be specified. The transfer mechanism results in an order reversal of
the bits; that is, bit 1 5 of the memory word (or bit 7 of the byte) corresponds to the bit stored at the lowest 1/0 ad­
dress, and bit 0 corresponds to the bit stored at the highest 1/0 address.

I/O INPUT BITS

N

N+1

N+14

N+15

1/0 OUTPUT BITS

N

• INPUT (STCRI
N+1

•
MEMORY WORD •

• •
•

OUTPUT (LDCRI N+14

N+15

N BIT SPECIFIED BY I/O BASE REGISTER

FIGURE 27 - LDCRISTCR DATA TRANSFERS

The first word of an STCR or LDCR instruction contains a 4-bit CNT (count) field, which specifies the number of
bits to be transferred. If CNT is 0, then 16 bits are transferred. If CNT is in the range 1 to 8, the effective source
operand address from the STCR or LDCR instruction is treated as a byte address; otherwise, it is treated as a word
address.

The LDCR instruction reads a word (or byte) from the memory and writes all or part of it to the 1/0 in bit serial
fashion. Beginning with the rightmost bit in the word (or byte) and moving from right to left, each consecutive bit
is output through the I/O interface until the specified number of bits has been transferred.

The STCR instruction reads data from the I/O and transfers it to memory. If the specified number of bits to be
transferred from the 1/0 is less than 9, they are stored right-justified in the addressed memory byte, and the
leading bits are cleared to O. If the operation involves from 9 to 16 bits, the data is stored right-justified in the ad­
dressed memory word, and the leading bits cleared to O. When the instruction is completed, the bit from the
lowest I/O address occupies the LSB position in the memory word or byte.

5.4 PARALLEL I/O OPERATIONS

When the MSB (bit 0) of the 1/0 base address in WR12 is 1, the multiple-bit 1/0 transfer specified by an STCR or
LDCR instruction takes place in a single 1/0 transfer, i.e., in parallel. Either a word or byte is transferred as deter­
mined by the 4-bit CNT field in the first word of the LDCR or STCR instruction. If the CNT field is within the range
of 9 to 15, then a word is transferred. If the CNT field is within the range 1 to 8, then a byte is transferred. For
parallel 1/0, CNT is restricted to (binary) 0010, 0011, 1010, and 1011. The CNT field selects the mode of
transfer as shown below:

if CNT = 0010, then byte transfer
if CNT = 0011, then byte transfer with WR 1 2 auto increment
if CNT = 1 01 0, then word transfer
if CNT '" 1 0 11, then word transfer with WR 1 2 auto increment.

The automatic increment of WR12 is provided to facilitate block transfers of data to and from devices in the
parallel 1/0 address space.

5.5 APPLICABLE BUS STATUS CODES

I/O cycles are identified by the I/O bus status code (Table 2).

36

6.6 EXTERNAL INSTRUCTIONS

The TMS99000 has five external instructions that allow user-defined off-chip functions to be initiated under pro­
gram control. These instructions are CKON, CKOF, RSET, IDLE and LREX. These names are arbitrary. The user
may define the external function performed by these instructions.

Execution of CKON, CKOF, RSET or LREX causes a bit value of 0 to be written to one of the I/O addresses
specified in Table 5. Following the single I/O write cycle, execution proceeds to the next instruction. RSET is the
only external instruction that can affect the ST (status) register or the error interrupt status bits. In privileged mode
(ST7 =0), RSET causes ST9-ST15 and the AF, ILLOP, and PRIVOP bits ofthe error status bits to be cleared. This
is followed by a status update cycle (ST bus status code) to notify external devices of the change in status. In user
mode (ST7 = 1), the ST and error status bits are unaffected, and RSET is similar in effect to CKON, CKOF and
LREX.

TABLE 5 - EXTERNAL INSTRUCTION CODES

INSTRUCTION I/O BASE ADDRESS

IDLE 1EC4

RSET 1EC6

CKOF 1ECC

CKON 1ECA

LREX 1ECE

IDLE differs from the other external instructions in that its function is predefined. Execution of IDLE causes the
processor to enter and remain in the idle state until a RESET, NMI or unmasked external interrupt occurs. While in
the idle state, a bit value of 0 is written repeatedly to I/O address >1 EC4 (i.e., the WEIIOCLK output is pulsed con­
tinually). Upon leaving the idle state, a context switch takes place to service the interrupt. The PC value saved dur­
ing the context switch points to the address of instruction following the IDLE instruction.

The timing for the I/O write operation, or operations in the case of IDLE, follows that given in Figure 24. Each I/O
write cycle is accompanied by the 110 bus status code (Table 2).

When the processor receives a hold request (HOLD low) while in the idle state, the processor enters the hold state
directly from the idle state. It reenters the idle state as soon as the hold request is deactivated.

6. PRIVILEGED MODE

For hardwired system protection in a userlsupervisor programming environment, certain instructions performing
110 and control functions are designated as "privileged". When the system is placed in the user or "non­
privileged" mode, any attempt to execute one of these instructions will result in abortion of the instruction and an
interrupt request through the level 2 trap vector. (See Section 4J

The system can be placed in the user mode by setting status bit 7 to 1 by means of an LST or RTWP instruction.
The system is placed in the privileged mode by the occurrence of any interrupt, execution of the XOP instruction,
by the assertion of the NMI or RESET input signals, or during Macrostore operations.

When a privileged opcode violation is detected, error status bit PRIVOP is set, and this, in turn, generates a request
for a level 2 interrupt as described in Section 4.4.3. The following instructions are privileged: CKON, CKOF, IDLE,
UMI, LREX and RSET. The use of the following instructions is qualified in user mode: LDCR 010), RTWP, SBO
(1/0), SBZ (110), and LST. In processors with LDD and LOS instructions implemented in Macrostore such as the
TMS99110, these instructions are privileged. Section 10.5 should be consulted to determine the restrictions
placed on each of these instructions in user mode.

The LDCR instruction is a privileged instruction for byte and word transfers to output addresses falling within the
range specified by Figure 21. Similarly, the SBO, SBZ I/O instructions are privileged for bit 110 operations falling
within the same range.

37

The LST operation is dependent upon whether the processor is in the privileged or non-privileged mode when the
instruction is executed. While in the privileged mode (ST7 =0), the LST instruction modifies all 16 bits of the
status register. While in user mode (ST7 = 1), only bits 0 through 5 and bit 10 of the workspace register specified
in the W field are placed in the status register, and loading these bits has the side effect of clearing ST6. Similarly,
return workspace pointer (RTWP) instruction will cause all bits of the status register to be replaced when in
privileged mode and only the seven bits discussed when in a non-privileged mode.

Section 10.5 discusses the operation of these instructions in more detail.

7. MACROSTORE INTERFACE AND OPERATION

7.1 DESCRIPTION

Macrostore is a special feature of the TMS99000 that permits new instructions to be defined and emulated in a
manner completely transparent to programs residing in main memory. It provides the capability for adding new
functions and enhancing the performance of specific kernels of software, thereby increasing the total system per­
formance. Macrostore permits software kernels to be encapsulated within the TMS99000 system in a manner
that makes them virtually indistinguishable in operation from functions implemented in hardware. This is ac­
complished by providing a 64K byte address space that is logically distinct from the main memory and I/O address
spaces. Macrostore functions as a control store for the TMS99000 but is programmed in assembly language
rather than microcode. Internal to the TMS99000 are 1024 bytes of Macrostore ROM (MROM) and 32 bytes of
Macrostore RAM (MRAM). The access time of the on-chip Macrostore is one machine state. Emulation routines in
the internal Macrostore execute at the full speed of the processor since no wait states are required to access the
on-chip MROM and MRAM. While executing in the Macrostore, certain control capabilities are provided that are
not available to programs executing in the main memory.

7.2 THE MACROSTORE INTERFACE

7.2.1 Timing

7.2.2

7.2.3

The timing signals generated during accesses of external Macrostore are identical to the memory timing described
in Sections 3.2.1 and 3.2.2, with the following exceptions. The only bus status codes (Table 2) output are the
AUMS and AUMSL codes. (AUMSL is output if an ABS, TSMB or TeMB instruction is executed in Macrostore.
Otherwise, AUMS is output.)

Another difference between Macrostore accesses versus main memory accesses is the operation of the PSEL out­
put. In main memory accesses, the PSEL output represents the inverted state of the ST8 bit of the status register
unless a long distance source/long distance destination instruction (LDS, LDD) is in effect (see Section B.3). (The
LDS and LDD instructions apply to the TMS9911 0 only; see Appendix B.) If a LDS or LDD instruction is in effect
per the description in Appendix B, the PSEL output will represent the logic state of the ST8 bit without inversion. A
complete description of the LDS and LDD instructions is given in Appendix B, Section B.3. For Macrostore ac­
cesses, the PSEL output is not guaranteed; thus it should not be used for paging Macrostore memory.

The AUMS and AUMSL bus status codes differentiate between external Macrostore accesses and memory and I/O
accesses.

Wait States

Accesses of on-chip Macrostore require only a single machine state to complete. If the Macrostore is extended us­
ing an external RAM or ROM that is too slow to respond in a single machine state, external control logic must
cause wait-states to be generated by pulling the 99000's READY input low until the access is ready to complete.
The generation of wait-states is identical to main memory wait state generation described in Section 3.2.5.

Organization

The internal Macrostore consists of 1024 bytes of MROM and 32 bytes of MRAM. The MROM resides at addresses> 0800
to >OBFE. The MRAM resides at addresses >0000 to >OO1E and serves as workspace storage during Macrostore
execution. External Macrostore may be added in the form of off-chip ROM or RAM residing at addresses in the range
>l000to >FFFE: A map of the Macrostore address space appears in Figure 28.

38

Internal

external

7.2.4 Modes of Operation

0000

MRAM
OO1E
oom~~~~~~~~~~~~

07FE

0100
entry-point teble

0812 - - - - - - - - - -081.

MROM

OBDE - - - - - - - - --
OBEO

r .. erved

OBFE

OAOO

OFFE J.'<t,Lj~~.u..u..u.",",t,Lj~~.u.I..I.."I
1000 AAAA

1002 entry point

loff-chlp ROM or RAMI

FFFE ____________ __"

FIGURE 28-ADDRESS MAP OF MACROSTORE

1~
byt ..

I
Ifay.tem
contelns
external
Macro.tore

The TMS99000 operates in one of three modes which determine the operation of Macrostore. These modes are
summarized in Table 6 and in the following paragraphs.

TABLE 6 - MACROSTORE OPERATING MODES

MODE EFFECT ENTRY PROCEDURE

On-chip ROM (1 K bytes) and APP pin is a high

RAM (32 bytes) is assumed. level at reset.

Standard External Macrostore memory

expansion from> 1 000 through

>FFFE.

On-chip ROM address range APP pin is taken

(>0800 - >OFFE) is mapped low when RESET is

Prototyping off-chip for use of external pulled low and

Macrostore memory. On-chip is released when

RAM is available. RESET is released.

All Macrostore memory space APP pin is tied

Baseline is disabled and the attached to ground.'

processor interface is

disabled.

*If APPis brought high anytime after RESET. the processor will enter the prototyping mode.

39

7.2.4. 1 Standard Mode

In standard mode, the on-chip MROM and MRAM are both enabled, permitting the firmware contained in the
MROM to be utilized. During ~esses of on-chip MROM and MRAM, the AUMS and AUMSL status codes are out­
put, and the WE/lOCLK and RD outputs both remain inactive high.

While executing in Macrostore, a read or write to a Macrostore address in the range> 1000 to > FFFE results in an access
of external Macrostore. During this access, either the RD or WE/IOCLK output goes active· low, depending on whether
the Macrostore location is being read from or written to. The timing for the access is the same as that described for an
access performed by a program residing in main memory, as described in Section 3.2, with the exception that the only bus
status codes output are AUMS and AUMSL. This is consistent with the treatment of Macrostore execution as a special
type of internal operation. The AUMS and AUMSL bus status codes are used by external decode logic to distinguish
accesses of external Macrostore from accesses of main memory and I I 0 locations. Accesses of external Macrostore are, in
turn, distinguished from other kinds of internal operations by observing the RD and WE/IOCLK outputs, which are active
during Macrostore accesses, but not during other types of internal operations.

The TMS99000 is placed in standard mode by keeping the APP input high while RESET is pulled low at system initializa­
tion.

7.2.4.2 Prototyping Mode

In prototyping mode, the TMS99000's internal MROM is disabled, but the MRAM remains enabled. A read or write to a
Macrostore address in the range> 0000 to >001 E results in an access of the on-chip MRAM, but a read from or write to
any Macrostore address in the range >0800 to > FFFE results in an external Macrostore access. As in the standard mode,
the WE/IOCLK and RD outputs are active only when the Macrostore read or write is off-chip. The AUMS and AUMSL bus
status codes are output during accesses of both internal and external Macrostore.

The processor is placed in prototyping mode by pulling the RESET and APP inputs low together during system initializa­
tion and releasing them at the same time. In systems without attached processors, the RESET and APP pins can simply be
tied together.

One use of prototyping mode is to permit external RAM or ROM occupying Macrostore addresses >0800 to >OBFE to
emulate on-chip MROM during development and testing of Macrostore software.

7.2.4.3 Baseline Mode

7.3

7.3.1

In baseline mode all Macrostore memory space is disabled. In the event a MID opcode is encountered, the
TMS99000 will cause a level 2 interrupt to occur and the ILLOP bit of the error status register (Section 4.4) will be
set. The level 2 interrupt routine then may emulate the opcode or the opcode may be handled as an illegal opcode
violation. In baseline mode the attached processor interface is also disabled. Thus the APP input pin will not be
tested on the occurrence of a MID opcode. The level 2 interrupt will be implemented immediately.

The TMS99000 is placed in baseline mode by pulling the APP input low at reset. It remains in baseline mode as
long as AAP remains low. Typically, this is accomplished simply by tying APP to ground. (Note that if APP goes
high after RESET, the processor will enter the prototyping mode.)

MACROSTORE CAPABILITIES

Entry Procedure

When the TMS99000 is executing a program residing in main memory and a MID opcode is encountered, the APP
pin is tested to determine whether an attached processor is prepared to respond to the MID opcode. If not, pro­
gram control is transferred to the Macrostore. A MID opcode is an undefined opcode in the basic TMS99000 in­
struction set, or an XOP executed while ST11 = 1 .

The Macrostore is entered via an entry point table occupying the first ten words of the MROM, shown in Table 7. Each
entry in the table contains the start address in MROM of an emulation routine for a particular group of MID opcodes. When
a MID opcode is encountered in the program in main memory, instruction execution transfers to the MROM address in the
entry-point table corresponding to that opcode. Undefined single-word opcodes are divided into eight groups with the
entry addresses for each group as indicated in Table 7. Undefined two-word opcodes are treated as a 9th group, and XOPs,
when ST11 = 1, as a 10th.

4D

TABLE 7 - MACROSTORE ENTRY VECTORS

TABLE MIDt

LOCATION OPCODES
OBOO* 0000-001B, 001 E-002B, 002B-007F, OOAO-OOAF, OOCO-OOFF

OB02* 0100-013F

OB04* 021 0-021 F, 0230-023F, 0250-025F, 0270-027F, 0290-029F, 02BO-02BF, 02DO-02DF, 02E1-02FF

OB06* 0301-031F, 0320-033F, 0341-035F, 0361-037F, 03B1-039F, 03A1-03BF, OEC1-03DF, 03E1-03FF
OBOA* OCOO-OCOB,OCOC-OCFF

OBOA* ODOO-ODFF

080C* OEOO-OEFF

080P OFOO-OFFF, 07 BO-07FF

0810 AM, SM, SRAM, SLAM, TMB, TCMB, TSMB
(if the second word is illegal)

0812 XOP (if ST11 = 1)

"Bits 5, 6 and 7 of the MID Opcode select one of eight entry-table locations.

tThe opcodes reserved for the LDD and LOS instructions should not be used as MID opcodes.

A context switch occurs after the entry-point address has been read from the table. The workspace pointer is set to 0000
and the program counter is set to the address from the entry-point table. The old WP, PC, and status are saved in the
MRAM locations corresponding to WR13, WR14 and WR15, respectively. The PC value saved in WR14 always points to
the word immediately following the MID opcode. If a two-word MID opcode was encountered, the PC value always points
to the word immediately following the first word of the two-word opcode.

Prior to transferring program control to the Macrostore emulation software, the MID opcode responsible for causing the
MID trap is automatically placed in registers 3 and 5 of the Macrostore workspace. If the first word of an instruction causes
the MID trap, the (entire) first word is placed in WR5. If the second word of an instruction causes the MID trap, the (entire)
second word of the instruction is placed in WR5, and bits 10, 11, 14, and 15 of the first word of the instruction
are placed into bits 10, 11, 14, and 15 of WR3. In the latter case, bits 10, 11, 14, and 15 are sufficient to uni­
quely identify the possible first word of an opcode in which the second word is illegal. The identification is per­
formed as follows: Table 8 enumerates all the 2-word opcodes in the TMS99000 instruction set. These instruc­
tions are divided into 3 groups. Bits 10 and 1.1 identify the group. Each group contains 2 or 3 opcodes. Bits 14
and 1 5 serve to identify the individual opcodes within each group.

WR3 IN MACROSTORE:

012
LDFLAGS

LONG-DISTANCE
FLAGS

3
o

4 5 6 7
o o o o

8 9 10 11

o o GROUP

BITS 10, 11, 12 & 15
ENCODE FIRST WORD
OF TWO-WORD OPCODE

12 13 14 15
o o OP#

Bits 0, 1 and 2 of WR3 are initialized to the value of the 99110's long-distance flags upon entry to Macrostore. These flags
indicate whether an LOS or LDD instruction is currently in effect, as explained in Section 10.

41

TABLE 8-INSTRUCTIONS WITH TWO-WORD OPCODES

MNEMONIC FIRST INSTRUCTION WORD

Group 1: TMB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1

TCMB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0

TSMB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1

Group 2: AM 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

SM 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

Group 3: SLAM 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

SRAM 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

Bits 10 and 11 identify group I I Bits 14and 15 identify opcode within group

7.3.2 Exit Procedure

Macrostore is generally exited by executing a RTWP instruction (opcode > 0380). Interrupts are sampled prior to
executing the next instruction. In those instances where interrupts (maskable or non-maskable) should not be
sampled before executing the next instruction, the exit from Macrostore is invoked using the opcode > 0384, a
special form of the RTWP instruction. In either case, the WP, PC, and ST registers are updated with WR13, WR14,
and WR15 from the MRAM. The >0384 exit ties the Macrostore operation to the execution of the instruction
that follows the MID instruction. For example, it is used in emulating the LDD and LOS instructions, described in
Section 10.

If the Macrostore is entered upon detection of a MID opcode, and the emulation software in Macrostore deter­
mines that it does not recognize the MID opcode as valid, the software must transfer control to the level-2 inter­
rupt service routine, which has the responsibility for dealing with illegal opcodes. The emulation software in
Macrostore uses the opcode >0382, another special form of the RTWP instruction, to exit the Macrostore under
these conditions. When this opcode is executed in Macrostore, the processor sets the ILLOP flag of the error
status bits (Section 4.4) before executing the RTWP operation. Consequently, following the context switch back
to the program in main memory that contains the undefined opcode, the ILLOP flag forces a trap to the Ievel-2 in­
terrupt service routine. The ILLOP interrupt is non-maskable and cannot be disabled by the interrupt mask in ST1 2-
ST15.

The opcodes >0380, >0382 and >0384 provide the only means for performing an exit from Macrostore. To
perform an RTWP in Macrostore (I.e., inverse of a BLWP) the opcode >0381 should be used. This opcode will
allow for return branching in the Macrostore address space without exiting Macrostore.

7.3.3 Macrostore Execution

During Macrostore execution, several processor functions are modified to provide increased control. These are described
below.

7.3.3.1 Status Register

The contents of the status register are not affected by the context switch to Macrostore that follows detection of a MID
opcode. Macrostore routines are "super-privileged," meaning that they can alter the contents of the status register and
perform other privileged operations regardless of the value of the privileged mode flag, ST7. An ST bus status code (Table
2) is output from the processor when a Macrostore routine alters the ST register by means of the LST instruction. When
the status register of the original main memory program environment must be modified, the appropriate bits of WR 15 must
be modified prior to Macrostore exit.

During emulation of an MID opcode in Macrostore, the emulation routine can modify the ST register value saved in WR15
in accordance with the results. During the context switch that follows the exit from Macrostore, the new status is loaded
into the ST register. If the status value saved in WR15 has not been changed since the entry to Macrostore, it will be
restored in its original form.

While in Macrostore, the setting of both ST4 and ST10 to 1 does not cause the AF flag of the error status register to be
set to 1. If an arithmetic fault interrupt is to be generated, then bit 4 and 10 of WR15 should be set so that an arithmetic
fault trap will occur when the context switch out of Macrostore is made.

42

If it is required to modify the status bits of the main memory routine's status register prior to context switching out
of Macrostore, the appropriate bits of WR15 should be modified. (Note if ST7 = 1, then status bits 6 to 15 will be
set according to Section 6.)

7.3.3.2 Interrupts

All interrupts except RESET are inhibited while executing from Macrostore. However, pending interrupts can be
detected using the conditional jumps described in Section 7.2.7.5.

7.3.3.3 Macrostore Workspace Registers

When Macrostore is initially entered, the Workspace Pointer is set to zero so that the internal Macrostore RAM is utilized as
the workspace. The Workspace Pointer may be set to another value by the LWP, LWPI, or BLWP instruction when it is
desired that the workspace be located in external Macrostore RAM.

The workspace registers located in internal RAM have special uses associated with the evaluate address (EVAD)
instruction described in Section 7.3.3.5. For this reason care must be exercised in assuring that the EVAD instruc­
tion is used only with the Workspace Pointer equal to zero.

Table 9 lists the dedicated functions of the workspace registers when the workspace pointer bits 11 to 15 are
equal to zero as is the case when Macrostore is first entered. Table 10 lists the bus status codes of the workspace
registers when the workspace pointer bits 11 to 15 are not equal to zero (Le., external RAM is used).

MAIN

MEMORY

REGISTER ACCESS

0 NO

1 NO

2 YES

3 YES

4 NO

5 NO

6 YES

7 YES

8 YES

9 YES

A YES

B NO

C YES

0 YES

E YES

F NO

TABLE 9 - DEDICATED MRAM REGISTER FUNCTIONS
[WP bits 11 to 1 5 ara all zarol

BUS MOD MOD

STATUS BY BY

CODE EVAD MACRO

AUMS

AUMS

IAQ

GM YES

AUMS

AUMS YES

SOP

OOP

WS YES

SOP

WS YES

WS YES

WS YES

AUMS

OOP

WS YES

lOP YES

AUMS YES

• EV AD should only be used if the WP = 0000.

43

USAGE

shift counts

first word of 2-word opcode; *

LDO and LOS internal flags

scratch register for EVAO *
one-word opcode or second *

word of two-word opcode

TdnotO EVAO*

Td = 0 destination

address

Ts not 0 EVAO*

Ts = 0 source

address

EVAO address of external *
dest. register if *R +

EVAO address of external *

source register if *R +

BLandXOP

CRU base address

oldWP

old PC

oldST

TABLE 10 - BUS STATUS CODE ASSOCIATED WITH WP VALUE
/WP bits 11 to 1 5 not equal to zero)

REGISTER MAIN BUS
ADDRESS MEMORY STATUS

BITS 11 TO 15 ACCESS CODE

0 NO AUMS

2 NO AUMS

4 YES IAQ

6 YES GM

8 NO AUMS

A NO AUMS

C YES SOP

E YES OOP

WS

10 YES SOP

WS

12 YES WS

14 YES WS

16 NO AUMS

18 YES DOP

lA YES WS

lC YES lOP

IE NO AUMS

7.3.3.4 Accessing Main Memory

Curing Macrostore execution, data in the main memory is accessed using the indirect autoincrement and indexed
addressing modes (*R, *R + and@TABLE(R)). MRAM workspace registers 2, 3, 6, 7, 8, 9,10,12, 13and 14are used as
base registers during these accesses. This is only true when the Workspace Pointer resides on a 32-byte boundary, i.e., five
LSB's = O. When a routine residing in Macrostore accesses the main memory through one of these registers, the access is
accompanied by a bus status code indicating a particular type of memory cycle, and MEM is held active-low. The bus
status code corresponding to the use of each register is indicated in Table 9 for the case when WP = > 0000. When the WP
does not equal zero, the type of bus cycle and corresponding bus status code is determined by the least-significant
addresses of the workspace register as shown in Table 10. For simplicity, it is recommended that the Workspace Pointer
point to a 32-byte boundary to avoid confusion as to the type of bus cycle that will occur when the register is used as base
register for memory transfers. Each main memory access should utilize a base register whose use is accompanied by the
bus status code appropriate to the type of access being performed.

As shown in Table 9, WRs 7 and 8 are a special case in regard to the bus status code output during a main memory access.
The default bus status code output by the processor is COP (Table 2) when WR7 is used to access main memory; the
default for WR8 is SOP. If an EVAD operation (to be described) is performed on an opcode whose Td field is 0 (workspace
register direct addressing), the bus status code associated with WR7 is changed from its default of DOP to WS. Similarly, if
an EVAD operation is performed on an opcode whose Ts field is 0, the bus status code for WR8 is changed from SOP to
WS. If an EVAD subsequently is performed on an instruction with non-zero Td, the default of DOP is restored to WR7,
and a non-zero Ts restores SOP to WRS. Every time Macrostore is entered, the default status codes are restored.

Two examples illustrate the main memory access capability. The convention is to refer to the program in main memory that
contains the MID opcode as the "user's" program. Assume that WR 13 in MRAM contains the user's Workspace Pointer.
To read the contents of WR4 in the user's workspace into WR1 in MRAM, the instruction MOV @8(R13), R1 is
executed from Macrostore. A WS bus status code is output during this operation (MEM = 0, BST = 110).
Second, assume that WR14 in MRAM contains the user's PC value. To read immediate data or a symbolic address
(following a MID opcode in the user's program) into WR14 in MRAM, the instruction MOV *R14+,R1 is ex­
ecuted. This also causes the user's PC value in WR14 to be incremented by two, and an lOP bus status code is
output (MEM = 0, BST = 010).

44

Using register 0, 1,4, 5, 11 or 15 as base register for indirect autoincrement or indexed addressing results, in an
access of Macrostore. During Macrostore accesses, the AUMS and AUMSL bus status codes are output to
distinguish them from accesses of the main memory.

While executing in Macrostore, all symbolic addresses refer to locations within Macrostore. A I/O access using the base
address in Macrostore register WR12 is accompanied by the I/O bus status code.

7.3.3.5 Evaluate Address Instruction-EV AD

An EV AD instruction during Macrostore execution permits convenient calculation of effective source and destination
addresses for MID opcodes. EVAD assumes that the MID opcode contains a six-bit source operend field, and a six-bit
destination operand field, i.e., the dual-operand format described in Section 10.5.1. The address calculations are based
upon the original WP of the user, saved in WR 13 in MRAM. Note that the EV AD instruction assumes that the WP is equal
to zero as initialized upon entry into Macrostore. If the WP is modified to point to external MRAM, the WP must be
restored to zero prior to EVAD execution. If the contents of a register in the uaer's workspace are fetched as part of the
address calculation, a WS bus status code is output by the processor while the external access takes place. The saved PC
(in WR 14) is incremented appropriately if symbolic or indexed addressing is used. The contents of any workspece register
in MRAM except WRO can be eveluated using EV AD. When EV AD is executed, the calculated effective source address is
placed in WR8 in MRAM, and the calculated destination address in WR7. If the source or destination field specifies
autoincrement mode, the address of the uaer's register is placed in WR9 or WR10, respectively. Execution of EV AD alters
the contents of WR4, which EVAD uses as a scratch register. A summary of the EV AD i~struction, including its effect on
status bits 0 and 2, is preaented in Table 11.

Instruction

Format

ForEVAD:

o 9

0000000100

opcode

10 11 12 15

Ts S

mode register

The Ts and S fields above are used to determine the effective source address of the target word of the EVAD in­
struction. Once the target word is fetched as the source operand, the Ts, S, Td and D fields from that word are ex­
tracted and utilized as indicated balow.

TABLE 11 - EVALUATE ADDRESS INSTRUCTION

STATUS
BITS DESCRIPTION

AFFECTED
DA-WR7
SA-WR8

If target Ts = (symbolic or indexed)

WR14+2 - WR14

If target Td = 2 (symbolic or indexed)
WR14+2-WR14

O-ST2 If target Ts not 3

1 - STO If target T d not 3

1 -ST2 If target Ts = 3 (autoincrement):
address of external register - WR10

O-STO If target Td = 3 (autoincrement):

address of external register - WR9

The processor's WP register must be set to >0000 before executing the EVAD instruction. Otherwise, the results are
unpredictable.

If only the source field of an MID opcode is to be evaluated, the Td field (bits 4 and 5) should be cleared to prevent
unnecessary external accesses or. unintentional modification of WR13 (generally the user's PC). For example, if
the MID opcode resides in WR5 and bits 4 and 5 are not zero in MRAM, the instruction sequence

45

ANDI R5, >F3FF
EVADR5

is executed while in Macrostore to calculate the effective source address. The destination field, which is all zeros, is
interpreted as register direct addressing mode (and STO is set to one). In order to deal with the case where the source field
specifies autoincrement mode (ST2 = 1), the instructions above are followed by

JEQ $ +4
INCT *R10

The second instruction increments the user's base register by two, assuming the source operand is one word in length. If
the operand occupies a byte or double-word instead, the base register should be incremented by one or four, respec­
tively.*

When developing an effective address based upon one of the user's workspace registers (in main memory), the EV AD
instruction uses the contents of Macrostore register WR13. When developing an operand address based upon the user's
program counter, the EVAD instruction uses the contents of Macrostore WR 14. Note that WR 14 is incremented by two for
each symbolic or indexed addressing mode utilized.

7.3.3.6 Jump on Interrupt Status

The TB (test bit), SBO (set bit to one) and SBZ (set bit to zero) instructions are not available during Macrostore execution.
In place of these operations and using the same opcodes are conditional jump instructions that detect pending interrupts.
A "pending" interrupt is defined as an interrupt that has been requested by activating the processor's NMI, or by asserting
a request for an external interrupt that is not disabled by the interrupt mask in ST12-ST15. The instructions described in
Table 12 allow interrupts to be tested at interruptible points in Macrostore routines. With this capability, instructions
requiring long execution times can be emulated in a way that permits them to be interrupted and resumed after interrupt
servicing.

The "jump if interrupt present" can be used to test for the occurrence of an interrupt.

The "jump not equal and no interrupt present" is useful in testing for interrupts while in loops. This single instruc­
tion may be used to exit a loop either on the condition that the loop count is zero or the interrupt is present. t

EXAMPLE: LOOP . MOV *R1 +, *R2+
DEC R3 R3 HAS LOOP COUNT
SBZ LOOP DONE?
JNE OUT JUMP TO OUT IF NO INTERRUPT

•
•
• OUT

These jump instructions have a displacement range of - 128 to + 127 words from the memory-word address following the
jump instruction. The displacement is specified in the odd byte of each instruction. No status bits are affected by execution
of a jump instruction.

The SBO and SBZ opcodes are executed in Macrostore as conditional jump instructions. SBO is equivalent to "jump if an
interrupt is pending," and SBZ is equivalent to "jump if an interrupt is pending and ST2 is zero." The TB opcode is
undefined in Macrostore. These instructions are summarized in Table 12.

TABLE 12-JUMP ON PENDING INTERRUPT

MNEMONIC OPCODE MEANING

SBO 1DXX Jump if unmasked interrupt is present

SBZ 1EXX Jump if equal bit is not set and unmasked interrupt is not

present

TB 1FXX Undefined

* The incrementing of workspace registers in the main memory is not performed by the EVAD Instruction but is the responsibility of the Macrostore software.
Care may therefore be required to deal with the instance where the target word of an EVAD operation contains source and destination fields that specify in­
direct autoincrement using the same workspace register n (i.e .. * Rn +, *Rn +). Otherwise, both the source and destination operands (pointed to by register
n) will be read from the same address rather than from successive addresses.

tWhen using SBZ to check for exiting a loop, a JNE or JEQ instruction should follow (outside the loop) to determine the reason the loop was exited; SBO should not be
used for this purpose when an interrupt is applied and then removed.

46

7.3.4 Subroutine Branch and Return

While executing in Macrostore, the BLWP instruction can be used to transfer program control to a subroutine located
within Macrostore. For this purpose the opcode >0381 should be used. This version of the RTWP opcode should be
distinguished from the RTWP variants >0380, >0382and >0384, discussed in Section 7.2.6, all three of which cause an

exit from Macrostore.

7.3.5 MID Opcodes in Interrupt Routines

One restriction exists regarding the use of MID opcodes within interrupt service routines. An MID opcode encountered in
the interrupt routine for an NMI or level-1 interrupt, or for a Reset routine that does not cause complete system reinitializa­
tion, must not result in an exit from Macrostore by means of opcode >0382, the special form of RTWP that causes a level-2

trap. The reason is that the level-2 routine can be interrupted by an NMI, level-1 interrupt or Reset, possibly destroying the
return linkage established previously. In general, this restriction can be interpreted to mean that a MID opcode in the
service routine of an interrupt of higher priority than level 2 must either be recognized by an attached processor or defined
by an emulation routine in Macrostore.

7.3.6 Testing for External Macrostore

The on-chip Macrostore software can use the following technique to allow the user to optionally expand the Macrostore
functions by adding new routines residing in off-chip RAM or ROM. The TMS99110 uses this technique to check for

populated off-chip Macrostore memory.

When the emulation software in the 99110's on-chip MROM determines that it cannot execute a particular MID opcode, it

then checks to determine whether the system contains external Macrostore (off-chip RAM or ROM). If so, the Macrostore

program branches to location >1002, the entry point of the emulation software in the external Macrostore. Otherwise, a
level-2 interrupt is requested, as described in Section 7.2.4.1.

The check to determine whether the system contains external Macrostore works as follows. In a system having external
Macrostore, the code >AAAA (alternative ones a~d zeros) must be stored at Macrostore address > 1000, which is the first

location in the off-chip region of Macrostore. The internal Macrostore emulation software upon deciding to test for

external Macrostore, reads the contents of address >1000. If this location contains the code >AAAA, this confirms that
the external Macrostore is present.

8. ATTACHED PROCESSOR (AP) INTERFACE

The TMS99000's basic instruction set can be extended by defining new instructions. The extended instruction set is

supported either by emulation software contained in external Macrostore, or by external hardware utilizing the
TMS99000's attached processor (AP) interface. The TMS99000's AP interface provides complete software transparency
between these two methods. System support for extended instructions can be conveniently upgraded from Macrostore
emulation routines to attached processors without affecting the user's software base.

An AP in a TMS99000 system attaches to the local bus of the microprocessor. While the processor is actively executing
instructions, the AP passively monitors the bus to detect opcode fetches. The TMS99000 outputs an IAQ (instruction

acquisition) bus status code to notify the AP each time an opcode fetch cycle occurs, and the AP latches the opcode from
the bus to examine it. When the TMS99000 fetches an opcode which it does not recognize, but which the AP is prepared to

execute, the TMS99000transfers control ofthe local bus to the AP. After the AP completes execution of the instruction, it
returns control to the processor.

The signals utilized by the AP interface of the TMS99000 are shown in Figure 29. The transfer of control from the

TMS99000 to an AP and the eventual return of control to the TMS99000 takes place chiefly through the following three
signals:

• APP (attached processor present) input

• MID (macro-instruction detected) bus status code
• HOLDA (hold acknowledge) bus status code

41

MEM

~ \ ADDRESS/DATA (0-15)
..--~

ALATCH

WE/CRUCLK

TMS99000 RD MEMORY
SYSTEM

READY ..

R/W

APP

BST 11-3)

l ~

ATTACHED
PROCESSOR

FIGURE 29-ATTACHED PROCESSOR INTERFACE

System memory, shared by the TMS99000 and the AP, is used to transfer context information from one to the other. The

TMS99000's workspace registers, which reside in memory, are readily available to the AP while the AP remains in control
of the local bus.

The timing for the AP interface is shown in Figures 30A and 30B. When the TMS99000 fetches an opcode it does not
recognize, it outputs an MID bus status code to notify APs, should they be present, that it is prepared to relinquish system
control. An opcode that causes this to occur will be referred to as an MID opcode. A list of MID opcodes is presented in
Section 10.5.17. If bit 11 of the status register is set to 1, an XOP will also be treated as an MID opcode.

48

CLKOUT

ALATCH

BST(1-3)

MEM

READY

APP

R/W

(6)

"\

(1) XAUMSY MID

I

(2)

~\"' __ ..JI

\\\\\\\\\"\\\\\\\\\\\

\"'-----

(6)

XJiC.v:=J :-:T_..Jh!!!;i-:!,z_.....:
I (4)

hi-z __ X::=

(6)C c
I INSTR I LAST I
I FETCH I STATE I

DETERMINE
IF ATTACHED
PROCESSOR
IS PRESENT

FETCH NEW
WP;STORE
OLDPC,WP
ANDST

HOLD STATE I AP CYCLES:

NOTES:

IOF IOF I
I MID I PRIOR I
I OP- I INSTR I
I CODE I I
I I I

(1) This bus status is determined by the prior instruction.

(2) Processor will remain in this state until READY goes high.

(3) BST = STwhen the new status is output

= INTA when the new WP is fetched

= WP when the new WP is output

= WS while the old WP. PC. and ST are stored

I For simplicity, AUMS bus status codes are not shown.)

(4) The processors tristates all signals except ALA TCH as follows:

• BST1-BST3 are first driven high to indicate hold acknowtedga and then are tristated.

• MeM, Ro and WE are first driven high and then tristated.

• The address-data bus is tristated "as is".
15) The processor first drives its ALA TCH output high and then tristates it.

16) The CLKOUT remains the system clock throughout.

FIGURE 3O-AP INTERFACE TIMING

(AI Transferring Control to Attached Processor

49

I ALL CONTROL
I LINES ARE
I DRIVEN BY
I ATTACHED
I PROCESSOR
I

CLKOUT

ALATCH .J\..J\..../!!!:L ,---__ 01

(21 1 -
BST(1-31)(_..J1 --.;.(1;.;.1_..;.h;.;..i-_Z_X~(3~1 __ ~ ST X fAQ)(WP X~ __

MEM ::x I hi-z \ ----' \ I ,
-APP I -HolD J (41

LAST APP PROCESSOR I OUT- I FETCH r OUT- I RESUME
STATE RELEASED; LEAVES HOLD I PUT NEXT I PUT 1 NORMAL
OFAP APANDMAIN AND FETCHES I NEW IINSTR I NEW I EXECUTION
CON- CPU BOTH UPDATED I ST J I WP I
TROL fNHOLD WP.PC.ST I I I

I I I
J I I

NOTES:

(1) The AP tristates ell signals except ALATCH al follows:

• 8ST-I-8ST -3 are first driven active high and then are tristated.

• MEM, iii) and WE are first driven high and then are tristated.

• The addreas-data lines are tristated.
(2) The AP dri_ its ALA TCH high and then tris18tallt.

(3) 8ST ~ WS during WP, PC, and STfatches.

(4) An AP that felches instructions for chained operations wDl assert HOLD and release APP during the instruction felch to allow m to be used for a breakpoint

request.

FIGURE 30 - AP INTERFACE TIMING
III Regaining Control From Attachad Proc ••• or

Assuming that an AP is (1 I presentand is (21 prepared to execute the MID opcode. it responds to the MID bus status code
by pulling the APP line low to signify its readiness. Upon detecting the APP signal, the processor prepares to transfer
control to the AP. This involves clearing status bit 8 and performing a context change. With the PSEL output signal high,
the processor fetches the new WP value from the trap vector for the leval2 interrupt. (The PC value from the vector is not
fetched. I The old WP, PC and ST values are saved in WRs 13, 14 and 150fthe new workspace. The saved PC points to the
word following the MID opcode. After completing these actions, the processor begins a hold cycle, forces its outputs to
the high-impedance state, and asserts HOLDA. This is the processor's signal that it is ready for the AP to assume control of
the local bus.

Since the 99000 uses the same HOLDA bus status cod!.!2,respond to both DMA devices and APs, each AP must monitor
the HOLD line to distinguish a HOLDA in response to APP from a HOLDA in response to HOLD.

After taking control of the local bus, the AP begins executing tha operation specified by the MID opcode. If a multiple­
word instruction format is specified, the PC value saved in WR14 is used by the AP to access immediate data and operand
address information. The contents of the original workspace are accessed through the WP value saved in WR13. The ST
value in WR15 is altered to reflect tha results of the operation performed.

The 99000 continually samples its APP and HOLD inputs during the hold cycle. When the AP completes its operation and
releases APP , the processor responds by terminating the hold cycle. The processor loads PC, WP and ST registers with the
values in WRs 13, 14and 15, and resumes execution.

50

If an MID opcode is detected and APP remains high, indicating that no AP is prepared to execute the instruction, the
processor performs a context switch that transfers control to the instruction emulation software contained in its Macros­
tore (Section 7).

The APP input performs a second function apart from its use in transferring control to an AP. An external device
can use APP to force the processor to enter a hold cycle by asserting APP during the instruction acquisition (lAO)
cycle. The mechanism works as follows. The processor samples APP at the end of every opcode fetch, at the
same point that it latches the opcode. The processor fetches the WP value from the level 2 trap vector and saves
the old WP, PC, and ST values in WRs 13, 14, and 15 of the new workspace. The PC value saved in WR14 points
to the memory word containing the opcode that was just fetched (and discarded). Following the context switch,
the processor outputs the HOLDA bus status code, enters the hold state, and waits for APP to be released, as
before.

The APP signal can be used by a maintenance panel to force the processor to enter hold. Using the mechanism described
above, the maintenance penel can trigger APP on either a selected address or a selected opcode to cause a breakpoint. To
avoid possible interference with APs, the maintenance panel should not assert APP during an MID bus status code if it was
not active at lAO. If the "panel option" is used with APP, an attached processor should not assert APP until it has
recognized a MID bus status code.

The processor acknowledges an unmasked interrupt upon completing execution of the instruction during which the
interrupt becomes active. If the processor must respond to an interrupt before it can begin execution of a prefetched
opcode, * the opcode is discarded prior to trapping to the interrupt service routine. Upon return from the interrupt, the
opcode previously discarded is again fetched from memory. A special case of this procedure occurs when the discarded
opcode is an MID opcode that an AP is preparing to execute. The AP must discard the opcode also. The AP knows to

discard the opcode if the processor, following its fetch of the MID opcode, outputs the INTA bus status code.
Alternatively to checking for the INT A bus status code, the AP can check for a subsequent lAO bus status code in­

dicating that the instruction has been discarded. This means that the processor has discarded the opcode in order
to service the pending interrupt.

APs must monitor HOLD to detect DMA requests as discussed above. In a processor system containing one or more APs,
the TMS99000 HOLDA signal is not distributed directly to DMA devices but is gated with the hold acknowledge signals
from the APs to form a composite hold acknowledge signal that is passed on to the DMA devices. This composite hold
acknowledge signal, which signifies transfer of control to the DMA device, is generated only after the processor and all
APs have entered the hold state.

When an X (execute) instruction is executed, an lAO bus status code is NOT output during the fetch of the target opcode
located at the effective source address of the X instruction. Instead, an SOP or WS bus status code is output, depending
on the addressing mode used. This means that APs cannot rely upon the lAO bus status code to notify them when the
processor fetches a MID opcode that is the target opcode of an X instruction.

The AP interface can be disabled by tying APP to ground. When operating in this mode, the processor automatically
generates an ILLOP interrupt request upon encountering an MID opcode, bypassing the AP interface and Macrostore.

-The processor routinely prefetches the next opcode one st8te prior to completion of the current instruction (Section 10.6.2),

51

S. PIN DESCRIPTION

Table 13 defines the TMS991 05A/TMS9911 OA pin assignments and describes the functions of each pin.
Figure 31 illustrates the TMS991 05A/TMS9911 OA pin assignment information.

WEIIOCLK 1 40 MEM

RD 39 BST1

RESET 38 BST2

APP 4 37 BST3

HOLD 36 XTAL1/CLKIN

VSS 6 35 XTAL2

READY 7 34 CLKOUT

INTREQ 33 Vss

NMI 9
TMS99105A

ALATCH TMS99110A 32

ICO 31 PSELlD15/0UT

IC1 30 A14/D14

1C2 12 29 A13/D13

IC3 13 28 A12/D12

R/W 14 27 A11/D11

Vee 15 26 A10/D10

AO/DOIIN 16 25 AS/DS

A1/D1 17 24 AB/DB

A2/D2 18 23 A7/D1

A3/D3 19 22 A6/D6

A4/D4 20 21 A5/D5

FIGURE 31 - PIN ASSIGNMENTS

52

TABLE 13-PIN DESCRIPTION

SIGNATURE PIN I/O DESCRIPTION

POWER SUPPLIES

Vee 15 Supply voltage: + 5 V nominal.

Vss 6,33 Ground reference.

CLOCKS

XT AL 1/CLKIN 36 IN Crystal input pin for internal oscillator; also input pin for external oscillator.

XTAL2 35 IN Crystal input pin for internal oscillator.

CLKOUT 34 OUT Clock output Signal. The frequency of CLKOUT is 14 the frequency of the crystal oscillator.

ADDRESS/DATA BUS

AO/DOIIN 16 I/O WhOe ALA TCH = 1, these lines function as an address bus consisting of output signals AO-A 14 and PSEL.

(addr/data MSB) During memory, I/O and Macrostore accesses, an address is output on AO-A14. During memory cycles,

A1/D1 17 I/O status bit 8 is output in complemented form on PSEL.; PSEl. is forced high during I/O accesses. During WP

A2/02 18 I/O and ST bus cycles (Table 2), status information is output on the address bus.

A3/D3 19 I/O WhOe ALATCH=O, these lines function as a bidirectional data bus for memory, I/O and Macrostore

A4/04 20 I/O accesses. Ouring a bit-parallel byte or word read operation, (RD active lowl. data is input on 00-015.

A5/05 21 I/O During a bit-parellel write operetion (WE/iOcLK active low), data is output on 00-015. For bit-serial I/O

A6/06 22 I/O operations, read data is input on IN, and write data is output on OUT.

A7/07 23 I/O These lines are forced to the high-impedance state during a hold cycle.

A8/DS 24 I/O

AS/D9 25 I/O

A10/D10 26 I/O

A11/011 27 I/O

A12/012 28 I/O

A13/013 29 I/O

A14/014 (addr LSB) 30 I/O

PSEUD 1 5tOUT 31 I/O

LOCAL BUS CONTROL SIGNALS

ALATCH 32 OUT Address latch. While ALA TCH is high, the multiplexed address-data lines function as an address bus; while

ALATCH is low, they function as a data bus. Each bus cycle (memory, I/O or internall begins with a

positive ALA TCH pulse, the falling edge of which is used by external logic to latch the contents of the

address bus. The MEM and BST1-BST3 outputs are stable while ALA TCH is low.

Prior to entering hold, the HOLDA bus status code is output and the ALA TCH signal undergoes one final

high-to-Iow transition before being driven to the high-impedance state. This permits an external device to

latch the HOLDA code.

MEM 40 OUT Memory cycle. When low, iiiiEM indicates that a memory cycle is in progress. When high, iiiiEM indicates

thata 110 or internal cycle is in progress. MEM is forced to the high-impedance state during a hold cycle; an

intamal resistive pull-up maintains a high level.

WE/iOciJ< 1 OUT Write enable and inverted I/O clock. When low, WEtiOCD< indicates that write date is present on

the data bus. WE/iOCD< is active during memory writes (MEM = 0), serial I/O writes (MEM = 1,

BST2=1, AO=O), parallel I/O writes (MEM=1, BST2=1, AO=1), and writes to external

Macrostore (ME"M = 1, BST2 =0). WEIIOCLK ,is a tri-state output signal, and is forced to the high-

impedance state during a hold state; an internal resistive pull-up maintains. a high level.

AD 2 OUT Read Enable. When active low, iffi indicates that a read (memory, parellel I/O, serial 1/0 or external

Macrostore) is taking place on the bus, and that external devices may enable their tristate drivers to gate

data onto the address-data lines. RD is a tristate signal and is forced to the high-impedance state during a

hold state; an internal resistive pull-up maintains a high level.

RIW 14 OUT READ/WRITE. The RIW is valid at the beginning of each new cycle. This signal is high during read

operetion and low during write operations and internal ALU cycles. When RIW is low, it indicates thatthe

99000 will be driving the data bus. When R IW is high, it indicates that the 99000 will tristate the data bus

(AD bus during the data time).

53

TABLE 13- PIN DESCRIPTION '(CONTINUED)

SIGNATURE PIN I/O DESCRIPTION

LOCAL BUS CONTROL SIGNALS (CONCLUDED)

READY 7 IN Ready. When high, READY indicates that the current bus cycle (memory, 1/0 or internal) is ready to be

completed. As long as READY remains low to indicate a not ready condition, the bus cycle continues to be

extended with wait states. Near the end of each wait state, READY is sampled to determine whether the

bus cycle can complete or another wait state is to be generated. Note that this READY function differs

from some READY functions in that bus cycles of non-memory cycles are affected by its operation.

INTERRUPTS

INTREQ 8 IN Interrupt request. When active low, INTREQ indicates that an external interrupt is requested. If INTREQ is

active, the processor latches the contents of the interrupt code inputs ICO-le3 into its internal interrupt

code register. The code is compared with the interrupt mask in status register bits 12-15. If the code is less

than or equal to the mask value, the interrupt is granted; otherwise, the request is ignored. ICO-IC3

continue to be sampled as long as INTREQ remains low. If the request is initially disabled by the mask,

INTREQ may be held low until the mask changes to a value that enables the request.

ICO (MSB) 10 IN Interrupt code. ICO is the MSB of the 4-bit interrupt code. ICO-IC3are sampled when iNTREci is active low.

ICI 11 IN The highest-priority interrupt level is signified by ICO-IC3 = LLLL; the lowest level is HHHH.

IC2 12 IN

IC3(LSB) 13 IN

NMi 9 IN Non-maskable interrupt. When active low, N MI causes the processor to perform a non-maskable interrupt
-

using the trap vector located at memory address FFFC. The NMI sequence begins following the execution

of the instruction in progress at the time the NMI request is initiated. The NMI will also terminate an idle

state. If NMlis active during the time RESET is released, the NMI sequence will occur following completion

ofthe reset sequence, but prior to execution ofthe first instruction in the reset service routine. iiiMi must be

active for at least one CLKOUT cycle to be recognized and will only be recognized once for each high-to-

low transition.

RESET 3 IN RESET. When active low, RESET causes the processor to set all status bits to zero and inhibits WEI

iCiCLi<, RD and MEM internally. When RESET is released, the processor initiates a level 0 interrupt

sequence using the trap vector at memory address 0000, clears the entire status register, and begins

executing the reset service routine. RESET also will terminate an idle state. RESET must be held active for

at least three CLKOUT periods to guarantee that a Reset will take place. RESEr is a Schmitt-trigger input.

DMAREQUEST

HOLD 5 IN HOLD. An external controller generates a hold request by pulling the processor's HOLD input low. This

indicates the controller's wish to obtain control of the local bus to perform one or more DMA transfers. The

processor responds to the hold request by outputting a HOLDA bus status code (Table 12) and

then forcing MEM, WE/IOCLK, RD, BST1-BST3, R/IN, ALATCH and the address data lines to the

high-impedance state. When HOLD is released, the processor terminates the hold cycle and

resumes processing.

BUS STATUS

BSTI (MSB) 39 OUT Bus status lines. These lines are used with the MEM output to provide external circuitry with information

BST2 38 OUT concerning the nature ofthe bus cycle currently in progress. The bus status codes are presented in Table 2.

BST3 (LSB) 37 OUT MPILCK is indicated by BST1-BST3 = 000. BST1-BST3 are forced to the high-impedance state during a

hold cycle.

54

TABLE 13-PIN DESCRIPTION (CONCLUDED)

SIGNATURE PIN 1/0 DESCRIPTION

ATIACHED PROCESSOR

APP 4 IN Attached processor present. When the TMS99000 fetches an MID opcode (Section 2.4), it outputs an MID

bus status code and samples the APP input. If APP has been pulled low by an external device, the CPU

performs a context switch and relinquishes control of the local bus. The CPU fetches the new WP from the

level 2 trap vector, and the old WP, PC, and ST are saved in the new workspace. The CPU signals

its release of the local bus by outputting a HOLDA bus status code and then enters hold. After the

attached processor has completed its operation, it releases APP; the CPU responds by terminating,

restoring its context,' and resuming processing.

If no extemal device asserts APP, the CPU attempts to emulate the MID opcode in Macrostore and traps to

the level 2 interrupt service routine if the opcode is undefined in Macrostate.

55

10. INSTRUCTION SET

10.1 DEFINITION

Each TMS99000 instruction performs one of the following:
• Arithmetic or logical operation on data, or comparison or manipulation of data,
• Loading or storing of internal registers (program counter, workspace pointer, or status register),
• Data transfer between memory and external devices via the I/O, or
• Control functions.

10.2 ADDRESSING MODES

10.2.1

10.2.2

10.2.3

The TMS99000 instruction set provides a variety of modes for addressing random memory data, e.g., program parameters
and flags, or formatted memory data (character strings, data lists, etc.). These addressing modes are:
• Workspace register addressing
• Workspace register indirect addressing
• Workspace register indirect autoincrement addressing
• Symbolic (direct) addressing

• Indexed addressing
• Immediate addressing
• Program counter relative addressing

• I/O relative addressing
The derivation of the effective address for each addressing mode is described graphically below. The applicability of each
addressing mode to particular instructions is described in Section 10.5, along with the operation performed by each
instruction. The symbols following the names of the addressing modes, R, *R, *R + , @LABEL and @TABLE(R), are the
general forms used by processor assemblers to specify the addressing mode for workspace register R.

Workspace Register Addressing, R

Workspace register R contains the operand.
REGISTERR

IPC) --I .. _I_N_ST_R_U_C_T_I_O_N_-,~IWP) + 2R...f .. __ O_P_E_R_A_N_D_

The workspace register addressing mode is specified by setting the two-bit T-field (Ts or Td) of the instruction word to O.

Workspace Register Indirect Addressing, *R

Workspace register R contains the address of the operand.
REGISTER R

IPC)-+I .. _I_N_ST_R_U_C_T_IO_N_...A~IWP) + 2R...f ADDRESS H OPERAND I
The workspace register indirect addressing mode is specified by setting the two bits in the T-field (Ts or Td of the
instruction word to 01.

Workspace Register Indirect Autoincrement Addressing, *R +

Workspace register R contains the address of the operand. After acquiring the address of the operand, the contents of the
workspace register are incremented.

.. I_I_N_S_T_R_U_C_T_IO_N_ .. I-IWP) + 2R

REGISTER R
r-------~ r------~

1 (byte)
or

2 (word)

The workspace register indirect autoincrement addressing mode is specified by setting the two-bit T -field (Ts or Td) of the

instruction word to 3.

56

10.2.4

10.2.5

Symbolic (Direct) Addressing. @LABEL

The word following the instruction contains the address of the operand.

(PC). INSTRUCTION -------1
(PCI+2. LABEL t-----I"~ OPERAND I --------1

The symbolic addressing mode is specified by setting the two-bit T-field (Ts or Td) of the instruction word to 2 and setting
the corresponding S or 0 field equal to O.

Indexed Addressing. @TABLE(R)

The word following the instruction contains the base address. Workspace register R contains the index value. The sum of

the base address and the index value results in the effective address of the operand.

REGISTER R

(PC)--i INSTRUCTION ~(WP)+2R INDEX VALUE

~----~" OPERAND

(PC)+2 TABLE

10.2.6

10.2.7

The indexed addressing mode is specified by setting the two-bit T-field (Ts or Td) of the instruction word to 2 and setting

the corresponding S or 0 field to a value other than O. The value in the S or 0 field is the number of the workspace register
which contains the index value.

Immediate Addressing

The word following the instruction contains the operand.

(PC)-. INSTRUCTION ------1
(PC) + 2... OPERAND

Program Counter Relative Addressing

The 8-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and added to the
updated contents of the program counter. The result is placed in the PC.

PROGRAM COUNTER OPCODE

t-----r----t .. NEXT MEMORY WORD

57

10.2.8 1/0 Relative Addressing

The a-bit signed displacement in the right byte of the instruction is added to the I/O base address (bits 0 through
14 of workspace register 121. The result is the address of the selected bit in I/O space.

(PC)----~

(WP) + 2*12 ------I ...
o 5 6 14 15

10.3 TERMS AND DEFINITIONS

The terms used in describing the instructions of the processor are defined in Table 14.

TABLE 14-SYMBOL CONVENTIONS

SYMBOL DEFINITION

B Byte indicator (1 = byte; 0 = word)

C Bit count

D Destination address register

DA Destination address

lOP Immediate operand

LSB(n) Least-significant (rightmost) bit of n

MSB(n) Most-significant (leftmost) bit of n

N Don't care

PC Program counter

result Result of operation performed by instruction

S Source address register

SA Sou rce address

ST Status register

STn Bit n of status register

Td Destination address modifier

Ts Source address modifier

W Workspace register

WRn Workspace register n

(n) Contents of n

((n)) Indirect contents of n

a-b A is transferred to b

Inl , Absolute value of n

+ Arithmetic addition

- Arithmetic subtraction

AND Logical AND

OR Logical OR

® Logical exclusive OR

n Logical complement of n . Arithmetic multiplication

I/O base address The address which is stored in WR12

CRU BIT

ADDRESS

effective 1/0 base address The address which is formed by adding the displacement to the base address in WR12 for single

bit 1/0, or the incremented value of WR12 for multibit 1/0.

1/0 bit address The effective address of a bit located in the lower half of the 110 space.

58

10.4 STATUS REGISTER MANIPULATION

BIT

STO

Various TMS99000 machine instructions affect the status register. Figure 5 shows the status register bit assignments.
Table 15 lists the instructions and their effect on the status register.

TABLE 15 - STATUS REGISTER BIT DEFINITIONS·

CONDITIONS TO SET BIT TO 1

NAME INSTRUCTION IOTHERWISESETTOOI

LOGICALLY C,CB If MSB(SA) = 1 and MSB(DA) = 0, or if

GREATER MSB(SA) = MSB(DA) and MSBHDA) - (SA)) = 1

THAN CI If MSB(W) = 1 and MSB of lOP = 0, or if

MSB(W) = MSB of lOP and MSB(lOP - (W)) = 1

ABS, LDCR If (SA) is not zero

RTWP IfbitOofWR15is 1

LST If bit 0 of selected WR is 1

A,AB,AI If result is not 0

AM,ANDI, (see Note 2)

DEC, DECT,

LI, MOV,

MOVB, NEG,

ORI, S, SB,

DIVS, MPYS,

INC,INCT,

INV, SLA,

SLAM, SM,

SOC, SOCB,

SRA, SRAM,

SRC, SRL,

STCR, SZC,

SZCB, XOR

Reset STO is cleared unconditionally

All other STO is not affected

instructions (see Note 1)

and

interrupts

·See Table 13 for definition of terminology used.

NOTES: 1. 'The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs. ST4 is set and STO, STl. and ST2 are undefined.

59

TABLE 15 - STATUS REGISTER BIT DEFINITIONS (CONTINUEDI

BIT NAME INSTRUCTION
CONDITIONS TO SET BITTO 1

(OTHERWISE SET TO 01

ST1 ARITHMETIC C,CB If MSB(SAI = 0 and MSB(DAI = 1, or if

GREATER MSB(SAI = MSB(DAI and MSB((DAI - (SA)) = 1

THAN CI If MSB(WI = 0 and MSB of lOP = 1, or if

MSB(WI = MSB of lOP and MSB(lOP - (W)) = 1

ABS,LDCR If MSB(SAI =0 and (SAl is not 0

RTWP If bit 1 ofWR15 is 1

LST If bit 1 of selected WR is 1

A,AB,AI, If MSB of result = 0,

AM,ANDI, and result is not 0

DEC, DECT, (see Note 21

LI, MOV,

MOVB, NEG,

ORI,S, SB,

DIVS, MPYS,

INC,INCT,

INV,SLA,

SLAM, SM,

SOC,SOCB,

SRA,SRAM,

SRC, SRL,

STCR, SZC,

SZCB,XOR

Reset ST1 is cleared unconditionally

All other ST1 is not affected

instructions (see Note 11

and

interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STD, ST1, and ST2 are undefined.

60

TABLE 1& - STATUS REGISTER BIT DEfINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TO SET BIT TO 1

(OTHERWISE SET TO 0)

S12 EaUAL/TB C,CB If (SAl = (DAI

INDICATOR CI If(WI=IOP

COC If ((SAl and not (DAll = 0

CZC If ((SAl and (DAII = 0

TB If CRUIN = 1 for addressed CRU bit

TSMB, TCMB, If addraased mamory bit = 1

TMB

ABS,LDCR If(SAI=O

RTWP If bit 2 ofWR15is 1

LST If bit 2 of selected WR is 1

A, AB, AI, AM, Ifrasult = 0

ANDI, DEC, (ssaNota21

DECT, LI,

MOV,MOVB,

NEG,ORI, S,

SB, DIVS,

MPYS,INC,

INCT,INV,

SLA,SLAM,

5M,SOC,

SOCB,5RA,

5RAM,5RC,

SRL, STCR,

SZC, SZCB,

XOR

Resst 5T2 is cleared unconditionaUv

All other 5T2 is not affected

instructions (see Nota 1)

and

interrupts

S13 CARRY OUT A,AB,ABS,

AI,AM, DEC,

DEeT,lNC,

INCT If carry out = 1

NEG,S,SM,

SB

SLA, SRA,

SRL, SRC, If last bit shifted out = 1

5RAM,SLAM

RTWP If bit 3 ofWR15is 1

LST If bit 3 of selected WR is 1

Resat ST3 is cleared unconditionally

AU other ST3 is not affacted

instructions (sse Nota 11

and

interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set end STO, ST1, and ST2 are undefined.

61

TABLE 16 - STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION
CONDITIONS TO SET BITTO 1

(OTHERWISE SET TO 0)

ST4 ARITHMETIC A,AB,AM If MSBISA) = MSBIDA) and

FAULT MSB of result F MSB(DA)

AI If MSB(W) F MSB of lOP and

MSB of result F MSB(W)

S,SB,SM If MSB(SA) = MSB(DA) and

MSB of result = MSB(DA)

DEC,DECT If MSBISA) = 1 and MSB of result = 0

INC,INCT If MSBISA)=Oand MSB of result = 1

SLA, SLAM If MSB changes during shift

DIV If MSB(SA) = 0 and MSB(DA) = I, or if

MSB(SA) = MSB(DA) and MSB((DA) - (SAil = 0

DIVS If the quotient cannot be expressed

as signed IS-bit quantity (>8000

is a valid negative number)

ABS, NEG If (SA) = >8000

RTWP If bit 4 ofWR15 is 1

LST If bit 4 of selected WR is 1

Reset ST4 is cleared unconditionally

All other ST4 is not affected"

instructions

and interrupts

ST5 PARITY CB, MOVB If ISA) has odd number of ones

(ODD NO. LDCR If C = 1 to 8 and (SA) has odd
OF"I" number of ones (if C = 9 to 15
BITS) or C = 0, then ST5 is not affected)

AB,SB,

SOCB, SZCB, If result has odd number of ones

STCR If C = 1 to 8 and the result has

an odd number of ones (if C = 0 or

C = 9 to 15, then ST5 not affected)

RTWP If bit 5 of WR15 is 1

LST If bit 5 of selected WR is 1

Reset ST5 is cleared unconditionally

All other S T5 is not affected

instructions (See Note 1)

and

interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly,
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, STl, and ST2 are undefined.

62

TABLE 15 - STATUS REGISTER BIT DEFINITIONS ICONTINUED)

BIT NAME INSTRUCTION
CONDITIONS TO SET BIT TO 1

IOTHERWISE SET TO 0)

ST6 XOPIN XOP If XOP instruction is executed

PROGRESS (ST6 set after the context switch)

RTWP* If executed when ST7 = 1

(non-privileged mode),

then ST6 is clea~ed

LST* If executed when ST7 = 1

(non-privileged model,

then ST6 is cleared.

Reset ST6 is cleared unconditionally

All other ST6 is not affected

instructions (see Note 1)

and

interrupts

ST7 PRIVILEGED RTWP* II bit 7 0lWR15 is 1

MODE LST* II bit 7 of selected WR is 1

XOP, any ST7 is cleared unconditionally

interrupt

All other ST7 is not affected

instructions (see Note 1)

ST8 MAP RTWP* If bit 8 of WR 15 is 1

SELECT LST* If bit 8 of selected WR is 1

XOP, any ST8 is cleared unconditionally

interrupt prior to read 01 trap vector.

Previous value is saved in WR 15.

LDCR,STCR, ST8 temporarily driven to 0 while

SBO,SBZ, CR U address is on the address bus

TB

All other ST8 is not affected

instructions (see Note 1)

ST9 UNDEFINED RTWP* If bit 9 ofWR15is 1

LST* If bit 9 of selected WR is 1

XOP, any ST9 is cleared unconditionally

interrupt

All other Do not affect status bit

interrupts (see Note 1)

ST10 ARITHMETIC RTWP* If bit 10olWR15is 1

FAULT LST* II bit 1001 selected WR is 1
INTERRUPT

XOP, any STlO is cleared unconditionally
ENABLE interrupt

All other ST10 is not affected

instructions (see Note 1)

'Status bits 7,8,9, 11, 12, 13 and 14are not affected by LST or RTWP if ST7 = 1 before these instructions are executed.

Note 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

63

TABLE 16 - STATUS REGISTER BIT DEFINITIONS (CONCLUDED)

BIT NAME INSTRUCTION
CONDITIONS TO SET BITTO 1

(OTHERWISE SET TO 0)

STt1 XOP RTWP* If bit 11 of WR15is 1

EMULATION LST* If bit 11 of selected WR is 1
MODE

XOP, any ST11 is cleared unconditionally

interrupt

All other STS is not affected

instructions

ST12 INTERRUPT LIMit Set mask = bits 12-150f lOP

to MAS.K

ST15 RTWP* Set mask = bits 12-150fWR15

LST* Set mask = bits 12-15 of WR

RSETt Mask is unconditionally cleared

RESET, NMI (set to all zeros)

All other If mask = 0, no change;

interrupts otherwise, set mask to interrupt

level minus one.

All other Mask is not affected

instructions (see Note 1)

* Status bits 7,8, 9, 11, 12, 13, and 14 are not affected by LST or RTWP if ST7 = 1 before these instructions are executed.

t ST1 2 to ST1 5 are not affected by LIMI and RSET if ST7 = 1.
NOTE 1: The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.

10.5 INSTRUCTIONS

A list of the instructions described in each of the following subsections is presented below for convenient reference.

Instruction Mnemonic
A,AB,C,CB,S,SB,SOC,SOCB,SZC,SZCB,MOV,MOVB
COC, CZC, XOR, MPY, DiV
MPYS,DIVS
XOP
B, BL, BLWP, CLR, SETO, INV, NEG, ABS, SWPB, INC, INCT, DEC, DECT, X
BIND
LDCR,STCR
SBO, SBZ, TB
JEQ, JGT, JH, JHE, JL, JLE, JL T, JMP, JNC, JNE, JNO, JOC, JOP
SLA,SRA,SRC,SRL
AI, ANDI, CI, LI, ORI, BLSK
LWPI, LlMI
STST,LST,STVVP,LVVP
RTVVP
IDLE, RSET, CKOF, CKON, LREX
TMB, TCMB, TSMB
AM, SM, SLAM, SRAM
MIDopcodes
LDD, LOS
LR, STR, NR, CER, CIR, CRE, CRI, AR, DR, SR, MR

64

IGIIgo
10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.5.7
10.5.8
10.5.9
10.5.10
10.5.11
10.5.12
10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18

AppendixB
AppendixB

10.5.1 Dual-Operand Instructions with Multiple Addressing for Source and Destination Operand

General

Format:

o 2
OPCODE

3 4 5
B Td

6 7 8 9 10 11 12
o Ts

13 14 15
5

If B = 1, the operands are bytes and the effective operand addresses are byte addresses. If B = 0, the operands are words

and the LSB of each effective operand address is ignored.

The addressing mode for each operand is determined by the two bits of the T -field corresponding to that operand.

TsorTd SorD ADDRESSING MODE NOTES

0 0,1, ... ,15 Workspace register 1

1 0,1, ... ,15 Workspace register indirect

2 0 Symbolic 4

2 1,2, ... ,15 Indexed 2,4

3 0,1, ... ,15 Workspace register indirect autoincrement 3

NOTES: 1. When a workspace register is the operand of a byte instruction (bit 3 = 11, the left byte (bits 0 through 71 is the operand and the right byte (bits 8 through 15)

is not altered.

2. Workspace register 0 may not be used for indexing.

3. The workspace register is incremented by 1 for byte instructions (bit 3 = 1) and is incremented by 2 for word instructions (bit 3 = 01.

4. When Ts = T d = 2, two words are required in addition to the instruction word. The first word is the source operand and the second word is the destination

operand base address.

RESULT
OPCODE COMPARED BITS STATUS

MNEMONIC 0123 MEANING TOO AFFECTED DESCRIPTION
A 1010 Add Yes 0-4 (SAI+(DAI-(DAI

AB 1011 Add bytes Yes 0-5 (SAI+(DA) -(DA)
C 1000 Compare No 0-2 Compare (SA) to (DAI and set ap-

propriate status bits
CB 1001 Compare bytes No 0-2,5 Compare (SA) to (DA) and set ap-

propriate status bits
S 0110 Subtract Yes 0-4 (DA) - (SA) - (DA)

SB 0111 Subtract bytes Yes 0-5 (DA) - (SAl "'(DA)
SOC 1110 Set ones corresponding Yes 0-2 (DA) OR (SA) -(DA)

SOCB 1111 Set ones corresponding bytes Yes 0-2,5 (DA) OR (SA) -(DA)
SZC 0100 Set zeros corresponding Yes 0-2 (DA) AND (SA) -(DAI

SZCB 0101 Set zeros corresponding Yes 0-2,5 (DA) AND (SA) _(DA)
MOV 1100 Move Yes 0-2 (SA) _(DA)

MOVB 1101 Movebvtes Yes 0-2.5 (SAI-IDAI

10.5.2 Dual-Operand Instructions with Multiple Addressing Modes for the Source Operand and Workspace Register
Addressing for the Destination

General

Format:
o 2 3

OPCODE
4 5 6 7 8 9 10

o

The addressing mode for the source operand is determined by the Ts field.

Ts S

0 0,1, ... ,15

1 0,1, ... ,15

2 0
2 1,2, ... ,15

3 1,2, ... ,15

NOTES: 1. Workspace register 0 may not ba used for indexing.

2. The workspace register is incremented by 2.

ADDRESSING MODE

Workspace register

Workspace register indirect

Symbolic

Indexed

Workspace register indirect autoincrement

65

11 12 13 14 15
Ts 5

NOTES

1

2

RESULT STATUS
OPCODE COMPARED BITS

MNEMONIC 012346 MEANING TOO AFFECTED DESCRIPTION

COC 001000 Compare ones corresponding No 2 Test (0 I to determine if 1 s are in
each bit position where Is are in
(SAl. If so, set ST2.

CZC 001001 Compare zeros corresponding No 2 Test (01 to determine if Os are in
each bit position where Is are in
(SAL Ifso, set ST2.

XOR 001010 Exclusive OR Yes 0-2 (D) + (SAI- (01
MPY 001110 Multiply No -- Multiply unsigned (01 by unsigned

(SAl and place unsigned 32-bit
product in 0 (most significant) and
0+1 (least Significant). If WR15 is
0, the next word in memory after
WR 15 is used for the least signifi-
cant half of the product.

DIV 001111 Divide No 4 If unsigned (SAl is less than or equal
to unsigned (D), perform no opera-
tion and set ST4. Otherwise, divide
unsigned 101 and (0 + 11 by un-
signed (SAL Quotient - (01, re-
mainder -(0 + 1) If 0 = 15, the next
word in memory after WR15 will be
used for the remainder.

10.5.3 Signed Multiply and Divide Instructions

General
Format:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OPCODE Ts s

The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES
00 0,1, ... ,15 Workspace register 1
01 0,1, ... ,15 Workspace register indirect 1
10 0 Symbolic 1
10 1.2, ... ,15 Indexed 1,2
11 1 2 ... 15 Works~ace reaister indirect autoincrement 1 3

NOTES: 1. Workspace registers 0 and 1 contain operands used in the signed multiply and divide operations.

2. Workspace register 0 may not be used for indexing.

3. The workspace register is incremented by 2.

66

RESULT STATUS

OPCODE COMPARED BITS

MNEMONIC 01234&8788 MEANING TOO AFFECTED DESCRIPTION

10.5.4

MPYS 0000000111 Signed Multiply

DIVS 0000000110 Signed Divide

Extended Operation (XOPllnstruction

General

Format:
o

I 0 o
2 3

o
4 5 6

Yes 0-2 Multiply signed 2's complement in-

teger in WRO by signed 2's comple-

ment integer in (SA) and place

signed 32-bit product in WRO (most

significant) and WR 1 (least signifi-

cant).

Yes 0-2,4 If the quotient cannot be expressed

as a signed 16-bit quantity (hex 8000

isa valid negative number), set ST4.

Otherwise, divide the signed, 2's

complement integer in WRO and

WRl by the signed 2'8 complement

integer at SA and placa the signed

quotient in WRO and the signed re-

mainder in WR 1. The sign of the

quotient is determined by algebraic

rules. The sign of the remainder is

the seme as the sign of the dividend,

and IREMAINDERI < IDIVI.

7 8 9 10 11 12 13 14 15

o Ts S

The Ts and S fields provide multiple-mode addressing capability for the source operand.

Depending on the value of status bit 11 (ST11), the XOP instruction transfers control to a user routine located either at the
main memory address in the specified XOP trap vector, or at Macrostore.

If ST11 = 0, the 0 field specifies the trap vector in memory that contains the addresses ofthe entry point and workspace of
the user routine to be executed. The address of the trap vector is calculated as

>0040 + >4 x >0

Following the fetch of the newWP and PC values, the effective source address (SA) is calculated and placed in WR11 of
the new workspace. The old WP, PC and ST are stored in WRs 13, 14 and 15, respectively. Status bit 6 is setto " and STs 7
through 11 are cleared after the old status has been saved.

When ST11 = 1, the XOP causes a trap to Macrostore ifthe 99000 is not in the baseline mode. The contents of the WP are

forced to 0, and the PC is updated with the value contained at Macrostore address >0812. The new WP and PC point to
locations within the Macrostore, where address space is logically distinct from the main memory address space. The old

WP, PC and STare stored in registers 13, 14and 15, respectively, ofthe Macrostore workspace. Status bits 7 through 11
are cleared after the old status has been saved.

The execution of the XOP instruction is summarized below. If ST11 is 0, the addresses are memory addresses; if ST11 is 1
and the 99000 is not in baseline mode, the addresses are in Macrostore.

If ST11 Is 0: If ST11 Is 1 Macroetore Is antared and:

(0040+4 xD) - WP O-WP

(0042 + 4 x D) - PC (0812) - PC

SA- newWRll (old WP) - (new WR13)

(old WP) - (new WR13) (old PC) - (new WR 14)

(old PC) - (new WR14) (old ST) - (new WR15)

(old ST) - (new WR15)

1 -ST6 0-ST9

0-ST7 0-ST10

0-ST8 O-ST11

The TMS99000does not test interrupt requests (i.e., does not look at INTREQ) upon completion of the XOP instruction.

61

10.5.5 Single Operand Instructions

General
Format:

o 2 3 4 5
OPCODE

6 7 8 9 10 11
Ts

The Ts and S fields provide multiple-mode addressing capability for the source operand.

RESULT BITS

12 13 14 15
S

MNEMONIC 0123466789 MEANING TOO? AFFECTED DESCRIPTION

B 0000010001 Branch No -- SA -(PC)

BL 0000011010 Branch and link No -- (PC) -(WR11),

SA -(PC)

BLWP 0000010000 Branch and load

workspace pointer No -- (SA) -(WP), (SA+2) -(PC), (oldWP)

_(newWR13), (old PC) -(newWR14),

(old ST) - (new WR151. The INTREQ

input is not tested upon completion of the

BLWP instruction.

CLR 0000010011 Clear operand No -- O_(SA)

SETO 0000011100 Set to ones No -- FFFF -(SA)

INV 0000010101 'nven Yes 0-2 (SA) -(SA)

NEG 0000010100 Negate Yes 0-4 -(SA) -(SA)

ABS 0000011101 Absolute value" No 0-4 I(SA)I-(SA)

SWPB 0000011011 Swap bytes No -- Bits 0-7 of (SA) -bits 8-15 of (SA); bits 8-

150f(SA) -bits 0-7 of (SA).

INC 0000010110 Increment Yes 0-4 (SA) + 1 - (SA)

INCT 0000010111 'ncrement by two Yes 0-4 (SA) +'2 -(SA)

DEC 0000011000 Decrament Yes 0-4 (SA)-l -(SA)

DECT 0000011001 Decrement by two Yes 0-4 (SA) - 2 -(SA)

Xt 0000010010 Execute No -- Execute instruction located at SA.

'Operand is compared to zero for status bit.

tit additional memory words for the execute instruction are required to define the oparands of the instruction loceted at SA, these words will be accessed from PC and the

PC will be updated accordingly. The IAQ ,instruction acquisition) bus status code will not be ouput at the time the process reads the instruction at SA; instesd, an SOP

'source operand) or WS bus status code will be output. Status bits are affected in the usual manner for the operation performed.

10.5.6 BIND Instruction

General
Format:

o 2 3 4 5
OPCODE

6 7 8 9 10 11
Ts

The Ts and S fields provide multiple-mode addressing capability for the source operand.

12 13 14 15
S

The BIND instruction serves as the inverse of a BLSK instruction if the register indirect autoincrement addressing
mode is used. Indexed addressing used with BIND implements a powerful CASE or multi-way branch instruction
where the immediate operand points to a table of branch addresses and the register contents selects which way to

branch.

RESULT BITS

MNEMONIC 0123466789 MEANING TOO? AFFECTED DESCRIPTION

10.5.7

BIND 0000000101 Branch indirect

Multiple-Bit I/O Instructions

General
Format:

o 2 3
OPCODE

No

4 5 6 7

-- (SAI-(PC)

8 9 10 11 12 13 14 15
CNT Ts S

The I/O base address is contained in bits 0 through 14 of WR12. If bit 0 (the MBS) of the base address is 0, a serial I/O
transfer will occur; otherwise (MSB = 1), a parallel I/O transfer will occur.

In thecaseofa serial I/O transfer, theCNTfield specifies the number of bits to be transferred (from 1 to 16). If CNT=O, 16
bits are transferred. The base address in WR12 defines the starting I/O bit address. The bits are transferred in bit-serial

fashion, and the I/O base address is incremented by 2 with each bit transfer; the contents of WR12 are not affected. The
effective source address in memory, specified by the Ts and S fields, is interpreted as a byte address if 8 or fewer bits are',

68

transferred (CNT = 1 through 8), or as a word address if 9 or more bits are transferred (CNT = 0, 9 through 15). If the source
is addressed in the workspace indirect autoincrement mode (Ts = 3), the specified workspace register is incremented by 1 if
CNT is in the range 1 to 8, and is incremented by 2 otherwise. If the source is addressed in the register mode (Ts = 0), bits 8
through 15 of the specified workspace register are unchanged if the transfer is of 8 bits or less.

In the case ofa parallel I /0 transfer, the CNT field determines whether a byte or word is to be transferred, and also whether
the contents of WR12 are to be incremented by 2 following the transfer. A word transfer occurs if CNT is (binary) 1010 or
1011; a byte transfer occurs if CNT is 0010 or0011. WR12 is post-incremented by 2 if CNT is 0011 or 1010. All values of CNT
besides 0010,0011, 1010and 1011 are reserved for future expansion of the parallel I/O capability and should not be used.
The following table summarizes the use of the CNT field for a parallel I/O operation.

CNT-
DESCRIPTION TRANSFER

IBINARYI

byte 0010 WR 1 2 not altered

transfer 0011 WR12 post-incremented by 1

word 1010 WR12 not altered

transfer 1011 WR 1 2 post-incremented by 2

"TheH restrictions on the value of CNT apply only in the case of parallel 1/0 operations.

When in user mode (ST7 = 1), an attempt to execute an LDCR instruction having a I/O address in the range 1 COO to 7FFE
or 9Coo to FFFE is flagged as a privileged opcode violation. This condition generates a level 2 interrupt and inhibits writes to
the I/O in the privileged space for the duration ofthe instruction. When in privileged mode (ST7 = 0), the I/O address of an
LDCR instruction is unrestricted. When in user mode (ST7 = 1), an attempt to execute an STCR with an I/O address 1 COO
to 7FFE or 9Coo to FFFE causes a privileged violation to occur after execution of the instruction.

RESULT STATUS

OPCODE COMPARED BITS

MNEMONIC 012346 MEANING TOO AFFECTED DESCRIPTION

LDCR 001100 Loild communication register Yes 0-2,5" Beginning with LSB of (SA), transfer

the specified number of bits from

(SA) to the I/O.

STCR 001101 Store communication register Yes 0-2,5" Beginning with LSB of (SA), transfer

the specified number of bits from the

I/O to (SA). Load unfilled bit posi-

tions with O.

"STS is affected only if CNT is in the range 1 to 8.

10.&.8 Single-Bit I/O Instructions

General
Format:

o 2 3 4 5 6 7
OPCODE

8 9 10 11 12 13 14 15
SIGNED DISPLACEMENT

The signed displacement is added to the contents of WR 12 (bits 0-14) to form the address ofthe 1/ a bit to be selected, as
described in Section 8.2.8.

When in user mode (ST7 = 11. ifthe effective 1/ a address ofan SBO or SBZ instruction is in the range > 1 COO to > 7FFE or
> 9coo to > FFFE, a privileged violation occurs (Section 4.4.3) and the I/O write is inhibited. When in privileged mode
(ST7 = 0), no restrictions are placed on the range of the effective I/O address.

The user is cautioned that while the SBO and SBZ instructions can be used to access the parallel I/O address space (> 8000
to > FFFF), and they will set or clear data bit 015 as expected, the other 15 bits (DO to 014) written to the parallel I/O
location will be undefined. When the TB instruction is executed with an address in parallel I/O space, the bit value input on
data line DO is read.

When in Macrostore, the SBO, SBZ and TB instructions are not available. The SBO and SBZ opcodes perform different
functions when in Macrostore (see Section 7.3.3.6).

69

STATUS

OPCODE BITS
MNEMONIC 01234567 MEANING AFFECTED DESCRIPTION

sao 0001 1101 Set bit to one - - Set the selected output bit to 1.

SBZ 00011110 Set bit to zero - - Set the selected output bit to O.

TB 00011111 Test bit 2 If the selected I/O input bit is 1, set ST2; if

10.5.9 Jump Instructions

General
Format:

o 2 3 4 5
OPCODE

the selected 1/0 input bit is 0, clear ST2.

6 7 8 9 10 11 12 13 14 15
SIGNED DISPLACEMENT

Jump instructions cause the PC to be loaded with the PC-relative jump address if the selected status bits are set as
specified; otherwise, no jump occurs and the next instruction is fetched from the word following the jump instruction. The
jump address is computed by adding twice the signed displacement to the current value of the PC (which points to the

word following the jump instruction). The 8-bit displacement permits the computed jump address to be specified any­
where in the range - 128 to + 127 words from the address of the word that follows the jump instruction. Status register
bits are not affected by jump instructions.

OPCODE STATUS CONDITION

MNEMONIC 01234567 MEANING TO LOAD PC
JEQ 00010011 Jump equal ST2 = 1
JGT 00010101 Jump greater than sn = 1
JH 00011011 Jump high STO = 1 and ST2 = 0

JHE 00010100 Jump high or equal STO = 1 or ST2 = 1
JL 00011010 Jump low STO = 0 and ST2 = 0

JLE 00010010 Jump low or equal STO = 0 or ST2 = 1
JLT 00010001 Jump less than sn = 0 and ST2 = 0
JMP 00010000 Jump unconditional Unconditional

JNC 00010111 Jump no carry ST3 = 0
JNE 00010110 Jump not equal ST2 = 0
JNO 00011001 Jump no overflow ST4 = 0
JOC 00011000 Jump on carry ST3 = 1
JOP 00011100 Jump odd parity ST5 = 1

10.5.10 Shift Instructions

General
Format:

o 2 3 4
OPCODE

5 6 7 8 9 10 11 12 13 14 15
SC W

Field SC contains the shift count. W is the number of the workspace register whose contents are to be shifted. If SC = 0,
however, bits 12 through 15 of WRO are used as the shift count. If SC = 0 and bits 12 through 15 of WRO are 0, the
effective shift count is 16.

/RESULT STATUS

OPCODE COMPARED BITS

MNEMONIC 01234567 MEANING TOO AFFECTED DESCRIPTION

SLA 00001010 Shift left arithmetic Yes 0-4 Shift (W) left. Fill vacated bit pOSitions

with O.

SRA 00001000 Shift right arithmetic Yes 0-3 Shift (WI right. Fill vacated bit positions

with original MSB of (WI.

SRC 00001011 Shift right circular Shift (WI right. Shift previous LSB into

MSB.

SRL 00001001 Shift right logical Yes 0-3 Shift (WI right. !"iII vacated bit positions

with zeros.

70

10.5.11 Immediate Register Instructions

General

Format:

o

OPCODE

MNEMONIC 01234567891011

AI 000000100010

ANDI 0000 00100 100

CI 0000 00101 000

LI 0000 00100 000

ORI 0000 00100 110

BlSK 0000 00001 011

2 3 4 5 6
OPCODE

MEANING

Add immediate

AND immediate

Compare immediate

Load immediate

OR immediate

Branch immediate and push link

to stack

10.5.12 Internal Register Load Immediate Instructions

General

Format:

o 2 3 456
OPCODE

7 8 9 10 11 12 13 14 15
W

lOP

RESULT BITS

TOO? AFFECTED DESCRIPTION

Yes 0-4 (WI + lOP - (WI

Yes 0-2 (WI AND lOP - (WI

Yes 0-2 Compare (WI to lOP and set ap

propriate status bits.

Yes 0-2 IOP-(WI

Yes 0-2 (W)ORIOP -

No -- (W)-2 _(WI. (PC)+4 -((W

10P-(PC)

7 8 9 10 11 12 13 14 15

o o o o o
lOP

When in user mode (ST7 = 1). execution of the LIM I instruction is flagged as a privileged opcode violation (Section 4.4.3).

OPCODE

MNEMONIC 012345678910 MEANING

lWPI 0000 0010 111 Load workspace pointer immediate

LIMI 0000 00 11 000 load interrupt mask immediate

10.5.13 Internal Register Load and Store Instructions

General

Format:

MNEMONIC

STST

lST

STWP

lWP

o 2

OPCODE
01234567891011

0000 0010 1 lOa
0000 0000 1000
0000 0010 lOla
0000 0000 1001

3 4 5 6 7 8
OPCODE

MEANING

Store status Register

Load status Register

Store workspace pointer

load workspace pointer

DESCRIPTION

lOP - (W) not status bits affected.

lOP - ST bits 12 thru 15. ST12 thru ST15.

9 10 11 12 13 14 15

w

STATUS

BITS

AFFECTED DESCRIPTION

- - (ST)-(W)

0-15 {WI - (ST)
- - (WP)-(WI

- - (W)-(WPI

While in privileged mode (ST7 = 0). the LST instruction modifies all 16 bits of the status register. While in user mode (ST7

= 1). only bits o through 5 and bit 10 ofthe workspace register specified in the W field are placed in the status register; ST6
is cleared and the other status register bits are unaffected.

71

10.5.14 Return Workspace Pointer (RTWPllnstruction

General

Format:
o

I 0

2
o o

3 4 5
o o o

6 7

The RTWP instruction causes the following transfers to occur:

(WR15) - (ST)

(WR14) - (PC)

(WR13) - (WPI

8 9 10 11 12 13 14 15

o o o o o o o

When in privileged mode (ST7 = 0), the RTWP instruction causes the entire contents of WR15to be loaded into the status

register. In user mode (ST7 = 1), only bits 0 through 5and 10 of WR15are loaded into the status register; ST6 is cleared

and the other status register bits remain unaffected.

When in Macrostore, several variations of the RTWP instruction opcode are available. These are opcodes > 0381, > 0382,
and >0384. These opcodes are summarized below. More detail in the operation of these special opcodes is given in
Section 7.3.2

RTWPOpcode

>0380
>0381
>0382

>0384
10.5.15 External Instructions

General

Format:
o 2

Function

RTWP when in main memory or exit from Macrostore with interrupts sampled

RTWP when in Macrostore memory (does not cause exit from Macrostorel

Exit from Macrostore with level 2 trap

Exit from Macrostore and suppress interrupt sample.

3 4 5 6 7 8 9 10 11 12

OPCODE o o
13 14 15

o o o

External instructions cause a bit value of 0 to be written to a 110 address 1 ECX, where the hexadecimal digit represented as

"X" depends upon the particular external instruction being executed. During execution of the RSET, CKOF, CKON and

LREX instructions, the WE/IOCLK output is pulsed low once. With the completion of the single 110 write cycle, execution

ofthe external instruction is finished, and the processor proceeds to the next instruction. While in privileged mode (ST7 =
0), execution of RSET causes the interrupt mask (ST12-ST15) to be cleared. None of the other external instructions affect

the status register.

When the IDLE instruction is executed, the processor enters the idle state, where it remains until a Reset, NMI, APP, or

unmasked external interrupt occurs. While in the idle state, the processor pulses the WE/IOCLK output repeatedly, with

each 110 write cycle accompanied by a 1/0 bus status code (Table 2). The PC value saved during the context switch to the

Reset, NMI or interrupt service routine points to the instruction following the IDLE.

When in user mode (ST7 = 1), execution of an external instruction is flagged as a privileged opcode violation (Section

4.4.3).

STATUS 1/0

OPCODE BITS ADDRESS

MNEMONIC 012345878910 MEANING AFFECTED DESCRIPTION IN HEX
IDLE 00000011 010 Idle - - Suspend processor instruction

execution until an interrupt,

NMI or Reset occurs. 1EC4

RSET 00000011 011 Reset 12-15 Clear interrupt mask (ST12-

ST151 1ECS

CKOF 00000011 110 User-defined - - - - 1ECC

CKON 00000011 101 User-defined - - - - 1ECA

LREX 0000 0011 111 User-defined - - - - 1ECE

72

10.5.16 Bit-Manipulation Instructions

General
Format:

o

o

2 3

o o

4 5

o o

6 7 8 9 10 11 12 13 14 15
OPCODE
BITDISP Ts S

The Ts and S fields provide multiple-mode addressing capability for the source operand. The indirect autoincrement
addressing mode (Ts = 3), however, is undefined for the TMB, TCMB and TSMB instructions. If the two bits of the Ts

field are 3, an MID trap occurs.

Bit-manipulation instructions copy the specified memory bit into status bit 2, and set or clear the specified memory bit. In
order to provide an indivisible test-and-set operation, the MPILCK (multiprocessor interlock) bus status code is active
during the critical portions of the TSMB and TCMB instructions, except in the case Ts = 0 (register addressing mode).

STATUS
OPCODE BITS

MNEMONIC IN HEX MEANING AFFECTED DESCRIPTION-
TMB OC09 Test memory bit 2 (SA + Bo) - ST2

TCMB OCOA Test and clear memory bit 2 (SA+Bo) - ST2, 0 - (SA+Bo)
TSMB OCOB Test and set memory bit 2 (SA+Bo) - ST2, 1 - (SA+Bo)

"BD is used above to refer to the contents of the bit-displacement field.

If the leading 6 bits in the predefined field of the second word of the instruction are not as specified, an MID trap occurs.

10.5.17 Double-Precision Arithmetic Instructions

General Format:
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADD/SUB OPCOoE
0 0 0 Td D Ts S

SHIFT OPCOoE
0 0 0 0 0 SC Ts S

STATUS
OPCODE BITS

MNEMONIC IHEX MEANING AFFECTED DESCRIPTION
AM 002A Add double 0-4 (SA,SA+2)+(oA,oA+21- (OA, OA+2)
SM 0029 Subtract double 0-4 (oA,OA+2) - (SA,SA+2) - (OA,OA+2)

SLAM 0010 Shift left arithmetic double 0-4 Shift (SA, SA + 2) left. Fill vacated bit posi-
tions with O. If SC=O, count is in bits 4
through 7 of WRO.

SRAM 001C Shift right arithmetic double 0-3 Shift (SA,SA + 2) right. Fill vacated bit posi-
tions with MSB. If SC =0, count is in bits 4
through 7 of WRO.

If the two bits in the Ts or T d field are 3 (workspace register indirect autoincrement addressing mode) the contents of the
corresponding workspace register are incremented by 4.

If SC = 0 in the shift instructions, the shift count is taken from bits 4 through 7 of WRO, which are interpreted as an
unsigned 4-bit integer. If bits 4 through 7 of WRO are 0, then the effective shift count is O. Bits shifted out are shifted into
ST3. If the shift count is 0, ST3 is set to O.

During a SRAM the sign bit fills the vacated positions. During a SLAM, zeros fill the vacated·positions.

If the bits in the predefined field of the second word of the instruction are not as specified, an MID trap occurs.

73

10.5.18 MID Opcodes

10.6

10.6.1

10.6.2

The single-word instruction opcodes that cause an MID trap (see Section 4.4.2) are:

0000-001B 02D0-02DF
001E-0028 02E1-02FF
002B-007F 0301-033F
OOAO-OOAF 0341-036F
OOCO-013F 0361-037F
0210-021F 038Hl39F
0230-023F 03A1-03BF
0250-025F 03C1-03DF
0270-027F 03E1-03FF

07lll-07FF
0290-029F OCOO-OCOB
02BO-02BF OCOC-OFFF

INSTRUCTION EXECUTION

Microinstruction Cycle

The TMS99000 microprocessor is a microcoded machine. Each instruction in the 99000 instruction set is executed
intemally as a sequence of microinstructions, the length of the sequence varying according to the particular instruction.
Each microinstruction cycle is minimally one machine state in duration but can be extended with wait states by activating
the READY input. The term "wait-state" is used to describe the condition where the processor is "frozen" in its
present state and consequently cannot advance to the next state. In the 99000, all types of bus cycle - memory,
I/O or internal- can be extended with wait-states. The ALATCH output toggles exactly once at the beginning of
each microinstruction cycle.

Opcode Prefetching

The TMS99000 increases its effective processing speed by prefetching opcodes where possible. By allowing successive
bus cycles to be overlapped, as shown in Figure 27, the time required to fetch the opcode from memory and. decode it
becomes transparent when no wait states are required. In processing a typical instruction, e.g., register-to-register add,
the TMS99000 performs the following sequence of steps:
1. Fetch instruction
2. Decode instruction
3. Fetch source operand, if needed
4. Fetch destination operand, if needed
5. Process the operands
6. Store the results, if required

The prefetch mechanism of the 99000 makes use of the fact that the processor's memory interface can operate in parallel
with operations involving the processor's internal buses and registers. For example, during step 5 above, the memory bus
ian.otneededb¥~rent instruetioFl, whiett is busy processh ,g tl,e operands internaW.Mence,thi!ftime can be used to
prefetch the opcode for the next instruction. This overlapping is seen in Figure 32, where "MI" indicates an operation
performed by the memory interface, and "OP" denotes an internal operation. Deterministic: a prefetched opcode is
discarded only in the event that an interrupt occurs. Steps 1 and 2 above should really be considered part of the preceding
instruction. In other words, each instruction is responsible for prefetching the opcode for the next instruction. This
reduces the effective overhead of the typical instruction sequence given above to the four steps, 3-6. Without
overlap, the overhead would be six rather than four steps.

The instruction prefetch scheme employed by the 99000 can cause self-modifying software to execute incorrectly.
Incorrect execution results when one instruction attempts to generate the opcode of the very next instruction to be
executed. The TMS99000 fetches the opcode of the next instruction before storing the result of the current instruction.

74

10.6.3

••• bus

cycle 1

process

••• operands

OP

fetch

instruction n instruc

MI

bus

cycle 2

write

result

MI

decode

instruc

OP

increasing

time

bus bus bus bus

cycle 3 cycle 4 cycle 5 cycle 6

instruction

n-1

fetch fetch process write

source dest'n operands result

operand operand

MI MI OP MI

instruction n + 1

MI = memory interface

OP = internal operation

FIGURE 32 - OVERLAPPED INSTRUCTION EXECUTION

TMS99000 Instruction Execution Times

Instruction execution times for the TMS99000 are a function of the:
• Machine state time ts (four times the external input clock period),

...

•••

• Particular addressing mode used in the event that the instruction provides mUltiple-mode addressing capability, and

• Number of wait states required per memory access.

Table 16 * lists the number of machine states and memory accesses required to execute each 99000 instruction. For
instructions providing multiple addressing modes for one or both operands, the table lists the number of states and

memory accesses with all operands addressed in the workspace register mode. To determine the additional number of

states and memory accesses required for the other addressing modes, add the appropriate values from the table. The total
execution time for an instruction, assuming all memory requires the same number of wait states, is calculated as:

T = ts(C + WM)
where:
T = total instruction execution time

ts = machine state time (four times the external input clock period)
C = number of states for instruction execution plus address modification
W = number of required wait states per memory access for instruction execution plus address modification

M = number of memory accesses

For example, consider a MOV instruction executed in a system for which ts = 0.107 p.sec. Assume that no wait ·states are
required to access memory, and that both operands are accessed in workspace register mode:

T = ts(C+ WM) = 0.107(3 + Ox3) p.sec = 0.50 p.sec
If two wait states per memory access are required, the execution time becomes

T = 0.107 (3 + 2 x 3) p.sec = 1.50 p.sec
If the source operand was addressed in the symbolic mode and two wait states are required, then

T = tc(C + WM),
C = 3 + 1 = 4,
M = 3 + 1 = 4,

T = 0.167 (4 + 2 x 4) p.sec = 2.0 p.sec

* Instruction prefetching is accounted for in Table 16. The table gives exact cycle counts required for instruction execution.

75

TABLE 16-INSTRUCTION EXECUTION TIMES

MACHINE MEMORY ADDRESS

INSTRUCTIONS STATES ACCESS MODIFICATION

C M SOURCE DEST

A 4 4 A* A

AB 4 4 A A

ABS 5 3 A -
AI 4 4 - -

AM 12 8 A A

ANDI 4 4 - -
B 3 1 A -

BIND 4 2 A -
BL 5 2 A -
BLSK 7 5 - -

BLWP 10 6 A -
C 4 3 A A

CB 4 3 A A

CI 4 3 - -
CKON 9 1 - -
CKOF 9 1 - -
CLR 3 2 A -
COC 4 3 A -
CZC 4 3 A -

DEC 3 3 A -
DECT 3 3 A -

DIV (ST4 is set) 60rl0 4 A -
DIV {ST4 is reset)t 30 6 A -
DIVS (ST4 is set) 10,130r33 4 A -
DIVS {ST4 is reset)t 34 6 A -
IDLE 9+2xN 1 - -
INC 3 3 A -
INCT 3 3 A -
INV 3 3 A -
JUMP {PC is changedl 3 1 - -

(PC is not changed) 3 1 - -
LDCR (CNT=O, serial) 40 3 A -

(CNT;e.O, serial) 8+2x CNT 3 A -
(MSB R12= " autoincrement R12) 8 4 A -
(MSB R12= 1, R12 notautoincremented) 8 3 A -

LDDaridLDSt

LI 3 3 - -
LIMI 5 2 - -
LMH

LREX 9 1 - -
LST 7 2 - -

• Replace the letter "A: with appropriate value from Table A. The C and M values from Table A for the addressing mode used must be added to the C and M
values from this table,

t Execution time is dependent upon the partial quotient after each clock cvcle during execution.

* Execution time is added to the execution time of the source address.

16

TABLE 16 - INSTRUCTION EXECUTION TIMES ICONCLUDEDI

MACHINE MEMORY ADDRESS
INSTRUCTIONS STATES ACCESS MODIFICATION

C M SOURCE DEST
LWP 3 2 - -
LWPI 3 2 - -
MOV 3 3 A* A
MOVB 4 4 A A
MPY 23 5 A -
MPYS 25 5 A -
NEG 3 3 A -
ORI 4 4 - -
RSET 9 1 - -
RTWP, 9/7 4 - -
5 4 4 A A
SB 4 4 A A
SBO 7 2 - -
SBZ 7 2 - -
SETa 3 2 - -
SHIFT (SC*O) 5+SC 3 - -

(SC=Oand bits 12-150fWR =0) 23 4 - -
(SC =0 and bits 12-15 of WR*O) 7+SC 4 - -

SM 12 7 A A
SOC 4 4 A A
SOCB 4 4 A A
SHIFT MULTIPLE (SC=O) 11+SC 5 A -

(SC*O) 13+SC 6 A -
STCR (CNT = 0, serial) 43 3 A -

(CNT=l to 7) 2O+CNT 4 A -
(CNT=8) 27 4 A -
(CNT=9to 15) 2O+CNT 3 A -
(MSB R12= 1, autoincrement R12) 10 5 A -
(MSB R12= 1, R12 not autoincremented) 10 4 A -

STST 3 2 - -
STWP 3 2 - -
SWPB 3 3 A -
SZC 4 4 A A
SZCB 4 4 A A
TB 7 2 - -
TESTMEMBIT 26 3 A -
X§ 2 1 A -
XOP (STll =0) 14 7 A -
XOR 4 4 A -
Reset function 13 6 - -
Interrupt context switch 13 6 - -
MID opcode (Macrostore) 14§ 0 - -

(attached Drocessor) 21§ 8 - -
• Replace the letter" A" with appropriate value from Table A. The C and M values from Table A for the addressing mode used must be added to the C and M

values from this table.

§Execution time does not include the time required bV software or an attached processor to amulate the instruction.

,RTWP, when staying in Macrostore, takas saven machine stalas. When not in Macrostore or exiting Macrostore, RTWP takas nine machine states.

TABLE A

MACHINE MEMORY

STATES ACCESS

ADDRESSING MODE C M

WR(TsorTd = 0) 0 0
WRindirecHTsorTd = 1) 1 1
WR indirect autoincrement (Ts or Td = 3) 3 2
Symbolic (Ts or Td = 2, 5 or D = 0) 1 1
Indexed (TsorTd = 2, 5 or D = 0) 3 2

77

10.6.4 Bus Status Code Sequences

This section presents the sequence of bus status codes output by the microprocessor during each (1) instruction execu­
tion, (2) interrupt trap, (3) MID trap and (4) transfer of control between the TMS99000 and an attached processor.

The TMS99000 microprocessors are microcoded machines. Each instruction in the instruction set is executed internally as
a sequence of microinstructions, the length of the sequence varying according to the particular instruction. Each microin­
struction cycle is minimally one machine state in duration. but can be extended with wait states by activating the READY
input. The sequence of machine states generated during the execution of a particular instruction depends upon the

opcode and the addressing modes used.

A typical instruction contains an opcode and addressing modes for up to two operands (source and destination). The

execution. of an instruction can similarly be divided into two parts: (1) the derivation of the operands from the specified

addressing modes, and (2) the execution of the operation specified by the opcode. Since the same addressing modes are
common to many instructions, the portion of the execution sequence corresponding to each addressing mode can be
listed separately from the basic execution sequences for the various instructions. The listing of these sequences in separate
tables is done in this section for the sake of brevity.

Using this information, the user can reconstruct the entire sequence for a particular instruction by inserting the sequences

corresponding to the addressing modes into the basic sequence given for the instruction. The basic execution sequences
for the various TMS99000 instructions are presented in Table 14. In this table, the sequences corresponding to the source

and destination addressing modes are represented by the symbols < SRC > and < DST >, respectively. These symbols
must be replaced by the appropriate sequences from Tables 15 and 16 to reconstruct the entire execution sequence for the
instruction with its particular addressing modes.

An example will help to illustrate this procedure. Consider the following add instruction:

A *Rl + ,R2
The addressing mode used to locate the source operand is register indirect autoincrement with R 1. The addreSSing mode
used to locate the destination operand is register direct with R2. Table 14 presents a complete list of the machine states

generated during the execution of this instruction. Each state is identified by the bus status code output during that state.
Refer to Table 2 of Section 3 for a list of all bus status codes and their mnemonics. The fetching of the A (add) opcode is not

shown in Table 14; instead, the next to the last state shown is the prefetch ofthe opcode for the instruction that follows the
add. This convention will be followed throughout Table 17. The prefetch of the opcode for the next instruction is

considered to be part of the execution sequence of the current instruction.

Using the data presented in Tables 18, 19 and 20, the information presented in the example of Table 17 is constructed as
follows. The basic execution sequence for the A (add) instruction is presented at the beginning of Table 18. Here the

execution sequences for the source and destination addressing modes are represented by the symbols < SRC > and
<DST>. These symbols are replaced by the appropriate addressing mode sequences from Table 18 to generate the

sequence seen in Table 17. The symbols Ns and Nd in Table 17 represent the number of machine cycles required to derive
the source and destination operands, respectively, and are replaced by the appropriate numbers from Table 18.

The execution sequences for all other TMS99000 instructions and operations shown in Table 17 are generated in similar
fashion.

TABLE 17-EXAMPLE INSTRUCTION SEQUENCE FORAN A "Rl + ,R2

NUMBER BUS READ

OF STATUS OR

CYCLES CODe NAME WRITE COMMENT

0110 WS R Fetch source operand from WR 1

Ns=4 1001 AUMS - Internal operation

0110 WS W Increment WR 1

0001 SOP R Read source operand

Nd=l 0110 WS R Read dest'n operand from WR2

1 0011 IAQ R Prefetch next instruction

1 0110 WS W Write sum to WR2

78

TABLE la-SOURCE ADDRESSING MODE SEQUENCES

NUMBER BUS READ

OF STATUS OR

CYCLES CODE NAME WRITE COMMENT

Workspace Register Source Addressing, R

1 0110 WS R Get source operand from WR Ns = 1

Workspaca Register Indirect Source Addressing, oR

1 0110 WS R Get source address from WR

1 0001 SOP R Fetch source operand Ns = 2

Workspece RegiS1er Indirect Autoincremant Source Address, OR +

1 0110 WS R Get source address from WR

1 1001 AUMS

1 0110 WS W Increment WR contents Ns = 4

1 0001 SOP R Fetch source operand

Symbolic (Direct) Source Address, @LABEL

1 0010 lOP R Get source operand address

1 0001 SOP R Fetch source operand Ns = 2

Indexed Source Address, @TABLE(R)

1 0110 WS R Fetch base address from WR

1 0010 lOP R Fetch index

1 1001 AUMS Ns = 4

1 0001 SOP R Fetch source operand

Workspace Register Destination Address, R

1 0110 WS R Get dest'n operand from WR Nd = 1

Workspace Register Indirect Destination Address, OR

1 0110 WS R Get dest'n address from WR

1 0100 DOP Fetch dest'n operand Nd = 2

Workspace Register Indirect Autoincrement Destination Address, OR +

1 0110 WS R Get desfn address from WR

1 1001 AUMS

1 0110 WS W Increment contents of WR Nd = 4

1 0100 DOP R Fetch dest'n operand

SymbOlic (Direct) Destination Address, @LABEL

1 0010 lOP R Fetch desfn address

1 0100 DOP R Fetch dest'n operand Nd = 2

Indexed Destination Address,@TABLE(R)

1 0110 WS R Fetch base address from WR

1 0010 lOP R Fetch index

1 1001 AUMS Nd = 4

1 0100 DOP R Fetch dest'n operand

79

TABLE 19 - INSTRUCTION EXECUTION SEOUENCES

NUMBER BUS READ
OF STATUS OR

CYCLES CODE NAME WRITE

A, AB, MOVB, 5, SB, SOC, SOCB, SZC, SZCB (See MOV sequence below)

Ns <SRC>

Nd <DST>

1 0011 lAO R

1 0100' DOP' R

MOV (move word)

Ns <SRC>

Nd-l <DST>

1 0011 lAO R

1 0100' DOP' R

SlA, SRA, SRC, SRl (if shift count is NOT zero)

1 0110 WS R

2 1001 AUMS

CNH 1001 AUMS

1 0011 lAO R

1 0110 WS W

SlA, SRA, SRC, SRl (if shift count is zero)

1 0110 WS R

1 1001 AUMS

1 0110 WS R

2 1001 AUMS

CNTt 1001 AUMS

1 0011 lAO R

1 0110 WS W

ABS (source operand in workspace register)

1 0110 WS R

1 1001 AUMS

1 0110 WS R

1 0011 lAO R

1 1001 AUMS

ABS (non-workspace source operand)

Ns-l <SRC>

1 0000 SOPL R

1 1000 AUMSl

1 0001 SOP R

1 0011 lAO R

1 1001 AUMS

AI, ANDI, ORI

1 0110 WS R

1 0010 lOP R

1 0011 lAO R

1 0110 WS W

'Substitute WS bus status code if operand is in workspace register.

tThe last state of the destination operand derivation sequence is replaced by an instruction fetch.

*Number of cycles is equal to shift count.

80

COMMENT

Fetch source operand

Fetch dest'n operand

Prefetch next instruction

Save result at dest'n address

Fetch source operand

Get dest'n address, but block fetchf

Prefetch next instructiont

Write operand to desfn address

Fetch source operand from WR

Series of 2 consecutive AUMS cycles

Repeat shift operation

Fetch next instruction

Save result in source WR

Fetch source operand from WR

Fetch shift count from WRO

Series of 2 consecutive AUMS cycles

Repeat shift operation

Prefetch next instruction

Save result in source WR

Fetch source operand from WR

Save result in source address

Prefetch next instruction

Develop address of source operand

Fetch source operand (MPllCK active)

Save result in source address

Prefetch next instruction

Fetch source operand from WR

Fetch immediate operand

Prefetch next instruction

Save result in source WR

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED I

NUMBER BUS

OF STATUS

CYCLES CODE NAME

C,CB

Ns <SRC>

Nd <OST>

1 0011 lAO

1 1001 AUMS

CI

1 0110 WS

1 0010 lOP

1 0011 lAO

1 1001 AUMS

AM, SM (double-word add and subtractl

1 0010 lOP

1 1001 AUMS

Ns <SRC>

Nd-l <DST>

1 1001 AUMS

1 1001 AUMS

1 0001· SOP'

1 0100' DOP'

1 1001 AUMS

1 0100' DOp·

1 0100' DOP'

1 0011 lAO

1 0100' DOP'

B

Ns-l <SRC>

1 1001 AUMS

1 0011 lAO

1 1001 AUMS

BIND

Ns <SRC>

1 1001 AUMS

1 0011 lAO

1 1001 AUMS

BL

Ns <SRC>

2 1001 AUMS

1 0011 lAO

1 0110 WS

"Replace with WS bus status code if operand is in workspace registers.
tBlock the read cycle in the last cycle of the source fetch sequence.

READ

OR

WRITE COMMENT

Fetch source operand

Fetch dest' n operand

R Prefetch next instruction

R Fetch source operand from WR

R Fetch immediate operand

R Fetch next instruction

R Fetch second word of instruction

Fetch MSW of source operand

Develop destination addresst

Operand fetch is blocked

R Fetch LSW of source operand

R Fetch MSW of dest'n operand

W Write LSW of result to dest'n address

R Fetch MSW of dest'n operand

R Prefetch next instruction

W Write MSW of result to dest'n address

Get source addresst

No fetch of source operand

R Prefetch next instruction from effective source address

Fetch source operand

R Prefetch next instruction from effective source address

Fetch source operand

Series of 2 consecutive AUMS cycles

R Prefetch next instruction

W Save old PC in WR11

81

TABLE " - INSTRUCTION EXECUTION SEQUENCES (CONTINUEDI

NUMBER BUS

OF STATUS

CYCLES CODE NAME

BLSK

1 0110 WS

1 1001 AUMS

1 0110 WS

1 0010 lOP

1 0001 SOP

1 0011 IAQ

1 1001 AUMS

BLWP

Ns <SRC>

2 1001 AUMS

1 0001" SOP·

1 1100 WP

1 0110 WS

1 0110 WS

1 0110 WS

1 0011 IAQ

1 1001 AUMS

CLR,SETO

Ns-l SRC>

1 1001 AUMS

1 0011 IAQ

1 0001' SOP'

COC, CZC

Ns <SRC>

1 0110 WS

1 0011 IAQ

1 1001 AUMS

DIV

Ns <SRC>

1 1001 AUMS

1 0110 WS

IF OVERFLOW, GO TO LABEL 1

1 I 0110 WS

4 1001 AUMS

IF OVERFLOW, GO TO LABEL 1

18 1001 AUMS

1 0110 WS

1 0011 IAQ

1 0110 WS

LABEL 1: (GO HERE IF OVERFLOW)

11 0011 IAQ

1 1001 AUMS

'Substitute WS bus stetus code if operand is in workspace register.

tBlock the reed in the last cycle of the source fetch sequence.

READ

OR

WRITE COMMENT

Fetch stack pointer from WR

W Decrement stack pointer in WR

R Fetch brench address

W Push return PC onto stack

R Fetch next instruction

Fetch source operend (the new WP)

Series of 2 consecutive AUMS cycles

R Fetch new PC

New WP is output on address lines

W Save old WP in WR 13

W Save old PC in WR14

W Save old ST in WR15

R Prefetch next instruction

Get source addresst

No fetch of source operand

R Pre1etch next instruction

W Save result in source address

Fetch source operand

R Fetch dest'n from designated WR

R Pre1etch next instruction

Fetch source operand

R Fetch MSW of dest'n operand from WR

Check for divide by zero

R Fetch LSW of dest'n operand from WR + 1

Series of 4 consecutive AUMS cycles

Is divisor < MSW of dividend?

Series of 18 consecutive AUMS cycles

W Save quotient in dest'n WR

R Prefetch next instruction

W Save remainder in dest'n WR + 1

R Prefetch next instruction

82

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER
OF

CYCLES

BUS
STATUS
CODE

DIVS

Ns

1

1

1

1001

0110

1001

1 0110

3 1001

IF OVERFLOW, GO TO LABEL 1

3 I 1001

IF OVERFLOW, GO TO LABEL 1

20 I 1001
IF OVERFLOW, GO TO LABEL 1

0110

00'1

01'0

LABEL 1: :GO HEREIIF OVER~~~W)

1 1001

DEC, DECT, INC, INCT, INV, NEG, SWAPB

Ns

1 0011

0001"

NAME

<SRC>

AUMS

WS

AUMS

WS

AUMS

AUMS

AUMS

WS

lAO

WS

lAO

AUMS

<SRC>

lAO

SOP"

LREX, CKOF, CKON, RSET (external instructions)

4

2
1

1

1

IDLE (external instruction)

3
2
1

1

LDCR (parallelloed CRU)

Ns

1

2
2

1

1

1001

lOll

1101

0011

1001

1001

lOll

0011

1001

0110

1001

1001

0011

1001:1:

AUMS

1/0

ST

lAO

AUMS

AUMS

1/0

lAO

AUMS

<SRC>

WS

AUMS

1/0

lAO

AUMS:I:

'Substitute WS bus status code if operand is in workspace register.

READ
OR

WRITE

R

R

W

R

W

R

R
R

W

R

W

R

R

W

R

* Substitute WS bus status code and a write cycle if WR12 is post-incremented by 2.

83

COMMENT

Fetch source operand

Fetch LSW of dest'n optrand from WRl

Fetch MSW of dest'n operand from WRO

Series of 3 consecutive AUMS cycles

Check for divide by zero

Series of 3 consecutive AUMS cycles

Is I divisorl < I dividendi?

Series of 20 consecutive AUMS cycles

Does unsigned quotient overflow its 150bit boundary? If so,

set ST4.

Save quotient in WRO

Prefetch next instruction

Save remainder in WRl

Prefetch next instruction

Fetch source operand

Prefetch next instruction

Save result in source address

Series of 4 consecutive AUMS cycles

1/0 cycle is minimum 2 states long

Output new status on address bus

Prefetch next instruction

Series of 3 consecutive AUMS cycles

1/0 cycle is minimum 2 clocks long

Fetch next instruction

Fetch source operand

Get CRU base address from WR 12

Series of 2 consecutive AUMS cycles

110 cycle is minimum 2 states long

Fetch next instruction

Increment WR12 if necessary

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS

OF STATUS

CYCLES CODE NAME

LDCR (serial load CRUI

Ns <SRC'>
1 0110 WS
4 1001 AUMS

2" CNTt 1011 1/0
1 0011 lAO
1 1001 AUMS

LDDANDLDS

1 1001 AUMS
1 1001 AUMS

1 1001 AUMS

LI

1 0010 lOP

1 0011 lAO

1 0110 WS

L1MI

1 0010 lOP

2 1001 AUMS
1 0011 lAO

1 1001 AUMS

LST

1 0110 WS

3 1001 AUMS

1 1101 ST

1 0011 lAO

1 1001 AUMS

LWP

1 0110 WS
1 0011 lAO

1 1100 WP

LWPI

1 0010 lOP

1 0011 lAO
1 1100 WP

MPY

Ns <SRC>
1 0110 WS
18 1001 AUMS
1 0110 WS

1 0011 lAO

1 0110 WS

tThe number of cycles is specified in the count field of the opcode.

"The MW mask controls interrupts.

READ

OR

WRITE COMMENT

Fetch source operand

R Fetch CRU base addresa from WR 12
Series of 4 consecutive AUMS cycles

W 110 cycle is minimum 2 states long

R Fetch next instruction

Update internal LDD and LOS flags

MID trap follows

R Fetch immediate operand

R Fetch next instruction

W Save operand in specified WR

R Fetch immediate operand

Series of 2 consecutive AUMS cycles

R Prefetch next instruction"

R Fetch operend from WR

Series of 3 consecutive AUMS cycles

Output new status on address bus

R Fetch next instruction

R Fetch operand from WR

R Fetch next instruction

Output new WP on address bus

R Fetch immediate operand

R Fetch next instruction

Output new WP on addresa bus

Fetch source operand

R Fetch dest'n operand from WR

Series of 18 consecutive AUMS cycles

W Save MSW of result in WR

R Fetch next instruction

W ' Save LSW of result in WR + 1

84

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ

OF STATUS OR

CYCLES CODE NAME WRITE COMMENT

MPYS

Ns <SRC> Fetch source operend

1 1001 AUMS

1 0110 WS R Fetch dest'n operand from WR

19 1001 AUMS Series of 19 consecutive AUMS cycles

1 0110 WS W Save MSW of result in WR

1 0011 lAO R Fetch next instruction

1 0110 WS W Save LSWof result in WR + 1

RTWP (retum from subroutine in main memory)

1 1001 AUMS

1 0110 WS R Fetch new PC from WR14

1 0110 WS R Fetch new STfrom WR15

1 0110 WS R Fetch new WP from WR 13

2 1001 AUMS Series of 2 consecutive AUMS cycles

1 1101 ST Output new ST on address bus

1 0011 lAO R Prefetch next instruction

1 1100 WP Output new WP on address bus

RTWP (return from using opcodes > 380, > 382, or > 384

5 1001 AUMS Series of 5 consecutive AUMS cycles

1 0011 IAQ R Prefetch next instruction

1 1001 AUMS

Jump Instructions

1 1001 AUMS

1 0011 lAO R Prefetch next instruction

1 1001 AUMS

85

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUEDI

NUMBER BUS

OF STATUS

CYCLES CODE NAME

SLAM,SRAM

1 0010 lOP

1 1001 AUMS

Ns <SRC>

IF SHIFT COUNT IS ZERO, GO TO LABEL 1

2 1001 AUMS

1 0001' SOP'

2 1001 AUMS

CNTt 1001 AUMS

1 0001' SOP'

1 0011 lAO

1 0001' SOP'

LABEL 1: (GO HERE IF SHIFT COUNT IS ZEROI

1 1001 AUMS

1 0110 WS

2 1001 AUMS

1 0001' SOP'

1 1001 AUMS

IF SHIFT COUNT IN RO IS ZERO, GO TO LABEL2

1 1001 AUMS

CNTt l00l! AUMSt

1 0001' SOP"

1 0011 lAO

1 0001" SOP"

LABEL 2: (GO HERE IF SHIFT COUNT IN WRO IS ZEROI

1 1001 AUMS

1 0001" SOP'

1 0011 lAO

1 0001" SOP'

'Substitute WS bus status code if operand is in workspace register.

tNumber of cycles is equal to shift count.

READ

OR

WRITE COMMENT

R Fetch second word of opcode

Fetch MSW of source operand

Series of 2 consecutive AUMS cycles

R Fetch LSW of source operand

Series of 2 consecutive AUMS cycles

Repeat shift operation

W Save LSW of source operand

R Fetch next instruction

W Save MSW of source operand

R Fetch shift count in WRO

Series of 2 consecutive AUMS cycles

R Read LSW of source operand

Repeat shift operation until done

W Write LSW of result to source address

R Fetch next instruction

W Write MSW of result to source address

W Write LSW of result to source address

R Prefetch next instruction

W Write MSW of result to source address

86

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ

OF STATUS OR

CYCLES CODE NAME WRITE

STCR (parallel store CRUI

Nst I I !
NOTE: SOURCE OPERAND IS NOT FETCHED IF WORD TRANSFER

1 0110 WS

2 1001 AUMS

2 1011 1/0

2 1001 AUMS

1 000lt SOPt

1 0011 lAO

1 l00lt NOPt

STCR (bit-serial store CRUI

Nsi

1 0110 WS

5 1001 AUMS

2§CNT* 1011 1/0

3 1001 AUMS

IF 8 OR 16 BITS TRANSFERRED, GO TO LABEL 1

7 1001 AUMS

LABEL 1:

1 0011 lAO

1 0001§ SOP§

SBO, SBZ (single-bit CRU instructionsl

1 1001 AUMS

1 0110 WS

1 1001 AUMS

2 1011 1/0
1 0011 lAO

1 1001 AUMS

"Number of cycles is equal to count field from STCR opcode.

tSubstitute WS bus status code if WR12 is post-incremented by 2.

R

R

W

R

R

R

R

W

R

W

R

*If source operand is word rather than byte, fetch of operand is replaced by AUMS cycle.

§Substitute WS bus status code if operand is in workspace register.

87

COMMENT

Fetch source operand if byte transfer

Read 1/0 base address from WR12

Series of 2 consecutive AUMS cycles

I I 0 cycle is minimum 2 states long

Series of 2 consecutive AUMS cycles

Save result in source address

Prefetch next instruction

Increment WR12 if necessary

Fetch source operand if byte transfer

Fetch 1/0 base address from WR12

Series of 5 consecutive AUMS cycles

1/0 read takes min. 2 stateslbit

Series of 3 consecutiveAUMS cycles

Repeat cycle 8-N for byte or 16-N for word, where N =

number of bits

Fetch next instruction

Save result in source address

Fetch 1/0 base address from WR12

I/O cycle is minimum 2 states long

Fetch next instruction

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS

OF STATUS

CYCLES CODE NAME

TB

1 1001 AUMS

1 0110 WS

1 1001 AUMS

2 1011 I/O

1 0011 lAO

1 1001 AUMS

TMB, TCMB, TSMB (source operand in workspace register)

1 0010 lOP

1 0110 WS

2 1001 AUMS
Bit displacement t 1001 AUMS

2 1001 AUMS

~ 6-bit displacement; 1001 AUMS

1 1001 AUMS

1 0110 WS

1 0011 lAO

1 1001 AUMS

TMB, TCMB, TSMB (non-register source operand)

1 0010 lOP

Ns-l <SRC>

1 0000 SOPL

2 1000 AUMSL

Bit displacement t 1000 AUMSL

2 1000 AUMSL

1 6-bit displacement; 1000 AUMSL

1 1000 AUMSL

1 0001 SOP

1 0011 lAO

1 1001 AUMS

t Number of cycles is equal to the bit number plus one.

~ Number of cycles is equal to 1 6 minus the b~ number.

READ

OR

WRITE COMMENT

R Fetch I/O base address from WR12

R I/O cycle is minimum 2 states long

R Fetch next instruction

R Fetch second word of instruction

R Fetch source operand from WR

Series of 2 consecutive AUMS cycles

Shift target bit into position

Series of 2 consecutive AUMS cycles

Restore shifted bit to original position

W Write result to WR

R Fetch next instruction

R Fetch second word of instruction

Get source address (see next cycle)

R Fetch source with MPILCK active

Series of 2 consecutive AUMSL cycles

Shift target bit into position

Series of 2 consecutive AUMSL cycles

Restore shifted bit to original position

W Save results and deactivate MPILCK

R Prefetch next instruction

88

TABLE'9 - INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ

OF STATUS OR

CYCLES CODE NAME WRITE COMMENT

X

Ns <SRC> Fetch source operand (target opcodel

1 1001 AUMS

Execute target opcode

STST,STWP

1 1001 AUMS

1 0011 lAO R Fetch next instruction

1 0110 WS W Save result in WR

XOP

Ns-l <SRC> Get source operand address (see nextl

1 1001 AUMS Block fetch of source operand

1 1101 ST Output all zeros on address bus

1 1001 AUMS

1 0101 INTA R Fetch new WP from vector

1 1001 AUMS

1 1100 WP Output new WP on address bus

1 1001 AUMS

1 0110 WS W Save source address in WR 11

1 0101 INTA R Fetch new PC from vector

1 0110 WS W SaveoldWPinWR13

1 0110 WS W Save old PC in WR 14

1 0110 WS W Save old ST in WR15

1 0011 lAO R Fetch next instruction

1 1001 AUMS

XOR

Ns <SRC> Fetch source operand

1 0110 WS R Fetch dest'n operand from WR

1 0011 lAO R Fetch next instruction

1 0110 WS W

89

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES ICONCLUDED)

NUMBER BUS READ
OF STATUS OR

CYCLES CODE NAME WRITE COMMENT

EVAD (This instruction is available only in Macrostore)

Ns <SRC>' Fetch source operand

1 1001 AUMS

1 1001 AUMS Save Macrostore PC in WR4 of Macrostore

1 1001 AUMS Fetch user's PC from WR 14 of Macrostore

2 1001 AUMS Series of 2 consecutive AUMS cycles

IF TARGET OPCODE SOURCE ADDRESS IS'R +, GO TO LABEL 1

Ns-l <SRC> Get source address for target word

GO TO LABEL 2

LABEL 1:

1 0110 WS R Fetch source address from user's WR

2 1001 AUMS Series of 2 consecutive AUMS cycles

1 1001 AUMS Save address of user's WR in WR10

1 1001 AUMS

LABEL 2:

IF TARGET OPCODE DESTINATION ADDRESS IS *R +, GO TO LABEL 3

Nd-l <DST> Get dest'n address for target word

GO TO LABEL 4

LABEL 3:

1 0110 WS R Fetch dest' n address from user's WR

1 1001 AUMS Save address of user's WR in WR9

LABEL 4:

3 1001 AUMS Series of 3 consecutive AUMS cycles

1 1001 AUMS Save updated user PC in WR14 of Macrostore

1 1001 AUMS Restore Macrostore PC

2 1001 AUMS Series of 2 consecutive AUMS cycles

1 1001 AUMS Save dest'n address in WR7 of Macrostore

1 1001 AUMS Fetch next instruction

1 1001 AUMS Save source address in WR8 of Macrostore

• All cvcles output AUMS bus status code.

90

TABLE 20 - INTERRUPT AND MACROSTORE TRAP SEQUENCES

NUMBER BUS READ

OF STATUS OR

CYCLES CODE NAME WRITE COMMENT

INTERRUPTS

2 1001 AUMS Series of 2 consecutive AUMS cycles

1 1101 ST Output all zeros on address bus

1 0101 INTA R Fetch new WP from interrupt vector

2 1001 AUMS Series of 2 consecutive AUMS cycles

1 0101 INTA R Fetch new PC from interrupt vector

1 1100 WP Output new WP on address bus

1 0110 WS W Save old WP in WR13

1 0110 WS W Save old PC in WR14

1 0110 WS W SaveoidSTinWR15

1 0011 IAQ R Fetch next instruction

1 1001 AUMS

TRAP TO MACROSTORE (MID trap)

1 1001 AUMS

1 1110 MID Check for attached processor

1 1001 AUMS

1 1001 AUMS Save contents of main IR .in WR5

1 1001 AUMS

1 1001 AUMS If MID trap is due to 2nd word of instruction, seve PC-2 in WR14

1 1001 AUMS Save LOS and LDD flags and first word of 32-bit opcode in WR3

1 1001 AUMS Read Macrostore PC from vector

1 1001 AUMS

1 1001 AUMS Save user's WP in WR 13

1 1001 AUMS Save user's PC in WR 14

1 1001 AUMS Save user's ST in WR15

2 1001 AUMS Series of 2 consecutive AUMS cycles

91

TABLE 21 - ATTACHED PROCESSOR INTERFACE SEQUENCES

NUMBER BUS READ

OF STATUS OR

CYCLES CODE NAME WRITE

9900b TRANSFERS CONTROL TO AITACHED PROCESSOR (MID trap)

1 1001 AUMS

1 1110 MID

2 1001 AUMS

1 1101 ST

1 0101 INTA

3 1001 AUMS

1 1100 WP

1 0110 WS

1 0110 WS

1 0110 WS

1 1111 HOLDA

AITACHED PROCESSOR RETURNS CONTROL TO 99000

1 1111

1 0110

1 0110

1 0110

1 1101

1 0011

1 1100

ADVANCE INFORMATION
This document contains information on
a new product. Specifications are subject
to change without notice.

HOLDA

WS

WS

WS

ST

IAQ

WP

R

W

W

W

R

R

R

R

92

COMMENT

Check for attached processor

Series of 2 consecutive AUMS cycles

Output all zeros on address bus

Fetch WP from level-2 vector

Series of 3 consecutive AUMS cvcles

Output new WP on address bus

Save old WP in WR13

Save old PC in WR14

Save old ST in WR15

Release bus to attached processor

Last state of hold cycle

Fetch new PC from WR14

Fetch new ST from WR15

Fetch new WP from WR13

Output new ST on address bus

Fetch next instruction

Output new WP on address bus

11. TMS99105AJTMS99110A PRELIMINARY ELECTRICAL SPECIFICATIONS

11.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE
NOTED)t

Supply voltage, VCC (see Note 1)•...............••....... -0.3 to 7 V
All input voltages•......•......................•..... -0.3 to 20 V
Output voltages . • - 0.3 to 7 V
Continuous power dissipation••......................•..•..... 1 000 mW
Operating free-air temperature . • • . . • • . .. 0 °C to 70 °C

t Str beyond tho .. lI.ted under" Absolute Maximum Rating." may cau .. permanent damage to the device. This i. a stre •• rating only and func­
tional operation of the d.vice at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" .. ction of this
specification i. not implied. Exposure to absolute-maximum-rated conditions for extended periods may affact device reliability.

Note 1: All voltege value. are with re.pect to V SS

11.2 RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX UNITS
Supply voltage, VCC 4.75 5 5.25 V
Supply voltage, VSS 0 V
High-level input voltage. VIH (all inputs except CLKIN) 2 VCC+1 V
High-level Input voltage, VIH (ClKIN) 3.5 VCC+1 V
low-level input voltaga, Vil (all inputs except ClKIN) 1 0.8 V

low-level input voltage, Vil (ClKIN) 0.2 V
High-level output current, IOH (All outputs) 400 fAA
low-level output current. IOl (all outputs) 2'1' mA
Operating free-air temperature. T A 0 70 ac

*Output current of 2 mA is sufficient to drive 5 low-power Schottky TTL loads or 10 advanced low-power Schottky TTL loads (worst ca .. l.

11.3

VOH

VOL

VOL

10

II

ICC

CI

COB

Co

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED FREE-AIR TEMPERATURE (UNLESS
OTHERWISE NOTED)

PARAMETER TEST CONDITIONSl MIN TYP~ MAX UNIT
High-level output voltage VCC=MIN, 10l=MAX 2.4 V
low-level output voltage

VCC=MIN. 10l=MAX 0.5 V
all except BST(1-3), Rfii, iiiiEM
low-level output voltage,

VCC=MIN, 10l=MAX 0.6 V
(BST(1-3), R/W, MEM
Tristate (high-Impedance) output V =MAX I VO=2.4 V 20

fAA current (off) CC J VO-0.4 V -20
Input current VI-VSS to VCC 20 fAA
Supply current Vce-MAX 120 mA
Input capacitance (all inputs

15 pF
except addressfdata lines)

Addressfdata line capacitance f = 1 MHz, all other pins at 0 V 25 pF
Output capacitance (except

10 15 pF
address/data lines)

." .-
tFor conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions.

*AlltypicaivaluesareatVcc = 5V. TA = 25"C.

11.4 CLOCK CHARACTERISTICS

11.4.1

The TMS99000 has an internal oscillator and 4-phase clock generator controlled by an external crystal or resistor-capacitor
combination. Alternatively, the user can directly inject a frequency source into the XTAL1 input. The period of the
frequency source must be one-fourth the desired machine state time.

Internal Oscillator

The internal oscillator is enabled by connecting a crystal across XT AL 1 and XT AL2. The machine state time, \' is four
times the crystal oscillator period, 1/fx' The crystal should be a fundamental series-resonant type. Figure 33 presents the
circuit configuration for this mode of operation.

93
ADVANCE INFORMATION

This document contains information on
a new product. Specifications are subject
to change without notice.

TMS99105A
TMS99110A

XTAL1/CLKIN

crystal

XTAL2

NOTES: 1. The crystal should be a fundamental series..rasonant type operating at four times the machine state frequency.

2. Cl and C2 represent the total capecitanca on these pins, including strays and parasitics.

FIGURE 33 - INTERNAL OSCILLATOR

PARAMETER TEST CONDITIONS

Crystal frequency. f x 0-70 oC
C1. C2 0-70 oC

11.4.2 External Clock

MIN TVP MAX UNIT

24 MHz
5 pF

An external clock of frequency f. may be connected to the XTAL 1/CLKIN in place of a crystal or RC combination. The
period of the CLKOUT output signal will be 4/f •. Figure 34 shows the circuit configuration when an external clock is used_

PARAMETER MIN NOM MAX UNIT

fext External source frequency 12 24 MHz
t",- elKIN cycle time 41.25 83.33 ns

tr+ ClKIN rise time (see Note 1) 4 10 ns
tf+ ClKIN fall time (see Note 1) 4 10 ns

twH1 ClKIN high-level pulse width tcq,/2-trq, ns

twll ClKIN low-level pulse width tcq,/2-tft/> ns

Note 1: CLKIN rise and fall times are a function of V'H and V'L' For the times shown the V'H and V'L levels are as given under "Recommended Operating Conditions." If a

maximum 5 ns rise and fall time can be achieved, then the V,H and V'L levels may be standard levels of 2.4 V and 0.4 V respectively.

+5V

XTAL1

Crystal Oscillator nc XTAL2

FIGURE 34 - EXTERNAL OSCILLATOR

ADVANCE INFORMATION
This document contains information on

11 new product. Specifications are subject
to change without notice.

94

TMS99105A
TMS99110A

11.5 TIMING REQUIREMENTS OVER RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX UNIT

tad READY setup time prior to falling edge of CLKOUT 35 ns

ttl 1 READY hold time after falling edge of CLKOUT 0 ns

tsu2 Data setup time prior to falling edge of CLKOUT 30 ns

th2 Data hold time after falling edge of CLKOUT 0 ns

t sL 3 INTREQ, ~, APP setup time prior to falling edge of CLKOUT 40 ns

tsu4 HOLD setup time prior to falling edge of CLKOUT SO ns

th3 INTREQ, RESET, APP, HOLD hold time after fallina adge of CLKOUT 15 ns

tacc Access time, address valid to data valid at data setup time 3tc2/4-40 ns

~ed RD low until valid data required tc2/2-63 ns

11.6 SWITCHING CHARACTERISTICS OVER RECOMMENDED OPERATING CONDITIONS

PARAMETER

!l:2. CLKOUT cycle time (f(x) = crystal freq)

tr2 CLKOUT rise time

tf2 CLKOUT fall time

twH2 CLKOUT high-level pulse width

twL2 CLKOUT low-level pulse width

twH3 ALA TCH pulse width high

td1 Delay time, reference line to ALA TCH low

~2 Delay time, ref line to ALATCH high

td3
Delay time, ref line to MEM, SST, RIW

address, PSEL valid

~4
Delay time, ALA TCH low to address, PSEL

invalid

~z1 Delay time, ALA TCH to address hi-z

~5 Delay time, ref line to start of WE invalid

td6 Delay time, ALA TCH low to start of m; invalid

~7 Delay time, CLKOUT low to WE, RD high

~8 Delay time, ALATCH low to data valid

~9 Delay time, ref line to WE valid

'~10 Delay time, WE/IOCLK high to data invalid

td11
Delay time, CLKOUT low to data, PSEL,

BST, MEM, RIW invalid

td12
Delay time CLKOUT low to WE/IOCLK, RD

inactive

tdrde Delay time ref line to RD low

~z2 Delay time, ref line to R/W hi-z

~z3 Delay time, ref line to ALATCH hi-z

~(ravl Delay time, ref line to ALA TCH invalid

td13
Delay time, ALA TCH low to address, 1IiIE1IiI,
BST, RD, WE, RIW invalid

td14
Delay time ref line to address, MEM, BST.

RD. WR, R/IN invalid

TEST CONDITIONS

CL = 100pF
(See Figure 35)

95

MIN TYP MAX UNIT

4tc 1 or 4/fx ns

10 15 ns

10 15 ns

tc2/2-tr2 ns

tc2/2-tf2 ns

tc2/4-tr2 ns

tc2/4+ 13 ns

11 15 ns

13 15 ns

10 15 20 ns

20 30 35 ns

tc2/4 ns

10 24 30 ns

15 30 ns

20 30 35 ns

t,,2/4 + 13 tc2/4+20 ns

tc2/4-30 ns

tc2/4+5

0

tc2/4

10

ns

ns

tc2/4+40 ns

tc2/4 + 25 ns

tc2/4 + 25 ns

ns

ns

'tc2 /4 + 2O ns

ADVANCE INFORMATION
This document contains information on
a new product. Specifications are subject
to change without notice.

Test point

Diode

From output o---... --........... ----4 .. -----l!.-.... --....
under test

24K

+Vcc

2.4K

Diode.

FIGURE 36 - SWITCHING nMES LOAD CIRCUIT

"'twH1

CLKIN

II
~ twL1

.. 11 tf2 ~11 tr2
II II
II .. twL2 ., ..

CLKOUT [1 1.
I I
I 14 twH2

I
I
I- tc2

NOTES: 111 There I, no time reletionlhip ImpHed or specified between the Input clock and the output clock.
121 All timing reference poInts.re 10% and 90% points.

FIGURE 38 - CLOCK TIMING PARAMETERS

96

..
l\
I

"'1
I
I

-I

COMMON SIGNALS

t-tc2/4--1

CLKOUT\ l / t
td2-Jt;::td1---1 I I 1 t--tr2

ALATCH : i: '1t~ I I !*
---1Ij.-tWH3..ti:,.------------...... ,.·

, --.I /.- tf2,L-tsu 1 'I I I I

Ie .J n clock cycles
.. (-... ' In - 1 wait states)

I

READY. X~xxxX~XxxxxxX I I' IxXXXXxX
--' j- td3 I:..t J-th1

11;(I ',I,)c 8STI1-3). --"'\.
MEM.R/W valid code

-~
MEMORY READ CYCLE I I.. tacc -t' I I

I I I,. -I tdz1 ,I , I
I, I I th2~td11---;

td3~ ~ td4~ tsu2~ I !-

~~~=' 1 ~ addr~-hi-z-,;:.:a~ C 
I I tH3' -of -I 

1 ...-tdS.... t-'tded--t td7-

RD ] : ~ ~ l ~"'t-----
I" tr~e -t Htd12 

td8 I" , I--td11-----t 
MEMORY WRITE CYCLE : td4~ I I I 

~td3 I I I t-'td10.J 
~~~=' --:""'~ odd.... ~·-----v-al-id-d-~-ta---:-~X: 

WE]

I
RD 7 ' I I

,..:.--td9 --... ; t-td7-1

WE -7.,....r-:---td-5-~NMu~'------:-: --1111111'

td31 I-- l--i-td12

INTERNAL ALU CYCLE I
ADADTDARI ,II " ___ J~~--un-d-e-fin-e-d __)(~------u-n-de-fi-n-ed--------->e::

I

M.YlE 7 :
reference

line

FIGURE 37 - MEMORY AND INTERNAL CYCLE TIMING PARAMETERS

All timing reference points are' 0% and 90% points,

97

COMMON SIGNALS

i tc2/4 -t r- 14 -t n clock cycles
~ I 4- t,2 I, ~"'I"---I~t-(n wait states)

CLKOUT \ I I ',-. _--';'_--11 11=;""'---

t d2 -i _. I
I I - rtf2 I

ALATCH n. _______ I ______ ~---Jr
twH3 f.. -, I I...-t 1 I

I 1.---su ~

READY ~

BST(1-3)
KImir.RIW

1/0 INPUT CYCLE

ADDRI
DATA

110 OUTPUT CYCLE

ADDRI
DATA

4 td3 I I th1-l1--

~I I I I ---!..ftt. valid code I-X
I \--tdZ1--.1 td11:::1
I I I ~~~
I '-td4--t I I-tsu2-., I

:Dt I ~---hi-:---~ data IX--)(
td3 ~ .. r.....l...-tr~e .1 I ~td7

I : t': .. r----tc2+tded--...... ' ~

I ~I~ ~~ ~
I .t--td12

I I
I I
I ,
I .-.td4--t

=bt a:dress X
f...I- td3 L.-tdS--""

I
I-td11-f

td10 r--!
I valid data : I X
I I '
I I I
I I I
I H t d7

r-Id'--J : of-
... 1 .. -----tc2-----..... ~ ~"'~ ... 'F_---~fllaI·

refe:ence t-- td5 -I --.J I-
line reference ---, td 1 2

line

FIGURE 38 - I/O CYCLE TIMING PARAMETERS

All timing reference pOints are 10% and 90% points.

98

CLKOUT

INTREQ,
ICIO-3),
RESE'f.
NMi,Aiiji

HOLD

.. r----3tc2/4---.... J
I I

_I __ f tsu3 ~ ~'-__

I 1 ~th3

~~!~
1 I
I L.-- tSU4---, I

~ ~ I
reference

line

NOTE: The ClKOUT edge at which each of the input signals is sampled is defined in the section pertaining to that signal.

FIGURE 39 - INTERRUPT, HOLD AND APP TIMING PARAMETERS

I· tc2 -I
I I

CLKOUT I f \ I f
1 I- tdz3

I
ALATCH jJ :/

..
I

Shi-Z-1 ,
rtrav~

BSTI1-3), I r-tdZ1Jj
I ~ MEM,Ro, 17 I

We/CRUCLK, _ ~ hi-z
t--td13-i ~

ADDRESS, RIW L. td14 -I 1
I.
I

tdz2 -t
reference reference

line line

FIGURE 40 - HOLD CYCLE TIMING PARAMETERS
All timing reference points are 10% and 90% points.

99

I

I

/ CLKOUT
I
I
I
I ,

" hi-z
,

\ ALATCH I ,
I I
l .. tcl2 .. 1
I
I
I

~
MEM. BSTI1-31. I
WE/IOCLK. hi-z

I RD. RIW. valid

ADDRESS
I

I
, I

, teD .. ,

I
I

reference
line

FIGURE 40 - HOLD CYCLE TIMING PARAMETERS ICONCLUDED)

All timing reference points are 10% and 90% points.

100

12. TMS99000 MECHANICAL SPECIFICATIONS

12.1 TMS99105AITMS99110A - 40·PlN CERAMIC PACKAGE

1e~--------61.31 12.0201 MAX---------et~
~-. ----@l

~ ~

~ ~

L 16.24:1: 0.254 J 0) -----------------®

~ s:~::: 11201 MIN

~ fLANE T ~

0.26410.0101 NOMJL ~L~PlN SPACING 2.6410.100) T.P. ~
0.467:1: 0.078 ISH Note a) 1.27:t 0.264

10.018:1: 0.003) 10.060:t 0.010)

NOTES: a. Each pin canterllne Is located within 0.264 10.010) of Its true longitudinal position.
b. All linear dImensions a .. In mlnlmet .. s and perenthetlcal, In Inches. Inch dimensions

govern.

12.2 TMS99105A/TMS99110A - 40·PIN PLASTIC PACKAGE

0.81310.032) NOM
1.27:1:0.508

10.060:t 0.020)

,....-------63.0912.090) MAX--------...

EITHER.,--...... _...1

INDEX

fi. 15.24:1:0.254 fi. CD
0.508 10.020) ir I0.600:l:0.010)J

~ <= ~ MINr-------_·

~i ~- SEATING PLANE-4--

o 279 :I: 0 0781~ 0.457:1: 0.076 --II-" ~
10:011 :t 0:003) II 10.018:1:0.003) . I

PIN SPACING 2.5410.100) T.P.
ISee Note a)

NOTES: a. Each pin centerline is located within 0.254 (0.010) of Its trua longitudinal position.
b. Allline.r dimensions 8re in millimeter •• nd parenthetically In Inches. Inch dimensions

govern.

1011102

2.41 10.095)
1.40(0.065)

APPENDIX A
TMS99105A SUPPLEMENT

103

A. TMS99105A DESCRIPTION

The TMS991 05A is the basic member of the TMS99000 microprocessor family. The TMS991 05A offers the same
features as described in Sections 1 through Section 1 2. The only feature not implemented on the TMS99 1 05A is on­
chip Macrostore. However, extemal Macrostore may be utilized for user-implemented functions and instructions.

A.1 TMS99105A MACROSTORE OPERATION

The TMS991 05A may utilize external Macrostore by placing the TMS991 05A in prototyping mode (see Section
7.2.4.2). If no external Macrostore is to be implemented in the system, it is recommended that the TMS99105A be
placed in baseline mode (Section 7.2.4.3). If no external Macrostore is implemented on the TMS991 05A and the stan­

dard mode or prototyping mode is selected, the occurrence of a MID opcode will result in indeterminate operation.
This is due to the fact that a Macrostore vector will occur to non-existent Macrostore memory (see Section 7.3)
and potentially cause a system lockup.

104

APPENDIX B
TMS99110A SUPPLEMENT

105

B TMS99110A DESCRIPTION

The TMS9911 OA 16-bit microprocessor is a powerful member of the TMS99000 family that implements 12 single
precision floating point instructions, 2 memory mapper control instructions and a 32 X 32 signed integer mUltiply in­
struction. These powerful instruction set enhancements are implemented via the on-chip Macrostore memory space.
They are additions to the instruction set described in Section 10.

B.1 TMS99110A MACROSTORE OPERATION

With the instruction set extensions of the TMS9911 OA implemented in Macrostore, it is required that the
TMS99110A be generated in standard mode (see Section 7.2.4.1). If either the prototyping mode or baseline
mode of operation is selected, the instruction set extensions described in this section will not be operational.

B.2 TMS99110A INSTRUCTION SET EXTENSION SUMMARY

The TMS9911 OA implements the instructions listed Table B.l in addition to those listed in Section 10. Note that these
instructions are operational only when the TMS9911 OA is operated in the standard mode.

TASlES.1 - TMS99110A INSTRUCTION SET EXTENSION SUMMARY

MNEMONIC DESCRIPTION OPERATION *
lDD long Distance Source Update internal lDD flag
lOS Long Distance Destination Update internal LOS flag
AR Add Real FPAC + (SA,SA + 2) FPAC

SR Subtract Real FPAC - (SA,SA+2) FPAC

MR Multiply Real (SA,SA + 2) • FPAC FPAC

DR Divide Real FPAC I (SA,SA + 2) FPAC

LR load Real (SA,SA+2) FPAC

STR Store Real FPAC (SA,SA+2)

NEGR Negate Real - FPAC FPAC

CR Compare Real (SA,SA + 2) - (DA,DA + 2) set status

CIR Convert Integer to Real Convert (SA) FPAC

CER Convert Extended Integer to Real Convert FPAC FPAC

CRI Convert Real to Integer Convert FPAC to integer FPAC

CRE Convert Real to Extended Integer Convert FPAC to ex. integer FPAC
MMt Multiply Multiple (32 x 32) (SA,SA+2) • (DA,DA+2)

(DA,DA - 2,DA + 4,DA + 6

'Floating point accumulator IFPAC) is designated as workspace registers 0 and 1 of the current workspace.

t MM is not a floating pOint operation but is an addition to the TMS991 lOA instruction set.

B.3 TMS99110A MEMORY MAPPER CONTROL INSTRUCTIONS

General
Format:

The LOO and LOS instructions are provided for use in controlling a 16-register memory map file. These instructions are
implemented on the 99110 only.

These mapper instructions are intended to support the use of the TIM99610 (SN74LS610) memory mapper (see the
SN74LS610 data sheet).

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OPCOOE o o o o o o

OPCODE

MNEMONIC 0123456789 MEANING

LOS 0000011110 Long Distance Source

LDD 00000111 11 Long Distance Destination

The LOO and LOS instructions permit data to be accessed through the user's memory map while in the supervisor
mode. The PSEL pin will be inverted during the source (if LOS) or destination (if LOO) operand access cycles of the
following instruction, unless the addressing mode is register direct. When register direct addressing (TS = 0 or
TO = 0) is used for the source or destination operand fetch, PSEL is not altered.

106

Listed below are the effects when an lOO or lOS instruction foliows an lOS or lOO instruction. In general, only the first
two cases, lOO followed by lOS or lOS followed by lOO, are considered useful:

lOO -lOS: Both the source and destination memory cycles of the instruction that follows are long distance.
lOS-lOO: Same as lOO-lOS.
lOS -lOS: The first lOS has no effect; the source memory cycles of the instruction that follow are long distance.
lOO -lOO: The first lOO has no effect; the destination memory cycles of the instruction that follow are long
distance.

Interrupts are inhibited until after the next instruction.

An attempt to execute a long-distance instruction while in user mode (ST7 = 1) will be flagged as a privileged opcode
violation.

The lOS or lOO instruction has no effect if the source or destination addressing mode of the target instruction is
workspace register direct.

If the instruction to be long distanced is interruptible, the long distance information can be recovered upon return from the
interrupt. An example of an interruptible instruction is a block move with multiple source and destination operands to
which long distancing is applied. Typically, a checkpoint or loop count register keeps track of the number of moves
completed. If long distancing is not applied to either operand, the normal procedure, when an interrupt occurs, is to store
the loop count and other pertinent instruction status in a checkpoint register and decrement the program counter. After
the interrupt is serviced, execution continues from where it stopped. After the instruction is completed, the check point
register is set to - 1 or some other value to indicate that the instruction will be executed for the first time when it is next
encountered.

Several features have been incorporated into the lOO and lOS instructions to facilitate recovery from an interrupted
instruction when an lOO and/or an lOO instruction is active. Both the lOO and the lOS instructions save the address
plus 2 (main memory) of the first lOO or lOS in a possible sequence of lOO s and/or lOS s. Any Macrostore imple­
mented instructions, which could be long distanced and interrupted, must not accidentally destroy this data.

The three most significant bits of Macrostore location > 0006 (WR3 if WP = 0) are long distance status information as
shown in the following table. The fact that a long distance instruction is active may be determined by comparing the
contents of >0006 to the value> EOOO. If the comparison is greater than or equal, then the long distance instruction is not
active.

LONG-DISTANCE

FLAGS

012 MEANING
1 1 1 No long distancing in effect

1 1 0 Long distance source

1 01 Will never occur

100 Long distance source'

01 1 Long distance destination

010 Sequence: 1) LOO, 2) LOS (order is significant)

001 Will never occur

000 Sequence: 1) LOS, 2) LOO, or see Note. t

• A sequence of two LOS instructions has been encountered. If emulating the 990/12 version of LOS, the source operand access of the second LOS is controll·
ed by the first LOS to be long distance.

t The sequence LOS. LOO. LOS has been encountered. If emulating the 990/1 2 version of LOO and LOS, then the source operand access of the LOO is controll·
ed by the first LOS to be long distance.

The procedure for handling an interruptible instruction is relatively simple due to the information stored in locations> 0004
and >0006 (WR2 and WR3 if WP = 0). When an interrupt is detected by using one of the jump on interrupt instructions,
first do all necessary clean-up (such as updating the checkpoint registerls)), and compare Macrostore location >0006 to
value> EOOO to determine if a long distance instruction was active. If no long distance is active, then load the contents of
WR14 (used to return back to main memory) with the address of the start of the instruction. It may be necessary to save the
contents of WR 14 on entering Macrostore for this purpose because WR14 may be modified by executing the Macrostore
routine or by an EVAO instruction. If a long distance is active, then the contents of location >0004 must be decremented
by 2 and then loaded into WR 14 so that after returning with an RTWP (> 0380), the PC will point to the start of the string of
lOOs and/or LOSs. Since an interrupt caused the Macrostore routine to be exited, the interrupt vector will be taken
immediately upon return to main memory via the RTWP instruction. Upon returning back to Macrostore from the
interrupt(s), the PC will be initialized with the value at the time of Macrostore exit thus restarting the Macrostore routine.

107

The long-distance flags are automatically cleared if the exit from Macroatore is performed by executing the >0380
or >0382 form of RTWP but are NOT cleared If >0384 Is executed. The long-distance flags are also automatical­
ly cleared after the instruction following the LDD or LOS has been completed. Note that the long-distance flags
have no effect on the PSEL output during Macrostore accesses. Pm always represents the complemented value
of ST8 when executing out of Macrostore memory space. Note if an SOP or DOP bus status code is output while
in Macrostore, it will cause PSEL to flip if the corresponding LDD or LOS is active.

8.4 TMS99110A FLOATING POINT INSTRUCTIONS

The floating point package of the TMS9911 OA provides flosting point operations. The general method is to load the
Floating Point Accumulator (FPAC - RO,R1 of user's workspace) with one operand, perform the desired operation, and
then store the result found in the FPAC (see examples below). The floating point instructions are only available to the
TMS99110A when the processor is initialized in standard mode (Section 7.2.4.1). When in prototyping mode, the ex­
ecution of these opcodes will cause a trap to external Macrostore memory space for user defined opcodes. The user
should avoid the use of these opcodes to prevent possible conflicts with future TMS9911 OA floating point capability.
When in baseline mode, execution of these opcodes will cause a level 2 illegal opcode interrupt. The following is the
general format of a floating point number:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3rd Digit 4th Digit

Where:

Sgn - Sign ofthe number, 0 = Pos, 1 = Neg
Exponent- Exponent (radix 16) of the number+>40 (e.g., for the mantissa to be raised to the 2nd power, expo­

nent would be 2+>40 = >42)
Digits 1-6 - Mantissa of the number (in hex).

NOTE: The TMS9911,OA anuma, tha decimal point pl_ to be prior to the flrat digit of the mantleA. It aleo a_a. that the number Ie a floating poll
number and not zero, the flrat digit II non-zero. If a floating zero II to be rep,...nted, tha axponent should aleo be cleared (eat to 001. Otharwll
error. could result.

AR
SR
MR
DR
LR
STR
NEGR
CR
CIR
CER
CRI
CRE
MM

TABLE B.2 - TMS991 lOA FLOATING POINT FUNcnoNS

Add Reel
Subtrect Real
Multiply Raal
Divide Reel
Loed Real
Store Real
Negate Real
Compere Reals
Convert Integer to Real
Convert Extended Integer to Real
Convert Real to Integer
Convert Reel to Extended Integer
Multiply Multiple (32 bit Integer x 32 bit Integer = >64 bi general
source/destination

to FPAC
to FPAC
to FPAC
to FPAC
into FPAC
from FPAC
In FPAC
general source/dest
generel source to FPAC
in FPAC
in FPAC
in FPAC

To perform a floating pointfunction, the package uses RO and R1 of the user's workspace as a floating point accumulator.
All floating point operations (except for MM and CR) use the FPAC. To load the accumulator use the LR instruction or
manually move the desired operand into RD-R1. To store a result, the STR instruction could be used or the number could
be manually moved out (see example below).

LR *R4

ARR5
STR@ANS

EXAMPLE 1~ALTERNATE METHODS OF A SIMPLE OPERATION

Load FPAC

Do Add Read
Store Answer

108

MOV*R4,RO
MOV @2(R41.RO

ARR5
MOVRO.@ANS

MOVR1.@ANS+2

EXAMPLE 2-A MORE INVOLVED FLOAnNG POINT SEQUENCE

Suppose the following equation was to be evaluated and a 'lowest value calculated' parameter replaced if the result was
even smaller.

V1 * (- V2 - CONSTANT)

V3. (V4 + 2.)

Assuming the parameters were already off in memory some place, the following would be a possible solution.
(Note addressing modes)

LI RO,2 LOAD INTEGER 2 INTO FRAC (hi word only)

CIR RO CONVERT IT TO REAL (register direct)

AR *R2 ADD DENOMINATOR TERM V4 (indirect)

MR ·R3+ MULTIPLY DENOMINATOR TERM V3 (indirect auto-inc)

STR RS STORE TEMP RESULT (register direct)

LR @CONST GET CONSTANT (symbolic)

CER CONVERT EXTENDED INTEGER TO REAL (FPAC content)

NEGR NEGATE FPAC CONTENTS

SR @OFFSET(R4) SUBTRACT NUMERATOR TERM V2 (indexed)

MR "R5 MULTIPLY NUMERATOR TERM VI (indirect)

DR RS DO THE DIVISION (indirect)

CR RO,@LOW COMPARE VS LOWEST (direct & symbolic)

JGT LOOP JUMP IF NOT LOWER (OR EQUAL)

STR @LOW STORE NEW LOWEST (symbolic)

LOOP •••••• (etc.etc.etc.)

B.4.1 Dual-Operand Floating Point Instructions with Multiple Addressing Modes for the Source Operand (9911 OA only)

General
Format:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 o o o OPCODE Ts S

The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES

0 0,1, ••. ,15 Workspace register

1 0,1, ... ,15 Workspace register indirect

2 0 Symbolic

2 1,2, ... ,15 Indexed 1

3 1,2, ... ,15 Workspace register indirect autoincrement 1,2

NOTES: 1. Workspace register 0 may not be used.

2. The workspace register is incremented by 4.

RESULT STATUS

OPCODE COMPARED BITS

MNEMONIC 4&6789 MEANING TOO AFFECTED DESCRIPTION

AR 110001 Add Real Yes 0-4 FPAC + (SA,SA+2) _FPAC

SR 110011 Subtract Real Yes 0-4 FPAC - (SA,SA+2) -FPAC

MR 110100 Multiply Real Yes 0-4 (SA,SA+2)· FPAC -FPAC

DR 110101 Divide Real Yes 0-4 FPAC I (SA,SA+2) -FPAC

LR 110110 Load Real Yes 0-2 (SA,SA+2) - FPAC

STR 110111 Store Real Yes 0-2 FPAC -ISA,SA+2)

CIR· 110010 Convert Int to Real Yes 0-4 Real Representation of (SA)-

FPAC

• CIR is actually a single operand function; however. its operand is pointed to by SA. not necessarily the FPAC.

109

1.4.2 Single-operand Floating Point In8tructions

General
Format:

MNEMONIC

CRI
NEGR
CRE

CER

o
o o

OPCODE
11

34

00
01
10

11

2 3 4 5
o o

MEANING

Convert Real to Int
Negate Real

Convert Real to Ext Int

Convert Ext Int to Reel

6
o

7 8 9 10 11 12 13 14 15
·0 o o o o o OPCD o

RESULT STATUS
COMPARED BITS

TOO AFFECTED DESCRIPTION

Vea G-4 Int Repr8Hntation of FPAC - FPAC
Vea 0-2 - FPAC-FPAC
Vea G-4 Ext Int R.~ntation of FPAC-

FPAC
Vea G-4 Real R~tation of FPAC -

FPAC

1.4.3 Dual-Operand floating Point ln8tructlona with Multiple Add ng Modaa for the Source and De8tinatlon
Operands

General
Format:

o

I ~ o
o

2 3 4 5
o o o 0
o o Td

6 7 8 9 10 11 12
o o o 0 I

D Ts I
The addressing mode for the operands is determined by the Tx fields ex being either D or 5).

Tx X ADDRESSING MODE

0 0.1 •...• 15 WorkIpace registar
1 0.1 •...• 15 WorkIpace regietar indirect
2 0 SymboUc
2 1.2 •.•.• 15 Indexed
3 1.2 •..•• 15 WorkIpace register Indirect autoinc..-nt

NOTES: 1. Warkapac:e regia18r 0 may not be UI8d.

13 14
OPCODE

s

NOTES

1
1.2

2. The workepace register is Incremented by 4 unllll X - 0 andopcode -0010IMM) In which _ the workepace register is incremented by 8.

OPCODE RESULT STATUS
1111 COMPARED BITS

MNEMONIC 234& MEANING TOO AFFECTED DESCRIPTION

15

CR 0001 Compare Reala No G-4 (SA.SA+2) - (DA.DA+2)SetSta-
tus

MM 0010 Multiply Multiple Vea G-4 (SA.SA+2) . (DA.DA+2) -
(DA.DA + 2.DA + 4. DA + 6) (Un-
signed.lnteger)

110

B.4.4

BIT

STO

STl

ST2

ST3

ST4

ST5-

ST15

Status Bit Summary for Floating Point Instructions

The following table summarizes the conditions that set the status register bits during execution of floating point instruc­
tions.

TAILE B.3 - ADDITIDNS FOR THE 99110 VERSION

CONDITION TO SET BIT TO 1

NAME INSTRUCTION (OTHERWISE SET TO 01

Logically AR,SR,MR, If result is not 0

greater than DR,LR,STR,

NEGR,CIR,

CER,CRI,

CRE,CR

MM Cleared unconditionally

Arithmetic AR,SR,MR If MSB of result = 0,

greater than DR,LR,STR and result is not 0

NEGR,CIR,

CER,CRI,

CRE

CR If (SA) > IDAl

MM Cleared unconditionally

EquallTB AR,SR,MR If result = 0

Indicator DR,LR,STR,

NEGR,CIR,

CER,CRI,

CRE,MM

CR If (SAl = IDAl

Carry out LR,STR,NEGR Unaffected

AR,SR,MR,DR If exponential overflow occurs

MM,CR Cleared unconditionally

CIR,CER Set unconditionally

CRI,CRE If real source cannot be represented if the format selec-

ted

Arithmetic LR,STR,NEGR Unaffected

Fault AR,SR,MR,DR If exponential over/underflow occurs

MM,CR, Cleared unconditionally

CIR,CER

CRI,CRE If real source cannot be represented if the format selec-

ted

All Floating Unaffected

Point

Instructions

111/112

November 1982
MP009

TEXAS
INSTRUMENTS

Post Office B(), 144 3 Houston Texas 77001
Semiconductor Group Printed in U.S.A .

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	xBack

