Intel® Itanium® Architecture
Software Developer’s Manual

Volume 2: System Architecture

Revision 2.1

October 2002

Document Number: 245318-004

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Intel486, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Copyright © 2000-2002, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

ii Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

In

tel.

Contents

Part I: System Architecture Guide

1

4

About this ManuUal ... e 2:1
1.1 Overview of Volume 1: Application Architecture...........ccccceeeiiiiiiiiii, 2:1
1.1.1 Part 1: Application Architecture Guideccooviiiiiii e, 2:1
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture...................... 2:2
1.2 Overview of Volume 2: System Architectureccccooiiiii i 2:2
1.2.1 Part 1: System Architecture GUIdeccueiiiiiiiiii e 2:2
1.2.2 Part 2: System Programmer's GUide..............oueiiiiiiiieiiiiieeeeeeeeee e 2:3
L2 T Y o] o 1= o Lo oY SRR 2:4
1.3 Overview of Volume 3: Instruction Set Reference...........ccccovveiieiiiiiiicc i 2:4
1.3.1 Part 1: Intel® Itanium® Instruction Set Descriptionsccccoeveeeivieeeeennenn. 2:4
1.3.2 Part 2: IA-32 Instruction Set DeSCriptions...........coeeiiiiiiiiiiiieeeeee e 2:4
14 JLIC=1 4 21T Te] [T | 2SRRI 2:5
1.5 Related DOCUMENTES ...ttt e e e e e e e e e et eeeeeeaaaeeean 2:5
1.6 REVISION HISTOTY ... 2:6
Intel® Itanium® System ENVIronmentcccooiieieeiieeieree e e 2:9
2.1 Processor BOOt SEQUENCE........uuu i e e e e e e e e e e e e e e e e eeaaaees 2:9
22 Intel® Itanium® System Environment OVErVIEWccccceeiiieiie i 2:10
System State and Programming Model............cccoiiiiiiiiciic e 2:13
3.1 Privilege LEVEISoooi et 2:13
3.2 RS T= T4 =1 -1 (o o S SSSR 2:13
3.2.1 Instruction Serializationooooiiiiiiiiiiiie e 2:14
3.2.2 Data Serializationcoiiiiiiiiii e 2:14
3.2.3 Definition of In-flight RESOUICESccooiiiiiiiiii 2:15
3.3 SYSIEM SHAE .o ———————— 2:15
3.3.1 System State OVEIrVIEWciiiiiiiiiiie e 2:16
3.3.2 Processor Status Register (PSR)........ccooiiiiiiii e 2:18
3.3.3 CoNntrol REQISTEIS.....ciii i ——————— 2:24
3.3.4 Global Control REGISIErScoiiiiiiiiieiiiiiee e 2:25
3.3.5 Interruption Control RegiStersuvvuiiiiiieiiecccceeeeeee e 2:29
3.3.6 External Interrupt Control Registers ... 2:34
3.3.7 Banked General REGIStErscooiuiiiiiiiiiiiiieeie e 2:35
Addressing and Protection ..o 2:37
4.1 Virtual AdAreSSING ... e e e ———————————————— 2:37
4.1.1 Translation Lookaside Buffer (TLB).........ccueeiiiiiiiiiiiiiiiiiie e 2:39
4.1.2 Region Registers (RR)uuiiiiiiieiiiiie it 2:48
4.1.3 ProtecCtion KEYScoooiiiiiiiiiiiiiii et 2:48
4.1.4 Translation INStrUCIONSuuiiiiiiiiiiii e 2:50
4.1.5 Virtual Hash Page Table (VHPT)......cccooiiiiieeee e 2:51
4.1.6 VHPT HaSNING ...t e e 2:54

Volume 2: Intel® Itanium® Architecture Software Developer’s Manual iii

intel.

4.1.7 VHPT ENVIFONMENT. ...t 2:56
4.1.8 Translation SEarChingc.eeiii i 2:57
4.1.9 32-bit Virtual AddreSSiNgccoiiiiiiiiie et 2:60
4.1.10 Virtual AlIaSINg.....cccoiiieieieeeeeeeee e e e e e e e e e e ee e e —————— 2:61
4.2 PhYSICal AQAIrESSINGceeiiiuiiiieiiiiiei ettt e et e e e e st e e e e e sabeeeeeeaane 2:61
4.3 Unimplemented Address BitSuuuuiiiiiiiiie e 2:61
4.3.1 Unimplemented Physical Address Bits.........ccoccoeeiiiiiiiiiini e, 2:62
4.3.2 Unimplemented Virtual Address BitS...........cccoiiiiiiiiiiiiiiiiiiecis 2:62
4.3.3 Instruction Behavior with Unimplemented Addresses............cccoevvvvvvvvivnnnnnnn. 2:63
4.4 MemOry ALHDULES ... 2:63
4.4.1 Virtual Addressing Memory Attributeseuceiiieiiiiiiie e 2:63
4.4.2 Physical Addressing Memory Attributes..........oooiiiiiiiii 2:64
4.4.3 Cacheability and Coherency Attributeoccooeiiiiii 2:65
4,44 Cache Write Policy AfHDULE............cooiiiiieeeeee e 2:66
445 Coalescing ArDULEooiiiiiiii i 2:66
4.4.6 Speculation AtDULESeeiiiiiiii e 2:67
4.4.7 Sequentiality Attribute and Orderingccccoeieriiiiiiiiie e 2:69
4.4.8 Nota Thing Attribute (NaTPage)........cooiiieiiii e 2:72
4.49 Effects of Memory Attributes on Memory Reference Instructions 2:73
4.410 Effects of Memory Attributes on Advanced/Check Loadscccccceevnnnee. 2:73
4.4.11 Memory Attribute Transition ... 2:74
4.5 Memory Datum Alignment and ATOMICILYuvveeiiiiiiie e 2:77
= BT o o K 2:79
5.1 Interruption DefiNItioNScoooii i 2:79
5.2 Interruption Programming MOdel...........oooiiiiiiiiii e 2:81
5.3 Interruption Handling during Instruction Execution...........cccccoooeiiiiiie e 2:82
54 PAL-based Interruption Handlingcoooiiiiiiiiii e 2:84
55 IVA-based Interruption Handlingoooiiiiriiiiiiiece e 2:85
5.5.1 Efficient Interruption Handlingcceeeiiiiiiiiiiiiceee e 2:86
5.5.2 Non-access Instructions and Interruptionsvvviiiiiiiiiiieeeeeeeeees 2:87
5.5.3 SiNGle STEPPING ..eeeeiiieieiiie i 2:87
5.5.4 Single Instruction Fault SUPPresSSIoNccuviiiiiiiiiiii e 2:88
5.5.5 Deferral of Speculative Load Faultscccccovviiiiiiiieiceeeeeee 2:88
5.6 INterruption PriOMItIESccco e s 2:91
5.6.1 1A-32 Interruption Priorities and ClasSes...........uueeveeieeeeeiiiiiiiiiiiieeeeeeeee e, 2:94
5.7 IVA-based Interruption VECIOrSccoooiiiiiiiieerce e 2:96
5.8 L] (T]) 3 USRS 2:97
5.8.1 Interrupt Vectors and PrioritieS.........ccoooeveeiiiiiiiiiees e 2:101
5.8.2 Interrupt Enabling and Masking...........c..ueuuiiuiiiiiiniiiiee e 2:102
5.8.3 External Interrupt Control RegISterscoeeieiviiiiiiiiiieee e 2:104
5.8.4 Processor INterrupt BIOCKccoooiiiiiiiiiii e 2:109
5.8.5 Edge- and Level-sensitive INterrupts..........cccueeviiiiiiinieeee e, 2:113
Register Stack ENGINe ... e 2:115
6.1 RSE and Backing Store OVEIVIEW..........ceeiiieeiiii ittt s s ae e 2:115
6.2 RSE INnternal State........ooooiiiiiiiiiiii e 2:117
6.3 Register Stack PartitionSoooiiiiiiiiiie e 2:117

Volume 2: Intel® Itanium® Architecture Software Developer's Manual

10

Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

6.4 RSE OPEration ..ot e e e e 2:119
6.5 [T = 0 o o1 (o) R 2:120
6.5.1 Register Stack Configuration Registercccceviiiiiiiiiiiee 2:120
6.5.2 Register Stack NaT Collection Register..........ccccooiiiiiriiiiiiccccccee e 2:121
6.5.3 Backing Store Pointer Application Registers..........ccooveiiiiiiiiiins 2:122
6.5.4 RSE Control INStruCtionScoiiiiiiiiiiiiiiiie e 2:123
6.5.5 Bad PFS Used by Branch Return.........coccuiiiiiiiiiiiiiii e 2:124
6.6 RSE INEEITUPLIONS ... e 2:125
6.7 RSE Behavior on INterruptions.............uuieiiiiiiii i 2:126
6.8 RSE Behavior with an Incomplete Register Frameccccccviiiiin e, 2:127
6.9 RSE and ALAT INTEracCioNooceeiiieiiiiie e 2:127
6.10 Backing Store Coherence and Memory Orderingccccoeeeeeeiiiiiiiiiiiieieeeeeeeeeee e, 2:128
6.11 RSE Backing Store SWItChesooiiiiiiiiiii e 2:128
6.11.1 Switch from Interrupted Context.........ccccvviiiiiiiiiiiiiie e, 2:129
6.11.2 Return to Interrupted Context..........cooooiiiiiiii e 2:129
6.11.3 Synchronous Backing Store Switchccccccccoiiiiiiiiii 2:129
6.12 RSE INItI@liZationoeeeiiiiieeee e 2:130
Debugging and Performance MoNitoring......cccccceeevecccsemeemrrierins s sscsssssesee s e s e s snnns 2:131
71 DEDUGGING et 2:131
7.1.1 Data and Instruction Breakpoint Registers.........c.cccccciiiiiviiiieiiieiiiiiin, 2:132
7.1.2 Debug Address Breakpoint Match Conditions............cccccooiiiiiiiiniiiineens 2:134
7.2 Performance MONITOMNGuuviiiiiiee e e e e e e eanaaaneees 2:135
7.21 Generic Performance Counter Registersooooiiiiiiiiiiiiiee 2:136
7.2.2 Performance Monitor Overflow Status Registers (PMC[0]..PMCI3)).......... 2:139
7.2.3 Performance Monitor EVENES..........cccciiiiiiiiiii e 2:140
7.2.4 Implementation-independent Performance Monitor Code Sequences....... 2:141
Interruption Vector Descriptions ... iiss s s s re s s e e s e e e e e e 2:145
8.1 Interruption Vector DeSCrIPHIONSovvvviiiiciee e 2:145
8.2 ISR S BttNGS ..t ————————— 2:145
8.3 Interruption Vector Definitioneeeiiei e 2:146
1A-32 Interruption Vector DescCriptionscccciiiiiiiiissis e e e e e e e 2:187
9.1 D A I = o T o o LSRR 2:187
9.2 IA-32 Interruption Vector Definitionscooo oo 2:187
Itanium®-based Operating System Interaction Model with IA-32 Applications............ 2:213
101 INStrUCHioN Set TranSIiiONScocii i e 2:213
10.2 System Register MOGElo 2:213
10.3 1A-32 System Segment RegiStersoooiiiiiiiiiiiiii e 2:215
10.3.1 1A-32 Current Privilege LEVEIccooiiiieeeeeeeeeeee e 2:216
10.3.2 1A-32 System EFLAG RegiSter.......ccuvuiiiiiiiiiiiii e 2:217
10.3.3 1A-32 System REQISErS........uvuiiiiiiiiiiiie e 2:220
10.4 Register Context Switch Guidelines for IA-32 Code.......ccccvvviiiiiiiiiiiiiiiieeeeeeeee, 2:224
10.4.1 ENtering [A-32 PrOCESSES.......uuuiiiiiiiiiiie ettt 2:224
10.4.2 EXitiNg [A-32 PrOCESSESeuviiiiiiiiiiiiieee ettt 2:225
10.5 1A-32 Instruction Set Behavior SUMMArycccccoiiiiiiiiiniiie e 2:225

11

vi

intel.

10.6 System Memory MOEL...........oooiiiiiee e 2:231
10.6.1 Virtual Memory References..........ooueiiiiiiiiiiiiiii e 2:231
10.6.2 1A-32 Virtual Memory Referencesccccvveiiiiiii e 2:232
10.6.3 1A-32 TLB Forward Progress Requirementscccceeevviviieeeeeiivvnennnnnnn, 2:232
10.6.4 Multiprocessor TLB Coherencycooiviiiiiiiiiiieii e 2:233
10.6.5 1A-32 Physical Memory References...........ccocuveeeeeeieeiiiiiiiiiiieeeeeeeeeeeee e 2:233
T10.6.6 SUPEIVISOr ACCESSES ... ieeieieiiiiieae e e e e e e ettt eeaaaa e e e e e e aannenntaereeeaaaaeeaaaaannns 2:234
10.6.7 Memory AIGNMENTooiiiiiiiiiie e 2:234
10.6.8 ALOMIC OPEratioNS........uvvviiiiiiiieeee e e e e e e e e e e 2:235
10.6.9 Multiprocessor Instruction Cache Coherency............occcceeeiiiiiieiiiiiiieeees 2:235
10.6.10 1A-32 MemOry OrderiNg.......ccciieeeeeiieiicieiee et ee e e e e e re e e e e e e e e e eeaanns 2:236
10.7 1/O Port SPace MOEl ..ot 2:238
10.7.1 Virtual I/O Port ADAressing.......cccouiiiiiiaiiiiiiece e 2:239
10.7.2 Physical I/O Port AdAreSSing........ccccuuueiiiaiiiiiiieeiiiiieeeessieeeeeeaneeeeea e aeeeee s 2:241
10.7.3 1A-32 IN/OUT iNSTrUCIONS ...coeiiieieeiieeeeeeee e 2:241
10.7.4 1/O Port Accesses by Loads and StOres...........ccceveeiiiiiieiesiiiieee e 2:242
T10.8 DebUG MOGEL e e e e e e e e e 2:243
10.8.1 Data Breakpoint Register MatChing..........cc.eooviiiiiiieen 2:244
10.8.2 Instruction Breakpoint Register Matching..........ccccoooooeiiiiiiiii, 2:245
10.9 INterruption MOooiiiiiiieeeee e 2:245
10.9.1 INterruption SUMMAIYcoiiiiiiiiiieiiiee e e 2:246
10.9.2 1A-32 Numeric Exception Model.............ouevviiiiiiiiiiiiiieieeeeeeeeeeen 2:247
10.10 Processor Bus Considerations for IA-32 Application Support..........ccccoeveeeiennennnn. 2:248
10.10.1 IA-32 Compatible Bus TransactionS.........ccccccveeieeiiiiiiiiiiiicceece e 2:248
Processor AbStraction LaYerccuiiiceeeeeeeiiinniissns s sssssss s s s ssssssssssssssnssnsssnnns 2:249
11.1 FIirmware MOAEL............eeeeeee e e e e e e e e 2:249
11.1.1 Processor Abstraction Layer (PAL) OVErvieWoccooeeeiiiiieeeeiiiiiieeees 2:251
11.1.2 Firmware Entrypointsoooviiiiiiicie e 2:252
11.1.3 PAL ENtrypOiNtS...ccoi it 2:253
11.1.4 SAL ENtrYPOINTS....uiiiiii it s 2:253
11.1.5 OS ENYPOINES ..oeeeiiiiieiiee e 2:253
11.1.6 Firmware AdAress SPaACEccoeiiiiiiiieiiiiiiee e 2:254
11.2 PAL POWEN ON/RESEL ...coi ittt e e 2:259
I B e B] PR 2:259
11.2.2 PALE_RESET EXit State......eeviiiiiiiiee e 2:259
11.2.3 PAL Self-test Control Word ..o 2:264
1 G T Y/ - Tor o 11 Lo @ 1= o USSR 2:265
T1.3.1 PALE_CHECK .. .ottt ettt e e enaeee e 2:265
11.3.2 PALE_CHECK EXit Stateoooviiiiieeeeee e 2:266
11.3.3 Returning to the Interrupted ProCessuuvciiiiiiiiiiiiiieen, 2:273
11.4 PAL Initialization EVENTS.....coooiiiiiiie e 2:274
T1.4.1 PALE_INIT oottt ettt e e e e e e s st e e e s st ae e e e e enbaaeeeeanes 2:274
11.4.2 PALE_INIT EXit Statecccciiiieiieeeie et 2:274
11.5 Platform Management Interrupt (PMI) ... 2:278
T1.5.1 PMIOVEIVIEW ..ottt ettt e e e e e e e e e e e e ssas b aeataanaeaaeeeeeennnnes 2:278
11.5.2 PALE_PMI EXit STAevvviiiiiiiiiiie et 2:279
11.5.3 Resume from the PMI Handler.............ciii e 2:280

Volume 2: Intel® Itanium® Architecture Software Developer's Manual

Part Il:

11.6 Power ManagemeEntcoooiiiiiieee et 2:281
117 PAL GIOSSAIY ...ttt ettt e s rbe et e e e e ate e e e e e s abeeeaeeaan 2:282
11.8 PAL Code Memory Accesses and ReStriCtioNSccccveiiiiieie i 2:284
T1.9 PAL PrOCEAUIESttt ettt ettt e e e e e e e e et e e eeaaaee e s 2:284
11.9.1 PAL Procedure SUMMAIY..........eoiiiiiiiieeiiiie ettt snaeeeeae s 2:285
11.9.2 PAL Calling CONVENEIONSceiiiiiiieiieiiieiiee et 2:288
11.9.3 PAL Procedure Specificationscooe i 2:294
System Programmer’s Guide
About the System Programmer’s GUIideccccccmmemrirmiiiiiisccsssssnsere e sssssssr e s e e ne s 2:377
1.1 Overview of the System Programmer’'s GUIdecoouiieiiiiiiiiiiiiie e 2:377
1.2 Related DOCUMENTScoeiiieee e e e e e e e e e e e e 2:379
MP Coherence and Synchronizationccccccciiiniinin e 2:381
2.1 An Overview of Intel® [tanium® Memory Access Instructionsc...ccceeeeveeenee. 2:381
2.1.1 Memory Ordering of Cacheable Memory References............ccccccoeiveeeene 2:381
2.1.2 L0oads @nd SEOrESuueiiiiiiiiiiaiai et a e e e e e 2:382
2.1.3 SEMAPNOTES ..ot 2:382
214 MemOrY FENCES ...t 2:384
2.2 Memory Ordering in the Intel® Itanium® Architecture.............cccooecvveeeiiieicieeeee, 2:384
221 Memory Ordering EXECULIONScoiiiiiiiiiiiiiiiiiiee e 2:384
2.2.2 Memory AHIDULES ... 2:396
2.2.3 Understanding Other Ordering Models: Sequential Consistency
AN TA-32 . e 2:397
2.3 Where the Intel® Itanium® Architecture Requires Explicit Synchronization 2:398
24 Synchronization Code EXamples ... 2:399
DA S T T o1 o 1o o U 2:399
2.4.2 Simple Barrier Synchronizationccceeiiiiiiieiiieeee e 2:400
2.4.3 DeKker's AlgOrithmcoooiiiiieie e 2:401
244 Lamport’s AlGOrthMcooo i 2:402
25 Updating Code IMageS.........eiiiiiiiiiie et 2:404
2.5.1 Self-modifying COUEuuiiiiiiiiiiiii i 2:404
252 Cross-modifying Codecoouiiiiiiiiiiiiieee e 2:405
2.5.3 Programmed [/Ocuuiiiiiiiiiiiie ettt e e 2:406
2.5.4 DM Lo e ettt e e e e ettt e e e e e areaaeeaans 2:408
2.6 =] 1= =Y oSO 2:408
Interruptions and Serialization............ccor s 2:409
3.1 L= 4 01T Te] (e) 2R 2:409
3.2 Interruption VecCtor Table..........oovviiiiiiiice e 2:410
3.3 INterruption HanAIErSooveeeiiee e e e e e e e e e e eeaens 2:411
3.3.1 Execution ENVIrONMENt ... 2:411
3.3.2 Interruption Register State ... 2:412
3.3.3 Resource Serialization of Interrupted State.............ccccooiiiiieei i, 2:413
3.3.4 Resource Serialization upon rfi ..o 2:414

Volume 2: Intel® Itanium® Architecture Software Developer’s Manual Vi

intel.

3.4 Interruption Handlinge e 2:414
3.4.1 Lightweight INterrupltionsoeiiiiiiii e 2:414

3.4.2 Heavyweight INterrupltions.............eeieiiiiiiiiiiii e 2:415

3.4.3 Nested INterruptionsvueeeiiiiie e 2:417

4 Context ManagemeNnt...........cooiiiiiiiciccsieeceirr s ssssser e e e s e s s ssmr e e e s e e s ee s s s nnnnnnnes 2:419
4.1 Preserving Register State across Procedure Callscccoceiiiiiiiiiiiniiiineeeee, 2:419
4.1.1 Preserving General ReQiStersoovvimimiiiiiiiiiiiciie e 2:420

4.1.2 Preserving Floating-point Registersccccviiiiiiiiii e 2:420

4.2 Preserving Register State in the OS ... 2:421
4.2.1 Preservation of Stacked Registers inthe OS................ci e, 2:422

4.2.2 Preservation of Floating-point State inthe OSccco i, 2:423

4.3 Preserving ALAT CONEBIENCYooiiiiieeeiiee ettt e e e 2:424
4.4 SYSIEM CallS ... 2:424
441 epc/Demoting Branch Return ..o 2:425

N o) (= 4 o SRR RR 2:425

4.4.3 NaT Checking for NaTs in System Callscccccoeiiiiiiiiiiiiieieee e 2:426

4.5 Context SWILCNING ... e e 2:426
4.5.1 User-level Context SWItChiNgcooiiiiiiiiii e 2:426

4.5.2 Context Switching in an Operating System Kernel...............ccccccciiiins 2:428

5 Memory Management ... 2:429
5.1 Address Space MOELccuuiiiiiiieieeee e 2:429
o 0t It B - (=T [o o - P 2:429

5.1.2 ProtecCtion KEYSuueiiiiiiiiiiiie it a e e e 2:431

5.2 Translation Lookaside Buffers (TLBS)ccceueiiiiiiiieieee e 2:433
5.2.1 Translation Registers (TRS)occuuiiiiiiiiiie e 2:433

5.2.2 Translation Caches (TCS) ...cccooiciiiiiiiieiie e 2:435

5.3 Virtual Hash Page Table ... 2:438
5.3.1 SOt FOMMAL ..ot 2:439

5.3.2 LONG FOrMat.. ... 2:440

5.3.3 VHPT UPAAESeeiiiiiiiiiieee e e e e 2:440

54 TLB MiSS HaNAIEIS ...ttt e e e e e e e e e e e e e e e e e eeeaeeeeenes 2:440
5.4.1 Data/lnstruction TLB MisS VECIOrSccoovviiiiiiiiiiiiiee e 2:441

5.4.2 VHPT Translation VECIOr.......ccooo oo 2:442

5.4.3 Alternate Data/Instruction TLB Miss VecCtors...........cc.ueeeveeiiiiiiiiiiiiiieeeee, 2:443

5.4.4 Data Nested TLB VeCtOr ... 2:443

545 Dirty Bit VECION ..o 2:444

5.4.6 Data/lnstruction Access Bit VECIOr.......cooooiiiiiiiiiii e 2:444

5.4.7 Page Not Present VecCtOr.........ccuuiiiiiiii e 2:444

5.4.8 Data/lnstruction Access Rights Vector...........ooooiiiiiiiieeee 2:444

5.5 RS T0 o] o= To 114 T SRR 2:444
6 Runtime Support for Control and Data Speculation...........cceuccerccccciciicccrn e 2:447
6.1 Exception Deferral of Control Speculative Loads............cc.c.ccoooiiiiiiiiiiiiiiieeeeeceeeee, 2:447
6.1.1 Hardware-only Deferral ... 2:448

6.1.2 Combined Hardware/Software Deferralcccccvviiiiiieeiiiiiiieeee, 2:448

6.1.3 Software-only Deferral..............cccoiiiiiiiiiiii e 2:448

viii

Volume 2: Intel® Itanium® Architecture Software Developer's Manual

10

6.2 Speculation Recovery Code Requirementsceeviiiiiiiiieiieeeieceeeeeeenn 2:448
6.3 Speculation Related Exception Handlers ..o, 2:449
6.3.1 Unaligned HandIer ... 2:449
Instruction Emulation and Other Fault Handlerscccoiiiniininccieeeen 2:451
71 Unaligned Reference Handler................oo e 2:451
7.2 Unsupported Data Reference Handler ..o 2:452
7.3 Illegal Dependency Fault..............oooiiiiiiiiiie e 2:452
7.4 o] o T =] =1 o o] o 2:453
Floating-point System Software ... 2:455
8.1 Floating-point Exceptions in the Intel® Itanium® Architecturecccceeeunee.. 2:455
8.1.1 The Software Assistance Exceptions (Faults and Traps)...........ccccceeunnnnee 2:455
8.1.2 The IEEE Floating-point Exception Filter............ccccooiiiiiiiiiiieee, 2:458
8.2 IA-32 Floating-point EXCEPLIONSoevviiiieiiicciicciee e 2:460
1A-32 Application SUPPOTIt ... s sr e e e e e e e s nnnn 2:461
9.1 Transitioning between Intel® Itanium® and IA-32 Instruction Setsccceeeneee. 2:461
9.1.1 IA-32 Code Execution Environmentscocceeeiiiiiiiiii e 2:462
1S Bt 0 o - U ERPSER 2:462
9.1.3 UMPE .o a e r e e e araaaraae s 2:463
9.1.4 Procedure Calls between Intel® Itanium® and IA-32 Instruction Sets......... 2:463
9.2 IA-32 Architecture HandIersoooo oo 2:464
9.3 Debugging I1A-32 and Itanium®-based Codecceeveriieiiiieiiecee e 2:466
9.3.1 Instruction Breakpoints...........coooiiiriiiiiiiiiceccce e 2:466
9.3.2 Data BreaKpoints 2:466
9.3.3 SiNGIE SIEP TraPS oo i i e e e ———— 2:466
9.3.4 Taken BranCh Traps et eeer e e e e e e e e e e 2:466
External Interrupt Architecture ... s e e 2:467
101 External INterrupt BaSICSc.oooiiiiiiiie e 2:467
10.2 Configuration of External Interrupt VECtorsccccceeieiiiiiiiiiice e, 2:468
10.3 External Interrupt Maskingcooueiiiiiiiiii e 2:468
L0 TR B | o O SRR 2:468
10.3.2 IVR Reads and EOI WIHES.......ooiii i 2:469
10.3.3 Task Priority Register (TPR)........cooiiiiiiiiiiiie e 2:469
10.3.4 External Task Priority Register (XTPR)ccccvieiiiiiiiiiiiieieeeeeeeeeeeee 2:469
10.4 External Interrupt DElIVEIYcoo i 2:469
10.5 Interrupt Control Register Usage EXamples...........ccccciieiiiieieeciiiiccieeeeeeeeee e 2:471
1051 NOLALON .t a e e e 2:471
10.5.2 TPR and XPTR Usage EXampleccoocuiiiiiiiiiiiiiiiiieceeeee e 2:471
10.5.3 EOI Usage EXample........ccc.uuiiiiiiiiiiiiee et 2:472
10.5.4 IRR Usage EXample ... 2:473
10.5.5 Interval Timer Usage EXampleouvuiiiiiiiiiiiiiie e 2:473
10.5.6 Local Redirection EXample.........uiiiiiiiiiiiiiieeeeeeeeeee e 2:475
10.5.7 Inter-processor Interrupts Layout and Exampleccocoiiviiiieieienenennnn. 2:475
10.5.8 INTAEXAMPIEeeeeiiiiieee e 2:475

Volume 2: Intel® Itanium® Architecture Software Developer’s Manual ix

1 1/O ArChit@CUKE ... e e e 2:477
111 Memory Acceptance Fence (MF.a)cc.eeeiiiiiiiiiii e 2:477
T1.2 1O PO SPACE... ettt e e e e e e e e e e e e 2:478
12 Performance Monitoring SUPPOTrt..........cceciiiiicccciiecrrrrrrrr s cssssene e ssnmnnne e e 2:481
12.1 Architected Performance Monitoring Mechanisms.............ccoeeviiiiiiiiinniiien e, 2:481
12.2 Operating SysStem SUPPOIT.....ccooiiiiiiie e 2:482
13 Firmware OVEIVIOWcciiiiiicciieeemrrrniinis s s e e s s s s s sssn s s s e e e s e es s s s s smmnsnnesnnnssssnas 2:485
13.1 Processor Boot FIOW OVEIVIEWueeiiiiiiiiiiiiiiiee e 2:485
13.1.1 Firmware BOOot FIOWuuiiiiiiiiie e 2:485
13.1.2 Operating System Boot Steps........coovvviiiiiiiiiiiiiiiie e, 2:487
13.2 Runtime Procedure CallSooo i 2:490
13.2.1 PAL Procedure CallS...........ueeiiiiiiiiieeiiie it a e e 2:490
13.2.2 SAL Procedure CallSt 2:492
13.2.3 EFIProcedure Callsot 2:492
13.2.4 Physical and Virtual Addressing Mode Considerations...............cccevvvvinnnee. 2:492
13.3 Event Handling in FirMWareouiiiiiiiie e 2:493
13.3.1 Machine Check Abort (MCA) FIOWSccuuviiiiiiiiiiiieiieeee e 2:493
13.3.2 INIT FIOWS ettt ettt ettt e e e e s et e e e s et e e e e s annraeeeeaans 2:496
13.3.3 PMIFIOWS....ceiiiiiiiiiie ittt ettt e e ettt e e e e s et e e e s ante e e e e e nnnraeaeeanns 2:497
A Lo T L= - T4 o]] [P 2:499
A.1 OS Boot Flow Sample COAEccooeiiiiiiieeeeeeeee e 2:499
Figures
Part I: System Architecture Guide
2-1 System Environment BoOt FIOWouuiiiiiiiiiiie e 2:10
2-2 Intel® Itanium® System ENVIrONMENTcooiiiiiiiiiiie e 2:11
3-1 System ReGiStEr MOELooooiiieeeeee e 2:17
3-2 Processor Status Register (PSR).........uiiiiiiiiiiee e 2:18
3-3 Default Control Register (DCR — CRO)......coiiuiiiiiiiiieeee e 2:26
3-4 Interval Time Counter (ITC — ARA4)........ooo e 2:27
3-5 Interval Timer Match Register (ITM — CRT) ..ooiiiiii e 2:27
3-6 Interruption Vector Address (IVA — CR2) ... 2:28
3-7 Page Table ADAress (PTA — CRB8)cooo oot 2:28
3-8 Interruption Status Register (ISR — CRI7)oiiiiiiie e 2:30
3-9 Interruption Instruction Bundle Pointer (IIP — CR19) ... 2:31
3-10 Interruption Faulting Address (IFA — CR20)coooiiiiiieeeeeeee e 2:32
3-11 Interruption TLB Insertion Register (ITIR)oooiiiiiiiiii e 2:32
3-12 Interruption Instruction Previous Address (IIPA — CR22)coviiiiiiiiiciee e 2:33
3-13 Interruption Function State (IFS — CR23)......ccooiiiiiiieeeee e 2:34
3-14 Interruption Immediate (IIM — CR24).........uuiiiiiiiie ettt ee e e e e e e e e e e nnnees 2:34
3-15 Interruption Hash Address (IHA — CR25)cooiiiiiiiii e 2:34
3-16 Banked General REGISTEIScciiiii it e e e e e e e e e e e e e e ee e aanes 2:35
4-1 VirtUal ADArESS SPACESceiiiiiiiiiie ettt s ettt ettt e s nn b e e e e s nntbeeeeesnnneeeeean 2:38
4-2 Conceptual Virtual Address Translation for Referencescccccciiiiiiiiiiii e 2:39
4-3 TLB Organizationcooiiiiiieeeeeeeeee et e e e e e e e e e s e e e e e e e e e e aaaas 2:39
X Volume 2: Intel® Itanium® Architecture Software Developer's Manual

4-4
4-5
4-6
4-7
4-8

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
6-1
6-2
6-3
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
9-1
9-2
9-3
10-1
10-2
10-3

Conceptual Virtual Address Searching for Inserts and Purgescccccoeeviiiiiiiieiiiiieiiinnnnnn. 2:43
Translation INSertion FOrmMatooouiiiiiii e e 2:44
Translation Insertion Format — NOt Presentc.ouiiiiiiii e 2:45
Region Register FOrmatooooiiiiice e 2:48
Protection Key Register FOrmMat ...t 2:49
Virtual Hash Page Table (VHPT) ... 2:51
VHPT Short FOrMaAL ..o eeee e e e e e e 2:52
VHPT Not-present Short FOrMat..... ..o e e 2:53
VHPT LONG FOMMAL ...ttt et e s e e e 2:53
VHPT Not-present Long FOrmat...........oooimiiiiiiiice e 2:54
Region-based VHPT Short-format Index FUNCLONcueiiiiiiiiiiiii e 2:55
VHPT Long-format Hash FUNCLON ... 2:55
TLB/VHPT SEAICHciiiiiiiiie ettt bttt bb e b e e st s nee e 2:58
32-bit Address Generation using addp4ooouiiiiiiiiii s 2:60
Physical Address Bit FIeldScooiiiiiii e 2:62
Virtual Address Bit FIelds 2:62
Physical AddresSing MEMIOTYcoouiiiiiiiiiiee ettt e et e e e ebeeeeee e 2:64
Addressing Memory AHIDULES ..o 2:65
Interruption ClassifiCationoouiiiiiii e 2:81
INErrUPLiON PrOCESSINGeeiiiiiiiiii ettt e e e e bee e e e e 2:83
Interrupt ArchiteCture OVEIVIEW e 2:98
PAL-based INterrupt STatesoouiiiiiiiee e 2:100
External INterrupt StatesS.......ooi i 2:100
LOCAI ID (LID — CRBA) ...ttt ettt ettt e e e et e e e te e e et e e e ae e e e aneeeeneeeeamneneanneean 2:104
External Interrupt Vector Register (IVR — CRB5)cooiiiiiiiiiiiiiiiiee e 2:105
Task Priority Register (TPR — CRBB)ccuuuiiiiiiiiiiieeeeiie e 2:106
End of External Interrupt Register (EOI — CRB7)coooiiiiiiiiiiiiiiiiie e 2:106
External Interrupt Request Register (IRR0-3 — CR68, 69, 70, 71) .ovvvveveeeeeeeiiiciieeeeee 2:107
Interval Timer Vector (ITV — CRT72) ... ettt 2:107
Performance Monitor Vector (PMV — CRT73)uiiiiiiie e 2:107
Corrected Machine Check Vector (CMCV — CR74) ... 2:108
Local Redirection Register (LRR — CR80,81)coiiiiiiiiiiiiiiiieeeee e 2:108
Processor Interrupt Block Memory Layoutoooiiiiiiiiiiiiiie e 2:110
Address Format for Inter-Processor Interrupt MeSSagesccceeveeiiiiiieeiiiiiee e 2:110
Data Format for Inter-Processor Interrupt Messages...........cccovuiieiiiiiiiiiii e 2:110
Relationship Between Physical Registers and Backing Store...........ccccoooioiiiiiiiiiiiiiiieee 2:116
Backing Store Memory FOrMat..........ooooiiiiiiiiiiie e 2:116
Four Partitions of the Register Stack..........cooouiiiiiiiiic e 2:118
Data Breakpoint Registers (DBR)oooiiiiiiiiii e 2:132
Instruction Breakpoint Registers (IBR)cc.uuiiiiiiiiiiiiiiiiiiee et 2:132
Performance Monitor Register Set............ovi i 2:136
Generic Performance Counter Data Registers (PMD[4]..PMD[P]) ...cceeeiiiieiiiiiieiieeeeeaae e, 2:136
Generic Performance Counter Configuration Register (PMC[4]..PMCIp])cccovvevrerimrennnnn. 2:137
Performance Monitor Overflow Status Registers (PMC[0]..PMC[3]) ..eeevrreeeeeeeniiiiiiiieeeeee. 2:139
Performance Monitor Interrupt Service Routine (Implementation Independent)................... 2:141
Performance Monitor Overflow Context Switch Routinecccccciiiiii, 2:143
1 I =T o TN o o = SR 2:187
IA=32 Trap GO ... ittt e e e et e e et et e e e e et e e e e aeeeeeaaaaaeaaeaaeeees 2:187
T 4 (=Y o =T o] 0o T [PPSR 2:208
IA-32 System Segment Register Descriptor Format (LDT, GDT, TSS)coooviiiieiiiiiiieenenn. 2:215
[A-32 EFLAG REQGISIEN ...ttt e e e e e e e e e e e e 2:217
Control Flag Register (CFLG, AR27) ...t 2:220

Volume 2: Intel® Itanium® Architecture Software Developer’s Manual Xi

10-4

10-5

10-6

10-7

11-1

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48

Xii

intel.

Virtual Memory AdAreSSIiNgcccieeiiiiie s 2:231
Physical Memory AdAreSSiNgGcuu ittt e 2:233
1L @ N o] A o F= Lot 1Y o o = 2:239
1/O Port Space AdAreSSINg.......ccuuuuuiiiiiiiiiiaae ettt e e et eeea e e e e e e e e enben b reeaeaaaaens 2:239
FIrmware MOGEIoeeiiiiiiee e e e e e e e e e et te e e e e e e e e e e nnnnenaeeaeaeas 2:250
Firmware Services MOAEL. e e e e e e e e as 2:251
Firmware Entrypoints Logical Modelooommmiiiiiiii e 2:252
Firmware AddreSS SPACEcooi ittt e e e e e et e e e e e e e e e e e e ennennenneneeeeaaens 2:255
Firmware Address Space with Processor-specific PAL_A Components.............c.ccccceeeeen. 2:256
Firmware Interface TabIe ... e 2:257
Firmware Interface Table ENtry ... 2:258
SALE_ENTRY State Parameter........ ..o 2:261
Self Test State Parameter..... ..o 2:262
Self-test CoNtrol WOKdot e e e e e e e e e e e e eeas 2:264
Processor State Parameter... e 2:268
Processor Min-state Save Area Layout.............ouuiuiiiiiiiiiii e 2:271
Processor State Saved in Min-state Save Area ... 2:272
SALE_ENTRY State Parameter........ ... 2:273
Processor State Parameter....... ... i 2:275
SALE_ENTRY State Parameter........ oo 2:277
VLI = 01 (Y7 o To [(SRR 2:278
oA S =1 (Y PSP 2:281
operation Parameter LayOut............oooiiiiiiiiii e 2:299
config_info_1 RetUrnN Value ... e 2:302
config_info_2 REIUIN VaAlUEoo oot e e e 2:304
config_info_1 RetUrN ValUe............ooiiiiii et 2:307
config_info_2 RetUrN ValUe ... 2:307
config_infO_3 REIUIN VaAlUEoo oot e e e e e 2:307
Layout of line_id RetUrN ValUEcooueiiiiiii e 2:309
Layout of proc_n_log_info1 Return Value ... 2:312
Layout of proc_n_log_info2 Return Value..............uueeiiiiiiiiiiiiiieiciiiie e 2:312
Layout of line_id RetUrN ValUEocueiiiiii e e 2:314
Layout of platform_info Input Parameter ... 2:316
1/0O Size and Type Information Layout..........ccooeiiiiiiii e 2:331
Layout of power_buffer Return Value ... 2:333
Layout of log_overview Return Value ... 2:336
Layout of proc_n_log_info1 Return Value...............uueeiiiiiiiiiiiiiiiicciiie e 2:336
Layout of proc_n_log_info2 Return Value ..o 2:337
Pending Return Parameter e 2:338
1eVEI_INAEX LAYOUL ...t e e e ee ettt s e e e e e e e e e e e e e aeenaaaaaees 2:342
Cache_ChECK LAYOUL.........ueiiiiiiiiiiee ittt e e e e e e e e bt e e e s s nnbeee e e eaees 2:345
TLB_CheCK LayOUL..... ...ttt e e e e e e e e e et e e e e e e e e e e e e eanennnes 2:346
BUS CheCK LAYOULciiiiiiiiiie ettt e et e e et e et e e e eneeeeas 2:347
Reg_File_CheCK LayOuLccooiiiiiiiiiiiiee e 2:348
(UE=T o o T e g1 Tor G = 1 o 11 | S 2:350
Layout of attrib Return ValUuecooiiiiiii e 2:354
Layout of PM_info RetUrN ValUEoooiiiiii e 2:355
Layout of hints RetUrN ValUeoo e 2:365
Layout of test_info ArQUMENTcooi i 2:367
Layout of test_param Argument...........oooiiiiiii s 2:368
Layout of min_pal_ver and current_pal_ver Return Valuesccccccooiiiiiiiiiiiiiiiiiiieeeee. 2:369
Layout of tC_info REIUIN VAUuiiiiiie et 2:370

Volume 2: Intel® Itanium® Architecture Software Developer's Manual

intel.

11-49
11-50
11-51

Part Il:

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
5-1
5-2
8-1
13-1
13-2
13-3
13-4
13-5

Layout of vm_info_1 RetUrN ValUeeueeiii i 2:372
Layout of vm_info_2 Return ValUeooiiiii e 2:373
Layout of TR_valid RetUrn ValUec..uiiiiiii e 2:374
System Programmer’s Guide

Intel® [tanium® Ordering SEMANLICSccueiiiiiiieie e 2:386
Interaction of Ordering and Accesses to Sequential Locations............cccceeeeiiiiiiiiiiiiiiiiinennn, 2:397
Why a Fence During Context Switches is Required in the Intel® Itanium® Architecture...... 2:398
S To] T o Tod [Q0o o [N USSR 2:399
Sense-reversing Barrier Synchronization Codeueuviiiiiiiiiiiiiiie e 2:401
Dekker’s Algorithm in @ 2-Way SYSIEM.......ccoiiiiiiiiieeeee e 2:402
Lamport’s AIGOFTNIMt e e e e e e 2:403
Updating a Code Image on the Local ProCESSOr..........ccoiiiiiiiiieeeeeeeeee e eee e 2:404
Supporting Cross-modifying Code without Explicit Serializationcccoeeeiiiiviieennn. 2:405
Updating a Code Image on a Remote ProCessor.........ooiuiviiiiiiiiiiiii e 2:407
Self-mapped Page Table.........uuuu e ————— 2:439
T8 o] o1=Te 19T PRSP OOURRUR 2:445
Overview of Floating-point Exception Handling in the Intel® Itanium® Architecture.............. 2:457
FIrMWare MOGEL.........cooii e e e e e e e e 2:486
Control Flow of Boot Process in a Multi-processor Configuration................ccccccvvviviieeeenn.n. 2:488
Correctable Machine Check Code FIOWueiiiiiiiiii e 2:494
Uncorrectable Machine Check Code FIOWoooiiiiiiiiiiiiiiie e 2:494
INTT FIOW ettt ettt e ettt e e s e mb et e e e ettt e e e e e sbteeeeeeeabseeeeeeanbeeaesaanes 2:497

Tables

Part I: System Architecture Guide

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14

Processor Status Register INStruCtioNSoouuiiiiiiiii e 2:18
Processor Status Register FIeldscoooiiiiiiiiieee et 2:19
CONMIOl REGISTETSceiiiiiiii ettt e ettt e e e enb e e e e e sabeeeeeannee 2:24
Control Register INSrUCIONSoiiiiiiii e 2:25
Default Control Register FIelds..........coiii it aaa e 2:26
Page Table AAAress FIeldSouiii e 2:28
Interruption Status Register Fields ..o 2:30
ITIR FIEIAS .ottt e e bt nre e e e 2:32
Interruption Function State Fields...........cooiiiii e 2:34
Purge Behavior of TLB INStrUCIONS........cc.uuiiiiiiiii e 2:43
Translation INterface FIeldSoooiiiiiiiii e 2:44
Page AcCeSS RIGNESoooiii e 2:46
Architected Page SiZEeSooo i 2:47
[T [o) o I S T=To 153 (=T gl =1 (o £ PSSR 2:48
Protection Register FIeldsu i 2:49
Translation INSIIUCHIONSooiiiii e 2:50
VHPT LoONG-fOrmMat FiElASccoiiiiiiiiie ittt e e e e e e e e e 2:53
TLB and VHPT Search FauItsoocuuiiiiiiie et 2:59
Virtual Addressing Memory Attribute ENCOdiNgscooiiiiiiiiiiiiiiiiiieceeee e 2:64
Physical Addressing Memory Attribute ENCOAINGScevvvuiiiiiiiiiiiieeeeeeeeeeeeeee e 2:65
Permitted SPECUIATIONoiuiiiiiiiie e 2:68
Register Return Values on Non-faulting Advanced/Speculative Loads..............ccccceeeenneee 2:69
Ordering Semantics and INStrUCiONSuuviiiiiiiiii e 2:70

Volume 2: Intel® Itanium® Architecture Software Developer’s Manual xiii

4-15
4-16
5-1
5-2
5-3
5-4
5-5
5-6

5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2

7-4
7-5

7-7
8-1

8-3
8-4

9-2

9-3

9-4

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
11-1
11-2
11-3

Xiv

intel.

Ordering SEMANTICScceiiiiiice et e e e e e e e e e e e e aa e e e et e e e e e ae i —————————— 2:70
ALAT Behavior on Non-faulting Advanced/Check LOads...........cccueeviiiiiiiiiiiiniiiiieie e, 2:74
ISR Settings for Non-access INStruCtioNScooiiiiiiiiiiiiii e 2:87
Programming MOEISooooiiiieiei et e e e e e e e e e e e e e e e e eeeeeaaaaas 2:89
Exception QUAlifiCatiON.........coii e 2:89
Qualified EXception Deferral........ ..o 2:90
SpontanEoUS DEFEITAliii i et ————— 2:91
T 0= 5 U] o) T) I 4 o 41 =T3S 2:92
Interruption Vector Table (IVT) ... et 2:96
Interrupt Priorities, Enabling, and MaskKing.........cccooiiiiiiiiiiiiiiiesree e, 2:101
External Interrupt Control REGIStErsuuiiiiiiiie e 2:104
[Tor= | I 10 I 11 o USSR 2:105
Task Priority Register FIeldsooooiiriiiiieeee e 2:106
Interval Timer VECtOr FIeldsoooo e e e e e 2:107
Performance Monitor Vector Fields 2:108
Corrected Machine Check Vector Fieldsueiiiiiie e 2:108
Local Redirection Register Fields. ... 2:108
Address Fields for Inter-Processor Interrupt Messagesoocuvevieiiniiiiiiiiiiieeec e, 2:111
Data Fields for Inter-Processor Interrupt Messages.............ooovvveiiiiiiciiiiiie e, 2:111
RSE INternal STate.eeeiiiiiiiie et e e e e e e e e e ennennes 2:117
RSE Operation Instructions and State Modification ..., 2:119
RSE MOdES (RSC.MOUE)eiiiiiiiiiie ettt st e e e e sann e e e e s anneeaens 2:120
Backing Store Pointer Application Registers ... 2:122
RSE Control INSrUCHIONScooii et e e e e e e e e e e e ennnennes 2:123
RSE INterruption SUMMAIYouuiiiiiiiiieieiee ettt e ettt e e e s ae e e e e s aneeeee s 2:126
Debug Breakpoint Register Fields (DBR/IBR)...........uuiiiiiiiiiiiieiiiiiiiee e 2:132
DebUQG INSIFUCIONScoiiiiie ettt e e e e 2:133
Generic Performance Counter Data Register Fields............ccccccoiiiiiiiiiinieeee 2:137
Generic Performance Counter Configuration Register Fields (PMC[4]..PMCI[p])............... 2:137
Reading Performance Monitor Data Registers. ... 2:138
Performance Monitor INSTIUCHIONSuuiiiiiie e 2:138
Performance Monitor Overflow Register Fields (PMC[0]..PMCI[3]) ----uuueeeemmmmieeeeaeeeeiiinens 2:140
Writing of Interruption Resources by VECIOr.........ccuuviiiiiiiiiiiiii e 2:146
ISR Values on INTEITUPLIONooueiiiiiiiieicee et eeee e e 2:147
ISR.code Fields on Intel® [tanium® Trapscccoeeieiiiiiiee e 2:149
Interruption Vectors Sorted Alphabeticallyeeiiiiiii s 2:149
Intercept Code DefinitioNot 2:208
Segment Prefix Override ENCOAINGSc..ooiiiiiiiiiiiiiiee e 2:208
Gate Intercept Trap Code Identifier.............eeieeeiii e 2:209
System Flag Intercept Instruction Trap Code Instruction Identifiercccccvvveevreenennnn. 2:210
IA-32 System Register Mapping........oocuueeiiiiiiiiie e 2:214
IA-32 System Segment Register Fields (LDT, GDT, TSS)...ccuiiiiiiiiiiiiiiiiiiiiiee e 2:215
IA-32 EFLAG Field Definitionoiiiiiiiie e 2:218
IA-32 Control Register Field Definitionc..eoiiii e 2:220
[A-32 INSrUCHION SUMMIAIY ...ooi it e e e e e e e e e e e e aa e e e e e e e e e annnennes 2:226
Instruction Cache Coherency RUIES...........cooiiiiiiiiiie e 2:236
IA-32 Load/Store Sequentiality and Ordering...........ccoueiiuiiiiiiiiiiiieiee e 2:236
IA-32 Interruption VeCtor SUMMANYooiii it e e e e e e e e e 2:245
[A-32 INterruption SUMMEIYeeiiiiiiiiieie et et e et e e e s rae e e e e s s nneeeaeas 2:246
I I YoV I8 o1 PP RPN 2:258
fUNCHON FIeld ValUES ...t 2:261
STAtUS FIEIA VAlUES ... e aeeennnnnnnennan 2:261

Volume 2: Intel® Itanium® Architecture Software Developer's Manual

11-4

11-5

11-6

11-7

11-8

11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53

State FIeld ValIUES ... 2:263
Processor State Parameter Fields. ... 2:268
Software Recovery Bits in Processor State Parameter ..., 2:269
fUNCHON FIeld ValUES ... e e e e 2:273
Processor State Parameter Fields. ... 2:276
fUNCHION Field VAlUES ... e e e e e e 2:277
PMI Events and Priortiese et 2:278
PMI Message Vector ASSIGNMENES.coiiiiiiiiiiiiiiiee ettt rbeee e 2:279
PAL Procedure Index ASSIGNMENT........cooiuiiiiiiiiiiiiiie ettt 2:285
PAL Cache and Memory ProCedUres..............oooiiiiiiiiiiiiiiie e e 2:285
PAL Processor Identification, Features, and Configuration Proceduresccco....... 2:286
PAL Machine Check Handling ProCceduresccoooieiiiiiiiiiiiiieee e 2:287
PAL Power Information and Management Procedurescccoooeeevieeiiieiiiieiiiniiccceeee e, 2:287
PAL Processor Self Test ProCedures 2:287
PAL SUPPOIt ProCEAUIES ...ttt e e e e e e e e e e e eeeeaaaaeeens 2:288
State Requirements for PSRo 2:289
DefiNition Of TEIMIS .t e et e e e e e e e e e e e e e eeeeeeeaeeeeaan 2:290
System Register CONVENTIONSocuiiiiiiiiiiiiec e 2:291
General Registers — Static Calling Conventionccccceeieiiiiiiiiiiiie e 2:292
General Registers — Stacked Calling Conventions............ccccoiuiiiiiiiiiiiie e 2:292
Application Register CoNVENtIONS. i 2:293
Processor BUuS FEAtUIESuu e e e 2:295
Cache_type ENCOTINGuiiiiiiiiiii ettt e e e s 2:298
Cache Line State When inV = ... 2:299
Cache Line State When iNV = 1. ... e 2:299
Cache Memory AHDULESeiiie e 2:303
Cache STOre Hints ..ot e e e e e eas 2:303
(0= Vot g LT I = To I o 11) RS 2:303
PAL_CACHE_INIT level Argument ValUuesccooiiiiiiiiiiiiiii e 2:305
PAL_CACHE_INIT restrict Argument Values ... 2:305
IA-32 System Environment Entry Parameters..........ccoccoooiiiiiee i 2:320
MP INformation Table ... e e e e e e e 2:322
SAL /O Intercept Table 2:323
IA-32 Resources at IA-32 System Environment ENtry.........cccccoooiiiien e 2:323
Register Values at IA-32 System Environment Terminationcccooiei i 2:324
1/O Detail Pointer DeSCIIPHIONcoiiiiiie et e e e e e 2:331
1/O Type DefiNItiON ...t e neeeas 2:331
1@ ST 43 = {1 011 o] o OSSPSR 2:331
Pending Return Parameter Fields ... 2:338
101 (oI (g Lo L= A £= | [V L= 2 2:342
LY 2 I o L= G o =Y o S 2:343
err_type_INAEX ValUES......ooo it e e e e eas 2:343
error_info Return Format when info_index = 2 and err_type_index =0..........ccccccvvvveeenenn. 2:344
(07 Vo LY O 1= o1 Q11 (o - 2:345
TLB_CHECK FIEIASeeiiiieeeieiiee ettt e e e s e e e e e e e snnnaeeeean 2:346
= T0 S O 1=t =Y o O RRERRR 2:347
Reg_File_CheCk FIeldsc.uuiiiiiiiiee e 2:349
UArCh_CheCK FIeldS.coo i 2:350
e 0 o TN 11 o SRR 2:355
PM_bBUFfEr LAyOUL ... e 2:355

Volume 2: Intel® Itanium® Architecture Software Developer’s Manual XV

11-54
11-55
11-56

intel.

ProcCeSSOr FEAUIES ..o e e e e e e e e e e e e e e e e e e aeeees 2:360
info_request RetUIN ValUe..... ... e e e 2:364
RSE Hints IMplementedo e e e e e 2:365

Part Il: System Programmer’s Guide

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
3-1
4-1
4-2
5-1
6-1
9-1

XVi

Intel® Itanium® Architecture Provides a Relaxed Ordering Modelcccoeeveiiniiinnnnn. 2:386
Acquire and Release Semantics Order Intel® Itanium® Memory Operations..................... 2:386
Loads May Pass Stores to Different LOCationsccceeviiiiiiiiiiiiiiiiicieeeeeee e, 2:387
Loads May Not Pass Stores in the Presence of a Memory Fence..........cccccccvviiieiiennne. 2:388
Dependencies Do Not Establish MP Orderingccoooiiiiiiiiiiiiiicceeee e, 2:388
Memory Ordering and Data DEPeNdENCY...........cccooiiiiiiiiiiieieeee e e e 2:389
Memory Ordering and Data Dependency Through a Predicate Register........................... 2:390
Memory Ordering and Data and Control Dependenciescoeuvviueiiiiiiieieieieeeeeeeeeeeeeans 2:390
Memory Ordering and Control DEPENAENCYccooeeiiiiiiiiiiieie e 2:391
Store Buffers May Satisfy Loads if the Stored Data is Not Yet Globally Visible................. 2:391
Preventing Store Buffers from Satisfying Local Loadscoeviviiiiiiiiiiiiiiieeeeeeee, 2:393
Bypassing to a Semaphore OPerationcccooiiiiiiiiiiiiiiieeee e e e 2:394
Bypassing from a Semaphore Operationccooiiiiii i 2:394
Enforcing the Same Visibility Order to All Observers in a Coherence Domain 2:395
Intel® Itanium® Architecture Obeys Causalitycoouveiiiiiieiie e 2:396
Potential Pipeline Behaviors of the Branch at x from Figure 2-9.............cccooiiin. 2:406
Interruption Handler Execution Environment (PSR and RSE.CFLE Settings) 2:411
Preserving Intel® Itanium® General and Floating-point Registers..............ccccoveeeeeeeinnea. 2:419
Register State Preservation at Different Points inthe OS............ooo s 2:422
Comparison of VHPT FOrmMatscccoooiiiiiii et 2:439
Speculation Recovery Code ReqQUIr€mMENTScoevviiiiiiiiiiiiiiiiiiiieeee e 2:449
IA-32 Vectors that Need Itanium®-based OS SUPPOItccveeecueeeeeeieeeee e 2:465

Volume 2: Intel® Itanium® Architecture Software Developer's Manual

intgl.

Part I: System Architecture
Guide

intel.

About this Manual 1

1.1

1.1.1

The Intel® Itanium® architecture is a unique combination of innovative features such as explicit
parallelism, predication, speculation and more. The architecture is designed to be highly scalable to
fill the ever increasing performance requirements of various server and workstation market
segments. The Itanium architecture features a revolutionary 64-bit instruction set architecture
(ISA), which applies a new processor architecture technology called EPIC, or Explicitly Parallel
Instruction Computing. A key feature of the Itanium architecture is IA-32 instruction set
compatibility.

The Intel® Itanium®™ Architecture Software Developer’s Manual provides a comprehensive
description of the programming environment, resources, and instruction set visible to both the
application and system programmer. In addition, it also describes how programmers can take
advantage of the features of the Itanium architecture to help them optimize code.

Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level resources,
programming environment, and the IA-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Ttanium®

Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of the
architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by applications and the
memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of Itanium
application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the [tanium floating-point architecture
(including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System Environment”
describes the operation of IA-32 instructions within the Itanium System Environment from the
perspective of an application programmer.

Volume 2: About this Manual 2:1

1.1.2

1.2

1.2.1

2:2

Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” provides an
overview of the application programming environment for the Itanium architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. This volume also provides a
useful system programmer's guide for writing high performance system software.

Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®

Architecture Sofiware Developers Manual.
Chapter 2, “Intel® Itanium® System Environment” introduces the environment designed to
support execution of Itanium-based operating systems running [A-32 or Itanium-based

applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural state which
is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating system for
virtual to physical address translation, virtual aliasing, physical addressing, and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a processor based on
the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which automatically
saves and restores the stacked subset (GR32 — GR 127) of the general register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions™ lists all interruption vectors.

Volume 2: About this Manual

1.2.2

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts and
intercepts that can occur during IA-32 instruction set execution in the Itanium System
Environment.

Chapter 10, “Itanium®-based Operating System Interaction Model with IA-32 Applications”
defines the operation of IA-32 instructions within the Itanium System Environment from the
perspective of an Itanium-based operating system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts processor
implementation-dependent features.

Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second section of
the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multi-processing synchronization
primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what state is preserved and made available to low-level system code when
interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve Itanium
register contents and state. This chapter also describes system architecture mechanisms that allow
an operating system to reduce the number of registers that need to be spilled/filled on interruptions,
system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction
emulation handlers that Itanium-based operating systems are expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the software stack provides
complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium-based operating system
needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 11, “I/O Architecture” describes the 1/O architecture with a focus on platform issues and
support for the existing IA-32 I/O port space.

Chapter 12, “Performance Monitoring Support” describes the performance monitor architecture
with a focus on what kind of support is needed from Itanium-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various firmware
layers (PAL, SAL, EFI) work together to enable processor and system initialization, and operating
system boot.

Volume 2: About this Manual 2:3

1.2.3

1.3

1.3.1

1.3.2

2:4

Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the Itanium and IA-32 instruction sets, including
instruction format/encoding.

Part 1: Intel® Itanium® Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®

Architecture Software Developer s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which are used to
define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules that are
applicable when generating code for processors based on the Itanium architecture.

Part 2: IA-32 Instruction Set Descriptions

Chapter 1, “Base IA-32 Instruction Reference” provides a detailed description of all base IA-32
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 2, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all [A-32 Inte]® MMX™ technology instructions designed to increase performance
of multimedia intensive applications. Organized in alphabetical order by assembly language
mnemonic.

Chapter 3, “IA-32 Streaming SIMD Extension Instruction Reference” provides a detailed
description of all IA-32 Streaming SIMD Extension instructions designed to increase performance
of multimedia intensive applications, and is organized in alphabetical order by assembly language
mnemonic.

Volume 2: About this Manual

1.4

1.5

Terminology

The following definitions are for terms related to the Itanium architecture and will be used
throughout this document:

Instruction Set Architecture (ISA) — Defines application and system level resources. These
resources include instructions and registers.

Itanium Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set.

TIA-32 Architecture — The 32-bit and 16-bit Intel Architecture as described in the /4-32
Intel®Architecture Software Developer’s Manual.

Itanium System Environment — The operating system environment that supports the execution of
both TA-32 and Itanium-based code.

TA-32 System Env1ronment The operating system privileged environment and resources as
defined by the 14-32 Intel®Architecture Software Developer’s Manual. Resources include virtual
paging, control registers, debugging, performance monitoring, machine checks, and the set of
privileged instructions.

Itanium-Based Firmware — The Processor Abstraction Layer (PAL) and System Abstraction
Layer (SAL).

Processor Abstraction Layer (PAL) — The firmware layer which abstracts processor features that
are implementation dependent.

System Abstraction Layer (SAL) — The firmware layer which abstracts system features that are
implementation dependent.

Related Documents

The following documents can be downloaded at the Intel’s Developer Site at http://
developer.intel.com:

o Intel® Itanium® 2 Processor Reference Manual for Software Development and
Optimization — This document describes model-specific architectural features incorporated
into the Intel® Itanium® 2 processor, the second processor based on the Itanium architecture.
(Document Number 251110)

o Intel® Itanium® Processor Reference Manual for Software Development — This document
describes model-specific architectural features incorporated into the Intel® Itanium®
processor, the first processor based on the Itanium architecture. (Document Number 245320)

o 1A4-32 Intel ®Architecture Software Developer’s Manual — This set of manuals describes the
Intel 32-bit architecture. (Document Numbers 245470, 245471, and 245472)

 Itanium™ Software Conventions and Runtime Architecture Guide — This document defines
general information necessary to compile, link, and execute a program on an Itanium-based
operating system. (Document Number 245358)

« Itanium® Processor F amily System Abstraction Layer Specification — This document
specifies requirements to develop platform firmware for Itanium-based systems.
(Document Number 245359)

» Extensible Firmware Interface Specification — This document defines a new model for the
interface between operating systems and platform firmware.

Volume 2: About this Manual 2:5

1.6

2:6

Revision History

Date of Revision Description
Revision Number escriptio
October 2002 21 Added New f c. i Instruction (Sections 4.4.6.1 and 4.4.6.2, Part |, Vol. 1;

Sections 4.3.3,4.4.1,4.45,4.4.7,5.5.2, and 7.1.2, Part |, Vol. 2; Sections 2.5,
25.1,25.2,2.5.3,and 4.5.2.1, Part I, Vol. 2; and Sections 2.2, 3, 4.1,4.4.6.5,
and 4.4.10.10, Part |, Vol. 3).

Added New Atomic Operations | d16, st 16, cnp8xchgl6 (Sections 3.1.8,
3.1.8.6,4.4.1,4.4.2, and 4.4.3, Part |, Vol. 1; Section 4.5, Part |, Vol. 2; and
Sections 2.2, 3, 5.3.2, and 5.4, Part |, Vol. 3).

Added Spontaneous NaT Generation on Speculative Load (Sections 5.5.5
and 11.9, Part |, Vol. 2 and Sections 2.2 and 3, Part |, Vol. 3).

Added New Hint Instruction (Section 2.2, Part |, Vol. 3).

Added Fault Handling Semantics for | f et ch. f aul t Instruction (Section 2.2,
Part I, Vol. 3).

Added Capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in
the Firmware Interface Table (Section 11.1.6, Part |, Vol. 2).

Added BR1 to Min-state Save Area and Clarified Alignment (Sections 11.3.2.3
and 11.3.3, Part [, Vol. 2).

Added New PAL Procedures: PAL_LOGICAL_TO_PHYSICAL and
PAL_CACHE_SHARED_INFO (Section 11.9.1, Part I, Vol. 2).

Added Op Fields to PAL_MC_ERROR_INFO (Section 11.9, Part |, Vol. 2).
Added New Error Exit States (Section 11.2.2.2, Part |, Vol. 2).

Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Vol. 2).

Modified CPUI D[4] for Atomic Operations and Spontaneous Deferral
(Section 3.1.11, Part I, Vol. 1).

Modified PAL_FREQ_RATIOS (Section 11.2.2, Part |, Vol. 2).
Modified PAL_VERSION (Section 11.9, Part |, Vol. 2).

Modified PAL_CACHE_INFO Store Hints (Section 11.9, Part |, Vol. 2).
Modified PAL_MC_RESUME (Sections 11.3.3 and 11.4, Part |, Vol. 2).

Modified IA_32_Exception (Debug) IIPA Description (Section 9.2, Part |,
Vol. 2).

Clarified Predicate Behavior of al | oc Instruction (Section 4.1.2, Part |, Vol. 1
and Section 2.2, Part |, Vol. 3).

Clarified ITC clocking (Section 3.1.8.10, Part |, Vol. 1; Section 3.3.4.2, Part I,
Vol. 2; and Section 10.5.5, Part Il, Vol. 2).

Clarified Interval Time Counter (ITC) Fault (Section 3.3.2, Part |, Vol. 2).
Clarified Interruption Control Registers (Section 3.3.5, Part |, Vol. 2).

Clarified Freeze Bit Functionality in Context Switching and Interrupt
Generation (Sections 7.2.1, 7.2.2,7.2.4.1,and 7.2.4.2, Part |, Vol. 2).

Clarified PAL_BUS_GET/SET_FEATURES (Section 11.9.3, Part |, Vol. 2).
Clarified PAL_CACHE_FLUSH (Section 11.9, Part I, Vol. 2).

Clarified Cache State upon Recovery Check (Section 11.2, Part I, Vol. 2).
Clarified PALE_INIT Exit State (Section 11.4.2, Part |, Vol. 2).

Clarified Processor State Parameter (Section 11.4.2.1, Part I, Vol. 2).
Clarified Firmware Address Space at Reset (Section 11.1, Part |, Vol. 2).

Clarified PAL PMI, AR.ITC, and PMD Register Values (Sections 11.3, 11.5.1,
and 11.5.2, Part [, Vol. 2).

Clarified Invalid Arguments to PAL (Section 11.9.2.4, Part |, Vol. 2).
Clarifieditr/itc Instructions (Section 2.2, Part I, Vol. 3).

Volume 2: About this Manual

Date of Revision Description
Revision Number P
December 2001 2.0 Volume 1:

Faults in Id.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 2:

Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change - added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change - added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Section 11).

Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).

1IP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).

Revised DV table (Section A.4).

Memory attribute transitions - added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation - changed behavior of DCR ‘Ic’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes - extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification - added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).

Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

1A-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

Volume 2: About this Manual

2:7

2:8

Date of
Revision

Revision
Number

Description

July 2000

1.1

Volume 1:

Processor Serial Number feature removed (Chapter 3).

Clarification on exceptions to instruction dependency (Section 3.4.3).
Volume 2:

Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Out-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in [IM (p. 9-24).

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11).

PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).

PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11.
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000

1.0

Initial release of document.

Volume 2: About this Manual

In

tel.

Intel® Itanium® System Environment 2

2.1

As described in Section 2.1, “Operating Environments” on page 1:9, the Itanium architecture
features two full operating system environments: the IA-32 System Environment supports IA-32
operating systems, and the Itanium System Environment supports Itanium-based operating
systems. The architectural model also supports a mixture of IA-32 and Itanium-based application
code within an Itanium-based operating system.

The system environment determines the set of processor system resources seen by the operating
system. These resources include: virtual memory management, physical memory attributes,
external interrupt mechanisms, exception and interrupt delivery, machine check architectures,
debug, performance monitoring, control registers, and the set of privileged instructions.

The choice of system environment is made when a processor boots, and is described in Section 2.1,
“Processor Boot Sequence.” Section 2.2 in this chapter defines the Itanium System Environment.

Processor Boot Sequence

Figure 2-1 shows the defined boot sequence. Unlike IA-32 processors, which power up in 32-bit
Real Mode, processors in the Itanium processor family power up in the Itanium System
Environment running Itanium-based code. Processor initialization, testing, memory, and platform
initialization/testing are performed by processor firmware. Mechanisms are provided to execute
Real Mode TA-32 boot BIOSs and device drivers during the boot sequence. After the boot
sequence, a determination is made by boot software to continue executing in Itanium System
Environment (for example to boot an Itanium-based operating systems) or to enter the IA-32
operating system environment through the PAL_ENTER_IA_32_ENV firmware call. Refer to
Chapter 11, “Processor Abstraction Layer” for details.

Volume 2: Intel® Itanium® System Environment 2:9

Figure 2-1.

2.2

2:10

System Environment Boot Flow

Intel® Itanium

®

System Environment

Reset —p|

Processor

Test & Initialization
(Intel® Itanium®
Instructions)

Y

Platform Test &
Initialization

(Intel ltanium or
IA-32 Instructions)

Yes

I1A-32 System Environment

Firmware Call to PAL_ENTER_IA_32_ENV

IA-32_boot?

No

Itanium-based OS Boot
(Intel ltanium
Instructions

& IA-32 Instructions)

IA-32 OS Boot
(IA-32 Instructions
Only)

Intel® Itanium® System Environment Overview

The Itanium system environment is designed to support execution of Itanium-based operating
systems running [A-32 or Itanium-based applications. IA-32 applications can interact with
Itanium-based operating systems, applications and libraries within this environment. Both IA-32
application level code and Itanium instructions can be executed by the operating system and user
level software. The entire machine state, including the IA-32 general registers and floating-point
registers, segment selectors and descriptors is accessible to Itanium-based code. As shown in
Figure 2-2, all major IA-32 operating modes are fully supported.

Volume 2: Intel® Itanium® System Environment

In

tel.

Figure 2-2. Intel® Itanium® System Environment

Intel® Itanium®

Real Mode VM86 Protected Mode Architecture
IA-32 Real mode IA-32 VM86 IA-32 PM Intel® Itanium®
Instructions and Instructions and Instructions and - Instructions

Segmentation Segmentation Segmentation

Interruption &\;\\ '/ /
Intercepts

Paging & Interruption
Handling in the
Intel Itanium Architecture

In the Itanium system environment, Itanium architecture operating system resources supersede all
IA-32 system resources. Specifically, the IA-32 defined set of control, test, debug, machine check
registers, privilege instructions, and virtual paging algorithms are replaced by the Itanium
architecture system resources. When IA-32 code is running on an Itanium-based operating system,
the processor directly executes all performance critical but non-sensitive IA-32 application level
instructions. Accesses to sensitive system resources (interrupt flags, control registers, TLBs, etc.)
are intercepted into the Itanium-based operating system. Using this set of intervention hooks, an
Itanium-based operating system can emulate or virtualize an IA-32 system resource for an IA-32
application, OS, or device driver.

The Itanium system architecture features are presented in the following chapters:

* Chapter 3 describes system resources.

* Chapter 4 describes the virtual memory architecture.

* Chapter 5 defines the interrupt and exception architecture.

» Chapter 6 describes the register stack engine.

* Chapter 7 describes debug and performance monitoring hooks.

e Chapter 8 describes interruption handler entry points.

Additional support for IA-32 applications in the Itanium system environment is defined by

chapters:

 Chapter 9 describes IA-32 interruption handler entry points.

 Chapter 10, “Itanium®-based Operating System Interaction Model with IA-32 Applications”
describes how IA-32 applications interact with Itanium-based operating systems.

Volume 2: Intel® Itanium® System Environment

211

2:12

Volume 2: Intel® Itanium® System Environment

intel.

System State and Programming Model 3

3.1

3.2

This chapter describes the architectural state visible only to an operating system and defines system
state programming models. It covers the functional descriptions of all the system state registers,
descriptions of individual fields in each register, and their serialization requirements. The virtual
and physical memory management details are described in Chapter 4, “Addressing and Protection.”
Interruptions are described in Chapter 5, “Interruptions.”

Note: Unless otherwise noted, references to “interruption” in this chapter refer to IVA-based
interruptions. See “Interruption Definitions” on page 2:79.

Privilege Levels

Four privilege levels, numbered from 0 to 3, are provided to control access to system instructions,
system registers and system memory areas. Level 0 is the most privileged and level 3 the least
privileged. Application instructions and registers can be accessed at any privilege level. System
instructions and registers defined in this chapter can only be accessed at privilege level 0;
otherwise, a Privilege Operation fault is raised. The processor maintains a Current Privilege Level
(CPL) in the cpl field of the Processor Status Register (PSR). CPL can only be modified by
controlled entry and exit points managed by the operating system. Virtual memory protection
mechanisms control memory accesses based on the Privilege Level (PL) of the virtual page and the
CPL.

Serialization

For all application and system level resources, apart from the control register file, the processor
ensures values written to a register are observed by instructions in subsequent instruction groups.
This is termed data dependency. For example, writes to general registers, floating-point and
application registers are observed by subsequent reads of the same register. (See “Control
Registers” on page 2:24 for control register serialization requirements.) For modifications of
application level resources with side effects, the side effects are ensured by the processor to be
observed by subsequent instruction groups. This is termed implicit serialization. Application
registers (ARs), with the exception of the Interval Time Counter, the User Mask, when modified by
sum r um and mov to psr.um, and the Current Frame Marker (CFM), are implicitly serialized. PMD
registers have special serialization requirements as described in “Generic Performance Counter
Registers” on page 2:136. All other application-level resources (GRs, FRs, PRs, BRs, IP, CPUID)
have no side effects and so need not be serialized.

To avoid serialization overhead in privileged operating system code, system register resources are
not implicitly serialized. The processor does not ensure modification of registers with side effects
are observed by subsequent instruction groups. For system register resources other than control
registers, the processor ensures data dependencies are honored (reads see the results of prior writes
to the same register). See Section 3.3.3 and Table 3-3 on page 2:24 for control register serialization
requirements. This approach simplifies hardware and allows for more efficient software operations.

Volume 2: System State and Programming Model 2:13

3.21

3.2.2

2:14

intel.

For example, during a low level context switch where there is no immediate use of loaded system
registers, these registers can be loaded without any serialization overhead. To ensure side effects are
observed before a dependent instruction is fetched or executed, two serialization operations are
provided: instruction serialization and data serialization.

Instruction Serialization

Instruction serialization ensures that modifications to processor resources are observed before
subsequent instruction group fetches are re-initiated. Software must use an instruction serialization
operation before any instruction group that is dependent upon the modified system resource.
Resource side effects may be observed at any point before the explicit serialization operation.

Modification of the following system resources (if the modification affects instruction fetching)
require instruction serialization: RR, PKR, ITR, ITC, IBR, PMC, PMD, PSR bits as defined in
“Processor Status Register (PSR)” on page 2:18 and Control Registers as defined in “Control
Registers” on page 2:24.

The instructions Return from Interruption (r f i) and Instruction Serialize (srl z. i) perform
explicit instruction serialization.

An interruption performs an implicit instruction serialization operation, so the first instruction
group in the interruption handler will observe the serialized state.

Instruction Serialization Exanpl e:

nmov ibr[reg]=reg /1 move to instruction debug register
- /1 end of instruction group
srlz.i /1 ensure subsequent instruction fetches observe

/1 nodification
i I/ end of instruction group
i nst /1 dependent instruction

Note: The serializing instruction, the instruction to be serialized, and any operations dependent
on the serialization must be in three separate instruction groups.

Data Serialization

Data serialization ensures that modifications to processor resources affecting both execution and
data memory accesses are observed. Software must issue a data serialize operation prior to the
instruction dependent upon the modified resource. Data serialization can be issued within the same
instruction group as the dependent instruction. Resource side effects may be observed at any point
before the explicit serialization operation.

Modification of the following system resources require data serialization: RR, PKR, DTR, DTC,
DBR, PMC, PMD, PSR bits as defined in “Processor Status Register (PSR)” on page 2:18 and
Control Registers as defined in “Control Registers” on page 2:24.

The control registers are different from the general registers and other registers. Most control
registers require an explicit data serialization between the writing of a control register and the
reading of that same control register. (See Table 3-3 on page 2:24 for serialization requirements for
specific control registers.)

Volume 2: System State and Programming Model

3.2.3

3.3

The Data Serialize (sr| z. d) instruction performs explicit data serialization. Instruction
serialization operations (rfi, srl z. i, and interruptions) also perform a data serialization
operation.

Data Serialization Exanpl e:

mov rr[reg] = reg //nove into region register
- //end of instruction group
srlz.d //serialize region register nodification
I d // perform a dependent | oad

The serializing instruction and the instruction to be serialized (the one writing the resource) must be
in two different instruction groups. Operations dependent on the serialization and the serialization
can be in the same instruction group, but the srl z instruction must be before the dependent
instruction slot.

Definition of In-flight Resources

When the value of a resource that requires an explicit instruction or data serialization is changed by
one or more writers, that resource is said to be in-flight until the required serialization is
performed. There can be multiple in-flight values if multiple writers have occurred since the last
serialization.

An instruction that reads an in-flight resource will see one of the in-flight values or the state prior to
any of the unserialized writers. However, whether such a reader sees the original or one of the
in-flight values is not predictable.

For a reader of an in-flight resource, this definition includes (but is not limited to) the following
possible outcomes:

» The reader of an in-flight resource may see the most-recently-serialized value or any of the
in-flight values each time it is executed — seeing the value from a particular writer one time
does not guarantee that the same writer’s value will be seen by that reader the next time.

« Multiple readers of an in-flight resource may see different values — each may see the
most-recently-serialized value or any of the in-flight values, independent of what other readers
may see.

* If a single execution of an instruction reads an in-flight resource more than once during its
execution, each read may see a different value.

Thus, the only way to guarantee that the latest value is seen by a reader is to perform the required
serialization.

System State

The architecture provides a rich set of system register resources for process control, interruptions
handling, protection, debugging, and performance monitoring. This section gives an overview of
these resources.

Volume 2: System State and Programming Model 2:15

3.3.1 System State Overview

Figure 3-1 shows the set of all defined privileged system register resources. Application state as
defined in “Application Register State” on page 1:19 is also accessible.

* Processor Status Register (PSR) — 64-bit register that maintains control information for the
currently running process. See “Processor Status Register (PSR)” on page 2:18 for complete
details.

+ Control Registers (CR) — This register name space contains several 64-bit registers that
capture the state of the processor on an interruption, enable system-wide features, and specify
global processor parameters for interruptions and memory management. See “Control
Registers” on page 2:24 for complete information.

+ Interrupt Registers — These registers provide the capability of masking external interrupts,
reading external interrupt vector numbers, programming vector numbers for internal processor
asynchronous events and external interrupt sources. For complete information, see “Interrupts”
on page 2:97.

+ Interval Timer Facilities — A 64-bit interval timer is provided for privileged and
non-privileged use and as a time base for performance measurements. Timing facilities are
defined in detail in “Interval Time Counter and Match Register (ITC — AR44 and ITM — CR1)”
on page 2:27.

* Debug Breakpoint Registers (DBR/IBR) — 64-bit Data and 64-bit Instruction Breakpoint
Register pairs (DBR, IBR) can be programmed to fault on reference to a range of virtual and
physical addresses generated by either Itanium or IA-32 instructions. See “Debugging” on
page 2:131 for details. The minimum number of DBR register pairs and IBR register pairs is 4
in any implementation. On some implementations, a hardware debugger may use two or more
of these register pairs for its own use; see “Data and Instruction Breakpoint Registers” on
page 2:132 for details.

* Performance Monitor Configuration/Data Registers (PMC/PMD) — Multiple performance
monitors can be programmed to measure a wide range of user, operating system, or processor
performance values. Performance monitors can be programmed to measure performance
values from either IA-32 or Itanium instructions. Performance monitors are defined in
“Performance Monitoring” on page 2:135. The minimum number of generic PMC/PMD
register pairs in any implementation is 4.

* Banked General Registers — A set of 16 banked 64-bit general purpose registers, GR 16-GR
31, are available as temporary storage and register context when operating in low level
interruption code. See “Banked General Registers” on page 2:35 for complete details.

* Region Registers (RR) — Eight 64-bit region registers specify the identifiers and preferred
page sizes for multiple virtual address spaces. Refer to “Region Registers (RR)” on page 2:48
for complete information.

* Protection Key Registers (PKR) — At least sixteen 64-bit protection key registers contain
protection keys and read, write, execute permissions for virtual memory protection domains.
Please see the processor specific documentation for further information on the number of
Protection Key Registers implemented on the Itanium processor. Refer to “Protection Keys” on
page 2:48 for details.

+ Translation Lookaside Buffer (TLB) — Holds recently used virtual to physical address
mappings. The TLB is divided into Instruction (ITLB), Data (DTLB), Translation Registers
(TR) and Translation Cache (TC) sections. See “Translation Lookaside Buffer (TLB)” on
page 2:39 for complete details. Translation Registers are software managed portions of the
TLB and the Translation Cache section of the TLB is directly managed by the processor.

2:16 Volume 2: System State and Programming Model

intel.

Figure 3-1. System Register Model

63

0

glo

0

81
g

re
£ g3

banked| Sl

General registers

— e

g3

pkry
pkr;

gr127{3 3 i D

;
i
i

Re gion re gisters

63

pkr, []

APPLICATION REGISTER SET

Floating-point registers Predicates
81 0

frg +0.0 Pro
fry +1.0 pry
fl'z pr2
i prys| ‘
fr3; P
fr3; i
Pre3[]
fr127i : |

Processor Identifiers

cpuid,
cpuid,

63

—

N —

Branch registers
63 0

bry
bry
br,

br7

Instruction Pointer

User Mask
5.0

L]

Performance Monitor

Data registers

63 0
pmd,
Pmdl

Y —

SYSTEM REGISTER SET

itrn

itc |

Translation Lookaside Buffer

dtr]
7 I:I

protection key regs

dtrn

1dte

Processor Status register
3 0

[PSR]

Debug Breakpoint reglsters

ibr
ibr;

.

Performance Monitor
Configuration registers
63 0

pmcq
pmcey

pmc, i ‘ I

dbr()
- dbrl

ibr,————— |
SR

Application registers
63 0

RSC

aryg

aryy BSP
ar;g| BSPSTORE
aryg RNAT
ary| FCR
aryy EFLAG
arps CSD
arpg SSD
aryy CFLG
arpg FSR
aryg FIR
ary, FDR
aryy . CcCcvV
arsg
aryo FPSR
aryy ITC
argg PFS
args LC
algq EC

arpp]

Control registers
63 0

crg DCR
cry ITM
cry IVA
r8 PTA
crg [IPSK
cry7 ISR
CI'19 1P
CrZO TFA
Cry ITIR
CI'22 T1IPA
CI'23 IFS
Cryy 1IM
Crys IHA
Cregq Exte'rnal
Interrupt
Con@ro]
org, Registers

Volume 2: System State and Programming Model

2:17

3.3.2

Figure 3-2. Processor Status Register (PSR)

Processor Status Register (PSR)

The PSR maintains the current execution environment. The PSR is divided into four overlapping
sections (See Figure 3-2): user mask bits (PSR{5:0}), system mask bits (PSR{23:0}), the lower
half (PSR{31:0}), and the entire PSR (PSR{63:0}). PSR fields are defined in Table 3-2 along with
serialization requirements for modification of each field and the state of the field after an

interruption.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

rt ‘tb‘lp ‘db‘ si \ di ‘pp‘sp‘dfh‘dﬂ‘dt

.pk‘ i |ic

‘543210
i e

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ia‘bn‘ed‘ ri ‘ss‘dd‘da‘ id ‘ it ‘mc‘is‘ cpl ‘

The PSR instructions and their serialization requirements are defined in Table 3-1. These
instructions explicitly read or write portions of the PSR. Other instructions also read and write
portions of the PSR as described in Table 3-2 and Table 5-2.

Table 3-1. Processor Status Register Instructions

2:18

Instr. | Serialization

nmv rqy = pPSr.um

ssminmm
rsminmm
nmov psr.l = r

nov ry = psr
bsw. 0, bsw. 1
rfi

mask

Set system
mask from
immediate
Reset system
mask from
immediate
Move to lower
PSR

Move from PSR
Bank switch

Return From
Interruption

Mnemonic Description Operation Type Required

sum i mm Set user mask | PSR{5:0} — PSR{5:0} | imm M implicit
from immediate

rumimm Reset user PSR{5:0} — PSR{5:0} & ~imm M implicit
mask from
immediate

novV pSr.um = ry Move to user PSR{5:0} —~ GR[ry] M implicit
mask
Move from user | GR[r4] —PSR{5:0} M none

PSR{23:0} — PSR{23:0} | imm

PSR{23:0} — PSR{23:0} &~imm

PSR{31:0} — GR([r]

GR[r4] —PSR{36:35,31:0}°
PSR{44} - Oor 1
PSR{63:0} — IPSR

M | data/inst®

M | data/inst®

M | data/inst®

none
B implicit
B implicit

a. Based upon the resource being serialized, use data or instruction serialization.

b. All other bits of the PSR read as zero.

The user mask, PSR{5:0}, can be set and cleared by the Set User Mask (sum), Reset User Mask
(rum and Move to User Mask (nmov psr . un¥) instructions at any privilege level. For user mask
modifications by sum r umand nov, the processor ensures all side effects are observed before

subsequent instruction groups.

Volume 2: System State and Programming Model

The system mask, PSR{23:0}, can be set and cleared by the Set System Mask (ssm) and Reset
System Mask (r sm) instructions. Software must issue the appropriate serialization operation before
dependent instructions. The system mask instructions are privileged.

The lower half of the PSR, PSR{31:0}, can be written with the Move to Lower PSR (nmov psr. | =)
instruction. Software must issue the appropriate serialization operation before dependent
instructions. The Move to Lower PSR instruction is privileged.

The PSR can be read with the Move from PSR (mov =psr) instruction. Only PSR{36:35} and
PSR{31:0} are written to the target register by Move from PSR. PSR{63:37} and PSR{34:32} can
only be read after an interruption by reading the state in IPSR. The entire PSR is updated from
IPSR by the Return from Interruption (r f i) instruction. Anrfi also implicitly serializes the PSR.
Both Move from PSR and Return from Interruption are privileged.

Table 3-2. Processor Status Register Fields

Interruption Serialization

Field Bit Description State Required

User Mask = PSR{5:0}

be 1 Big-Endian — When 1, data memory references are DCR.be data?
big-endian. When 0, data memory references are little
endian. This bit is ignored for IA-32 data references,
which are always performed little-endian. Instruction
fetches are always performed little endian.

up 2 User Performance monitor enable — When 1, unchanged data®
performance monitors configured as user monitors are inst?
enabled to count events (including IA-32). When 0, user
configured monitors are disabled. See “Performance
Monitoring” on page 2:135 for details.

ac 3 Alignment Check — When 1, all unaligned data memory |0 data?®
references result in an Unaligned Data Reference fault.
When 0, unaligned data memory references may or
may not result in a Unaligned Data Reference fault. See
“Memory Datum Alignment and Atomicity” on page 2:77
for details. Unaligned semaphore references also result
in a Unaligned Data Reference fault, regardless of the
state of PSR.ac. For IA-32 instructions, if PSR.ac is 1
an unaligned 1A-32 data memory reference raises an
IA-32_Exception(AlignmentCheck) fault. When 0,
additional IA-32 control bits as defined in Section 10.6.7
also generate alignment checks.

mfl 4 Lower (f2 .. f31) floating-point registers written — This bit | unchanged data®
is set to one when an Intel® Itanium® instruction
completes that uses register f2..f31 as a target register.
This bit is sticky and only cleared by an explicit write of
the user mask. When leaving the 1A-32 instruction set,
PSR.mfl is set to 1 if PSR.dfl is 0, otherwise PSR.mfl is
unmodified.

mfh 5 Upper (f32 .. f127) floating-point registers written — This | unchanged data?®
bit is set to one when an Intel® Itanium® instruction
completes that uses register f32..127 as a target
register. This bit is sticky and only cleared by an explicit
write of the user mask. PSR.mfh is unmodified by IA-32
instruction set execution.

Volume 2: System State and Programming Model 2:19

2:20

Table 3-2. Processor Status Register Fields (Continued)

intel.

Field

Bit

Description

Interruption
State

Serialization
Required

System Mask = PSR{23:0}

ic

13

Interruption Collection — When 1 and an interruption
occurs, the current state of the processor is loaded in
IIP, IPSR, IIM and IFS; and additional registers defined
in “Interruption Vector Descriptions” on page 2:145.
When 0, IIP, IPSR, IIM and IFS are not modified on an
interruption (see “Writing of Interruption Resources by
Vector” on page 2:146 for details). When 0, speculative
load exceptions result in deferred exception behavior,
regardless of the state of the DCR and ITLB deferral
bits. Processor operation is undefined if PSR.ic is 0 and
a transition is made to execute 1A-32 code.

inst/data®

14

Interrupt Bit — When 1 and executing Intel® Itanium®

instructions, unmasked pending external interrupts will
interrupt the processor by transferring control to the
external interrupt handler. When 0, pending external
interrupts do not interrupt the processor. The effect of
clearing PSR.i via Reset System Mask (rsm)
instructions is observed by the next instruction.
Toggling PSR.i from one to zero via Move to PSR.I
requires data serialization. When executing 1A-32
instructions, external interrupts are enabled if PSR.i
and (CFLG.if is 0 or EFLAG.if is 1). NMI interrupts are
enabled if PSR.iis 1 regardless of EFLAG.if.

clear: implicit
serialization
set: datad

pk

15

Protection Key enable — When 1 and PSR.itis 1,
instruction references (including 1A-32) check for valid
protection keys. When 1 and PSR.dtis 1, data
references (including I1A-32) check for valid protection
keys. When 1 and PSR.rtis 1, protection key checks
are enabled for register stack references. When 0,
neither instruction, data, nor register stack references
are checked for valid protection keys. When PSR.dt,
PSR.rt or PSR.it are 0, PSR.pk is ignored for the
corresponding reference.

unchanged

inst/data®

read or write access to f32 through f127 results in a
Disabled Floating-Point Register fault. When 1, a
Disabled FP Register fault is raised on the first IA-32
target instruction followingabr . i aorrfi , regardless
whether 32-127 are referenced.

dt 17 Data address Translation — When 1, virtual data unchanged/Oj data
addresses are translated and access rights checked.
When 0, data accesses use physical addressing.
PSR.dt must be 1 when entering IA-32 code, otherwise
processor operation is undefined.
dfl 18 Disabled Floating-point Low register set — When 1, a 0 data
read or write access to f2 through f31 results in a
Disabled Floating-Point Register fault. When 1, all
IA-32 FP, Intel® MMX2 and Intel® MMX™ instructions
raise a Disabled FP Register fault (regardless whether
the instruction actually references f2-31).
dfh 19 Disabled Floating-point High register set — When 1, a 0 data

Volume 2: System State and Programming Model

intel.

Table 3-2. Processor Status Register Fields (Continued)

Field Bit Description

Interruption
State

Serialization
Required

sp 20 Secure Performance monitors — Controls the ability of
non-privileged code (including IA-32 code) to read
non-privileged performance monitors. See Table 7-5 on
page 2:138 for values returned by PMD read
instructions. Also, when 0, PSR.up can be modified by
user mask instructions; otherwise, PSR.up is
unchanged by user mask instructions. When 1 or
CFLG.pce is 0, non-privileged IA-32 performance
monitor reads (via r dpit) raise an
IA-32_Exception(GPFault).

data

pp 21 Privileged Performance monitor enable — When 1,
monitors configured as privileged monitors are enabled
to count events (including IA-32 events). When 0,
privileged monitors are disabled. See “Performance
Monitoring” on page 2:135 for details.

DCR.pp

inst/data®

di 22 Disable Instruction set transition — When 1, attempts to
switch instruction sets via the IA-32 j npe orbr. i a
instructions results in a Disabled Instruction Set
Transition fault. This bit doesn’t restrict instruction set
transitions due to interruptions or r f i .

data

si 23 Secure Interval timer — When 1, the Interval Time
Counter (ITC) register is readable only by privileged
code; non-privileged reads result in a Privileged
Register fault. When 0, ITC is readable at any privilege
level. System software can secure the ITC from
non-privileged IA-32 access by setting either PSR.si or
CFLG.tsd to 1. When secured, an IA-32 rdtsc (read time
stamp counter) instruction at any privilege level other
than the most privileged raises an
1A-32_Exception(GPfault)

data

PSR.| = PSR{31:0}

db 24 Debug Breakpoint fault — When 1, data and instruction
address breakpoints are enabled and can cause an
Data/lInstruction Debug fault. When 1, IA-32 instruction
address breakpoints are enabled and can cause an
1A-32_Exception(Debug) fault. When 1, IA-32 data
address breakpoints are enabled and can cause an
1A-32_Exception(Debug) Trap.When 0, address
breakpoint faults and traps are disabled.

inst/data®

Ip 25 Lower Privilege transfer trap — When 1, a Lower
Privilege Transfer trap occurs whenever a taken branch
lowers the current privilege level (numerically
increases). This bit is ignored during 1A-32 instruction
set execution.

data

tb 26 Taken Branch trap — When 1, the successful completion
of a taken branch results in a Taken Branch trap. rfi
and interruptions can not raise a Taken Branch trap.
When 1, successful completion of a taken 1A-32 branch
results in an 1A-32_Exception(Debug) trap.

data

Volume 2: System State and Programming Model

2:21

Table 3-2. Processor Status Register Fields (Continued)

intel.

Field

Bit

Description

Interruption
State

Serialization
Required

rt

27

Register Stack Translation — When 1, register stack
accesses are translated and access rights are checked.
When 0, register stack accesses use physical
addressing. PSR.dt is ignored for register stack
accesses. The register stack engine must be in
enforced lazy mode (RSC.mode = 00) when modifying
this bit; otherwise, processor behavior is undefined.
During IA-32 instruction execution this bit is ignored and
the register stack is disabled.

unchanged

data

PSR{63:0}

cpIf

33:32

Current Privilege Level —The current privilege level of
the processor (including IA-32). Controls accessibility to
system registers, instructions and virtual memory
pages. A value of 0 is most privileged, a value of 3 is
least privileged. Written by the r f i , epc, and br . r et
instructions. PSR.cpl is unchanged by the j nmpe and
br. i ainstructions. PSR.cpl cannot be updated by any
IA-32 instructions.

rfi9

34

Instruction Set — When 0, Intel® Itanium® instructions
are executing. When 1, IA-32 instructions are
executing. Written by the r f i and br . i a instructions
and the IA-32 j npe instruction.

rfi9, br.ia"

mc

35

Machine Check abort mask — When 1, machine check
aborts are masked. When 0, machine check aborts can
be delivered (including IA-32 instruction set execution).
Processor operation is undefined if PSR.mc is 1 and a
transition is made to execute IA-32 code.

unchanged/1i

rfid

36

Instruction address Translation — When 1, virtual
instruction addresses are translated and access rights
checked. When 0, instruction accesses use physical
addressing. PSR.it must be 1 when entering I1A-32
code, otherwise processor operation is undefined.

unchanged/Oj

rfi

37

Instruction Debug fault disable — When 1, Instruction
Debug faults are disabled on the first restart instruction
in the current bundle.X When PSR.id is 1 or EFLAG.If is
1, 1A-32 instruction debug faults are disabled for one
IA-32 instruction. PSR.id and EFLAG.rf are set to 0 after
the successful execution of each 1A-32 instruction.

rfid

da

38

Disable Data Access and Dirty-bit faults — When 1, Data
Access and Dirty-Bit faults are disabled on the first
restart instruction in the current bundle or for the first
mandatory RSE reference following the r f i K IA-32
Access/Dirty-bit faults are not affected by PSR.da.

rfi9

dd

39

Data Debug fault disable — When 1, Data Debug faults
are disabled on the first restart instruction in the current
bundle or for the first mandatory RSE reference K 1A-32
Data Debug traps are not affected by PSR.dd.

rfi

Ss

40

Single Step enable — When 1, a Single Step trap occurs
following the successful execution of the first restart
instruction in the current bundle. Instruction slots 0, 1,
and 2 can be single stepped. When 1 or EFLAGf is 1,
an IA-32_Exception(Debug) trap is taken after each
IA-32 instruction.

rfi9

2:22

Volume 2: System State and Programming Model

intel.

Table 3-2. Processor Status Register Fields (Continued)

Field

Bit

Description

Interruption
State

Serialization
Required

ri

42:41

Restart Instruction — Set on an interruption, indicating

instruction

rfid

the next instruction in the bundle to be executed. When
the next instruction is the L+X instruction of an MLX,
this field is set to the value 1.

When restarting instructions with r f i , this field
specifies which instruction(s) in the bundle are
restarted. The specified and subsequent instructions
are restarted, all instructions prior to the restart point
are ignored.

0 — restart execution at instruction slot 0

pointer

1 — restart execution at instruction slot 1
2 — restart execution at instruction slot 2
3 —reserved

Except at an interruption and for the first restart
instruction following an r f i , the value of this field is
undefined.

This field is set to 0 after any interruption from the 1A-32
instruction set and is ignored when IA-32 instructions
are restarted.

Exception Deferral — When 1, if the first restart 0 rfi9
instruction in the current bundle is a speculative load,
the operation is forced to indicate a deferred exception
by setting the load target register to NaT or NaTVal. No
memory references are performed, however any
address post increments are performed. If the operation
is a speculative advanced load, the ALAT entry
corresponding to the load address and target register is
purged. If the operation is an | f et ch instruction,
memory promotion is not performed, however any
address post increments are performed. When 0,
exception deferral is not forced on restarted speculative
loads. If the first restart instruction is not a speculative
load or | f et ch instruction, this bit is ignored.¥
register Bank — When 1, registers GR16 to GR31 for 0
bank 1 are accessible. When 0, registers GR16 to

GR31 for bank 0 are accessible. Written by r f i and
bswinstructions.

ed 43

bn 44 implicit™

Disable Instruction Access-bit faults — When 1, 0 rfi9
Instruction Access-Bit faults are disabled on the first
restart instruction in the current bundle X 1A-32
Access-bit faults are not affected by PSR.ia.

a. User mask bits are implicitly serialized if accessed via user mask instructions; sum r um and move to User
Mask. If modified with system mask instructions; r Sm ssmand move to PSR.|, software must explicitly
serialize to ensure side effects are observed before dependent instructions.

b. User mask modification serialization is implicit only for monitoring data execution events. Software should
issue instruction serialization operations before monitoring instruction events to achieve better accuracy.

c. Reaquires instruction serialization to guarantee that VHPT walks initiated on behalf of an instruction reference
observe the new value of this bit. Otherwise, data serialization is sufficient to guarantee that the new value is
observed.

d. The effect of masking external interrupts with r Smis observed by the next instruction. However, the
processor does not ensure unmasking interruptions with ssm is immediately observed. Software can issue a
data serialization operation to ensure the effects of setting PSR.i are observed before a given point in
program execution.

Volume 2: System State and Programming Model 2:23

3.3.3

T

intel.

Requires instruction or data serialization, based on whether the dependent “use” is an instruction fetch
access or data access.

CPL can be modified due to interruptions, Return From Interruption (r f i), Enter Privilege Code (epc), and
Branch Return (br . r et) instructions.

Can only be modified by the Return From Interruption (r f i) instruction. r f i performs an explicit instruction
and data serialization operation.

Modification of the PSR.is bit by a br . i a instruction set is implicitly instruction serialized.

PSR.mc is set to 1 after a machine check abort or INIT; otherwise, unmodified on interruptions.

After an interruption this bit is normally unchanged, however after a PAL-based interruption this bit is set to 0.
This bit is set to 0 after the successful execution of each instruction in a bundle except for r f i which may set
itto 1.

This bit is ignored when restarting 1A-32 instructions and set to zero when br. i aorr f i successfully
complete and before the first IA-32 instruction starts execution.

After an interruption, r f i , or bsw the processor ensures register accesses are made to the new register
bank. For interruptions, r fi and bsw; the processor ensures all register accesses and outstanding loads
prior to the bank switch operate on the prior register bank.

Control Registers

Table 3-3 defines all registers in the control register name space along with serialization
requirements to ensure side effects are observed by subsequent instructions. However, reads of a
control register must be data serialized with prior writes to the same register. The serialization
required column only refers to the side effects of the data value.

Writes to read-only registers (IVR, IRR0-3) result in an Illegal Operation fault, accesses to reserved
registers result in a Illegal Operation fault. Accesses can only be performed by nov to/from
instructions defined in Table 3-4 at privilege level 0; otherwise, a Privileged Operation fault is
raised.

Table 3-3. Control Registers

2:24

Register Name Description S:’::in?;?n
Global CRO DCR Default Control Register inst/data
Control CR1 IT™ Interval Timer Match register data?
Registers - -
CR2 IVA Interruption Vector Address inst?
Interruption CR16 IPSR Interruption Processor Status Register impliedd
Control CR17 ISR Interruption Status Register implied®
O oRie [freseved]
CR19 1P Interruption Instruction Pointer impliedd
CR20 IFA Interruption Faulting Address impliedd
CR21 ITIR Interruption TLB Insertion Register impliedd
CR22 IIPA Interruption Instruction Previous Address implied®
CR23 IFS Interruption Function State implied®-€
CR24 IIM Interruption Immediate register implied®
CR25 IHA Interruption Hash Address implied®

Volume 2: System State and Programming Model

intel.

Table 3-3.

Table 3-4.

3.3.4

3.3.41

Control Registers (Continued)
. o Serialization
Register Name Description Required

Interrupt CR64 LID Local Interrupt ID data®
Control CR65 IVR External Interrupt Vector Register (read only) data?
Registers CR66 TPR | Task Priority Register data®

CR67 EQI End Of External Interrupt data®

CR68 IRRO External Interrupt Request Register 0 (read only) data®

CR69 IRR1 External Interrupt Request Register 1 (read only) data®

CR70 IRR2 External Interrupt Request Register 2 (read only) data®

CR71 IRR3 External Interrupt Request Register 3 (read only) data®

CR72 TV Interval Timer Vector data®

CR73 PMV Performance Monitoring Vector data?®

CR74 CMCV | Corrected Machine Check Vector data®

I N =
CR80 LRRO Local Redirection Register 0 data®
CR81 LRR1 Local Redirection Register 1 data?®

a. Serialization is needed to ensure external interrupt masking, new interval timer match values or new
interruption table addresses are observed before a given point in program execution.

b. Serialization is needed to ensure new values in PTA are visible to the hardware Virtual Hash Page Table
(VHPT) walker before a dependent instruction fetch or data access.

c. These registers are modified by the processor on an interruption or by an explicit move to these registers.
There are no side effects when written.

d. These registers are implied operands to the rfi and/or TLB insert instructions. The processor ensures writes
in previous instruction groups are observed by rfi and/or TLB insert instructions in subsequent instruction
groups. These registers are also modified by the processor on an interruption, subsequent reads return the
results of the interruption. There are no other side effects.

e. IFS written by a cover instruction followed by a move-from IFS is implicitly serialized.

Control Register Instructions

Mnemonic Description Operation Format
nov Crg =15 Move to control register CR[r3] « GR[ry] M
nmov rq = Cra Move from control register GR[r4] ~ CRIr3] M
srlz.i, rfi Serialize instruction references Ensure side effects are observed by M

the instruction fetch stream
srlz.d Serialize data references Ensure side effects are observed by M
the execute and data streams

Global Control Registers

Default Control Register (DCR — CRO0)

The DCR specifies default parameters for PSR values on interruption, some additional global
controls, and whether speculative load faults can be deferred. Figure 3-3 and Table 3-5 define and
describe the DCR fields.

Volume 2: System State and Programming Model

2:25

intel.

Figure 3-3. Default Control Register (DCR — CR0)

63 15 14 13 12 11 10 9 8 7 3 2 1 0
e o o el
49 1T 1 1 1 1 1 1 5 11 1

Table 3-5. Default Control Register Fields

Serialization

Field Bit Description Required
pp 0 Privileged Performance monitor default — On interruption, DCR.pp is data
loaded into PSR.pp.
be 1 Big-Endian default — When 1, Virtual Hash Page Table (VHPT) walker inst

accesses are performed big-endian; otherwise, little-endian. On
interruption, DCR.be is loaded into PSR.be.

Ic 2 IA-32 Lock Check enable — When 1, and an IA-32 atomic memory data
reference is defined as requiring a read-modify-write operation external to
the processor under an external bus lock, an IA-32_Intercept(Lock) is
raised. (IA-32 atomic memory references are defined to require an
external bus lock for atomicity when the memory transaction is made to
non-write-back memory or are unaligned across an
implementation-specific non-supported alignment boundary.) When 0,
and an IA-32 atomic memory reference is defined as requiring a
read-modify-write operation external to the processor under external bus
lock, the processor may either execute the transaction as a series of
non-atomic transactions or perform the transaction with an external bus
lock, depending on the processor implementation. Intel® Itanium®
semaphore accesses ignore this bit. All unaligned Intel® Itanium®
semaphore references generate an Unaligned Data Reference fault. All
aligned Intel® Itanium® semaphore references made to memory that is
neither write-back cacheable nor a NaTPage result in an Unsupported
Data Reference fault.

dm 8 Defer TLB Miss faults only (VHPT data, Data TLB, and Alternate Data data
TLB faults) — When 1, and a TLB miss is deferred, lower priority Debug
faults may still be delivered. A TLB miss fault, deferred or not, precludes
concurrent Page not Present, Key Miss, Key Permission, Access Rights,
or Access Bit faults. This bit is ignored by IA-32 instructions.

dp 9 Defer Page not Present faults only — When 1, and a Page not Present data
fault is deferred, lower priority Debug faults may still be delivered. A Page
not Present fault, deferred or not, precludes concurrent Key Miss, Key
Permission, Access Rights, or Access Bit faults. This bit is ignored by
IA-32 instructions.

dk 10 Defer Key Miss faults only — When 1, and a Key Miss fault is deferred, data
lower priority Access Bit, Access Rights or Debug faults may still be
delivered. A Key Miss fault, deferred or not, precludes concurrent Key
Permission faults. This bit is ignored by IA-32 instructions.

dx 11 Defer Key Permission faults only — When 1, and a Key Permission fault is | data
deferred, lower priority Access Bit, Access Rights or Debug faults may
still be delivered. This bit is ignored by IA-32 instructions.

dr 12 Defer Access Rights faults only — When 1, and an Access Rights faultis | data
deferred, lower priority Access Bit or Debug faults may still be delivered.
This bit is ignored by IA-32 instructions.

da 13 Defer Access Bit faults only — When 1, and an Access Bit fault is data
deferred, lower priority Debug faults may still be delivered. This bit is
ignored by 1A-32 instructions.

dd 14 Defer Debug faults — When 1, Data Debug faults on speculative loads are | data
deferred. This bit is ignored by IA-32 instructions.

2:26 Volume 2: System State and Programming Model

For the DCR exception deferral bits, when the bit is 1, and a speculative load results in the specified
fault condition, and the speculative load’s code page exception deferral bit (ITLB.ed) is 1, the
exception is deferred by setting the speculative load target register to NaT or NaT Val. Otherwise,
the specified fault is taken on the speculative load. For a description of faults on speculative loads
see “Deferral of Speculative Load Faults” on page 2:88.

Since DCR.be also controls byte ordering of VHPT references that are the result of instruction
misses, DCR.be requires instruction serialization. Other DCR bits require data serialization only.

3.34.2 Interval Time Counter and Match Register (ITC — AR44 and ITM — CR1)

The Interval Time Counter (ITC) and Interval Timer Match (ITM) register support elapsed time
notification, see Figure 3-4 and Figure 3-5.

Figure 3-4. Interval Time Counter (ITC — AR44)

63 0
ITC
64

Figure 3-5. Interval Timer Match Register (ITM — CR1)

63 0
IT™
64

The ITC is a free-running 64-bit counter that counts up at a fixed relationship to the input clock to
the processor. Multiple reads of the ITC are not guaranteed to return different values due to the fact
that the ITC may be clocked at a somewhat lower frequency then the instruction execution
frequency. This clocking relationship is described in the PAL procedure PAL_FREQ_RATIOS on
page 2:329. A 64-bit overflow condition can occur without notification. The ITC counting rate is
not affected by power management mechanisms. The ITC can be read at any privilege level if
PSR si is zero. The timer can be secured from non-privileged access by setting PSR.si to 1. When
secured, a read of the ITC by non-privileged code results in a Privileged Register fault. Writes to
the ITC can only be performed at privilege level 0; otherwise, a Privileged Register fault is raised.

The 1A-32 Time Stamp Counter (TSC) is similar to ITC. The ITC can be read by the [A-32 rdt sc
(read time stamp counter) instruction. System software can secure the ITC from non-privileged
[A-32 access by setting either PSR.si or CFLG.tsd to 1. When secured, an IA-32 read of the ITC at
any privilege level other than the most privileged raises an IA-32_Exception(GPfault).

When the value in the ITC is equal to the value in the ITM an Interval Timer Interrupt is raised.
Once the interruption is taken by the processor and serviced by software, the ITC may not
necessarily be equal to the ITM. The ITM is accessible only at privilege level 0; otherwise, a
Privileged Operation fault is raised.

The interval counter can be written, for initialization purposes, by privileged code. The ITC is not
architecturally guaranteed to be synchronized with any other processor’s interval time counter in an
multiprocessor system, nor is it synchronized with the wall clock. Software must calibrate interval
timer ticks to wall clock time and periodically adjust for drift. In a multiprocessor system, a
processor's ITC is not architecturally guaranteed to be clocked synchronously with the ITC's on
other processors, and may not be clocked at the same nominal clock rate as ITC's on other
processors. The platform firmware provides information on the clocking of processors in a
multiprocessor system.

Volume 2: System State and Programming Model 2:27

intel.

Modification of the ITC or ITM is not necessarily serialized with respect to instruction execution.
Software can issue a data serialization operation to ensure the ITC or ITM updates and possible
side effects are observed by a given point in program execution. Software must accept a level of
sampling error when reading the interval timer due to various machine stall conditions,
interruptions, bus contention effects, etc. Please see the processor specific documentation for
further information on the level of sampling error of the Itanium processor.

3.3.4.3 Interruption Vector Address (IVA — CR2)

The I'VA specifies the location of the interruption vector table in the virtual address space, or the
physical address space if PSR.it is 0, see Figure 3-6. The size of the vector table is 32K bytes and is
32K byte aligned. The lower 15 bits of the IVA are ignored when written, reads return zeros. All
upper 49 address bits of [VA must be implemented regardless of the size of the physical and virtual
address space. If an unimplemented virtual or physical address (see “Unimplemented Address Bits”
on page 2:61) is loaded into IVA, and an interruption occurs, processor behavior is unpredictable.
See “IVA-based Interruption Vectors” on page 2:96 for a description of an interruption table layout.

Figure 3-6. Interruption Vector Address (IVA — CR2)
63 15 14 0
\ IVA ig
49 15

3.344 Page Table Address (PTA — CRS8)

The PTA anchors the Virtual Hash Page Table (VHPT) in the virtual address space. See “Virtual
Hash Page Table (VHPT)” on page 2:51 for a complete definition of the VHPT. Operating systems
must ensure that the table is aligned on a natural boundary; otherwise, processor operation is
undefined. See Figure 3-7 and Table 3-6 for the PTA field definitions.

Figure 3-7. Page Table Address (PTA — CRS8)

63 15 14 9 8 7 2 1 0
49 6 1 6 11
Table 3-6. Page Table Address Fields
Field Bits Description
ve 0 VHPT Enable — When 1, the processor is enabled to walk the VHPT.
size 7:2 VHPT Size — VHPT table size in power of 2 increments, table size is 2size bytes. Size

generates a mask that is logically AND’ed with the result of the VHPT hash function.
Minimum VHPT table size is 32K bytes; otherwise, a Reserved Register/Field fault is
raised (see “Virtual Hash Page Table (VHPT)” on page 2:51). The maximum size is 261
bytes for long format VHPTs, and 252 bytes for short format VHPTs.

vf 8 VHPT Format — When 0, 8-byte short format entries are used, when 1, 32-byte long
format entries are used.

2:28 Volume 2: System State and Programming Model

intel.

Table 3-6. Page Table Address Fields (Continued)

3.3.5

3.3.5.1

3.3.5.2

Field Bits Description

base 63:15 VHPT Base virtual address — Defines the starting virtual address of the VHPT table. Base
is logically OR’ed with the hash index produced by the VHPT hash function when
referencing the VHPT. Base must be on 25'?° boundary otherwise processor operation is
undefined. All base address bits of PTA must be implemented regardless of the size of
the physical and virtual address space. If an unimplemented virtual address (see
“Unimplemented Address Bits” on page 2:61) is used by the processor as a page table
base, all VHPT walks generate an Instruction/Data TLB miss (see “Translation Searching”
on page 2:57).

Interruption Control Registers

Registers CR16 - CR25 record information at the time of an interruption (including from the 1A-32
instruction set) and are used by handlers to process the interruption.

The interruption control registers can only be read or written while PSR.ic is 0; otherwise, an Illegal
Operation fault is raised. These registers are only guaranteed to retain their values when PSR.ic is
0. When PSR.ic is 1, the processor does not preserve their contents.

The contents of the interruption control registers are defined only when the PSR.ic bit is cleared by
an interruption. If the PSR.ic bit is explicitly cleared (e.g., by using r sm or mov to PSR), then the
contents of these registers are undefined. If the PSR.ic bit is explicitly set (e.g., by using ssm or
mov to PSR), then the contents of these registers are undefined until the PSR.ic bit has been
serialized and an interruption occurs.

ITPA has special behavior in case of an rfi to a fault. Refer to “Interruption Instruction Previous
Address (ITPA — CR22)” on page 2:32.

Interruption Processor Status Register (IPSR — CR16)

On an interruption and if PSR.ic is 1, the IPSR receives the value of the PSR. The IPSR, IIP and
IFS are used to restore processor state on a Return From Interruption (r f i). The IPSR has the same
format as PSR, see “Processor Status Register (PSR)” on page 2:18 for details.

Interruption Status Register (ISR - CR17)

The ISR receives information related to the nature of the interruption, and is written by the
processor on all interruption events regardless of the state of PSR.ic, except for Data Nested TLB
faults. The ISR contains information about the excepting instruction and its properties such as
whether it was doing a read, write, execute, speculative, or non-access operation, see Figure 3-8 and
Table 3-7. Multiple bits may be concurrently set in the ISR, for example, a faulting semaphore
operation will set both ISR.r and ISR.w, and faults on speculative loads will set ISR.sp and ISR.r.
Additional fault or trap specific information is available in ISR.code and ISR.vector. Refer to
Section 8.2 "ISR Settings" for complete definition of the ISR field settings.

Volume 2: System State and Programming Model 2:29

intel.

Figure 3-8. Interruption Status Register (ISR - CR17)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vector ‘ code ‘

8 8 16
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ed‘ ei ‘so‘ni‘ir‘rs‘sp‘na‘ r‘w‘x‘

20

Table 3-7. Interruption Status Register Fields

Field Bits Description

code 15:0 Interruption Code — 16 bit code providing additional information specific to the current
interruption. For |1A-32 specific exceptions and software interrupts, contains the 1A-32
interruption error code or zero.

vector 23:16 IA-32 exception/interception vector number. For IA-32 exceptions and software
interrupts, contains the 1A-32 vector number (e.g., GPFault has a vector number of
13). See Chapter 9, "IA-32 Interruption Vector Descriptions" for details.

X 32 Execute exception — Interruption is associated with an instruction fetch (including
I1A-32).

w 33 Write exception — Interruption is associated with a write operation. Both ISR.r and
ISR.w are set for IA-32 read-modify-write instructions.

r 34 Read exception — Interruption is associated with a read operation. Both ISR.r and
ISR.w are set for IA-32 read-modify-write instructions.

na 35 Non-access exception — See Section 5.5.2. This bit is always 0 for interruptions taken
in the 1A-32 instruction set.

sp 36 Speculative load exception — Interruption is associated with a speculative load
instruction. This bit is always 0 for interruptions taken in the 1A-32 instruction set.

rs 37 Register Stack — Interruption is associated with a mandatory RSE fill or spill. This bit is
always 0 for interruptions taken in the 1A-32 instruction set.

ir 38 Incomplete Register frame — The current register frame is incomplete when the
interruption occurred. This bit is always 0 for interruptions taken in the 1A-32 instruction
set.

ni 39 Nested Interruption — Indicates that PSR.ic was 0 or in-flight when the interruption

occurred. This bit is always 0 for interruptions taken in the IA-32 instruction set.

so 40 IA-32 Supervisor Override — Indicates the fault occurred during an IA-32 instruction set
supervisor override condition (the processor was performing a data memory accesses
to the IDT, GDT, LDT or TSS segments) or an IA-32 data memory access at a privilege
level of zero. This bit is always O for interruptions taken while executing Intel® Itanium®
instructions.

ei 42:41 Excepting Instruction —

0 — exception due to instruction in slot 0
1 — exception due to instruction in slot 1
2 — exception due to instruction in slot 2

For faults and external interrupts, ISR.ei is equal to IPSR.ri. For traps, ISR.ei defines
the slot of the excepting instruction. Traps on the L+X instruction of an MLX set ISR.ei
to 2. This field is always O for interruptions taken in the 1A-32 instruction set.

ed 43 Exception Deferral — this bit is set to the value of the TLB exception deferral bit
(TLB.ed) for the instruction page containing the faulting instruction. If a translation
does not exist or instruction translation is disabled, or if the interruption is caused by a
mandatory RSE spill or fill, ISR.ed is set to 0. This bit is always 0 for interruptions taken
in the 1A-32 instruction set.

2:30 Volume 2: System State and Programming Model

intel.

3.3.5.3 Interruption Instruction Bundle Pointer (lIP - CR19)

On an interruption and if PSR.ic is 1, the IIP receives the value of IP. IIP contains the virtual
address (or physical if instruction translations are disabled) of the next instruction bundle or the
IA-32 instruction to be executed upon return from the interruption. For IA-32 instruction addresses,
IIP is zero extended to 64-bits and specifies a byte granular address. For traps and interrupts, IIP
points to the next instruction to execute. For faults, IIP points to the faulting instruction. As shown
in Figure 3-9, all 64-bits of the IIP must be implemented regardless of the size of the physical and
virtual address space supported by the processor model (see “Unimplemented Address Bits” on
page 2:61). IIP also receives byte-aligned IA-32 instruction pointers. The IIP, IPSR and IFS are
used to restore processor state on a Return From Interruption instruction (r f i). See “Interruption
Vector Descriptions” on page 2:145 for usages of the IIP.

Figure 3-9. Interruption Instruction Bundle Pointer (IIP - CR19)

63 0
1P

64

Anrfi to Itanium-based code (IPSR.is is 0) ignores IIP{3:0}, anrfi to IA-32 code (IPSR.is is 1)
ignores 1IP{63:32}. Ignored bits are assumed to be zero.

Control transfers to unimplemented addresses (see “Unimplemented Address Bits” on page 2:61)
result in an Unimplemented Instruction Address trap. When this trap is delivered, IIP is written as
follows:

« If the trap is taken for an unimplemented virtual address, IIP is written in one of two ways,
depending on the implementation: 1) IIP may be written with the implemented virtual address
bits [P{63:61} and IP{IMPL_VA_MSB:0} only. Bits IIP{60:IMPL_VA_MSB+1} are set to
IP{IMPL_VA_MSB}, i.e., sign-extended. 2) IIP may be written with the full, unimplemented
virtual address from IP.

* If the trap is taken for an unimplemented physical address, IIP is written with the physical
addressing memory attribute bit IP{63} and the implemented physical address bits
IP{IMPL_PA_MSB:0} only. Bits IIP{62:IMPL_PA_MSB+1} are set to 0.

When anrfi is executed with an unimplemented address in IIP (an unimplemented virtual address
if IPSR.it is 1, or an unimplemented physical address if IPSR.it is 0), and an Unimplemented
Instruction Address trap is taken, an implementation may optionally leave IIP unchanged
(preserving the unimplemented address in IIP).

Note: Since IP{3:0} are always 0 when executing Itanium-based code, IIP{3:0} will always be 0
when any interruption is taken from Itanium-based code, with the exception of an Unim-
plemented Instruction Address trap on anr f i , where IIP may optionally be preserved as
whatever value it held before executing the rfi .

3.3.54 Interruption Faulting Address (IFA — CR20)

On an interruption and if PSR.ic is 1, the IFA receives the virtual address (or physical address if
translations are disabled) that raised a fault. IFA reports the faulting address for both instruction and
data memory accesses (including IA-32). For faulting data references (including IA-32), IFA points
to the first byte of the faulting data memory operand. IFA reports a byte granular address. For
faulting instruction references (including IA-32), IFA contains the 16-byte aligned bundle address
(IFA{3:0} are zero) of the faulting instruction. For faulting IA-32 instructions, IIP points to the first

Volume 2: System State and Programming Model 2:31

intel.

byte of the IA-32 instruction, and is byte granular. In the event of an IA-32 instruction spanning a
virtual page boundary, IA-32 instruction fetch faults are reported as either (1) for faults on the first
page, IFA is set to the bundle address (IFA{3:0}=0) of the faulting instruction and IIP points to the
first byte of the faulting instruction, or (2) for faults on the second page, IFA contains the bundle
address of the second virtual page and IIP points to the first byte of the faulting IA-32 instruction.

The IFA also specifies a translation’s virtual address when a translation entry is inserted into the
instruction or data TLB. See “Interruption Vector Descriptions” on page 2:145 and “Translation
Insertion Format” on page 2:44 for usages of the IFA. As shown in Figure 3-10, all 64-bits of the
IFA must be implemented regardless of the size of the virtual and physical space supported by the
processor model (see “Unimplemented Address Bits” on page 2:61).

Figure 3-10. Interruption Faulting Address (IFA — CR20)

3.3.5.5

63 0
‘ IFA
64

Interruption TLB Insertion Register (ITIR - CR21)

The ITIR receives default translation information from the referenced virtual region register on a
virtual address translation fault. See “Interruption Vector Descriptions” on page 2:145 for the fault
conditions that set the ITIR. The ITIR provides additional virtual address translation parameters on
an insertion into the instruction or data TLB. See “Translation Instructions” on page 2:50 for ITIR
usage information. Figure 3-11 and Table 3-8 define the ITIR fields.

Figure 3-11. Interruption TLB Insertion Register (ITIR)

Table 3-8.

3.3.5.6

2:32

63 32 31 8 7 2 1 0
cwil ‘ key ps ‘ cwi2 l
32 24 6 2
ITIR Fields
Field Bits Description
cwil, cwi2 |63:32, |On aread these fields may return zeros or the value last written to them. If a non-zero
1:0 value is written, a subsequent TLB insert will raise a Reserved Register Field fault
depending on other parameters to the insert. See “Translation Insertion Format” on
page 2:44.
ps 7:2 Page Size — On a TLB insert, specifies the size of the virtual to physical address

mapping. On an instruction or data translation fault, this field is set to the accessed
region’s page size (RR.ps).

key 31:8 protection Key — On a TLB insert specifies a protection key that uniquely tags
translations to a protection domain. On an instruction or data translation fault, Key is set
to the accessed Region Identifier (RR.rid).

Interruption Instruction Previous Address (lIIPA — CR22)

For Itanium instructions, ITPA records the last successfully executed instruction bundle address. For
IA-32 instructions, IIPA records the byte granular virtual instruction address zero extended to
64-bits of the faulting or trapping IA-32 instruction. In the case of a fault, [TPA does not report the
address of the last successfully executed IA-32 instruction, but rather the address of the faulting
IA-32 instruction. ITPA preserves bits 3:0 for byte aligned IA-32 instruction addresses.

Volume 2: System State and Programming Model

The ITPA can be used by software to locate the address of the instruction bundle or IA-32
instruction that raised a trap or the instruction executed prior to a fault or interruption. In the case of
a branch related trap, IIPA points to the instruction bundle which contained the branch instruction
that raised the trap, while IIP points to the target of the branch.

When an instruction successfully executes without a fault, and the PSR.ic bit was 1 prior to
instruction execution, it becomes the “last successfully executed instruction.” On interruptions,
ITPA contains the address of the last successfully executed instruction bundle or IA-32 instruction,
if PSR.ic was 1 prior to the interruption. If no such instruction exists, e.g., in case of anrfi toa
fault, the contents of IITPA remain unchanged.

When PSR.ic is one, accesses to [IPA cause an Illegal Operation fault. When PSR.ic is zero, IIPA is
not updated by hardware and can be read and written by software. This permits low-level code to
preserve IIPA across interruptions.

If the PSR.ic bit is explicitly cleared, e.g., by using r sm then the contents of IIPA are undefined.
Only when the PSR.ic bit is cleared by an interruption is the value of ITPA defined. It may point at
the instruction which caused a trap, or at the instruction just prior to a faulting instruction, at an
earlier instruction that became defined by some prior interruption, or by a move to IIPA instruction
when PSR.ic was zero.

If the PSR.ic bit is explicitly set, e.g., by using ssm then the contents of IIPA are undefined until
the PSR.ic bit has been serialized and an interruption occurs.

During instruction set transitions the following boundary cases exist:

* On faults taken on the first [A-32 instruction after a br. i a or rfi, IIPA records the faulting
[A-32 instruction address.

e On br.i a traps, IIPA records the address of the trapping instruction bundle.

* On faults taken on the first Itanium instruction after leaving the IA-32 instruction set, due to a
j npe or interruption, IIPA contains the address of the j npe instruction or the interrupted [A-32
instruction.

* Onj npe Data Debug, Single Step and Taken Branch traps, [IPA contains the address of the
j npe instruction.

As shown in Figure 3-12, all 64-bits of the [TPA must be implemented regardless of the size of the
physical and virtual address space supported by the processor model (see “Unimplemented Address
Bits” on page 2:61).

Figure 3-12. Interruption Instruction Previous Address (lIPA — CR22)

3.3.5.7

63 0
] IIPA
64

Interruption Function State (IFS — CR23)

The IFS register is used to reload the current register stack frame (CFM) on a Return From
Interruption (r fi). If the IFS is accessed while PSR.ic is 1, an Illegal Operation fault is raised. The
IFS can only be accessed at privilege level 0; otherwise, a Privileged Operation fault is raised. The
IFS.v bit is cleared on interruption if PSR.ic is 1. All other fields are undefined after an interruption.
If PSR.ic is 0, the cover instruction copies CFM to IFS.ifm and sets IFS.v to 1. See Figure 3-13
and Table 3-9 for the IFS field definitions.

Volume 2: System State and Programming Model 2:33

Figure 3-13. Interruption Function State (IFS — CR23)

63 62 38 37 0
1 25 38
Table 3-9. Interruption Function State Fields
Field Bits Description
ifm 37:0 Interruption Frame Marker
v 63 Valid bit, cleared to 0 on interruption if PSR.ic is 1.

3.3.5.8

Interruption Immediate (IIM — CR24)

If PSR.ic is 1, the IIM (Figure 3-14) records the zero-extended immediate field encoded in chk. a,
chk. s, f chkf or br eak instruction faults. The br eak. b instruction always writes a zero value and
ignores its immediate field. The IA-32_Intercept vector writes all 64-bits of IIM to indicate the

cause of the intercept. See Table 8-1 on page 2:146 for the value of IIM in other situations. For the
purpose of resource dependency, IIM is written as a result of the fault, not by the instruction itself.

Figure 3-14. Interruption Immediate (IIM — CR24)

3.3.5.9

63 0
Interruption Immediate
64

Interruption Hash Address (IHA — CR25)

The IHA (Figure 3-15) is loaded with the address of the Virtual Hash Page Table (VHPT) entry the
processor referenced or would have referenced to resolve a translation fault. The IHA is written on
interruptions by the processor when PSR.ic is 1. Refer to “VHPT Hashing” on page 2:54 for
complete details. See Table §-1 on page 2:146 for the value of IHA in other situations. All upper 62
address bits of IHA must be implemented regardless of the size of the virtual address space
supported by the processor model (see “Unimplemented Address Bits” on page 2:61). The virtual
address written to IHA by the processor is guaranteed to be an implemented virtual addresses on all
processor models; however, if the address referenced by the VHPT is an unimplemented virtual
address, the value of IHA is undefined.

Figure 3-15. Interruption Hash Address (IHA — CR25)

3.3.6

2:34

63 2 1 0
‘ Interruption Hash Address ‘ ig ‘
62 2

External Interrupt Control Registers

The external interrupt control registers (CR64-81) are defined in “External Interrupt Control
Registers” on page 2:104. They are used to prioritize and deliver external interrupts, send
inter-processor interrupts to other processors and assign interrupt vectors for locally generated
processor interrupts.

Volume 2: System State and Programming Model

intel.

3.3.7 Banked General Registers

Banked general registers (see Figure 3-16) provide immediate register context for low-level
interruption handlers (e.g., speculation and TLB miss handlers). Upon interruption, the processor
switches 16 general purpose registers (GR16 to GR31) to register bank 0, register bank 1 contents
are preserved.

Figure 3-16. Banked General Registers

general registers nat

oy —— banked general

ary | H registers nat
I 63 0 0

| 3 i []erie

gfls:! [] g -

84

8131 H
gr3; L . . § gr3)
i r | — volatile registers

When PSR.bn is 1, bank 1 for registers GR16 to GR31 is selected; when 0, bank 0 for registers
GR16 to GR31 is selected. Banks are switched in the following cases:

* an interruption selects bank 0,
» rfi switches to the bank specified by IPSR.bn, or
* bswswitches to the specified bank.

On an interruption or bank switch, the processor ensures all prior register accesses (reads and
writes) are performed to the prior register bank. Data values in banked registers are preserved
across bank switches and both banks maintain NaT values when loaded from general registers.
Registers from both banks cannot be addressed at the same time. However, non-banked general
registers (GRO-15, and GR32-127) are accessible regardless of the state of PSR.bn.

The ALAT register target tracking mechanism (see “Data Speculation” on page 1:55) does not
distinguish the two register banks; from the ALAT’s perspective GR16 in bank 0 is the same
register as GR16 in bank 1.

Operating systems should ensure that IA-32 and Itanium-based application code is executed within
register bank 1. If TA-32 or Itanium-based application code executes out of register bank 0, the
application register state (including [A-32) will be lost on any interruption. During interruption
processing the operating system uses register bank 0 as the initial working register context.

Usage of these additional registers is determined by software conventions. However, registers
GR24 to GR31, of bank 0, are not preserved when PSR.ic is 1; operating system code can not rely
on register values being preserved unless PSR.ic is 0. While PSR.ic is 1, processor-specific
firmware may use these registers for machine check or firmware interruption handling at any point
regardless of the state of PSR.i. If PSR.ic is 0, GR24 to GR31 can be used as scratch registers for
low-level interruption handlers. Registers GR16 to GR23 are always preserved; operating system
code can rely on the values being preserved.

Volume 2: System State and Programming Model 2:35

2:36

Volume 2: System State and Programming Model

intel.

Addressing and Protection

41

This chapter defines operating system resources to translate 64-bit virtual addresses into physical
addresses, 32-bit virtual addressing, virtual aliasing, physical addressing, memory ordering and
properties of physical memory. Register state defined to support virtual memory management is
defined in Chapter 3, while Chapter 5 provides complete information on virtual memory faults.

Note: Unless otherwise noted, references to “interruption” in this chapter refer to IVA-based
interruptions. See “Interruption Definitions” on page 2:79.

The following key features are supported by the virtual memory model.

* Virtual Regions are defined to support contemporary operating system Multiple Address Space
(MAS) models of placing each process within a unique address space. Region identifiers
uniquely tag virtual address mappings to a given process.

* Protection Domain mechanisms support the Single Address Space (SAS) model, where
processes co-exist within the same virtual address space.

 Translation Lookaside Buffer (TLB) structures are defined to support high-performance paged
virtual memory systems. Software TLB fill and protection handlers are utilized to defer
translation policies and protection algorithms to the operating system.

* A Virtual Hash Page Table (VHPT) is designed to augment the performance of the TLB. The
VHPT is an extension of the processor’s TLB that resides in memory and can be automatically
searched by the processor. A particular operating system page table format is not dictated.
However, the VHPT is designed to mesh with two common translation structures: the virtual
linear page table and hashed page table. Enabling of the VHPT and the size of the VHPT are
completely under software control.

* Sparse 64-bit virtual addressing is supported by providing for large translation arrays
(including multiple levels of hierarchy similar to a cache hierarchy), efficient translation miss
handling support, multiple page sizes, pinned translations, and mechanisms to promote sharing
of TLB and page table resources.

Virtual Addressing

As seen by Itanium-based application programs, the virtual addressing model is fundamentally a
64-bit flat linear virtual address space. 64-bit general registers are used as pointers into this address
space. IA-32 32-bit virtual linear addresses are zero extended into the 64-bit virtual address space.

As shown in Figure 4-1, the 64-bit virtual address space is divided into eight 261 byte virtual
regions. The region is selected by the upper 3-bits of the virtual address. Associated with each
virtual region is a region register that specifies a 24-bit region identifier (unique address space
number) for the region. Eight out of the possible 224 virtual address spaces are concurrently
accessible via the 8 region registers. The region identifier can be considered the high order address
bits of a large 85-bit global address space for a single address space model, or as a unique ID for a
multiple address space model.

Volume 2: Addressing and Protection 2:37

2:38

Figure 4-1. Virtual Address Spaces

virtual address

) .
8 virtual r 7
regions L
! 4
0 LT
HEs
291 bytes 4K10256M || | -
per region pages 7
I
J
| 2% virtual
address spaces

By assigning sequential region identifiers, regions can be coalesced to produce larger 62-, 63- or
64-bit spaces. For example, an operating system could implement a 62-bit region for process
private data, 62-bit region for I/O, and a 63-bit region for globally shared data. Default page sizes
and translation policies can be assigned to each virtual region.

Figure 4-2 shows the process of mapping a virtual address into a physical address. Each virtual
address is composed of three fields: the Virtual Region Number, the Virtual Page Number, and the
page offset. The upper 3-bits select the Virtual Region Number (VRN). The least-significant bits
form the page offset. The Virtual Page Number (VPN) consists of the remaining bits. The VRN bits
are not included in the VPN. The page offset bits are passed through the translation process
unmodified. Exact bit positions for the page offset and VPN bits vary depending on the page size
used in the virtual mapping.

On a memory reference (any reference other than an insert or purge), the VRN bits select a Region
Identifier (RID) from 1 of the 8 region registers, the TLB is then searched for a translation entry
with a matching VPN and RID value. The VRN may optionally be used when searching for a
matching translation on memory references (references other than inserts and purges — see

Section 4.1.1.4). If a matching translation entry is found, the entry’s physical page number (PPN) is
concatenated with the page offset bits to form the physical address. Matching translations are
qualified by page-granular privilege level access right checks and optional protection domain
checks by verifying the translation’s key is contained within a set of protection key registers and
read, write, execute permissions are granted.

If the required translation is not resident in the TLB, the processor may optionally search the VHPT
structure in memory for the required translation and install the entry into the TLB. If the required
entry cannot be found in the TLB and/or VHPT, the processor raises a TLB Miss fault to request
that the operating system supply the translation. After the operating system installs the translation
in the TLB and/or VHPT, the faulting instruction can be restarted and execution resumed.

Virtual addressing for instruction references are enabled when PSR.it is 1, data references when
PSR.dt is 1, and register stack accesses when PSR.rtis 1.

Volume 2: Addressing and Protection

intel.

Figure 4-2. Conceptual Virtual Address Translation for References

411

region)
registers 63 6160 virtual address 0
10|
e [|
2| region ID - | 3
virtual region number (VRN) virtual page number (VPN) offset
117
l———| 24
hash
-
v search v search search
region ID key VRN | virtual page num (VPN) | rights | physical page num (PPN)

Translation Lookaside Buffer (TLB)
| [[]

24
search

pkrO[key rights prOteCﬁ‘OH

pkrl key registers

pkr2| 62 V 0
: physical page number (PPN) offset ‘
[— physical address

Translation Lookaside Buffer (TLB)

The processor maintains two architectural TLBs as shown in Figure 4-3, the Instruction TLB
(ITLB) and Data TLB (DTLB). Each TLB services translation requests for instruction and data
memory references (including IA-32), respectively. The Data TLB also services translation
requests for references by the RSE and the VHPT walker. The TLBs are further divided into two
sub-sections; Translation Registers (TR) and Translation Cache (TC).

Figure 4-3. TLB Organization

ITLB DTLB
i tr,
ity | o | |
it | i) | . |
TR = 'DTR
itr,, | : : dtr,, | i
itc ITC dtc DTC

In the remainder of this document, the term TLB refers to the combined instruction, data,
translation register, and translation cache structures.

The TLB is a local processor resource; installation of a translation or local processor purges do not
affect other processor’s TLBs. Global TLB purges are provided to purge translations from all
processors within a TLB coherence domain in a multiprocessor system.

Volume 2: Addressing and Protection 2:39

41.1.1

41.1.2

2:40

intel.

Translation Registers (TR)

The Translation Register (TR) section of the TLB is a fully-associative array defined to hold
translations that software directly manages. Software can explicitly insert a translation into a TR by
specifying a register slot number. Translations are removed from the TRs by specifying a virtual
address, page size and a region identifier. Translation registers allow the operating system to “pin”
critical virtual memory translations in the TLB. Examples include I/O spaces, kernel memory areas,
frame buffers, page tables, sensitive interruption code, etc. Instruction fetches for interruption
handlers are performed using virtual addresses; therefore, virtual address ranges containing
software translation miss routines and critical interruption sequences should be pinned or else
additional TLB faults may occur. Other virtual mappings may be pinned for performance reasons.

Entries are placed into a specific TR slot with the Insert Translation Register (i t r) instruction.
Once a translation is inserted, the processor will not replace the translation to make room for other
translations. Local translations can only be removed by software issuing the Purge Translation
Register (pt r) instruction.

TR inserts and purges may cause other TR and/or TC entries to be removed (refer to Section 4.1.1.4
for details). Prior to inserting a TR entry, software must ensure that no overlapping translation
exists in any TR (including the one being written); otherwise, a Machine Check abort may be
raised, or the processor may exhibit other undefined behavior. Translation register entries may be
removed by the processor due to hardware or software errors. In the presence of an error, the
processor can remove TR entries; notification is raised via a Machine Check abort.

There are at least 8§ instruction and 8 data TR slots implemented on all processor models. Please see
the processor specific documentation for further information on the number of translation registers
implemented on the Itanium processor. Translation registers support all implemented page sizes
and must be implemented in a single-level fully-associative array. Any register slot can be used to
specify any virtual address mapping. Translation registers are not directly readable.

In some processor models, translation registers are physically implemented as a subsection of the
translation cache array. Valid TR slots are ignored for purposes of processor replacement on an
insertion into the TC. However, invalid TR slots (unused slots) may be used as TC entries by the
processor. As a result, software inserts into previously invalid TR entries may invalidate a TC entry
in that slot.

Implementations may also place a floating boundary between TR and TC entries within the same
structure where any entry above the boundary is considered a TC and any entry below the boundary
a TR. To maximize TC resources, software should allocate contiguous translation registers starting
at slot 0 and continuing upwards.

Translation Cache (TC)

The Translation Cache (TC) is an implementation-specific structure defined to hold the large
working set of dynamic translations for memory references (including IA-32). Please see the
processor specific documentation for further information on Itanium processor TC implementation
details. The processor directly controls the replacement policy of all TC entries.

Entries are installed by software into the translation cache with the Insert Data Translation Cache
(i tc. d) and Insert Instruction Translation Cache (i t c. i) instructions. The Purge Translation
Cache Local (pt c. |) instruction purges all ITC/DTC entries in the local processor that match the

Volume 2: Addressing and Protection

specified virtual address range and region identifier. Purges of all ITC/DTC entries matching a
specified virtual address range and region identifier among all processors in a TLB coherence
domain can be globally performed with the Purge Translation Cache Global (ptc. g, ptc. ga)
instruction. The TLB coherence domain covers at least the processors on the same local bus on
which the purge was broadcast. Propagation between multiple TLB coherence domains is platform
dependent. Software must handle the case where a purge does not propagate to all processors in a
multiprocessor system. Translation cache purges do not invalidate TR entries.

All the entries in a local processor’s ITC and DTC can be purged of all entries with a sequence of
Purge Translation Cache Entry (pt c. e) instructions. A pt c. e does not propagate to other
processors.

In all processor models, the translation cache has at least 1 instruction and 1 data entry in addition
to the specified 8 instruction and 8 data translation registers. Implementations are free to implement
translation cache arrays of larger sizes. Implementations may also choose to implement additional
hierarchies for increased performance. At least one translation cache level is required to support all
implemented page sizes. Additional hierarchy levels may or may not be performance optimized for
the preferred page size specified by the virtual region, may be set-associative or fully associative,
and may support a limited set of page sizes. Please see the processor specific documentation for
further information on the Itanium processor implementation details of the translation cache.

The translation cache is managed by both software and hardware. In general, software cannot
assume any entry installed will remain, nor assume the lifetime of any entry since replacement
algorithms are implementation specific. The processor may discard or replace a translation at any
point in time for any reason (subject to the forward progress rules below). TC purges may remove
more entries than explicitly requested. In the presence of a processor hardware error, the processor
may remove TC entries and optionally raise a Corrected Machine Check Interrupt.

In order to ensure forward progress for Itanium-based code, the following rules must be observed
by the processor and software.

» Software may insert multiple translation cache entries per TLB fault, provided that only the
last installed translation is required for forward progress.

» The processor may occasionally invalidate the last TC entry inserted. The processor must
guarantee visibility of the last inserted TC entry to all references while PSR.ic is zero. The
processor must eventually guarantee visibility of the last inserted TC entry until an r fi sets
PSR.ic to 1 and at least one instruction is executed with PSR.ic equal to 1, and completes
without a fault or interrupt. The last inserted TC entry may be occasionally removed before this
point, and software must be prepared to re-insert the TC entry on a subsequent fault. For
example, eager or mandatory RSE activity, speculative VHPT walks, or other interruptions of
the restart instruction may displace the software-inserted TC entry, but when software later
re-inserts the same TC entry, the processor must eventually complete the restart instruction to
ensure forward progress, even if that restart instruction takes other faults which must be
handled before it can complete. If PSR.ic is set to 1 by instructions other than r f i , the
processor does not guarantee forward progress.

« If software inserts an entry into the TLB with an overlapping entry (same or larger size) in the
VHPT, and if the VHPT walker is enabled, forward progress is not guaranteed. See “VHPT
Searching” on page 2:52.

» Software may only make references to memory with physical addresses or with virtual
addresses which are mapped with TRs, or to addresses mapped by the just-inserted translation,
between the insertion of a TC entry, and the execution of the instruction with PSR.ic equal to 1
which is dependent on that entry for forward progress. Software may also make repeated

Volume 2: Addressing and Protection 2:41

4113

4114

2:42

intel.

attempts to execute the same instruction with PSR.ic equal to 1. If software makes any other
memory references than these, the processor does not guarantee forward progress.

+ Software must not defeat forward progress by consistently displacing a required TC entry
through a global or local translation cache purge.

IA-32 code has more stringent forward progress rules that must be observed by the processor and
software. [A-32 forward progress rules are defined in Section 10.6.3.

The translation cache can be used to cache TR entries if the TC maintains the instruction vs. data
distinction that is required of the TRs. A data reference cannot be satisfied by a TC entry that is a
cache of an instruction TR entry, nor can an instruction reference be satisfied by a TC entry that is a
cache of a data TR entry. This approach can be useful in a multi-level TLB implementation.

Unified Translation Lookaside Buffers

Some processor models may merge the ITC and DTC into a unified translation cache. The
minimum number of unified entries is 2 (1 for instruction, and 1 for data). Processors may service
instruction fetch memory references with TC entries originally installed into the DTC and service
data memory references with translations originally installed in the ITC. To ensure consistent
operation across processor implementations, software is recommended to not install different
translations into the ITC or DTC for the same virtual region and virtual address. ITC inserts may
remove DTC entries. DTC inserts may remove ITC entries. TC purges remove ITC and DTC
entries.

Instruction and data translation registers cannot be unified. DTR entries cannot be used by
instruction references and ITR entries cannot be used by data references. ITR inserts and purges do
not remove DTR entries. DTR inserts and purges do not remove ITR entries.

Purge Behavior of TLB Inserts and Purges

Translations contained in the translation caches (TC) and translation registers (TR) are maintained
in a consistent state by ensuring that TLB insertions remove existing overlapping entries before
new TR or TC entries are installed. Similarly, TLB purges that partially or fully overlap with
existing translations may remove all overlapping entries. In this context, “overlap” refers to two
translations with the same region identifier (but not necessarily identical virtual region numbers),
and with partially or fully overlapping virtual address ranges (determined by the virtual address and
the page size). Examples are: two 4K-byte pages at the same virtual address, or an 8K-byte page at
virtual address 0x2000 and a 4K-byte page at 0x3000.

As described in Section 4.1, each TLB may contain a VRN field, and virtual address bits {63:61}
may be used as part of the match for memory references (references other than inserts and purges).
This binding of a translation to the VRN implies that a lookup of a given virtual address (region
identifier/VPN pair) in either the translation cache or translation registers may result in a TLB miss
if a memory reference is made through a different VRN (even if the region identifiers in the two
region registers are identical). Some processor models may also omit the VRN field of the TLB,
causing the TLB search on memory references to find an entry independent of VRN bits. However,
all processor models are required, during translation cache purge and insert operations, to purge all
possible translations matching the region identifier and virtual address regardless of the specified
VRN.

Volume 2: Addressing and Protection

intel.

Figure 4-4. Conceptual Virtual Address Searching for Inserts and Purges

region .
registers 63 6160 virtual address 0
110 ‘ ‘
rrl
2| region ID ¢ ‘ 3
virtual region number (VRN) virtual page number (VPN)
wl]
< 24
hash
as
-

search

' search

region ID key

VRN | virtual page num (VPN) | rights | physical page num (PPN)

Translation Lookaside Buffer (TLB)

A processor may overpurge translation cache entries; i.e., it may purge a larger virtual address
range than required by the overlap. Since page sizes are powers of 2 in size and aligned on that
same power of 2 boundary, purged entries can either be a superset of, identical to, or a subset of the
specified purge range.

Table 4-1 defines the purge behavior of the different TLB insert and purge instructions.

Table 4-1. Purge Behavior of TLB Instructions

Translation Cache Translation Registers
TLB Instructions

Instruction Data Instruction Data
itc.i Must purge® May purge® Machine Check® Must not purge®
itr.i Must purge May purge Machine Check Must not purge
itc.d May purge Must purge Must not purge Machine Check
itr.d May purge Must purge Must not purge Machine Check
ptc.| Must purge Must purge Machine Check Machine Check
ptc.g,ptc. ga Must purge Must purge Machine Check Machine Check
(local)®
ptc.g,ptc. ga Must purge Must purge Must not purge Must not purge
(remote)® Must not Machine Must not Machine

Checkf Check

ptc.e Must purge Must purge Must not purge Must not purge
ptr.i Must purge May purge Must purge Must not purge
ptr.d May purge Must purge Must not purge Must purge

a. Must purge: requires that all partially or fully overlapped translations are removed prior to the insert or purge

operation.

b. May purge: indicates that a processor may remove partially or fully overlapped translations prior to the insert
or purge operation. However, software must not rely on the purge.

c. Machine Check: indicates that a processor will cause a Machine Check abort if an attempt is made to insert or
purge a partially or fully overlapped translation. The machine check abort may not be delivered synchronously
with the TLB insert or purge operation itself, but is guaranteed to be delivered, at the latest, on a subsequent
instruction serialization operation.

Volume 2: Addressing and Protection 2:43

4.1.

2:44

intel.

d. Must not purge: the processor does not remove (or check for) partially or fully overlapped translations prior to
the insert or purge operation. Software can rely on this behavior.

e. ptc. g, pt c. ga: two forms of global TLB purges are distinguished: local and remote. The local form
indicates that the pt c. g or pt . ga was initiated on the local processor. The remote form indicates that this
is an incoming TLB shoot-down from a remote processor.

f. Must not Machine Check: Remote pt C. g or pt C. ga operations must not cause local translation registers
to be purged. Remote pt €. g or pt €. ga operations must not cause the local processor to machine check.

1.5 Translation Insertion Format

Figure 4-5 shows the register interface to insert entries into the TLB. TLB insertions are performed
by issuing the Insert Translation Cache (i tc. d, itc.i) and Insert Translation Registers (i tr. d,

i tr.i)instructions. The first 64-bit field containing the physical address, attributes and
permissions is supplied by a general purpose register operand. Additional protection key and page
size information is supplied by the Interruption TLB Insertion Register (ITIR). The Interruption
Faulting Address register (IFA) specifies the virtual address for instruction and data TLB inserts.
ITIR and IFA are defined in “Control Registers” on page 2:24. The upper 3 bits of IFA (VRN
bits{63:61}) select a virtual region register that supplies the RID field for the TLB entry. The RID
of the selected region is tagged to the translation as it is inserted into the TLB. If reserved fields or
reserved encodings are used, a Reserved Register Field fault is raised on the insert instruction.

Figure 4-5. Translation Insertion Format

63

53 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 10

GRI |

ig

‘ed

| o [[s[s] ma s

IFA ‘

vpn ‘ ig

[~]
|
g i .

Software must issue an instruction serialization operation to ensure installs into the ITLB are
observed by dependent instruction fetches and a data serialization operation to ensure installs into
the DTLB are observed by dependent memory data references.

Table 4-2 describes all the translation interface fields.

Table 4-2. Translation Interface Fields

TLB
Field

Source
Field

GR[11{0}

Description

Present bit — When 0, references using this translation cause an Instruction or
Data Page Not Present fault. Most other fields are ignored by the processor,
see Figure 4-6 for details. This bit is typically used to indicate that the
mapped physical page is not resident in physical memory. The present bit
is not a valid bit. For each TLB entry, the processor maintains an
additional hidden valid bit indicating if the entry is enabled for matching.

ma

GR[r]{4:2}

Memory Attribute — describes the cacheability, coherency, write-policy and
speculative attributes of the mapped physical page. See “Memory Attributes”
on page 2:63 for details.

Volume 2: Addressing and Protection

intel.

Table 4-2. Translation Interface Fields (Continued)

TLB
Field

Source
Field

Description

a

GR[/1{5}

Accessed Bit — When 0 and PSR.da is 0, data references to the page cause a
Data Access Bit fault. When 0 and PSR.ia is 0, instruction references to the
page cause an Instruction Access Bit fault. When 0, I1A-32 references to the
page cause an Instruction or Data Access Bit fault. This bit can trigger a fault
on reference for tracing or debugging purposes. The processor does not
update the Accessed bit on a reference.

GR[1]{6}

Dirty Bit — When 0 and PSR.da is 0, Intel® Itanium® store or semaphore
references to the page cause a Data Dirty Bit fault. When 0, |1A-32 store or
semaphore references to the page cause a Data Dirty Bit fault. The processor
does not update the Dirty bit on a write reference.

pl

GRIA{8:7}

Privilege Level — Specifies the privilege level or promotion level of the page.
See “Page Access Rights” on page 2:46 for complete details.

ar

GRIA{11:9}

Access Rights — page granular read, write and execute permissions and
privilege controls. See “Page Access Rights” on page 2:46 for details.

ppn

GR[r]{49:12}

Physical Page Number — Most significant bits of the mapped physical address.
Depending on the page size used in the mapping, some of the least significant
PPN bits are ignored.

GRJr]{63:53}
IFA{11:0},
RR[vrn[{0,7:2}

available — Software can use these fields for operating system defined
parameters. These bits are ignored when inserted into the TLB by the
processor.

ed

GRIA{52}

Exception Deferral — For a speculative load that results in an exception, the
speculative load’s instruction page TLB.ed bit is one of the conditions which
determines whether the exception must be deferred. See “Deferral of
Speculative Load Faults” on page 2:88 for complete details. This bit is ignored
in the data TLB for data memory references and for IA-32 memory references.

ps

ITIR{7:2}

Page Size — Page size of the mapping. For page sizes larger than 4K bytes
the low-order bits of PPN and VPN are ignored. Page sizes are defined as 2P®
bytes. See “Page Sizes” on page 2:47 for a list of supported page sizes.

key

ITIR{31:8}

Protection Key — uniquely tags the translation to a protection domain. If a
translation’s Key is not found in the Protection Key Registers (PKRs), access
is denied and a Data or Instruction Key Miss fault is raised. See “Protection
Keys” on page 2:48 for complete details.

vpn

IFA{63:12}

Virtual Page Number — Depending on a translation’s page size, some of the
least-significant VPN bits specified are ignored in the translation process.
VPN{63:61} (VRN) selects the region register.

rid

RR[VRN].rid

Virtual Region Identifier — On TLB inserts the Region Identifier selected by
VPN{63:61} (VRN) is used as additional match bits for subsequent accesses
and purges (much like vpn bits).

The format in Figure 4-6 is defined for not-present translations (P-bit is zero).

Figure 4-6. Translation Insertion Format — Not Present

GRA \
ITIR \

IFA \

Volume 2: Addressing and Protection

63

32 31 12 1 8 7 2

vpn ig

"
= oe

2:45

intel.

41.1.6 Page Access Rights

Page granular access controls use 4 levels of privilege. Privilege level 0 is the most privileged and
has access to all privileged instructions; privilege level 3 is least privileged. Access (including
[A-32) to a page is determined by the TLB.ar and TLB.pl fields, and by the privilege level of the
access, as defined in Table 4-3. RSE fills and spills obtain their privilege level from RSC.pl; all
other accesses (including IA-32) obtain their privilege level from PSR.cpl. Within each cell, “—”
means no access, “R” means read access, “W” means write access, “X”” means execute access, and
“Pn” means promote PSR.cpl to privilege level “n” when an Enter Privileged Code (epc)
instruction is executed.

Table 4-3. Page Access Rights

Privilege Level?
TLB.ar TLB.pl Description
3 2 1 0
0 3 R R R R read only
2 R R R
1 R R
0 R
1 3 RX RX RX RX read, execute
2 RX RX RX
1 RX RX
0 RX
2 3 RW RW RW RW read, write
2 RW RW RW
1 RW RW
0 RW
3 3 RWX RWX RWX RWX read, write, execute
2 RWX |RWX |RWX
1 RWX | RWX
0 RWX
4 3 R RW RW RW read only / read, write
2 R RW RW
1 R RW
0 RW
5 3 RX RX RX RWX read, execute / read, write, exec
2 RX RX RWX
1 RX RWX
0 RWX
6 3 RWX |RW RW RW read, write, execute / read, write
2 RWX |RW RW
1 RWX | RW
0 RW
7 3 X X X RX exec, promoteb / read, execute
2 XP2 X X RX
1 XP1 XP1 X RX
0 XPO XPO XPO RX

a. RSC.pl, for RSE fills and spills; PSR.cpl for all other accesses.
b. User execute only pages can be enforced by setting PL to 3.

2:46 Volume 2: Addressing and Protection

41.1.7

Software can verify page level permissions by the pr obe instruction, which checks accessibility to
a given virtual page by verifying privilege levels, page level read and write permission, and
protection key read and write permission.

Execute-only pages (TLB.ar 7) can be used to promote the privilege level on entry into the
operating system. User level code would typically branch into a promotion page (controlled by the
operating system) and execute the Enter Privileged Code (epc) instruction. When epc successfully
promotes, the next instruction group is executed at the target privilege level specified by the
promotion page. A procedure return branch type (br. r et) can demote the current privilege level.

Page Sizes

A range of page sizes are supported to assist software in mapping system resources and improve
TLB/VHPT utilization. Typically, operating systems will select a small range of fixed page sizes to
implement virtual memory algorithms. Larger pages may be statically allocated. For example, large
areas of the virtual address space may be reserved for operating system kernels, frame buffers, or
memory-mapped I/O regions. Software may also elect to pin these translations, by placing them in
the translation registers.

Table 4-4 lists insertable and purgeable page sizes that are supported by all processor models.
Insertable page sizes can be specified in the translation cache, the translation registers, the region
registers and the VHPT. Insertable page sizes can also be used as parameters to TLB purge
instructions (ptc. |, ptc. g, pt c. ga or pt r). Page sizes that are purgeable only may only be used
as parameters to TLB purge instructions.

Table 4-4. Architected Page Sizes

Page Sizes
4k 8k 16k | 64k | 256k 1™ 4M 16M 64M 256M 4G
Insertable yes yes yes yes yes yes yes yes yes yes -
Purgeable yes yes yes yes yes yes yes yes yes yes yes

Processors may also support additional insertable and purgeable page sizes. Please see the
processor specific documentation for further information on the page sizes supported by the
Itanium processor.

Page sizes are encoded in translation entries and region registers as a 6-bit encoded page size field.
Each field specifies a mapping size of 2N bytes, thus a value of 12 represents a 4K-byte page. If
unimplemented page sizes are specified toanitc,itr or nov to region register instruction, a
Reserved Register/Field fault is raised. If unimplemented page sizes are specified for a TLB purge
instruction an implementation may raise a Machine Check abort, may under-purge translations up
to ignoring the request, or may over-purge translations up to removal of all entries from the
translation cache. If unimplemented page sizes are specified by a pt c. g or pt c. ga broadcast from
another processor, an implementation may under-purge translations up to ignoring the request, or
may over-purge translations up to removal of all entries from the translation cache. However, it
must not raise a Machine Check abort.

Virtual and physical pages are aligned on the natural boundary of the page. For example, 4K-byte
pages are aligned on 4K-byte boundaries, and 4 M-byte pages on 4 M-byte boundaries.

Volume 2: Addressing and Protection 2:47

41.2

Region Registers (RR)

Associated with each of the 8 virtual regions is a privileged Region Register (RR). Each register
contains a Region Identifier (RID) along with several other region attributes, see Figure 4-7. The
values placed in the region register by the operating system can be viewed as a collection of process
address space identifiers.

Figure 4-7. Region Register Format

63 32 31 8 7 2 1 0
32 24 6 1 1

Regions support multiple address space operating systems by avoiding the need to flush the TLB
on a context switch. Sharing between processes is promoted by mapping common global or shared
region identifiers into the region register working set of multiple processes. All IA-32 memory
references are through region register 0.

Table 4-5 describes the region register fields. Region Identifier (rid) bits O through 17 must be
implemented on all processor models. Some processor models may implement additional bits.
Additional implemented bits must be contiguous and start at bit 18. Unimplemented bits are
reserved. Please see the processor specific documentation for further information on the size of the
Region Identifier implemented on the Itanium processor.

Table 4-5. Region Register Fields

41.3

2:48

Field Bits Description
ve 0 VHPT Walker Enable — When 1, the VHPT walker is enabled for the region. When 0,
disabled.
ps 7:2 Preferred page Size — Selects the virtual address bits used in hash functions for

set-associative TLBs or the VHPT. Encoded as 2P bytes. The processor may make
significant performance optimizations for the specified preferred page size for the
region.?

rid 31:8 Region Identifier — During TLB inserts, the region identifier from the select region
register is used to tag translations to a specific address space. During TLB/VHPT
lookups, the region identifier is used to match translations and to distribute hash
indexes among VHPT and TLB sets.

a. For more details on the usage of this field, See “VHPT Hashing” on page 2:54.

Software must issue an instruction serialization operation to ensure writes into the region registers
are observed by dependent instruction fetches and issue a data serialization operation for dependent
memory data references.

Protection Keys

Protection Keys provide a method to restrict permission by tagging each virtual page with a unique
protection domain identifier. The Protection Key Registers (PKR) represent a register cache of all
protection keys required by a process. The operating system is responsible for management and
replacement polices of the protection key cache. Before a memory access (including 1A-32) is
permitted, the processor compares a translation’s key value against all keys contained in the PKRs.
If a matching key is not found, the processor raises a Key Miss fault. If a matching Key is found,
access to the page is qualified by additional read, write and execute protection checks specified by

Volume 2: Addressing and Protection

the matching protection key register. If these checks fail, a Key Permission fault is raised. Upon
receipt of a Key Miss or Key Permission fault, software can implement the desired security policy
for the protection domain. Figure 4-8 and Table 4-6 describe the protection key register format and
protection key register fields.

Figure 4-8. Protection Key Register Format

Table 4-6.

63 32 31 8 7 4 3 2 1 0
32 24 4 1T 1 1 1

Protection Register Fields

Field Bits Description

\ 0 Valid — When 1, the Protection Register entry is valid and is checked by the
processor when performing protection checks. When 0, the entry is ignored.

wd 1 Write Disable — When 1, write permission is denied to translations in the protection
domain.

rd 2 Read Disable — When 1, read permission is denied to translations in the protection
domain.

xd 3 Execute Disable — When 1, execute permission is denied to translations in the

protection domain.

key 31:8 Protection Key — uniquely tags translation to a given protection domain.

Processor models have at least 16 protection key registers, and at least 18-bits of protection key.
Some processor models may implement additional protection key registers and protection key bits.
Unimplemented bits and registers are reserved. Key registers have at least as many implemented
key bits as region registers have rid bits. Additional implemented bits must be contiguous and start
at bit 18. Please see the processor specific documentation for further information on the number of
protection key registers and protection key bits implemented on the Itanium processor.

Software must issue an instruction serialization operation to ensure writes into the protection key
registers are observed by dependent instruction fetches and a data serialization operation for
dependent memory data references.

The processor ensures uniqueness of protection keys by checking new valid protection keys against
all protection key registers during the move to PKR instruction. If a valid matching key is found in
any PKR register, the processor invalidates the matching PKR register by setting PKR.v to zero,
before performing the write of the new PKR register. The other fields in any matching PKR remain
unchanged when it is invalidated.

Key Miss and Permission faults are only raised when memory translations are enabled (PSR.dt is 1
for data references, PSR.it is 1 for instruction references, PSR.rt is 1 for register stack references),
and protection key checking is enabled (PSR.pk is one).

Data TLB protection keys can be acquired with the Translation Access Key (t ak) instruction.
Instruction TLB key values are not directly readable. To acquire instruction key values software
should make provisions to read memory structures.

Volume 2: Addressing and Protection 2:49

41.4

Table 4-7. Translation Instructions

2:50

Translation Instructions

Table 4-7 lists translation instructions used to manage translations. Region registers, protection key
registers and the TLBs are accessed indirectly; the register number is determined by the contents of
a general register.

The processor does not ensure that modification of the translation resources is observed by
subsequent instruction fetches or data memory references. Software must issue an instruction
serialization operation before any dependent instruction fetch and a data serialization operation
before any dependent data memory reference.

Mnemonic Description Operation Instr. Serla_llzatlon
Type | Requirement

mv rrlrz] = rp Move to region RR[GR[r3]] = GR[ry] M | data/inst
register

nmv ry = rr [r3] Move from region GR[r4] = RR[GR[r3]] M | none
register

mov pkr[r3] = r, |Movetoprotectionkey | PKR[GR[r3ll = GR[r] M | data/inst
register

nmv r; = pkr[r3] Move from protection | GR[r4] = PKR[GR[r3]] M | none
key register

Itc.1 r3 Insert instruction ITC = GR[rg], IFA, ITIR M |inst
translation cache

itc.d r3 Insert data translation | DTC = GR(rg], IFA, ITIR M | data
cache

itr.i itr [r2] = r3 Insert instruction ITR[GR[r,]] = GR[r3], IFA, ITIR M |inst
translation register

itr.d dtr[I’2] = ry|Insert data translation DTRIGRI[ro]] = GR[rg], IFA, ITIR | M | data
register

pr obe r 1 = T3 [I> Probe data TLB for translation M none

ptc. | r 3, o Purge a translation from local processor instruction and M | data/inst
data translation cache

ptc.g r 3, I Globally purge a translation from multiple processor’s M | data/inst
instruction and data translation caches

ptc.ga r 3, I Globally purge a translation from multiple processor’s M | data/inst
instruction and data translation caches and remove
matching entries from multiple processor’s ALATs

ptc.er 3 Purge local instruction and data translation cache of all M | data/inst
entries

ptr. ir 3, Io Purge instruction translation registers M |inst

ptr. dr 3 I Purge data translation registers M | data

tak r 1 =1r3 Obtain data TLB entry protection key M | none

thash r 1 =T3 Generate translation’s VHPT hash address M | none

ttag rq{ = rg Generate translation tag for VHPT M | none

tpa rqy = rj Translate a virtual address to a physical address M | none

Volume 2: Addressing and Protection

41.5

Virtual Hash Page Table (VHPT)

The VHPT is an extension of the TLB hierarchy designed to enhance virtual address translation
performance. The processor’s VHPT walker can optionally be configured to search the VHPT for a
translation after a failed instruction or data TLB search. The VHPT walker provides significant
performance enhancements by reducing the rate of flushing the processor’s pipelines due to a TLB
Miss fault, and by providing speculative translation fills concurrent to other processor operations.

The VHPT, resides in the virtual memory space and is configurable as either the primary page table
of the operating system or as a single large translation cache in memory (see Figure 4-9). Since the
VHPT resides in the virtual address space, an additional TLB miss can be raised when the VHPT is
referenced. This property allows the VHPT to also be used as a linear page table.

Figure 4-9. Virtual Hash Page Table (VHPT)

41.51

virtual address i
ZT’TA.swe
VHPT

;Zgligt]::rs A optional collision search chain
P 1 -
| - TC
install —
rid vpn optional operating system page tables

ps

hashin,
- -

PTA.base

The processor does not manage the VHPT or perform any writes into the table. Software is
responsible for insertion of entries into the VHPT (including replacement algorithms), dirty/access
bit updates, invalidation due to purges and coherency in a multiprocessor system. The processor
does not ensure the TLBs are coherent with the VHPT memory image.

If software needs to control the entries inserted into the TLB more explicitly, or programs the
VHPT with differing mappings for the same virtual address range, it may need to take additional
action to ensure forward progress. See “VHPT Searching” on page 2:52.

VHPT Configuration

The Page Table Address (PTA) register determines whether the processor is enabled to walk the
VHPT, anchors the VHPT in the virtual address space, and controls VHPT size and configuration
information. The VHPT can be configured as either a per-region virtual linear page table structure
(8-byte short format) or as a single large hash page table (32-byte long format). No mixing of
formats is allowed within the VHPT.

To implement a per-region linear page table structure an operating system would typically map the
leaf page table nodes with small backing virtual translations. The size of the table is expanded to
include all possible virtual mappings, effectively creating a large per-region flat page table within
the virtual address space.

Volume 2: Addressing and Protection 2:51

4.1.5.2

41.5.3

intel.

To implement a single large hash page table, the entire VHPT is typically mapped with a single
large pinned virtual translation placed in the translation registers and the size of the table is reduced
such that only a subset of all virtual mappings can be resident within the table. Operating systems
can tune the size of the hash page table based on the size of physical memory and operating system
performance requirements.

VHPT Searching

When enabled, the processor’s VHPT walker searches the VHPT for a translation after a failed
instruction or data TLB search. The VHPT walker checks only the specific VHPT entry addressed
by the short- or the long-format hash function, as selected by PTA.vf. If additional TLB misses are
encountered during the VHPT access, a VHPT Translation fault is raised. If the region-based
short-format VHPT entry contains no reserved bits or encodings, it is installed into the TLB, and
the processor again attempts to translate the failed instruction or data reference. If the long-format
VHPT entry’s tag specifies the correct region identifier and virtual address, and the entry contains
no reserved bits or encodings, it is installed into the TLB, and the processor again attempts to
translate the failed instruction or data reference. Otherwise the processor raises a TLB Miss fault.
The translation is installed into the TLB even if its VHPT entry is marked as not present (p=0).
Software may optionally search additional VHPT collision chains (associativities) or search for
translations within the operating system’s primary page tables. Performance is optimized by
placing frequently referenced translations within the VHPT structure directly searched by the
processor.

The VHPT walker is optional on a given processor model. Software can neither assume the
presence of a VHPT walker, nor that the VHPT walker will find a translation in the VHPT. The
VHPT walker can abort a search at any time for implementation-specific reasons, even if the
required translation entry is in the VHPT. Operating systems must regard the VHPT walker strictly
as a performance optimization and must be prepared to handle TLB misses if the walker fails.

VHPT walks may be done speculatively by the processor's VHPT walker. Additionally, VHPT
walks triggered by non-speculatively-executed instructions are not required to be done in program
order. Therefore, if the walker is enabled and if the VHPT contains multiple entries that map the
same virtual address range, software must set up these entries such that any of them can be used in
the translation of any part of this virtual address range. Additionally, if software inserts a translation
into the TLB which is needed for forward progress, and this translation has a smaller page size than
the translation which would have been inserted on a VHPT walk for the same address, then
software may need to disable the VHPT walker in order to ensure forward progress, since this
inserted translation may be displaced by a VHPT walk before it can be used.

Region-based VHPT Short Format

The region-based VHPT short format shown in Figure 4-10 uses 8-byte VHPT entries to support a
per-region linear page table configuration. To use the short-format VHPT, PTA.vf must be set to 0.

Figure 4-10. VHPT Short Format

2:52

63 53 52 51 50 49 12 11 9 8 7 6 5 4 2
ig ‘ed‘ v ‘ ppn ‘ ar ‘ pl ‘ d ‘ a ‘ ma | p ‘
11 1 2 38 3 2 1 1 3 1 1

Volume 2: Addressing and Protection

See “Translation Insertion Format” on page 2:44 for a description of all fields. The VHPT walker
provides the following default values when entries are installed into the TLB.

* Virtual Page Number — implied by the position of the entry in the VHPT. The hashed
short-format entry is considered to be the matching translation.

* Region Identifiers are not specified in the short format. To ensure uniqueness, software must
provide unique VHPT mappings per region. Region identifiers obtained from the referenced
region register are tagged with the translation when inserted into the TLB.

» Page Size — specified by the accessed region’s preferred page size (RR[VA{63:61}].ps)

» Protection Key — specified by the accessed region identifier value (RR[VA{63:61}].rid). As a
result, all implementations must ensure that the number of implemented key bits is greater than
or equal to the number of implemented region identifier bits.

If a translation is marked as not present, ignored fields are usable by software as noted in

Figure 4-11.
Figure 4-11. VHPT Not-present Short Format
63 1.0
| 9 o]
64

41.5.4 VHPT Long Format

The long-format VHPT uses 32-byte VHPT entries to support a single large virtual hash page table.
To use the long-format VHPT, PTA.vf must be set to 1. The long format is a superset of the TLB
insertion format, as noted in Figure 4-12, and specifies full translation information (including
protection keys and page sizes). Additional fields are defined in Table 4-8. The long format is
typically used to build the hash page table configuration.

Figure 4-12. VHPT Long Format
offset 63 52 51 50 49 32 31 1211 9 8 7 654 210

+0 ‘ ig ‘ed ppn ‘ ar ‘ pl ‘d‘a‘ ma .E
[~]

|

|

+16 ‘ ti ‘ tag
w24 | i
64

Table 4-8. VHPT Long-format Fields

Field Offset Description
tag +16 Translation Tag — The tag, in conjunction with the VHPT hash index, is used to
uniquely identify the translation. Tags are computed by hashing the virtual page
number and the region identifier. See “VHPT Hashing” on page 2:54 for details on tag
and hash index generation.
ti +16 Tag Invalid Bit — If one, this bit of the tag indicates an invalid tag. On all processor
implementations, the VHPT walker and the t t ag instruction generate tags with the ti
bit equal to 0. A VHPT entry with the ti bit equal to one will never be inserted into the
processor’s TLBs. Software can use the ti bit to invalidate long-format VHPT entries in
memory.
ig +24 available — field for software use, ignored by the processor. Operating systems may
store any value, such as a link address to extend collision chains on a hash collision.

Volume 2: Addressing and Protection 2:53

If a translation is marked as not present, ignored fields are usable by software as noted in
Figure 4-13.

Figure 4-13. VHPT Not-present Long Format

4.1.6

2:54

offset ‘63 8 7 2 1 ‘ 0 ‘
+0 ig 0
+8 ‘ ig ps ‘ rv ‘
+16 [t tag |
w24 | ig |

For multiprocessor systems, atomic updates of long-format VHPT entries may be ensured by
software as follows:

* Before making multiple non-atomic updates to a VHPT entry in memory, software is required
to set its ti bit to one.

+ After making multiple non-atomic updates to a VHPT entry in memory, software may clear its
ti bit to zero to re-enable tag matches.

The updates to the VHPT entry in memory must be constrained to be observable only after the store
that sets the ti bit to one is observable. This can be accomplished with a nf instruction, or by
performing the updates to the VHPT entry with release stores. Similarly, the clearing of the ti bit
must be constrained to be observable only after all of the updates to the VHPT entry are observable.
This can be accomplished with a nf instruction, or by performing the clear of the ti bit with a
release store.

VHPT Hashing

The processor provides two methods for software to determine a VHPT entry’s address: the
Translation Hash (t hash) instruction, and the Interruption Hash Address (IHA) register defined on
page 2:34. The virtual address of the VHPT entry is placed in the IHA register when a VHPT
Translation or TLB fault is delivered. In the long format, IHA can be used as a starting address to
scan additional collision chains (associativities) defined by the operating system or to perform a
search in software. The t hash instruction is used to generate a VHPT entry’s address outside of
interruption handlers and provides the same hash function that is used to calculate THA.

t hash produces a VHPT entry’s address for a given virtual address and region identifier, depending
on the setting of the PTA.vf bit. When PTA.vf=0, t hash returns the region-based short-format
index as defined in “Region-based VHPT Short-format Index” on page 2:55. When PTA.vf=1,

t hash returns the long-format hash as defined in “Long-format VHPT Hash” on page 2:55. The

t t ag instruction is only useful for long-format hashing, and generates a unique 64-bit ti/tag
identifier that the processor’s VHPT walker will check when it looks up a given virtual address and
region identifier. Software should use the t t ag instruction, and either the t hash instruction or the
IHA register when forming translation tags and hash addresses for the long-format VHPT. These
resources encapsulate the implementation-specific long-format hashing functionality and improve
performance.

Volume 2: Addressing and Protection

intel.

4.1.6.1 Region-based VHPT Short-format Index

In the region-based short format, the linear page table for each region resides in the referenced
region itself. As a result, the short-format VHPT consists of separate per-region page tables, which
are anchored in each region by PTA.base{60:15}. For regions in which the VHPT is enabled, the
operating system is required to maintain a per-region linear page table. As defined in Figure 4-14,
the VHPT walker uses the virtual address, the region’s preferred page size, and the PTA.size field to

compute a linear index into the short-format VHPT.

Figure 4-14. Region-based VHPT Short-format Index Function

Mask = (1 << PTA. size) - 1;
VHPT_Addr = (VA{63: 61} << 61) |

Mask{60: 15})) << 15) |
VHPT_O f set {14: 0} ;

VHPT_Of fset = (VA{I MPL_VA MBB: 0} u>> RR VA{63:61}].ps) << 3;

(((PTA. base{60: 15} & ~Mask{60:15}) | (VHPT_O fset{60: 15} &

The size of the short-format VHPT (PTA.size) defines the size of the mapped virtual address space.
The maximum architectural table size in the short format is 2°2 bytes per region. To map an entire

region (261 bytes) using 4Kbyte pages, 2(61-12) = 549

VHPT entry is 8 bytes = 23 bytes large. As a result, the maximum table size is

(61-12+3) _ 552

per region. If the short format is used to map an address space smaller than 261 a smaller
short-format table (PTA.size<52) can be used. Mapping of an address space of 2" with 4KByte

pages requires a minimum PTA.size of (n-9).

pages must be mappable. A short-format

bytes

In the short format, the t hash instruction returns the region-based short-format index defined in
Figure 4-14. The t t ag instruction is not used with the short format. VHPT translation and TLB
miss faults write the IHA register with the region-based short-format index defined in Figure 4-14.

4.1.6.2 Long-format VHPT Hash

The long-format VHPT is a single large contiguous hash table that resides in the region defined by
PTA.base. As defined in Figure 4-15, the VHPT walker uses the virtual address, the region
identifier, the region’s preferred page size, and the PTA size field to compute a hash index into the
long-format VHPT. PTA.base{63:15} defines the base address and the region of the long-format
VHPT. PTA size reflects the size of the hash table, and is typically set to a number significantly
smaller than 2%%; the exact number is based on operating system performance requirements.

Figure 4-15. VHPT Long-format Hash Function

Mask = (1 << PTA size) - 1;

HPN = VA{| MPL_VA MSB: 0} u>> RR{ VA{63:61}]. ps;

Hash_I ndex = tl| b_vhpt_hash_I ong(HPN, RR} VA{ 63: 61}].ri d);
/1 nodel -specific hash function

VHPT O fset = Hash_I ndex << 5;

VHPT_Addr = (PTA base{63: 61} << 61) |

& Mask{60: 15})) << 15) | VHPT_ O fset{14:0};

(((PTA base{60: 15} & ~Mask{60:15}) | (VHPT_O fset{60:

15}

The long-format hash function (t | b_vhpt _hash_I| ong) and long-format tag generation function

Volume 2: Addressing and Protection

are implementation specific. However, on all processor models the hash and tag functions must
exclude the virtual region number (virtual address bits VA{63:61}) from the hash and tag

2:55

4.1.7

2:56

intel.

computations. This ensures that a unique 85-bit global virtual address hashes to the same VHPT
hash address, regardless of which region the address is mapped to. All processor implementations
guarantee that the most significant bit of the tag (ti bit) is zero for all valid tags. The hash index and
tag together must uniquely identify a translation. The processor must ensure that the indices into the
hashed table, the region’s preferred page size, and the tag specified in an indexed entry can be used
in a reverse hash function to uniquely regenerate the region identifier and virtual address used to
generate the index and tag. This must be possible for all supported page sizes, implemented virtual
addresses and legal values of region identifiers. A hash function is reversible if using the hash result
and all but one input produces the missing input as the result of the reverse hash function. The
easiest hash function and reverse hash function is a simple XOR of bits. To ensure uniqueness,
software must follow these rules:

1. Software must use only one preferred page size for each unique region identifier at any given
time; otherwise, processor operation is undefined.

2. All tags for translations within a given region must be created with the preferred page size
assigned to the region; otherwise, processor operation is undefined.

3. Software is not allowed to have pages in the VHPT that are smaller than the preferred page
size for the region; otherwise, processor operation is undefined. Software can specify a page
with a page size larger than the preferred page size in the VHPT, but tag values for the
entries representing that page size must be generated using the preferred page size assigned
to that region.

4. To reuse a region identifier with a different preferred page size, software must first ensure
that the VHPT contains no insertable translations for that rid, purge all translations for that
rid from all processors that may have used it, and then update the region register with the
new preferred page size.

VHPT Environment

The processor’s VHPT walker can optionally be configured to search the VHPT for a translation
after a failed instruction or data TLB search. The VHPT walker is enabled for different types of
references under the following conditions:

+ Data and non-access references (including IA-32): PTA.ve=1, and RR[VA{63:61}].ve=1, and
PSR.dt=1.

* Instruction fetches (including 1A-32): PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1,
and PSR.it=1, and PSR.ic=1.

* RSE references: PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1, and PSR.rt=1.

If the walker is not enabled, and an attempt is made to reference the VHPT, an Alternate
Instruction/Data TLB Miss fault is raised. The remainder of this section assumes that the VHPT is
enabled.

Region registers must support all implemented page sizes so software can use IHA, t hash and

tt ag to manage the VHPT. t hash and t t ag are defined to operate on all page sizes supported by
the translation cache, regardless of the VHPT walker’s supported page sizes. The PTA register must
be implemented on processor models that do not implement a VHPT walker. Software must ensure
PTA is initialized and serialized before issuing t t ag, t hash, before enabling the VHPT walker or
issuing a reference that may cause a VHPT walk. The minimum VHPT size is 32KBytes
(PTA.size=15), and operating systems must ensure that the VHPT is aligned on the natural
boundary of the structure; otherwise, processor operation is undefined. For example, a 64K-byte
table must be aligned on a 64K-byte boundary.

Volume 2: Addressing and Protection

41.8

VHPT walker references to the VHPT are performed at privilege level 0, regardless of the state of
PSR.cpl. VHPT byte ordering is determined by the state of DCR.be. When DCR.be=1, VHPT
walker references are performed using big-endian memory formats; otherwise, VHPT walker
references are little-endian. A long-format VHPT reference is matched against the data break-point
registers as a 32-byte reference.

The VHPT is accessed by the processor only if the VHPT is virtually mapped into cacheable
memory areas. The walker may access the VHPT speculatively, i.e., references may be performed
that are not required by an in-order execution of the program. Any VHPT or TLB faults
encountered during a VHPT walker’s search are not reported until the faulting translation is
required by an in-order execution of the program. If the VHPT is mapped into non-cacheable
memory areas the VHPT is not referenced, and all TLB misses result in an Instruction/Data TLB
Miss fault.

The VHPT walker will abort the search and deliver an Instruction/Data TLB Miss fault if an
attempt is made to install translations that have reserved bits or encodings, or if the translation
mapping the VHPT would have taken one of the following faults: Data Page Not Present, Data NaT
Page Consumption, Data Key Miss, Data Key Permission, Data Access Bit, or Data Debug. The
VHPT walker may abort a search and deliver an Instruction/Data TLB Miss fault at any time for
implementation-specific reasons.

The processor’s VHPT walker is required to read and insert VHPT entries from memory atomically
(an 8-byte atomic read-and-insert for short format, and a 32-byte atomic read-and-insert for long
format). Some implementation strategies for achieving this atomicity are as follows:

* If the walker performs its VHPT read with multiple cache accesses which are not done as an
atomic unit, and if an update to part of the entry that is being installed is made in-between these
multiple reads, the walker must abort the insert and deliver an Instruction/Data TLB Miss.

* If the walker performs its VHPT read and the insertion of the entry into the TLB as separate
actions, and not as an atomic unit, and if an update to part of the entry that is being installed is
made in-between the read and the insert, the walker must either abort the insert and deliver an
Instruction/Data TLB Miss, or ignore the update and install the complete old entry.

* If the purge address range of a TLB purge operation (pt c. | , pt c. e, local or remote pt c. g or
ptc.ga,ptr.i,orptr.d)overlaps the virtual address the walker is attempting to insert, then
the walker must either abort the insert and deliver an Instruction/Data TLB Miss, or delay the
purge operation until after the walker either completes the insertion or aborts the walk.

The RSE can only raise a VHPT fault on a mandatory RSE spill/fill operation as defined for
successful execution of an al | oc, | oadrs, fl ushrs, br.ret orrfi instruction. Eager RSE
operations may generate speculative VHPT walks provided encountered faults are not reported.

Data TLB Miss faults encountered during a VHPT walk are permitted and, when PSR.ic=1, are
converted into a VHPT Translation fault as defined in the next section.

Translation Searching

The general sequence of searching the TLB and VHPT is shown in Figure 4-16. On a failed TLB
search, if the VHPT walker is disabled for the referenced region an Alternate Instruction/Data TLB
Miss fault is raised. If the VHPT walker is enabled for the referenced region, the VHPT is accessed
to locate the missing translation. See “VHPT Environment” on page 2:56. If additional TLB misses
are encountered during the VHPT walker’s references, a VHPT Translation fault is raised. If the

Volume 2: Addressing and Protection 2:57

intel.

VHPT walker does not find the required translation in the VHPT or the search is aborted, an
Instruction/Data TLB Miss fault is raised. Otherwise the entry is loaded into the ITC or DTC.
Provided the above fault conditions are not detected, the processor may load the entry into the ITC
or DTC even if an in-order execution of the program did not require the translation.

Figure 4-16. TLB/VHPT Search

Virtual Address
\i

not found

/

yes

VHPT walker
TLB Miss Y

search VHPT
/ . found
Instruction TLB Miss fault failed search:

tag mismatch or
walker abort

/
TC Insert

-«

VHPT Instruction fault

found
\
no
Alternate Instruction <—< Inst VHPT Walker Enab]ed>
TLB Miss fault

Y

fault checks

Faults:

Page Not Present
NaT Page Consumption

Key Miss no fault
Key Permission

Access Rights

A Bit

A

Instruction TLB VHPT Search

Unimplemented Data Address fault

Data Nested TL 0

fault

Alternate Data 1/in-flight
TLB Miss fault

Data Nested TLB
0
fault @
1/in-flight
VHPT Data fault

Data Nested TLB

fault 0

Data TLB Miss 1/in-flight

fault

Faults:

Page Not Present

NaT Page Consumption
Key Miss

Key Permission

Access Rights

Dirty Bit

Access Bit

Debug

Unaligned Data Reference
Unsupported Data Reference

Data TLB VHPT Search

Virtual Address

implemented VA?

yes
A

found

not found

Y

no
Data
VHPT Walker Enabled
yes

VHPT walker
TLB Miss

/
VHPT)

ailed search: found
tag mismatch or
walker abort

Y

fault checks

no fault

The VHPT walker’s inserts into the TC follow the same purge-before-insert rules that software
inserts are subject to (see Table 4-1, “Purge Behavior of TLB Instructions,” on page 2:43). VHPT
walker inserts into the DTC behave like i t c. d; VHPT walker inserts into the ITC behave like

i tc.i.Ifan instruction reference results in a VHPT walk that misses in the data TLB, the DTC
insert for the translation for the VHPT acts like an i t c. d. VHPT walker insertions of entries that
exist in TRs are not allowed. Specifically, the VHPT walker may search for any virtual address, but
if the address is mapped by a TR, it must not be inserted into the TC. Software must not create
overlapping translations in the VHPT that are larger than a currently existing TR translation. A

2:58

Volume 2: Addressing and Protection

Table 4-9.

VHPT walker insert may result in a Machine Check abort if an overlap exists between a TR and the

inserted VHPT entry.

After the translation entry is loaded, additional TLB faults are checked; these include in priority
order: Page Not Present, NaT page Consumption, Key Miss, Key Permission, Access Rights,
Access Bit, and Dirty Bit faults. Table 4-9 describes the TLB and VHPT walker related faults.

On a failed TLB/VHPT search, the processor loads interruption registers and translation defaults as
defined in “Interruption Vector Descriptions” on page 2:145 defining the parameters of the
translation fault. Provided the operating system accepts the defaults provided, only the physical
address portion of a TLB entry need be provided on a TLB insert.

TLB and VHPT Search Faults

Fault

Description

VHPT Instruction/Data

Raised if there is an additional TLB miss when the VHPT walker attempts to
access the VHPT. Typically used to construct leaf table mappings for linear page
table configurations.

Alternate Instruction/Data
TLB Miss

Raised when the VHPT walker is not enabled and an instruction or data reference
causes a TLB miss. For example, the VHPT walker can be disabled within a given
virtual region so region-specific translation algorithms can be utilized.

Instruction/Data TLB Miss

Raised when the VHPT walker is enabled, but the processor:
« Cannot locate the required VHPT entry, or

* The processor aborts the VHPT search for implementation-specific
reasons, or

* The VHPT walker is not implemented, or
» The referenced region specifies a non-supported VHPT preferred page
size, or
» Reserved fields or unimplemented PPN bits are used in the translation, or
* The hash address falls into unimplemented virtual address space, or
« The hash address matches a data debug register.
Instruction/Data TLB Miss handlers are essentially software walkers of the VHPT.

Data Nested TLB

Raised when a Data TLB Miss, Alternate Data TLB Miss, or VHPT Data
Translation fault occurs and PSR.ic is 0 and not in-flight (e.g., fault within a TLB
miss handler). Data Nested TLB faults enable software to avoid overheads for
potential data TLB Miss faults.

Instruction/Data Page Not
Present

The referenced translation’s P-bit is 0.

Instruction/Data NaT Page
Consumption

A non-speculative load, store, mandatory RSE load/store, execution on, or
semaphore operation accesses a page marked with the physical memory attribute
NaTPage. See “Not a Thing Attribute (NaTPage)” on page 2:72 for details.

Instruction/Data Key Miss

The referenced translation’s permission key is not present in the set of valid
protection key registers.

Instruction/Data Key
Permission

The referenced translation is denied read, write, execute permissions by the
matching protection key registers.

Instruction/Data Access
Rights

Page granular read, write, execute and privilege level accesses are denied.

Data Dirty Bit

The referenced translation’s Dirty bit is 0 on a store or semaphore operation.

Instruction/Data Access Bit

The referenced translation’s Access bit is 0.

Volume 2: Addressing and Protection

2:59

41.9

32-bit Virtual Addressing

32-bit virtual data addressing is supported in the Itanium instruction set architecture by three
models: zero-extension, sign-extension, and pointer “swizzling”. IA-32 memory references use the
zero-extension model, all IA-32 32-bit virtual linear addresses are zero extended into the 64-bit
virtual address space.

The zero-extension model performs address computations with the add and shl add instructions
while software ensures that the upper 32-bits are always zeros. This model constrains 32-bit virtual
addressing to virtual region zero. In this model, regions 1 to 7 are accessible only by 64-bit
addressing.

In the sign-extension model, software ensures that the upper 32-bits of a virtual address are always
equal to bit 31. Address computations use the add, shl add, and sxt instructions. This model splits
the 32 bit address space into 2 halves that are spread into 231 bytes of virtual regions 0 and 7 within
the 64-bit virtual address space. In this model, regions 2 to 6 are accessible only by 64-bit
addressing.

The pointer “swizzling” model performs address computations with the addp4, and shl addp4
instructions. These instructions generate a 32-bit address within the 64-bit virtual address space as
shown in Figure 4-17. The 32-bit virtual address space is divided into 4 sections that are spread into
230 bytes of virtual regions 0 to 3 within the 64-bit virtual address space. In this model, regions 4 to
7 are accessible only by 64-bit addressing.

Figure 4-17. 32-bit Address Generation using addp4

2:60

base offset

63 32313()|29 O| ‘63 32‘31 0
63 62 61 60 3231 0
0] | 000000 | |

In the pointer “swizzling” model, mappings within each region do not necessarily start at offset
zero, since the upper 2-bits of a 32-bit address serve both as the virtual region number and an offset
within each region. Virtual address bits{62:61} do not participate in the address addition, therefore
some regions may be effectively larger than 230 bytes due to the addition of a 32-bit offset and lack
of a carry into bits{62:61}. Note that the conversion is non-destructive: a converted 64-bit pointer
can be used as a 32-bit pointer. Flat 31 or 32 bit address spaces can be constructed by assigning the
same region identifier to contiguous region registers. Branches into another 230-byte region are
performed by first calculating the target address in the 32-bit virtual space and then converting to a
64-bit pointer by addp4. Otherwise, branch targets will extend above the 230 byte boundary within
the originating region.

Volume 2: Addressing and Protection

41.10

4.2

4.3

Virtual Aliasing

Virtual aliasing (two or more virtual pages mapped to the same physical page) is functionally
supported for memory references (including IA-32), however performance may be degraded on
some processor models where the distance between virtual aliases is less than 1 MB. To avoid any
possible performance degradation, software is advised to use aliases whose virtual addresses differ
by an integer multiple of 1 MB. The processor ensures cache coherency and data dependencies in
the presence of an alias. Stores using a virtual alias followed by a load with another alias to the
same physical location see the effects of prior stores to the same physical memory location.

To support advanced loads in the presence of a virtual alias, the processor ensures that the
Advanced Load Address Table (ALAT) is resolved using physical addresses and is coherent with
physical memory. For details, please refer to “Detailed Functionality of the ALAT and Related
Instructions™ on page 1:56.

Physical Addressing

Objects in memory and I/O occupy a common 63-bit physical address space that is accessed using
byte addresses. Accesses to physical memory and I/O may be performed via virtual addresses
mapped to the 63-bit physical address space or by direct physical addressing. Current page table
formats allow for mapping virtual addresses into 50 bits of physical address space (on processor
implementations that support this many physical address bits). Future extensions to the page table
formats will allow larger mappings, up to the full 63 bits of physical address space.

Physical addressing for instruction references (including IA-32) is enabled when PSR.it is 0, data
references (including IA-32) when PSR.dt is 0, and register stack references when PSR.1t is 0.

While software views the physical addressing as being 63-bits, implementations may implement
between 32 and 63 physical address bits. All processor models must implement a contiguous set of
physical address bits starting at bit 32 and continuing upwards. Please see the processor specific
documentation for further information on the number of physical address bits implemented on the
Itanium processor. Implementations must validate that memory references are performed to
implemented physical address bits. Instruction references to unimplemented physical addresses
result in an Unimplemented Instruction Address Trap on the last valid instruction. Data references
to unimplemented physical addresses result in an Unimplemented Data Address fault. Memory
references to unpopulated address ranges result in an asynchronous Machine Check abort, when the
platform signals a transaction time-out. Exact machine check behavior is model specific.

Unimplemented Address Bits

Based on the processor model, some physical and/or virtual address bits may not be implemented.
Regardless of the number of implemented address bits, all general purpose, branch, control and
application registers implement all 64 register bits on all processors. Similarly, regardless of the
number of implemented address bits, data and instruction breakpoint registers must implement all
64 address bits and all 56 mask bits on all processors.

Volume 2: Addressing and Protection 2:61

4.3.1

Unimplemented Physical Address Bits

As shown in Figure 4-18, a 64-bit physical address consists of three fields: physical memory
attribute (PMA), unimplemented and implemented bits.

Figure 4-18. Physical Address Bit Fields

4.3.2

63 62 IMPL_PA_MSB 0
implemented
1 62 - IMPL_PA_MSB IMPL_PA_MSB + 1

All processor models implement at least 32 physical address bits, bits 0 to 31, plus the physical
memory attribute bit. Additional implemented physical bits must be contiguous starting at bit 32.
IMPL_PA_MSB is the implementation-specific position of the most significant implemented
physical address bit. In a processor that implements all physical address bits, IMPL_PA_MSB is
62. Please see the processor specific documentation for further information on the number of
physical address bits implemented on the Itanium processor.

If unimplemented physical address bits are set by software, an Unimplemented Data Address fault
is raised during the TLB insert instructions (i t ¢, i tr). Inserts performed by the VHPT walker, as
noted in “VHPT Hashing” on page 2:54, abort the VHPT search if unimplemented or reserved
fields are used. For translations marked as Not-Present (TLB.p is 0), the processor does not check
the validity of PPN and some reserved bits as noted in Figure 4-6.

When a processor model does not implement all physical address bits, the missing bits are defined
to be zero. Physical addresses in which bits PA{62:min(IMPL_PA_MSB+1,62)} are not zero are
considered “unimplemented” physical addresses on that processor model. Physical addresses are
checked for correctness on use by ensuring that PA {62:min(IMPL_PA_MSB+1,62)} bits are zero.

Unimplemented Virtual Address Bits

As shown in Figure 4-19, a 64-bit virtual address consists of three fields: virtual region number
(VRN), unimplemented and implemented bits.

Figure 4-19. Virtual Address Bit Fields

2:62

63 6160 IMPL_VA_MSB 0
implemented
3 60 - IMPL_VA_MSB IMPL_VA_MSB + 1

All processor models provide three VRN bits in VA{63:61}. IMPL_VA_MSB is the
implementation-specific bit position of the most significant implemented virtual address bit. In
addition to the three VRN bits, all processor models implement at least 51 virtual address bits; i.e.,
the smallest IMPL_VA_MSB is 50. In a processor that implements all 64 virtual address bits
IMPL_VA_MSB is 60. Please see the processor specific documentation for further information on
the number of virtual address bits implemented on the Itanium processor.

When a processor model does not implement all virtual address bits, the missing bits are defined to
be a sign-extension of VA{IMPL_VA_MSB}. Virtual addresses in which bits
VA{60:min(IMPL_VA_MSB+1,60)} do not match VA{IMPL_VA_MSB} are considered
“unimplemented” virtual addresses on that processor model. Virtual addresses are checked for
correctness on use by ensuring that VA {60:min(IMPL_VA_MSB+1,60)} bits are identical to
VA{IMPL_VA_MSB}.

Volume 2: Addressing and Protection

43.3

4.4

441

Instruction Behavior with Unimplemented Addresses

The use of an unimplemented address affects instruction execution as described in the bullet list
below. If instruction address translation is enabled, an “unimplemented address” refers to an
unimplemented virtual address. If instruction address translation is disabled, an “unimplemented
address” refers to an unimplemented physical address.

» Non-speculative memory references (non-speculative loads, stores, and semaphores), the
following non-access references: fc,fc.i,tpa, | fetch. faul t, and probe. faul t, and
mandatory RSE operations to unimplemented addresses result in an Unimplemented Data
Address fault.

* Virtual addresses used by instruction and data TLB purge/insert operations are checked, and if
the base address (register r3 of the purge, [FA for inserts) targets an unimplemented virtual
address, a Unimplemented Data Address fault is raised. The page size of the insert or purge is
ignored.

* Speculative loads from unimplemented addresses always return a NaT bit in the target register.

* A non-faulting pr obe instruction to an unimplemented address returns zero in the target
register.

* At ak instruction to an unimplemented address returns one in the target register.

* A non-faulting | f et ch to an unimplemented address is silently ignored.

» Eager RSE operations to unimplemented addresses do not fault.

« Execution of a taken branch, taken chk, or an rfi to an unimplemented address, or execution
of a non-branching slot 2 instruction in a bundle at the upper edge of the implemented address
space (where the next sequential bundle address would be an unimplemented address) results
in an Unimplemented Instruction Address trap on the branch, chk, rfi or non-branching slot 2
instruction.

* When pt c. g or pt c. ga operations place a virtual address on the bus, the virtual address is
sign-extended to a full 64-bit format. If an incoming pt c. g or pt c. ga presents a virtual
address base that targets an unimplemented virtual address, the upper (unimplemented) virtual
address bits are dropped, and the purge is performed with the truncated address.

Memory Attributes

When virtual addressing is enabled, memory attributes defining the speculative, cacheability and
write-policies of the virtually mapped physical page are defined by the TLB. When physical
addressing is enabled, memory attributes are supplied as described in “Physical Addressing
Memory Attributes” on page 2:64.

Virtual Addressing Memory Attributes

For virtual memory references, the memory attribute field of each virtual translation describes
physical memory properties as shown in Table 4-10.

Volume 2: Addressing and Protection 2:63

intel.

Table 4-10. Virtual Addressing Memory Attribute Encodings

442

a -
Attribute Mnemonic | ma | Cacheability Write Policy Speculation Coherent® with
Respect to
Write Back WB 000 | Cacheable Write back . WB, WBL
. Non-sequential &
Write . ; b
. wC 110 Coalescing speculative Not MP coherent
Coalescing
Uncacheable ucC 100 | Uncacheable s tial &
. equentia
Uncacheable UCE 101 Non-coalescing non-speculative UC, UCE
Exported

NaTPage NaTPage | 111 Cacheable N/A Speculative N/A

a. The Coherency column in this table refers to multiprocessor coherence on normal, side-effect free memory.
The data dependency rules defined in “Memory Access Ordering” on page 1:63 ensure uni-processor
coherence for the memory attributes listed in each row.

b. WC is not MP coherent w.r.t. any memory attribute, but is uni-processor coherent w.r.t. itself.

c. This memory attribute is reserved for Software use.

The attribute UCE is identical to UC except when executing an f et chadd instruction. UCE
enables the exporting of the f et chadd instruction outside the processor. Support for UCE is
model-specific; see “Effects of Memory Attributes on Memory Reference Instructions” on
page 2:73 for details.

Insert TLB instructions (i t c, i t r) that attempt to insert reserved memory attributes (Table 4-10)
into the TLB raise Reserved Register/Field faults. External system operation is undefined if
software inserts a memory attribute supported by the processor but not supported by the external
system.

If software modifies the memory attributes for a page, it must follow the attribute transition
requirements in Section 4.4.11, “Memory Attribute Transition” on page 2:74.

It is recommended that processor models report a Machine Check abort if the following memory
attribute aliasing is detected:

« cache hit on an uncacheable page, other than as the target of a local or remote flush cache (f c,
fc. i) instruction (see “Effects of Memory Attributes on Memory Reference Instructions” on
page 2:73).

Physical Addressing Memory Attributes

The selection of memory attributes for physical addressing is selected by bit 63 of the address
contained in the address base register as shown in Figure 4-20 and Table 4-11.

Figure 4-20. Physical Addressing Memory

2:64

63 62 Base Register 0

L |

62 ¢ 0

attribute ’ \
Physical Address

Volume 2: Addressing and Protection

intel.

Table 4-11. Physical Addressing Memory Attribute Encodings

a -
Bit{63} | Mnemonic | Cacheability Write Policy Speculation Coherent® with
respect to
0 WBL Cacheable Write Back Non-sequential & WBL, WB
limited speculation
1 uc Uncached Non-coalescing Sequential & UC, UCE
non-speculative

a. Coherency here refers to multiprocessor coherence on normal, side-effect free memory.

See “Speculation Attributes” on page 2:67 for a description of physical addressing limited
speculation. Bit{63} is discarded when forming the physical address, effectively creating a
write-back name space and an uncached name space as shown in Figure 4-21.

Figure 4-21. Addressing Memory Attributes

443

264
uncached
non-speculative uc .
name space 253 Physi cal
Addr ess Space
63
2 |
263
cached write-back
limited speculation WBL
name space
0

Software must use the correct name space when using physical addressing; otherwise, I/O devices
with side-effects may be accessed speculatively. Physical addressing accesses are ordered only if
ordered loads or ordered stores are used. Otherwise, physical addressing memory references are
unordered.

Cacheability and Coherency Attribute

A page can be either cacheable or uncacheable. If a page is marked cacheable, the processor is
permitted to allocate a local copy of the corresponding physical memory in all levels of the
processor memory/cache hierarchy. Allocation may be modified by the cache control hints of
memory reference instructions.

A page which is cached is coherent with memorys; i.e., the processor and memory system ensure
that there is a consistent view of memory from each processor. Processors support multiprocessor
cache coherence based on physical addresses between all processors in the coherence domain
(tightly coupled multiprocessors). Coherency is supported in the presence of virtual aliases,
although software is recommended to use aliases which are an integer multiple of 1 MB apart to
avoid any possible performance degradation.

Processors are not required to maintain coherency between processor local instruction and data
caches for Itanium-based code; i.e., locally initiated Itanium stores may not be observed by the
local instruction cache. Processors are required to maintain coherency between processor local
instruction and data caches for IA-32 code. Instruction caches are also not required to be coherent
with multiprocessor Itanium instruction set originated memory references. Instruction caches are

Volume 2: Addressing and Protection 2:65

44.4

445

2:66

intel.

required to be coherent with multiprocessor IA-32 instruction set originated memory references.
The processor must ensure that transactions from other I/0 agents (such as DMA) are physically
coherent with the instruction and data cache.

For non-cacheable references the processor provides no coherency mechanisms; the memory
system must ensure that a consistent view of memory is seen by each processor. See “Coalescing
Attribute” on page 2:66 for a description of coherency for the coalescing memory attribute.

Cache Write Policy Attribute

Write-back cacheable pages need only modify the processor’s copy of the physical memory
location; written data need only be passed to the memory system when the processor’s copy is
displaced, or a Flush Cache (f c) instruction is issued to flush a virtual address. A cache line can
only be written back to memory if a store, semaphore (successful or not), the | d. bi as, a
mandatory RSE store, or a . excl hinted Ifetch instruction targeting that line has executed without a
fault. These events enable write-backs. A synchronized f ¢ instruction disables subsequent
write-backs (after the line has been flushed).

As described in “Invalidating ALAT Entries” on page 1:58, platform visible removal of cache lines
from a processor’s caches (e.g., cache line write-backs or platform visible replacements) cause the
corresponding ALAT entries to be invalidated.

Coalescing Attribute

For uncacheable pages, the coalescing attribute informs the processor that multiple stores to this
page may be collected in a coalescing buffer and issued later as a single larger merged transaction.
The processor may accumulate stores for an indefinite period of time. Multiple pending loads may
also be coalesced into a single larger transaction which is placed in a coalescing buffer. Coalescing
is a performance hint for the processor; a processor may or may not implement coalescing.

A processor with multiple coalescing buffers must provide a flush policy that flushes buffers at
roughly equal rate even if some buffers are only partially full. The processor may make coalesced
buffer flushes visible in any order. Furthermore, individual bytes within a single coalesced buffer
may be flushed and made visible in any order.

Stores (including [A-32), which are coalesced, are performed out of order; coalescing may occur in
both the space and time domains. For example, a write to bytes 4 and 5 and a write to bytes 6 and 7
may be coalesced into a single write of bytes 4, 5, 6, and 7. In addition, a write of bytes 5 and 6 may
be combined with a write of bytes 6 and 7 into a single write of bytes 5, 6, and 7.

Any release operation (regardless of whether it references a page with a coalescing memory
attribute), or any fence type instruction, forces write-coalesced data to be flushed and made visible
prior to the instruction itself becoming visible. (See Table 4-14 on page 2:70 for a list of release and
fence instructions.) Any IA-32 serializing instruction, or access to an uncached memory type,
forces write-coalesced data to become flushed and made visible prior to itself becoming visible.
Even though IA-32 stores and loads are ordered, the write-coalesced data is not flushed unless the
TA-32 stores or loads are to uncached memory types.

The Flush Cache (f c, f c. i) instruction flushes all write-coalesced data whose address is within at
least 32 bytes of the 32-byte aligned address specified by the Flush Cache (f c, f c. i) instruction,
forcing the data to become visible. The Flush Cache (f c, f c. i) instruction may also flush

Volume 2: Addressing and Protection

44.6

additional write-coalesced data. The Flush Write buffers (f wb) instruction is a “hint” to the
processor to expedite flushing (visibility) of any pending stores held in the coalescing buffer(s),
without regard to address.

No indication is given when the flushing of the stores is completed. An f wb instruction does not
ensure ordering of coalesced stores, since later stores may be flushed before prior stores. To ensure
prior coalesced stores are made visible before later stores, software must issue a release operation
between stores.

The processor may at any time flush coalesced stores in any order before explicitly requested to do
so by software.

Coalesced pages are not ensured to be coherent with other processors’ coalescing buffers or caches,
or with the local processor’s caches. Loads to coalesced memory pages by a processor see the
results of all prior stores by the same processor to the same coalesced memory page. Memory
references made by the coalescing buffer (e.g., buffer flushes) have an unordered non-sequential
memory ordering attribute. See “Sequentiality Attribute and Ordering” on page 2:69.

Data that has been read or prefetched into a coalescing buffer prior to execution of an Itanium
acquire or fence type instruction is invalidated by the acquire or fence instruction. (See Table 4-14
for a list of acquire and fence instructions.)

Speculation Attributes

For present pages (TLB.p=1) which are marked with a speculative or a NaTPage memory attribute,
the processor may prefetch instructions (including IA-32), perform address generation and perform
load accesses (including IA-32) without resolving prior control dependencies, including predicates,
branches and interruptions. A page should only be marked speculative if accesses to that page have
no side-effects. For example, many memory-mapped I/O devices have side-effects associated with
reads and should be marked non-speculative. If a page is marked speculative, a processor can read
any location in the page at any time independent of a programmer’s intentions or control flow
changes. As a result, software is required, at all times, to maintain valid page table attributes for the
ppn, ps and ma fields of all present translations whose memory attribute is speculative or NaTPage.
High-performance operation is only attainable on speculative pages. The speculative attribute is a
hint; a processor may behave non-speculatively.

Prefetches are enabled if a speculative translation exists. Prefetches are asynchronous data and
instruction memory accesses that appear logically to initiate and finish between some pair of
instructions. This access may not be visible to subsequent flush cache (f c, f c. i) and/or TLB purge
instructions. This behavior is implementation-dependent.

The processor will not initiate memory references (16-byte instruction bundle fetches, IA-32
instruction fetches, RSE fills and spills, VHPT references, and data memory accesses) to
non-speculative pages until all previous control dependencies (predicates, branches, and
exceptions) are resolved; i.e., the memory reference is required by an in-order execution of the
program. Additionally, for references to non-speculative pages, the processor:

* May not generate any memory access for a control or data speculative data reference.

» Will generate exactly one memory access for each aligned, non-speculative data reference.
(Misaligned data references may cause multiple memory accesses, although these accesses are
guaranteed to be non-overlapping — each byte will be accessed exactly once.)

* May generate multiple 16-byte memory accesses (to the same address) for each 16-byte
instruction bundle fetch reference.

Volume 2: Addressing and Protection 2:67

intel.

Limited speculation is used to improve performance when using physical addressing to cachable
memory. Because the memory is physically addressed, the processor can have no expectation as to
whether or not a given 4k-byte physical page exists until the page has been successfully accessed
through a non-speculative reference. A non-speculative reference is an instruction or data
reference made to the page by an in-order execution of the program. An instruction fetch (or data
fetch) which meets this requirement, but which takes an Instruction Debug (or Data Debug) fault or
an External interrupt is still a non-speculative reference. Data-speculative references are considered
non-speculative for this purpose. Control-speculative references are not allowed for
limited-speculation pages and thus do not affect limited-speculation behavior.

Unless a limited-speculation page is speculatively accessible, only non-speculative references may
be made to it. While a limited-speculation page is speculatively accessible, the processor may
access it normally including the use of caching and hardware-generated speculative references
to improve performance. Hardware-generated speculative references include non-demand
instruction prefetches (including IA-32), data references by instructions which have not yet been
determined to be required by an in-order execution of the program (due to potential exceptions on
prior instructions or mispredictions on prior branches), hardware-generated data prefetch
references, and eager RSE memory references. A limited-speculation page can be made
speculatively accessible only after the successful completion of a non-speculative reference to the
page. Once a limited-speculation page is speculatively accessible, the page can be made
speculatively inaccessible either explicitly by software (described in Section 4.4.11, “Memory
Attribute Transition” on page 2:74) or implicitly for implementation-specific reasons.

To ensure virtual and physical accesses to non-speculative pages are performed in program order
and only once per program order occurrence, the rules in Table 4-12 and Table 4-13 are defined.

Software should also ensure that RSE spill/fill transactions are not performed to non-speculative
memory that may contain I/O devices; otherwise, system behavior is undefined.

Table 4-12. Permitted Speculation

Speculative Advanced Speculative Hardware-generated
Memory Load .
Attribute (1d)? Load Load Advanced Speculative
(Id.s)b (Id.a) Load (Id.sa) References®
Speculative Yes Yes Yes Yes Yes
Non-speculative Yes Always Fail Always Fail Always Fail Prohibited
Limited Speculation Yes Always Fail Yes Always Fail Limitedd

a. Includes the faulting form of line prefetch (I f et ch. faul t).
b. Includes the non-faulting form of line prefetch (I f et ch), which does not cause a cache fill if the memory

attribute is non-speculative or limited speculation.

c. Hardware-generated speculative references include non-demand instruction prefetches (including 1A-32),
hardware-generated data prefetch references, and eager RSE memory references.

d. The processor may only issue hardware-generated speculative references to a 4K-byte physical page while
the page is speculatively accessible.

Volume 2: Addressing and Protection

intel.

Table 4-13. Register Return Values on Non-faulting Advanced/Speculative Loads

4.4.7

Speculative Load Advanced Load Speculative Advanced Load
Memory (Id.s) (d.a) (1d.sa)
Attribute
Success Failure | Success | Failure Success Failure
Speculative Value Nat? Value N/a Value NaT?
Non-speculative N/A Nat? N/A Zero® | N/A NaTP
Limited Speculation N/A NatP Value N/a N/a NaT®?

a. Speculative or speculative advanced loads that cause deferred exceptions result in failed speculation. The
processor aborts the reference. If the target of the load is a GR, the processor sets the register’s NaT bit to
one. If the target of the load is an FR, the processor sets the target FR to NaTVal. The processor performs all
other side-effects (such as post-increment).

b. Speculative or speculative advanced loads to limited or non-speculative memory pages result in failed
speculation. The processor aborts the reference. If the target of the load is a GR, the processor sets the
register’s NaT bit to 1. If the target of the load is an FR, the processor sets the target FR to NaTVal. The
processor performs all other side-effects (such as post-increment).

c. Advanced loads to non-speculative memory pages always fail. The processor aborts the reference, sets the
target register to zero, and performs all other side-effects (such as post-increment).

Sequentiality Attribute and Ordering

Memory ordering is defined in Section 4.4.7, “Memory Access Ordering” on page 1:63. This
section defines additional ordering rules for non-cacheable memory, cache synchronization
(sync. i) and global TLB purge operations (pt c. g, ptc.ga).

As described in Section 4.4.7, read-after-write, write-after-write, and write-after-read dependencies
to the same memory location (memory dependency) are performed in program order by the
processor!. Otherwise, all other memory references may be performed in any order unless the
reference is specifically marked as ordered. IA-32 memory references follow a stronger processor
consistency memory model. See “IA-32 Memory Ordering” on page 2:236. for [A-32 memory
ordering details. Explicit ordering takes the form of a set of Itanium instructions: ordered load and
check load (1 d. acq, | d. c. cl r. acq), ordered store (st . r el), semaphores (cnpxchg, xchg,

f et chadd), memory fence (nf), synchronization (sync. i) and global TLB purge (ptc. g,

pt c. ga). The sync. i instruction is used to maintain an ordering relationship between instruction
and data caches on local and remote processors. The global TLB purge instructions maintain
multiprocessor TLB coherence.

Table 4-14 defines a set of “Orderable Instructions” that follow one of four ordering semantics:
unordered, release, acquire or fence. The table defines the ordering semantics and the instructions
of each category. Only these Itanium instructions can be used to establish multiprocessor ordering
relations.

In the following discussion, the terms previous and subsequent are used to refer to the program
specified order. The term visible is used to refer to all architecturally visible effects of performing
an instruction. For memory accesses and semaphores this involves at least reading or writing
memory. For nf . a, visibility is defined by platform acceptance of previous memory accesses.
Visibility of sync. i is defined by visibility of previous flush cache (f c, f c. i) operations. For
ALAT lookups (I d. c, chk. a), visibility is determination of ALAT hit or miss. For global TLB
purge operations, visibility is defined by removal of an address translation from the TLBs on all
processors in the TLB coherence domain. Global TLB purge instructions (pt c. g and pt c. ga)
follow release semantics both on the local and the remote processor.

1. Although VHPT walks are performed somewhat asynchronously with respect to program execution, each walker VHPT read appears as
though it were performed atomically, at some single point in the program order.

Volume 2: Addressing and Protection 2:69

2:70

intel.

Table 4-14. Ordering Semantics and Instructions

Ordern:lg Description Orderable Intel® Itanium® Instructions
Semantics
Unordered instructions may become visible in |1 d,l d.s,Id.a,ld.sa, ld.fill,
any order. I df,ldf.s,Idf.sa, ldf.fill,
| df p, | df p. s, I df p. sa,
Unordered st,st.spill,
stf,stf.spill,
nf.a, sync.i,
I d.c,chk.a
Release instructions guarantee that all cmpxchg. rel , fetchadd. rel,
Release previous orderable instructions are made st.rel,ptc.g,ptc.ga
visible prior to being made visible themselves.
Acquire instructions guarantee that they are cnpxchg. acq, f et chadd. acq,
Acquire made visible prior to all subsequent orderable |xchg, | d. acq, Id.c.clr.acq
instructions.
Fence instructions combine the release and nf
acquire semantics into a bi-directional fence;
i.e., they guarantee that all previous orderable
Fence . ; - ;
instructions are made visible prior to any
subsequent orderable instruction being made
visible.

Itanium memory accesses to sequential pages occur in program order with respect to all other
sequential pages in the same peripheral domain, but are not necessarily ordered with respect to
non-sequential page accesses. A peripheral domain is a platform-specific collection of uncacheable
addresses. An I/O device is normally contained in a peripheral domain and all sequential accesses
from one processor to that device will be ordered with respect to each other. Sequentiality ensures
that uncacheable, non-coalescing memory references from one processor to a peripheral domain
reach that domain in program order. Sequentiality does not imply visibility.

Inter-Processor Interrupt Messages (8-byte stores to a Processor Interrupt Block address, through a
UC memory attribute) are exceptions to the sequential semantics. IPI's are not ordered with respect
to other IPI's directed at the same processor. Further, fence operations do not enforce ordering
between two IPI's. See Section 5.8.4.2, “Interrupt and IPI Ordering” on page 2:112.

Table 4-15 defines the ordering between unordered, release, acquire and fence type operations to
sequential and non-sequential pages. Table 4-15 defines the minimal ordering requirements; an
implementation may enforce more restrictive ordering than required by the architecture. The actual
mechanism for enforcing memory access ordering is implementation dependent.

Table 4-15. Ordering Semantics

Second Operation
Non-sequential Sequential®
First Operation Fence
Acquire | Release | Unordered | Acquire | Release | Unordered

Fence (0] O O (0] (0] O O

Non-sequential Acquire O O O (0] (0] O O
Release O - (0] - - O -

Unordered (0] - o - - (6] -
Sequential® Acquire (6] O (0] (0] oS (O] OS
Release (6] - o - S (OS] S

Unordered 0 - oP —c sd os*® S

a. Except for IPI.
b. “O” indicates that the first and second operation become visible in program order.

Volume 2: Addressing and Protection

c. A dash indicates no ordering is implied.
d. “S” indicates that the first and the second operation reach a peripheral domain in program order.
e. “OS” implies that both “O” and “S” ordering relations apply.

Table 4-15 establishes an order between operations on a particular processor. For operations to
cacheable write-back memory the order established by these rules is observed by all observers in
the coherence domain.

For example, when this sequence is executed on a processor:

st [a]
st.rel [b]

and a second processor executes this sequence:

I d.acq [b]
Id [a]

if the second processor observes the store to [b], it will also observe the store to [a].

Unless an ordering constraint from Table 4-15 prevents a memory read! from becoming visible, the
read may be satisfied with values found in a store buffer (or any logically equivalent structure).
These values need not be globally visible even when the operation that created the value was a

st. rel . This local bypassing behavior may make accesses of different sizes but with overlapping
memory references appear to complete non-atomically. To ensure that a memory write is globally
observed prior to a memory read, software must place an explicit fence operation between the two
operations.

Aligned st . rel and semaphore operations” from multiple processors to cacheable write-back
memory become visible to all observers in a single total order (i.e., in a particular interleaving; if it
becomes visible to any observer, then it is visible to all observers), except that for st . rel each
processor may observe (via |l d or | d. acq) its own update prior to it being observed globally.

The Itanium architecture ensures this single total order only for aligned st . r el and semaphore
operations to cacheable write-back memory. Other memory operations3 from multiple processors
are not required to become visible in any particular order, unless they are constrained w.r.t. each
other by the ordering rules defined in Table 4-15.

Ordering of loads is further constrained by data dependency. That is, if one load reads a value
written by an earlier load by the same processor (either directly or transitively, through either
registers or memory), then the two loads become visible in program order.

For example, when this sequence is executed on a processor:

st [a] = data
st.rel [b] = a

and a second processor executes this sequence:

[b]
[x]

if the second processor observes the store to [b], it will also observe the store to [a].

Id x
Idy

1. This includes all types of loads (I d and | d. ac(q), and RSE and VHPT memory reads. Note, however, that the read operation of
semaphores cannot be satisfied with values found in a store buffer.

2. Both acquire and release semaphore forms

3. e.g. unordered stores, loads, | d. acq, or memory operations to pages with attributes other than write-back cacheable.

Volume 2: Addressing and Protection 2:71

4438

2:72

Also for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new

and a second processor executes this sequence:

ld x = [b]
cnp.eq pl = X, ‘new
(pl) I1dy=[q]

if the second processor observes the store to [b], it will also observe the store to [a].
And for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new

and a second processor executes this sequence:

ld x =[b]
cnp.eq pl = x, ‘new
(pl) br target

target:
ldy =[a]

if the second processor observes the store to [b], it will also observe the store to [a].

The flush cache (f ¢, f c. i) instruction follows data dependency ordering. fc andf c. i are ordered
with respect to previous and subsequent load, store, or semaphore instructions to the same line,
regardless of the specified memory attribute. f ¢ and f c. i are not ordered with respect to memory
operations to different lines. nf does not ensure visibility of f c and f c. i operations. Instead, the
sync. i instruction synchronizes f ¢ and f c. i instructions, and the sync. i is made visible using
an nf instruction.

Not a Thing Attribute (NaTPage)

A NaTPage attribute prevents non-speculative references to a page, and ensures that speculative
references to the page always defer the Data NaT Page Consumption fault. However, as described
in “Speculation Attributes” on page 2:67, the processor may issue memory references to a
NaTPage. As a result, all NaTPages must be backed by a valid physical page.

Speculative or speculative advanced loads to pages marked as a NaTPage cause the deferred
exception indicator (NaT or NaT Val) to be written to the load target register, and the memory
reference is aborted. However, all other effects of the load instruction such as post-increment are
performed. Instruction fetches, loads, stores and semaphores (including IA-32), but except for
Itanium speculative loads, pages marked as NaTPage raise a NaT Page Consumption fault.

A speculative reference to a page marked as NaTPage may still take lower priority faults, if not
explicitly deferred in the DCR. See “Deferral of Speculative Load Faults” on page 2:88.

Volume 2: Addressing and Protection

intel.

449

4410

Effects of Memory Attributes on Memory Reference
Instructions

Memory attributes affect the following Itanium instructions.

* | df e, st f e: Hardware support for 10-byte memory accesses to a page that is neither a

cacheable page with write-back write policy nor a NaTPage is optional. On processor
implementations that do not support such accesses, an Unsupported Data Reference Fault is
raised when an unsupported reference is attempted.

For extended floating-point loads the fault is delivered only on the normal, advanced, and
check load flavors (1 df e, | df e. a, | df e. c. nc, | df e. c. cl r). Control speculative flavors of
the | df e instruction that target pages that are not cacheable with write-back policy always
defer the fault. Refer to “Deferral of Speculative Load Faults” on page 2:88 for details.

cnpxchg and xchg: These instructions are only supported to cacheable pages with write-back
write policy. cnpxchg and xchg accesses to NaTPages causes a Data NaT Page Consumption
fault. cpxchg and xchg accesses to pages with other memory attributes cause an Unsupported
Data Reference fault.

f et chadd: The f et chadd instruction can be executed successfully only if the access is to a
cacheable page with write-back write policy or to a UCE page. f et chadd accesses to
NaTPages cause a Data NaT Page Consumption fault. Accesses to pages with other memory
attributes cause an Unsupported Data Reference fault. When accessing a cacheable page with
write-back write policy, atomic fetch and add operation is ensured by the processor
cache-coherence protocol. For highly contended semaphores, the cache line transactions
required to guarantee atomicity can limit performance. In such cases, a centralized “fetch and
add” semaphore mechanism may improve performance. If supported by the processor and the
platform, the UCE attribute allows the processor to “export” the f et chadd operation to the
platform as an atomic “fetch and add.” Effects of the exported f et chadd are platform
dependent. If exporting of f et chadd instructions is not supported by the processor, a

f et chadd instruction to a UCE page takes an Unsupported Data Reference fault.

Flush Cache Instructions — f ¢ instructions must always be “broadcast” to other processors,
independent of the memory attribute in the local processor. It is legal to use an uncacheable
memory attribute for any valid address when used as a flush cache (f ¢) instruction target. This
behavior is required to enable transitions from one memory attribute to another and in case
different memory attributes are associated with the address in another processor.

Prefetch instructions — | f et ch and any implicit prefetches to pages that are not cacheable are
suppressed. No transaction is initiated. This allows programs to issue prefetch instructions
even if the program is not sure the memory is cacheable.

Effects of Memory Attributes on Advanced/Check Loads

The ALAT behavior of advanced and check loads is dependent on the memory attribute of the page
referenced by the load. These behaviors are required; advanced and check load completers are not
hints.

All speculative pages have identical behavior with respect to the ALAT. Advanced loads to
speculative pages always allocate an ALAT entry for the register, size, and address tuple specified
by the advanced load. Speculative advanced loads allocate an ALAT entry if the speculative load is
successful (i.e., no deferred exception); if the speculative advanced load results in a deferred
exception, any matching ALAT entry is removed and no new ALAT entry is allocated. Check loads

Volume 2: Addressing and Protection 2:73

intel.

with clear completers (I d. c. clr,l d.c.clr.acq,l df.c.clr)remove a matching ALAT entry on
ALAT hit and do not change the state of the ALAT on ALAT miss. Check loads with no-clear
completers (I d. c. nc, | df . c. nc) allocate an ALAT entry on ALAT miss. On ALAT hit, the ALAT
is unchanged if an exact ALAT match is found (register, address, and size); a new ALAT entry with
the register, address, and size specified by the no-clear check load may be allocated if a partial
ALAT match is found (match on register).

Advanced loads (speculative or non-speculative variants) to non-speculative pages always remove
any matching ALAT entry. Check loads to non-speculative pages that miss the ALAT never allocate
an ALAT entry, even in the case of a no-clear check load. ALAT hits on check loads to
non-speculative pages (which can occur if a previous advanced load referenced that page via a
speculative memory attribute) result in undefined behavior; when changing an existing page from
speculative to non-speculative (or vice-versa), software should ensure that any ALAT entries
corresponding to that page are invalidated.

Limited speculation pages behave like non-speculative pages with respect to speculative advanced
loads, and behave like speculative pages with respect to all other advanced and/or check loads.

Table 4-16 describes the ALAT behavior of advanced and check loads for the different speculation
memory attributes.

Table 4-16. ALAT Behavior on Non-faulting Advanced/Check Loads

4.4.11

44111

2:74

Id.c.clr,
Id.c.nc,
Id.sa Id.c.clr.acq,
Response Idf.c.clr Idf.c.nc
Memory P Id.a "o Response
Attribute Response Response
noNaT | NaT ALAT [ALAT | ALAT | ALAT
hit miss hit miss
speculative alloc remove | alloc remove nop unchanged? alloc
non-speculative n/a remove | remove undefined nop undefined must not
alloc
limited speculation n/a remove |alloc remove nop unchanged?® alloc

a. May allocate a new ALAT entry if size and/or address are different than the corresponding Id.a or Id.sa whose
ALAT entry was matched.

Memory Attribute Transition

If software modifies the memory attributes for a page, it must perform explicit actions to ensure
that subsequent reads and writes using the new attribute will be coherent with prior reads and writes
that were performed with the old attribute. Processors may have separate buffers for coalescing,
uncacheable and cacheable references, and these buffers need not be coherent with each other.

Virtual Addressing Memory Attribute Transition

To change a virtually-addressed page from one attribute to another, software must perform the
following sequence. (The address of the page whose attribute is being modified is referred to as
‘6X77)'

Note: This sequence is ONLY required if the new mapping and the old mapping do not have the
same memory attribute.

Volume 2: Addressing and Protection

On the processor initiating the transition, perform the following steps 1-3:

1.

PTE[X].p = 0 // Mark page as not present

This prevents any processors from reading the old mapping (with the old attribute) from the
VHPT after this point.

ptc.ga [X ;; // dobal shootdown and ALAT invalidate
/1 for the entire page

This removes the mapping from all processor TC's in the coherence domain, and it forces all
processors to flush any pending WC or UC stores from write buffers.

nf ;; /1 Ensure visibility of ptc.ga to |ocal data stream
srlz.i ;; /] Ensure visibility of ptc.ga to local instruction stream

After step 3, no processor in the coherence domain will initiate new memory references or
prefetches to the old translation. Note, however, that memory references or prefetches
initiated to the old translation prior to step 2 may still be in progress after step 3. These
outstanding memory references and prefetches may return instructions or data which may be
placed in the processor cache hierarchy; this behavior is implementation-specific.

If the new memory attribute is an uncacheable attribute, and if the old attribute was
cacheable (or if it is not known at this point in the code sequence what the old attribute was),
then software must drain any current prefetches and ensure that any cached data from the
page is removed from caches. To do this, software must perform steps 4-10. If the new
memory attribute is cacheable, then software may skip steps 4-10, and go straight to step 11.

Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to zero to
indicate that the transition is for virtual memory attributes. The return argument from this
procedure informs the caller if this procedure call is needed on remote processors or not. If
this procedure call is not needed on remote processors, then software may skip the IPI in step
5 and go straight to step 6 below.

Using the IPI mechanism defined in “Inter-Processor Interrupt Messages™ on page 2:110 to
reach all processors in the coherence domain, perform step 4 above on all processors in the
coherence domain, and wait for all PAL_PREFETCH_VISIBILITY calls to complete on all
processors in the coherence domain before continuing.

After steps 4 and 5, no more new instruction or data prefetches will be made to page “X” by
any processor in the coherence domain. However, processor caches in the coherence domain
may still contain “stale” data or instructions from prior prefetch or memory references to
page ‘GX”.

Insert a temporary UC translation for page “X”.

fc [X] /] flush all processor caches in the coherence donain
fc [X+32]

fc [X+64]

... Il ... for all of page “X' (page size = ps)

fc [X+ps-32] ;;

/1 Ensure cache flushes are al so seen by processors' instruction fetch
sync.i ;;

After step 7, all flush cache instructions initiated in step 7 are visible to all processors in the
coherence domain, i.e., no processor in the coherence domain will respond with a cache hit
on a memory reference to an address belonging to page “X”.

Volume 2: Addressing and Protection 2:75

44.11.2

2:76

8. Purge the temporary UC translation from the TLB
9. Call PAL_MC_DRAIN

10. Using the IPI mechanism defined in “Inter-Processor Interrupt Messages” on page 2:110 to
reach all processors in the coherence domain, perform step 9 above on all processors in the
coherence domain, and wait for all PAL_MC_DRAIN calls to complete on all processors in
the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to page [X] have
been evicted from all caches in the coherence domain and forced onto the bus. Note that this
operation does not ensure that the cache lines have been written back to memory.

11. Insert the new mapping with the new memory attribute

Physical Addressing Attribute Transition — Disabling Prefetch/
Speculation and Removing Cacheability

When a non-speculative reference is made to a physical address with the WBL attribute, the 4K
page containing that address becomes speculatively accessible. This allows the processor that made
the non-speculative reference to subsequently make speculative references to this page. (See the
description of limited speculation in Section 4.4.6, “Speculation Attributes” on page 2:67.)

If the same physical memory is then to be accessed with the UC attribute, software must first make
all such addresses speculatively inaccessible and flush any cached copies from the cache.
Otherwise, an uncacheable reference may hit in cache, causing a Machine Check abort.

Also, if physical memory is to be removed from the system, or if physical memory is to be
re-configured in such a way that some physical address X, which used to correspond to some
portion of memory will now corresponds to nothing in the system, software take these same
actions. Otherwise, the processor may initiate a speculative prefetch after the memory has been
removed or re-configured, causing a Machine Check abort.

On the processor initiating the transition, perform the following steps:

1. Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one to
indicate that the transition is for physical memory attributes. This PAL call terminates the
processor's rights to make speculative references to any limited speculation pages (i.e., it
makes all WBL pages speculatively inaccessible — see the discussion on limited speculation
in Section 4.4.6.)

The return argument from this procedure informs the caller if this procedure call is needed
on remote processors or not. If this procedure call is not needed on remote processors, then
software may skip the IPI in step 2 and go straight to step 3 below.

2. Using the IPI mechanism defined in “Inter-Processor Interrupt Messages” on page 2:110 to
reach all processors in the coherence domain, perform step 1 above on all processors in the
coherence domain, and wait for all PAL_PREFETCH_VISIBILITY calls to complete on all
processors in the coherence domain before continuing.

Volume 2: Addressing and Protection

4.5

On the processor initiating the disabling process, continue the sequence:

3. fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... Il ... for all of page “X' (page size = ps)
fc [X+ps-32] ;;

/'l Ensure cache flushes are al so seen by processors' instruction fetch
sync.i ;;
After step 3, all flush cache instructions initiated in step 3 are visible to all processors in the

coherence domain, i.e., no processor in the coherence domain will respond with a cache line
hit on a memory reference to an address belonging to page “X”.

4. Call PAL_MC_DRAIN.

Using the IPI mechanism defined in “Inter-Processor Interrupt Messages” on page 2:110 to

reach all processors in the coherence domain, perform step 4 above on all processors in the

coherence domain, and wait for all PAL_MC_DRAIN calls to complete on all processors in
the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to page [X] have
been evicted from all caches in the coherence domain and forced onto the bus. Note that this
operation does not ensure that the cache lines have been written back to memory.

This sequence ensures that speculation and prefetch are disabled for all WBL pages, that all
outstanding prefetches have completed, and that the caches have been flushed. It may also be
necessary to take additional platform-dependent steps to ensure that all cache write-back
transactions have completed to memory before removing or re-configuring physical
memory.

Memory Datum Alignment and Atomicity

All Ttanium instruction fetches, aligned load, store and semaphore operations (including IA-32) are
atomic, except for floating-point extended memory references (I df e, st f e, and IA-32 10-byte
memory references) to non-write-back cacheable memory. In some processor models, aligned
10-byte Itanium floating-point extended memory references to non-write-back cacheable memory
may raise an Unsupported Data Reference fault. See “Effects of Memory Attributes on Memory
Reference Instructions” on page 2:73 for details. Loads are allowed to be satisfied with values
obtained from a store buffer (or any logically equivalent structure) where architectural ordering
permits, and values loaded may appear to be non-atomic. For details, refer to “Sequentiality
Attribute and Ordering” on page 2:69.

Load pair instructions are performed atomically under the following conditions: a 16-byte aligned
load integer/double pair is performed as an atomic 16-byte memory reference. An 8-byte aligned
load single pair is performed as an atomic 8-byte memory reference.

An aligned | d16 or st 16 instruction is performed as an atomic 16-byte memory reference. For
these instructions, the address specified must be 16-byte aligned. Unaligned | d16 and st 16
instructions result in an Unaligned Data Reference fault regardless of the state of PSR.ac.

Volume 2: Addressing and Protection 2:77

2:78

intel.

Aligned Itanium data memory references never raise an Unaligned Data Reference fault.
Minimally, each Itanium instruction and its corresponding template are fetched together atomically.
Itanium unordered loads can use the store buffer for data values. See “Sequentiality Attribute and
Ordering” on page 2:69 for details.

When PSR.ac is 1, any Itanium data memory reference that is not aligned on a boundary the size of
the operand results in an Unaligned Data Reference fault; e.g., 1, 2, 4, 8, 10, and 16-byte datums
should be aligned on 1, 2, 4, 8, 16, and 16-byte boundaries respectively to avoid generation of an
Unaligned Data Reference fault. When PSR.ac is 1, any IA-32 data memory reference that is not
aligned on a boundary the size of the operand results in an IA-32_Exception(AlignmentCheck)
fault.

Note: 10-byte and floating-point load double pair datum alignment is 16-bytes. The alignment of
long format 32-byte VHPT references is always 32-bytes.

Unaligned Itanium semaphore references (cnpxchg, xchg, f et chadd) result in an Unaligned Data
Reference fault regardless of the state of PSR.ac. For the cnp8xchg16 instruction, the address
specified must be 8-byte aligned.

When PSR.ac is 0, Itanium data memory references that are not aligned may or may not result in an
Unaligned Data Reference fault based on the implementation. The level of unaligned memory
support is implementation specific. However, all implementations will raise an Unaligned Data
Reference fault if the datum referenced by an Itanium instruction spans a 4K aligned boundary, and
many implementations will raise an Unaligned Data Reference fault if the datum spans a cache line.
Implementations may also raise an Unaligned Data Reference fault for any other unaligned Itanium
memory reference. Software is strongly encouraged to align data values to avoid possible
performance degradation for both IA-32 and Itanium-based code. When PSR.ac is 0 and TA-32
alignment checks are also disabled, no fault is raised regardless of alignment for IA-32 data
memory references.

Unaligned advanced loads are supported, though a particular implementation may choose not to
allocate an ALAT entry for an unaligned advanced load. Additionally, the ALAT may
“pessimistically” allocate an entry for an unaligned load by allocating a larger entry than the natural
size of the datum being loaded, as long as the larger entry completely covers the unaligned address
range (e.g. al d4. a to address 0x3 may allocate an 8-byte entry starting at address 0x0). Stores
(unaligned or otherwise) may also pessimistically invalidate unaligned ALAT entries.

Volume 2: Addressing and Protection

intel.

Interruptions

5.1

Interruptions are events that occur during instruction processing, causing the flow control to be
passed to an interruption handling routine. In the process, certain processor state is saved
automatically by the processor. Upon completion of interruption processing, a return from
interruption (rfi) is executed which restores the saved processor state. Execution then proceeds
with the interrupted instruction.

From the viewpoint of response to interruptions, the processor behaves as if it were not pipelined.
That is, it behaves as if a single Itanium instruction (along with its template) is fetched and then
executed; or as if a single IA-32 instruction is fetched and then executed. Any interruption
conditions raised by the execution of an instruction are handled at execution time, in sequential
instruction order. If there are no interruptions, the next Itanium instruction and its template, or the
next IA-32 instruction, are fetched.

This chapter describes both the IA-32 and Itanium interruption mechanisms as well as the
interactions between them. The descriptions of the Itanium interruption vectors and 1A-32
exceptions, interruptions, and intercepts are in Chapter 8.

Interruption Definitions

Depending on how an interruption is serviced, interruptions are divided into: IVA-based
interruptions and PAL-based interruptions.

* IVA-based interruptions are serviced by the operating system. IVA-based interruptions are
vectored to the Interruption Vector Table (IVT) pointed to by CR2, the IVA control register
(See “IVA-based Interruption Vectors” on page 2:96).

* PAL-based interruptions are serviced by PAL firmware, system firmware, and possibly the
operating system. PAL-based interruptions are vectored through a set of hardware entry points
directly into PAL firmware (See Chapter 11, “Processor Abstraction Layer”).

Interruptions are divided into four types: Aborts, Interrupts, Faults, and Traps.

* Aborts
A processor has detected a Machine Check (internal malfunction), or a processor reset. Aborts
can be either synchronous or asynchronous with respect to the instruction stream. The abort
may cause the processor to suspend the instruction stream at an unpredictable location
with partially updated register or memory state. Aborts are PAL-based interruptions.

* Machine Checks (MCA)
A processor has detected a hardware error which requires immediate action. Based on the
type and severity of the error the processor may be able to recover from the error and
continue execution. The PALE_CHECK entry point is entered to attempt to correct the
error.

* Processor Reset (RESET)

A processor has been powered-on or a reset request has been sent to it. The PALE_RESET
entry point is entered to perform processor and system self-test and initialization.

Volume 2: Interruptions 2:79

2:80

intel.

* Interrupts

An external or independent entity (e.g., an I/O device, a timer event, or another processor)
requires attention. Interrupts are asynchronous with respect to the instruction stream. All
previous instructions (including IA-32) appear to have completed. The current and
subsequent instructions have no effect on machine state. Interrupts are divided into
Initialization interrupts, Platform Management interrupts, and External interrupts.
Initialization and Platform Management interrupts are PAL-based interruptions;
external interrupts are IVA-based interruptions.

* Initialization Interrupts (INIT)
A processor has received an initialization request. The PALE_INIT entry point is entered
and the processor is placed in a known state.

* Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform error handling,
memory scrubbing, or power management has been received by a processor. The
PALE_PMI entry point is entered to service the request. Program execution may be
resumed at the point of interruption. PMIs are distinguished by unique vector numbers.
Vectors 0 through 3 are available for platform firmware use and are present on every
processor model. Vectors 4 and above are reserved for processor firmware use. The size of
the vector space is model specific.

* External Interrupts (INT)
A processor has received a request to perform a service on behalf of the operating system.
Typically these requests come from I/O devices, although the requests could come from
any processor in the system including itself. The External Interrupt vector is entered to
handle the request. External Interrupts are distinguished by unique vector numbers in the
range 0, 2, and 16 through 255. These vector numbers are used to prioritize external
interrupts. Two special cases of External Interrupts are Non-Maskable Interrupts and
External Controller Interrupts.
* Non-Maskable Interrupts (NMI)
Non-Maskable Interrupts are used to request critical operating system services. NMIs
are assigned external interrupt vector number 2.
* External Controller Interrupts (ExtINT)
External Controller Interrupts are used to service Intel 8259A-compatible external
interrupt controllers. ExtINTs are assigned locally within the processor to external
interrupt vector number 0.

¢ Faults

The current Itanium or IA-32 instruction which requests an action which cannot or should not
be carried out, or system intervention is required before the instruction is executed. Faults are
synchronous with respect to the instruction stream. The processor completes state changes
that have occurred in instructions prior to the faulting instruction. The faulting and
subsequent instructions have no effect on machine state. Faults are IVA-based
interruptions.

Traps

The IA-32 or Itanium instruction just executed requires system intervention. Traps are
synchronous with respect to the instruction stream. The trapping instruction and all
previous instructions are completed. Subsequent instructions have no effect on
machine state. Traps are IVA-based interruptions.

Figure 5-1 summarizes the above classification. Unless otherwise indicated, the term
“Interruptions” in the rest of this chapter refers to IVA-based interruptions. PAL-based interruptions
are described in detail in Chapter 11.

Volume 2: Interruptions

intel.

Figure 5-1. Interruption Classification

Aborts Interrupts Faults Traps
INIT
RESET
PMI
MCA INT
(NMLI, ExtINT, ...)

|:| PAL-Based Interruptions

D IVA-Based Interruptions

5.2 Interruption Programming Model

When an interruption event occurs, hardware saves the minimum processor state required to enable
software to resolve the event and continue. The state saved by hardware is held in a set of
interruption resources, and together with the interruption vector gives software enough information
to either resolve the cause of the interruption, or surface the event to a higher level of the operating
system. Software has complete control over the structure of the information communicated, and the
conventions between the low-level handlers and the high-level code. Such a scheme allows
software rather than hardware to dictate how to best optimize performance for each of the
interruptions in its environment. The same basic mechanisms are used in all interruptions to support
efficient low-level fault handlers for events such as a TLB fault, speculation fault, or a key miss
fault.

On an interruption, the state of the processor is saved to allow a software handler to resolve the
interruption with minimal bookkeeping or overhead. The banked general registers (see “Efficient
Interruption Handling” on page 2:86) provide an immediate set of scratch registers to begin work.
For low-level handlers (e.g., TLB miss) software need not open up register space by spilling
registers to either memory or control registers.

Upon an interruption, asynchronous events such as external interrupt delivery are disabled
automatically by hardware to allow software to either handle the interruption immediately or to
safely unload the interruption resources and save them to memory. Software will either deal with
the cause of the interruption and r fi back to the point of the interruption, or it will establish a new
environment and spill processor state to memory to prepare for a call to higher-level code. Once
enough state has been saved (such as the IIP, IPSR, and the interruption resources needed to resolve
the fault) the low-level code can re-enable interruptions by restoring the PSR.ic bit and then the
PSR.i bit. (See “Re-enabling External Interrupt Delivery” on page 2:103.) Since there is only one
set of interruption resources, software must save any interruption resource state the operating
system may require prior to unmasking interrupts or performing an operation that may raise a
synchronous interruption (such as a memory reference that may cause a TLB miss).

The PSR.ic (interruption state collection) bit supports an efficient nested interruption model. Under
normal circumstances the PSR.ic bit is enabled. When an interruption event occurs, the various
interruption resources are overwritten with information pertaining to the current event. Prior to

Volume 2: Interruptions 2:81

5.3

2:82

intel.

saving the current set of interruption resources, it is often advantageous in a miss handler to
perform a virtual reference to an area which may not have a translation. To prevent the current set
of resources from being overwritten on a nested fault, the PSR.ic bit is cleared on any interruption.
This will suppress the writing of critical interruption resources if another interruption occurs while
the PSR.ic bit is cleared. If a data TLB miss occurs while the PSR.ic bit is zero, then hardware will
vector to the Data Nested TLB fault handler.

For a complete description of interruption resources (IFA, IIP, IPSR, ISR, IIM, IIPA, ITIR, IHA,
IFS) see “Control Registers” on page 2:24.

Interruption Handling during Instruction Execution

Execution of Itanium instructions involves calculating the address of the current bundle from the
region registers and the IP and then fetching, decoding, and executing instructions in that bundle.
Execution of IA-32 instructions involves calculating the 64-bit linear address of the current
instruction from the EIP, code segment descriptors, and region registers and then fetching,
decoding, and executing the IA-32 instruction. (See Section 3.4).

The execution process involves performing the events listed below. The values of the PSR bits are
the values that exist before the instruction is executed (except for the case of instructions that are
immediately preceded by a mandatory RSE load which clears the PSR.da and PSR.dd bits).
Changes to the PSR bits only affect subsequent instructions, and are only guaranteed to be visible
by the insertion of the appropriate serializing operation. See “Serialization” on page 2:13.
Execution flow is shown in Figure 5-2.

1. Resets are always enabled, and may occur anytime during instruction execution.
2. If the PSR.mc bit is 0 then machine check aborts may occur.

3. The processor checks for enabled pending INITs and PMIs, and for enabled unmasked
pending external interrupts.
4. For Itanium-based code, the processor checks for a valid register stack frame.

* If incomplete and RSE Current Frame Load Enable (RSE.CFLE) is set, then perform a
mandatory RSE load and start again at step one. The mandatory load operation may fault.
A non-faulting mandatory RSE load will clear PSR.da and PSR.dd.

« If valid, then clear RSE.CFLE.
5. For IA-32 code, IA-32 instruction addresses are checked for possible instruction breakpoint
faults. The TA-32 effective instruction address (EIP) is converted into a 64-bit virtual linear

address IP and IA-32 defined code segmentation and code fetch faults are checked and may
result in a fault.

6. When PSR.is is 0, the bundle is fetched using the IP. When PSR.is is 1, an IA-32 instruction
is fetched using IP.

+ If the PSR.it bit is 1, virtual address translation of the instruction address is performed.
Address translation may result in a fault.

+ If the PSR.pk bit is 1, access key checking is enabled and may result in a fault.

 For Itanium instructions the IBR registers are checked for possible instruction breakpoint
faults.

* The fetched instruction is decoded and executed.

Volume 2: Interruptions

intel.

Figure 5-2. Interruption Processing

RFI
Note: The solid
line represents the
normal execution
perform mandatory . enabled
RSE load —YES incomplete unmasked interrupt
frame and pending?
T
| YES
NO fetch current
B instruction, vector to highest-
execute current priority interrupt
| YES |
|
. vector t.o . YES 1
highest-priority |- — e
" process interrupt :
| l
S NO | RFI
process fault commit state for |
e instruction |
< — — RFI |
|
. vector t.o . YES |
highest-priority |- — |
' |
, NO |
" process all traps |
v v

Volume 2: Interruptions

For IA-32 code, the fetched IA-32 instruction is checked to see if the opcode is an illegal
opcode, results in an instruction intercept or the opcode bytes are longer than 15 bytes
resulting in an fault.

If a fault occurs during execution, the processor completes all effects of the instructions
prior to the faulting instruction, and does not commit the effect of the faulting instruction
and all subsequent instructions. It then takes the interruption for the fault. IIP is loaded
with the IP of the bundle or IA-32 instruction which contains the instruction that caused
the fault.

The PSR.dd, PSR.id, PSR.ia, PSR.da, and PSR.ed bits are set to 0 after an Itanium
instruction is successfully executed without raising a fault. The PSR.da and PSR.dd bits
are also set to 0 after the execution of each mandatory RSE memory reference that does

2:83

5.4

2:84

intel.

not raise a fault. PSR.da, PSR.ia, PSR.dd, and PSR.ed bits are cleared before the first
TA-32 instruction starts execution aftera br.iaorrfi instruction. EFLAG.rf and PSR.id
bits are set to 0 after an [A-32 instruction is successfully executed.

e Ifanrfi instruction is in the current bundle, then on the execution of r f i , the value from
the IIP is copied into the IP, the value from IPSR is copied into the PSR, and the
RSE.CFLE is set. On anr fi if IFS.v is set, then IFS.pfm is copied into CFM and the
register stack BOF is decremented by CFM.sof. The following Itanium or IA-32
instruction is executed based on the new IP and PSR values.

7. Traps are handled after execution is complete.

+ If the instruction just completed set the instruction pointer (IP) to an unimplemented
address, an Unimplemented Instruction Address trap is taken.

+ If the instruction just completed was an Itanium floating-point instruction which raised a
trap, a Floating-point trap is taken.

» For IA-32 instructions, if Data Breakpoint traps are enabled and one or more data
breakpoint registers matched during execution of the instruction, a Data Breakpoint trap is
taken.

 Ifthe PSR.Ip bit is 1, and an Itanium branch lowers the privilege level, then a
Lower-Privilege Transfer trap is taken.

« If the PSR.tb bit is 1 and a branch (including IA-32) occurred during execution, then a
Taken Branch trap occurs.

* If no other trap was taken and the PSR.ss bit is 1, then a Single Step trap occurs.

* If more than one trap is triggered (such as Unimplemented Instruction Address trap,
Lower-Privilege Transfer trap, and Single Step trap) the highest priority trap is taken. The
ISR.code contains a bit vector with one bit set for each trap triggered.

A sequential execution model is presented in the preceding description. Implementations are free to
use a variety of performance techniques such as pipelined, speculative, or out-of-order execution
provided that, to the programmer, the illusion that instructions are executed sequentially is
preserved.

PAL-based Interruption Handling

The actions a processor takes and the state that it modifies immediately after a PAL-based
interruption is received are implementation dependent, unless otherwise indicated. For example, an
implementation may choose to support a set of shadow resources on a machine check abort which
enables recovery even when PSR.ic is 0. It may also choose to use the same resources as an
IVA-based interruption event, and hence only support recovery if PSR.ic is 1 at the time of the
abort. On the other hand, a processor must set PSR.it to 0 and PSR.mc to 1 after a machine check
abort. See Chapter 11, “Processor Abstraction Layer” for details on PAL-based interruptions. See
model specification documentation for the processor state and actions for all PAL-based firmware
interruptions.

Volume 2: Interruptions

5.5

IVA-based Interruption Handling

IVA-based interruption handling is implemented as a fast context switch. On IVA-based
interruptions, instruction and data translation is left unchanged, the endian mode is set to the system
default, and delivery of most PSR-controlled interruptions is disabled (including delivery of
asynchronous events such as external interrupts). The processor is responsible for saving only a
minimal amount of state in the interruption resource registers prior to vectoring to the
Itanium-based software handler.

When an interruption occurs, the processor takes the following actions:

1.

If PSR.ic is 0:

» IPSR, IIP, IIPA, and IFS.v are unchanged.

* Interruption-specific resources IFA, IIM, and IHA are unchanged.
If PSR.ic is 1:

* PSR is saved in IPSR. If PSR is in-flight, IPSR will get the most recent in-flight value of
PSR (i.e., PSR is serialized by the processor before it is written into IPSR). For Itanium
traps, the value written to IPSR.ri is the next instruction slot that would have been
executed if there had been no trap. For all other interruptions, the value written to IPSR.ri
is the instruction slot on which the interruption occurred (1 for interruptions on the L+X
instruction of an MLX). For interruptions in the IA-32 instruction set, IPSR.ri is set to 0.

* IP is written into I[IP. For faults and external interrupts, the saved IP is the IP at which the
interruption occurred. For traps, the saved IP is the value after the execution of the IA-32
or Itanium instruction which caused the trap. For branch-related traps, IIP is written with
the target of the branch; for all other traps, IIP is written with the address of the bundle or
IA-32 instruction containing the next sequential instruction.

» IIPA receives the IP of the last successfully executed Itanium instruction. For [A-32
instructions, ITPA receives the IP of the faulting or trapping IA-32 instruction.

» The interruption resources IFA, IIM, IHA, and ITIR are written with information specific
to the particular fault, trap, or interruption taken. These registers serve as parameters to
each of the interruption vectors. The IFS valid bit (IFS.v) is cleared. All other bits in the
IFS are undefined.

If PSR.ic is in-flight:

* Interruption state may or may not be collected in IIP, IPSR, IIPA, ITIR, IFA, IIM, and
THA.

e The value of IFS (including IFS.v) is undefined.

ISR bits are overwritten on all interruptions except for a Data Nested TLB fault. The
instruction slot which caused the interruption is saved in ISR.ei (2 for traps, 1 for other
interruptions, on the L+X instruction of an MLX). For IA-32 code, ISR.ei is set to 0. If
PSR.ic is 0 or in-flight when the interruption occurs, ISR.ni is set to 1. Otherwise, ISR.ni is
set to 0. ISR.ni is always 0 for interruptions taken in IA-32 code.

The defined bits in the PSR are set to zero except as follows:
* PSR.up, PSR.mfl, PSR.mfh, PSR.pk, PSR.dt, PSR.rt, PSR.mc, and PSR.it are unchanged
for all interruptions.

» PSR.be is set to the value of the default endian bit (DCR.be). If DCR.be is in-flight at the
time of interruption, PSR.be may receive either the old value of DCR.be or the in-flight
value.

Volume 2: Interruptions 2:85

intel.

* PSR.pp is set to the value of the default privileged performance monitor bit (DCR.pp). If
DCR.pp is in-flight at the time of interruption, PSR.pp may receive either the old value of
DCR.pp or the in-flight value.

Since PSR.cpl is set to zero, the processor will execute at the most privileged level.
4. RSE.CFLE is set to zero.

IP gets the appropriate IVA vector for the interruption. If IVA is in-flight at the time of
interruption, IP receives either the vector specified by the old IVA value or the vector
specified by the in-flight value.

6. The processor performs an instruction serialization and execution of Itanium instructions
begins at the IP obtained in step 5 above. The instruction serialization event ensures that all
previous control register changes and side effects due to such changes are visible to the first
instruction of the interruption handler.

5.5.1 Efficient Interruption Handling

A set of 16 banked registers are provided by the processor to assist in the efficient processing of
low-level Itanium interruptions and instruction emulation. These registers allow a low-level routine
to have immediate access to a small set of static registers without having to save and restore their
contents to memory at the start and end of each handler. The extra bank of registers exists in the
same name space as the normal registers, overlapping GR16 to GR31. Which set of physical
registers are accessed through GR16 to GR31 is determined by the PSR.bn bit. On an interruption
this bit is forced to zero allowing access to the alternate set of 16 registers which can be used as
scratch space or to hold predetermined values. Software can return to the original set of 16 GRs by
setting the PSR.bn bit to one with bswinstruction. The rfi instruction may also restore the PSR.bn
bit to the value at the time of the interruption which is held in the IPSR. Eight additional registers
(KR0O-KR7) can be used to hold latency critical information for a handler. These application
registers (KR0-KR7) can be read but not written by non-privileged code.

When the processor handles an interruption event the current stack frame remains unchanged and
the IFS valid bit is cleared. The remaining contents of IFS are undefined. While the interruption
handler is running, the register stack engine (RSE) may spill/fill registers to/from the backing store
if eager RSE stores/loads are enabled. The RSE will not load or store registers in the current frame
(except as required ona br . ret orrfi in order to load the contents of the frame before continuing
execution). For most low-level interruptions the current frame will not be modified.
High-performance interruption handlers will not need to perform any register stack manipulation.
For example, a TLB miss handler does not need access to any registers in the interrupted frame. An
rfi instruction after an interruption and before a cover operation will also leave the frame marker
unchanged (desired behavior for a low-level interruption handler). When an interruption handler
falls off the fast path it is required to issue a cover instruction so that the interrupted frame can
become part of backing store. See “Switch from Interrupted Context” on page 2:129.

It may be desirable to emulate a faulting instruction in the interruption handler and r f i back to the
next sequential instruction rather than resuming at the faulting instruction. Some Itanium
instructions can be emulated without having to read the bundle from memory, through knowledge
of the vector, software convention, and information from the ISR (e.g., emulation of t pa).
However, most Itanium instructions will require reading the bundle from memory and decoding the
operation (e.g., an unaligned load). To correctly emulate an unaligned load, the bundle is read from
memory using the value in the IIP which contains the bundle address. The instruction within the
bundle that caused the interruption is determined by the ISR.ei field. Once the operation is decoded

2:86 Volume 2: Interruptions

5.5.2

and emulation completes, the effect of the faulting instruction must be nullified when control is
returned to the point of the fault.

An Itanium instruction is skipped by adjusting PSR.ri and possibly IIP prior to performing the r f i
to the interrupted bundle. This is done by incrementing IPSR.ri by the number of slots this
instruction occupies (usually 1). If the resulting IPSR.1i is 3, then reset IPSR.ri to 0 and advance IIP
by 1 bundle (16 bytes). Emulating X-unit instructions requires setting IPSR.ri to 0 and setting IIP to
the next bundle (X-unit instructions take up two instruction slots). IPSR, IIP, and IFS.pfm (if valid)
will be restored on an r fi to the PSR, IP, and CFM registers.

Non-access Instructions and Interruptions

The non-access Itanium instructions are: fc,fc. i, | fetch, probe, t pa, and t ak. These
instructions reference the TLB but do not directly read or write memory. They are distinguished
from normal load/store instructions since an operating system may wish to handle an interruption
raised by a non-access instruction differently.

All non-access Itanium instructions can cause interruptions (t pa, f ¢, fc. i , pr obe, t ak only for
non-TLB related reasons). ISR.code will be set to indicate which non-access instruction caused the
interruption. See Table 5-1 for ISR field settings for non-access instructions.

Table 5-1. ISR Settings for Non-access Instructions

5.5.3

Instruction ISR Fields

code{3:0} na r w
t pa 0 1 0 0
fc,fc.i 1 1 1 0
pr obe 2 1 Oor1° Oor12
t ak 3 1 0 0
| fetch,lfetch. fault 4 1 1 0
probe. faul t 5 1 Oor1? Oor1?@

a. Sets ror w or both to 1 depending on the pr obe form.

Single Stepping

The processor can single step through a series of instructions by enabling the single step PSR.ss bit.
This is accomplished by setting the IPSR.ss bit and performing an rfi back to the instruction to be
single stepped over. When single stepping, the processor will execute one IA-32 instruction or one
Itanium instruction pointed to by the IPSR.ri field.

After single stepping Itanium instruction slot 2 (IPSR.ri = 2) or when the template is MLX and
single stepping instruction slot 1 (IPSR.ri = 1), the IIP will point to the next bundle, and IPSR.ri
will point to slot 0.

Volume 2: Interruptions 2:87

5.5.4

5.5.5

2:88

Single Instruction Fault Suppression

Four bits, PSR.id, PSR.da, PSR.ia, and PSR.dd are defined to suppress faults for one Itanium
instruction or one mandatory RSE memory operation. The PSR.id bit is used to suppress the
instruction debug fault for one IA-32 or Itanium instruction. This bit will be cleared in the PSR
after the first successfully executed instruction. The PSR.ia bit is used to suppress the Instruction
Access Bit fault for one Itanium instruction. This bit will be cleared in the PSR after the first
successfully executed instruction. The PSR.da and PSR.dd bits are used to suppress Dirty-Bit, Data
Access-Bit and Data Debug faults for one Itanium instruction, or for one mandatory RSE memory
reference. The PSR.da and PSR.dd bits will be cleared in the PSR after the first instruction is
executed without raising a fault, or after the first mandatory RSE memory reference that does not
raise a fault completes. PSR.da, PSR.ia and PSR.dd are cleared before the first [A-32 instruction
starts execution afterabr.iaorrfi instruction. Software may set the PSR.id, PSR.da, PSR.ia and
PSR.dd bits in the IPSR prior to an rfi . The rfi will restore the PSR from the IPSR. By using
these disable bits, software may step over a debug or dirty/access event and continue execution.

Deferral of Speculative Load Faults

Speculative and speculative advanced loads can defer fault handling by suppressing the speculative
memory reference, and by setting the deferred exception indicator (NaT bit or NaT Val) of the load
target register. Other effects of the instruction (such as post increment) are performed. Additionally,
software can suppress the memory reference of speculative and speculative advanced loads
independent of any exception.

Deferral is the process of generating a deferred exception indicator and not performing the
exception processing at the time of its detection (and potentially never at all). Once a deferred
exception indicator is generated, it will propagate through all uses until the speculation is checked
by using either a chk. s instruction, a chk. a instruction (for speculative advanced loads), or a
non-speculative use. This causes the appropriate action to be invoked to deal with the exception.

Three different programming models are supported: no-recovery, recovery and always-defer. In
the no-recovery model, only fatal exceptional conditions are deferred — these are conditions which
cannot be resolved without either involving the program’s exception-handling code or terminating
the program. In the recovery model, performance may be increased by deferring additional
exceptional conditions. The recovery model is used only if the program provides additional
“recovery” code to re-execute failed speculative computations. When a speculative load is executed
with PSR.ic equal to 1, and ITLB.ed equal to 0, the no-recovery model is in effect. When PSR.ic is
1 and ITLB.ed is 1, the recovery model is in effect. The always-defer model is supported for use in
system code which has PSR.ic equal to 0. In this model, all exceptional conditions which can be
deferred are deferred. This permits speculation in environments where faulting would be
unrecoverable.

In addition to the deferral of exceptional conditions, speculative loads may be deferred
automatically by hardware based on implementation-dependent criteria, such as the detection of a
cache miss. Such deferral is referred to as spontaneous deferral, and is done in order to increase
performance. Spontaneous deferral is allowed only in the recovery model.

Volume 2: Interruptions

intel.

Table 5-2. Programming Models

PSR.ic PSR.it ITLB.ed Model DCR-based Deferral | Spontaneous Deferral
0 X X Always defer No No
1 0 X No recovery No No
1 1 0 No recovery No No
1 1 1 Recovery Yes Yes

Speculative load exceptions are categorized into three groups:
¢ Ones which always raise a fault

* Ones which always defer

Table 5-3.

* Ones which always raise a fault in the no-recovery model, but can defer based on the
speculative deferral control bits in the DCR control register, in the recovery model.

Aborts, external interrupts, RSE or instruction-fetch-related faults that happen to occur on a
speculative load are always raised (since they are not related to the speculative load instruction).
Illegal Operation faults and Disabled Floating-point Register faults that occur on a speculative load

are always raised.

Processing of exception conditions for speculative and speculative advanced loads is done in three
stages: qualification, deferral and prioritization.

During the execution of a load instruction, multiple exception conditions may be detected
simultaneously. For non-speculative loads these exception conditions are prioritized and only the
highest priority one raises a fault. For speculative loads, however, some exception conditions may
be deferred. As a result, it is possible for lower priority exceptions, which are not also deferred, to
raise a fault. For some exception conditions, though, other lower priority conditions are
meaningless, and are said to be qualified, or precluded. Exception qualification is described in

Table 5-3.

Exception Qualification

Exception Condition

Precluded by Concurrent Exception Condition

Register NaT Consumption
(NaT’ed address)

none

Unimplemented Data Address

Register NaT Consumption

Alternate Data TLB

Register NaT Consumption

Unimplemented Data Address

VHPT data

Register NaT Consumption

Unimplemented Data Address

Data TLB

Register NaT Consumption

Unimplemented Data Address

Data Page Not Present

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB

Data NaT Page Consumption

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Miss

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Permission

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB

Alternate Data TLB
Data Page Not Present
Data Key Miss

Data Access Rights

Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Volume 2: Interruptions

2:89

Table 5-3. Exception Qualification (Continued)

Exception Condition Precluded by Concurrent Exception Condition
Data Access Bit Register NaT Consumption Data TLB
Unimplemented Data Address Alternate Data TLB
VHPT data Data Page Not Present
Data Debug Register NaT Consumption Unimplemented Data Address
Unaligned Data Reference Register NaT Consumption Unimplemented Data Address
Unsupported Data Reference Register NaT Consumption Data TLB
Unimplemented Data Address Alternate Data TLB
VHPT data Data Page Not Present

After exception conditions are detected and qualified, the remaining exception conditions are
checked for deferral. Deferral occurs after fault qualification and determines which memory access
exceptions raised by speculative loads are automatically deferred by hardware.

Deferral is controlled by PSR.ed, PSR.it, PSR.ic, the speculative deferral control bits in the DCR,
the exception deferral bit of the code page’s instruction TLB entry (ITLB.ed), and the memory
attribute of the referenced data page. The speculative load and speculative advanced load exception
deferral conditions are as follows:

* When PSR.ic is 0 and regardless of the state of DCR, and ITLB.ed bits (see Table 5-2), all
exception conditions related to the data reference are deferred.

» Regardless of the state of DCR, PSR.it, PSR.ic, and ITLB.ed bits, Unimplemented Data
Address exception conditions and Data NaT Page Consumption exception conditions (caused
by references to NaTPages) are always deferred.

* When PSR.it and ITLB.ed are both 1, and the appropriate DCR bit is 1 for the exception, the
speculative load exception is deferred.

* When PSR.it and ITLB.ed are both 1, Unaligned Data Reference exception conditions are
deferred.

The conditions for deferral are given in Table 5-4. See also “Default Control Register (DCR —
CRO)” on page 2:25.

Table 5-4. Qualified Exception Deferral

Qualified Exception Deferred if
Register NaT Consumption (NaT’ed address) always
Unimplemented Data Address always
Alternate Data TLB IPSR.ic || (PSR.it && ITLB.ed && DCR.dm)
VHPT data IPSR.ic || (PSR.it && ITLB.ed && DCR.dm)
Data TLB IPSR.ic || (PSR.it && ITLB.ed && DCR.dm)
Data Page Not Present IPSR.ic || (PSR.it && ITLB.ed && DCR.dp)
Data NaT Page Consumption always
Data Key Miss IPSR.ic || (PSR.it && ITLB.ed && DCR.dk)
Data Key Permission IPSR.ic || (PSR.it && ITLB.ed && DCR.dx)
Data Access Rights IPSR.ic || (PSR.it && ITLB.ed && DCR.dr)
Data Access Bit IPSR.ic || (PSR.it && ITLB.ed && DCR.da)
Data Debug IPSR.ic || (PSR.it && ITLB.ed && DCR.dd)
Unaligned Data Reference IPSR.ic || (PSR.it && ITLB.ed)
Unsupported Data Reference always

2:90 Volume 2: Interruptions

The conditions for spontaneous deferral are given in Table 5-5. See the Get Processor Dependent
Features procedure for details on enabling/disabling spontaneous deferral.

Table 5-5. Spontaneous Deferral

5.6

Implementation-dependent condition may optionally be deferred if

(PSR.ic && PSR.it && ITLB.ed && spontaneous_deferral_enabled())

After checking for deferral, execution of a speculative load instruction proceeds as follows:

e When PSR.ed is 1, then a deferred exception indicator (NaT bit or NaTVal) is written to the
load target register, regardless of whether it has an exception or not and regardless of the state
of DCR, PSR.it, PSR.ic and the ITLB.ed bits.

» If PSR.ed is 0 and there is at least one exception condition which is neither precluded nor
deferred, then a fault is taken corresponding to the highest-priority exception condition which
is neither precluded nor deferred. Prioritization of non-deferred speculative load faults follows
the same interruption priorities as non-speculative instruction faults (Table 5-6 on page 2:92).
However, deferred speculative load faults do not take part in the prioritization. As a result,
depending on DCR settings, a lower priority fault may be taken, even if a higher priority
exception condition exists, but is deferred.

« If PSR.ed is 0 and there are exception conditions, but all are either precluded or deferred, then
a deferred exception indicator (NaT bit or NaTVal) is written to the load target register.

» If PSR.ed is 0, and there are no exception conditions, and if the memory attribute of the
referenced page is uncacheable or limited speculation, then a deferred exception indicator
(NaT bit or NaTVal) is written to the load target register. See “Speculation Attributes” on
page 2:67.

» If PSR.ed is 0, and there are no exception conditions, and if spontaneous deferral is enabled
and permitted by the programming model, then a deferred exception indicator (NaT bit or
NaTVal) may optionally be written to the load target register.

* Otherwise, the load executes normally.

If automatic hardware deferral is not enabled, software may still choose to defer exception
processing (for speculative loads) at the time of the fault. If the code page has its ITLB.ed bit equal
to 1, then the operating system may choose to defer a non-fatal exception. It is expected that the
operating system will always defer fatal exceptions. To assist software in the deferral of non-fatal
or fatal exceptions, the system architecture provides three additional resources: ISR.sp, ISR.ed, and
PSR.ed.

ISR.sp indicates whether the exception was the result of a speculative or speculative advanced load.
The ISR.ed bit captures the code page ITLB.ed bit, and allows deferral of a non-fatal exception due
to a speculative load. If both the ISR.sp and ISR.ed bit are 1 on an interruption, then the operating
system may defer a non-fatal exception by using the PSR.ed bit to perform the action of hardware
deferral for one executed instruction. Software may use the same PSR.ed mechanism to defer fatal
speculative load exceptions.

Interruption Priorities

Table 5-6 contains a complete list of the architecture defined interruptions (including TA-32),
grouped according to type (aborts, interrupts, faults and traps), instruction set, and listed in priority
order. Interruptions are delivered in priority order. If more than one instruction detects an

Volume 2: Interruptions 2:91

intel.

interruption within a bundle, the interruption occurring in the lowest numbered instruction slot is
raised. Lower priority faults and traps are discarded. Lower priority interrupts are held pending.

The shaded interruptions are disabled if the instruction generating the interruption is predicated off.
All other interruptions are either “bundle related” (so the predicate bits do not affect them) or are
caused by instructions that cannot be predicated off. Incomplete Register frame (IR) faults 6
through 17 are identical in behavior to faults 43, 48 through 59 (exclusive of 57) except they are of
a higher priority. IR faults 6 through 17 can only be caused by mandatory RSE load operations that
result from br. ret, or rfi instructions, but not from | oadr s instructions (for details see Section
“RSE Interruptions” on page 2:125).

The number in parenthesis after each vector name is the page number where the vector is described
in detail.

Table 5-6. Interruption Priorities

Type Instr. Set Interruption Name Vector Name é’lo‘a':sza
Aborts 1 Machine Reset (RESET) PALE_RESET vector
A |2 Machine Check (MCA) PALE_CHECK vector NIA
Inter- Itanium® | 3 |nitialization Interrupt (INIT) PALE_INIT vector
rupts 4 Platform Management Interrupt (PMI) PALE_PMI vector N/A
5 External Interrupt (INT) External Interrupt vector
Faults 6 IR Unimplemented Data Address fault General Exception vector
7 IR Data Nested TLB fault Data Nested TLB vector
8 IR Alternate Data TLB fault Alternate Data TLB vector
9 IR VHPT Data fault VHPT Translation vector
10 IR Data TLB fault Data TLB vector
Intel® N/A
ltanium® | 11 IR Data Page Not Present fault Page Not Present vector
12 IR Data NaT Page Consumption fault NaT Consumption vector
13 IR Data Key Miss fault Data Key Miss vector
14 IR Data Key Permission fault Key Permission vector
15 IR Data Access Rights fault Data Access Rights vector
16 IR Data Access Bit fault Data Access-Bit vector
17 IR Data Debug fault Debug vector
Faults IA-32 18 1A-32 Instruction Breakpoint fault IA-32 Exception vector (Debug)
19 |A-32 Code Fetch fault® IA-32 Exception vector (GPFault)
20 Alternate Instruction TLB fault Alternate Instruction TLB vector
21 VHPT Instruction fault VHPT Translation vector
22 Instruction TLB fault Instruction TLB vector A
IA-32, | 23 Instruction Page Not Present fault Page Not Present vector
Intel® | 24 Instruction NaT Page Consumption fault | NaT Consumption vector
Itanium® - -
25 Instruction Key Miss fault Instruction Key Miss vector
26 Instruction Key Permission fault Key Permission vector
27 Instruction Access Rights fault Instruction Access Rights vector
28 Instruction Access Bit fault Instruction Access-Bit vector
2:92 Volume 2: Interruptions

intel.

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name cl:':\a'::a
Intel® | 29 |nstruction Debug fault Debug vector
Itanium®
30 1A-32 Instruction Length > 15 bytes IA-32 Exception vector (GPFault)
IA-32 31 1A-32 Invalid Opcode fault IA-32 Intercept vector (Instruction) e
32 1A-32 Instruction Intercept fault IA-32 Intercept vector (Instruction)
33 lllegal Operation fault General Exception vector
intel® | 34 lllegal Dependency fault General Exception vector
Itanium® 35 Break Instruction fault Break Instruction vector
36 Privileged Operation fault General Exception vector
37 Disabled Floating-point Register fault Disabled FP-Register vector
Iﬁ:ﬁé 38 Disabled Instruction Set Transition fault | General Exception vector B
Itanium®
39 IA-32 Device Not Available fault IA-32 Exception vector (DNA)
IA-32 40 1A-32 FP Error fault® IA-32 Exception vector (FPError)
IIA;3|2®, 41 Register NaT Consumption fault NaT Consumption vector c
Itarr:iim®
Intel® | 42 Reserved Register/Field fault General Exception vector
Itanium® -
43 Unimplemented Data Address fault General Exception vector
44 Privileged Register fault General Exception vector
45 Speculative Operation fault Speculation vector
46 1A-32 Stack Exception IA-32 Exception vector (StackFault)
32 47 1A-32 General Protection Fault IA-32 Exception vector (GPFault)
Faults 48 Data Nested TLB fault Data Nested TLB vector
49 Alternate Data TLB fault® Alternate Data TLB vector
50 VHPT Data fault® VHPT Translation vector
51 Data TLB fault® Data TLB vector ¢
52 Data Page Not Present faultd Page Not Present vector
1A-32, -
Intel® | 53 Data NaT Page Consumption fault® NaT Consumption vector
Itanium® 54 Data Key Miss faultd Data Key Miss vector
55 Data Key Permission fault® Key Permission vector
56 Data Access Rights faultd Data Access Rights vector
57 Data Dirty Bit fault Dirty-Bit vector
58 Data Access Bit faultd Data Access-Bit vector
59 Data Debug fault® Debug vector
Intel® -
tanium® | 60 Unaligned Data Reference fault? Unaligned Reference vector
Volume 2: Interruptions 2:93

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name cl:f‘a':sza
61 |A-32 Alignment Check fault IA-32 Exception vector (AlignmentCheck)
62 1A-32 Locked Data Reference fault IA-32 Intercept vector (Lock)
IA-32 63 1A-32 Segment Not Present fault IA-32 Exception vector (NotPresent)
64 IA-32 Divide by Zero fault IA-32 Exception vector (Divide) c
65 1A-32 Bound fault IA-32 Exception vector (Bound)
66 IA-32 Streaming SIMD Extension Numeric | |A-32 Exception vector (StreamSIMD)
Error fault
ntel® 67 Unsupported Data Reference fault Unsupported Data Reference vector
ltanium® | 68 Floating-point fault Floating-point Fault vector
Traps 69 Unimplemented Instruction Address trap | Lower-Privilege Transfer Trap vector
70 Floating-point trap Floating-point Trap vector
Intel® 71 Lower-Privilege Transfer trap Lower-Privilege Transfer Trap vector
Iz 72 Taken Branch trap Taken Branch Trap vector
73 Single Step trap Single Step Trap vector
74 1A-32 System Flag Intercept trap IA-32 Intercept vector (SystemFlag)
75 1A-32 Gate Intercept trap IA-32 Intercept vector (Gate)
76 1A-32 INTO trap IA-32 Exception vector (Overflow)
IA32 | 77 1A-32 Breakpoint (INT 3) trap IA-32 Exception vector (Debug) °
78 1A-32 Software Interrupt (INT) trap IA-32 Interrupt vector (Vector#)
79 IA-32 Data Breakpoint trap IA-32 Exception vector (Debug)
80 1A-32 Taken Branch trap IA-32 Exception vector (Debug)
81 1A-32 Single Step trap IA-32 Exception vector (Debug)

a. 1A-32 Interruption Class, see Section 5.6.1 for details

o

. 1A-32 Code Fetch faults include Code Segment Limit Violation and other Code Fetch checks defined in Section 6.2.3.3.

c. 1A-32 FP Error fault conditions detected on an IA-32 FP instruction are reported as a fault on the next IA-32 FP instruction that
performs an FWAIT operation.
d. If not deferred.

5.6.1

2:94

IA-32 Interruption Priorities and Classes

Table 5-6 establishes a well defined priority between faults, traps and interrupts (including 1A-32).
However, IA-32 instruction set generated interruptions are divided into interruption classes. While
priority among these IA-32 interruption classes is well defined by the table (except as noted below),
interruption priority within each IA-32 interruption class is implementation dependent and may
vary from processor to processor as defined below:

Class A — Faults from fetching an instruction. Priority of IA-32 Instruction Breakpoint, IA-32 Code
Fetch (GPFault(0)), and Instruction TLB faults (Alternate Instruction TLB fault to Instruction

Access Bit fault) may vary based on instruction alignment and page boundaries in a model specific
way. Faults are prioritized as defined in the table if the instruction does not span a virtual page. If an
IA-32 instruction spans a virtual page, IA-32 Code Fetch faults (IA-32_Exception(GPFault)) due to

Volume 2: Interruptions

code segment (CS) Limit violations can be raised above or below Instruction TLB faults as defined
below:

« If the starting effective address of the IA-32 instruction exceeds the code segment limit, then
the IA-32 Code Fetch fault has higher priority than any Instruction TLB faults. If the starting
effective address of the IA-32 instruction is within the code segment limit, then Instruction
TLB faults have higher priority for the starting effective address.

« If the TA-32 instruction spans a virtual page and the code segment limit is equal to the page
boundary, the IA-32 Code Fetch fault has higher priority than any Instruction TLB faults on
the second page. Otherwise if the code segment limit is greater than the page boundary, any
Instruction TLB faults on the second page have higher priority than the IA-32 Code Fetch
fault.

Class B — Faults from decoding an instruction. Priority of IA-32 Instruction Length, IA-32 Invalid
Opcode, and IA-32 Instruction Intercept, Disabled Floating Point Register, Disabled Instruction Set
Transition, and Device Not Available faults are model specific. If the IA-32 instruction spans a
virtual page, IA-32 Instruction Length >15 byte Faults (IA-32_Exception(GPFault)) can have
higher priority than Instruction TLB faults as defined below:

* If the TA-32 prefix bytes on the first page are >= 15 bytes, an IA-32 Instruction >15 byte fault
(GPFault) is taken first regardless of any Instruction TLB faults on the second page.

* If the IA-32 prefix bytes on the first page are < 15 bytes, Instruction TLB faults on the second
page may or may not have priority over any possible [A-32 Instruction Length fault.

Class C — Faults resulting from executing an instruction. Priority of faults is model specific and can
vary across processor implementations. Most faults are related to data memory references, other
fault priorities can vary due to model-specific differences across processor implementations. The
memory fault priorities (IA-32 Stack Exception through Data Access Bit fault) defined in the table
only apply to a single IA-32 data memory reference that does not cross a virtual page. If an TIA-32
instruction requires multiple data memory references or a single data memory reference crosses a
virtual page:
 Ifany given IA-32 instruction requires multiple data memory references, all possible faults are
raised on the first data memory reference before any faults are checked on subsequent data
memory references. This implies lower priority faults on an earlier memory reference will be
raised before higher priority faults on a later data memory reference within a single 1A-32
instruction. The order of data memory references initiated by an IA-32 instruction is
implementation dependent and may vary from processor to processor. Software can not
assume all higher priority data memory faults are raised before all lower priority data memory
faults within a single IA-32 instruction.

« If a single IA-32 data memory reference crosses a virtual page, the processor checks for faults
in a model specific order: Any faults present on one page are checked and reported before any
faults are checked and reported on the other page. This implies that a single data reference that
crosses a virtual page can raise lower priority data memory faults on one page before higher
priority data memory faults are raised on the other page. For example, Data Key Miss faults
(lower priority) on the first page could be raised before a Data TLB Miss Fault (higher priority)
on the second page. Software can not assume all higher priority data memory faults are raised
before all lower priority data memory faults within a single IA-32 instruction.

Class D — Traps on the current IA-32 instruction. Trap conditions are reported concurrently on the
same exception vector or via a trap code specifying all concurrent traps.

Volume 2: Interruptions 2:95

5.7

IVA-based Interruption Vectors

Table 5-7 contains the processor’s interruption vector table (IVT). The base of the IVT is held in the
IVA control register. The size of the IVT is 32KB. The first 20 vectors are designed to provide more
code space by allowing 64 bundles per vector (16 bytes per bundle) for performance-critical
interruption handlers. The second 48 vectors provide 16 bundles per vector. Several vectors have
more than one interruption associated with them. Information provided in the ISR allows the
handler to distinguish which fault or trap caused the event.

Some vectors require additional software decoding to determine the cause of the interruption.
Additional information for this decoding is provided in the ISR.code field. See Chapter 8,
"Interruption Vector Descriptions" for a complete specification of the information supplied in the
ISR for each of the vectors.

PAL-based interruptions (RESET, MCA, INIT, and PMI) do not reference the IVT.

Table 5-7. Interruption Vector Table (IVT)

2:96

Offset Vector Name Interruption(s) Page
0x0000 | VHPT Translation vector 9, 21,50 2:151
0x0400 | Instruction TLB vector 22 2:153
0x0800 | Data TLB vector 10, 51 2:154
0x0c00 | Alternate Instruction TLB vector 20 2:155
0x1000 | Alternate Data TLB vector 8, 49 2:156
0x1400 | Data Nested TLB vector 7,48 2:157
0x1800 | Instruction Key Miss vector 25 2:158
0x1c00 | Data Key Miss vector 13, 54 2:159
0x2000 | Dirty-Bit vector 57 2:160
0x2400 | Instruction Access-Bit vector 28 2:161
0x2800 | Data Access-Bit vector 16, 58 2:162
0x2c00 | Break Instruction vector 35 2:163
0x3000 | External Interrupt vector 5 2:164
0x3400

0x3800

0x3c00

0x4000

0x4400

0x4800

0x4c00

0x5000 |Page Not Present vector 11, 23, 52 2:165
0x5100 | Key Permission vector 14, 26, 55 2:166
0x5200 | Instruction Access Rights vector 27 2:167
0x5300 |Data Access Rights vector 15, 56 2:168
0x5400 | General Exception vector 6, 33, 34, 36, 38, 42,43, 44 2:169
0x5500 |Disabled FP-Register vector 37 2:171
0x5600 | NaT Consumption vector 12, 24, 41,53 2:172
0x5700 | Speculation vector 45 2:174
0x5900 | Debug vector 17, 29, 59 2:175
0x5a00 | Unaligned Reference vector 60 2:176

Volume 2: Interruptions

intel.

Table 5-7. Interruption Vector Table (IVT) (Continued)

5.8

Offset Vector Name Interruption(s) Page
0x5b00 | Unsupported Data Reference vector |67 2:177
0x5c00 | Floating-point Fault vector 68 2:178
0x5d00 | Floating-point Trap vector 70 2:179
0x5e00 | Lower-Privilege Transfer Trap vector |69, 71 2:180
0x5f00 | Taken Branch Trap vector 72 2:181
0x6000 | Single Step Trap vector 73 2:182
0x6100
0x6200
0x6300
0x6400
0x6500
0x6600
0x6700
0x6800
0x6900 | IA-32 Exception vector 18, 19, 30, 39, 40, 46, 47, 61, 63, 64, 65, 76, 2:183
77,79, 80, 81
0x6a00 | IA-32 Intercept vector 31,32,62,74,75 2:184
0x6b00 | IA-32 Interrupt vector 78 2:185
0x6c00
0x7f00
Interrupts

This section describes the programming model of the high performance interrupt architecture. As
shown in Figure 5-3, interrupts are managed by the processor and by one or more intelligent
external interrupt controllers or devices in the I/O subsystem. The processor is responsible for
queuing and masking interrupts, sending and receiving inter-processor interrupt (IPI) messages,
receiving interrupt messages from external interrupt controller(s), and managing local interrupt
sources. This document describes the processor’s interrupt control mechanism only; for details on
external interrupt controllers or I/O devices refer to platform documentation.

As defined in “Interruption Definitions” on page 2:79 there are three kinds of interrupts:
initialization interrupts (INITs), platform management interrupts (PMIs), and external interrupts
(INTs).

The processors and external interrupt controllers communicate over the processor’s system bus
with an implementation specific interrupt messaging protocol. Interrupts are generated by a number
of different interrupt sources in the system:

» External (I/0) devices — Interrupt messages from any external source can be directed to any
one processor by an external interrupt controller or by I/O devices capable of directly sending
interrupt messages. An interrupt message informs the processor that an interrupt request is
being made, and, in the case of PMIs and external interrupts, specifies a unique vector number
for the interrupt. Interrupt messages are only issued on the “assertion edge” of an interrupt;
“deassertion” of an interrupt does not result in an interrupt message.

Volume 2: Interruptions 2:97

intel.

Figure 5-3. Interrupt Architecture Overview

< INIT
- PMI
Processor Processor Processor -4 LINTO
< LINT1
4 < JPI Messagesqf # A‘
- y —— =
System Bus 4 r ==
\i | Interrupt
Messages

|

|

| f

I/O Bus ¢ | !
|

[

= P -- I
Y V. ¥

; — | Ext [Int t Devi
Devices xternal Interrup evices
L‘ — > Controller

* Locally connected devices — These interrupts originate on the processor’s interrupt pins
(LINT, INIT, PMI), and are always directed to the local processor. The LINT pins can be
connected directly to an Intel 8259A-compatible external interrupt controller. The LINT pins
are programmable to be either edge-sensitive or level-sensitive, and for the kind of interrupt
that gets generated. If programmed to generate external interrupts, the vector number is a
programmed constant per LINT pin. Only the LINT pins connected to the processor can
directly generate level-sensitive interrupts (See “Edge- and Level-sensitive Interrupts” on
page 2:113). LINT pins cannot be programmed to generate level-sensitive PMIs or INITs. The
INIT and PMI pins generate their corresponding interrupts. For PMI pins a PMI vector 0
interrupt is generated.

* Internal processor interrupts — such as interval timer, performance monitoring, and
corrected machine checks. These are always directed to the local processor. A unique vector
number can be programmed for each source.

* Other processors — A processor can interrupt any individual processor, including itself, by
sending an Inter-Processor Interrupt (IPI) message to a specific target processor. See
“Inter-Processor Interrupt Messages” on page 2:110.

The destination of an interrupt message is any one processor in the system, and is specified by a
unique processor identifier. A different destination can be specified for each interrupt. There is no
mechanism to “broadcast” a single interrupt to all processors in the system.

The following terms are used in the interrupt definition:

» The processor is said to receive an interrupt, if one of the processor’s interrupt pins is asserted,
the processor detected an interrupt message bus transaction containing the processor’s unique
identifier, or the processor detected an internal interrupt event.

 After receiving an interrupt, the processor internally holds the interrupt pending. The interrupt
is said to be pended when it is received and held by the processor.

2:98 Volume 2: Interruptions

For edge-sensitive interrupts, an external interrupt is held pending until the interrupt is
acquired by software at which point it is said to be in-service. INITs and PMIs are held pending
until the corresponding PAL vector is entered and PAL firmware clears the pending indication
at which point they are said to be completed. For level-sensitive interrupts programmed
through the LINT pins, the interrupt is held pending as long as the pin is asserted. Deassertion
of a level-sensitive interrupt removes the pending indication (see “Edge- and Level-sensitive
Interrupts” on page 2:113).

The processor maintains an individual interrupt pending indication for INITs. Since external
interrupts and PMIs are also signified by a unique interrupt vector number, the processor
maintains individual pending indications per vector. An occurrence of an interrupt on a vector
that is already marked as pending cannot be distinguished from previous interrupts on the same
vector because the interrupts are pended in the same internal pending bit, and are therefore
treated as “the same” interrupt occurrence.

When interrupt delivery is enabled and the highest priority pending interrupt is unmasked (as
defined below), the processor accepts the pending interrupt, interrupts the control flow of the
processor and transfers control to the software interrupt handler.

An external interrupt is said to be in-service when software acquires the interrupt vector from
the processor by reading the IVR register (see “External Interrupt Vector Register (IVR —
CR65)” on page 2:105). The processor then removes the pending indication for the interrupt
vector. The processor maintains one in-service indicator for each unique vector number. Note
that there are no in-service indicators for INITs and PMIs.

Once an external interrupt is in-service it remains so until software indicates service for that
external interrupt is complete. By writing to the EOI register (see “End of External Interrupt
Register (EOI — CR67)” on page 2:106) software indicates that service for the highest-priority
in-service external interrupt is complete. The processor then removes the in-service indication
for the highest-priority external interrupt vector. INITs and PMIs are completed when PAL
firmware clears the corresponding pending indication.

The priority of interrupts is defined in Table 5-8. Entry 4 is higher priority than interrupt B, if
entry A appears at a higher location in the table than entry B. Interrupt priority is used to select
interrupts that require urgent service over less urgent interrupt requests.

Interrupt delivery is enabled when software programs the processor to accept any unmasked
interrupt. INITs delivery is enabled when PSR.mc is 0. PMIs delivery is enabled when PSR.ic
is 1. For Itanium-based code execution, external interrupts delivery is enabled when PSR.iis 1.

Masking applies only to external interrupts. Unmasked interrupts are those external interrupts
of higher priority than the highest priority external interrupt vector currently in-service (if any)
and whose priority level is higher than the current priority masking level specified by the TPR
register (see “Task Priority Register (TPR — CR66)” on page 2:105). Masking conditions are
defined in Table 5-8. PSR.i does not affect masking of external interrupts.

Figure 5-4 shows how this terminology is applied to the handling of a PAL-based interrupt.
Similarly, Figure 5-5 shows the handing of a vectored external interrupt #. Both figures show the
different states and transitions interrupts go through.

Volume 2: Interruptions 2:99

2:100

Figure 5-4. PAL-based Interrupt States

INACTIVE

pending =0

CPU receives PAL firmware
interrupt completes
interrupt

PENDING

pending = 1

Figure 5-5. External Interrupt States

INACTIVE

pending[n] =0

CPU receives : :
in-service[n] =0

interrupt n

level-sensitive interrupt
signal » is deasserted

IN-SERVICE
none pending

PENDING

OS acquires interrupt »

pending[n] = 1 (reads IVR)

in-service[n] =0

level-sensitive interrupt
signal n is deasserted

CPU receives

OS completes interrupt .
b P mterrupt n

n (writes to EOI)
IN-SERVICE

one pending

pending[n] =1
in-service[n] = 1

OS completes interrupt
n (writes to EOI)

pending[n] =0
in-service[n] = 1

Volume 2: Interruptions

5.8.1 Interrupt Vectors and Priorities

As indicated in Table 5-6 on page 2:92, INITs have higher priority than PMIs, which in turn have
higher priority than external interrupts. PMIs and external interrupts are further prioritized by
vector number.

PMIs have a separate vector space from external interrupts. PMI vectors 0-3 can be used by
platform firmware. PMI vectors 4 and above are reserved for use by processor firmware. Assertion
of the processor’s PMI pin results in PMI vector number 0. PMI vector priorities are described in
Chapter 11, “Processor Abstraction Layer.”

Each external interrupt (INT) in the system is distinguished from other external interrupts by a
unique vector number. There are 256 distinct vector numbers in the range 0 - 255. Vector numbers
1 and 3 through 14 are reserved for future use. Vector number 0 (ExtINT) is used to service Intel
8259 A-compatible external interrupt controllers. Vector number 2 is used for the Non-Maskable
Interrupt (NMI). The remaining 240 external interrupt vector numbers (16 through 255) are
available for general operating system use. Table 5-8 summarizes the interrupt priority model.

Table 5-8. Interrupt Priorities, Enabling, and Masking

Priority Priority Interrupt Vector E:Ti'::r’;t Interrupt U.n.masked
Class Number Condition
Enabled
Highest n/a INIT n/a if PSR.mcis 0 | Always
PMI 0.3 if PSR.ic is 1 Always
INT 2 (NMI) if PSR.i is 12 Interrupt is higher priority than
all in-service external interrupts
0 (ExtINT) TPR.mmi is 0, and interrupt is
higher priority than all in-service
external interrupts
15 240..255
14 224..239
13 208..223
12 192..207 TPR.mmi is 0, and interrupt is
11 176..191 higher priority than all in-service
10 160..175 external interrupts, and Vector
Number{7:4} > TPR.mic
9 144..159
8 128..143
7 112..127
6 96..111
5 80..95
4 64..79
3 48..63
2 32.47
Lowest 1 16..31

a. For Itanium®-based code execution external interrupt delivery is enabled if PSR.iis 1. For IA-32 code
execution external interrupt delivery is enabled if (PSR.i AND (ICFLAG.if OR EFLAG.if)) is true.

NMI (vector 2) has higher interrupt priority than ExtINT (vector 0), which has higher priority than
external interrupt vectors 16 through 255.

Volume 2: Interruptions 2:101

5.8.2

2:102

intel.

External interrupts vectors 16 through 255 are divided into 15 interrupt priority classes. Sixteen
different interrupt vectors share a single interrupt priority class, with class 1 being the lowest
priority and class 15 being the highest. For these external interrupts, higher number external
interrupts have priority over lower number external interrupts, including those within the same
priority class.

Vector number 15 is used to indicate that the highest priority pending interrupt in the processor is at
a priority level that is currently masked or there are no pending external interrupts. This encoding is
referred to as a “spurious” interrupt.

Interrupt Enabling and Masking

Upon receiving an interrupt, the processor holds the interrupt pending internally until interrupt
delivery is enabled and, in the case of external interrupts, the interrupt is unmasked. When all of the
interrupt enabling and unmasking conditions are satisfied (see Table 5-8), the processor accepts the
pending interrupt, interrupts the control flow of the processor, and transfers control to the External
Interrupt handler for external interrupts, or to PAL firmware for INITs and PMIs.

Note: The TPR controls the masking of external interrupts. TPR is described in “Task Priority
Register (TPR — CR66)” on page 2:105.

The processor provides nested interrupt priority support for external interrupt vectors 0, 2, and 16
through 255 by:

* Automatically masking external interrupts of equal or lower priority than the highest priority
external interrupt currently in-service. This raises the in-service external interrupt masking
level when each external interrupt begins service by an IVR read.

» Associating EOI writes with the highest priority in-service external interrupt, and removing the
in-service indication for this external interrupt. This lowers the in-service masking level to that
of the next highest priority currently in-service external interrupt (if any).

This mechanism allows software external interrupt handlers to be interrupted by higher priority
external interrupts.

For example, assume software acquires an external interrupt vector 45 by reading IVR. During the
service of this interrupt other external interrupts can still be received and are pended. If software
sets PSR.i to a 1, pending external interrupts of equal or lower priority than 45 are masked.
However, a higher priority pending external interrupt can be accepted by the processor (provided it
is not masked by TPR.mmi or TPR.mic). Assuming external interrupt vector 80 is received by the
processor, the processor will accept the interrupt by interrupting the control flow of the processor.
During the service of this interrupt, external interrupts of equal or lower priority than vector 80 are
masked. When EOI is issued by software, the processor will remove the in-service indication for
external interrupt vector 80. External interrupt masking will then revert back to the next highest
priority in-service external interrupt, vector 45. External interrupt vectors of equal or lower priority
than vector 45 would remain masked until EOI is issued by software. The in-service indication for
vector 45 is then removed by the write to EOL

Volume 2: Interruptions

5.8.2.1

5.8.2.2

5.8.2.3

Re-enabling External Interrupt Delivery

When emerging from code in which external interrupt delivery is disabled and interruption state
collection is turned off, the following minimal code sequence describes the architectural method
with which to re-enable interruption collection and enable external interrupts:

ssmPSRic /1 enable interruption collection
srlz.d /] guarantee that interruption collection is enabl ed
ssm PSR i /1 enabl e external interrupts

The processor does not ensure that enabling external interrupts is immediately observed after the
ssmPSR.i instruction. Software must perform a data serialization operation after ssmPSR.i to
ensure that external interrupt delivery is enabled prior to a given point in program execution.

External Interrupt Sampling

Assuming that external interrupt delivery is currently disabled (PSR.i is 0), the following minimal
code sequence describes the architectural method with which to briefly open the external interrupt
window for external interrupt sampling (typically PSR.ic is 1 to enable interruption collection):

ssm PSR i
é}l z.d Il external interrupts nay be sanpl ed anywhere here
rsm PSR i

The stop following the srl z. d instruction in the above code sequence is required to force the Reset
System Mask (r sm) instruction into a subsequent instruction group. The stop guarantees that the
srl z. d will open the external interrupt window for at least one cycle before the r sminstruction
closes it again.

Note: In the above code sequence, the effect of disabling interrupts due to the r sminstruction is
observed on the next instruction following the r sm

Disabling of External Interrupt Delivery and rsm

When the current privilege level is zero, an r sminstruction whose mask includes PSR.i may cause
external interrupt delivery to be disabled for an implementation-dependent number of instructions,
even if the qualifying predicate for the r sminstruction is false. Architecturally, the extents of this
delivery disable “window” are defined as follows:

1. External interrupt delivery may be disabled for any instructions in the same instruction
group as the r sm including those that precede the r smin sequential program order,
regardless of the value of the qualifying predicate of the r sminstruction.

2. If the qualifying predicate of the r smis true, then external interrupt delivery is disabled
immediately following the r sminstruction.

3. If the qualifying predicate of the r smis false, then external interrupt delivery may be
disabled until the next data serialization operation that follows the r sminstruction.

The delivery disable window is guaranteed to be no larger than defined by the above criteria, but it
may be smaller, depending on the implementation.

Volume 2: Interruptions 2:103

5.8.3

intel.

When the current privilege level is non-zero, an r sminstruction whose mask includes PSR.i may
briefly disable external interrupt delivery, regardless of the value of the qualifying predicate of the
r sminstruction. However, the implementation guarantees that non-privileged code cannot lock out
external interrupts indefinitely (e.g., via an arbitrarily long sequence of r smPSR.i instructions with
zero-valued qualifying predicates).

External Interrupt Control Registers

Software interacts with external interrupts by reading and writing the external interrupt control
registers (CR64-81). These registers are summarized in Table 5-9, and are used to prioritize and
deliver external interrupts, and to assign external interrupt vectors for processor-internal interrupt
sources such as interval timer, performance monitoring, and corrected machine check.

The external interrupt control registers can only be accessed at privilege level 0, otherwise a
Privileged Operation fault is raised.

Table 5-9. External Interrupt Control Registers

5.8.3.1

Register Name Description
CR64 LID Local ID
CR65 IVR External Interrupt Vector Register (read only)
CR66 TPR Task Priority Register
CR67 EOI End Of External Interrupt
CR68 IRRO External Interrupt Request Register 0 (read only)
CR69 IRR1 External Interrupt Request Register 1 (read only)
CR70 IRR2 External Interrupt Request Register 2 (read only)
CR71 IRR3 External Interrupt Request Register 3 (read only)
CR72 ITV Interval Timer Vector
CR73 PMV Performance Monitoring Vector
CR74 CMCV Corrected Machine Check Vector
CR80 LRRO Local Redirection Register 0
CR81 LRR1 Local Redirection Register 1

Local ID (LID — CR64)

The LID register contains the processor’s local interrupt identifier. Two fields (id and eid) serve as
the processor’s physical name for all interrupt messages (external interrupts, INITs, and PMIs).
LID is loaded by firmware during platform initialization based on the processor’s physical location
within the system. Processors receiving an interrupt message on the system bus compare their id/
eid fields with the target address for the interrupt message. In case of a match, the processor
receives the interrupt and internally holds the interrupt pending.

LID is a read-write register. To ensure that future arriving interrupts see the updated LID value by a
given point in program execution, software must perform a data serialization operation after a LID
write and prior to that point. The Local ID fields are defined in Figure 5-6 and Table 5-10.

Figure 5-6. Local ID (LID — CR64)

2:104

63 32 3 24 23 16 15 0

32 8 8 16

Volume 2: Interruptions

intel.

Table 5-10. Local ID Fields

5.8.3.2

Field Bits Description

id/eid 31:16 The low order bits of id correspond to a unique, geographically significant address of
the processor on the local system bus. The high order bits of id and the eid field
correspond to a unique address of the local system bus within the entire system.
These fields are initialized by platform firmware to an implementation-dependent
value and should not be modified by software. The two fields corresponds to physical

address bits{19:4} of the inter-processor interrupt message.

External Interrupt Vector Register (IVR — CR65)

A read of IVR returns the highest priority, pending, unmasked external interrupt vector,
independent of the value of PSR.i. The external interrupt vector is an 8-bit encoded number. If there
are no pending external interrupts or all external interrupts are currently masked, IVR returns the
“spurious” interrupt indication (vector 15). IVR fields are shown in Figure 5-7. See “Interrupt
Unmasked Condition” column in Table 5-8 on page 2:101 for masking conditions.

Figure 5-7. External Interrupt Vector Register (IVR — CR65)

5.8.3.3

63 8 7 0
56 8

IVR reads also have two atomic side effects:

* The interrupt pending bit in IRR is cleared for the reported external interrupt vector.
Subsequent IVR reads will not report the interrupt as pending unless a new interrupt was
pended for the specified interrupt vector.

* The processor marks the interrupt vector as being in-service and masks all pending external
interrupts with equal or lower priority until software writes the end-of-interrupt (EOI) register
for the in-service interrupt.

To ensure IVR side effects are observed by a given point in program execution (e.g., before the next
IVR read, EOI write, or PSR.i write to enable external interrupt delivery), software must perform a
data serialization operation after an IVR read and prior to that point. To ensure that the reported
external interrupt vector is correctly masked before the next IVR read, software must perform a
data serialization operation after a TPR or EOI write and prior to that IVR read.

Software must be prepared to service any possible external interrupt if it reads IVR, since IVR
reads are destructive and removes the highest priority pending external interrupt (if any).

IVR is a read-only register; writes to [IVR result in a Illegal Operation fault.

IVR reads do not issue an external INTA cycle. If the interrupt vector must be acquired from an
Intel 8259A-compatible external interrupt controller, software should perform a load from the
INTA byte. See “Interrupt Acknowledge (INTA) Cycle” on page 2:112 for details.

Task Priority Register (TPR — CR66)

The processor’s Task Priority Register (TPR) provides the ability to create additional masking of
external interrupts based on a “priority class.” The 240 external interrupt vectors (16 - 255) are
divided into 15 priority classes of 16 numerically contiguous interrupt vectors each. The value
written in TPR.mic masks all external interrupts of equal or lower priority classes.

Volume 2: Interruptions 2:105

intel.

To ensure that new priority levels are established by a given point in program execution (e.g.,
before PSR.i s set to 1), software must perform a data serialization operation after a TPR write and
prior to that point. A data serialization operation must be performed after TPR is written and before
IVR is read to ensure that the reported IVR vector is correctly masked. The TPR fields are
described in Figure 5-8 and Table 5-11.

Figure 5-8. Task Priority Register (TPR — CR66)

63 17 16 15 8 7 4 3 0
ignored ‘ mmi _ mic ignored
47 1 8 4 4

Table 5-11. Task Priority Register Fields

5.8.34

Field Bits Description

mic 74 Mask Interrupt Class: all external interrupt vectors of equal or lower priority classes
then the TPR.mic field are masked. For example, if mic field is 4, interrupt priority
classes 1, 2, 3, and 4 are masked. A TPR.mic value of 0 has no masking effect; a
value of 15 will mask all external interrupt vectors in the range 16 - 255. TPR.mic has
no effect on external interrupt vectors 0 and 2, INITs and PMls. See “Processor
Interrupt Block” on page 2:109.

mmi 16 Mask Maskable Interrupts: When 1, masks all external interrupts other than NMI
(vector 2). When 0, external interrupt vectors 16 - 255, are masked by the TPR.mic
field.

End of External Interrupt Register (EOI — CR67)

A write to the EOI (end-of-external interrupt) register, shown in Figure 5-9, indicates that software
has finished servicing the highest priority in-service external interrupt. The processor removes its
internal in-service indication for the highest priority currently in-service external interrupt vector.
Pending external interrupts are then masked by the next highest priority in-service external
interrupt (if any).

Figure 5-9. End of External Interrupt Register (EOl — CR67)

5.8.3.5

2:106

63 0
‘ ignored
64

Writes to EOI affect the local processor only, and do not propagate to other processors or external
interrupt controllers. EOI is a read-write register. Reads return 0. Data associated with the EOI
writes is ignored.

To ensure that the previous in-service interrupt indication has been cleared by a given point in
program execution, software must perform a data serialization operation after an EOI write and
prior to that point. To ensure that the reported IVR vector is correctly masked before the next IVR
read, software must perform a data serialization operation after an EOI write and prior to that IVR
read.

External Interrupt Request Registers (IRR0-3 — CR68,69,70,71)

Four 64-bit read-only External Interrupt Request Registers (IRR0-3, see Figure 5-10) provide the
capability for software to determine the set of pending asynchronous external interrupts. IRRO
contains vectors <63:0> where vector 0 is in bit position 0, IRR1 contains vectors <127:64>, IRR2

Volume 2: Interruptions

contains vectors <191:128>, and IRR3 contains vectors <255:192>. A bit in the IRR,
corresponding to the pending interrupt vector number, is set when the processor receives an
external interrupt. The IRR bit is cleared when software reads the IVR and the vector number
corresponding to the IRR bit value is returned in the IVR. The IRR bit is also cleared when a
level-sensitive external interrupt signal is deasserted, effectively removing the pending interrupt.

Since IRRO-3 are read-only registers, writes to these registers result in Illegal Operation faults.

Figure 5-10. External Interrupt Request Register (IRR0-3 — CR68, 69, 70, 71)

63 16 15 3 210
IRRO‘ vectors < 63:16>
IRR1 ‘ vectors <127:64>]
IRRZ‘ vectors <191:128> ‘
IRR3| vectors <255:192> |
64

5.8.3.6 Interval Timer Vector (ITV — CR72)

5.

Volume 2: Interruptions

ITV specifies the external interrupt vector number for Interval Timer Interrupts. To ensure that
subsequent interval timer interrupts reflect the new state of the ITV by a given point in program
execution, software must perform a data serialization operation after an ITV write and prior to that
point. See Figure 5-11 and Table 5-12 for the definitions of the ITV fields.

Figure 5-11. Interval Timer Vector (ITV — CR72)

63 17 16 15 13 12 1 8 7 0
47 1 3 1 4 8

Table 5-12. Interval Timer Vector Fields

Field Bits Description
vector 7:0 External interrupt vector number to use when generating an Interval Timer interrupt.
Vector values can be 0, 2 or 16-255. All other vectors are ignored and reserved for future
use.
m 16 Mask: When 1, occurrences of Interval Timer interrupts are discarded and not pended.
When 0, occurrences of Interval Timer interrupts are pended.

8.3.7 Performance Monitoring Vector (PMV — CR73)

PMYV specifies the external interrupt vector number for Performance Monitoring overflow
interrupts. To ensure that subsequent performance monitor interrupts reflect the new state of PMV
by a given point in program execution, software must perform a data serialization operation after a
PMYV write and prior to that point. See Figure 5-12 and Table 5-13 for the definitions of the PMV

fields.
Figure 5-12. Performance Monitor Vector (PMV — CR73)
63 17 16 15 13 12 11 8 7 0
ignored ‘ m m vector
47 1 3 1 4 8

2:107

Table 5-13. Performance Monitor Vector Fields

Field Bits Description
vector 7:0 Vector number to use when generating a Performance Monitor interrupt. Vector values
can be 0, 2, or 16-255. All other vectors are ignored and reserved for future use.
m 16 Mask: When 1, occurrences of Performance Monitor interrupts are discarded and not
pended. When 0, occurrences of Performance Monitor interrupts are pended.

5.8.3.8 Corrected Machine Check Vector (CMCV — CR74)

CMCYV specifies the external interrupt vector number for Corrected Machine Checks. To ensure
that subsequent corrected machine check interrupts reflect the new state of CMCV by a given point
in program execution, software must perform a data serialization operation after a CMCV write and
prior to that point. See Figure 5-13 and Table 5-14 for the CMCYV field definitions.

Figure 5-13. Corrected Machine Check Vector (CMCV — CR74)
63 17 16 15 13 12 11 8 7 0

ignored ’ m vector
8

47 1 3 1 4

Table 5-14. Corrected Machine Check Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Corrected Machine Check. Vector values can
be 0, 2, or 16 - 255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Corrected Machine Check interrupts are discarded and
not pended. When 0, occurrences of Corrected Machine Check interrupts are pended.

5.8.3.9 Local Redirection Registers (LRR0-1 — CR80,81)

Local Redirection Registers (LRRO-1) steer external signal based interrupts that are directly
connected to the local processor to a specific external interrupt vector. All processors support two
direct external interrupt pins. These external interrupt signals (pins) are referred to as Local
Interrupt 0 (LINTO) and Local Interrupt 1 (LINT1).

To ensure that subsequent interrupts from LINTO and LINT1 reflect the new state of LRR prior to a
given point in program execution, software must perform a data serialization operation after an
LRR write and prior to that point. The LRR fields are defined in Figure 5-14 and Table 5-15.

Figure 5-14. Local Redirection Register (LRR — CR80,81)
63 17 16 15 14 13 12 1 10 8 7 0

ignored ‘m’tm.ipp‘ig. dm ‘ vector
47 11 1 1 1 1 3 8

Table 5-15. Local Redirection Register Fields

Field Bits Description
External interrupt vector number to use when generating an interrupt for this entry. For
vector 7:0 INT delivery mode, allowed vector values are 0, 2, or 16-255. All other vectors are
ignored and reserved for future use. For all other delivery modes this field is ignored.
000 INT — pend an external interrupt for the vector number specified by the vector
dm 10:8 field in LRR. Allowed vector values are 0, 2, or 16-255. All other vector numbers
are ignored and reserved for future use.

2:108 Volume 2: Interruptions

intel.

Table 5-15. Local Redirection Register Fields (Continued)

5.8.4

Field Bits Description
dm 10:8 010 PMI — pend a Platform Management Interrupt Vector number O for system
(cont’d) (cont'd) firmware. The vector field is ignored.

100 NMI — pend a Non-Maskable Interrupt. This interrupt is pended at external
interrupt vector number 2. The vector field is ignored.

101 INIT — pend an Initialization Interrupt for system firmware. The vector field is
ignored.

111 ExtINT — pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:112. The vector
field is ignored.

ipp 13 Interrupt Pin Polarity — specifies the polarity of the interrupt signal. When 0, the signal is
active high. When 1, the signal is active low.

tm 15 Trigger Mode — When 0, specifies edge sensitive interrupts. If the m field is 0, assertion
of the corresponding LINT pin pends an interrupt for the specified vector corresponding
to the dm field. The pending interrupt indication is cleared by software servicing the
interrupt. When 1, specifies level sensitive interrupts. If the m field is 0, assertion of the
corresponding LINT pin pends an external interrupt for the specified vector. Deassertion
of the corresponding LINT pin clears the pending interrupt indication. The processor has
undefined behavior if the dm and tm fields specify level sensitive PMIs or INITs.

m 16 Mask — When 1, edge or level occurrences of the local interrupt pins are discarded and

not pended. When 0, edge or level occurrences of local interrupt pins are pended.

Processor Interrupt Block

Inter-Processor Interrupt (IPT) messages, Interrupt Acknowledge (INTA) cycles, and External Task
Priority (XTP) cycles on the processor system bus are initiated by software by accessing a special
physical memory range known as the “Processor Interrupt Block.” Figure 5-15 defines its memory
layout. The entire 2 MByte Processor Interrupt Block is relocatable by a PAL firmware call and
must be aligned on a 2 MByte boundary; by default, the block is located at physical address 0x0000
0000 FEEO 0000.

The Inter-Processor Interrupt region occupies the lower half of the Processor Interrupt Block; by
default its physical address range is 0x0000 0000 FEEO 0000 through 0x0000 0000 FEEF FFFF. A
processor generates Inter-Processor Interrupts by performing an aligned 8-byte store to this
memory region.

The Processor Interrupt Block does not support all forms of memory operations. Unsupported
memory accesses result in undefined processor operation.

* When targeted at the inter-processor interrupt delivery region (lower half of the Processor
Interrupt Block), the following memory operations are undefined: instruction fetch, RSE
accesses, or memory read references (only writes are permitted), references other than aligned
8-byte accesses, and references through any memory attribute other than UC.

* When targeted at the upper half of the Processor Interrupt Block, the following memory
operations are undefined: instruction fetches, references other than 1-byte accesses, and
references through any memory attribute other than UC.

Volume 2: Interruptions 2:109

Figure 5-15. Processor Interrupt Block Memory Layout

+0x1FFFFF A
Ignored, reserved for future use
XTP | +0x1E0008
Ignored, reserved for future use
INTA | +Ox1E0000
Ignored, reserved for future use +0x100000 i)
>
....................... m
IPI +0x000020 S
IPI +0x000018 N
IPI +0x000010 g
IPI +0x000008 m
Pl +0x000000 =
=
Ib_base
5.8.4.1 Inter-Processor Interrupt Messages

A processor can interrupt any individual processor, including itself, by issuing an Inter-Processor
Interrupt message (IPI). A processor generates an IPI by storing an 8-byte interrupt command to an
8-byte aligned address in the interrupt delivery region of the Processor Interrupt Block defined in
“Processor Interrupt Block™ on page 2:109. (If the address is not 8-byte aligned, the processor must
either generate an Unaligned Data Reference Fault, see “Memory Datum Alignment and
Atomicity” on page 2:77, or have undefined behavior). The address being stored to designates the
target processor to receive the interrupt. The store address and data format of the inter-processor
interrupt message are defined in Figure 5-16 and Figure 5-17. The data fields are defined in

Table 5-17. The address processor identifier fields specify the target processor and are defined in

Table 5-16.
Figure 5-16. Address Format for Inter-Processor Interrupt Messages
63 20 19 12 11 4 3 2 0
ib_base id eid \ ir] 0 \
8 8 1 3

Figure 5-17. Data Format for Inter-Processor Interrupt Messages
63 1110 8 7 0

ignored, reserved for future use ‘ dm ‘ vector
53 3 8

2:110 Volume 2: Interruptions

intel.

Table 5-16. Address Fields for Inter-Processor Interrupt Messages

Field

Bits

Description

Interrupt Redirection bit. The processor propagates the Interrupt Redirection bit
along with the Inter-Processor Interrupt (IPl) message into the external system.
When this bit is 0, the external system must send the IPI to the processor specified
by the id/eid fields.

When this bit is 1 on platforms that support interrupt redirection, the external system
may perform interrupt load balancing and send the IPI to a processor with the lowest
External Task Priority level. Alternatively, the external system may ignore the
Interrupt Redirection bit and send the IPl| message to the processor specified by the
eid/id fields. Software must always program a valid eid/id field since the external
system may or may not redirect the interrupt. If the eid/id field is not programmed
with the address of a valid destination processor the IPI message may be lost. See
“External Task Priority (XTP) Cycle” on page 2:112 for details on External Task
Priority levels.

On platforms that do not support interrupt redirection, software must not set the
Interrupt Redirection bit to 1. Doing so will result in undefined behavior.
Software can consult system specific firmware to determine if the Interrupt
Redirection feature is supported by the external system.

id/eid

19:4

Specify the target processor. See Table 5-10 on page 2:105 for a definition of these
fields.

ib_base

63:20

Physical Base address of Processor Interrupt Block. This is a PAL relocatable
physical address. The default is 0x0000 0000 FEE. See “Processor Interrupt Block”
on page 2:109. Based on the processor model some of the high order physical
address bits may be reserved.

Table 5-17. Data Fields for Inter-Processor Interrupt Messages

Field Bits Description

vector 7:0 Vector number for the interrupt. For INT delivery, allowed vector values are 0, 2, or

16-255. All other vectors are ignored and reserved for future use. For PMI delivery,

allowed PMI vector values are 0-3. All other PMI vector values are reserved for use by

processor firmware.

dm 10:8 000 INT — pend an external interrupt for the specified vector to the processor listed
in the destination. Allowed vector values are 0, 2, or 16-255. All other vector
numbers are ignored and reserved for future use.

010 PMI — pend a PMI interrupt for the specified vector to the processor listed in the
destination. Allowed PMI vector values are 0-3. All other PMI vector values are
reserved for use by processor firmware.

100 NMI — pend an external interrupt as an NMI (vector 2) to the processor listed in
the destination. The vector field is ignored.

101 INIT — pend an Initialization Interrupt for platform firmware on the processor
listed in the destination. The vector field is ignored.

111 ExtINT — pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:112. The vector
number field is ignored.

ignored 63:11 Ignored, reserved for future use

Volume 2: Interruptions

211

5.8.4.2

5.8.4.3

5.8.4.4

2:112

intel.

Interrupt and IPI Ordering

Interrupt messages from external device(s), or external interrupts routed to the processor’s LINT
pins, may arrive at one or more processors and become pending in any order. No ordering is
enforced by the processor or the platform.

As observed by a receiving processor, [PIs emitted from the same issuing processor may be pended
in any order, even when the receiving processor and the issuing processor are the same.

As observed by a receiving processor, IPIs are pended after all prior loads and stores emitted by the
same issuing processor are visible if and only if the IPI is issued with a st . r el (or proceeded by an
nf), even when the receiving processor and the issuing processor are the same. For all other cases,
no ordering is implied between IPI transactions and prior cacheable or uncached memory
references.

As observed by a receiving processor, no ordering is implied between IPIs and subsequent loads/
stores from the same issuing processor, even when the receiving processor and the issuing
processor are the same. Subsequent loads or stores may become visible before an IPI is seen as
pending. Data or instruction serialization operations, memory fences (nf or nf. a), orst.rel do
not ensure an IPI is pending at the target processor (including self) by a given point in program
execution on the local processor.

Interrupt Acknowledge (INTA) Cycle

Intel 8259A-compatible external interrupt controllers can not issue interrupt messages and
therefore do not specify an external interrupt vector number when the interrupt request is generated.
When accepting an external interrupt, software must inspect the vector number supplied by the IVR
register. If the vector matches the vector number assigned to the external controller (can be ExtINT,
or any other vector number based on software convention), software must acquire the actual
external interrupt vector number from the external interrupt controller by issuing a 1-byte load from
the INTA Byte.

The INTA Byte is located within the upper half of the Processor Interrupt Block, at offset
0x1E0000 from the base. A single byte load from the INTA address causes the processor to emit the
INTA cycle on the processor system bus. An Intel 8259A-compatible external interrupt controller
must respond with the actual interrupt vector number as the data to be loaded. If two INTA cycles
are required by the external interrupt controller, the platform must provide this functionality.

Software must issue an EOI to the local processor, to clear the interrupt in-service indication for the
vector associated with the external interrupt controller.

External Task Priority (XTP) Cycle

Some model-specific system configurations support an External Task Priority Register (XTPR) per
processor in external bus logic. A processor’s XTPR can be modified by storing one byte of data to
the processor’s XTP Byte address. This generates a special bus transaction required to change the
processor’s XTPR within the system. Please refer to system specific documentation for XTPR bit
format and field definitions. The processor does not interpret any data stored to the XTP Byte
address and all data bits are passed to the external system unmodified.

Volume 2: Interruptions

5.8.5

XTPR is written by operating system code to notify the system that the processor’s current task
priority has been changed. Based on this task priority information, system implementations can
steer interrupt messages from the I/O subsystems to the processors that have registered the lowest
task priority levels. The XTPR register is a system performance “hint”, and need not be updated by
operating system code nor be implemented in all system configurations. If the system does not
implement the XTPR, it must still accept a processor’s XTP cycle and discard it. Operating system
code can issue XTPR updates regardless of external system support.

Edge- and Level-sensitive Interrupts

The processor’s LINT pins directly support edge and level sensitive interrupts, however all other
interrupt sources are edge sensitive. A single external interrupt messages is issued only on the
assertion of an interrupt by external interrupt controllers or devices, deassertion of an external
interrupt sends no interrupt message to the processor. Since the processor removes the pending
interrupt when the interrupt is serviced, the processor guarantees exactly-one interrupt acceptance
for each external interrupt message. By definition external interrupt messages are edge sensitive.

Level sensitive external interrupts can be supported using edge sensitive interrupt messages as
follows:

» Software services the external interrupt generated by an edge interrupt message.

» Software removes the external interrupt request from the requesting device, the device should
then deassert its interrupt request line.

» To avoid spurious external interrupts, it is highly recommended that software issue a dummy
read from the device to ensure that the interrupt request has been actually been removed before
the interrupt is resampled in the next step.

» Software issues a command to the external interrupt controller to resample the interrupt
(typically an external interrupt controller end-of-interrupt command). The external interrupt
controller must issue another interrupt message back to the processor if service is still required
by the processor for a given vector number. For example, if there are other devices still
requiring service that are attached to the same level sensitive interrupt request line.

Volume 2: Interruptions 2:113

2:114

Volume 2: Interruptions

intel.

Register Stack Engine

6.1

The register stack engine (RSE) moves registers between the register stack and the backing store in
memory without explicit program intervention. The RSE operates concurrently with the processor
and can take advantage of unused memory bandwidth to dynamically issue register spill and fill
operations. In this manner, the latency of register spill/fill operations can be overlapped with useful
program work. The basic principles of the register stack are discussed in Section 4.1. This chapter
presents the internal state, the programming model and the interruption behavior of the register
stack engine.

RSE and Backing Store Overview

The register stack frames are mapped onto a set of physical registers which operate as a circular
buffer containing the most recently created frames. The RSE spills and fills these physical registers
to/from a backing store in memory. The RSE moves registers between the physical register stack
and the backing store without explicit program intervention. As indicated in Figure 6-1, the RSE
operates on the physical stacked registers outside of the currently active frame (as defined by
CFM). These registers contain the frames of the parent procedures of the current procedure.

As shown in Figure 6-1, the backing store is organized as a stack in memory that grows from lower
to higher addresses. The Backing Store Pointer (BSP) application register contains the address of
the first (lowest) memory location reserved for the current frame (i.e., the location at which GR32
of the current frame will be spilled). RSE spill/fill activity occurs at addresses below what is
contained in the BSP since the RSE spills/fills the frames of the current procedure’s parents. The
BSPSTORE application register contains the address at which the next RSE spill will occur. The
address register which corresponds to the next RSE fill operation, the BSP load pointer, is not
architecturally visible. The addresses contained in BSP and BSPSTORE are always aligned to an
8-byte boundary. The backing store contains the local area of each frame. The output area is not
spilled to the backing store (unless it later becomes part of a callee’s local area). Within each stack
frame, lower-addressed registers are stored at lower memory addresses. RSE spills of NaTed
stacked general registers are subject to the same memory update constraints as software spills
(st8.spill) of NaTed static general registers (see “Register Spill and Fill” on page 1:53).

The RSE also spills/fills the NaT bits corresponding to the stacked registers. The NaT bits
corresponding to the static subset must be spilled/filled as necessary by software. The NaT bits are
the 65th bit of each general register. The NaT bits for the stacked subset are spilled/filled in groups
of 63 corresponding to 63 consecutive physical stacked registers. When the RSE spills a register to
the backing store the corresponding NaT bit is copied to the RSE NaT collection (RNAT)
application register. Whenever bits 8:3 of BSPSTORE are all ones, the RSE stores RNAT to the
backing store. As shown in Figure 6-2, this results in a backing store memory image in which every
63 register values are followed by a collection of NaT bits. Bit 0 of the NaT collection corresponds
to the first (lowest addressed) of the 63 register values; bit 62 corresponds to the 63rd register
value. Bit 63 of the NaT collection is always written as zero. When the RSE fills a stacked register
from the backing store it also fills the register’s NaT bit. Whenever bits 8:3 of the RSE backing
store load pointer are all ones, the RSE reloads a NaT collection from the backing store. Bit 63 of
the NaT collection is ignored when read from the backing store.

Volume 2: Register Stack Engine 2:115

Figure 6-1. Relationship Between Physical Registers and Backing Store

Physical Stacked Registers Backing Store
T T T N procA calls procB calls procC
I I
I I
! call I —
: currently]
| unallocated active frame
I PR
I
| sofg procC
| y:. - ~4—— AR[BSP]
I
' soly
I RSE
| loads/stores <_AR[BSPSTORE]
| - _ ST
I
| soly I procA procA
I S
I
I unallocated
I :
I I
| return |
\ , higher L~ higher
S - - - == - register - memory
addresses addresses

Figure 6-2. Backing Store Memory Format

2:116

8 bytes
B
BSPSTORE{10:3 - —T
11 000000 |
10 111111 NaT collection
10 111110
63 stacked
general registers
10 000000
01 111111 NaT collection
01 111110
63 stacked
general registers
01 000000
00 111111 —
|

The RSE operates concurrently and asynchronously with respect to instruction execution by taking
advantage of unused memory bandwidth to dynamically perform register spill and fill operations.
The algorithm employed by the RSE to determine whether and when to spill/fill is implementation
dependent. Software can not depend on the spill/fill algorithm. To ensure that the processor and
RSE activities do not interfere with each other, software should not access stacked registers outside
of the current stack frame. The architecture guarantees register stack integrity by faulting on writes
to out-of-frame registers. Reads from out-of-frame registers may interact with RSE operations and
return undefined data values. However, out-of-frame reads are required to propagate NaT bits.

Volume 2: Register Stack Engine

6.2

The operation of the RSE is controlled by the Register Stack Configuration (RSC) application
register. Activity between the processor and the RSE is synchronized only when al | oc, f | ushrs,
| oadrs, br.ret,orrfi instructions actually require registers to be spilled or filled, or when
software explicitly requests RSE synchronization by executing a mov to/from RSC, BSPSTORE or
RNAT application register instruction.

RSE Internal State

Table 6-1 describes architectural state that is maintained by the register stack engine. The RSE
internal state elements described here are not directly exposed to the programmer as architecturally
visible registers. As a consequence, RSE internal state does not need to be preserved across context
switches or interruptions. Instead, it is modified as the side-effect of register stack-related
instructions. To describe the effects of these instructions a complete definition of the RSE internal
state is essential. To distinguish them from architecturally visible resources, all RSE internal state
elements are prefixed with “RSE”. Other RSE related resources are architecturally visible and are
exposed to software as application registers: RSC, BSP, BSPSTORE, and RNAT.

Table 6-1. RSE Internal State

6.3

Name Description Corresponds to:

RSE.N_STACKED_PHYS Number of Stacked Physical registers:
Implementation dependent size of the stacked
physical register file.

RSE.BOF Bottom-of-frame register number: Physical AR[BSP]
register number of GR32.

RSE.StoreReg RSE Store Register number: Physical register | AR[BSPSTORE]
number of next register to be stored by RSE.

RSE.LoadReg RSE Load Register number: Physical register RSE.BspLoad

number one greater than the next register to
load (modulo the number of stacked physical
registers).

RSE.BsplLoad Backing Store Pointer for memory loads: 64-bit | RSE.BsplLoad
Backing Store Address 8 bytes greater than the
next address to be loaded by the RSE.

RSE.RNATBitIndex RSE NaT Collection Bit Index: 6-bit wide RNAT | AR[BSPSTORE]{8:3}
Collection Bit Index (defines which RNAT
collection bit gets updated)

RSE.CFLE RSE Current FramelLoad Enable: Control bit
that permits the RSE to load registers in the
current frame afterabr.ret orrfi .

RSE.ndirty Number of dirty registers on the register stack

RSE.ndirty_words Number of dirty words on the register stack plus | AR[BSP] -
corresponding number of NaT collection AR[BSPSTORE]
registers

Register Stack Partitions

The processor’s physical register file provides at least 96 stacked registers. The actual number of
stacked registers (RSE.N_STACKED_PHYS) is implementation dependent and must be an even
multiple of 16. Figure 6-3 illustrates the circular nature of the physical register file, and shows the

Volume 2: Register Stack Engine 2:117

intel.

correspondence of the registers to the backing store. Figure 6-3 also shows the four partitions of the
stacked register file:
Clean partition (lightly-shaded): registers that contain values from parent procedure frames.
The registers in this partition have been successfully spilled to the backing store by the RSE
and their contents have not been modified since they were written to the backing store.

Dirty partition (medium-shaded): registers that contain values from parent procedure frames.
The registers in this partition have not yet been spilled to the backing store by the RSE. The
number of registers contained in the dirty partition (distance between RSE.StoreReg and
RSE.BOF) is referred to as RSE.ndirty.

Current frame (shaded dark): stacked registers allocated for computation. The position of the
current frame in the physical stacked register file is defined by the Bottom-of-frame register
(RSE.BOF). The number of registers in the current frame is defined by the size of frame field
in the current frame marker (CFM.sof).

Invalid partition (diagonally striped): registers outside the current frame that do not contain
values from parent procedure frames. They are immediately available for allocation into the
current frame or for RSE load operations.

Figure 6-3. Four Partitions of the Register Stack

2:118

nvalid

W%W ™~

Physical Stacked Registers

RSE.LoadReg RSE.StoreReg RSE.BOF

\ clean dirty current

[
| I
R’SEﬁ;| t t:_ﬁ store return, rfi | call, cover retumn, rfi, alloc
|
| || L[] []

_>
Higher Addresses
RSE.BspLoad AR[BSPSTORE] AR[BSP]
Backing Store

The boundaries between the four register stack partitions are defined by the current frame marker
(CFM) and three physical register numbers: a load, store and bottom-of-frame register number. As
described in Table 6-1 each of these physical register numbers has a corresponding 64-bit backing
store memory address pointer. (For example, AR[BSP] always contains the address where GR[32]
of the current frame will be stored.)

Figure 6-3 also shows the effects of various instructions on the partition boundaries. RSE loads use
invalid registers. RSE stores use dirty registers. Eager RSE loads and stores grow the clean
partition. A br.call,brl.cal |, or cover instruction can increase the bottom-of-frame pointer
(RSE.BOF) which moves registers from the current frame to the dirty partition. An al | oc may
shrink or grow the current frame by updating CFM.sof. A br.ret orrfi instruction may shrink or
grow the current frame by updating both the bottom-of-frame pointer (RSE.BOF) and CFM.sof.

Volume 2: Register Stack Engine

intel.

6.4

RSE Operation

The register stack backing store is organized as a stack in memory that grows from lower addresses
towards higher addresses. The top of the backing store stack is defined by the Backing Store
Pointer (BSP) application register, which points to the first memory location reserved for the
current frame. The RSE load and store activities take place at lower addresses, defined relative to
BSP by the sizes of the clean and dirty partitions. Although the stack is conceptually infinite in both
directions, the effective base of the stack is expected to be the first memory location of the first
page allocated to the backing store.

To allow the highest possible degree of concurrent execution, the processor and the RSE operate
independently of each other during normal program execution. The RSE distinguishes between
mandatory and eager load/store operations. Mandatory load/store operations occur as the result of
al l oc,flushrs,l oadrs, br.ret orrfi instructions. Eager operations occur when the RSE is
speculatively working ahead of program execution, and it is not known whether this register spill/
fill is actually required by the program.

When the RSE works in the background, it issues eager RSE spill and fill operations to extend the
size of the clean partition in both directions—by decreasing the RSE load pointer and loading
values from the backing store into invalid registers (eager RSE load), and by saving dirty registers
to the backing store and increasing the RSE store pointer (eager RSE store). Allocation of a
sufficiently large frame (using al | oc) or execution of a f | ushr s instruction may cause the RSE to
suspend program execution and issue mandatory RSE stores until the required number of registers
have been spilled to the backing store. Similarly a br. ret orrfi back to a sufficiently large frame
or execution of a | oadr s instruction may cause the RSE to suspend program execution and issue
mandatory RSE loads until the required number of registers have been restored from the backing
store. The RSE only operates in the foreground and suspends program execution whenever forward
progress of the program actually requires registers to be spilled or filled.

Table 6-2 describes the RSE operation instructions and state modifications.

Table 6-2. RSE Operation Instructions and State Modification

Instruction
al | oc
Affected State . rfi
ri=ar.pfs,i,l, |br.call? brl.call? br.ret?
1=ar.p when CR[IFS].v = 1
o,r
AR[BSP]{63:3} | unchanged AR[BSP]{63:3} + CFM.sol + AR[BSP]{63:3} - AR[BSP[{63:3} —
(AR[BSP]{8:3} + CFM.s0l)/63 | AR[PFS].pfm.sol— | CR[IFS].ifm.sof —

(62-AR[BSP}{8:3}+ | (62-AR[BSP}{8:3}+
AR[PFS].pfm.sol)/63 | CR[IFS].ifm.sof)/63

AR[PFS] unchanged AR[PFS].pfm = CFM unchanged unchanged
AR[PFS].pec = AR[EC]
AR[PFS].ppl = PSR.cpl
GRIr 1] AR[PFS] N/A N/A N/A
CFM CFM.sof =i +|l +0 | CFM.sof -= CFM.sol AR[PFS].pfm CRJ[IFS].ifm
CFM.sol =i +I CFM.sol =0 or®
CFM.sor=r >>3 CFM.sor =0 CFM.sof =0
CFM.rrb.gr=10 CFM.sol =0
CFM.rrb.fr=0 CFM.sor=0
CFM.rrb.pr=0 CFM.rrb.gr=0
CFM.rrb.fr=0
CFM.rrb.pr =0

Volume 2: Register Stack Engine 2:119

intel.

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete Register
Frame” on page 2:127.

b. Normal br . r et instructions restore CFM with AR[PFS].pfm. However, if a bad PFS value is read by the br . r et
instruction, all CFM fields are set to zero. See “Bad PFS Used by Branch Return” on page 2:124.

6.5 RSE Control

The RSE can be controlled at all privilege levels by means of three instructions (cover, f | ushrs,
and | oadr s) and by accessing four application registers (mov to/from RSC, BSP, BSPSTORE and
RNAT). This section first presents each of the RSE application registers, and then discusses the
three RSE control instructions.

6.5.1 Register Stack Configuration Register

The layout of the Register Stack Configuration application register (RSC) is defined in

Section 3.1.8.2. This section describes the semantics of the mode, the privilege level and the byte
order fields of the RSC. The loadrs field is described as part of the | oadr s instruction in

Section 6.5.4.

RSE Mode: Two mode bits in the RSC register determine when the RSE generates register spill or
fill operations. When both mode bits are zero (enforced lazy mode) the RSE issues only mandatory
loads and stores (when an al | oc, br.ret,flushrs orrfi instruction requires registers to be
spilled or filled). Bit 0 of the RSC.mode field enables eager RSE stores and bit 1 enables eager RSE
loads. Table 6-3 defines all four possible RSE modes. Please see the processor specific
documentation for further information on the RSE modes implemented by the Itanium processor.

Table 6-3. RSE Modes (RSC.mode)

Mode RSE Loads RSE Stores RSC.mode
Enforced Lazy Mandatory only Mandatory only 00
Store Intensive Mandatory only Eager and Mandatory 01
Load Intensive Eager and Mandatory Mandatory only 10
Eager Eager and Mandatory Eager and Mandatory 11

The algorithm that decides whether and when to speculatively perform eager register spill or fill
operations is implementation dependent. Software may not make any assumptions about the RSE
load/store behavior when the RSC.mode is non-zero. Furthermore, access to the BSPSTORE and
RNAT application registers and the execution of the | oadr s instructions require RSC.mode to be
zero (enforced lazy mode). If | oadr s, move to/from BSPSTORE or move to/from RNAT are
executed when RSC.mode is non-zero an Illegal operation fault is raised. Eager spill/fill of the
RNAT register to/from the backing store is only permitted if the RSE is in store/load intensive or
eager mode. In enforced lazy mode, the RSE may spill/fill the RNAT register only if a subsequent
mandatory register spill/fill is required.

RSE Privilege Level: When address translation is enabled (PSR.rt is one), the RSE operates at a
privilege level defined by two privilege level bits in the Register Stack Configuration register
(RSC.pl). All privilege level checks for RSE virtual accesses are performed using the privilege
level in RSC.pl. When the RSC is written, the privilege level bits are clipped to the current

2:120 Volume 2: Register Stack Engine

6.5.2

privilege level of the process, i.e., the numerical maximum of the current privilege level and the
privilege level in the source register is written to RSC.pl.

Protection is also checked based on the current entries in the data TLB. The RSE always remains
coherent with respect to the data TLB. If a translation that is being used by the RSE is changed or
purged, the RSE will immediately begin using the new translation or suffer a TLB miss. Only
mandatory loads and stores can cause RSE memory related faults. Details on RSE fault delivery are
described in “RSE Interruptions.” Although eager RSE loads and stores do not cause interruptions
they can, under certain conditions, cause a VHPT walk and TLB insert. Details on when RSE loads
and stores can cause a VHPT walk are described in “VHPT Environment” on page 2:56.

The RSE expects its backing store to be mapped to cacheable speculative memory. If RSE spill/fill
transactions are performed to non-speculative memory that may contain I/O devices, system
behavior is unpredictable.

RSE Byte Order: Because the RSE runs asynchronously with the processor, it may be running on
behalf of a context with a different byte order from the current one. Consequently, the RSE defines
its own byte ordering bit: RSC.be. When RSC.be is zero, registers are stored in little-endian byte
order (least significant bytes to lower addresses). When RSC.be is one, registers are stored in
big-endian byte order (most significant bytes to lower addresses). RSC.be also determines the byte
order of NaT collections spilled/filled by the RSE. RSC.be may be written by code at any privilege
level. Changes to RSC.be should only be made by software when RSC.mode is zero. Failure to do
so results in undefined backing store contents.

Register Stack NaT Collection Register

As described in Section 6.1, the RSE is responsible for saving and restoring NaT bits associated
with the stacked registers to and from the backing store. The RSE writes its NaT collection register
(the RNAT application register) to the backing store whenever BSPSTORE{8:3} = 0x3F (1 NaT
collection for every 63 registers). The RNAT acts as a temporary holding area for up to 63 unsaved
NaT bits. The RSE NaT collection bit index (RSE.RNATBitIndex) determines which bit of the
RNAT register receives the NaT bit of a spilled register as the result of an RSE store. The six-bit
wide RSE.RNATBitIndex is always equal to BSPSTORE{8:3}. As a result, RNAT{x} corresponds
to the register saved at

concat enat e(BSPSTORE{ 63: 9}, x{ 5: 0}, 0{2: 0}).

The RSE never saves partial NaT collections to the backing store, so software must save and restore
the RNAT application register when switching the backing store pointer. RSE.RNATBitIndex
determines which RNAT bits are valid. Bits RNAT{RSE.RNATBitIndex:0} contain defined values,
and bits RNAT{62:RSE.RNATBitIndex+1} contain undefined values. Bit 63 of the RNAT
application register always reads as zero. Writes to bit 63 of the RNAT application register are
ignored. The execution of RSE control instructions mov to BSPSTORE and | oadr s as well as an
RSE spill of the RNAT register cause the contents of the RNAT register to become undefined. The
RNAT application register can only be accessed when RSC.mode is zero. If RSC.mode is non-zero,
accessing the RNAT application register results in an Illegal Operation fault.

Volume 2: Register Stack Engine 2:121

6.5.3 Backing Store Pointer Application Registers

The RSE defines two Backing Store Pointer application registers: BSPSTORE and BSP. Since the
RSE backing store pointers are always 8-byte aligned, bits {2:0} of the backing store pointers
always read as zero. When writing the BSPSTORE application register, bits {2:0} in the presented
address are ignored.

The RSE Backing Store Pointer for memory stores (BSPSTORE) is a 64-bit application register
that provides the main interface to the three RSE backing store memory pointers: BSP, BSPSTORE
and RSE.BspLoad. The BSPSTORE application register can only be accessed when RSC.mode is
zero. If RSC.mode is non-zero, accessing BSPSTORE results in an Illegal Operation fault.

Reading BSPSTORE (nov from BSPSTORE application register) returns the address of the next
RSE store.

Writing BSPSTORE (nov to BSPSTORE application register) has side-effects on all three RSE
pointers and the NaT collection process. The operation is defined as follows: the BSPSTORE and
RSE.BspLoad pointers are both set to the address presented, which forces the size of the clean
partition to zero. Writes to the BSPSTORE application register do not change the size of the dirty
partition: the BSP pointer is set to the address presented plus the size of the dirty partition plus the
size of any intervening NaT collections. The dirty partition is preserved to allow software to change
the backing store pointer without having to flush the register stack. Writing BSPSTORE causes the
contents of the RNAT register to become undefined. Therefore software must preserve the contents
of RNAT prior to writing BSPSTORE. After writing to BSPSTORE, the NaT collection bit index
(RSE.RNATBiItIndex) is set to bits {8:3} of the presented address. If an unimplemented address in
BSPSTORE is used by a mandatory RSE spill or fill, an Unimplemented Data Address fault is
raised.

The RSE Backing Store Pointer (BSP) is a 64-bit read-only application register. Writing BSP (nov
to BSP application register) results in an Illegal Operation fault. Reads from BSP (nov from BSP
application register) return the address of the top of the register stack in memory. This location is
the backing store address to which the current GR32 would be written. Reading BSP does not have
any side-effect on any of the internal RSE pointers or the NaT collection process. Therefore, BSP
can be read regardless of the RSE mode, i.e., even when RSC.mode is non-zero. Since BSP is
determined by BSPSTORE and the size of the dirty partition, it is possible for BSPSTORE to
contain an implemented address and for BSP to contain an unimplemented address. BSP reads
always return a full 64-bit (possibly unimplemented) address; only a subsequent data memory
reference with an unimplemented address will cause an Unimplemented Data Address fault.

Table 6-4 summarizes the effects of the three instructions that access the backing store pointer
application registers.

Table 6-4. Backing Store Pointer Application Registers

Instruction
Affected State Read BSP Read BSPSTORE Write BSPSTORE?

nov r1=AR[BSP] | nov r =AR[BSPSTORE] nov AR BSPSTCRE] =r 2
GRIr 4] AR[BSP] AR[BSPSTORE] N/A
AR[BSP[63:3} Unchanged Unchanged (GRIr]{63:3} + RSE.ndirty) +

((GRIr 2}{8:3} + RSE.ndirty)/63)

AR[BSPSTORE}{63:3} | Unchanged Unchanged GRIr 5{63:3}
RSE.BspLoad {63:3} | Unchanged Unchanged GRIr »]{63:3}

2:122 Volume 2: Register Stack Engine

intel.

Table 6-4. Backing Store Pointer Application Registers (Continued)

6.5.4

Instruction
Affected State Read BSP Read BSPSTORE Write BSPSTORE?
mov r1=AR[BSP] | nov r=AR] BSPSTORE] nmov AR[BSPSTORE] =r 2
AR[RNAT] Unchanged Unchanged UNDEFINED
RSE.RNATBiItIndex Unchanged Unchanged GRIr 5]{8:3}

a. Writing to AR[BSPSTORE] has undefined behavior with an incomplete frame. See “RSE Behavior with an
Incomplete Register Frame” on page 2:127.

RSE Control Instructions

This section describes the RSE control instructions: cover, f | ushrs and | oadr s. The effects of
the three RSE control instructions on the RSE state are summarized in Table 6-5.

Table 6-5. RSE Control Instructions

Instruction
Affected State
cover flushrs? loadrs?
AR[BSP]{63:3} AR[BSP[{63:3}+ CFM.sof + Unchanged Unchanged
(AR[BSP]{8:3} + CFM.sof)/63
AR[BSPSTORE[{63:3} | Unchanged AR[BSPJ{63:3} AR[BSP[63:3} —
AR[RSC].loadrs{13:3}
RSE.BspLoad{63:3} Unchanged Model specificb AR[BSP]{63:3} —
AR[RSC].loadrs{13:3}
AR[RNAT] Unchanged Updated UNDEFINED
RSE.RNATBitIndex Unchanged AR[BSPSTORE]{8:3} AR[BSPSTORE]{8:3}
CRI[IFS] if (PSR.ic == 0) { Unchanged Unchanged
CR[IFS].ifm = CFM
CR[IFS].v = 1}
CFM CFM.sof =0 Unchanged Unchanged
CFM.sol =0
CFM.sor=0
CFM.rrb.gr=0
CFM.rrb.fr=0
CFM.rrb.pr =0

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete

Register Frame” on page 2:127.

b. In general, eager RSE implementations will preserve RSE.BspLoad during a f | ushr s. Lazy RSE

implementations may set RSE.BspLoad to AR[BSPSTORE] after f | ushrs completes or faults.

The cover instruction adds all registers in the current frame to the dirty partition, and allocates a
zero-size current frame. As a result AR[BSP] is updated. cover clears the register rename base
fields in the current frame marker CFM. If PSR.ic is zero, the original value of CFM is copied into
CR[IFS].ifm and CR[IFS].v is set to one. The cover instruction must be specified as the last
instruction in a bundle group otherwise an Illegal Operation fault is taken.

The f | ushr s instruction spills all dirty registers to the backing store. When it completes,
RSE.ndirty is defined to be zero, and BSPSTORE equals BSP. Since f | ushr s may cause RSE
stores, the RNAT application register is updated. A f | ushr s instruction must be the first
instruction in an instruction group otherwise the results are undefined.

Volume 2: Register Stack Engine 2:123

6.5.5

2:124

intel.

The | oadr s instruction ensures that a specified portion of the backing store below the current BSP
is present in the physical stacked registers. The size of the backing store section is specified in the
| oadr s field of the RSC application register (AR[RSC].loadrs). After loadrs completes, all
registers and NaT collections between the current BSP and the tear-point (BSP-(RSC.loadrs{13:3}
<< 3)), and no more than that, are guaranteed to be present and marked as dirty in the stacked
physical registers. When | oadr s completes BSPSTORE and RSE.BspLoad are defined to be equal
to the backing store tear-point address. All other physical stacked registers are marked invalid.

« If the tear-point specifies an address below RSE.BspLoad, the RSE issues mandatory loads to
restore registers and NaT collections. All registers between the current BSP and the tear-point
are marked dirty.

« If the RSE has already loaded registers beyond the tear-point when the | oadr s instruction
executes, the RSE marks clean registers below the tear-point as invalid and marks clean
registers above the tear-point as dirty.

+ If the tear-point specifies an address greater than BSPSTORE, the RSE marks clean and dirty
registers below the tear-point as invalid (in this case dirty registers are lost).

By specifying a zero RSC.loadrs value | oadr s can be used to invalidate all stacked registers
outside the current frame. | oadr s causes the contents of the RNAT register to become undefined.
The NaT collection index is set to bits {8:3} of the new BSPSTORE. A | oadr s instruction must be
the first instruction in an instruction group otherwise the results are undefined. The following
conditions cause | oadr s to raise an Illegal Operation fault:

+ If RSC.mode is non-zero.

+ If both CFM.sof and RSC.loadrs are non-zero.

+ If RSC.loadrs specifies more words to be loaded than will fit in the stacked physical register

file (RSE.N_STACKED_PHYYS).

Bad PFS Used by Branch Return

Onabr. ret, if the PFS application register defines an output area which is larger than the number
of implemented stacked registers minus the size of dirty partition ((AR[PFS].sof — AR[PFS].sol) >
(RSE.N_STACKED_PHYS — RSE.ndirty)), the return will not restore CFM with AR[PFS].pfm
(normal behavior); instead, the return sets all fields in the CFM (of the procedure being returned to)
to zero.

Typical procedure call and return sequences that preserve PFS values and that do not use cover or
| oadr s instructions will not encounter this situation.

The RSE will detect the above condition on a br. r et, and update its state as follows:

* The register rename base (RSE.BOF), AR[BSP], and AR[BSPSTORE] are updated as required
by the return.

* The CFM (after the return) is forced to zero; i.e., all CFM fields (including CFM.sof and
CFM.sol) are set to zero.

* The registers from the returned-from frame and the preserved registers from the returned-to
frame are added to the invalid partition of the register stack.

* The dirty partition of the register stack is shrunk by AR[PFS].pfm.sol.

 The clean partition of the register stack remains unchanged. RSE.BspLoad and RSE.LoadReg
remain unchanged.

* No other indication is given to software.

Volume 2: Register Stack Engine

6.6

Since the size of the current frame is set to zero, the contents of some (possibly all) stacked GRs
may be overwritten by subsequent eager RSE operations or by subsequent instructions allocating a
new stack frame and then targeting a stacked GR. Therefore, explicit register stack management
sequences that manipulate PFS, use the cover instruction, or use the | oadr s instruction must
avoid this situation by executing one of the two following code sequences priorto a br.ret:

» Use afl ushrs instruction prior to the br. r et . This preserves all dirty registers to memory,
and sets RSE.ndirty to zero, which avoids the condition.

* Use a | oadr s instruction with an AR[RSC].loadrs value in the following range:

AR[RSC].loadrs <= 8*(ndirty_max + ((62 — AR[BSP]{8:3} + ndirty_max) / 63)),
where ndirty_max = (RSE.N_STACKED_PHYS — (AR[PFS].sof — AR[PFS].so0l))

This adjusts the size of the dirty partition appropriately to avoid the condition. A | oadr s with
RSC.loadrs=0 works on all processor models, regardless of the number of implemented stacked
physical registers. Note that | oadr s may cause registers in the dirty partition to be lost.

RSE Interruptions

Although the RSE runs asynchronously to processor execution, RSE related interruptions are
delivered synchronously with the instruction stream. These RSE interruptions are a direct
consequence of register stack-related instructions such as: al | oc,br.ret,rfi,flushrs,| oadrs,
or nov to/ from BSP, BSPSTORE, RSC, PFS, IFS, or RNAT. Register spills and fills that are
executed by the RSE in the background (eager RSE loads or stores) do not raise interruptions. If a
faulting/trapping register spill or fill operation is required for software to make forward progress
(mandatory RSE load or store) then the RSE will raise an interruption.

Mandatory RSE stores occur in the context of al | oc and f | ushr s instructions only. Any faults
raised by these instructions are delivered on the issuing instruction. Faults raised by mandatory
RSE loads caused by a | oadr s are delivered on the issuing instruction. Mandatory RSE loads
which fault while restoring the frame fora br.ret orrfi deliver the fault on the target
instruction, and the ISR.ir (incomplete register frame) bit is set. When a mandatory RSE load
faults, AR[BSPSTORE] points to a backing store location above the faulting address reported in
CR[IFA]. This allows handlers that service RSE load faults to use the backing store switch routine
described in “Switch from Interrupted Context” on page 2:129.

The br. ret and therfi instructions set the RSE Current Frame Load Enable bit (RSE.CFLE) to
one if the register stack frame being returned to is not entirely contained in the stacked register file.
This enables the RSE to restore registers for the current frame of the target instruction. When
RSE.CFLE is set, instruction execution is stalled until the RSE has completely restored the current
frame or an interruption occurs. This is the only time that the RSE issues any memory traffic for the
current frame. Interruption delivery clears RSE.CFLE which allows an interruption handler to
execute in the presence of an incomplete frame (e.g., to handle the fault raised by the mandatory
RSE load). The RSE.CFLE bit is RSE internal state and is not architecturally visible.

Table 6-6 summarizes RSE raised interruptions.

Volume 2: Register Stack Engine 2:125

Table 6-6.

6.7

2:126

RSE Interruption Summary
Instruction Interruption Description
al | oc llegal Operation fault Malformed al | oc immediate.
all oc Reserved Register/Field fault al | oc instruction which attempted to change the size
of the rotating region when one or more of the RRB
values in CFM were non-zero.
al | oc, Unimplemented Data Address fault | AR[BSPSTORE] contains an unimplemented address.
flushrs, Data Nested TLB fault
| oadrs Alternate Data TLB fault
VHPT Data fault
Data TLB fault
Data Page Not Present fault
Data NaT Page Consumption fault AR[BSPSTORE] pointed to a NaTVal data page.
Data Key Miss fault
Data Key Permission fault
Data Access Rights fault
Data Dirty Bit fault
Data Access Bit fault
Data Debug fault
br.call, No RSE related interruptions
brl.call
br.ret No RSE load related faults RSE load related faults are delivered on target
instruction.
rfi No RSE related interruptions RSE load related faults are delivered on target
instruction.
Target of IR Unimplemented Data Address Mandatory RSE load targeted an unimplemented
br.ret or fault address.
rfi

IR Data Nested TLB fault

IR Alternate Data TLB fault

IR VHPT Data TLB fault

IR Data TLB fault

IR Data Page Not Present fault

IR Data NaT Page Consumption fault
IR Data Key Miss fault

IR Data Key Permission fault

IR Data Access Rights fault

IR Data Access Bit fault

IR Data Debug fault

br.ret withPSR.ic=0orrfi executed when

IPSR.ic = 0.

RSE.BspLoad pointed at a NaTPage.

RSE Behavior on Interruptions

When the processor raises an interruption, the current register stack frame remains unchanged. If
PSR.ic is one, the valid bit in the Interruption Function State register (IFS.v) is cleared. When the
IFS.v bit is clear, the contents of the interruption frame marker field (IFS.ifm) are undefined.

Volume 2: Register Stack Engine

6.8

6.9

While an interruption handler is running and the RSE is in store/load intensive or eager mode, the
RSE continues spilling/filling registers to/from the backing store on behalf of the interrupted
context as long as the registers are not part of the current frame as defined by CFM.

A sequence of mandatory RSE loads or stores (from al | oc, br.ret,flushrs,| oadrs andrfi)
can be interrupted by an external interrupt.

When PSR.ic is 0, faults taken on mandatory RSE operations may not be recoverable.

RSE Behavior with an Incomplete Register Frame

The current register frame is considered incomplete when one of the mandatory RSE loads after a
br.ret or a rfi faults, leaving BSPSTORE pointing to a location above BSP (i.e., RSE.ndirty_words
is negative). The frame becomes complete when RSE.ndirty_words becomes non-negative, either
by executing a cover instruction, or by handling the fault and completing the original sequence of
mandatory RSE loads.

When the current frame is incomplete the following instructions have undefined behavior: al | oc,
br.call,brl.call,br.ret,flushrs,| oadrs, and move to BSPSTORE. Software must
guarantee that the current frame is complete before executing these instructions.

RSE and ALAT Interaction

The ALAT (see “Data Speculation” on page 1:55) uses physical register addresses to track
advanced loads. RSE.BOF may only change as the result of a br. cal | (by CFM.sol), cover (by
CFM.sof), br. ret (by AR[PFM].sol) or rfi (by CR[IFS].ifm.sof when CR[IFS].v =1). This
ensures, for ALAT invalidation purposes, that hardware does not update virtual to physical register
address mapping, unless explicitly instructed to do so by software.

When software performs backing store switches that could cause program values to be placed in
different physical registers, then the ALAT must be explicitly invalidated with the i nval a
instruction. Typically this happens as part of a process or thread context switch, longjmp or call
stack unwind, when software re-writes AR[BSPSTORE], but cannot guarantee that RSE.BOF was
preserved.

A stacked register is said to be deallocated when an al | oc,br.ret,orrfi instruction changes the
top of the current frame such that the register is no longer part of the current frame. Once a stacked
register is deallocated, its value, its corresponding NaT bit, and its ALAT state are undefined. If that
register is subsequently made part of the current frame again (either via another al | oc instruction,
orviaabr.ret orrfi toaprevious frame that contained that register), the value stored in the
register, the NaT bit for the register, and the corresponding ALAT entry for the register remain
undefined.

RSE stores do not invalidate ALAT entries. Therefore, software cannot use the ALAT to trace RSE
stores to the backing store.

Note: While an implementation is allowed to remove entries from the ALAT at any time, perfor-
mance considerations strongly encourage not invalidating ALAT entries due to RSE
stores.

Volume 2: Register Stack Engine 2:127

intel.

6.10 Backing Store Coherence and Memory Ordering

RSE loads and stores are coherent with respect to the processor’s data cache at all times. The
backing store below BSPSTORE is defined to be consistent with the register stack (the memory
image contains consecutive register values and NaT collections). Addresses below BSPSTORE are
not modified by the RSE until br.ret, rfi ora move to BSPSTORE causes BSP to drop below
the original BSPSTORE value. The RSE never writes to a memory address greater than or equal to
BSP.

In order for software to modify a value in the backing store and guarantee that it be loaded by the
RSE, software must first place the RSE into enforced lazy mode (RSC.mode=0), and read BSP and
BSPSTORE to determine the location of the RSE store pointer. If the location to be modified lies
between BSPSTORE and BSP, software must issue a f | ushr s, update the backing store location in
memory, and issue a | oadr s instruction with the RSC.loadrs set to zero (this invalidates the
current contents of the physical stacked registers, except the current frame, which forces the RSE to
reload registers from the backing store). If the location to be modified lies below BSPSTORE,
unnecessary memory traffic can be avoided as follows: software must read the RNAT application
register, update the backing store location in memory, rewrite BSPSTORE with the original value,
and then rewrite RNAT.

RSE loads and stores are weakly ordered. The f | ushr s and | oadr s instructions do not include an
implicit memory fence. Turning on and off the RSE does not affect memory ordering. To ensure
ordering of RSE loads and stores on a multiprocessor system, software is required to issue explicit
memory fence (nf) instructions.

6.11 RSE Backing Store Switches

The implementation of system calls, operating system context switches, user-level thread packages,
debugging software, and certain types of exception handling (e.g., setjmp/longjmp, structured
exception handling and call stack unwinding) require explicit user-level control of the RSE and/or
knowledge of the backing store format in memory. Therefore, the RSE and the backing store can be
controlled at all privilege levels.

Three RSE backing store switches are described here:

1. Switching from an interrupted context (as part of exception handler or interrupt bubble-up
code)

2. Returning to a previously interrupted context

3. Non-preemptive, synchronous backing store switch (covers system calls, user-level thread
and operating system context switches)

Failure to follow these sequences may result in undefined RSE and processor behavior.

2:128 Volume 2: Register Stack Engine

intel.

6.11.1 Switch from Interrupted Context

To switch from the backing store of an interrupted context to a new backing store:

® N kWD =

Read and save the RSC and PFS application registers.

Issue a cover instruction for the interrupted frame.

Read and save the IFS control register.

Place RSE in enforced lazy mode by clearing both RSC.mode bits.
Read and save the BSPSTORE and RNAT application registers.
Write BSPSTORE with the new backing store address.

Read and save the new BSP to calculate the number of dirty registers.

Select the desired RSE setting (mode, privilege level and byte order).

6.11.2 Return to Interrupted Context

To return to the backing store of an interrupted context:

1.
2.

N o » ok

Allocate a zero-sized frame.

Subtract the BSPSTORE value written in step 6 of Section 6.11.1 from the BSP value read in
step 7 of Section 6.11.1, and deposit the difference into RSC.loadrs along with a zero into
RSC.mode (to place the RSE into enforced lazy mode).

Issue a | oadr s instruction to insure that any registers from the interrupted context which
were saved on the new stack have been loaded into the stacked registers.

Restore BSPSTORE from the interrupted context (saved in step 5 of Section 6.11.1).
Restore RNAT from the interrupted context (saved in step 5 of Section 6.11.1).
Restore PFS and IFS from the interrupted context (saved in steps 1 and 3 of Section 6.11.1).

Restore RSC from the interrupted context (saved in step 1 of Section 6.11.1). This restores
the setting of the RSE mode bits as well as privilege level and byte order.

Issue an rfi instruction (IFS.ifm will become CFM).

6.11.3 Synchronous Backing Store Switch

A non-preemptive, synchronous backing store switch at any privilege level can be accomplished as
follows:

1.

TSR

Read and save the RSC, BSP and PFS application registers.

Issue a f | ushr s instruction to flush the dirty registers to the backing store.
Place RSE in enforced lazy mode by clearing both RSC.mode bits.

Read and save the RNAT application register.

Invalidate the ALAT using the i nval a instruction when switching from code that does not
restore RSE.BOF to its original setting. A different RSE.BOF will cause program values in
the new context to be placed in different physical registers. See “RSE and ALAT
Interaction” on page 2:127 for details.

Volume 2: Register Stack Engine 2:129

intel.

6. Write the new context’s BSPSTORE (was BSP after f | ushr s when switching out).
7. Write the new context’s PFS and RNAT.
8. Write the new context’s RSC which will set the RSE mode, privilege level and byte order.

6.12 RSE Initialization

At processor reset the RSE is defined to be in enforced lazy mode, i.e., the RSC.mode bits are both
zero. The RSE privilege level (RSC.pl) is defined to be zero. RSE.BOF points to physical register
32. The values of AR[PFS].pfm and CR[IFS].ifm are undefined. The current frame marker (CFM)
is set as follows: sof=96, sol=0, sor=0, rrb.gr=0, rrb.fr=0, and rrb.pr=0. This gives the processor
access to 96 stacked registers.

The RSE performs no spill/fill operations until either anal | oc, br.ret,rfi,flushrsorl oadrs
require a mandatory RSE operation, or software explicitly enables eager RSE operations. Software
must provide the RSE with a valid backing store address in the BSPSTORE application register
prior to causing any RSE spill/fill operations. Failure to initialize BSPSTORE results in undefined
behavior.

2:130 Volume 2: Register Stack Engine

intel.

Debugging and Performance

Monitoring

71

Processors based on the Itanium architecture provide comprehensive debugging and performance
monitoring facilities for both TA-32 and Itanium instructions. This chapter describes the debug
registers, performance monitoring registers and their programming models. The debugging
facilities include several data and instruction break point registers, single step trap, breakpoint
instruction fault, taken branch trap, lower privilege transfer trap, instruction and data debug faults.
The performance monitoring facilities include two sets of registers to configure and collect various
performance-related statistics.

Debugging

Several Data Breakpoint Registers (DBR) and Instruction Breakpoint Registers (IBR) are defined
to hold address breakpoint values for data and instruction references. In addition the following
debugging facilities are supported:

* Single Step trap — When PSR ss is 1, successful execution of each Itanium instruction results
in a Single Step trap. When PSR ss is 1 or EFLAGtf is 1, successful execution of each 1A-32
instruction results in an IA_32_Exception(Debug) single step trap. After the trap, IIP and
IPSR.ri point to the next instruction to be executed. ITPA and ISR.ei point to the trapped
instruction. See “Single Stepping” for complete single stepping behavior.

* Break Instruction fault — execution of a br eak instruction results in a Break Instruction fault.
IIM is loaded with the immediate operand from the instruction. IIM values are defined by
software convention. br eak can be used for profiling, debugging and entry into the operating
system (although Enter Privileged Code (epc) is recommended since it has lower overhead).
Execution of the IA-32 INT 3 (break) instruction results in a IA_32_Exception(Debug) trap.

* Taken Branch trap — When PSR.tb is 1, a Taken Branch trap occurs on every taken Itanium
branch instruction. When PSR.tb is 1, a IA_32_Exception(Debug) taken branch trap occurs on
every taken [A-32 branch instruction (CALL, Jcc, IMP, RET, LOOP). This trap is useful for
debugging and profiling. After the trap, IIP and IPSR.ri point to the branch target instruction
and IIPA and ISR.ei point to the trapping branch instruction.

* Lower Privilege Transfer trap — When PSR.Ip bit is 1, and an Itanium branch demotes the
privilege level (numerically higher), a Lower Privilege Transfer trap occurs. This trap allows
for auditing of privilege demotions, for example to remove permissions which were granted to
higher privilege code. After the trap, IIP and IPSR.ri point to the branch target and IIPA and
ISR.ei point to the trapping branch instruction. IA-32 instructions can not raise this trap.

¢ Instruction Debug faults — When PSR.db is 1, any [tanium instruction memory reference that
matches the parameters specified by the IBR registers results in an Instruction Debug fault.
Instruction Debug faults are reported even if Itanium instructions are nullified due to a false
predicate. If PSR.id is 1, Itanium Instruction Debug faults are disabled for one instruction. The
successful execution of an Itanium instruction clears PSR.id. When PSR.db is 1, any 1A-32
instruction memory reference that matches the parameters specified by the IBR registers
results in an IA_32_Exception(Debug) fault. [f PSR.id is 1 or EFLAGrfis 1, [A-32 Instruction

Volume 2: Debugging and Performance Monitoring 2:131

711

intel.

Debug faults are disabled for one instruction. The successful execution of an [A-32 instruction
clears the PSR.id and EFLAG.rf bits.

* Data Debug faults — When PSR.db is 1, any Itanium data memory reference that matches the
parameters specified by the DBR registers results in a Data Debug fault. Data Debug faults are

only reported if the qualifying predicate is true. Data Debug faults can be deferred on
speculative loads by setting DCR.dd to 1. If PSR.dd is 1, Data Debug faults are disabled for
one instruction or one mandatory RSE memory reference. When PSR.db is 1, any IA-32 data
memory reference that matches the parameters specified by the DBR registers results in a
IA_32_Exception(Debug) trap. IA-32 data debug events are traps, not faults as defined for the
Itanium instruction set. The reported trap code returns the match status of the first 4 DBR
registers that matched during the execution of the IA-32 instruction. See “IA-32 Trap Code” on
page 2:187 for trap code details. Zero, one or more DBR registers may be reported as

matching.

Data and Instruction Breakpoint Registers

Instruction or data memory addresses that match the Instruction or Data Breakpoint Registers (IBR/
DBR) shown in Figure 7-1 and Figure 7-2 and Table 7-1 result in an Instruction or Data Debug
fault. IA-32 Instruction or data memory addresses that match the Instruction or Data Breakpoint
Registers (IBR/DBR) result in an IA-32_Exception(Debug) fault or trap. Even numbered registers
contain breakpoint addresses, odd registers contain breakpoint mask conditions. At least 4 data and
4 instruction register pairs are implemented on all processor models. Implemented registers are
contiguous starting with register 0.

Figure 7-1. Data Breakpoint Registers (DBR)
63 62 61 60 59 56 55 0

DBRo24.. ‘

addr \

DBR135.. ‘r‘w‘ ig ‘ plm ‘ mask ‘

1

1

2 4 56

Figure 7-2. Instruction Breakpoint Registers (IBR)

63 62 61 60 59 56 55 0
IBRo2.4. addr ‘
IBR35. ‘ X ‘ ig ’ plm ’ mask ‘
1 3 4 56

Table 7-1. Debug Breakpoint Register Fields (DBR/IBR)

2:132

Field

Bits

Description

addr

63:0

Match Address — 64-bit virtual or physical breakpoint address. Addresses are interpreted as
either virtual or physical based on PSR.dt, PSR.it or PSR.rt. Data breakpoint addresses trap
on load, store, semaphore, and mandatory RSE memory references. For Intel® Itanium®
instruction set references, IBR.addr{3:0} is ignored in the address match. For IA-32
instruction references, IBR.addr{31:0} are used in the match and IBR.addr{63:32} must be
zero to match. All 64 bits are implemented on all processors regardless of the number of
implemented address bits.

mask

55:0

Address Mask — determines which address bits in the corresponding address register are
compared in determining a breakpoint match. Address bits whose corresponding mask bits
are 1, must match for the breakpoint to be signaled, otherwise the address bit is ignored.
Address bits{63:56} for which there are no corresponding mask bits are always compared.
For IA-32 instruction references, IBR.mask{55:32} are ignored. All 56 bits are implemented
on all processors regardless of the number of implemented address bits.

Volume 2: Debugging and Performance Monitoring

intel.

Table 7-1. Debug Breakpoint Register Fields (DBR/IBR) (Continued)

Field Bits Description

pim 59:56 | Privilege Level Mask — enables data breakpoint matching at the specified privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 56 corresponding to privilege
level 0, bit 57 with privilege level 1, etc. A value of 1 indicates that the debug match is
enabled at that privilege level.

w 62 Write match enable — When DBR.w is 1, any non-nullified mandatory RSE store, IA-32 or
Intel® Itanium® store, semaphore, probe.w.fault or probe.rw.fault to an address matching the
corresponding address register causes a breakpoint.

r 63 Read match enable — When DBR.r is 1, any non-nullified 1A-32 or Intel® Itanium® load,
mandatory RSE load, semaphore, Ifetch.fault, probe.r.fault or probe.rw.fault to an address
matching the corresponding address register causes a breakpoint. When DBR.ris 1, a VHPT
access that matches the DBR (except those for a t ak instruction) will cause an Instruction/
Data TLB Miss fault. If DBR.r and DBR.w are both 0, that data breakpoint register is disabled.
®

X 63 Execute match enable — When IBR.x is 1, execution of an 1A-32 instruction or Intel® Itanium
instruction in a bundle at an address matching the corresponding address register causes a
breakpoint. If IBR.x is 0, that instruction breakpoint register is disabled. Instruction
breakpoints are reported even if the qualifying predicate is false.

ig 62:60 |Ignored

When executing Itanium instructions, instruction and data memory addresses presented for
matching are always in the implemented address space. Programming an unimplemented physical
address into an IBR/DBR guarantees that physical addresses presented to the IBR/DBR will never
match. Similarly, programming an unimplemented virtual address into an IBR/DBR guarantees that
virtual addresses presented to the IBR/DBR will never match.

Four privileged instructions, defined in Table 7-2, allow access to the debug registers. Register
access is indirect, where the debug register number is determined by the contents of a general
register. DBR/IBR registers can only be accessed at privilege level 0, otherwise a Privileged
Operation fault is raised.

Table 7-2. Debug Instructions

Instr Serialization

Mnemonic Description Operation Type Required
mov dbr[rg] = r, Move to data breakpoint DBR[GR[r3]] —~ GR[r)] M data
register
mov r4 = dbr[rs] Move from data breakpoint GR[r4] —~ DBR[GR][r3]] M none
register
mov ibr[rs] = ro Move to instruction IBR[GR[r3]] « GR[rs] M inst

breakpoint register

mov rq = ibr[rg] Move from instruction GR[r4] ~ IBR[GR[r3]] M none
breakpoint register

break imm Breakpoint Instruction fault if (PSR.ic) IIM « imm B/I/M | none
fault(Breakpoint_Instruction)

Changes to debug registers and PSR are not necessarily observed by following instructions.
Software should issue a data serialization operation to ensure modifications to DBR, PSR.db,
PSR.tb and PSR.Ip are observed before a dependent instruction is executed. For register changes to
IBR and PSR.db that affect fetching of subsequent instructions, software must issue an instruction
serialization operation.

Volume 2: Debugging and Performance Monitoring 2:133

7.1.2

2:134

intel.

On some implementations, a hardware debugger may use two or more of these registers pairs for its
own use. When a hardware debugger is attached, as few as 2 DBR pairs and as few as 2 IBR pairs
may be available for software use. Software should be prepared to run with fewer than the
implemented number of IBRs and/or DBRs if the software is expected to be debuggable with a
hardware debugger. When a hardware debugger is not attached, at least 4 IBR pairs and 4 DBR
pairs are available for software use.

Any debug registers used by an attached hardware debugger are allocated from the highest register
numbers first (e.g. if only 2 DBR pairs are available to software, the available registers are
DBR[0-3]).

Note: When a hardware debugger is attached and is using two or more debug registers pairs, the
processor does not forcibly partition the registers between software and hardware debug-
ger use; that is, the processor does not prevent software from reading or modifying any of
the debug registers being used by the hardware debugger. However, if software modifies
any of the registers being used by the hardware debugger, processor and/or hardware
debugger operation may become undefined, or the processor and/or hardware debugger
may crash.

Debug Address Breakpoint Match Conditions

For virtual memory accesses, breakpoint address registers contain the virtual addresses of the
debug breakpoint. For physical accesses, the addresses in these registers are treated as a physical
address. Software should be aware that debug registers configured to fault on virtual references,
may also fault on a physical reference if translations are disabled. Likewise a debug register
configured for physical references can fault on virtual references that match the debug breakpoint
registers.

The range of addresses detected by the DBR and IBR registers for memory references by Itanium
instructions is defined as:

* Instruction and single or multi-byte aligned data memory references that access any memory
byte specified by the IBR/DBR address and mask fields results in an Instruction/Data Debug
fault regardless of datum size. Implementations must only report a Debug fault if the specified
aligned byte(s) are referenced.

* Floating-point load double/integer pair, floating-point spill/fill and 10-byte operands are
treated as 16-byte datums for breakpoint matching, if the accesses are aligned. Floating-point
load single pair operands are treated as 8-byte datums for breakpoint matching, if the accesses
are aligned.

« If data memory references are unaligned, multi-byte memory references that access any
memory byte specified by DBR address and mask fields result in a breakpoint Data Debug
fault regardless of datum size. Processor implementations may also report additional
breakpoint Data Debug faults for addresses not specifically specified by the DBR registers.
Debugging software should perform a byte by byte breakpoint analysis of each address
accessed by multi-byte unaligned datums to detect true breakpoint conditions.

Address breakpoint Data Debug faults are not reported for the Flush Cache (fc,fc.i),
non-faulting pr obe, non-faulting | f et ch, insert TLB (itc, itr), purge TLB (ptc, ptr),or
translation access (t hash, ttag, tak, tpa)instructions. Accesses by the RSE to a debug region
are checked, but the Data Debug fault is not reported until a subsequent al | oc, br.ret,rfi,

| oadrs, or f | ushrs which requires that the faulting load or store actually occur.

Volume 2: Debugging and Performance Monitoring

7.2

The range of addresses detected by the DBR and IBR registers for [A-32 memory references is
defined as:

¢ Instruction memory references where the first byte of the IA-32 instruction match the IBR
address and mask fields results in an IA-32_Exception(Debug) fault. Subsequent bytes of a
multiple byte IA-32 instruction are not compared against the IBR registers for breakpoints.
The upper 32-bits of the IBR addr field must be zero to detect IA-32 instruction memory
references.

» TA-32 single or multi-byte data memory references that access any memory byte specified by
the DBR address and mask fields results in an IA-32_Exception(Debug) trap regardless of
datum size and alignment. The processor ensures that all data breakpoint traps are precisely
reported. Data breakpoint traps are reported if and only if any byte in the IA-32 data memory
reference matches the DBR address and mask fields. No spurious data breakpoint events are
generated for IA-32 data memory operands that are unaligned, nor are breakpoints reported if
no bytes of the operand lie within the address range specified by the DBR address and mask
fields.

Performance Monitoring

Performance monitors allow processor events to be monitored by programmable counters or give
an external notification (such as a pin or transaction) on the occurrence of an event. Monitors are
useful for tuning application, operating system and system performance. Two sets of performance
monitor registers are defined. Performance Monitor Configuration (PMC) registers are used to
control the monitors. Performance Monitor Data (PMD) registers provide data values from the
monitors. The performance monitors can record performance values from either the IA-32 or
Itanium instruction set.

As shown in Figure 7-3, all processor implementations provide at least four performance counters
(PMC/PMDJ[4]..PMC/PMDI[7] pairs), and four performance counter overflow status registers
(PMC[0]..PMC[3]). Performance monitors are also controlled by bits in the processor status
register (PSR), the default control register (DCR) and the performance monitor vector register
(PMV). Processor implementations may provide additional implementation-dependent PMC and
PMD registers to increase the number of “generic” performance counters (PMC/PMD pairs). The
remainder of the PMC and PMD register set is implementation dependent.

Event collection for implementation-dependent performance monitors is not specified by the
architecture. Enabling and disabling functions are implementation dependent. For details, consult
processor specific documentation.

Processor implementations may not populate the entire PMC/PMD register space. Reading of an
unimplemented PMC or PMD register returns zero. Writes to unimplemented PMC or PMD
registers are ignored; i.e., the written value is discarded.

Writes to PMD and PMC and reads from PMC are privileged operations. At non-zero privilege
levels, these operations result in a Privileged Operation fault, regardless of the register address.

Reading of PMD registers by non-zero privilege level code is controlled by PSR.sp. When PSR.sp
is one, PMD register reads by non-zero privilege level code return zero.

Volume 2: Debugging and Performance Monitoring 2:135

Figure 7-3. Performance Monitor Register Set

7.21

Generic Performance Monitoring Register Set

performance counter
overflow status registers

processor status register

63

0

PSR
63 0
pmc .
pmc, default control register
63 0
me
gmci 2] DCR

performance counter
configuration registers
63 0

performance counter
data registers
63 0

performance monitor

vector register
63

(=]

pmey pmd, o3| PMV
pmes pmds

A L S—

Implementation-dependent Performance Monitoring Register Set

63 0 63 0 63 0
pmd, pmcey Pmdp+1
pmd; pme;, iy pmd,, 5
pmd, : : ; ;

pmeyss]

pmdysf]

Generic Performance Counter Registers

Generic performance counter registers are PMC/PMD pairs that contiguously populate the PMC/
PMD name space starting at index 4. At least 4 performance counter register pairs (PMC/
PMD[4]..PMC/PMD][7]) are implemented in all processor models. Each counter can be configured
to monitor events for any combination of privilege levels and one of several event metrics. The
number of performance counters is implementation specific. The figures and tables use the symbol
“p” to represent the index of the last implemented generic PMC/PMD pair. The bit-width W of the
counters is also implementation specific. A counter overflow interrupt occurs when the counter
wraps; i.e., a carry out from bit W-1 is detected. Figure 7-4 and Figure 7-5 show the fields in PMD
and PMC respectively, while Table 7-3 and Table 7-4 describe the fields in PMD and PMC
respectively.

Figure 7-4. Generic Performance Counter Data Registers (PMD[4]..PMD[p])

2:136

63 W W-1 0
PMD[4]..PMD[p] sxt \ count
64-W w

Volume 2: Debugging and Performance Monitoring

intel.

Table 7-3. Generic Performance Counter Data Register Fields

Field Bits Description
sxt 63:W Writes are ignored.
Reads return the value of bit W-1, so count values appear as sign extended.
count W-1:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit W-1).

Figure 7-5. Generic Performance Counter Configuration Register (PMC[4]..PMC[p])

63 16 15 8 7 6 5 4 3 0
PMCI4]..PMCIp] implementation specific ‘ es ‘ig ‘pm‘ oi ‘ev‘ plm ‘
48 8 11 11 4

Table 7-4. Generic Performance Counter Configuration Register Fields (PMC[4]..PMC[p])

Field Bits Description

pim 3:.0 Privilege Level Mask — controls performance monitor operation for a specific privilege
level. Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to
privilege level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor
is enabled at that privilege level. Writing zeros to all plm bits effectively disables the
monitor. In this state, the corresponding PMD register(s) do not preserve values, and
the processor may choose to power down the monitor.

ev 4 External visibility — When 1, an external notification (such as a pin or transaction) is
provided whenever the monitor overflows. Overflow occurs when a carry out from bit
W-1 is detected.

oi 5 Overflow interrupt — If 1, when the monitor overflows, a Performance Monitor Interrupt is
raised and the performance monitor freeze bit (PMCJ[O0].fr) is set. If 0, no interrupt is
raised and the performance monitor freeze bit (PMC[0].fr) remains unchanged.
Overflow occurs when a carry out from bit W-1 is detected. See “Performance Monitor
Overflow Status Registers (PMC[0]..PMC[3])” for details on configuring interrupt
vectors.

pm 6 Privileged monitor — When 0, the performance monitor is configured as a user monitor,
and enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as
a privileged monitor, enabled by PSR.pp, and the corresponding PMD can only be read
by privileged software.

ig 7 ignored

es 15:8 Event select — selects the performance event to be monitored. Actual event encodings
are implementation dependent. Some processor models may not implement all event
select (es) bits. At least one bit of es must be implemented on all processors.
Unimplemented es bits are ignored.

implem. 63:16 Implementation specific bits — Reads from implemented bits return

specific implementation-dependent values. For portability, software should write what was read;
i.e., software may not use these bits as storage. Hardware will ignore writes to
unimplemented bits.

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the
performance monitor freeze bit (PMC[0].fr) affect the behavior of all generic performance monitor
registers. Finer, per monitor, control of generic performance monitors is provided by two PMC
register fields (PMCJi].plm, PMCJ[i].pm). Event collection for a generic monitor is enabled under
the following constraints:

* Generic Monitor Enable[i] =(not PMC[0].fr) and PMC[i].pIm[PSR.cpl] and
((not (PMC]i].pm) and PSR.up) or (PMCJi].pm and PSR.pp))

Volume 2: Debugging and Performance Monitoring 2:137

intel.

Generic performance monitor data registers (PMDJi]) can be configured to be user readable (useful
for user level sampling and tracing user level processes) by setting the PMC[i].pm bit to 0. All
user-configured monitors can be started and stopped synchronously by the user mask instructions
(r umand sum) by altering PSR.up. User-configured monitors can be secured by setting PSR.sp to 1.
A user-configured secured monitor continues to collect performance values; however, reads of
PMD, by non-privileged code, return zeros until the monitor is unsecured.

Monitors configured as privileged (PMCJi].pm is 1) are accessible only at privilege level 0;
otherwise, reads return zeros. All privileged monitors can be started and stopped synchronously by
the system mask instructions (r smand ssm) by altering PSR.pp. Table 7-5 summarizes the effects
of PSR.sp, PMCJi].pm, and PSR.cpl on reading PMD registers.

Table 7-5. Reading Performance Monitor Data Registers

PSR.sp PMCJi].pm PSR.cpl PMD Reads Return
0 0 0 PMD value
0 1 0 PMD value
1 0 0 PMD value
1 1 0 PMD value
0 0 >0 PMD value
0 1 >0 0
1 0 >0 0
1 1 >0 0

Updates to generic PMC registers and PSR bits (up, pp, is, sp, cpl) require implicit or explicit data
serialization prior to accessing an affected PMD register. The data serialization ensures that all
prior PMD reads and writes as well as all prior PMC writes have completed.

Generic PMD counter registers may be read by software without stopping the counters. The
processor guarantees that software will see monotonically increasing counter values. Software must
accept a level of sampling error when reading the counters due to various machine stall conditions,
interruptions, and bus contention effects, etc. The level of sampling error is implementation
specific. More accurate measurements can be obtained by disabling the counters and performing an
instruction serialize operation for instruction events or data serialize operation for data events
before reading the monitors. Other (non-counter) implementation-dependent PMD registers can
only be read reliably when event monitoring is frozen (PMCJ[0].fr is one).

For accurate PMD reads of disabled counters, data serialization (implicit or explicit) is required
between any PMD read and a subsequent ssmor sum(that could toggle PSR.up or PSR.pp from 0
to 1), or a subsequent epc, demoting br . r et or branch to IA-32 (br . i a) (that could affect PSR.cpl
or PSR.is). Note that implicit post-serialization semantics of sumdo not meet this requirement.

Table 7-6 defines the instructions used to access the PMC and PMD registers.

Table 7-6. Performance Monitor Instructions

Instr | Serialization

Mnemonic Description Operation Type Required

mov pmd[rs] = rp Move to performance monitor PMDI[GR[r3]] « GR[rJ] M | data/inst
data register

mov r4 = pmd[rg] Move from performance monitor | GR[r4] — PMD[GR[r3]] M none
data register

2:138 Volume 2: Debugging and Performance Monitoring

intel.

Table 7-6. Performance Monitor Instructions (Continued)

7.2.2

Instr | Serialization

Mnemonic Description Operation Type Required

mov pmc[rg] = rp Move to performance monitor PMCI[GR[r3]] — GRIr] M data/inst
configure register

mov ry = pmc[r3] Move from performance monitor | GR[r4] — PMC[GR][r3]] M none

configure register

Performance Monitor Overflow Status Registers
(PMC[0]..PMCI[3])

Performance monitor interrupts may be caused by an overflow from a generic performance monitor
or an implementation-dependent event from a model-specific monitor. The four performance
monitor overflow registers (PMC[0]..PMCJ[3]) shown in Figure 7-6 indicate which monitor caused
the interruption.

Each of the 252 overflow bits in the performance monitoring overflow status registers
(PMC[0]..PMCJ3]) corresponds to a generic performance counter pair or to an
implementation-dependent monitor. For generic performance counter pairs, overflow status bit
PMCJi/64]{i%64} corresponds to generic counter pair PMC/PMDVi], where 4<=i<=p, and p is the
index of the last implemented generic PMC/PMD pair.

When a generic performance counter pair (PMC/PMD[n]) overflows and its overflow interrupt bit
(PMCIn].o0i) is 1, or an implementation-dependent monitor wants to report an event with an
interruption, then the processor:

 Sets the corresponding overflow status bit in PMC[0]..PMCJ[3] to one,
* Raises a Performance Monitor Interrupt, and
* Sets the freeze bit in PMC[0] which suspends event monitoring.

When a generic performance counter pair (PMC/PMDIn]) overflows, and its overflow interrupt bit
(PMCJn].oi) is 0, the corresponding overflow status register bit is set to one. However, in this case
of counter wrap without interrupt, the freeze bit in the PMCJ[0] is left unchanged, and event
monitoring continues.

If control register bit PMV.m is one, a performance monitoring overflow interrupt is disabled from
being pended. When PMV.m is zero, the interruption is received and held pending. (Further
masking by the PSR.i, TPR and in-service masking can keep the interrupt from being raised.)
Figure 7-6 shows the Performance Monitor Overflow Status registers.

Figure 7-6. Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])

]63 overflow ‘ ‘ : ig 1 ‘f(:"
B overflow i

] overflow |

| overflow |

Volume 2: Debugging and Performance Monitoring 2:139

intel.

Implementation-dependent PMD registers 0-3 cannot report events in the overflow registers; those
4 bit positions are used for other purposes.

If the PMCJ[0] freeze bit is set (either by a performance counter overflow or an explicit software
write), the processor suspends all event monitoring, i.e., counters do not increment, and overflow
bits as well as model-specific monitoring are frozen. Writing a zero to the freeze bit resumes event
monitoring.

Table 7-7. Performance Monitor Overflow Register Fields (PMC[0]..PMC[3])

7.2.3

2:140

Register Field Bits
PMCIO0] fr 0

Description

Performance Monitor “freeze” bit. This bit is volatile
state, i.e., it is set by the processor whenever:

« ageneric performance monitor overflow occurs
and its overflow interrupt bit (PMC[n].oi) is set
to one.

» a model-specific performance monitor signals
an interrupt.

The freeze bit can also be set by software to enable or
disable all event monitoring.

If the freeze bit is one, event monitoring is disabled.

If the freeze bit is zero, event monitoring is enabled.
PMCI0] ig 3:1 Ignored

PMCI0]..PMCJ3] overflow | implemented Bit vector indicating which performance monitor
monitors overflowed. Overflow status bits are sticky, they are set
to 1 by the processor if the corresponding PMD
overflows; otherwise they are left unchanged. Multiple
overflow status bits may be set, independent of
whether counter overflow causes an interrupt or not.

unimplemented Ignored
monitors

Multiple overflow bits may be set, if counters overflow concurrently. The overflow bits and the
freeze bit are sticky; i.e., the processor sets them to one but never resets them to zero. It is
software’s responsibility to reset the overflow and freeze bits.

The overflow status bits are populated only for implemented counters. Overflow bits of
unimplemented counters read as zero and writes are ignored.

Performance Monitor Events

The set of monitored events is implementation-specific. All processor models are required to
provide at least two events:

1. The number of retired instructions. These are defined as all instructions which execute
without a fault, including nops and those which were predicated off.

2. The number of processor clock cycles the CPU is in either the NORMAL or LOW-POWER
state (see Figure 11-18 on page 2:281).

Events may be monitorable only by a subset of the available counters. PAL calls provide an
implementation-independent interface that provides information on the number of implemented
counters, their bit-width, the number and location of other (non-counter) monitors, etc.

Volume 2: Debugging and Performance Monitoring

7.24

7.241

Implementation-independent Performance Monitor Code
Sequences

This section describes implementation-independent code sequences for servicing overflow
interrupts and context switches of the performance monitors. For forward compatibility, the code
sequences outlined in Section 7.2.4.1 and Section 7.2.4.2 use PAL-provided
implementation-specific information to collect/preserve data values for all implemented counters.

Performance Monitor Interrupt Service Routine

When a generic performance counter pair (PMC/PMDIn]) overflows and its overflow interrupt bit
(PMC[n].oi) is 1, or an implementation-dependent monitor wants to report an event with an
interruption, then the processor:

* Sets the corresponding overflow status bit in PMC[0]..PMCJ[3] to one,
» Raises a Performance Monitor Interrupt, and
* Sets the freeze bit in PMC[0] which suspends event monitoring.

Event monitoring remains frozen until software clears the freeze bit. Performance monitor
interrupts may be caused by an overflow of any of the counters. The processor indicates which
performance monitor overflowed in the performance monitor overflow status registers
(PMC[0]..PMCJ[3]). If multiple counters overflow concurrently, multiple overflow bits will be set
to one. For forward compatibility, event collection interrupt handlers must follow the
implementation-independent overflow interrupt service routine outlined in Figure 7-7. Use of
alternate context-switch sequences may be incompatible with future implementations.

Figure 7-7. Performance Monitor Interrupt Service Routine (Implementation Independent)

/1 Assumes PSR. up and PSR. pp are switched to zero together
if ((PMJO].fr==1) && (PSR up == 1) || (PSR pp == 1)){
[l freeze bit is set. Search for interrupt.
for (i=0; i< 4; i++) {
if (PMJi] !'=0
starthit (i==0) ? 4 : O
for (j=startbit; j <64 ; j++) {
(PO
counter _id = 64*i + j;
if (counter_id > PAL_GENERI C_ PMCPMD_PAI RS) {
I mpl erent ati on_Speci fi c_Updat e(counter _id);

}
else { // Generic PMJ PMD counter
if (PMJ counter_id].oi)
ovfl count[counter _id] += 1;

}

} // scan overflow bits

}
}

/ Either ignore bogus interrupt or clear PMJ3]..PMJ1]
/ and PMC]0] last (clears freeze bit)

or (i=3; 1>=0; i--) { PM[i] =0; }
fi

— —h~

Volume 2: Debugging and Performance Monitoring 2:141

7.2.4.2

2:142

intel.

After a context switch from a context which had performance monitoring enabled to an
unmonitored context, the freeze bit will be set (see Section 7.2.4.2). A pending overflow interrupt
which was targeted at a monitored process may not be delivered until a non-monitored process is
running. A bogus interrupt is one where the freeze bit is zero or performance monitoring is disabled
in the PSR.

Performance Monitor Context Switch

The context switch routine described in Figure 7-8 defines the implementation-independent context
switching of Itanium performance monitors. Using bit masks provided by PAL (PALPMCask,
PALPMDMask) the routine can generically save/restore the contents of all implementation-specific
performance monitoring registers. If the outgoing context is monitored (PSR.pp or PSR.up are set),
then all PMC and PMD registers whose mask bit is set are preserved by software. But if the
outgoing context is monitored and the context switch routine determines that the outgoing context
has a pending performance monitor interrupt (by reading the freeze bit with the knowledge that it
was not generated by software) then software also preserves the outgoing context's overflow status
registers (PMC[0]..PMC[3]) before all PMC and PMD registers whose mask bit is set. Here, it is
explicitly assumed that software tracks monitored processes and can determine whether a process is
monitored prior to reading the freeze bit. The context switch handler then restores the performance
monitor freeze bit which resets event collection for the new context. Sometime into the incoming
(possibly unmonitored) context, the performance overflow interrupt service routine will run, but by
looking at the status of the freeze bit software can determine whether this interrupt can be ignored
(for details refer to Section 7.2.4.1).

When switching back to the original context (that originally caused the counter overflow), the
previously saved freeze bit can be inspected. If it was set (meaning there was a pending
performance monitor interrupt), then the context switch routine posts an interrupt message to the
incoming context’s processor at the performance monitor vector specified by the PMV register (see
Section 10.5.7, “Inter-processor Interrupts Layout and Example” on page 2:475). This will result in
a new performance monitor overflow interrupt in the correct context. Essentially, the interrupt
message is “replaying” the overflow interrupt that was missed because of the context switch.

Volume 2: Debugging and Performance Monitoring

intel.

Figure 7-8. Performance Monitor Overflow Context Switch Routine

1

11
11
11
11

5.

/1 in context or thread switch

if (outgoing process is monitored (PSR up or PSR pp are set)) {

Turn-of f counting and ignore interrupts for context switch

of counters.

la) if not already done, raise interrupt priority above
perf. non overflow vector

1b) read and preserve PSR up, PSR pp, PSR sp

1c) cl ear PSR. up, clear PSR pp

1d) srlz.d

Check for pending interrupt: Preserve Interrupt State

2a) read and preserve PMO0]..PMJ 3]

Set freeze bit

This ensures that PMD registers rermain stable for context

switch. Also, for restoration of incomng context, if PSR

of the incom ng process enables PSR up or PSR pp, the

counters won't start up, until they have been conpletely

rest ored.

3a) wite one to freeze bit (PMJO0].fr=1)

3b) srlz.d

Preserve PMC/ PMD contents

4a) For each PMC whose PALPMCmask bit is set, preserve PMC

4b) For each PMD whose PALPMDnask bit is set, preserve PMD.

conti nue context switch

/1 Now in incom ng process/thread
if (incom ng process is monitored (PSR up or PSR pp are set)) {

Note that the context switch itself already restored PSR
with the original values of PSR pp, PSR up and PSR sp
(inverse of step 1b above). Event counting is disabl ed,
because PMJO0].fr is one (step 3a above).

Restore PMJ PMD contents (inverse of step 4 above)
5a) For each PMC whose PALPMCrmask bit is set, reload PMC
5b) For each PMD whose PALPMDmask bit is set, reload PMD.

Restore Interrupt State (inverse of step 2 and la above)
6a) if (preserved freeze bit was set) {
send nysel f a performance nonitor interrupt
(store to interrupt address)
}
6b) Restore PM 3], PMJ2], PM[1], and finally PMJO].
Wite PMJ 0] last, which restores the state of the
performance monitor freeze bit.

6¢) srlz.d
6d) [ower interrupt priority below perf. nmon overfl ow
vect or

Volume 2: Debugging and Performance Monitoring

2:143

2:144

Volume 2: Debugging and Performance Monitoring

intel.

Interruption Vector Descriptions 8

8.1

8.2

Chapter 5 describes the interruption mechanism and programming model for the Itanium
architecture. This chapter describes the IVA-based interruption handlers. “Interruption Vector
Descriptions” describes all the Itanium IVA-based interruption vectors and “IA-32 Interruption
Vector Definitions” describes all of the IA-32 interrupt vectors. PAL-based interruptions are
described in Chapter 11, “Processor Abstraction Layer.” Note that unless otherwise noted,
references to “interruption” in this chapter refer to IVA-based interruptions. See “Interruption
Definitions” on page 2:79.

Interruption Vector Descriptions

The section lists all the Itanium interruption vectors. It describes the interruption vectors and the
parameters that are defined when the vector is entered.

If an interruption is independent of the executing instruction set (including IA-32), such as an
external interrupt or TLB fault, common Itanium interruption vectors are used. For exceptions and
intercept conditions that are specific to the IA-32 instruction set three IA-32 specific vectors are
used; IA-32_Exception, IA-32_Interrupt, and IA-32_Intercept.

Table 8-1 defines which interruption resources are written, are left unmodified, or are undefined for
each interruption vector. The individual vector descriptions below list interruption specific
resources for each vector.

See “IVA-based Interruption Handling” on page 2:85 for details on how the processor handles an
interruption. See “Interruption Control Registers” on page 2:29 for the definition of bit fields
within the interruption resources.

ISR Settings

For each of the interruption vectors, a figure depicts the ISR setting. These figures show the value
that hardware writes into the ISR for the corresponding interruption.

Table 8-2 provides an overview of ISR settings for all of the interruption vectors.

For some of the vectors, certain bits will always be 0 (or 1) simply because no instruction that
would set that bit differently can ever end up on that vector. For example, ISR.sp is always 0 in the
Break Instruction vector because ISR.sp is only set by speculative loads, and speculative loads can
never take a Break Instruction fault.

After interruption from the IA-32 instruction set, the following ISR bits will always be zero —
ISR.ni, ISR.na, ISR.sp, ISR.rs, ISR.ir, ISR.ei, and ISR.ed.

ISR.code settings for non-access instructions are described in “Non-access Instructions and
Interruptions” on page 2:87.

Table 8-3 on page 2:149 provides an overview of ISR.code field on all Itanium traps.

Volume 2: Interruption Vector Descriptions 2:145

8.3

Interruption Vector Definition

Table 8-1. Writing of Interruption Resources by Vector

2:146

Interruption Resource

IIP, IPSR,
IIPA, IFS.v

IFA

ITIR

IHA

ISR

PSR.ic at time of interruption

0 1

-

Interruption Vector

Alternate Data TLB vector

=}
=
[V)
[
=
O

=)
=
QO
X
[g]

/

=)
QO

Alternate Instruction TLB vector

Break Instruction vector

Data Access Rights vector

Data Access-Bit vector

Data Key Miss vector

=

= R R

=T

x| x| x| S| x| x

=
=T

Data Nested TLB vector

/!

'
=)
[V

/

'
=)
[V

/

'
=]
[V)

=}
=
Q

/

'
=)
QO

Data TLB vector

/

>
Q

Debug vector

Dirty-Bit vector

Disabled FP-Register vector

External Interrupt vector

Floating-point Fault vector

Floating-point Trap vector

General Exception vector

X | X| X| X]| X

X | X | X[X| X| X| X

= R

IA-32 Exception Vector

n/a

n/a

n/a

/

=)

IA-32 Intercept Vector

n/a

n/a

n/a

n/a

/

>
Q

IA-32 Interrupt Vector

n/a

n/a

n/a

n/a

/

>
V)

Instruction Access Rights vector

Instruction Access-Bit vector

Instruction Key Miss vector

Instruction TLB vector

Key Permission vector

Lower-Privilege Transfer Trap vector

= I e T e B T B B T e

5
x| S| S| S| S| S| x| x| x| x| x|x|x|x|3 s

x| S| S| S| S| S| x| x| x| x| x| x|x|x|3Sx|=

><><§><><><><><><><><><><><><><§QD\J><><><><><

x

X | X | X[X]| X| X

><><><><><><><§><><><><><><><><><

QO
S I e T I e = I T T i

=

NaT Consumption vector

-reg

- data/instr

x

Page Not Present vector

Single Step Trap vector

X | X[X[X

Speculation vector

Taken Branch Trap vector

X[X| X

Unaligned Reference vector

Unsupported Data Reference vector

X[x| X| X| X

X[X X| X[X[X]| X]| X

X[x| X

= I I T

VHPT Translation vector

I e

n/a

S| | g x| x| x| g g *

n/a

S| x| x| x| x| x| S| x| x

n/a

S|ox| x| x| x| x| x| x|x

=)
=
QO

n/a

x| x| x| x| S| x| x| x| x

S T I

=)
=
QO

a. “n/a” indicates that this cannot happen.
b. “W” indicates that the resource is written with a new value.

c. “X”indicates that the resource may or may not be written; whether it is written and with what value is

implementation specific.

d. “-”indicates that the resource is not written.

Volume 2: Interruption Vector Descriptions

In

tel.

Table 8-2.

ISR Values on Interruption
Vector / Interruption ed |ei® |so | ni® | irc | rsd sp® naf |r|w|x

Alternate Data TLB vector

Alternate Data TLB fault ed [ri |so [ni' [0 |[rs |sp |na |r |w

IR Alternate Data TLB fault 0 |ri |0 |n' [1 |1 |0 |0 |1]0
Alternate Instruction TLB vector

Alternate Instruction TLB fault 0 ri 0 |ni 0 |0 0 0 0|0 |1
Break Instruction vector

Break Instruction fault 0 ri 0 |ni 0 |0 0 0 0|0 |0
Data Access Rights vector

Data Access Rights fault ed |ri SO | ni 0O |rs |sp |na |[r |w |O

IR Data Access Rights fault 0 ri 0 |ni 1 1 0 0 1/0 |0
Data Access-Bit vector

Data Access Bit fault edk |ri SO | ni 0 rs |sp [na |r |w

IR Data Access Bit fault 0 ri 0 |ni 1 1 0 0 110
Data Key Miss vector

Data Key Miss fault edC [ri [so [ni [0 |[rs |sp |na |r |w

IR Data Key Miss fault 0 ri 0 |ni 1 1 0 0 110
Data Nested TLB vector9

Data Nested TLB fault - - - |- - - - - - - -

IR Data Nested TLB fault - - - - - - - - - - |-
Data TLB vector

Data TLB fault ed |ri so [ni' |0 |rs sp |na |r

IR Data TLB fault 0 | |0 |ni' [1 |1 |0 |0 [1]0
Debug vector

Data Debug fault ed |ri ni [0 |rs |sp |na |r 0

Instruction Debug fault 0 ri ni 0 |0 0|0 |1

IR Data Debug fault 0 ri ni 1 1 1/0 |0
Dirty-Bit vector

Data Dirty Bit fault edk |ri SO | ni 0 rs 0 na [r |1 |0
Disabled FP-Register vector

Disabled Floating-Point Register fault 0 ri 0 (ni |0 |O sp (0O riw |0
External Interrupt vector

External Interrupt 0 ri 0 |ni irr o 0 0 0|0 |0
Floating-point Fault vector

Floating-Point Exception fault 0 ri 0 |ni 0 |0 0 0 0|0 |0
Floating-point Trap vector

Floating-Point Exception trap 0 ei [0 |ni 0 0 0 0 00 (O
General Exception vector

Disabled ISA Transition fault 0 ri 0 |ni 0 |0 0 0 0|0 |0

lllegal Dependency fault 0 ri 0 |ni |O |O 0 0 00 |0

lllegal Operation fault 0 ri 0 |ni 0 |0 0 0 0|0 |0

IR Unimplemented Data Address fault 0 ri 0 |ni 1 1 0 0 1/0 |0

Privileged Operation fault 0 ri 0 |ni 0 |0 0 na |0|0 |0

Privileged Register fault 0 ri 0 (ni |0 |O 0 0 0|0 |0

Reserved Register/Field fault 0 ri 0 |ni 0 |0 0 0 0|0 |O

Unimplemented Data Address fault 0 ri 0 |ni 0 |(rs |O na [r|w |0

Volume 2: Interruption Vector Descriptions

2:147

Table 8-2.

ISR Values on Interruption (Continued)
Vector / Interruption ed | ei® |so| ni® | irc | rsd | spe| naf w | x

IA-32 Exception vector 0 0 0 |0 0 |0 0 0 0|0 [x
1A-32 Intercept vector 0 0 0 |0 0 |0 0 0 riw |0
1A-32 Interrupt vector 0 0 0 |0 0 0 0 0 0(0 |0
Instruction Access Rights vector

Instruction Access Rights fault 0 ri 0 |ni 0 |0 0 0 0|0 (1
Instruction Access-Bit vector

Instruction Access Bit fault 0 ri 0 |ni 0o |0 0 0 0|0 |1
Instruction Key Miss vector

Instruction Key Miss fault 0 ri 0 |ni 0 0 0 0 00 |1
Instruction TLB vector

Instruction TLB fault 0 ri 0 |ni 0 |0 0 0 0|0 (1
Key Permission vector

Data Key Permission fault edt |ri SO | ni 0O |rs |sp |na |r |w |0

Instruction Key Permission fault 0 ri 0 |ni 0 0 0 0 0|0

IR Data Key Permission fault 0 ri 0 |ni 1 1 0 0 110 |0
Lower-Privilege Transfer Trap vector

Lower-Privilege Transfer trap 0 ei |0 |ni ir |0 0 0 0 |0

Unimplemented Instruction Address trap 0 ei |0 |ni ir 0 0 |0
NaT Consumption vector

Data NaT Page Consumption fault 0 ri SO | ni 0 |rs |O na |r |w |0

Instruction NaT Page Consumption fault 0 ri 0 |ni 0 |0 0 0 0|0 (1

IR Data NaT Page Consumption fault 0 ri 0 |ni 1 1 0 0 0 |0

Register NaT Consumption fault 0 ri 0 (ni |0 |O 0 na |r |w |0
Page Not Present vector

Data Page Not Present fault ed |ri so [ni |0 |(rs |sp |na |r |w |O

Instruction Page Not Present fault 0 ri 0 |ni 0 |0 0 0 0|0 (1

IR Data Page Not Present fault 0 ri 0 |ni 1 1 0 0 1/0 |0
Single Step Trap vector

Single Step trap 0 ei |0 |ni ir |0 0 0 0|0 |0
Speculation vector

Speculative Operation fault 0 ri 0 |ni 0 |0 0 0 0|0 |0
Taken Branch Trap vector

Taken Branch trap 0 ei |0 |ni ir |0 0 0 0(0 |0
Unaligned Reference vector

Unaligned Data Reference fault ed |ri 0 (ni |0 |O sp |0 r{w [0
Unsupported Data Reference vector

Unsupported Data Reference fault ed |ri 0 |ni 0 |0 0 0 r|iw |0
VHPT Translation vector

IR VHPT Data fault 0 ri 0 [nil |1 1 0 0 110

VHPT Data fault ed® |ri so |ni' |0 rs sp |na |r |w |0

VHPT Instruction fault 0 ri 0 |ni 0 |0 0 0 010

2:148

a. ISR.eiis equal to IPSR.ri for all faults and external interrupts (1 for faults and interrupts on the L+X instruction

of an MLX). For traps, ISR.ei points at the excepting instruction (2 for traps on the L+X instruction of an MLX).

b. If ISR.niis 1, the interruption occurred either when PSR.ic was 0 or was in-flight.
c. ISR.ri captures the value of RSE.CFLE at the time of an interruption.
d. ISR.rs is 1 for interruptions caused by mandatory RSE fills/spills and O for all others.

Volume 2: Interruption Vector Descriptions

T JQ o

. ISR.sp is 1 for interruptions caused by speculative loads and zero for all others.
ISR.na is 1 for interruptions caused by non-access instructions and zero for all others.

. ISR is not written.

. A faulting pr obe. w. f aul t or probe. rw. f aul t can cause a Dirty Bit fault on a non-access instruction.
ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by abr.ret orrfi were

re-loading the current register stack frame.
j. Afaultingl f et ch. faul t orprobe. faul t toan unimplemented address will set ISR.na to 1.
k. ISR.ed is 0 if the interruption was caused by a mandatory RSE fill or spill.
I If PSR.ic was 0 when the interruption was taken, these faults do not occur, but a Data Nested TLB fault is

taken.

Table 8-3 provides the definition for the ISR.code field on all Itanium traps. Hardware will always
deliver the highest priority enabled trap. Software must look at the ISR.code bit vector to determine
if any lower priority trap occurred at the same time as the trap being processed.

Table 8-3. ISR.code Fields on Intel® Itanium® Traps

Field Bit Range Description
fp 0 Floating-Point Exception trap
Ip 1 Lower-Privilege Transfer trap
tb 2 Taken Branch trap
Ss 3 Single Step trap
ui 4 Unimplemented Instruction Address trap
fp trap code 7 IEEE O (overflow) exception (Parallel FP-LO)
fp trap code 8 IEEE U (underflow) exception (Parallel FP-LO)

fp trap code 9 IEEE | (inexact) exception (Parallel FP-LO)

fp trap code 10 FPA, Added one to significand when rounding (Parallel FP-LO)

fp trap code 11 IEEE O (overflow) exception (Normal or Parallel FP-HI)

fp trap code 12 IEEE U (underflow) exception (Normal or Parallel FP-HI)

fp trap code 13 IEEE | (inexact) exception (Normal or Parallel FP-HI)

fp trap code 14 FPA, Added one to significand when rounding (Normal or Parallel FP-HI).

Table 8-4. Interruption Vectors Sorted Alphabetically

Vector Name Offset Page
Alternate Data TLB vector 0x1000 156
Alternate Instruction TLB vector 0x0c00 155
Break Instruction vector 0x2c00 163
Data Access Rights vector 0x5300 168
Data Access-Bit vector 0x2800 162
Data Key Miss vector 0x1c00 159
Data Nested TLB vector 0x1400 157
Data TLB vector 0x0800 154
Debug vector 0x5900 175
Dirty-Bit vector 0x2000 160
Disabled FP-Register vector 0x5500 171
External Interrupt vector 0x3000 164
Floating-Point Fault vector 0x5c00 178
Floating-Point Trap vector 0x5d00 179
General Exception vector 0x5400 169
IA-32 Exception vector 0x6900 183
IA-32 Intercept vector 0x6a00 184

Volume 2: Interruption Vector Descriptions

2:149

Table 8-4.

2:150

Interruption Vectors Sorted Alphabetically (Continued)
Vector Name Offset Page

IA-32 Interrupt vector 0x6b00 185
Instruction Access Rights vector 0x5200 167
Instruction Access-Bit vector 0x2400 161
Instruction Key Miss vector 0x1800 158
Instruction TLB vector 0x0400 153
Key Permission vector 0x5100 166
Lower-Privilege Transfer Trap vector 0x5e00 180
NaT Consumption vector 0x5600 172
Page Not Present vector 0x5000 165
Single Step Trap vector 0x6000 182
Speculation vector 0x5700 174
Taken Branch Trap vector 0x5f00 181
Unaligned Reference vector 0x5a00 176
Unsupported Data Reference vector 0x5b00 177
VHPT Translation vector 0x0000 151

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

VHPT Translation vector (0x0000)

The hardware VHPT walker encountered a TLB miss while attempting to reference the virtually
addressed hashed page table for a memory reference (including 1A-32).

Interruptions on this vector:

IR VHPT Data fault
VHPT Instruction fault
VHPT Data fault

IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

IHA — The virtual address in the hashed page table which the hardware VHPT walker was
attempting to reference.

ITIR — The ITIR contains default translation information for the virtual address contained in the
IHA. The access key field within this register is set to the region id value from the region register
selected by the virtual address in the IHA. The ITIR.ps field is set to the RR.ps field from the
selected region register. All other fields are set to 0.

If the fault is due to a VHPT data fault for both original instruction and data references:

* IFA — The faulting address that the hardware VHPT walker was attempting to resolve.

* ISR — The ISR bits are set to reflect the original access on whose behalf the VHPT walker was
operating. If the original operation was a non-access instruction then the ISR.code bits {3:0}
are set to indicate the type of the non-access instruction; otherwise they are set to 0. For
mandatory RSE fill or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if PSR.ic was 1
when the interruption was taken, and is 1 if PSR.ic was in-flight. For [A-32 memory references
the ISR.code, ni, ed, ei, ir, 1s, sp, and na bits are always 0. The defined ISR bits are specified
below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

\ 0 0 0 \ code{3:0} \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
’ 0 ‘ed’ ei ‘so‘ni‘ir’rs‘sp‘na‘ r ‘W‘O‘

If the fault is due to a VHPT instruction fault:

* IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits or, if the hardware VHPT walker was attempting to resolve a TLB miss, the
virtual address of the translation.

* ISR — The ISR bits are set based on the original instruction fetch that the VHPT walker was
attempting to resolve. The defined ISR bits are specified below. The ISR.ni bit is 0 if PSR.ic
was 1 when the interruption was taken, and is 1 if PSR.ic was in-flight. For IA-32 memory
references the ei and ni bits are always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 110 9 8 7 6 5 4 3 2 1 0

] 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
] 0 ‘O’ei \o\ni\ojo\o\o\o\o\ﬂ

Volume 2: Interruption Vector Descriptions 2:151

Notes

2:152

intel.

This fault can only occur when PSR.ic is 1 or in-flight, and the VHPT walker is enabled for the
referenced region. Refer to “VHPT Environment” on page 2:56 for details on VHPT enabling.

The original IFA address will be needed by the operating system page fault handler in the case
where the page containing the VHPT entry has not yet been allocated. When the translation for the
VHPT is available the handler must first move the address contained in the IHA to the IFA prior to
the TLB insert.

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Instruction TLB vector (0x0400)

The instruction TLB entry needed by an instruction fetch (including IA-32) is absent, and the
hardware VHPT walker could not find the translation in the VHPT, or the hardware VHPT walker is
enabled but not implemented on this processor.

Interruptions on this vector:
Instruction TLB fault
IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

IHA — The virtual address of the hashed page table entry which corresponds to the reference that
raised this fault.

ITIR — The ITIR contains default translation information for the original instruction address. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was taken, and is
1 if PSR.ic was in-flight. The ISR.ei and ni bits are always 0 for [A-32 memory references.

‘31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16‘15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0‘
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

] 0 \o] ei]o\m‘o]o\o\o\o‘o‘w

This fault can only occur when PSR.ic is 1 or in-flight, the VHPT hardware walker is enabled for
the referenced region, the PSR.it bit is 1, and the fetched instruction bundle is to be executed. Refer
to “VHPT Environment” on page 2:56 for details on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag mismatch,
illegal entry, or it may have terminated before reading the data. Software must be able to handle the
case where the VHPT walker fails.

Volume 2: Interruption Vector Descriptions 2:153

intel.

Name Data TLB vector (0x0800)

Cause For memory references (including IA-32), the data TLB entry needed by the data access is absent,
and the hardware VHPT walker could not find the translation in the VHPT, or the hardware VHPT
walker is not implemented on this processor.

Interruptions on this vector:

IR Data TLB fault
Data TLB fault

Parameters 1IP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

IHA — The virtual address of the hashed page table entry which corresponds to the reference that
raised this fault.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The address of the data being referenced.

ISR — If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was
taken, and is 1 if PSR.ic was in-flight. The ISR.code, ed, ei, ir, rs, sp and na bits are always 0 for
IA-32 memory references. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413 12 1110 9 8 7 6 5 4 3 2 1 0

\ 0 0 0 \ code{3:0} \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so’ni‘ir‘rs‘sp‘na’r‘w‘O‘

Notes The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access operation
when PSR.dt is 1, and the VHPT hardware walker is enabled for the referenced region. This fault
can only occur on a mandatory RSE load/store operation if PSR.rt is 1, and the VHPT hardware
walker is enabled for the referenced region. Refer to “VHPT Environment” on page 2:56 for details
on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag mismatch,
illegal entry, or it may have terminated before reading the data. Software must be able to handle the
case where the VHPT walker fails. The Data TLB fault is only taken if PSR.ic is 1 or in-flight,
otherwise a Data Nested TLB fault is taken.

2:154 Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Alternate Instruction TLB vector (0x0c00)

The instruction TLB entry needed by an instruction fetch (including IA-32) is absent, and the
hardware VHPT walker was not enabled for this address.

Interruptions on this vector:
Alternate Instruction TLB fault
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the original instruction address. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR — For Itanium memory references, the ISR.ei bits are set to indicate which instruction caused
the exception and ISR.ni is set to 0 if PSR.ic was 1 when the interruption was taken, and set to 1 if
PSR.ic was 0 or in-flight. For IA-32 memory references the ISR.ei and ni bits are 0. The defined
ISR bits are specified below.

The ISR .ei bits are set to indicate which instruction caused the exception. The defined ISR bits are
specified below.

‘31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16‘15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0‘
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

] 0 \o] ei]o\m‘o]o\o\o\o‘o‘w

This fault can only occur when the VHPT walker is disabled for the referenced region, and the
fetched instruction bundle is to be executed. Refer to “VHPT Environment” on page 2:56 for
details on VHPT enabling.

Volume 2: Interruption Vector Descriptions 2:155

Name

Cause

Parameters

Notes

2:156

intel.

Alternate Data TLB vector (0x1000)

For memory references (including 1A-32), the data TLB entry needed by data access is absent, and
the hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

IR Alternate Data TLB fault
Alternate Data TLB fault

IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The address of the data being referenced.

ISR — If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was
taken, and is 1 if PSR.ic was in-flight. For IA-32 memory references the ISR.code, ed, ei, ir, s, sp
and na bits are 0. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

| 0 | 0 0 | code(3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so’ni‘ir‘rs‘sp‘na’r‘w’O‘

The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access operation
when PSR.dt is 1, and the VHPT hardware walker is disabled for the referenced region. This fault
can only occur on a mandatory RSE load/store operation if PSR.rt is 1, and the VHPT hardware
walker is disabled for the referenced region. The Alternate Data TLB fault is only taken if PSR.ic is
1 or in-flight, otherwise a Data Nested TLB fault is taken. Refer to “VHPT Environment” on
page 2:56 for details on VHPT enabling.

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Data Nested TLB vector (0x1400)

For memory references, the data TLB entry needed for a data reference is absent and PSR.ic is 0.
Note: Data Nested TLB faults cannot occur during IA-32 instruction set execution, since PSR.ic
must be 1.

Interruptions on this vector:

IR Data Nested TLB fault
Data Nested TLB fault

IIP, IPSR, IIPA, IFS, ISR are unchanged from their previous values; they contain information
relating to the original interruption.

ITIR — is unchanged from the previous value.

IFA — is unchanged from the previous value and contains the original address of the data being
referenced.

This fault can only occur when PSR.dt is 1 and PSR.ic is 0 on a load, store, semaphore, or
non-access instruction, or when PSR.rt is 1 and PSR.ic is 0 on a RSE mandatory load/store
operation. Since the operating system is in control of the code executing at the time of the nested
fault, it can by convention know which register contains the address that raised the nested event. As
the PSR.ic bit is 0 on a nested fault, the IFA contains the original data address if the original
interruption was caused by a data TLB fault. If the translation table entry required by the nested
miss handler has not yet been allocated, then the address in the IFA will be passed to the operating
system page fault handler. If the translation for the entry is available then the general register
containing the nested fault address must be moved to the IFA prior to the insert. The ISR contains
the ISR for the original faulting instruction, and not the ISR for the instruction that caused the
nested fault.

Volume 2: Interruption Vector Descriptions 2:157

Name

Cause

Parameters

2:158

intel.

Instruction Key Miss vector (0x1800)

For instruction fetches (including 1A-32), the PSR.it bit is 1, the PSR.pk bit is 1, and the access key
from the TLB entry for the address of the executing instruction bundle does not match any of the
valid protection keys.

Interruptions on this vector:
Instruction Key Miss fault
IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the original instruction address. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR — The ISR .ei bits are set to indicate which instruction caused the exception. For IA-32 memory
references the ISR.ei and ni bits are 0. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

‘ 0 ’ 0 0 ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \0\ ei \o\ni\o\o\o\o\o\o\w

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Data Key Miss vector (0x1c00)

For memory references (including 1A-32), the PSR.dt bit is 1, the PSR.pk bit is 1, and the access
key from the TLB entry for the address referenced by a load, store, probe, or semaphore operation
does not match any of the valid protection keys. The RSE may cause this fault if PSR.rt is 1, the
PSR.pk bit is 1, and the access key from the TLB entry for the address referenced by an RSE
mandatory load or store operation does not match any of the valid protection keys.

Interruptions on this vector:

IR Data Key Miss fault
Data Key Miss fault

IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — Faulting data address.

ISR — If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed is always 0. For IA-32 memory references, the ISR.code, ed, ei, ni, ir, s,
sp, and na bits are 0. The value for the ISR bits depend on the type of access performed and are
specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

| 0 0 | 0 | code(3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
’ 0 ‘ed’ ei ’so‘ni‘ir’rs‘sp‘na‘ r‘w‘o‘

Pr obe and the faulting variant of | f et ch are the only non-access instructions that will cause a data
key miss fault.

Volume 2: Interruption Vector Descriptions 2:159

Name

Cause

Parameters

Notes

2:160

intel.

Dirty-Bit vector (0x2000)

IA-32 or Itanium store or semaphore operations to a page with the dirty-bit (TLB.d) equal to 0 in
the data TLB.

Interruptions on this vector:
Data Dirty Bit fault
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — Faulting data address.

ISR — The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE spill references, ISR.ed is always 0. For IA-32 memory references, ISR.ed, ei,
ni, and rs are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

| 0 | 0 0 |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ’ed‘ ei ‘so’ni‘o‘rs‘o‘na’r‘wo‘

Dirty Bit fault can only occur in these situations:
e When PSR.dt is 1 on an TA-32 or Itanium store or semaphore operation
* When PSR.dt is 1 on a probe. w. f aul t or probe. rw. faul t
* When PSR.1rt is 1 on an RSE mandatory store operation

For probe. w. faul t or probe. rw. f aul t the ISR.na bit is set.

Only an IA-32 or Itanium semaphore, or pr obe. r w. f aul t operation would set ISR.r on a dirty bit
fault.

Software is invoked to update the dirty bit in the data TLB entry and the Page table. The PSR.da bit
can be used to suppress this fault for one executed instruction or one mandatory RSE store
operation.

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Instruction Access-Bit vector (0x2400)

For instruction fetches (including IA-32), the access bit (TLB.a) in the TLB entry for this page is 0,
and an instruction on the page is referenced.

Interruptions on this vector:
Instruction Access Bit fault
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. For [A-32 memory
references the ISR.ei and ni bits are 0. The defined ISR bits are specified below.

‘31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16‘15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0‘
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

] 0 \o] ei]o\m‘o]o\o\o\o‘o‘w

The fault can only occur when PSR.it is 1 on an instruction reference (including 1A-32). Software
uses this fault for memory management page replacement algorithms. The PSR.ia bit can be used to
suppress this fault for one executed instruction.

Volume 2: Interruption Vector Descriptions 2:161

Name

Cause

Parameters

Notes

2:162

intel.

Data Access-Bit vector (0x2800)

For data memory references (including [A-32), the access bit (TLB.a) in the TLB entry for this
page is 0, and the page is referenced.

Interruptions on this vector:

IR Data Access Bit fault
Data Access Bit fault

IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — Faulting data address.

ISR — The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory references,
ISR.code, ed, ei, ni, ir, rs, na and sp are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

| 0] 0 0 | code(3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘ir‘rs‘sp‘na‘ r‘w‘o‘

These faults can only occur in these situations:
* When PSR.dt is 1 on an IA-32 or Itanium load, store, or semaphore operation
* When PSR.dtis 1 on a probe. faul t
* When PSR.dtis l onanlfetch.fault
* When PSR.rt is 1 on an RSE mandatory load/store operation
For probe. fault orlfetch. faul t the ISR.na bit is set.
Software uses this fault for memory management page replacement algorithms. The PSR.da bit can

be used to suppress this fault for one executed instruction or one mandatory RSE memory
reference.

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Break Instruction vector (0x2c00)
An attempt is made to execute an Itanium br eak instruction.
Interruptions on this vector:
Break Instruction fault
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.
IIM — Is updated with the break instruction immediate value.
ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below.
’31 30 29 28 27 26 25 24 23 22 21 2019181716’15141312 1110 9 8 7 6 5 4 3 2 1 0‘
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 ‘O‘ei ‘O‘ni‘O‘O‘O‘O‘O‘O‘O‘

This fault cannot be raised by IA-32 instructions.

Volume 2: Interruption Vector Descriptions 2:163

Name

Cause

Parameters

Notes:

2:164

intel.

External Interrupt vector (0x3000)

There are unmasked external interrupts pending from external devices, other processors, or internal
processor events and:

* PSR.iis 1, while executing Itanium instructions

« PSR.iis 1 and (CFLAG.fis 0 or EFLAG.f is 1), while executing IA-32 instructions

IPSR.is indicates which instruction set was executing at the time of the interruption.
Interruptions on this vector:

External Interrupt
IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

IVR - Highest priority unmasked pending external interrupt vector number. If there are no
unmasked pending interrupts the “spurious” interrupt vector (15) is reported.

ISR — The ISR.ei bits are set to indicate which instruction was to be executed when the external
interrupt event was taken. The defined ISR bits are specified below. For external interrupts taken in
the IA-32 instruction set, ISR.ei, ni and ir bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1413 12 110 9 8 7 6 5 4 3 2 1 0

\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei ‘O’ni‘ir‘O‘O‘O’O‘O‘O‘

Software is expected to avoid situations which could cause ISR.ni to be 1.

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Page Not Present vector (0x5000)

The bundle or IA-32 instruction being executed resides on a page for which the P-bit (TLB.p) in the
instruction TLB entry is 0, or the data being referenced resides on a page for which the P-bit in the
data TLB entry is 0.

Interruptions on this vector:

IR Data Page Not Present fault
Instruction Page Not Present fault
Data Page Not Present fault

IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

If the fault is due to a data page not present fault for both instruction and data original references:

* IFA — The virtual address of the data being referenced.

+ ISR - If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. The value for the ISR
bits depend on the type of access performed and are specified below. For mandatory RSE fill or
spill references, ISR.ed is always 0. For IA-32 memory references, ISR.code, ed, ei, ni, ir, rs, sp
and na bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

] 0 0 0 | code(3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
’ 0 ‘ed’ ei ‘so‘ni‘ir’rs‘sp‘na‘ r ‘w‘O’

If the fault is due to an instruction page not present fault:
» IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

* ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. For IA-32 memory references the ISR.ei and ni bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

| 0 0 | 0 |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 ‘O‘ei‘O‘ni‘O‘O‘O‘O‘O‘OM‘

This fault can only occur when PSR.it is 1 on an instruction reference, when PSR.dt is 1 on a load,
store, semaphore, or non-access operation, or when PSR.rt is 1 on a RSE mandatory load/store
operation.

Volume 2: Interruption Vector Descriptions 2:165

intel.

Name Key Permission vector (0x5100)

Cause Data access (including IA-32): The PSR.dt bit is 1, the PSR.pk bit is 1 and read or write permission
is disabled by the matching protection register on a load, store, or semaphore operation. The RSE
may cause this fault if PSR.rt is 1, the PSR.pk bit is 1 and read or write permission is disabled by
the matching protection register on an RSE mandatory load/store operation. Instruction access
(including IA-32): The PSR.it bit is 1, the PSR.pk bit is 1 and execute permission is disabled by the
matching protection register.

Interruptions on this vector:

IR Data Key Permission fault
Instruction Key Permission fault
Data Key Permission fault

Parameters IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region
register. The ITIR.ps field is set to the RR.ps field from the referenced region register. All other
fields are set to 0.

If the fault is due to a data key permission fault:

* IFA — Faulting data address.

* ISR — The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory references, the
ISR.code, ed, ei, ni, ir, rs, sp bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

\ 0] 0 0 ‘ code{3:0} \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘ed‘ ei ‘so‘ni‘ir‘rs‘sp‘na‘ r‘w‘o‘

If the fault is due to an instruction key permission fault:

* IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

* ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. For IA-32 memory references, ISR.ei and ni are set to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\ 0 0 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ei \o]m\o\o\o\o]o\o]w

Notes For probe. fault orlfetch. fault the ISR.na bit is set.

2:166 Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Instruction Access Rights vector (0x5200)

For instruction fetches (including 1A-32), the PSR.it bit is 1, and the access rights for this page do
not allow execution or do not allow execution at the current privilege level.

Interruptions on this vector:
Instruction Access Rights fault
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. For IA-32 memory references, ISR.ei and ni bits are 0.

‘31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16‘15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0‘
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

] 0 \o] ei]o\m‘o]o\o\o\o‘o‘w

This fault does not occur if PSR.it is 0.

Volume 2: Interruption Vector Descriptions 2:167

Name

Cause

Parameters

Notes

2:168

intel.

Data Access Rights vector (0x5300)

For memory references (including [A-32), the PSR.dt bit is 1, and the access rights for this page do
not allow read access or do not allow read access at the current privilege level for load and
semaphore operations. The PSR.dt bit is 1, and the access rights for this page do not allow write
access or do not allow write access at the current privilege level for store and semaphore
operations.

The PSR.rt bit is 1, and the access rights for this page do not allow read access or do not allow read
access at the current privilege level for the RSE mandatory load operation. The PSR.rt bit is 1, and
the access rights for this page do not allow write access or do not allow write access at the current
privilege level for the RSE mandatory store operation.

Interruptions on this vector:

IR Data Access Rights fault
Data Access Rights fault

IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

ITIR — The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA — Faulting data address.

ISR — The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory references,
ISR.code, ed, ei, ni, ir, rs, and sp bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

| 0] 0 0 | code(3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0 ‘ed‘ ei ‘so‘ni‘ir‘rs‘sp‘na‘ r‘w‘o

For probe. fault orlfetch. fault the ISR.na bit is set.

Volume 2: Interruption Vector Descriptions

Name General Exception vector (0x5400)

Cause An attempt is being made to execute an illegal operation, privileged instruction, access a privileged
register, unimplemented field, unimplemented register, unimplemented address, or take an
inter-instruction set branch when disabled.

Interruptions on this vector:

IR Unimplemented Data Address fault
Illegal Operation fault

Illegal Dependency fault

Privileged Operation fault

Disabled Instruction Set Transition fault
Reserved Register/Field fault
Unimplemented Data Address fault
Privileged Register fault

Parameters 1IP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. For TA-32
instruction set faults, ISR.ei, ni, na, sp, ts, ir, ed bits are always 0.

« If the fault was caused by a non-access instruction, ISR.code{3:0} specifies which non-access
instruction. See “Non-access Instructions and Interruptions” on page 2:87.

e ISR.code{7:4} = 0: Illegal Operation fault. Cannot be raised by IA-32 instructions.
* An attempt is being made to execute an illegal operation. Illegal operations include:

Attempts to execute instructions containing reserved major opcodes, reserved
sub-opcodes, or reserved instruction fields, writing GR 0, FR 0 or FR 1, writing a
read-only register, or accessing a reserved register.

Attempts to execute a reserved template encoding. Anrfi to a reserved template
encoding preserves IPSR.ri and will set ISR.ei to IPSR.ri.

Attempts to execute a bundle of template MLX when PSR.ri == 2. This can only be
caused by doing an r f i with an improper setting of IPSR.ri. In this case, IPSR.ri and
ISR.ei will both be 2.

Attempts to write outside the current register stack frame.

Attempts to specify the same GR, when the instruction has two GR targets (e.g.,
post-increment).

If the instruction has two PR targets, and specifies the same PR for both. Predicated
off unconditional compares, f cl ass, t bi t,and t nat instructions take this fault, even
when their qualifying predicate is zero.

Register bank conflict on a floating-point load pair instruction.

An access to BSPSTORE or RNAT is performed with a non-zero RSC.mode, or a

| oadr s is performed with a non-zero RSC.mode.

A | oadr s is performed with a non-zero CFM.sof and a non-zero RSC.loadrs, or a
| oadr s causes more registers to be loaded from memory than can fit in the physical
stacked register file.

Attempts to predicate a br . i a instruction or to execute br . i a when
AR[BSPSTORE] != AR[BSP].

Attempts to execute epc if PFS.ppl is less than PSR.cpl.

Volume 2: Interruption Vector Descriptions 2:169

2:170

* Attempts to access interruption registers if PSR.ic is 1.

+ Attempts to execute anitc oritr instruction if PSR.ic is 1.
* ISR.code{7:4} = 1: Privileged Operation fault. Cannot be raised by IA-32 instructions.
* ISR.code{7:4} = 2: Privileged Register fault. Cannot be raised by [A-32 instructions.

* ISR.code{7:4} = 3: Reserved Register/Field fault, Unimplemented Data Address fault or IR
Unimplemented Data Address fault. Cannot be raised by IA-32 instructions. For
Unimplemented Data Address fault:

» If ISR.rs = 0: A data memory reference to an unimplemented address has occurred.
» IfISR.rs = 1: A mandatory RSE reference to an unimplemented address has occurred.

For details, refer to “Reserved and Ignored Registers and Fields” on page 1:19 and
“Unimplemented Address Bits” on page 2:61.

* ISR.code{7:4} = 4: Disabled Instruction Set Transition fault. An instruction set transition was
attempted while PSR.di was 1. This fault can be raised by either the Itanium br . i a instruction
or the IA-32 j npe instruction. [PSR.is indicates the faulting instruction set.

» ISR.code{7:4} = 8: Illegal Dependency fault. Cannot be raised by IA-32 instructions. The
processor has detected a resource dependency violation.

If the fault is due to an Illegal Operation fault or Illegal Dependency fault:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

\ 0 0 0 ’code{7:4}‘ 0 \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
\ 0 \o\ ei \o]m\o\o\o\o]o\o\o\

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

| 0 | 0 0 | code{7:4} | code(3:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘0‘ ei ‘O‘ni‘ir‘rs‘o‘na‘r‘w‘o‘

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Disabled FP-Register vector (0x5500)
An attempt is made to reference a floating-point register set that is disabled.

When PSR.dfl is 1, execution of any IA-32 FP, SSE or MMX instructions raises a Disabled FP
Register Low Fault (regardless of whether FR2 - FR31 are actually referenced).

When PSR.dfh is 1, execution of the first [A-32 instruction following a br.iaorrfi raises a
Disabled FP Register High fault.

If concurrent IA-32 Disabled FP Register High and Low faults are generated, the Disabled FP
Register High fault takes precedence and is reported in the ISR code, the Disabled FP Register Low
fault is discarded and not reported in the ISR code.

Interruptions on this vector:

Disabled Floating-Point Register fault
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.
ISR — The defined ISR bits are specified below.

* ISR.code{0} = 1: FR2 - FR31 disabled and access attempted.
* ISR.code{1} =1: FR32 - FR127 disabled and access attempted.

For IA-32 references, ISR.ei, ni, sp, r, and w bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

] 0 \ 0 0 ‘code‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
] 0 ‘O’ei \o\m‘o]o‘sp\o\r‘w‘o\

Volume 2: Interruption Vector Descriptions 2:171

intel.

Name NaT Consumption vector (0x5600)

Cause A non-speculative operation (including IA-32) (e.g., load, store, control register access, instruction
fetch etc.) read a NaT source register, NaT Val source register, or referenced a NaTPage.

Interruptions on this vector:

IR Data NaT Page Consumption fault
Instruction NaT Page Consumption fault
Register NaT Consumption fault

Data NaT Page Consumption fault

Parameters IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.

If the fault is due to a Data NaT Page Consumption fault or an IR Data NaT Page Consumption
fault:

A non-speculative Itanium integer/FP instruction or instruction fetch or [A-32 data memory
reference accessed a page with the NaTPage memory attribute.

* IFA — faulting data address.

* ISR — The value for the ISR bits depend on the type of access performed and are specified
below. For mandatory RSE fill or spill references, ISR.ed is always 0. For the [A-32 instruction
set, ISR.ed, ei, ni, ir, rs and na bits are 0. For probe. faul t orl fetch. faul t the ISR.na bitis
set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

\ 0] 0 0] 2 ‘ code{3:0} \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ 0 ‘0‘ ei ‘so‘ni‘ir‘rs‘o‘na‘r‘w‘o‘

If the fault is due to an Instruction NaT Page Consumption fault:
A non-speculative Itanium integer/FP instruction or instruction fetch accessed a page with the
NaTPage memory attribute.

* [FA — The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

* ISR — The value for the ISR bits depend on the type of access performed and are specified
below. For the IA-32 instruction set, ISR.ni and ei bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 O
o | o o [2 | o |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 ‘O‘SI \o]m\o\o\o\o]o\o\w

2:172 Volume 2: Interruption Vector Descriptions

If the fault is due to an Register NaT Consumption fault:

A non-speculative Itanium instruction reads a NaT’ed GR or an FR containing NaTVal. An
IA-32 integer instruction reads a NaT’ed GR. For IA-32 instructions behavior of NaT and
NaTVal values is model specific, see Section 6.4.3, “NaT/NaT Val Response for IA-32
Instructions” on page 1:122 for details.

* ISR — The value for the ISR bits depend on the type of access performed and are specified
below. For the IA-32 instruction set, ISR.ed, ei, ni, ir, rs, r, w, and na bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

] 0 0 0 \ 1 ‘code{3:0}‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
] 0 ‘O’ei \o\m‘o]o‘o\na\r‘w‘o\

Volume 2: Interruption Vector Descriptions 2:173

Name

Cause

Parameters

2:174

Speculation vector (0x5700)

A chk. a, chk. s, or f chkf instruction needs to branch to recovery code, and the branching
behavior is unimplemented by the processor. This fault cannot be raised by IA-32 instructions.

Interruptions on this vector:
Speculative Operation fault

IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.
IIM — contains the immediate value from the chk. s, chk. a, or f chkf instruction.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The type of
instruction which caused the fault is encoded in the lower four bits of the ISR.code field.

* IfISR.code{3:0} = 0: chk. a general register speculation fault.

* IfISR.code{3:0} = 1: chk. s general register speculation fault.

» If ISR.code{3:0} =2: chk. a floating-point speculation fault.

» IfISR.code{3:0} = 3: chk. s floating-point speculation fault.

* IfISR.code{3:0} =4: f chkf fault.
The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 O

\ 0 \ 0 0 ‘code{3:0}‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
\ 0 \o\eu \o]nu\o\o\o\o]o\o\o\

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

Debug vector (0x5900)

A debug fault has occurred. Either the instruction address matches the parameters set up in the
instruction debug registers, or the data address of a load, store, semaphore, or mandatory RSE fill
or spill matches the parameters set up in the data debug registers. All [A-32 instruction set debug
events are delivered on the IA_32_Exception(Debug) vector; see Chapter 9, "IA-32 Interruption
Vector Descriptions". IA-32 instructions can not raise this fault, IA-32 debug events are delivered
on the IA-32_Exception(Debug) vector.

Interruptions on this vector:

IR Data Debug fault
Instruction Debug fault
Data Debug fault

IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.
If the fault is due to a data debug fault or an IR Data Debug fault:

* IFA — The address of the data being referenced.

* ISR — The value for the ISR bits depend on the type of access performed and are specified
below. For mandatory RSE fill or spill references, ISR.ed is always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

] 0 0 0 \ code{3:0} \
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
’ 0 ‘ed’ ei ‘O‘ni‘ir’rs‘sp‘na‘ r‘w‘O’

If the fault is due to an instruction debug fault:

* IFA — Faulting instruction fetch address.

» ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The defined
ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

] 0 0 0 |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
] 0 ‘O’ei \o\ni\ojo\o\o\o\o\ﬂ

On an instruction reference this fault is suppressed if the PSR.db bit is 0 or if the PSR.id bitis 1. On
a data reference this fault is suppressed if the PSR.db bit is 0 or if the PSR.dd bit is 1. The only
non-access data operations which can cause a debug fault are the faulting variants of | f et ch and
pr obe.

Volume 2: Interruption Vector Descriptions 2:175

Name

Cause

Parameters

2:176

intel.

Unaligned Reference vector (0x5a00)

If PSR.ac is 1, and the data address being referenced by an Itanium instruction is not aligned to the
natural size of the load, store, or semaphore operation, or a data reference is made to a misaligned
datum not supported by the implementation. See “Memory Access Instructions” on page 1:48. For
IA-32 data memory references, an IA_32_Exception(Alignment Check) fault is raised; see Chapter
9, "TA-32 Interruption Vector Descriptions". IA-32 instructions can not raise this fault, IA-32
unaligned events are delivered on the TA-32_Exception(Alignment_Check) vector.

If the data reference specified is both unaligned to the natural datum size and unsupported, then an
Unaligned Data Reference fault is taken.

Interruptions on this vector:
Unaligned Data Reference fault
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.
IFA — The address of the data being referenced.
ISR — The value for the ISR bits depend on the type of access performed and are specified below.
‘31 30292827262524‘232221 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 ‘ed‘ ei \o]ni\o\o\sp\o]r\w]o\

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Unsupported Data Reference vector (0x5b00)
An attempt was made to:

» Execute a f et chadd, cnpxchg, xchg, or unsupported | d16, st 16 or 10-byte memory
reference (I df e or st f e) instruction to a page that is neither cacheable with write-back write
policy nor a NaTPage.

» Execute a f et chadd instruction to a page that is an uncacheable exported (UCE) page and the
processor model does not support exporting of f et chadd instructions.

See “Effects of Memory Attributes on Memory Reference Instructions” on page 2:73 for details.
IA-32 instructions can not raise this fault, IA-32 locked faults are delivered on the
[A-32_Intercept(Lock) vector.

If the data reference specified is both unaligned to the natural datum size and unsupported, then an
Unaligned Data Reference fault is taken.

IA-32 data memory references that require an external atomic lock when DCR.Ic is 1, raise an
IA_32_Intercept(Lock) fault; see Chapter 9, "IA-32 Interruption Vector Descriptions".

Interruptions on this vector:
Unsupported Data Reference fault
IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.
IFA — The address of the data being referenced.
ISR — The value for the ISR bits depend on the type of access performed and are specified below.
’31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0‘
0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
] 0 ‘ed’ e \o\m‘o]o‘o\o\r‘w‘o\

For | df e and st f e instructions, the processor may optionally set both ISR.r and ISR.w to 1,
although this is not recommended.

Volume 2: Interruption Vector Descriptions 2:177

intel.

Name Floating-point Fault vector (0x5c00)

Cause A floating-point exception fault has occurred. IA-32 numeric instructions can not raise this fault,
IA-32 floating point faults are delivered on the IA-32_Exception(Floating-Point) vector.

Interruptions on this vector:
Floating-Point Exception fault
Parameters IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.
ISR — The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the FP exception fault. The ISR.code field has eight bits
defined. See Chapter 5 for details.
* ISR.code{0} = 1: IEEE V (invalid) exception (Normal or Parallel FP-HI)
* ISR.code{1} = 1: Denormal/Unnormal operand exception (Normal or Parallel FP-HI)
* ISR.code{2} = 1: IEEE Z (divide by zero) exception (Normal or Parallel FP-HI)
* ISR.code{3} = 1: Software assist (Normal or Parallel FP-HI)
* ISR.code{4} = 1: IEEE V (invalid) exception (Parallel FP-LO)
* ISR.code{5} = 1: Denormal/Unnormal operand exception (Parallel FP-LO)
* ISR.code{6} = 1: IEEE Z (divide by zero) exception (Parallel FP-LO)
* ISR.code{7} = 1: Software assist (Parallel FP-LO)
The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 O

| 0 | 0 | 0 | code{7:0} |
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 ‘O‘ei \o]m\o\o\o\o]o\o]o\

2:178 Volume 2: Interruption Vector Descriptions

Name Floating-point Trap vector (0x5d00)
Cause A floating-point exception trap has occurred. [A-32 numeric instructions can not raise this trap.
Interruptions on this vector:
Floating-point Exception trap
Parameters 1IP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.
ISR — The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the type of FP exception and IEEE information. The ISR code
field contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the
just-executed instruction. The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

] 0 \ 0]0\ fp trap code ‘0’0‘0‘53‘0‘0‘1‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
] 0 ‘o] ei \o\m‘o]o‘o\o\o‘o‘o\

Volume 2: Interruption Vector Descriptions 2:179

Name

Cause

Parameters

Notes

2:180

Lower-Privilege Transfer Trap vector (0x5e00)
Two trapping conditions transfer control to this vector:

* An attempt is made to transfer control to an unimplemented address, resulting in an
Unimplemented Instruction Address trap. See “Unimplemented Address Bits” on page 2:61.
» The PSR.Ip bit is 1, and a branch lowers the privilege level.
IA-32 instructions can not raise this trap.

Interruptions on this vector:

Unimplemented Instruction Address trap
Lower-Privilege Transfer trap

IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP — CR19)” on page 2:31 for a fur-
ther clarification of the ITP value for an unimplemented instruction address trap.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The ISR.code

contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the just-executed

instruction. The defined ISR bits are specified below.

If the trap is due to an Unimplemented Instruction Address trap:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 O

‘ 0 ’ 0 ‘0‘ fp trap code ‘0‘0‘1‘ss’tb‘lp‘fp‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 [o] ei |ofni]irjo]o[o]o]o]o0]

If the trap is due to a Lower-Privilege Transfer trap:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

\ 0 0 0 \0\0\0\33]&;\1]0\
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o]m\n\o\o\o]o\o]o\

The Unimplemented Instruction Address trap can be the result of a taken branch, a taken chk, an
rfi, or the execution of a slot 2 instruction in a bundle at the last implemented address. The lower
privilege transfer trap is only taken on a branch demotion, and not an r fi return.

Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Taken Branch Trap vector (0x5f00)

A taken branch was executed, and the PSR.tb bit is 1. IA-32 instructions can not raise this trap,
IA-32 taken branch traps are delivered on the IA-32_Exception(Debug) vector.

The Taken Branch trap is not taken on an r f i instruction.
Interruptions on this vector:
Taken Branch trap
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP — CR19)” on page 2:31 for a fur-
ther clarification of the IIP value for an unimplemented instruction address trap.

ISR — The ISR.ei bits are set to indicate which instruction caused the exception. The ISR.code
contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 110 9 8 7 6 5 4 3 2 1 0

| 0 | 0 | 0 [oJofofss|1]o]o]
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 \o\ ei \o\ni\ir\o\o\o\o\o\o\

Volume 2: Interruption Vector Descriptions 2:181

Name

Cause

Parameters

2:182

intel.

Single Step Trap vector (0x6000)

An instruction was successfully executed, and the PSR.ss bit is 1. For IA-32 instruction set, this
condition is delivered on the IA_32_Exception(Debug) vector; see Chapter 9, "IA-32 Interruption
Vector Descriptions". IA-32 instructions can not raise this trap, IA-32 single step events are
delivered on the IA-32_Exception(Debug) vector.

The Single Step trap is not taken on an r fi instruction.
Interruptions on this vector:
Single Step trap
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.

ISR — The ISR.ci bits are set to indicate which instruction caused the exception. The ISR.code
contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

| 0 | 0 | 0 [oJofof1]o]o]0]
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
\ 0 ‘O‘ei ‘O’ni‘ir‘O‘O‘O’O‘O‘O‘

Volume 2: Interruption Vector Descriptions

intel.

Name

Cause

Parameters

Notes

IA-32 Exception vector (0x6900)
A fault or trap was raised while executing from the IA-32 instruction set.

Interruptions on this vector:

[A-32 Instruction Debug fault
[A-32 Code Fetch fault

IA-32 Instruction Length > 15 bytes fault
IA-32 Device Not Available fault
[A-32 FP Error fault

TA-32 Segment Not Present fault
IA-32 Stack Exception fault
IA-32 General Protection fault
IA-32 Divide by Zero fault
[A-32 Alignment Check fault
[A-32 Bound fault

IA-32 INTO trap

IA-32 Breakpoint (INT 3) trap
[A-32 Data Breakpoint trap
IA-32 Taken Branch trap

[A-32 Single Step trap

IIP, IPSR, ITIPA, IFS — are defined; refer to page 2:145 for a detailed description.
IFA —is undefined. The faulting IA-32 address is contained in IIPA.

ISR — ISR.vector contains the IA-32 exception vector number. ISR.code contains the IA-32 error
code for faults or a trap code listing concurrent trap events for traps.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

’ 0 vector ’ error_code/trap_code ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 [o[o Jofofofofofofo]o[x]

See Chapter 9, "IA-32 Interruption Vector Descriptions" for complete details on each [A-32
Exception and for error code and trap code definition.

Volume 2: Interruption Vector Descriptions 2:183

intel.

Name IA-32 Intercept vector (0x6a00)

Cause An intercept fault or trap was raised while executing from the IA-32 instruction set. This vector
handles all the IA-32 intercepts described in Chapter 9, "IA-32 Interruption Vector Descriptions".

Interruptions on this vector:

IA-32 Invalid Opcode fault

IA-32 Instruction Intercept fault
IA-32 Locked Data Reference fault
IA-32 System Flag Intercept trap
[A-32 Gate Intercept trap

Parameters IIP, IPSR, IIPA, IFS — are defined; refer to page 2:145 for a detailed description.
[IM — 64-bit information describing the cause of the intercept.
ISR — ISR.vector contains a number specifying the type of intercept. ISR.code contains the [A-32

specific intercept information or a trap code listing concurrent trap events for traps.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

‘ 0 ‘ intercept_number intercept_code/trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 [o] o Jofofe]ofo]ofr]w]o]

Notes See Chapter 9, "IA-32 Interruption Vector Descriptions" for complete details on each 1A-32

Intercept and for the intercept code and trap code definition.

2:184 Volume 2: Interruption Vector Descriptions

Name

Cause

Parameters

Notes

IA-32 Interrupt vector (0x6b00)

An IA-32 software interrupt trap was executed. This vector handles all the IA-32 software
interrupts described in Chapter 9, "TA-32 Interruption Vector Descriptions".

Interruptions on this vector:
IA-32 Software Interrupt (INT) trap
IIP, IPSR, ITPA, IFS — are defined; refer to page 2:145 for a detailed description.
ISR — ISR.vector contains the IA-32 defined interruption vector number. ISR.code contains a trap

code listing concurrent trap events.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

’ 0 vector trap_code ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
| 0 [o] o Jofofo]ofo]ofo]ofo]

See Chapter 9, "TA-32 Interruption Vector Descriptions" for complete details on this vector and the
trap code definition.

Volume 2: Interruption Vector Descriptions 2:185

2:186

Volume 2: Interruption Vector Descriptions

IA-32 Interruption Vector Descriptions 9

This section gives detailed description of all possible IA-32 exceptions, interrupts and intercepts
that can occur during IA-32 instruction set execution in the Itanium System Environment.
Interruption resources not noted below are undefined after the interruption. For all cases where an
interruption is taken out of the IA-32 instruction set, IPSR.is is set to 1.

9.1 IA-32 Trap Code

The following trap code is defined for concurrent traps reported during IA-32 instruction set
execution. There is a bit for every possible concurrent trap condition.
Figure 9-1. 1A-32 Trap Code

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 \bs\bz\m\bo\ss\tb] 0 \

Figure 9-2. IA-32 Trap Code

Bit Name Description
2 tb taken branch trap, set if an IA-32 branch is taken and branch traps are enabled
(PSR.tbis 1).
3 Ss single step trap, set after the successful execution of every I1A-32 instruction if PSR.ss
or EFLAGfis 1.
4-7 b0 to b3 Data breakpoint trap due to a match with the corresponding Intel® Itanium® data

breakpoint registers. Each bit indicates a match with the corresponding DBR
registers; b0=DBRO0/1, b1=DBR2/3, b2=DBR4/5, b3=DBR6/7. Zero, one or more bits
may be set. These bits accumulate data breakpoint register matches that occurred
during the duration of executing one 1A-32 instruction. In order to be reported, the
DBR register address and mask registers must precisely match the IA-32 data
memory reference address, and the DBR read, write bits match the type of memory
transaction, and the DBR privilege level mask match the value in PSR.cpl.

9.2 IA-32 Interruption Vector Definitions

Following are the definitions of IA-32 exceptions, interrupts and intercepts that can occur during
[A-32 instruction set execution in the Itanium system environment.

Volume 2: IA-32 Interruption Vector Descriptions 2:187

intel.

Name IA_32_Exception (Divide) — Divide Fault

Cause IA-32 IDIV or DIV instruction attempted a divide by zero operation. Refer to the I4-32 Intel®
Architecture Software Developers Manual for a complete definition of this fault.

Parameters IIP — virtual IA-32 instruction address zero extended to 64-bits

ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector — 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

0 \ 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0\ 0 \o\o\o\o\o\o\o\o\o\

2:188 Volume 2: 1A-32 Interruption Vector Descriptions

Name IA_32_Exception (Debug) — Code Breakpoint Fault

Cause The Itanium architecture debug facilities triggered an IA-32 code breakpoint fault on a [A-32
instruction fetch and PSR.id and EFLAG:f are 0. Refer to the I4-32 Intel® Architecture Software
Developer’s Manual for a complete definition of this fault.

Parameters IIP — virtual IA-32 instruction address zero extended to 64-bits
ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.
ISR.vector — 1

ISRx—-1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1413 12 1110 9 8 7 6 5 4 3 2 1 0
1 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0 o JofoJofo]ofo]ofo]1]

Volume 2: IA-32 Interruption Vector Descriptions 2:189

Name

Cause

Parameters

2:190

intel.

IA_32_Exception (Debug) — Data Breakpoint, Single Step, Taken Branch Trap

The Itanium architecture debug facilities triggered an IA-32 data breakpoint, single-step or branch
trap. In the Itanium System Environment, IA-32 Mov SS or Pop SS single step and data breakpoint
traps are NOT deferred to the next instruction. Refer to the /4-32 Intel® Architecture Software
Developer's Manual for a complete definition of this trap.

ITPA — virtual address of the trapping IA-32 instruction (zero extended to 64-bits) if there was a
taken branch trap. Otherwise, if there was no taken branch trap (data breakpoint and/or single step)
IIPA is set to the same value as IIP.

IIP — next Itanium instruction address or the virtual IA-32 instruction address zero extended to
64-bits.

ISR.vector — 1

ISR.code — Trap Code, indicates Concurrent Single Step, Taken Branch, Data Breakpoint Trap
events

31 30 29 28 27 26 25 24 23 22 21 20 19 18 177 16 1514 13 12 110 9 8 7 6 5 4 3 2 1 0
1 ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o\ 0 \o\o\o\o\o\o\o\o\o\

Volume 2: 1A-32 Interruption Vector Descriptions

intel.

Name IA_32_Exception (Break) — INT 3 Trap

Cause I1A-32 breakpoint instruction (INT 3) triggered a trap. Refer to the 14-32 Intel® Architecture
Software Developers Manual for a complete definition of this trap.

Parameters 1IPA — trapping virtual IA-32 instruction address zero extended to 64-bits
ITP — next virtual IA-32 instruction address zero extended to 64-bits
ISR.vector — 3
ISR.code —Trap Code, indicates Concurrent Single Step condition
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0
3 ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o\ 0 \o\o\o\o\o\o\o\o\o\

Volume 2: IA-32 Interruption Vector Descriptions 2:191

Name IA_32_Exception (Overflow) — Overflow Trap

IA-32 INTO instruction execution when EFLAG.of is set to one. Refer to the 14-32 Intel®

Cause
Architecture Software Developer s Manual for a complete definition of this trap.

Parameters IIPA — trapping virtual IA-32 instruction address zero extended to 64-bits

IIP — next virtual IA-32 instruction address zero extended to 64-bits

ISR.vector — 4

ISR.code — Trap Code, indicates Concurrent Single Step

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

4 ‘ trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o\ 0 \o\o\o\o\o\o\o\o\o\

2:192 Volume 2: 1A-32 Interruption Vector Descriptions

intel.

Name

Cause

Parameters

IA_32_Exception (Bound) — Bounds Fault

Failed IA-32 Bound check instruction. Refer to the I4-32 Intel® Architecture Software Developer’s
Manual for a complete definition of this fault.

IIP — virtual IA-32 instruction address zero extended to 64-bits
ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector — 5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1413 12 1110 9 8 7 6 5 4 3 2 1 0
5 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0] o JofoJofo]ofo]ofo]o]

Volume 2: IA-32 Interruption Vector Descriptions 2:193

intel.

Name IA_32_Exception (InvalidOpcode) — Invalid Opcode Fault

Cause All TA-32 invalid opcode faults are delivered to the IA-32_Intercept(Instruction) handler, including
IA-32 illegal, unimplemented opcodes, MMX technology and Streaming SIMD Extension
instructions if CR0.EM is 1, and Streaming SIMD Extension instructions if CR4.fxsr is 0. All
illegal IA-32 floating-point opcodes result in an IA-32_Intercept(Instruction) regardless of the state
of CRO.em.

2:194 Volume 2: 1A-32 Interruption Vector Descriptions

Name

Cause

Parameters

IA_32_Exception (DNA) — Device Not Available Fault

The processor executed an IA-32 ESC or floating-point instruction with CR0O.em is 1. Or an [A-32
WAIT, ESC, floating-point instruction, MMX technology or Streaming SIMD Extension
instruction is executed and CRO.ts bit is 1.

Refer to the I4-32 Intel® Architecture Software Developers Manual for a complete definition of
this fault.

IIP — virtual IA-32 instruction address zero extended to 64-bits
ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector — 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
7 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o o [ofo]o]ofofofo]o]o]

Volume 2: IA-32 Interruption Vector Descriptions 2:195

intel.

Name Double Fault
Cause IA-32 Double Faults (IA-32 vector 8) are not generated by the processor in the [tanium System
Environment.

2:196 Volume 2: 1A-32 Interruption Vector Descriptions

Name Invalid TSS Fault

Cause IA-32 Invalid TSS Faults (IA-32 vector 10) are not generated in the Itanium System Environment.

Volume 2: IA-32 Interruption Vector Descriptions 2:197

Name

Cause

Parameters

2:198

intel.

IA_32_Exception (NotPresent) — Segment Not Present Fault

Generated when the processor detects the Present-bit of the memory segment descriptor is zero
during an IA-32 segment load or far control transfer instructions. Refer to the /4-32 Intel®
Architecture Software Developer s Manual for a complete definition of this fault and error codes.

IIP — virtual IA-32 instruction address zero extended to 64-bits

ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector — 11

ISR.code — IA-32 defined error code. See I4-32 Intel® Architecture Softiware Developer’s Manual.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 141312 1110 9 8 7 6 5 4 3 2 1 0
1" ‘ error_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0\ 0 \o\o\o\o\o\o\o\o\o\

Volume 2: 1A-32 Interruption Vector Descriptions

Name

Cause

Parameters

IA_32_Exception (StackFault) — Stack Fault

IA-32 defined set of stack segment fault conditions detected during stack segment load operations
or memory references relative to the stack segment, refer to the 74-32 Intel® Architecture Software
Developer’s Manual for a complete list of all IA-32 faulting conditions. Stack faults can also be
generated when the processor detects an inconsistent stack segment register descriptor value during
an [A-32 stack reference instruction (e.g. PUSH, POP, CALL, RET,). See section “Segment
Descriptor and Environment Integrity” for a list of possible inconsistent register descriptor
conditions.

IIP — virtual TA-32 instruction address zero extended to 64-bits
ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.
ISR.vector — 12

ISR.code — IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is detected during a
memory reference relative to the stack segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
12 ‘ error_code or zero ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o\ 0 \o\o\o\o\o\o\o\o\o\

Volume 2: IA-32 Interruption Vector Descriptions 2:199

Name

Cause

Parameters

2:200

intel.

IA_32_Exception (GPFault) — General Protection Fault

1A-32 defined set of data and code segment fault conditions detected during data or code segment
load operations or memory references relative to code or data segments, refer to the /4-32 Intel®
Architecture Software Developer s Manual for a complete list of all IA-32 General Protection Fault
conditions. General Protection faults can also be generated when the processor detects an
inconsistent code or data segment register descriptor value during an IA-32 code fetch or data
memory reference. See section “Segment Descriptor and Environment Integrity” for a list of
possible inconsistent register descriptor conditions.

IIP — virtual TA-32 instruction address zero extended to 64-bits
ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.
ISR.vector — 13

ISR.code — IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is detected during a
memory reference relative to a code or data segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
13 ‘ error_code or zero ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o\ 0 \o\o\o\o\o\o\o\o\o\

Volume 2: 1A-32 Interruption Vector Descriptions

Name Page Fault
Cause IA-32 defined page faults (IA-32 vector 14) can not be generated in the Itanium System
Environment.

Volume 2: IA-32 Interruption Vector Descriptions 2:201

Name

Cause

Parameters

2:202

IA_32_Exception (FPError) — Pending Floating-point Error

An unmasked IA-32 floating-point exception is delivered on the next non-control IA-32
floating-point, MMX technology, WAIT, or j npe instruction trigger delivery of this exception.
Floating-point errors are delivered regardless of the state of CR0.ne in the Itanium System
Environment. IA-32 numeric exception delivery is not triggered by Itanium numeric exceptions or
the execution of Itanium numeric instructions. Refer to the 14-32 Intel® Architecture Software
Developer'’s Manual for a complete definition of this fault.

IIP — virtual IA-32 instruction address zero extended to 64-bits
ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.

FSR, FIR, FDR and FCR contain the IA-32 floating-point environment and exception information

ISR.vector — 16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
16 \ 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o [oJofofo]ofofo]o]o]

Volume 2: 1A-32 Interruption Vector Descriptions

Name I1A_32_Exception (AlignmentCheck) — Alignment Check Fault

Cause An IA-32 instruction performed an unaligned data memory reference while PSR.ac is 1, or
EFLAGac is | and CRO.am is 1 and the effective privilege level is 3. Refer to the /4-32 Intel®
Architecture Sofiware Developer s Manual for a complete definition of this fault.

Parameters IIP — virtual IA-32 instruction address zero extended to 64-bits
ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.
IFA — referenced virtual data address (byte granular) zero extended to 64-bits

ISR.vector — 17

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
17 \ 0 \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o JoJofofofofojofo]o]

Volume 2: IA-32 Interruption Vector Descriptions 2:203

intel.

Name Machine Check

Cause IA-32 Machine Check (IA-32 vector 18) is not generated in the Itanium System Environment.

2:204 Volume 2: 1A-32 Interruption Vector Descriptions

Name

Cause

Parameters

I1A_32_Exception (StreamingSIMD) — Streaming SIMD Extension Numeric Error Fault

An unmasked IA-32 Streaming SIMD Extension numeric error occurred. Numeric faults generated
on Streaming SIMD Extension instructions are reported precisely on the faulting Streaming SIMD
Extension instruction. Streaming SIMD Extension instructions do NOT trigger the report of any
pending [A-32 floating-point exceptions. Streaming SIMD Extension instructions always ignore
CRO.ne and the IGNNE pin. Refer to the /4-32 Intel® Architecture Software Developers Manual
for a complete definition of this fault.

IIP — virtual IA-32 instruction address zero extended to 64-bits

ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector — 19

31 30 29 28 27 26 25 24 23 22 21 2019181716‘15141312 1110 9 8 7 6 5 4 3 2 1 o‘
19 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o o [ofo]o]ofofofo]o]o]

Volume 2: IA-32 Interruption Vector Descriptions 2:205

Name

Cause

Parameters

2:206

intel.

IA_32_Interrupt (Vector #N) — Software Trap

The IA-32 INT n instruction forces an IA-32 interrupt trap. The IA-32 IDT is not consulted nor are
any values pushed onto a memory stack.

ITPA — trapping virtual IA-32 instruction address (points to the INT instruction) zero extended to
64-bits

IIP — next virtual IA-32 instruction address zero extended to 64-bits
ISR.vector — vector number
ISR.code — TrapCode, Indicates Concurrent Single Step Trap condition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
vector ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0\ 0 \o\o\o\o\o\o\o\o\o\

Volume 2: 1A-32 Interruption Vector Descriptions

Name

Cause

Parameters

IA_32_Intercept (Instruction) — Instruction Intercept Fault

Execution of unimplemented IA-32 opcodes, illegal opcodes or sensitive privileged IA-32
operating system instructions results in an instruction intercept. Intercepted opcodes include (but
are not limited to); CLTS, HLT, INVD, INVLPG, IRET, LIDT, LGDT, LLDT, LMSW, LTR, MOV
to CRs, MOV to/from DRs, RDMSR, RSM, SIDT, SGDT, SLDT, SMSW, WBINVD, WRMSR,
and all other unimplemented and illegal opcode patterns. If CR0O.em is 1, execution of all [A-32
MMX technology and [A-32 Streaming SIMD Extension instructions results in this intercept. If
CR4.FXSR is 0, execution of all IA-32 Streaming SIMD Extension instructions results in this
intercept. All illegal IA-32 floating-point opcodes result in an IA-32_Intercept(Instruction)
regardless of the state of CRO.em. Intercepted opcodes are nullified and alter no architectural state.

IIP — virtual IA-32 instruction address zero extended to 64-bits, points to the first byte of the
intercepted IA-32 opcode (including prefixes).

ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IIM — Opcode bytes, contains the first 8-bytes of the IA-32 instruction following all prefix bytes.
All prefix bytes are decoded and presented as a bitmask in the Intercept Code along with the prefix
length in bytes. Opcode bytes are loaded into IIM in the same format as encountered in memory
and as defined in the I4-32 Intel® Architecture Software Developer s Manual. The lowest memory
address byte is placed in byte 0 of IIM, higher memory address bytes are placed in increasingly
higher numbered bytes within [IM.

The 8-byte opcode loaded into I1IM is stripped of the following prefixes; lock, repeat, address size,
operand size, and segment override prefixes (opcode bytes 0xF3, 0xF2, 0xF0, 0x2E, 0x36, 0x3E,
0x26, 0x64, 0x65, 0x66, and 0x67). The 0x0OF opcode series prefix is not stripped from the opcode
bytes loaded into IIM. The opcode loaded into IIM includes all IA-32 opcode components,
including 1 to 3 bytes of opcode, mod r/m bytes, sib bytes and any possible immediates and/or
displacements.

If the opcode loaded in IIM is less than 8-bytes, the remainder higher order numbered bytes are set
to 0. If the opcode is larger than 8-bytes, bytes after the 8th byte (following all stripped prefixes)
are not reported. If required, emulation code must retrieve the extra opcode bytes by reading from
the memory locations specified by IIP.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

byte3 ‘ byte2 ‘ byte1 ‘ byteO ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ byte7 byte6 ‘ byte5 byte4 ‘

ISR.vector — 0, indicates instruction intercept.

ISR.code — Intercept Code indicates prefixes and prefix lengths.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 ‘ intercept_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o Jofofo]ofofo]o]o]o]

Figure 9-3 defines intercept codes for [A-32 instruction set intercepts. Intercept code fields are
defined by Table 9-1 and Table 9-2 on page 2:208.

Volume 2: IA-32 Interruption Vector Descriptions 2:207

Figure 9-3. 1A-32 Intercept Code

15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
0 ‘ seg ‘sp‘np‘rp‘lp‘as‘os‘o‘

len

Table 9-1. Intercept Code Definition

Table 9-2.

2:208

Bit Name Description

1 os Operand Size — (OperandSize Prefix XOR CSD.d bit). When 1, indicates the
effective operand size is 32-bits, when 0, 16-bits.

2 as Address Size — (AddressSize Prefix XOR CSD.d bit). When 1, indicates the effective
address size is 32-bits, when 0, 16-bits.

3 Ip Lock Prefix — If 1, indicates a lock prefix is present.

4 rp REP or REPE/REPZ Prefix — If 1, indicates a REP/REPE/REPZ prefix is in effect.

5 np REPNE/REPNZ Prefix — If 1, indicates a REPNE/REPNZ prefix is in effect.

6 sp Segment Prefix — If 1, indicates a Segment Override prefix is present.

79 seg Segment Value — Segment Prefix Override value, see Figure 9-2 for encodings. If
there is no segment prefixes this field is undefined.

12:15 len Length of Prefixes — Length of all prefix (in bytes) stripped from IIM. If there are no

prefixes this field has a value of zero.

Segment Prefix Override Encodings

Seg Value

Segment Prefix

ES Segment Override

CS Segment Override

SS Segment Override

DS Segment Override

FS Segment Override

||l W|IN| 2O

GS Segment Override

Volume 2: 1A-32 Interruption Vector Descriptions

intel.

Name

Cause

Parameters

IA_32_Intercept (Gate) — Gate Intercept Trap

If an IA-32 control transfer is initiated through a GDT/LDT descriptor that transfers control
through a Call Gate, Task Gate or Task Segment this interception trap is generated.

ITPA — trapping virtual IA-32 instruction address zero extended to 64-bits
IIP — next sequential virtual IA-32 instruction address zero extended to 64-bits

IFA — Gate Selector. The gate selector is loaded in [FA{15:0}.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
gate selector ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IIM — Gate, Task Gate or Task Segment Descriptor. The descriptor loaded in IIM adheres to the
[A-32 GDT/LDT memory format, where byte 0 of the descriptor is in [IM{7:0}.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
gate_descriptor{31:0} ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
gate_descriptor{63:32}

Table 9-3. Gate Intercept Trap Code Identifier

Instruction ISR.code{15:14}
CALL 00
JMP 01

ISR.vector — 1, indicates gate interception.
ISR.code — TrapCode, Indicates Concurrent Data Debug, taken Branch, and Single Step Events
ISR.code{15:14} — indicates whether CALL or JMP generated the trap. See Table 9-3 for details.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 ‘ ident ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o Jofofo]ofofo]o]o]o]

Volume 2: IA-32 Interruption Vector Descriptions 2:209

Name

Parameters

IA_32_Intercept (SystemFlag) — System Flag Trap
System Flag Intercept Traps are generated for the following conditions:

CLIL STIL, POPF, POPFD instructions. If the EFLAG.f bit changes state and CFLG.i is 1, or
EFLAGtf or EFLAG.ac change state, a System Flag intercept notification trap is delivered after the
instruction completes. IIM contains the previous value of EFLAG before the trapping instruction
executed. If IA-32 code does not have IOPL or CPL permission to modify the EFLAG bits, no
intercept is generated. This intercept trap condition can be used to provide virtual interrupt services,
and delay enabling of interrupts after the STI instruction.

MOV SS, POP SS instructions. After these instructions complete execution, a System Flag
intercept notification trap is delivered. This intercept trap condition can be used to inhibit
interrupts, and code breakpoints between Mov/Pop SS and the next instruction and to inhibit Single
Step and Data Breakpoint traps on the Mov, or Pop SS instruction.

IIP — next virtual IA-32 instruction address zero extended to 64-bits
ITPA — trapping virtual IA-32 instruction address zero extended to 64-bits
IIM — contains the previous EFLAG value before the trapping instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
old EFLAG

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ISR.vector — 2
ISR.code — Trap Code, indicates Concurrent Single Step Trap, Debug trap condition.

ISR.code{15:14} indicates which instruction generated the trap.

Table 9-4. System Flag Intercept Instruction Trap Code Instruction Identifier

2:210

Instruction ISR.code{15:14}
CLI 00
STI 01
POPF, POPFD 10
MOV/POP SS 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
2 ’ ident ‘ trap_code ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o Jofofo]ofofo]o]o]o]

Volume 2: 1A-32 Interruption Vector Descriptions

Name

Cause

Parameters

I1A_32_Intercept (Lock) — Locked Data Reference Fault

For IA-32 locked operations, if the DCR.Ic bit is 1, and an atomic operation to made to
non-write-back memory or to unaligned write-back memory that would result in a
read-modify-write sequence being performed externally under an external bus lock, the processor
raises a Locked Data Reference fault.

IIP — faulting virtual IA-32 instruction address zero extended to 64-bits

ITPA — virtual address of the faulting IA-32 instruction zero extended to 64-bits
IFA — faulting virtual data address (byte granular) zero extended to 64-bits
ISR.vector — 4

ISR.code — 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
4 | 0 |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
o] o Jofofo]ofofo]1[*]o]

Volume 2: IA-32 Interruption Vector Descriptions 2:211

2:212

Volume 2: 1A-32 Interruption Vector Descriptions

intel.

Itanium®-based Operating System
Interaction Model with IA-32
Applications 10

10.1

10.2

This section describes the [A-32 system execution model from the perspective of an Itanium-based
operating system interfacing with IA-32 code, while operating in the Itanium System Environment.
The main features covered are:

» JA-32 system and control register behavior
* JA-32 virtual memory support
* TA-32 fault and trap handling

¢ JA-32 instruction behavior

Instruction Set Transitions

Instruction set transitions are defined in “Instruction Set Modes.” Operating systems can disable
instruction set transitions (j npe and br . i a) by setting PSR.di to one. If PSR.di is one, execution of
jmpe or br. i a to IA-32 target results in a Disabled Instruction Set Transition Fault, and the
operation is nullified.

The processor also transitions into an Itanium-based operating system when 1A-32 privileged
system resources are accessed, on an interruption, or when the following conditions are detected:

* Instruction Interception — IA-32 system level privileged instructions are executed
» System Flag Interception — Various EFLAG system flags are modified, (e.g. AC, TF and
IF-bits)

* Gate Interception — control transfers are made through call gate, or transfers through a task
switch (TSS segment or Task Gate).

All software interrupts, external interrupts, faults, traps and machine checks transition the processor
to the Itanium instruction set, regardless of the state of PSR.di. IA-32 defined exceptions and
software interrupts are delivered to Itanium-based interruption handlers.

System Register Model

Registers are assigned the following conventions during transitions between 1A-32 and Itanium
instruction sets.

* TA-32 State: The register contains an IA-32 register during IA-32 instruction set execution.
Expected IA-32 values should be loaded before switching to the IA-32 instruction set. After
completion of IA-32 instructions, these registers contain the results of the execution of IA-32
instructions. These registers may contain any value during Itanium instruction execution

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:213

intel.

according to Itanium software conventions. Software should follow IA-32 and Itanium
software calling conventions for these registers.

Shared: Shared registers contain values that have similar functionality in either instruction set.
For example, all Itanium control registers, debug registers are used for memory references
(including 1A-32). The stack pointer (ESP) and instruction pointer (IP) are also shared.

Unmodified: These registers are not altered by IA-32 execution. Itanium-based code can rely
on these values not being modified during IA-32 instruction set execution. The register will
have the have the same contents when entering the IA-32 instruction set and when exiting the
TA-32 instruction set.

Undefined: Registers marked as undefined may be used as scratch areas for execution of [A-32
instructions. Software can not rely on the value of these registers across an instruction set
transition.

Table 10-1. IA-32 System Register Mapping

2:214

Intel®
Itanium® 1A-32 Reg Convention | Size Description
Reg
Application Registers
EFLAG EFLAG 32 IA-32 System/Arithmetic flags,
writes of some bits are conditioned by PSR.cpl and
EFLAG.iopl.
CSD CSD IA-32 state 64 1A-32 code segment (register format)
SSD SSD 1A-32 stack segment (register format)
CFLG CRO/CR4 64 IA-32 control flags, CRO=CFLG{31:0},
CR4=CFLG{63:32}2, writable at PSR.cpl=0 only.
Kernel Registers
KRO IOBASEP IA-32 virtual 1/O port Base register
KR1 TSSD¢ IA-32 state 64 IA-32 TSS descriptor (register format)
KR2 CR3/CR2¢ IA-32 CR2=KR2{63:32}, CR3=KR2{31:0}
KR3-7 unmodified Intel® Itanium® preserved registers
Banked General Registers
GR16-31 unmodified | Preserved for operating system use
Control Registers
DCR unmodified, Controls instruction set execution (including 1A-32)
shared
IFA, 1IP, Intel® Itanium® interruption registers may be overwritten
IPSR, ISR, on any TLB fault, interruption or exception encountered
IIM, 1IPA, shared 64 during IA-32 or Intel® Itanium® instruction set execution.
ITTR, IHA,
IFS, IVA
PTA shared Shared page table base for memory references
64 (including 1A-32)
IT™M shared shared Intel® Itanium® interruption/timer resources
LID, IVR, Intel® Itanium® external interrupt control registers are
TPR, EOI, used to generate, prioritize and delivery external
IRRO, IRR1, interrupts during IA-32 or Intel® Itanium® instruction set
IRR2, IRR3, shared 64 execution.
ITV, PMV,
LRRO, LRR1,
CMCV

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Table 10-1. IA-32 System Register Mapping (Continued)

10.3

Intel®
Itanium® IA-32 Reg Convention | Size Description

Reg
Translation Resources
TRs
TCs Al Intel® Itanium® virtual memory registers can be used

shared
RRs for memory references (including I1A-32).
PKRs
Debug Registers
IBRs dr0-3, dr7 shared 64 Intel® Itanium® debug registers are used memory
DBRs dr0-3. dr7 references (including 1A-32).
Performance Monitors
PMCs shared 64 Intel® Itanium® performance monitors measure
performance events (including IA-32).

PMDs shared 64 reflect performance monitor results of execution

(including 1A-32)

a. 1A-32 MOV from CRO and CR4 return the value in the CFLG register.

b. The IOBase register is used by IN/OUT instructions. If INOUT operations are disabled via CFLG.io, this
register can be used for other values.

c. The TSSD registers are used by IN/OUT instructions for I/O permission via CFLG.io. If access to the TSS is
disabled, these registers can be used for other values.

d. The Mov from CR2,CRa3 instructions return the value contained in KR2.

IA-32 System Segment Registers

System Descriptors are maintained in an unscrambled format shown in Figure 10-1 that differs
from the TA-32 scrambled memory descriptor format. The unscrambled register format is designed
to support fast conversion of IA-32 segmented 16/32-bit pointers into virtual addresses by
Itanium-based code. IA-32 segment register load instructions unscramble the GDT/LDT memory
format into the descriptor register format on a segment register load. Itanium-based software can
also directly load descriptor registers provided they are properly unscrambled by software. When
Itanium-based software loads these registers, no data integrity checks are performed at that time if
illegal values are loaded in any fields. For a complete definition of all bit fields and field semantics
refer to the 14-32 Intel® Architecture Software Developers Manual.

Figure 10-1. IA-32 System Segment Register Descriptor Format (LDT, GDT, TSS)

63 62

60 59 58 57 56 55

52 51

32 31

9] g

[p] dol]

stype ‘

lim{19:0} \ base{31:0}

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS)

base

31:0

Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for |A-32 instruction set memory references.
This value is ignored for Intel® Itanium® instruction set memory references.

lim 51:32

Segment Limit. Contains the maximum effective address value within the segment. See the
IA-32 Intel® Architecture Software Developer’s Manual for details and segment limit fault
conditions.

stype

55:52

Segment Type identifier. See the /1A-32 Inte/® Architecture Software Developer’s Manual for
encodings and definition.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

2:215

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS) (Continued)

10.3.1

2:216

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 | Descriptor Privilege Level. The DPL is checked for memory access permission for 1A-32
instruction set memory references.

p 59 Segment Present bit. If 0, and an 1A-32 memory reference uses this segment an
IA_Exception(GPFault) is generated.

ig 62:60 | Ignored - For the LDT/GDT/TSS descriptors reads of this field return the last value written by

Itanium®-based code. Reads of this field return zero if written by IA-32 descriptor
loads.These field is ignored by the processor during IA-32 instruction set execution. This
field may have a future use and should be set to zero by software.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | OxFFF for IA-32
instruction set memory references.

System segment selectors and descriptors for GDT and LDT are maintained in Itanium general
registers to support segment register loads used extensively by segmented 16-bit code. On the
transition into the IA-32 instruction set, GDT/LDT descriptor table must be initialized if [A-32
code will perform protected mode segment register loads or far control transfers.

Within the IA-32 System Environment, GDT and LDT are considered privileged operating system
segmentation resources. However, in the Itanium System Environment, applications can transition
between the [A-32 and Itanium instruction set and bypass IA-32 segmentation. [tanium user level
instructions can also directly modify all selectors and descriptors including GDT and LDT. An
operating system should either protect memory with virtual memory management mechanisms
defined by the Itanium architecture or disabled application level instruction set transitions. Within
the Itanium System Environment, GDT/LDT memory spaces must be mapped into user space,
since supervisor overrides for accesses to GDT/LDT are disabled.

The TSSD descriptor points to the I/O Permission Bitmap. If CFLG.io is 1, IN, INS, OUT, and
OUTS consult the TSSD 1/0 permission bitmap as defined in the 14-32 Intel® Architecture
Software Developer’s Manual. If CFLG.io is 0, the TSSD I/O permission bitmap is not checked.
See “I/O Port Space Model” for details on I/O port permission and for TLB based access control.
The TSSD register is not used within the Itanium System Environment to support task switches, or
interlevel control transfers. If the TSSD is used for I/O Permissions, Itanium-based operating
system software must ensure that a valid 286 or 386 Task State Descriptor is loaded, otherwise IN/
OUT operations to the TSSD 1/O permission bitmap will result in undefined behavior.

The IDT descriptor is not supported or defined within the Itanium System Environment.

IA-32 Current Privilege Level

PSR.cpl is the current privilege level of the processor for instruction execution (including 1A-32).
PSR.cpl is used by the processor for all IA-32 descriptor segmentation and paging permission
checks. PSR.cpl is a secured register. Typical IA-32 processors used SSD.dpl as the official
privilege level of the processor. Since, SSD.dpl is not secured from user modification, processor
implementations must base all privilege checks and state backups based on PSR.cpl.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.3.2

IA-32 System EFLAG Register

The EFLAG (AR24) register is made of two major components, user arithmetic flags (CF, PF, AF,
ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None of
the arithmetic or system flags affect [tanium instruction execution. The arithmetic flags are used by
the TA-32 instruction set to reflect the status of IA-32 operations, control IA-32 string operations,
and control branch conditions for IA-32 instructions. System flags are typically managed by an
operating system and are used to control the overall operations of the processor. System flags are
broken into two categories, system flags that control IA-32 instruction set execution behavior and
virtualizable system flags. The NT system flag shown in bold font in Figure 10-2 is virtualized.

Figure 10-2. IA-32 EFLAG Register

10.3.2.1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0
id ‘wp‘wf‘ac‘vm‘rf‘o‘nt‘ iopl ‘of‘df‘|f‘tf‘sf‘zf‘0‘af‘0‘pf‘1‘cf‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 3

System flags AC, TF, RF, VIF, VIP, IOPL and VM directly control the execution of [A-32
instructions. These bits do not control any Itanium instructions. See Table 10-3 for a complete
definition these bits.

The NT bit does not directly control the execution of any IA-32 or Itanium instructions. All IA-32
instructions that modify this bit is intercepted (e.g. IRET, Task Switches)

When Itanium-based software loads this application register (AR24), a Reserved Register/Field
fault will be raised if a non-zero value is written into bits listed as reserved.

Virtualized Interrupt Flag

To provide for virtualization of IA-32 code, the IF bit is virtualizable in the context of an operating
system. Interrupts are enabled for IA-32 instructions, if (PSR i and (~CFLGif or
EFLAG i f)) is true. For Itanium-based code, interrupts are enabled if PSR.iis 1.

An optional System Flag intercept trap can be generated if CFLG.ii is 1, and the IF-flag changes
state due to [A-32 code executing CLI, STI, or POPF. See “IA-32 Control Registers” for CFLG
details. Using this model, virtualization code can set CFLG.if to 0 and CFLG.ii to 0, [A-32
instruction set modifications of EFLAG.if does not affect actual interrupt masking, therefore no
notification events need be sent to virtualizing software. When virtualization code, detects and
queues an external interrupt for delivery into a virtualized IA-32 operating system/application, it
can set CFLG.ii tol to force notification the next time the IF-bit changes state, indicating 1A-32
code is either opening or closing the interrupt window. Setting CFLG.if to 1, allows for direct IA-32
control of interrupt masking.

Virtualization of the IF flag is independent of VME extensions. Both mechanisms can be used
independently, see the [4-32 Intel® Architecture Software Developers Manual for the complete
VME definition.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:217

Table 10-3. IA-32 EFLAG Field Definition

EFLAG?

Bits

Description

EFLAG.cf

0

IA-32 Carry Flag. See the /A-32 Intel® Architecture Software Developer’s Manual for
details.

Ignored - Writes are ignored, reads return one for I1A-32 and Intel® Itanium®

instructions.

3,5,
15

Ignored - Writes are ignored, reads return zero for IA-32 and Intel® Itanium®

instructions. Software should set this bits to zero.

EFLAG.pf

IA-32 Parity Flag. See the IA-32 Intef® Architecture Software Developer’s Manual for
details.

EFLAG.af

IA-32 Aux Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.zf

IA-32 Zero Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.sf

IA-32 Sign Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.tf

IA-32 Trap Flag- In the Intel® Itanium® System Environment, 1A-32 instruction single
stepping is enabled when EFLAG.tfis 1 or PSR.ss is 1. EFLAG.tf does not control
single stepping for Intel® Itanium® instruction set execution. When single stepping is
enabled, the processor generates a |IA-32_Exception(Debug) trap event after the
successful execution of each 1A-32 instruction. If EFLAG.f is modified by the POPF
or POPFD instruction an |A-32_Intercept(SystemFlag) trap is raised. See the /A-32
Intel® Architecture Software Developer’s Manual for details on this bit.

EFLAG.if

IA-32 Interruption Flag. In the Intel® Itanium® System Environment, when PSR.i and
(~CFLG.if or EFLAG.If) is 1, external interrupts are enabled during |1A-32 instruction
set execution, otherwise external interrupts are held pending. If CFLG.if is 1,
modification of the EFLAG.if directly affects external interrupt enabling. If CFLG.if is O,
EFLAG.if does not affect interrupt enabling. The IF-bit does not affect external
interrupt enabling for Intel® Itanium® instructions nor NMI interrupts.

The IF bit can be modified by IA-32 and Itanium®-based code only when PSR.cpl is
less than or equal to EFLAG.iopl. If PSR.cpl is greater than EFLAG.iopl, writes to the
IF-bit are silently ignored.

If CFLG.ii is 1, successful modification of the IF-bit by CLI, STI, or POPF results in an
IA-32_Intercept(SystemFlag) trap, otherwise the IF-bit is modified without
interception. Modification of this bit by Intel® Itanium® instructions does not result in
an intercept. See the IA-32 Intel® Architecture Software Developer’s Manual for
details on this bit.

EFLAG.df

10

IA-32 Direction Flag. See /A-32 Inte/® Architecture Software Developer’s Manual for
details.

EFLAG.of

11

IA-32 Overflow Flag. See IA-32 Intef® Architecture Software Developer’s Manual for
details.

EFLAG.iopl

13:12

IA-32 In/Out Privilege Level, controls accessibility by IA-32 IN/OUT instructions to the
I/O port space and permission to modify the IF-bit for Intel® Itanium® and 1A-32
instructions. If PSR.cpl > IOPL, permission is denied for IA-32 IN/OUT instructions,
and modifications of EFLAG.if by either I1A-32 or Intel® Itanium® instructions are
ignored. IOPL can only be modified by IA-32 or Intel® Itanium® instructions executing
at privilege level 0, otherwise modifications of this bit are silently ignored. This bit is
supported in both the IA-32 and Intel® Itanium® System Environments. See the /A-32
Intel® Architecture Software Developer’s Manual for details on this bit.

EFLAG.nt

14

IA-32 Nested Task switch. In the IA-32 System Environment, indicates a nested task
flag when chaining interrupted and called 1A-32 tasks. |A-32 task switches are not
directly supported in the Intel® Itanium® System Environment, since IRET,
interruptions, calls, and jumps through task gates are always intercepted. EFLAG.nt
can be modified by the POPF or POPFD instruction in both system environments.
Modification of EFLAG.nt by POPF and POPFD does not result in a System Flag
Intercept. See the IA-32 Intel® Architecture Software Developer’s Manual for details
on this bit.

2:218

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Table 10-3. IA-32 EFLAG Field Definition (Continued)

EFLAG?

Bits

Description

EFLAG.if

16

IA-32 Resume Flag. In the Intel® Itanium® System Environment, when EFLAG.rf or
PSR.id is 1, code breakpoint faults are temporarily disabled for one 1A-32 instruction,
so that IA-32 instructions can be restarted after a code breakpoint fault without
causing another code breakpoint fault. EFLAG.rf does not affect Intel® Itanium®
Instruction Debug faults. After the successful execution of each IA-32 instruction,
PSR.id and EFLAG.f are cleared to zero. On entry into the 1A-32 instruction set via
rfi orbr.ia, EFLAG.rf and PSR.id is not cleared until the successful completion
of the first (target) IA-32 instruction. j npe clears the PSR.id and the EFLAG.(f bit.
EFLAG.rfis set to 1 if a repeat string sequence (REP MOVS, SCANS, CMPS, LODS,
STOS, INS, OUTS) takes an external interrupt, trap or fault before the final iteration.
EFLAG.rf and PSR.id are set to 0 after the last iteration. For all other cases, external
interrupts, faults, traps, and intercept conditions EFLAG.rf is unmodified.

The RF-bit can be modified by Intel® Itanium® instructions running at any privilege
level. 1A-32 instructions cannot directly modify the RF-bit or PSR.id. Specifically,
POPF cannot modify the RF-bit and execution of IRET is always intercepted in the
Intel® Itanium® System Environment. See the /IA-32 Inte/® Architecture Software
Developer’s Manual for details on this bit.

EFLAG.vm

IA-32 Virtual Mode 86. When 1, IA-32 instructions execute in the VM86 environment.
This bit can only be modified by |1A-32 or Intel® Itanium® instructions executing at
privilege ring 0, otherwise modifications of this bit by Intel® Itanium® or 1A-32
instructions is silently ignored. Itanium®-based software is responsible for initializing
the processor with the required VM86 register state before transferring to 1A-32 VM86
environment. This bit is supported in both the 1A-32 and Intel® Itanium® System
Environments. See the IA-32 Inte/® Architecture Software Developer’s Manual for
complete details of the VM86 environment. Software must ensure the processor is in
IA-32 Protected Mode when setting the VM bit.

EFLAG.ac

IA-32 Alignment Check. In the Intel® Itanium® System Environment, 1A-32
instructions raise an 1A-32_Exception(AlignmentCheck) fault if an unaligned
reference is performed and PSR.ac is 1 or (CFLG.am is 1 and EFLAG.acis 1 and
memory is accessed at an effective privilege level of 3). Neither EFLAG.ac, CRO.am
nor privilege level affect alignment check faults for Intel® Itanium® instructions. See
“Memory Alignment” for details on alignment conditions. This bit can be modified by
IA-32 and Intel® Itanium® instructions at any privilege level. Modification of this bit by
the POPF instructions results in an I1A-32_Intercept(SystemFlag) trap. See the /A-32
Inte/® Architecture Software Developer’s Manual for details on this bit.

EFLAG.vif

19

IA-32 Virtual Interrupt Flag. See VME extensions in the IA-32 Inte/® Architecture
Software Developer’s Manual for details. Affects execution of POPF, PUSHF, CLI and
STI. This bit is supported in both the IA-32 and Intel® Itanium® System Environments.
A IA-32 Code Fetch fault (GPFault(0)) is generated on every 1A-32 instruction
(including the target of rfi and br.ia), if the following condition is true:

EFLAG.vip & EFLAG.vif & CFLG.pe & PSR.cpl==3 & (CFLG.pvi | (EFLAG.vm &
CFLG.vme))

EFLAG.vip

20

IA-32 Virtual Interrupt Pending. See VME extensions in the IA-32 Intel® Architecture
Software Developer’s Manual for programming details. Affects execution of POPF,
PUSHF, CLI and STI. This bit is supported in both the IA-32 and Intel® Itanium®
System Environments.

EFLAG.id

21

IA-32 Identifier bit, can be written and read by IA-32 instructions, indicates 1A-32
CPUID instruction is supported. This bit is supported in both the 1A-32 and Intel®
Itanium® System Environments.

63:22

reserved must be set to zero.

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits
alter the behavior of Itanium® instruction set execution.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:219

10.3.3 1A-32 System Registers

TA-32 system registers such as CR3, CR2, debug registers, performance counters. IA-32 control
registers do not affect execution of Itanium instructions. All IA-32 privileged instructions that
access prior [A-32 system registers are intercepted.

10.3.3.1 IA-32 Control Registers

IA-32 control registers CR0O and CR4 are mapped into the Itanium application register CFLG
(AR27). TA-32 control bits, shown in Figure 10-3, only control execution of the IA-32 instruction
set. Additional CRO bits are defined in CFLG to control virtualization of IA-32 code (namely the
10 and IF bits) as shown in Figure 10-3. CFLG is readable by Itanium-based code at all privilege
levels but can only be written at privilege level 0, otherwise a Privileged Register fault is generated.
When Itanium-based software loads this application register (AR24), a Reserved Register/Field
fault will be raised if a non-zero value is written into bits listed as reserved.

Figure 10-3. Control Flag Register (CFLG, AR27)

31 30 29 28272625242322212019 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0
PG|cD|NW| ignored (setto0) [Am]ig|wP] ignored (set to 0) | | 1F [10 [NE|ET[TS|EM|MP] PE |
63 62 61 60595857565554535251 50 49 48 4746454443 42 41 40 39 38 37 36 35 34 33 32

e e M <X v el oelceprepseoelrsofvive

« State in italics is virtualized. This state has no impact on a [A-32 or Itanium instruction set
execution.

+ State in bold only affects IA-32 instruction set execution, [tanium instruction execution is not
affected.

Table 10-4 defines all IA-32 control register state and the behavior of each bit in the Itanium
System Environment.

Table 10-4. IA-32 Control Register Field Definition

. Intel® Itanium® . o
Bit State Bit Description
CRO CFLG{31:0} CRO: IA-32 Mov to CRO result in a instruction interception fault. Mov from CRO
returns the value contained in CFLG{31:0}. Modification of CFLG{31:0} by Intel®
Itanium® instructions only alters the CRO state, no side effects (such as TLB flushes)
occur.
CRO.PE CFLG.pe 0 Protected Mode Enable: This bit determines whether the processor operates in

1A-32 Protected Mode or Real Mode. This bit affects only 1A-32 instruction set
execution, Intel® Itanium® operations are not affected by this bit. Modification of this
bit by Itanium®-based code does have NOT any side effects such as flushing the
TLBs. This bit is supported in both the IA-32 and Intel® Itanium® System
Environments. See IA-32 Intef® Architecture Software Developer’s Manual for
details on this bit and the Protected Mode environment.

CRO.MP CFLG.mp 1 Monitor co-Processor: When CFLG.ts is 1 and CFLG.mp is 1, execution of IA-32
FWAIT/WAIT instructions results in an Device Not Available fault. This bit is ignored
by Intel® Itanium® floating-point instructions. This bit is supported in both 1A-32 and
Intel® Itanium® System Environments. See the /IA-32 Intel® Architecture Software
Developer’s Manual for details on this bit.

2:220 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Bit

Intel® Itanium®

State

Bit

Description

CRO.EM

CFLG.em

Emulation: When CFLG.em is set, execution of IA-32 ESC and floating-point
instructions generates an IA-32_exception(DNA) fault. When CFLG.em is 1,
execution of IA-32 MMX technology or Streaming SIMD Extension instructions
results in an 1A-32_Intercept (Instruction) fault. This bit does not affect Intel®
Itanium® floating-point instructions. This bit is supported in both the 1A-32 and
Intel® Itanium® System Environments. See IA-32 Intef® Architecture Software
Developer’s Manual for details on this bit.

CRO.TS

CFLGts

Task Switched: When CFLGits is 1, execution of an IA-32 ESC, floating-point
instruction, MMX technology or Streaming SIMD Extension instruction results in a
IA-32_Exception(DNA) fault. When CFLG.ts is 1 and CFLG.mp is 1, execution of
IA-32 FWAIT/WAIT instructions results in an 1A-32_Exception(DNA) fault. This bit is
ignored by Intel® Itanium® instructions. This bit is supported in both the I1A-32 and
Intel® Itanium® System Environments. See IA-32 Intef® Architecture Software
Developer’s Manual for details on this bit.

CRO.ET

CFLG.et

Extension Type: ET is ignored since i387 co-processor instructions are supported.
This bit is reserved on all Pentium processors. Reads always return 1. This bit is
supported in both the IA-32 and Intel® Itanium® System Environments.

CRO.NE

CFLG.ne

Numeric Error: Numeric errors are always enabled in the Intel® Itanium® System
Environment. The NE bit and the IGNNE# pin are ignored by the processor and the
FERR# pin is not asserted for any numeric errors on 1A-32 or Intel® Itanium®
floating-point instructions.

In the 1A-32 System Environment, this bit is supported as defined in the /A-32 Intef®
Architecture Software Developer’s Manual.

CFLG.io

1/0 Enable: If CFLG.io is 1 and CPL>IOPL, IA-32 IN, INS, OUT, OUTS instructions
consulted the TSS for I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not referenced). This
bit always returns zero when read by the 1A-32 Mov from CRO instruction. This bit is
not defined in the IA-32 System Environment.

CFLG.if

IF Enable: When CFLG.if is 1, EFLAG.if can be used to enabled or disable external
interrupts for IA-32 instructions. If CFLG.if is 0, EFLAG.if does not control external
interrupt enabling. External interrupts are enabled for the IA-32 instruction set by if
PSR.i and (~CLFG.if or EFLAG.if). This bit always returns zero when read by the
IA-32 Mov from CRO instruction. This bit is not defined in the I1A-32 System
Environment.

CFLGiii

IF Intercept: When CFLGiii is 1, successful modification of the EFLAG.if bit by IA-32
CLI, STI or POPF instructions result in a IA-32_Intercept(SystemFlag) trap. This bit
always returns zero when read by the I1A-32 Mov from CRO instruction. This bit is not
defined in the IA-32 System Environment.

ignored

9:15,
17,
19:28

Ignored - May have a possible future use. Software should set these fields to zero.

CRO.WP

CFLG.wp

16

Write Protect: This bit is ignored in the Itanium® System Environment. In the 1A-32
System Environment, WP controls supervisor write-protection for IA-32 paging. See
IA-32 Intel® Architecture Software Developer’s Manual for details on this bit.

CR0.AM

CFLG.am

18

Alignment Mask: For IA-32 instructions an 1A-32_Exception(AlignmentCheck) fault
is generated on a reference to an unaligned data memory operand if PSR.ac is 1 or
(CFLG.amis 1 and EFLAG.ac is 1 and memory is accessed at an effective privilege
level of 3). Neither EFLAG.ac, CR0.am nor privilege level affect alignment check
faults for Itanium® instructions. This bit is supported in both the IA-32 and Itanium
System Environments. See the IA-32 Inte/® Architecture Software Developer’s
Manual for details on this bit.

CRO.NW

CFLG.nw

29

CRO0.CD

CFLG.cd

30

Not Write-through and Cache Disable: These bits are ignored in the Itanium®

System Environment. Cacheability is controlled virtual memory attributes. These bits
are provided as storage for compatibility purposes.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:221

Table 10-4. IA-32 Control Register Field Definition (Continued)

Bit

Intel® Itanium®

State

Bit

Description

CRO.PG

CFLG.pg

31

Paging Enable: In the Intel® Itanium® System Environment, this bit is ignored for
IA-32 and Intel® Itanium® memory references. Virtual translations are enabled via
PSR.it and PSR.dt. This bit is provided as storage for compatibility purposes.
Modification of this bit by Itanium-based code does NOT have any side effects such
as flushing the TLBs. This bit is supported as defined in the /A-32 Intef® Architecture
Software Developer’s Manual for the 1A-32 System Environment.

CR2

KR2{63:32}

I1A-32 Page Fault Virtual Address: IA-32 Mov to CR2 result in an interception fault.
Mov from CR2 returns the value contained in KR2{63:32}. CR2 is replaced by IFA in
the Intel® Itanium® System Environment.

CR3

KR2{31:0}

IA-32 Page Table Address: IA-32 Mov to CR3 result in an interception fault. Mov
from CR3 return the value contained in KR2{31:0}. CR3 is replaced by PTA in the
Intel® Itanium® System Environment. Modification of KR2{31:0} by Itanium-based
code does NOT have the side effect of flushing the TLBs.

CR3.PWT

KR4.pwt

CR3.PCD

KR4.pcd

Page Write-Through and Cache Disabled: In the Intel® Itanium® System
Environment, these bits are ignored. This bit are provided as storage for
compatibility purposes. These bits are supported as defined in the /A-32 Intel®
Architecture Software Developer’s Manual for the IA-32 System Environment.

CR4

CFLG{63:32}

CR4: A-32 Mov to CR4 result in an instruction interception fault. Mov from CR4
returns the value contained in CFLG{63:32}. Modification of CFLG{63:32} by Intel®
Itanium® instructions only alters the register state, no side effects (such as TLB
flushes) occur.

CR4.VME

CFLG.vme

32

CR4.PVI

CFLG.pvi

33

1A-32 Virtual Machine Extension and Protected Mode Virtual Interrupt Enable: These
bits control the VM86 VME extensions and Protected Mode Virtual Interrupt
extensions defined in the 1A-32 Inte/® Architecture Software Developer’s Manual for
STI, CLI and PUSHF. These bits have no effect on Intel® Iitanium® instructions. This
bit is supported in both the IA-32 and Intel® Itanium® System Environments.

CR4.TSD

CFLG.tsd

34

Time Stamp Disable: IA-32 RDTSC user level reads of the Time Stamp Counter are
enabled when CR4.tsd when zero. Otherwise execution of the RDTSC instruction
results in a GPFault. CFLG.tsd is ignored by Intel® Itanium® instructions. This bit is
supported in both the 1A-32 and Intel® Itanium® System Environments. See the
IA-32 Intef® Architecture Software Developer’s Manual for details on these bits.

CR4.DE

CFLG.de

25

Debug Extensions: In the Intel® Itanium® System Environment, this bit is ignored by
IA-32 or Intel® Itanium® references to the 1/0 port space. This bit is provided as
storage for compatibility purposes. This bit is supported as defined in the /A-32
Intel® Architecture Software Developer’s Manual for the IA-32 System Environment.

CR4.PSE

CFLG.pse

36

Page Size Extensions: In the Intel® Itanium® System Environment, this bit is ignored
by IA-32 or Intel® Itanium® references. In the 1A-32 System Environment, this bit
enables 4M-byte page extensions for IA-32 paging. Modification of this bit by
Itanium®-based code does have any side effects such as flushing the TLBs.

CR4.PAE

CFLG.pae

37

Physical Address Extensions: In the 1A-32 System Environment, this bit enables
IA-32 Physical Address Extensions for IA-32 paging This bit is ignored in the Intel®
Itanium® System Environment. Modification of this bit by Itanium®-based code does
have any side effects such as flushing the TLBs.

CR4.MCE

CFLG.mce

38

Machine Check Enable: This bit is ignored in the Intel® Itanium® System
Environment. This bit is provided as storage for compatibility purposes. This bit is
supported as defined in the /A-32 Intef® Architecture Software Developer’s Manual
for the IA-32 System Environment.

CR4.PGE

CFLG.pge

39

Paging Global Enable: This bit is ignored in the Intel® Itanium® System
Environment. This bit is provided as storage for compatibility purposes. This bit is
supported as defined in the /A-32 Intef® Architecture Software Developer’s Manual
for the IA-32 System Environment, where this bit enables global pages for the IA-32
paging. Modification of this bit by Itanium®-based code does have any side effects
such as flushing the TLBs.

2:222

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Table 10-4. IA-32 Control Register Field Definition (Continued)

; Intel® Itanium® . -
Bit State Bit Description
CR4.PCE CFLG.pce 40 Performance Counter Enable: IA-32 RDPMC user level reads of the performance

counters are enabled when CR4.pce is 1. Otherwise execution of the RDPMC
instruction results in a GPFault. CFLG.pce is ignored by Intel® Itanium® instructions.
This bit is supported in both the 1A-32 and Intel® Itanium® System Environments.
See the IA-32 Intel® Architecture Software Developer’s Manual for details on these

bits.
CRA4. CFLG. 41 Streaming SIMD Extension FXSR Enable. When 1, enables the Streaming SIMD
FXSR FXSR Extension register context. When 0, execution of all Streaming SIMD Extension

instructions results in an 1A-32_Intercept(Instruction) fault. This bit does not control
the behavior of Intel® Itanium® instructions. This bit is supported in both the I1A-32
and Intel® Itanium® System Environments. See the IA-32 Intef® Architecture
Software Developer’s Manual for details on these bits.

CR4. CFLG. 42 Streaming SIMD Extension Exception Enable: When 1, enables Streaming SIMD
MMXEX MMXEX Extension unmasked exceptions. When 0, all Streaming SIMD Extension Exceptions
are masked. This bit does not control the behavior of Intel® Itanium® instructions.
This bit is supported in both the 1A-32 and Intel® Itanium® System Environments.
See the IA-32 Intel® Architecture Software Developer’s Manual for details on these
bits.

10.3.3.2 1A-32 Debug Registers

Within the Itanium System Environment, the IA-32 debug registers (DRO - DR7) are superseded by
the Itanium debug registers DBR0-7 and IBRO-7, see “Data Breakpoint Register Matching” for
details. Accesses to the IA-32 debug registers result in an interception fault.

The Itanium debug registers are designed to facilitate debugging of both IA-32 and Itanium-based
code. Specifically, instruction and data breakpoints can be programmed by loading 64-bit virtual
addresses into IBR and DBR along with an address mask. Itanium defined single stepping
mechanisms, and taken branch traps are also defined to trap on [A-32 instructions. See “Data
Breakpoint Register Matching” for details on IA-32 instruction set behavior with respect to the
debug facilities defined by the Itanium architecture.

10.3.3.3 1A-32 Memory Type Range Registers (MTRRS)

Within the Itanium System Environment, [A-32 MTRR registers are superseded by physical
memory attributes supplied by the TLB, as defined in “Cacheability and Coherency Attribute.”
IA-32 instruction references to the MTRRs in the MSR register space results in an instruction
intercept fault.

10.3.3.4 1A-32 Model Specific and Test Registers

Within the Itanium System Environment, the IA-32 Model Specific Register space (MSRs) are
superseded by the PAL firmware interface. Cache testing, initialization, processor configuration
should be performed through the PAL interface. See “PAL Procedures” for a complete definition of
the PAL functions and interfaces. Accesses to the IA-32 Model Specific Register space result in an
instruction interception fault.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:223

10.3.3.5

10.3.3.6

10.4

10.4.1

2:224

IA-32 Performance Monitor Registers

Within the Itanium System Environment, the Itanium performance monitors are designed to
measure [A-32 and Itanium instructions, and system performance through a unified performance
monitoring facility. Itanium-based code can program the performance monitors for IA-32 and/or
Itanium events by configuring the PMC registers. Count values are accumulated in the PMD
registers for both IA-32 and Itanium events. See implementation specific documentation for the list
of supported events and encodings.

IA-32 code can sample the performance counters by issuing the RDPMC instruction. RDPMC
returns count values from the specified Itanium performance monitor. Operating systems can secure
the monitors from being read by IA-32 code by setting PSR.sp to 1, or setting CR4.pce to 0, or
setting the performance monitor’s pm-bit. Reads of a secured counter by RDPMC return a
1A-32_Exception(GPFault(0)). [A-32 code cannot write or configure the performance monitors, all
writes to the MSR register space are intercepted.

IA-32 Machine Check Registers

Within the Itanium System Environment, [A-32 machine check registers are superseded by the
Itanium machine check architecture. See “Machine Checks” for details. IA-32 accesses to the
Pentium Il processor machine check registers results in an instruction intercept.

Register Context Switch Guidelines for IA-32 Code

The following section gives operating system performance guidelines to minimize the amount of
register context that must be saved and restored for IA-32 processes during a context switch.

Entering I1A-32 Processes

High FP registers (FR32-127) — The processor requires access to all high FP registers during the
execution of IA-32 instructions. It is recommended on entering an IA-32 process, that the OS save
the high FP registers belonging to a prior context and then enable the high FP registers (PSR.dfh is
0). Otherwise, the processor will immediately raise a Disabled FP Register fault on the first IA-32
instruction executed in the IA-32 process. Performing the state save of the prior high FP register
context during the context switch avoids the unnecessary generation of the Disabled FP Register
fault.

Low FP registers (FR2-31) — The processor does not require access to the low FP registers unless
executing IA-32 FP, MMX technology or Streaming SIMD Extension instructions. It is
recommended on entry to an IA-32 process, that the OS disable the low FP registers by setting
PSR.dfl to 1. PSR.dfl set to 0 indicates that there was a possibility that IA-32 FP, MMX technology
or Streaming SIMD Extension instruction could execute and write FR8-31. If the low FP registers
are enabled on entry to an IA-32 process (PSR.dfl is 0), all low FP registers will appear to be dirty
on [A-32 process exit.

High Integer Registers (GR32-127) — Since the processor leaves all high registers in the register
stack in an undefined state, these registers must be saved by the RSE before entering an TA-32
process.

Low Integer registers (GR1-31) — These registers must be explicitly saved before entering an IA-32
process.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.4.2

10.5

Exiting 1A-32 Processes

High FP registers (FR32-127) — PSR.mfh is unmodified when leaving the IA-32 instruction set.
IA-32 instruction set execution leaves FR32-127 in an undefined state. Software can not rely on
register values being preserved across an instruction set transition. These registers do NOT need to
be preserved across a context switch.

Low FP registers (FR2-31) — PSR.mfl indicates there is a possibility that FR8-31 were modified by
[A-32 FP, MMX technology, or Streaming SIMD Extension instruction. The modify bit is set by the
processor when leaving the IA-32 instruction set, if PSR.dfl is 0, otherwise PSR.mfl is unmodified.
During the state save of the outbound IA-32 process, it is recommended that the OS save FR2-31 if
and only if the lower FP registers are marked as modified.

High Integer Registers (GR32-127) — Since the processor leaves all high registers undefined across
an instruction set transition, these registers do NOT need to be preserved across an [A-32 context
switch.

Low Integer registers (GR1-31) — These registers must be explicitly preserved across a context
switch.

IA-32 Instruction Set Behavior Summary

Table 10-5 summarizes IA-32 instruction behavior within the Itanium System Environment. All
[A-32 instructions are unchanged from the /4-32 Intel® Architecture Software Developer’s Manual
except where noted. IA-32 instructions can also generate additional Itanium register and memory
faults as defined in Table 5-6. Please refer to the 14-32 Intel® Architecture Software Developer s
Manual for the behavior of all IA-32 instructions in the IA-32 System Environment.

For all listed and unlisted IA-32 instructions in Table 10-5 the following relationships hold:

e Writes of any IA-32 general purpose, floating-point or MMX technology or Streaming SIMD
Extension registers by IA-32 instructions are reflected in the Itanium registers defined to hold
that TA-32 state when the IA-32 instruction set completes execution.

* Reads of any IA-32 general purpose, floating-point or MMX technology or Streaming SIMD
Extension registers by IA-32 instructions see the state of the Itanium registers defined to hold
the IA-32 state after entering the IA-32 instruction set.

* TA-32 numeric instructions are controlled by and reflect their status in FCW, FSW, FTW, FCS,
FIP, FOP, FDS and FEA. On exit from the IA-32 instruction set, [tanium registers defined to
hold TA-32 state reflect the results of all IA-32 prior numeric instructions (FSR, FCR, FIR,
FDR). Itanium numeric status and control resources defined to hold IA-32 state are honored by
IA-32 numeric instructions when entering the IA-32 instruction set.

In Table 10-5 unchanged indicates there is no change in behavior with respect to the IA-32 System
Environment.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:225

Table 10-5. IA-32 Instruction Summary

2:226

I1A-32 Instruction

Intel® Itanium® System
Environment

Comments

AAA, AAD. AAM, AAS

ADC, ADD, AND,

ADDPS, ADDSS,
ANDNPS, ANDPS

ARPL

BOUND

BSF, BSR

BSWAP

BT, BTC, BTS, BTR

unchanged

CALL

near: no change
far: no change

gate more privilege: Gate
Intercept

gate same privilege: Gate
Intercept

task gate: Gate Intercept

+ additional taken branch trap

Intercept if through a call or task gate

If PSR.tb is 1, raise a taken branch trap.

CBW, CWDE, CDQ

CLC CLD unchanged

CLI Optional System Flag Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept

CLTS Instruction Intercept IA-32 privileged instruction

CMC

CMOV

CMP
unchanged

CMPPS, CMPSS,

COMISS

CMPS

CMPXCHG, 8B Optional Lock Intercept If Locks are disabled (DCR.Ic is 1) and a processor

external lock transaction is required
CPUID
CWD, CDQ

CVTPI2PS, CVTPS2PI,
CVTSI2SS, CVTSS28l,
CVTTPS2PI, CVTTSS2SI

DAA, DAS

DEC

DIV

DIVPS, DIVSS

ENTER

EMMS

unchanged

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

In

tel.

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction

Intel® Itanium® System
Environment

Comments

F2XM1

FABS

FADD, FADDP, FIADD

FBLD

FBSTP

FCHS

FCLEX, FNCLEX

FCMOV

FCOM, FCOMPP

FCOMI, FCOMIP

FUCOMI, FUCOMIP

FCOS

FDECSTP

FDIV, FDIVP, FIDIV

FDIVR, FDIVRP, FDIVR

FFREE

FICOM, FICOMP

FILD

FINCSTP

FINIT, FNINIT

FIST, FISTP

FLD

FLD constant

FLDCW

FLDENV

FMUL, FMULP, FIMUL

FNOP

FPATAN, FPTAN

FPREM, FPREM1

FRNDINT

FRSTOR

FSAVE, FNSAVE

FSCALE

FSIN, FSINCOS

FSQRT

FST, FSTP

FSTCW, FNSTCW

FSTENV, FNSTENV

FSTSW, FNSTSW

FSUB, FSUBP, FISUB

FSUBR, FSUBRP,
FISUBR

FTST

FUCOM, FUCOMP

FWAIT

FXAM

FXCH

FXTRACT

FXRSTOR, FXSAVE

FYL2X, FYL2XP1

unchanged

1A-32 numeric instructions manipulate the I1A-32
numeric register stack contained in f8-f15, status is
reflected in FSR. Modification of the |1A-32 numeric
environment changes FIR, FDR FCR and FSR.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

2:227

Table 10-5. IA-32 Instruction Summary (Continued)

2:228

IA-32 Instruction

Intel® Itanium® System
Environment

Comments

HLT Instruction Intercept IA-32 privileged instruction
IDIV unchanged
IMUL
IN, INS unchanged + I/O ports are If CFLG.io is 0, the TSS 1/O permission bitmap is
mapped virtually not consulted. Intel® Itanium® TLB faults control
accessibility to /O ports.
INC unchanged
INT 3, INTO Mandatory Exception vector | Delivered as an IA-32_Interrupt
#
INT n Mandatory Interruption vector | Delivered as an 1A-32_Exception
#
INVD Instruction Intercept IA-32 privilege instruction
INVLPG
IRET, IRETD Real Mode: Instruction
Intercept
to VM86: Instruction Intercept
from VM86: Instruction
Intercept
same privilege: Instruction All forms of IRET result in an instruction intercept
Intercept
less privilege: Instruction
Intercept
different task: Instruction
Intercept
Jece additional taken branch trap | If PSR.tb is 1, raise a taken branch trap.
JMP near: no change Intercept fault if through a call or task gate
far: no change
gate task: Gate Intercept
call gate: Gate Intercept
additional taken branch trap | If PSR.tb is 1, raise a taken branch trap.
JMPE Jumps to the Intel® Itanium® instruction set
LAHF
LAR
LDMXCSR

LDS, LES, LFS, LGS,
LSS

unchanged

LEA

LEAVE

LGDT, LLDT

LIDT Instruction Intercept IA-32 privileged register resource

LMSW

Lock prefix Optional Lock Intercept If Locks are disabled (DCR.Ic is 1) and a processor
external lock transaction is required

LODS unchanged

LOOP, LOOPcc additional taken branch trap | If PSR.tb is 1, raise a taken branch trap.

LSL unchanged User level instruction

LTR Instruction Intercept IA-32 privileged register

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Table 10-5. IA-32 Instruction Summary (Continued)

Intel® Itanium® System

. Comments
Environment

IA-32 Instruction

MASKMOVQ

MAXPS, MAXSS, MINPS,
MINSS unchanged
MOV

MOVNTPS, MOVNTQ

MOV from CR unchanged

MOV to CR Instruction Intercept IA-32 privileged system registers
MOV to/from DR

Mov SS System Flag Intercept Trap System Flag Intercept Trap after instruction
completes

MOVAPS, MOVHPS,
MOVLPS. MOVMSKPS,
MOVSS, MOVUPS
MOVD, MOVQ

MOVS

MOVSX, MOVZX

MUL unchanged
MULPS, MULSS
NEG

NOP

NOT

OR

ORPS

OUT, OUTS unchanged + I/O ports are If CFLG.io is 0, the TSS /O permission bitmap is
mapped virtually not consulted. Intel® Itanium® TLB faults control
accessibility to I/O ports.

PACKSS, PACKUS
PADD, PADDS, PADDUS
PAND, PANDN
PCMPEQ, PCMPGT
PEXTRW, PINSRW
PMADD

PMULHW, PMULLW,
PMULHUW

PMOVMSKB
POP, POPA

unchanged

POP SS System Flag Intercept System Flag Intercept Trap after instruction
completes

POPF, POPFD Optional System Flag Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept Intercept if EFLAG.ac, or tf change state.

POR
PREFETCH
PSHUFW
PSLL, PSRA, PSRL unchanged
PSUB, PSUBS, PSUBUS
PUNPCKH, PUNPCKL
PXOR

PUSH, PUSA

PUSHF, PUSHFD Pushes value in EFLAG, no intercept

h
RCL, RCR_ROL, ROR | Unchanged
RCPPS, RSQRTPS

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:229

Table 10-5. IA-32 Instruction Summary (Continued)

2:230

IA-32 Instruction

Intel® Itanium® System
Environment

Comments

RDMSR Instruction Intercept IA-32 privileged system register space
RDTSC Optional GPFault No longer faults in VM86, GPFault if secured by
RDPMC PSR.si or CFLG.tsd.
REP, REPcc prefix unchanged
RET near: no change
far: no change
less privilege: no change
same privilege: no change
+ additional taken branch trap | If PSR.tb is 1, raise a taken branch trap.
RSM Instruction Intercept IA-32 privileged instruction
SAHF
SAL, SAR, SHL, SHR
zgis unchanged
SFENCE
SETcc
SGDT, SLDT Instruction Intercept IA-32 privileged instruction
SHLD, SHRD unchanged

SHUFPS, SQRTPS,
SQRTSS

SIDT Instruction Intercept IA-32 privileged instructions

SMSW

STC, STD unchanged

STI Optional System Flag Intercept if EFLAG.if changes state and CFLG.ii is 1
Intercept

STMXCSR unchanged

STOS

STR Instruction Intercept IA-32 privileged instruction

SUB unchanged

SUBPS, SUBSS

TEST

UCOMISS unchanged

UNPCKHPS, UNPCKLPS

uD2 Instruction Intercept Reserved undefined opcodes

VERR, VERW unchanged User level instruction

WAIT

WBINVD Instruction Intercept IA-32 privileged instructions

WRMSR

XADD Optional Lock Intercept If Locks are disabled (DCR.Ic is 1) and a processor

XCHG external lock transaction is required than a Lock

Intercept.

XLAT, XLATB

XOR unchanged

XORPS

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.6

System Memory Model

Within the Itanium System Environment, a unified memory model is presented to the programmer.
Applications and the operating system see the same 64-bit virtual memory space and virtual
addressing mechanisms regardless of the referencing instruction set. A virtual address points to the
same physical storage location from both IA-32 and Itanium instruction sets.

Itanium-based operating systems must not use IA-32 segmentation as a protected system resource.
An Itanium-based operating system must use virtual memory management defined by the Itanium
architecture to secure [A-32 and Itanium-based applications, memory and I/O devices. The Itanium
architecture is defined to be unsegmented architecture and all Itanium memory references bypass
1A4-32 segmentation and protection checks. In addition, Itanium-based user level code can directly
modify [A-32 segment selector and descriptor values for all segments (including GDT and LDT). If
operating systems do not rely on segmentation for protection, there are no security concerns for
exposing IA-32 segment registers and descriptors to Itanium-based user level applications

IA-32 instruction and data reference addresses are generated as 16/32-bit effective addresses as
shown in Figure 10-4. IA-32 segmentation is then applied to map 32-bit effective addresses into
32-bit virtual addresses, the processor then converts the address into a 64-bit virtual address by zero
extension from 32 to 64-bits. Itanium instructions bypass all of these steps and directly generate
addresses within the 64-bit virtual address space.

For both [A-32 and Itanium instruction set memory references, virtual memory management
defined by the Itanium architecture is used to map a given virtual address into a physical address.
Itanium-based virtual memory management hardware does not distinguish between Itanium and
IA-32 instruction set generated memory references during the conversion from a virtual to physical
address.

Figure 10-4. Virtual Memory Addressing

10.6.1

16/32-bit 64-bit
Effective 32-bit Virtual 64-bit Virtual Physical
Address Address Address Address
IA-32 Base———¢
Index — B tS(te'gmen- Zero -
DisplacementJ ation Extend
TLB
Intel® Itanium®
Base |

Virtual Memory References

In the Itanium System Environment the following virtual memory options are available for
supporting IA-32 and Itanium memory references.

» Software TLB fills (TLBs are enabled, but the VHPT is disabled).
* 8-byte short format VHPT, see “Virtual Hash Page Table (VHPT)” for details.
* 32-byte long format VHPT.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:231

10.6.2

10.6.3

2:232

intel.

Itanium virtual memory resources can be used by the operating system for all IA-32 memory
references. These resources include virtual Region Registers (RR), Protection Key Registers
(PKR), the Virtual Hash Page Table (VHPT), all supported range of page sizes, Translation
Registers (ITR, DTR), the Translation Cache (ITC, DTC) and the complete set of Itanium virtual
memory management faults defined in Chapter 5.

IA-32 Virtual Memory References

By definition, IA-32 instruction and data memory references are confined to 32-bits of virtual
addressing, the first 4 G-bytes of virtual region 0. However, IA-32 memory references can be
mapped anywhere within the implemented physical address space by operating system code.

Virtual addresses are converted into physical addresses through the process defined in “Virtual
Addressing.” IA-32 references use the Itanium TLB resources as follows.

* Region Identifiers — Operating systems can place IA-32 processes within virtual region 0, and
use the entire 224 region identifier name space. By using region identifiers there is no
requirement to flush IA-32 mappings on a context switch.

* Protection Keys — Operating systems can place mappings used by IA-32 processes within any
number of protection domains. If PSR.pk is 1, all IA-32 references search the Protection Key
Registers (PKR) for matching keys. If a key is not found, a Key Miss fault is generated.
Otherwise, key read, write, execute permissions are verified.

* TLB Access Bit — If this bit is zero, an Access Bit fault is generated during Itanium or [A-32
instruction set memory references. Note: the processor does not automatically set the Access
bit in the VHPT on every reference to the page. Access bit updates are controlled by the
operating system.

« TLB Dirty Bit — If this bit is zero, a Dirty bit fault is generated during any Itanium or IA-32
instruction that stores to a dirty page. Note: the processor does not automatically set the Dirty
bit in the VHPT on every write. Dirty bit updates are managed by the operating system.

IA-32 TLB Forward Progress Requirements

To ensure forward progress while executing IA-32 instructions, additional TLB resources and
replacement policies must be defined over and above the definition given in “Translation Cache
(TC).” IA-32 instructions and data accesses may not be aligned resulting in a worst case scenario
for two possible pages being referenced for every memory datum referenced during the execution
of an IA-32 instruction. Furthermore, the worst case non-intercepted IA-32 opcode can reference
up to 4 independent data pages.

The Translation Cache’s (TC) are required to have the following minimum set of resources to
ensure forward progress. Given that software TLB fills can be used to insert entries into the TLB
and a hardware page table walker is not necessarily used, the following requirements must be
satisfied by the processor:

+ Instruction Translation Cache — at least 1 way set associative with 2 sets, or 2 entries in a fully
associative design. Replacement algorithms must not consistently displace the last 2 entries
installed by software.

» Data Translation Cache — at least 4 way set associative with 2 sets, or 8 entries in a fully
associative design. Replacement algorithms must not consistently displace the last 8 entries
installed by software or the last 8 translations referenced by an IA-32 instruction.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.6.4

10.6.5

» Unified Translation Cache — at least 5 way set associative with 2 sets, or 10 entries in a fully
associative design. The processor must not consistently displace the last 10 entries installed or
the last 10 translations referenced by an IA-32 instruction.

The processor must ensure that the minimum number of entries can co-exist in the TLB, and TC
replacement algorithms allow software insertion of the required entries such that the required
number of translations can be co-resident in the TLB.

The processor cannot ensure forward progress unless translations mapping the Itanium-based TLB
Miss handlers are statically mapped by the Instruction Translation Registers.

Multiprocessor TLB Coherency

Global TLB purges can not occur on another processor unless that processor is at an interruptible
point. For [A-32 instruction set execution, interruptible points are defined as; 1) when the processor
is between instructions (regardless of the state of PSR.i and EFLAG.if), and 2) each iteration of an
IA-32 string instruction, regardless of the state of PSR.i and EFLAG.if

The processor may delay in its response and acknowledgment to a broadcast purge TC transaction
until the processor executing an [A-32 instruction has reached a point (e.g. an IA-32 instruction
boundary) where it is safe to process the purge TC request. The amount of the delay is
implementation specific and can vary depending on the receiving processor and what instructions
or operations are executing when it receives the purge request.

IA-32 Physical Memory References

When running IA-32 code, virtual addressing must be utilized by setting PSR.dt to 1 and PSR.it to
1, otherwise processor operation is undefined. Undefined behavior can include, but is not limited
to: machine check abort on entry to IA-32 code, and unpredictable behavior for IA-32 self
modifying code.

Operating systems must ensure PSR.dt and PSR.it are 1 before invoking IA-32 code. From a
practical standpoint, the TLBs must be enabled so IA-32 code can access the virtual address space,
and access memory areas other than WB (e.g. UC or the I/O port space).

Figure 10-5. Physical Memory Addressing

16-/32-bit 64-bit
Effective Address Physical Address
' PA{63:32}=0
IA-32 Base —¢ PA{31:0}
Processor Index tSa?i%r:en- >
Displacement—— ¥
Intel® Itanium® PA{63:0}
Processor Base

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:233

10.6.6

10.6.7

2:234

Supervisor Accesses

If the processor is operating in the Itanium System Environment, supervisor override is disabled,
and LDT, GDT, TSS references are performed at the privilege level specified by PSR.cpl.
Unaligned processor references to LDT, GDT, and TSS segments will never generate an EFLAG.ac
enabled IA-32 Exception (AlignmentCheck) fault, even if PSR.cpl equals 3 and supervisor override
is disabled.

Operating systems must ensure that the GDT/LDT are mapped to pages with user level read/write
access.

Write permission is required if GDT, or LDT memory descriptor Access-bits are zero regardless of
supervisor override conditions. If all GDT/LDT descriptor Access-bits are one, write permission
can be removed. Otherwise, Access Rights, Key Miss or Key Miss faults can be generated during
all segment descriptor referencing instructions.

If a fault is generated during a supervisory access, the ISR.so bit indicates that CPL is zero or a
supervisor override condition was in effect (reference as made to GDT, LDT or TSS).

Memory Alignment

Depending on software conventions, memory structures may have different alignment or padding
restrictions for the IA-32 and Itanium instruction sets. IA-32 and Itanium-based software should
use aligned memory operands as much as possible to avoid possible severe performance
degradation associated with un-aligned values and extra over-head for unaligned data memory fault
handlers.

The processor provides full functional support for all cases of un-aligned IA-32 data memory
references. If PSR.ac is 1 or EFLAG.ac is 1 and CR0O.am is 1and the effective privilege level is 3,
unaligned IA-32 memory references result in an IA-32 Exception (AlignmentCheck) fault.
Unaligned processor references to LDT, GDT, and TSS segments will never generate an EFLAG.ac
enabled IA-32 Exception (AlignmentCheck) fault, even if the effective privilege level is 3 and
supervisor override is disabled.

Alignment conditions for Itanium memory references are not affected by the EFLAG.ac, CFLG.am
bits.

If EFLAGac and CFLG.am are 1 and the reference is done at privilege level 3, IA-32 instruction
set unaligned conditions are; 2-byte references not a 2-byte boundary, 4-byte references not on a
4-byte boundary, 8-byte references not on a 8-byte boundary, and 10-byte references not on a 8-byte
boundary.

If PSR.ac is 1, [A-32 instruction set unaligned conditions are; 2-byte references not a 2-byte
boundary, 4-byte references not on a 4-byte boundary, 8-byte references not on a 8-byte boundary,
and 10-byte references not on a 16-byte boundary.

The processor exhibits the following behavior when accesses are made to un-aligned data operands
that span virtual page boundaries:

* TA-32 instruction set — If either page contains a fault, no memory location is modified. For
reads, the destination register is not modified.

+ Itanium instruction set — All page crossers result in an unaligned reference fault. Memory
contents and register contents are not modified.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.6.8

10.6.9

Atomic Operations

All Itanium load/stores and IA-32 non-locked memory references up to 64-bits that are aligned to
their natural data boundaries are atomic.

Both IA-32 and Itanium atomic semaphore operations can be performed on the same shared
memory location. The processor ensures [A-32 locked read-modify-write opcodes and Itanium
semaphore operations are performed atomically even if the operations are initiated from the other
instruction set by the same processors, or between multiple processors in an multiprocessing
system.

There are some restrictions placed on Itanium atomic operations that may prevent Itanium-based
code from manipulating IA-32 semaphores in some rare cases:

* Unaligned Itanium semaphore operations result in an Unaligned Data Reference fault.
Itanium-based code manipulation of an IA-32 semaphore can only be performed if the IA-32
semaphore is aligned.

* Itanium semaphore operations to memory which is neither write-back cacheable nor a
NaTPage result in an Unsupported Data Reference fault (regardless of the state of the DCR.Ic).
Itanium-based code manipulation of an IA-32 semaphore can only be performed if the IA-32
semaphore is allocated in aligned write-back cacheable memory.

If an IA-32 locked atomic operation is defined as requiring a read-modify-write operation external
to the processor under external bus lock and if DCR.Ic is set to 1, an IA-32_Intercept(Lock) fault is
generated. (IA-32 atomic memory references are defined to require an external bus lock for
atomicity when the memory transaction is made to non-write-back memory or are unaligned across
an implementation-specific non-supported alignment boundary.) If DCR.Ic is set to 0, the processor
may either execute the transaction as a series of non-atomic transactions or perform the transaction
with an external bus lock, depending on the processor implementation. For processor
implementations that do support external bus locks, software must ensure that the Bus Lock Mask
bit is set to one, in order to ensure atomicity of these [A-32 operations when DCR.1c=0. The Bus
Lock Mask bit is a feature controllable by the PAL_BUS_SET_FEATURES procedure. (See

Table 11-25 on page 2:295 for more information.)

If the processor supports external bus locks, unaligned [A-32 atomic references are supported, but
their usage is strongly discouraged since they are typically performed outside the processor's cache
which can severely degrade performance of the system. IA-32 external bus locks are not supported
on all processor implementations.

For TA-32 semaphores, atomicity to uncached memory areas (UC) is platform specific, atomicity
can only be ensured by the platform design and can not be enforced by the processor.

Multiprocessor Instruction Cache Coherency

The processor and platform ensure the processor’s instruction cache is coherent for the following
conditions:

* For all processors in the coherence domain, local and remote instruction cache coherency on
all processors is enforced for any store generated by any processor running the IA-32
instruction set.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:235

intel.

* For all processors in the coherence domain, instruction cache coherency on all processors is
enforced for all coherent I/O traffic. (For non-coherent I/O, a processor may or may not see the
results of an I/O operation.)

+ For all processors in the coherence domain, instruction cache coherency is not enforced for
stores generated by any processor running the Itanium instruction set. To ensure instruction
cache coherency, Itanium-based code must use the code sequence defined in “Memory
Consistency” on page 1:63.

Table 10-6. Instruction Cache Coherency Rules

10.6.10

In(s)tr;S;T?c::\nget Local processor External Processor Coherent, 1/0 Non-Coherent I/O

1A-32 Coherent Coherent Maybe

Intel® Itanium® May be May be Coherent Non-Coherent
Non-coherent Non-coherent

IA-32 Memory Ordering

IA-

32 memory ordering follows the Pentium Il defined processor ordered model for cacheable and

uncacheable memory. IA-32 processor ordered memory references are mapped onto the Itanium
memory ordering model as follows:

All TA-32 stores have release semantics. Except for IA-32 stores to write-coalescing memory
that are unordered. Subsequent loads are allowed to bypass buffered local store data before it is
globally visible. The amount of store buffering is model specific and can vary across processor
generations.

All TA-32 loads have acquire semantics. Some high performance processor implementations
may speculatively issue acquire loads into the memory system for speculative memory types,
if and only if the loads do not appear to pass other loads as observed by the program. If there is
a coherency action that would result in the appearance to the program of a load bypassing other
load, the processor will reissue the load operation(s) in program order.

All TA-32 read-modify-write or locked instructions have memory fence semantics. All
buffered stores are flushed.

IA-32 IN, OUT and serializing operations (as defined in the /4-32 Intel® Architecture Software
Developer s Manual) have memory fence semantics. In addition, the processor will wait for
completion (acceptance by the platform) of the IN or OUT before executing the next
instruction. All buffered stores are flushed before the IN or OUT operation.

TA-32 SFENCE has release semantics and will flush all buffered stores.

Table 10-7. IA-32 Load/Store Sequentiality and Ordering

2:236

IAI;izfe“f:any Uncacheable Coz:lerlst:ing Cacheable

store sequential non-sequential non-sequential
release? unordered releaseP

load sequential non-sequential non-sequential
acquire? unordered acquireb

locked sequential non-sequential non-sequential

or read-modify-write fence fence fence

operation flush prior stores flush prior stores flush prior stores

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Table 10-7. 1A-32 Load/Store Sequentiality and Ordering (Continued)

IAl-QZ’;ZfeI\II'Iee:;zry Uncacheable Co::::sing Cacheable
IN, INS, OUT, OUTS sequential undefined undefined
fence
flush prior stores

IA-32 Serialization

fence, flush prior stores

SFENCE

release, flush prior stores

a. However, |A-32 loads/stores to uncacheable memory flush the write coalescing buffers.
b. However, IA-32 load/stores to cacheable memory do not flush the write coalescing buffers.

Per Table 10-7, IA-32 memory references can be expressed in terms of acquire, release, fence and
sequential ordering rules defined by the Itanium architecture. IA-32 data memory references follow
the same ordering relationships as defined for Itanium-based code as defined in “Sequentiality
Attribute and Ordering” on page 2:69. The following additional clarifications need to be made for
[A-32 instruction set execution:

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

[A-32 loads and instruction fetches to speculative memory can occur randomly. Read accesses
to speculative memory can occur at arbitrary times even if the in-order execution of the
program does not require a read or instruction fetch from a given memory location.

IA-32 instruction fetches and loads to non-speculative memory occur in program order. IA-32
instruction cache line fetch accesses to uncached memory occur in the order specified by an
in-order execution of the program. Note however that the same cache line may be fetched
multiple times by the processor as multiple instructions within the cache line are executed. The
size of a cache line and number of instruction fetches is model specific.

IA-32 instruction fetches are not perceived as passing prior IA-32 stores. IA-32 stores into the
IA-32 instruction stream are observed by the processor’s self modifying code logic.
Speculative instruction fetches may be emitted by the processor before a store is seen to the
instruction stream and then discarded. Self modifying code due to Itanium stores is not
detected by the processor.

IA-32 instruction fetches can pass prior loads or memory fence operations from the same
processor. Data memory accesses, and memory fences are not ordered with respect to [A-32
instruction fetches.

IA-32 instruction fetches can not pass any serializing instructions, including Itanium srl z. i
and IA-32 CPUID. For speculative memory types the processor may prefetch ahead of a
serialization operation and then discard the prefetched instructions.

IA-32 serializing operations wait for all previous stores and loads to complete, and for all prior
stores buffered by the processor to become visible. IA-32 serializing instructions include
CPUID.

IA-32 OUT instructions may be buffered, however the processor will not start execution of the
next [A-32 instruction until the OUT has completed (been accepted by the platform).

The processor does not begin execution of the next [A-32 instruction until the IN or OUT has
been completed (accepted) by the platform. This statement does not apply for Itanium memory
references to the I/O port space. The processor may issue instruction fetches and VHPT walks
ahead of an IN or OUT.

VHPT Walks are speculative and can occur at any time. VHPT walks can pass all prior IA-32
loads, stores, instruction fetches, I/O operations and serializing instructions.

2:237

10.6.10.1

10.7

2:238

intel.

Instruction Set Transitions

Instruction set transitions do not automatically fence memory data references. To ensure proper
ordering software needs to take into account the following ordering rules.

10.6.10.1.1 Transitions from Intel® Itanium® Instruction Set to 1A-32
Instruction Set

+ All data dependencies are honored, IA-32 loads see the results of all prior Itanium and IA-32
stores.

* TA-32 stores (release) can not pass any prior Itanium load or store.

* TA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium store to a
different address. Itanium-based software can prevent IA-32 loads from passing prior Itanium
loads and stores by issuing an acquire operation (or nf) before the instruction set transition.

10.6.10.1.2 Transitions from IA-32 Instruction Set to Intel® Itanium®

Instruction Set

+ All data dependencies are honored, Itanium loads see the results of all prior Itanium and 1A-32
stores.

+ Itanium stores or loads can not pass prior [A-32 loads (acquire).

* [tanium unordered stores or any Itanium load can pass prior [A-32 stores (release) to a
different address. Itanium-based software can prevent Itanium loads and stores from passing
prior IA-32 stores by issuing a release operation (or nf) after the instruction set transition.

I/0 Port Space Model

A consistent unified addressing model is used for both IA-32 and Itanium references to the 1/O port
space. On prior [A-32 processors two I/O models exist; memory mapped I/O and the 64KB I/O port
space. On processors based on the Itanium instruction set, the 64KB 1/O port space defined by
IA-32 processors is effectively mapped into the 64-bit virtual address space of the processor,
producing a single memory mapped I/O model as shown in Figure 10-6. This model allows Itanium
normal load and store instructions to also access the I/O port space.

Itanium-based operating system code can directly control IA-32 IN, OUT instruction and
accessibility by IA-32 or Itanium load/store instructions to blocks of 4 virtual I/O ports using the
TLBs. The entire range of virtual memory mechanisms defined by the Itanium architecture: access
rights, dirty, access bits, protection keys, region identifiers can be used to control permission and
addressability.

In the Itanium System Environment, the virtual location of the 64 MB 1/O port space is determined
by operating system. For IA-32 IN and OUT instructions, the operating system can specify the
virtual base location via the I/O base register.

Any IA-32 or Itanium load or store within the virtual region mapped by the operating system to the
platform’s physical 64 MB 1/O port block, directly accesses physical I/O devices within the I/O port
space. The location of the 64 MB I/O port block within the 203 byte physical address space is
determined by platform conventions, see “Physical I/O Port Addressing” for details.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Figure 10-6. 1/0 Port Space Model

10.7.1

Virtual Address Space Physical Address Space
Memory
264 263 Mapped 1/0
Memory
Map 1/0 7
_ ® 1ol 1m® I |
1A-32/Intel™ ltanium
Loads/stores
64MB Platform
I/O Ports
— 216
IN/OUT
1/ Ports 64MB
216 A
1A-32 0
IN, OUT
Platform Physical
IA-32/Intel Itanium | 1/0 Block
Loads/Stores v
1/0 Base
0 0

Virtual I/0 Port Addressing

The 1A-32 defined 64-KB I/O port space is expanded into 64 MB. This effectively places 4 1/O
ports per each 4KB virtual and physical page. Since there are 4 ports per virtual page, the TLBs can
be used port address translation, and permission checks as shown in Figure 10-7.

Figure 10-7. 1/O Port Space Addressing

64-bit Virtual 64-bit
Address Physical Address
IA-32
} Shift
IN, voport _POMIS2Y I PR | >
ouTt Number 12-bits
Port{11:0}
Inte/® ® A e
ltanium™ 0 port .
Load, Address
Store

For TA-32 IN and OUT instructions a port’s virtual address is computed as:
port_virtual _address = | OBase | (port{15:2}<<12) | port{11l:0}

This address computation places 4 ports on each 4K page and expands the space to 64MB, with the
ports being at a relative offset specified by port{11:0} within each 4K-byte virtual page. IOBase is
a kernel register (KR) maintained by the operating system that points to the base of the 64MB

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:239

intel.

Virtual I/O port space. The value in IOBase must be aligned on a 64MB boundary otherwise port
address aliasing will occur and processor operation is undefined.

For Itanium load and stores accesses to the I/O port space, a port’s virtual address can be computed
in the same manner, specifically.

port_virtual _address = | OBase | (port{15:2}<<12) | port{11: 0}

In practice this address is a constant for any given physical I/O device.

Software Warning: In the generation of the I/O port virtual address, software MUST ensure that
port_virtual_address{11:2} are equal to port{11:2} bits. Otherwise, some
processors implementations may place the port data on the wrong bytes of
the processor’s bus and the port will not be correctly accessed.

IA-32 IN and OUT instructions and Itanium or [A-32 load/store instructions can reference 1/0 ports
in 1, 2, or 4-byte transactions. References to the legacy I/O port space cannot be performed with
greater than 4 byte transactions due to bus limitations in most systems. Since an [A-32 IN/OUT
instruction can access up to 4 bytes at port address OxFFFF, the I/O port space effectively extends 3
bytes beyond the 64KB boundary. Operating systems can; 1) not map the excess 3 bytes, resulting
in denial of permission for the excess 3 bytes, or 2) map via the TLB the excess 3 bytes back to port
address 0 effectively wrapping the I/O port space at 64KB.

Operating system code can map each virtual I/O port space page anywhere within the physical
address space using the Data Translation Registers or the Data Translation Cache. Large page
translations can be used to reduce the number of mappings required in the TLB to map the I/O port
space. For example, one 64MB translation is sufficient to map the entire expanded 64MB 1/O port
space. The UC memory attribute must be used for all I/O port space mappings to avoid
speculative processor references to 1/0 devices, otherwise processor and platform operation is
undefined.

Operating System Warning: Operating system code can not remap a given port to another port
address within the I/O port space, such that port_physical_address{21:12} !=
port_physical_address{11:2}. Otherwise, based on the processor model, I/O port data may be
placed on the wrong bytes of the processor’s bus and the port will not be correctly accessed.

I/O port space breakpoints can be configured by loading the address and mask fields with the
virtual address defined by the operating system to correspond to the I/O port space.

The processor (as defined in the next section) ensures that load, store references will not result in
references to I/O devices for which permission was not granted.

All memory related faults defined in Chapter 5, “Interruptions” can be generated by IA-32 IN and
OUT references to the I/0 port space, including IA-32_Exception(Debug) traps for data address
breakpoints and [A-32_Exception(AlignmentCheck) for unaligned references. (EFLAG.ac enabled
unaligned port references are not detected by the processor). Itanium Data Breakpoint registers
(DBRs) can be configured to generate debug traps for references into the I/O port space by either
IA-32 IN/OUT instructions or by IA-32 or Itanium load/store instructions.

2:240 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.7.2

10.7.2.1

10.7.3

Physical I/0 Port Addressing

Some processors implementations will provide an M/IO pin or bus indication by decoding physical
addresses if references are within the 64MB physical I/O block. If so the 64MB 1/O port space is
compressed back to 64KB. Subsequent processor implementations may drop the M/IO pin (or bus
indication) and rely on platform or chip-set decoding of a range of the 64MB physical address
space.

Through the PAL firmware interface, the 64MB physical I/O block can be programmed to any
arbitrary physical location. It is suggested that to be compatible with IA-32 based platforms, the
platform physical location of the physical I/O block be programmed above 4G-bytes and above all
useful DRAM, ROM and existing memory mapped I/O areas. See PAL_PLATFORM_ADDR on
page 2:356 for details.

Based on the platform design, some platforms can accept addresses for the expanded 64MB 1/0O
block, while other platforms will require that the I/O port space be compressed back to 64KB by the
processor. If the I/O port space needs to be compressed either the processor or platform (based on
the implementation) will perform the following operation for all memory references within the
physical 1/0 block.

| O_address{1: 0} = PA{1:0}
| O_addr ess{15: 2} = PA{25: 12} //byte strobes are generated from the lower I/O_address bits

The processor ensures that the bus byte strobes and bus port address are derived from
PA{25:12,1:0}. Thus allowing an operating system to control security of each 4 ports via TLB
management of PA{25:12}.

I/0 Port Addressing Restrictions

For the 64MB physical 1/O port block the following operations are undefined and may result in
unpredictable processor operation; references larger than 4-bytes, instruction fetch references,
references to any memory attribute other than UC, or semaphore references which require an
atomic lock. To ensure I/O ports accesses are not granted for which the TLB has not been
consulted, the processor ensures:

* All byte addresses within the same 4KB page alias to the 4 ports defined by the mapped
physical 1/0O port page.

* All TA-32 and Itanium unaligned loads and stores that cross a 4-byte boundary to the
processor’s physical I/O port block are truncated. That is the bus transaction to the area before
the 4-byte boundary is performed (the number of bytes emitted is model specific). No bus
transaction is performed for the bytes that are beyond the 4-byte boundary. 4-byte crosser loads
while return some undefined data. 4-byte crosser stores will not write all intended bytes.

* For IA-32 IN/OUT accesses that cross a 4-port boundary the processor will break the operation
into smaller 1, 2, or 3 byte I/O port transactions within each 4KB virtual page.

IA-32 IN/OUT instructions

IA-32 1/O instructions (IN, OUT, INS, OUTS) defined in the I4-32 Intel® Architecture Software
Developer’s Manual are augmented as follows:

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:241

10.7.4

2:242

intel.

I/O instructions first check for IOPL permission. If PSR.cpl<=EFLAG.iopl, access permission
is granted. Otherwise the TSS I/O permission bitmap may be consulted as defined below. If the
Bitmap denies permission or is not consulted an IA-32_Exception(GPFault) is generated.

If IOPL permission is denied and CFLG.io is 1, the TSS I/O permission bitmap is consulted for
access permission. If the corresponding bit(s) for the I/O port(s) is 1, indicating permission is
denied, a GPFault is generated. Otherwise access permission is granted. The TSS I/O
permission bitmap provides 1 port permission control at the expense of additional processor
data memory references. This mechanism can be used in the Itanium System Environment, but
is not recommended since TLB access controls defined by the Itanium architecture are faster
and provide a consistent control mechanism for both IA-32 and Itanium-based code. Whereas,
the TLB mechanism provides a control mechanism for both IA-32 and Itanium memory
references.

If CFLG.io is 0, the TSS I/O permission bitmap is not consulted and if the IOPL check failed
an IA-32_Exception(GPFault) is generated. By setting CFLG.io to 0, operating system code
can disable all processor references to the TSS. By setting IOPL<PSR.cpl and setting CFLG.io
to 0, operating system code can block all user level execution of IA-32 I/O instructions, no TSS
needs to be allocated or defined by the operating system.

I/O port references generate a virtual port address relative to the IOBase register as defined in
“Virtual I/O Port Addressing.”

If data translations are enabled, the TLB is consulted for the required virtual to physical
mapping. If the required mapping is not present a VHPT Translation, Data TLB Miss or
Alternative Data TLB Miss fault is generated.

If data translations are enabled, Access Rights, Permission Keys, Access, Dirty and Present
bits are checked and faults generated.

If data translations are disabled (PSR.dt is 0) or the referenced I/O port is mapped to an
unimplemented virtual address (via the IOBase register), a GPFault is raised on the referencing
TA-32 IN, OUT, INS, or OUTS instruction.

Alignment and Data Address breakpoints are also checked and may result in an
1A-32_Exception(AlignmentCheck) fault (if PSR.ac is 1) or IA-32_Exception(Debug) trap.
If an IA-32 IN/OUT I/O port Accesses cross a 4-port boundary the processor will break the
operation into smaller 1, 2, or 3 byte transactions.

Assuming no faults, a physical transaction is emitted to the mapped or specified physical
address.

The processor ensures that IA-32 IN, INS, OUT, OUTS references are fully ordered and will not
allow prior or future data memory references to pass the I/O operation as defined in “TA-32
Memory Ordering.” The processor will wait for acceptance for IN and OUT operations before
proceeding with subsequent externally visible bus transactions.

/0 Port Accesses by Loads and Stores

If an access is made to the I/O port block using IA-32 or Itanium loads and stores the following
differences in behavior should be noted; EFLAG.iopl permission is not checked, TSS permission
bitmap is not checked, and stores and loads do not honor IN and OUT memory ordering and
acceptance semantics (the processor will not automatically wait for a store to be accepted by the
platform).

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.8

Virtual addresses for the I/O port space should be computed as defined in “Virtual I/O Port
Addressing.” If data translations are enabled, the TLB is consulted for mappings and permission,
and the resulting mapped physical address used to address the physical I/O device.

If IA-32 ordering semantics are required to a particular I/O port device (or memory mapped 1/O
device), IA-32 or Itanium-based software must enforce ordering to the I/O device. Software can
either perform a memory ordering fence before and after the transaction, or use an load acquire or
store release

To ensure the processor does not speculatively access an I/O device, all I/O devices must be
mapped by the UC memory attribute.

If IA-32 acceptance semantics are required (i.e. additional data memory transactions are not
initiated until the I/O transaction is completed), Itanium-based code can issue a memory acceptance
fence. Conversely, if certain I/0 devices do not require IA-32 IN/OUT ordering or acceptance
semantics, Itanium-based code can relax ordering and acceptance requirements as shown below.

aut
[nf]/ [/Fence prior nenory references, if required

add port_addr = 1O Port_Base, Expanded_Port_Numnber
st.rel (port_addr), data

[nf.a] //Vait for platformacceptance, if required
[nf] // Fence future nenory operations, if required

I'N

[nf] /I Fence prior menory references, if required
add port_addr = 10 Port_Base, Expanded_Port_Nunber
Id.acq data, (port_addr)

[nf.a] //Vait for platformacceptance, if required
[nf] // Fence future nenory references, if required

Debug Model

The debug facilitates defined by the Itanium architecture are designed to support debugging of both
the Itanium and [A-32 instruction set. The following debug events can be triggered during [A-32
instruction set execution by Itanium debug resources.

» Single Step trap — When PSR.ss is 1 (or EFLAG.tf is 1), successful execution of each IA-32
instruction, results in an [A-32_Exception(Debug) trap. After the single step trap, IIP points to
the next IA-32 instruction to be executed.

* Breakpoint Instruction trap — execution of INT 3 (breakpoint) instruction results in a
IA-32_Exception(Debug) trap.

* Instruction Debug fault — When PSR.db is 1 and PSR.id is 0 and EFLAGf is 0, any 1A-32
instruction fetch that matches the parameters specified by the IBR registers results in an
IA-32_Exception(Debug) fault. After servicing a Debug fault, debuggers can set PSR.id (or
EFLAGf for IA-32 instructions) before restarting the faulting instruction. If PSR.id is 1,
Instruction Debug faults are temporarily disabled for one Itanium instruction. If PSR.id is 1 or
EFLAGuf is 1, Instruction Debug faults are temporarily disabled for one TA-32 instruction.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:243

10.8.1

2:244

intel.

The successful execution of an IA-32 instruction clears both PSR.id and EFLAG.rf bits. The
successful execution of an Itanium instruction only clears PSR.id.

* Data Debug traps — When PSR.db is 1, any [A-32 data memory reference that matches the
parameters specified by the DBR registers results in a IA-32_Exception(Debug) trap. [A-32
data debug events are traps, not faults as defined for Itanium instruction set data debug events.
Trap behavior is required since any given [A-32 instruction can access several memory
locations during its execution. The reported trap code returns the match status of the first four
DBR registers that matched during the execution of the IA-32 instruction. Zero, one or DBR
registers may be reported as matching.

* Taken Branch trap — When PSR.tb is 1, a IA-32_Exception(Debug) trap occurs on every
IA-32 taken branch instruction (CALL, Jec, IMP, RET, LOOP). After the trap, IIP points to the
branch target.

* Lower Privilege Transfer trap — Does not occur during IA-32 instruction set execution.

For virtual memory accesses, breakpoint address registers contain the virtual addresses of the debug
breakpoint. For physical accesses, the addresses in these registers are treated as a physical address.
Software should be aware that debug registers configured to fault on virtual references, may also
fault on a physical reference if translations are disabled. Likewise a debug register configured for
physical references can fault on virtual references that match the debug breakpoint registers.

Data Breakpoint Register Matching

Each Itanium data breakpoint register has the following matching behavior for IA-32 instruction set
data memory references:

* DBR.addr — [A-32 single or multi-byte data memory references that access ANY memory
byte specified by the DBR address and mask fields results in a debug breakpoint trap regardless
of datum size and alignment. The upper 32-bits of DBR.addr must be zero to detect IA-32 data
memory references. Since [A-32 data breakpoints are traps, all processor implementations
ensure data breakpoint traps are precise. Traps are only reported if any byte in the data memory
reference ANDed with the DBR mask bitwise matches the DBR address field ANDed with the
DBR mask. No spurious data breakpoint faults are generated for IA-32 data memory operands
that are unaligned, nor are matches reported if no bytes of the operand lie within the address
range specified by the DBR address and mask fields. Note, Itanium instruction set generated
unaligned data memory references may result in spurious imprecise breakpoint faults.

+ DBR.mask — by programming the mask a breakpoint range of 1, 2, 4, 8, or any power of 2
combination can be supported. Mask bits above bit 31 are checked by the processor during
[A-32 data memory references

* trap code B bits — are set indicating a match with the corresponding data breakpoint register
DBRO-3. For IA-32 data debug traps, any number of B-bits can be set indicating a match.

The B-bits are only set and a data breakpoint trap generated if 1) the breakpoint register precisely
matches the specified DBR address and mask, 2) it is enabled by the DBR read or write bits for the
type of the memory transaction, 3) the DBR privilege field matches PSR.cpl, 4) PSR.db is 1, and 5)
no other higher priority faults are taken.

I/O port space breakpoints can be configured by loading the address and mask fields with the
virtual address defined by the operating system to correspond to the I/O port space.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.8.2

10.9

Instruction Breakpoint Register Matching

Each Itanium instruction breakpoint register has the following matching behavior for IA-32
instruction set memory fetches:

» IBR.addr — an IBR register matches an [A-32 instruction fetch address, if the first byte of an
IA-32 instruction address ANDed with the IBR mask bitwise matches the IBR address field
ANDed with the IBR mask. Note that only the first byte is analyzed. The upper 32-bits of
IBR.addr must be zero to detect IA-32 instruction fetches.

* IBR.mask — by programming the mask a breakpoint range of 1, 2, 4, 8, or any power of 2
combination can be supported. Mask bits above bit 31 are ignored during IA-32 instruction
fetches.

The instruction breakpoint fault is generated if 1) the breakpoint register precisely matches the
specified IBR address and mask, 2) it is enabled by the IBR execute bit, 3) the IBR privilege field
matches PSR.cpl, 4) PSR.db is 1, 5) PSR.id is 0, and 6) no other higher priority faults are taken.

Interruption Model

Within the Itanium System Environment, all interruptions originating out of the IA-32 or Itanium
instruction sets are delivered to Itanium-based Interruption Handlers within the Itanium-based
operating system. Virtual memory management faults, machine checks, and external interrupts are
always delivered to Itanium-based interruption handlers regardless of the instruction set running at
the time of the interruption. IA-32 exceptions, control transfers through gates, task switches, and
accesses to sensitive IA-32 system resources are intercepted into Itanium-based interruption
handlers. Using these intercepts, Itanium-based software can implement specific policies with
regard to that resource. Policies may include virtualization, emulation of an IA-32 opcode or
memory access, or various permission policies.

In general, if an interruption is independent of the executing instruction set (such as an external
interruption or TLB fault) common Itanium-based handlers are invoked. For classes of exceptions
and intercept conditions that are specific to the IA-32 instruction set, three special Itanium-based
software handlers are invoked to deal with IA-32 instruction set interruptions. Table 10-8 shows the
3 interruption handlers defined to support IA-32 events. See “IA-32 Interruption Vector
Definitions” for details on these interruption handlers.

Table 10-8. IA-32 Interruption Vector Summary

Handler Description
IA_32_Intercept Intercepted 1A-32 instructions, 1/0, system flag manipulation and gate transfers.
IA-32_Exception 1A-32 instruction set generated exceptions.
IA_32_Interrupt IA-32 instruction set generated software interrupts

This grouping of interruption handlers simplifies software handlers such that they do not need to be
concerned with behavior of both IA-32 and Itanium instruction sets.

Interruption registers (defined in Chapter 3) record the state of [A-32 execution at the point of
interruption. For IA-32 exceptions, ISR contains IA-32 defined error codes and vector numbers as
defined by the /4-32 Intel® Architecture Software Developer’s Manual. 1A-32 instruction set
related exceptions and software interruptions vector directly through the interruption mechanism
defined by the Itanium architecture without consulting the IA-32 IDT or performing any memory
stack pushes.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:245

10.9.1

Interruption Summary

Table 10-9 summarizes the set of all IA-32 interruptions and how they are mapped to Itanium-based
interruption handlers within the Itanium System Environment. See Chapter 9 and Chapter 8 for a

detailed definition of each interruption.

Table 10-9. IA-32 Interruption Summary

2:246

1A-32 Itanium®-based Interruption ISR ISR Description
Vector Handler Vect Code p
1A-32 Defined Interruptions
0 IA-32_Exception (Divide) 0 0 IA-32 divide by zero fault.
1 IA-32_Exception (Debug) 1 0 IA-32 instruction breakpoint fault.
1 1A-32_Exception (Debug) 1 TrapCode IA-32 debug events. The Trap
Code indicates concurrent taken
branch, data breakpoint and single
step trap conditions.
2 External Interrupt 0 0 NMI is delivered through the Intel®
Itanium® External Interrupt vector.
3 IA-32_Exception(Break) 3 TrapCode IA-32 INT 3 instruction.
4 1A-32_Exception(INTO) 4 TrapCode IA-32 INTO detected overflow trap.
IA-32_Exception (Bound) 0 IA-32 BOUND range exceeded
fault.
6 1A-32_Intercept(Inst) 0 InterceptCode All l1A-32 unimplemented and
illegal opcodes.
7 1A-32_Exception(DNA) 7 0 IA-32 Device not available fault.
8 -- na IA-32 Double fault can not be
generated in the Intel® Itanium®
system environment, Intel
reserved.
9 -- na Intel reserved
10 -- na IA-32 Invalid TSS fault can not
generated in the Intel® Itanium®
system environment, Intel
reserved,
11 1A-32_Exception(NotPresent) 11 ErrorCode? IA-32 Segment Not present fault.
12 IA-32_Exception (Stack) 12 ErrorCode IA-32 Stack Exception fault.
13 1A-32_Exception (GPFault) 13 ErrorCode IA-32 General Protection fault.
14 Intel® Itanium® TLB faults see Data TLB IA-32 Page fault can not be
faults below generated in the Intel® Itanium®
system environment, replaced by
Intel® Itanium® TLB faults, Intel
reserved,
15 -- na Intel reserved.
16 IA-32_Exception (FPError) 16 IA-32 floating-point fault.
17 1A-32_Exception(AlignCheck) 17 IA-32 un-aligned data references.
18 Corrected MCHK na IA-32 Machine Check can not be
generated in the Intel® Itanium®
system environment, replaced by
the PAL Machine Check
Architecture, Intel reserved.
19 IA-32_Exception (StreamSIMD) |19 | 0 IA-32 SSE Numeric Error fault.
20-31 -- na Intel reserved.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Table 10-9. IA-32 Interruption Summary (Continued)

10.9.2

1A-32 Itanium®-based Interruption ISR ISR Description
Vector Handler Vect Code P
0-255 External Interrupt 0 0 External interrupts are delivered

through the Intel® Itanium®

External Interrupt vector. Software
must read the IVR register to
determine the vector number.

0-255 IA-32_Interrupt (vector #) Vect# | TrapCode 1A-32 Software Interrupt trap. ISR
contains the vector number.

I1A-32 Interceptions

I1A-32_Intercept(Inst) 0 InterceptCode Intercept for unimplemented, illegal
or privileged 1A-32 opcodes.

IA-32_Intercept(Gate) 1 TrapCode Intercept for control transfers
through a Call Gate, Task gate or
Task Segment.

IA-32_Intercept(SystemFlag) 2 TrapCode Intercept for modification of system
flag values.
IA-32_Intercept(Lock) 4 0 I1A-32 semaphore operation
requires an external bus lock when
DCR.cis 1.
3,5-25 | -- Intel reserved
5

a. The IA-32 Error Code is defined as a Selector Index, and TI, IDT and EXT bits are set based on the
exception. See IA-32 Intel® Architecture Software Developer’s Manual for the complete definition.

I1A-32 Numeric Exception Model

IA-32 numeric instructions follow the IA-32 delayed floating-point exception model. Specifically
IA-32 numeric exceptions are held pending until the next IA-32 numeric instruction or MMX
technology instruction as defined in the /4-32 Intel® Architecture Software Developer’s Manual.
Numeric faults generated on Streaming SIMD Extension instructions are reported precisely on the
faulting Streaming SIMD Extension instruction. Streaming SIMD Extension instructions do NOT
trigger the report of pending IA-32 numeric exceptions.

For voluntary transitions out of the IA-32 instruction, an implicit FWAIT operation is performed by
the j npe instruction to ensure all pending numeric exceptions are reported. For involuntary
transitions out of the IA-32 instruction set (external interruptions, TLB faults, exceptions, etc.) the
processor does not perform a FWAIT operation. However, every [A-32 numeric instruction that
generates a pending numeric exception loads the application registers FSR, FIR, and FDR with the
IA-32 floating-point state on the instruction that generating the exception. This state contains
information defined by the [A-32 FSTENV and FLDENYV instructions. During a process context
switch, the operating system must save and restore FSR, FIR, and FDR (effectively performing an
FSTENYV and FLDENYV) to ensure numeric exceptions are correctly reported across a process
switch.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:247

10.10

10.10.1

2:248

intel.

Processor Bus Considerations for IA-32 Application
Support

The section briefly discusses bus and platform considerations when supporting [A-32 applications
in the Itanium System Environment.

Itanium-based code does not assert the SPLCK and LOCK pins. The LOCK pin is used by IA-32
code to signal an external atomic bus transaction for which atomicity cannot be enforced within the
processor's caches, whereas, SPLCK indicates if an unaligned external bus lock requires a split lock
operation and hence several bus transactions. For IA-32 code, if the platform does not support
LOCK or SPLCK, the operating system must disable external bus lock transactions by setting
DCR.Ic to 1. When DCR.Ic is 1, any IA-32 atomic reference not serviced internally in the
processor’s caches results in an IA-32_Intercept(Lock) fault. See “Default Control Register (DCR —
CRO)” for details. When DCR.Ic is 0, operating system code is responsible for emulation of the
IA-32 instruction and ensuring atomicity (if required).

The A20M and IGNE pins are ignored in the Itanium System Environment. FERR is not asserted in
the Itanium System Environment.

In both IA-32 and Itanium System Environments, the M/IO pin (or an external bus indication) is
asserted by any memory reference to the 64MB 1/0 port block range of the physical address space.
See Section 10.7, “I/O Port Space Model” for details.

SMI and the SMM environment are not supported on processors based on the Itanium architecture.
The PMI interrupt and PAL firmware environment replace them. See Section 11.5, “Platform
Management Interrupt (PMI)” for details.

IA-32 Compatible Bus Transactions

Within the Itanium System Environment, the following bus transactions are initiated:

* INTA - Interrupt Acknowledge — emitted by the operating system (via a read to the INTA byte
in the processor’s Interrupt Block) to acquire the interrupt vector number from an external
interrupt controller.

* HALT — Emitted when the processor has entered the halt state due to the operating system/
platform firmware calling PAL_HALT or PAL_HALT_LIGHT.

+ SHUTDOWN — Emitted when the processor has entered the shutdown state. This can only be
generated when the processor has entered into the IA-32 System Environment by calling
PAL_ENTER_IA_32_ENYV procedure call.

* STPACK - Stop Acknowledge. Emitted by calling an implementation specific PAL firmware
procedure. See the processor specific firmware guide for more information.

* FLUSH - Emitted when the WBINVD or INVD instruction is executed when running in the
IA-32 System Environment entered by calling PAL_ENTER_IA_32_ENYV procedure call.
Indicates that external caches (if any) should be invalidated.

* SYNC — Emitted when the WBINVD instruction is executed when running in the IA-32
System Environment entered by calling PAL_ENTER_IA_32_ENV procedure call. Indicates
that external caches (if any) should copy all modified cache lines back to main memory.

Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

intel.

Processor Abstraction Layer 11

1.1

This chapter defines the architectural requirements for the Processor Abstraction Layer (PAL)
for all processors based on the Itanium architecture. It is intended for processor designers,
firmware/BIOS designers, system designers, and writers of diagnostic and low level operating
system software.

PAL is part of the Itanium processor architecture and its goal is to provide a consistent firmware
interface to abstract processor implementation-specific features.

The objectives of this chapter are to define:

* The architectural behavior and interface requirements for processor testing, configuration and
error recovery. This includes the hardware entrypoints into PAL and the PAL interfaces to
platform firmware and system software.

* A set of boot and runtime PAL procedures to access processor implementation-specific
hardware and to return information about processor implementation-dependent configuration.

* A computing environment for both PAL entrypoints and procedures such that:
* Memory used by PAL procedures is allocated by the caller of PAL procedures.
* PAL code runs little endian.
* PAL interface is as endian neutral as possible.
* PAL is Itanium-based code.
* PAL code runs at privilege level 0.

* PAL procedures can be called without backing store, except where memory based
parameters are returned.

» The processor and platform hardware requirements for PAL. This includes minimizing PAL
dependencies on platform hardware and clearly stating where those dependencies exist.

* A PAL interface and requirements to support firmware update and recovery.

Firmware Model

As shown in Figure 11-1, Itanium-based firmware consists of three major components: Processor
Abstraction Layer (PAL), System Abstraction Layer (SAL), and Extensible Firmware Interface
(EFI) layer. PAL, SAL, and EFI together provide processor and system initialization for an
operating system boot. PAL and SAL provide machine check abort handling and other processor
and system functions which would vary from implementation to implementation. The interactions
of the various services that PAL, SAL, and EFI provide are shown in Figure 11-2.

In the context of this model and throughout the rest of this chapter, the System Abstraction Layer
(SAL) is a firmware layer which isolates operating system and other higher level software from
implementation differences in the platform, while PAL is the firmware layer that abstracts the
processor implementation.

Volume 2: Processor Abstraction Layer 2:249

Figure 11-1. Firmware Model

2:250

Operating System Software
i ki i
OS Boot procedure
Handoff calls
Instruction
Extensible Firmware Exlecution
Transfers to Interface (EFI)
OS entrypoints ' _ /
N
— — SAL ¢ e
1 os Boot _procedure -y
Selection calls V Interrupts
System Abstraction Layer traps, and
(SAL) PAL !
procedure /
calls L
I
/
- \ - -/
Transfers to el
Access to SAL entrypOintS v
platform
resqurees Processor Abstraction Layer (PAL)
V'« ! - — — = y
\ e A
Processor (hardware)
N\ -
h \ N A
~ \ Performance critical hard-
ware events, e.g., inter-
\ rupts \
|
Non-performance criti- ~ ~
cal hardware events, -
e.g., reset, machine
v checks
Platform (hardware)

Volume 2: Processor Abstraction Layer

intel.

Figure 11-2. Firmware Services Model

11.1.1

Volume 2: Processor Abstraction Layer

Operating System Software

OS Machine .
OS Init
OS Loader Check
Handler
Handler
A A A
\/
Y EFI
Runtime E% (S)t
Services Services
4 I
P T SAL
Boot
Services
(Transient)
\ 4 L 4 \ /
Platform
Runtime Platform Platform PIatff)rm Platform
. Reset Error Init PMI
Services
Handler Handler Handler Handler
(Procedures)
T
A A A Reset | A
Event
_l F———d4 _ Event |
Processor
Runti Processor Processor Processor Processor
ntime
S” ! Reset Error Init PMI
ervices Handler Handler Handler Handler
(Procedures)
PAL
Reset/ Machine Initialization PMI
Power On Check Event Event

Platform/Processor Hardware

Processor Abstraction Layer (PAL) Overview

The purpose of the Processor Abstraction Layer, is to provide a firmware abstraction between the

processor hardware implementation and system software and platform firmware, so as to maintain
a single software interface for multiple implementations of the processor hardware. PAL is defined
to be independent of the number of processors on a platform.

2:251

11.1.2

intel.

PAL encapsulates those processor functions that are likely to change on an implementation to
implementation basis so that SAL firmware and operating system software can maintain a
consistent view of the processor. These include non-performance critical functions dealing such as
processor initialization, configuration and error handling.

PAL consists of two main components:

* Entrypoints, which are invoked directly by hardware events such as reset, init and machine
checks. These interruption entrypoints perform functions such as processor initialization and
error recovery.

* Procedures, which may be called by higher level firmware and software to obtain information
about the identification, configuration, and capabilities of the processor implementation; to
perform implementation-dependent functions such as cache initialization; or to allow software
to interact with the hardware through such functions as power management or enabling/
disabling processor features.

Firmware Entrypoints

Figure 11-3. Firmware Entrypoints Logical Model

2:252

PAL SAL

Error
4»

PMI

Resume

Reset Y
—_— PALE_RESET —»| »‘ SAL_RESET
Power-On

Initialize
PALE_INIT |—>

Firmware Recovery Complete
Bootstrap Processor (BSP)

EFI os

BSP BSP

‘»‘ EFI Boot Manager }—»‘ 0S_LOADER

Application
Processors
(APs)

‘SAL_BOOT_RENDEZ‘¢ fffffff y

SALE_ENTRY

PALE_CHECK [—> —» SAL_CHECK

A
|

L

Rendezvous Complete

PALE_PMI

—» SAL_INIT > OS_INIT

SALE_PMI

Bootstrap Processor (BSP)

OS_MCA

Wake Up |
+4 SAL_MC_RENDEZ ‘¢ —

Application Processors (APs)

MC_Rendezvous
Interrupt

Volume 2: Processor Abstraction Layer

11.1.3 PAL Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:
* Power-on/reset
* Hardware errors (both correctable and uncorrectable)
« Initialization event (via external interrupt bus message or processor pin)
* Platform management interrupt (via external interrupt bus message or processor pin)

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in
Figure 11-3):
* PALE_RESET - Initializes and tests the processor following power-on or reset and then
branches to SALE_ENTRY to determine whether to perform firmware recovery update, or to
boot the machine for OS use. See Section 11.1.4.

* PALE_CHECK - Determines if errors are processor related, saves processor related error
information and corrects errors where possible (for example, by flushing a corrupted
instruction cache line and marking the cache line as unusable). In all cases, PALE_CHECK
branches to SALE_ENTRY to complete the error logging, correction, and reporting.

* PALE_INIT — Saves the processor state, places the processor in a known state, and branches to
SALE_ENTRY. PALE_INIT is entered as a response to an initialization event.

* PALE_PMI — Saves the processor state and branches to SALE_PMI. PALE_PMI is entered as
aresponse to a platform management interrupt.

11.1.4 SAL Entrypoints

There are two entrypoints from PAL into SAL:

* SALE_ENTRY — PAL branches to this SAL entrypoint after a power-on, reset, machine check,
or initialization event. If SALE_ENTRY was invoked by a machine check or initialization
event, SALE_ENTRY branches to the appropriate routine:

« SAL_CHECK is invoked after a machine check.
* SAL_INIT is invoked after an initialization event.

If SALE_ENTRY was invoked by a reset or power on, it checks to determine if a firmware
recovery condition exists. If it does, SALE_ENTRY performs the firmware update, then
performs a RESET operation to invoke PAL_RESET. If a recovery condition does not exist,
SAL_ENTRY returns to PAL_RESET to complete processor self-test. PAL_RESET then
branches back to SALE_ENTRY, which, in turn, branches to SAL_RESET.

* SALE_PMI - platform management interrupt. PALE_PMI branches to this SAL entrypoint
after saving processor state in response to the platform management interrupt.

11.1.5 OS Entrypoints

There are several entrypoints from SAL into an operating system (or equivalent software).
Entrypoints from SAL into the operating system are expected to meet the following model:

¢ OS_BOOT - Operating System Boot interface.

* OS_MCA - Operating System Machine Check Abort Handler.

* OS_INIT — Operating System Initialization Handler.

* OS_RENDEZ — Operating System Multiprocessor Rendezvous interface.

Volume 2: Processor Abstraction Layer 2:253

11.1.6 Firmware Address Space

The firmware address space occupies the 16 MB region between 4 GB - 16 MB and 4 GB
(addresses 0xFF00_0000 through OxFFFF_FFFF). There are two primary layouts of this address
space. The first version is shown in Figure 11-4 and the second version is shown in Figure 11-5.
The first version has one PAL_A component. This layout allows for robust recovery of PAL_B and
SAL_B components. This layout is useful for cases where PAL_A will not need to be upgraded.
The second version splits the PAL_A block into two components. The first component is referred to
as the generic PAL_A and the second component is the processor specific PAL_A. Splitting the
PAL_A up in this manner allows for a robust upgrade of the processor specific PAL_A firmware as
well as the PAL_B and SAL_B components. This is very useful if a platform is designed to support
multiple processor generations which would require a PAL_A upgrade when the new processor
generation is released. The generic PAL_A which resides in the Protected Boot Block will work
across processor generations for a given platform. The processor specific PAL_A resides outside
the Protected Boot Block and works for a specific processor generation.

The firmware address space is shared by SAL and PAL. Some of the SAL/PAL boundaries are
implementation dependent. The address space contains the following regions and locations.

* The 16 bytes at OXFFFF_FFFO0 (4GB-16) contain IA-32 Reset Code.
* The 8 bytes at OXFFFF_FFE8 (4GB-24) contain the physical address of the SALE_ENTRY
entrypoint.

+ The 8 bytes at 0xFFFF_FFEO (4GB-32) contain the physical address of the Firmware Interface
Table.

* The 16 bytes at OXFFFF_FFDO (4GB-48) contain the FIT entry for the PAL_A (or generic
PAL_A in the split PAL_A model) code provided by the processor vendor. The format of this
FIT entry is described in Figure 11-7.

* The 8 bytes at OXFFFF_FFCS8 (4GB-56) contains the physical address of the alternate
Firmware Interface Table. This pointer is optional and is only needed if the firmware contains
an alternate FIT table. If no alternate FIT table it provided a value of 0x0 should be encoded in
this entry.

* The 8 bytes at 0OXFFFF_FFCO (4GB-64) are zero-filled and reserved for future use.

* PAL_A code (also known as generic PAL_A code in split PAL_A model) resides below
OxFFFF_FFCO. This area contains the hardware-triggered entrypoints PALE_RESET,
PALE_INIT, and PALE_CHECK. In the model where PAL_A is not split, the PAL_A code
will perform any processor-specific initialization needed in order for SAL to perform a
firmware recovery. In the split PAL_A model, the generic PAL_A will search the FIT table(s)
to find the first compatible and error-free processor-specific PAL_A code. It will then branch
to this code to perform the processor-specific initialization needed in order for SAL to perform
a firmware recovery. The PAL_A code area is a multiple of 16 bytes in length.

* SAL_A code occupies the region immediately below the PAL_A code. This area contains the
SALE_ENTRY entrypoint as well as optional implementation-independent firmware update
code. The SAL_A code area is a multiple of 16 bytes in length.

* The collection of regions above from the beginning of the SAL_A code to 4GB is called the
Protected Bootblock. The size of the Protected Bootblock is SAL_A size + PAL_A size + 64.

* The Firmware Interface Table (FIT) comprises of 16-byte entries containing starting address
and size information for the firmware components. The FIT is generated at build time, based
on the size and location of the firmware components. Optionally, an alternate FIT may be
included in the firmware. The alternate FIT will only be used if the primary FIT failed its
checksum. In the split PAL_A model, this allows the generic PAL_A firmware to find the
processor-specific PAL_A component(s), even if the primary FIT is corrupt. This feature
allows hand-off to the SAL recovery code, even if there is a primary FIT checksum failure.

2:254 Volume 2: Processor Abstraction Layer

intel.

Figure 11-4. Firmware Address Space

4GB \
IA-32 Reset vector (16 bytes)
4GB-16 ———
4GB-24 - SALE_ENTRY address (Bbytes) f - -~ --(-~~~ -~ "~
4GB-32 | Firmware Interface Table address Bbytes) f — ==~~~ — — :— il
PAL_A FIT entry (16 bytes) 64 bytes v
4GB-48 X C
Reserved (16 bytes) (Protected bootbloqk) |
4GB-64 v
PALE_RESET —> T l :
- A !
PALEINT | . -
ni t - —> | PAL_A block (multiple of 16 bytes) (PAL_A size) ! :
(CHWError) PALE_ CHECK—> |
'
C
[
L
SAL_A block i B vl
(Itanium™-based and optional IA-32 cod Q) 1iPIe OF 18 BYIES) | o\ A size) L
|
[
4GB-X - 5 LA
SALE_ENTRY v |
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT size) :
4GB-(X+Y) | I b
FIT_BASE Reserved PAL space (optional) (multiple of 16 bytes)
16MB
Maximum
PAL_B block (multiple of 16 bytes)
C
(PAL_B size)
4GB-(X+Y+C)
PAL_BASE Reserved SAL space (optional) (multiple of 16 bytes)
SAL_B block (multiple of 16 bytes)
D
(SAL_B size)
4GB-(X+Y+C+D) ——»
SAL_BASE
Available space
4GB-16MB ———» '

Volume 2: Processor Abstraction Layer 2:255

Figure 11-5. Firmware Address Space with Processor-specific PAL_A Components

4GB
IA-32 Reset vector (16 bytes)
4GB-16 ——>
4GB-24 . | SALE_ENTRY address (Bbytes)f -~~~ --"-""fF -~~~ -~
4GB-32 Firmware Interface Table address (Bbytes) —— |~~~ —— — — :7 il
4GB-48 —» | PAL_AFIT entry (16 bytes)| 64 bytes Cl
4GB-56 » | Alternate Firmware Interface Table address (optional) (8 bytes)| — — —|- — = — |- — — - | : !
R t P!
4GB-64 eserved (8 bytes) ? X L
PALE_RESET —> A (Protected I | |
Generic PAL_A block ltiple of 16 byt gePootlock) !
PALE_INIT eneric _A bloc| (multiple o ytes) | (PAL_A size) Lo
[
PALE_CHECK—> y L
' o
B I :
SAL_A block (multiple of 16 bytes) | (SAL_A size) P!
(Itanium™ -based and optional IA-32 code) - - ,I ,,,,,,,,, L. :
I
4GB-X - ! o
I
Firmware Interface Table (FIT) (multiple of 16 bytes) (FITYsize) | :
4GB-(X+Y) — » : - -
E
FIT_BASE Processor specific PAL_A (multiple of 16 bytes) | (Processor PAL_A size) |
¥ I
I
Alternate Firmware Interface Table multiple of 16 bytes . ‘
(optional) (multip ytes) (FIT size) |
- K 16MB
- L IS (Maximum)
Alternate PI’OCQS?OI’ specific PAL_A (multiple of 16 bytes) (Processor PAL_A size)
(optional) 4 -
Reserved PAL space (optional) (multiple of 16 bytes) T
C
PAL_B block (multiple of 16 bytes) | (PAL-B size)
4GB-(X+Y+Z+ ——» i
C+E+F) Reserved SAL space (optional) (multiple of 16 bytes)
PAL_BASE
D
SAL_B size
SAL_B block (multiple of 16 bytes) | (SAL-E SiZ®)
4GB-(X+Y+Z+
C+D+E+F)
SAL_BASE Available Space
4GB-16MB ——»

* The processor-specific PAL_A contains the code that is required to be run before handing off
to SAL for a firmware recovery check. This component is only available on processors that
support a split PAL_A firmware model. One processor specific PAL_A is architecturally
required in this model. The firmware may optionally contain two or more processor specific
PAL_A components.

» The PAL_B block is comprised of code that is not required to be executed for SAL to perform
a firmware recovery update. The PAL_B code area is a multiple of 16 bytes in length. The

2:256 Volume 2: Processor Abstraction Layer

PAL_B block must be aligned on a 32K byte boundary. An OEM can choose to have more than
one PAL_B block in the firmware image.

* The remainder of the firmware address space is occupied by SAL_B code. SAL_B may
include IA-32 BIOS code. The location of the SAL_B and IA-32 BIOS code within the
firmware address space is implementation dependent.

At a minimum, all of the PAL firmware components, pointers at the top of the firmware address
space, FIT tables and the portion of the SAL code that is executed at the RECOVERY CHECK
hand-off must be accessible from the processor without any special system fabric initialization
sequence. This implies that the system fabric is implicitly initialized at power on for accessing the
portions of the firmware address space listed above or that the special hardware which contains the
firmware code and data is implemented on the processor and not accessed across the system fabric.
The entire firmware code and data area can also be implicitly initialized at power on from the
processor as well, but the minimum set is listed above.

The Firmware Interface Table (FIT) contains starting addresses and sizes for the different firmware
components. Because these code blocks may be compiled at different times and places, code in one
block (such as PAL_A) cannot branch to code in another block (such as PAL_B) directly. The FIT
allows code in one block to find entrypoints in another. Figure 11-6 below shows the FIT layout.

Figure 11-6. Firmware Interface Table

I I
| |
4GB-X > \
OEM use (16 bytes)
OEM use (16 bytes)
Processor-specific PAL_A (other entries are optional) (16 bytes)
Processor-specific PAL_A (one entry is required for the split PAL_A model) (16 bytes) Y
PAL_B entry (other entries are optional) (16 bytes)
PAL_B entry (one entry is required) (16 bytes)
FIT header (16 bytes)
4GB-(X+Y) —» '
| |

Each FIT entry contains information for the corresponding firmware component. The first entry
contains size and checksum information for the FIT itself. The order of the following FIT entries
must be arranged in ascending order by the type field, otherwise execution of firmware code will be
unpredictable. Multiple FIT entries of the same type are allowed as shown in Figure 11-6.

When multiple entries of the same type exist for PAL components, PAL searches the FIT table in
ascending order looking for the first entry that is compatible and error free for the processor it is
currently executing on.

Volume 2: Processor Abstraction Layer 2:257

Figure 11-7. Firmware Interface Table Entry

Start + 16 63 56 5554 4847 32 31 24 23 0

Chksum lﬂ Type | Version (2 bytes) ‘Reservedl Size (3 bytes)
Start+8 — »

Address (8 bytes)

Start of entry ——»

* Size —a 3-byte field containing the size of the component in bytes divided by 16.
* Reserved — All fields listed as reserved must be zero filled.
*+ Version — a 2-byte field containing the component’s version number.

* Type — A 7-bit field containing the type code for the element. Types are defined in Table 11-1.
OEMs may define unique types for one or more blocks of SAL_B, 1A-32 BIOS, etc., within
the OEM-defined type range of 0x10 to Ox7E.

Table 11-1. FIT Entry Types

Type Meaning
0x00 FIT Header
0x01 PAL_B (required)
0x02- 0x0D Reserved
0x0E Processor Specific PAL_A
OxO0F PAL_A (also generic PAL_A)?
0x10- OX7E OEM-defined
Ox7F Unused Entry

a. The PAL_AFIT entry is located at OxFFFF_FFDO (4GB-48) and is not
part of the actual FIT table.

* C_V—a 1-bit flag indicating whether the component has a valid checksum. If this field is zero,
the value in the Chksum field is not valid.

o Chksum — a 1-byte field containing the component’s checksum. The modulo sum of all the
bytes in the component and the value in this field (Chksum) must add up to zero. This field is
only valid if the C_V flag is non-zero. If the checksum option is selected for the FIT, in the FIT
Header entry (FIT type 0), the modulo sum of all the bytes in the FIT table must add up to zero.

Note: The PAL_A FIT entry is not part of the FIT table checksum.

* Address — an 8-byte field containing the base address of the component. For the FIT header,
this field contains the ASCII value of “_FIT_<sp><sp><sp>" (<sp> represents the space
character).

The FIT allows simpler firmware updates. Different components may be updated independently.
This address layout can also support firmware images spanning multiple storage devices. FIT
entries must be arranged in ascending order by the type field, otherwise execution of firmware code
will be unpredictable.

2:258 Volume 2: Processor Abstraction Layer

11.2

11.2.1

11.2.2

PAL Power On/Reset

PALE_RESET

The purpose of PALE_RESET is to initialize and test the processor. Upon receipt of a power-on
reset event the processor begins executing code from the PALE_RESET entrypoint in the firmware
address space. PALE_RESET initializes the processor and may perform a minimal processor self
test. PAL may optionally perform authentication of the PAL firmware to ensure data integrity. If the
authentication code runs cacheable by default, then a processor-specific mechanism will be
provided to disable caching for diagnostic purposes.

PALE_RESET then branches to SALE_ENTRY to determine if a recovery condition exists, which
would require an update of the firmware. If it does, SALE_ENTRY performs the update and resets
the system. If no firmware recovery is needed, SAL returns to PALE_RESET to perform the
processor self-tests and initialization. SAL can control the length and coverage of the PAL
processor self-test by examining and modifying the self-test control word passed to SAL at the
firmware recovery hand-off state. Please see Section 11.2.3 for more information on the self-test
control word.

The PAL processor self-tests are split into two phases. The first phase is written to test processor
features that do not require external memory to be present to execute correctly. These tests are
automatically run when SAL returns to PAL after the branch to SALE_ENTRY for a firmware
recovery check. This section is referred to as phase one of processor self-test and they are generally
run early during the processor boot process. The second phase is written requiring that external
memory is available to execute correctly. These tests are run when a call to the PAL procedure
PAL_TEST_PROC is made with the correct parameters set up. These tests are referred to as phase
two of processor self-test since they are usually run later in the processor boot process after external
memory has been initialized on the platform.

PAL may execute IA-32 instructions to fully test and initialize the processor. This IA-32 code will
not generate any special IA-32 bus transactions nor will it require any special platform features to
correctly execute. PAL then branches to SALE_ENTRY to conduct platform initialization and
testing before loading the operating system software.

PALE_RESET Exit State

* GRs: The contents of all general registers are undefined except the following:

* GR20 (bank 1) contains the SALE_ENTRY State Parameter as defined in Figure 11-8. For
the function field of the SALE_ENTRY State Parameter, only the values 3, RECOVERY
CHECK, for the first call to SALE_ENTRY, and 0, RESET, for the second call to
SALE_ENTRY are valid.

* GR32 contains 0 indicating that SALE_ENTRY was entered from PALE_RESET.

* GR33 contains the geographically significant unique processor ID. The value is the same
as that returned by PAL_FIXED_ADDR.

* GR34 contains the physical address for making a PAL procedure call. If the call is for
RECOVERY CHECK, only the subset of PAL procedures needed for SALE_ENTRY to
perform firmware recovery will be available. These procedures are:

* PAL_FREQ_RATIOS
* PAL_LOGICAL_TO_PHYSICAL

Volume 2: Processor Abstraction Layer 2:259

* PAL_PLATFORM_ADDR
* an implementation-specific PAL procedure for PAL authentication.
* GR35 contains the Self Test State Parameter as defined in Figure 11-9.

* GR36 contains the PAL_RESET return address for SALE_ENTRY to return to if a
recovery condition does not exist. When PAL_RESET calls SALE_ENTRY the second
time to initialize the system for operating system use, this register will contain the physical
address for making an implementation-specific PAL procedure call for PAL
authentication.

Note: For all other PAL procedure calls, the physical address at GR34 should be used.

* GR37 contains the self-test control word as defined in Figure 11-10. This control word is
processor implementation-specific and informs SAL if self-test control is implemented
and the number of controllable bits. If self-test control is implemented, PAL will read this
value when SAL returns to PAL after firmware recovery check. If the self-test control is
not supported, this register will be ignored when SAL returns to PAL after firmware
recovery check.

+ Banked GRs: All bank 0 general registers are undefined.

* FRs: The contents of all floating-point registers are undefined. The floating-point registers are
enabled unless the state field of the Self Test State Parameter is FUNCTIONALLY
RESTRICTED and the floating-point unit failed self test. Then, the floating-point registers are
disabled. Refer to Section 11.2.2.2 for the definition of FUNCTIONALLY RESTRICTED.

* Predicates: The contents of all predicate registers are undefined.
* BRs: The contents of all branch registers are undefined.
* ARs: The contents of all application registers are undefined except the following:

+ RSC: All fields in the register stack configuration register are 0, which places the RSE in
enforced lazy mode.

* CFM: The CFM is set up so that all stacked registers are accessible, CFM.sof = 96 and all
other CFM fields are 0.

« PSR: PSR.bn is 1; PSR.dfl and PSR.dfh are 1 if the floating-point unit failed self test. All
other PSR bits are 0. PSR.ic and PSR.i are zero to ensure external interrupts, NMI and PMI
interrupts are disabled.

* CRs: The contents of all control registers are undefined except the following:
* DCR: contains the value 0.

* IVA: contains the physical address of an interruption vector table previously set up by
PAL. SAL may choose to change this value. The IVA will be 0 when the
SALE_ENTRY State Parameter function is RECOVERY CHECK.

* RRs: The contents of all region registers are undefined.

+ PKRs: The contents of all protection key registers are undefined.

* DBRs: The contents of all data breakpoint registers are undefined

» IBRs: The contents of all instruction breakpoint registers are undefined.

* PMCs: The contents of all performance monitor control registers are undefined.
* PMDs: The contents of all performance monitor data registers are undefined.

* Cache: The processor internal caches are enabled and invalidated. Unless directed otherwise
by the self-test control word, phase one of the processor self-test verifies the caches themselves
and the paths from the caches to the processor core. The path from external memory to the
caches cannot be tested until phase two of the processor self-test.

2:260 Volume 2: Processor Abstraction Layer

Note: All cache contents will be invalidated when SAL returns to PAL after the
RECOVERY_CHECK hand-off. If the SAL uses the caches in their
RECOVERY_CHECK code, it is SAL's responsibility to write back any modified data
in the caches before returning to PAL

* TLB: The TRs and TCs are initialized with all entries having been invalidated. The TLB is
disabled because PSR.it=PSR.dt=PSR.rt=0. The TLBs cannot be fully tested until phase two of
the processor self-test.

Prior to passing control to SALE_ENTRY, PALE_RESET must ensure that the processor Interrupt
block pointer is set to point to address 0x0000_0000_FEEO0_0000.

11.2.2.1 Definition of SALE_ENTRY State Parameter

Figure 11-8. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
status ‘ function ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* function — an 8-bit field indicating the reason for branching to SALE_ENTRY.

Table 11-2. function Field Values

Function Value Description
RESET 0 System reset or power-on
MACHINE CHECK 1 Machine check event
INIT 2 Initialization event
RECOVERY CHECK 3 Check for recovery condition

All other values of function are reserved.

* status — a function-dependent 8-bit field indicating the firmware status on entry to
SALE_ENTRY. If the function value is RESET or RECOVERY_CHECK, the status values
are:

Table 11-3. status Field Values

Status Value Description
Normal 0 Normal reset.
FIT Header Failure 1 FIT header for FIT and alternate FIT (if supported) is incorrect
FIT Checksum Failure 2 FIT checksum for FIT and alternate FIT (if supported) is incorrect
PAL_B Checksum Failure 3 PAL_B checksum (for all compatible PAL_B's found) is incorrect
PAL_A Authentication Failure 4 PAL_A (generic in split model) failed authentication
PAL_B Authentication Failure 5 PAL_B (for all compatible PAL_B's found) failed authentication
PAL_B Not Found 6 FIT Entry for PAL_B missing from the FIT and alternate FIT (if

supported)

Incompatible 7 No PAL_B was found in the FIT and alternate FIT (if supported)

that is compatible with the processor stepping

Unaligned 8 No PAL_B was found in the FIT and alternate FIT (if supported)
that was correctly aligned to a 32KB boundary

Volume 2: Processor Abstraction Layer 2:261

Table 11-3. status Field Values (Continued)

Status Value Description

PAL_A_Spec Not Found / 9 No compatible processor-specific PAL_A was found in the FIT

FIT Checksum Failure because of a FIT checksum failure and no compatible
processor-specific PAL_A was found in the alternate FIT (if
supported)

PAL_A_Spec Found / FIT 10 | A compatible processor-specific PAL_A was found in the

Checksum Failure alternate FIT. No compatible processor-specific PAL_A was
found in the FIT due to a FIT checksum failure.

PAL_A_Spec Failure / 11 One or more compatible processor-specific PAL_A's found in the

Good PAL_A_Spec found in FIT FIT failed its checksum or authentication. Another compatible

processor-specific PAL_A was found in the FIT that passed its
checksum and authentication.

PAL_A_Spec Auth Failure 12 No compatible processor-specific PAL_A's were found in the FIT
or alternate FIT (if supported) that passed its checksum and
authentication

PAL_A_Spec Auth Failure / 13 | One or more compatible processor-specific PAL_A's found in the

Good PAL_A_Spec found in AF FIT or alternate FIT (if supported) failed its checksum and

authentication. Another compatible processor-specific PAL_A
was found in the alternate FIT that passed its checksum and

authentication.
PAL_A_Spec Not Found 14 No compatible processor-specific PAL_A was found in the FIT or
alternate FIT (if supported)
PAL_A_Spec Not Found in FIT / 15 No compatible processor-specific PAL_A was found in the FIT. A
Good PAL_A_Spec found in AF compatible processor-specific PAL_A was found in the alternate
FIT.
PAL_B Auth Failure / Good PAL_B 16 | One or more compatible PAL_B's failed authentication and
found checksum. Another compatible PAL_B was found that passed

authentication and checksum.

All other values of status are reserved.

Definitions of status values for other values of function are listed in the machine check and init
sections.

For the case of RECOVERY CHECK, authentication of PAL_A and PAL_B should be
completed before call to SALE_ENTRY.

11.2.2.2 Definition of Self Test State Parameter

Figure 11-9. Self Test State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1

0
[e[

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ test_status ’

* state — a 2-bit field indicating the state of the processor after self-test. If SAL directed PAL to
skip some self-tests by modifying the self-test control word, failures related to these self-tests
will not be reflected in this state.

2:262 Volume 2: Processor Abstraction Layer

In

tel.

Table 11-4. state Field Values

State Value Description

Catastrophic Failure N/A The processor is not capable of continuing. In this case it does

not branch to SALE_ENTRY.

Healthy 00 No hardware failures have occurred in testing that would affect

either the performance or functionality of the processor.

Performance Restricted 01 A hardware failure has occurred in testing that does not affect the

functionality of the processor, but performance may be degraded.

Functionally Restricted 10 A hardware failure has occurred in testing that affects the

functionality of the processor, but firmware code can still be run.
The processor may also be performance restricted.

To further qualify FUNCTIONALLY RESTRICTED, the following requirements will be met:

» The processor has detected and isolated the failing component so that it will not be used.

* The processor must have at least one functioning memory unit, ALU, shifter, and branch
unit.

* The floating-point unit may be disabled.

» The RSE is not required to work, but register renaming logic must work properly.

» The paths between the processor controlled caches and the register files have been shown
to work. The path between the processor caches and memory cannot be validated until
phase two of the processor self-test invoked by the PAL_TEST_PROC procedure.

* Loads and stores to firmware address space must work correctly.
Additional information about the failure can be obtained by examining the test_status field of
the Self Test State Parameter.

For the case of FUNCTIONALLY RESTRICTED, it is required that higher level firmware or
OS not use failing functional units during their execution. PAL will not prevent failing
functional units from being used.

te — a 1-bit field indicating whether testing has occurred. If this field is zero, the processor has
not been tested, and no other fields in the Self Test State Parameter are valid. The processor
can be tested prior to entering SALE_ENTRY for both RECOVERY CHECK and RESET

functions.
If the state field indicates that the processor is functionally restricted, then the fields vm, ia &

/p specify additional information about the functional failure.

* vm —a 1-bit field, if set to 1, indicating that virtual memory features are not available
* ja—a 1-bit field, if set to 1, indicating that IA-32 execution is not available
* fp—a 1-bit field, if set to 1, indicating that floating-point unit is not available

* mf—a l-bit field, if set to 1, indicating miscellaneous functional failure other than vm, ia,
or fp. The test_status field provides additional information about this failure on an
implementation-specific basis.

test_status — an unsigned 32-bit-field providing additional information on test failures when
the state field returns a value of PERFORMANCE RESTRICTED or FUNCTIONALLY
RESTRICTED. The value returned is implementation dependent.

Volume 2: Processor Abstraction Layer 2:263

11.2.3 PAL Self-test Control Word

The PAL self-test control word is a 48-bit value. This bit field is defined in Figure 11-10.

Figure 11-10. Self-test Control Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211 10 9 8 7 6 5 4 3 2 1 0
‘ test_control ’

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
cs ‘ test_control ‘

* test_control — This is an ordered implementation-specific control word that allows the user
control over the length and run-time of the processor self-tests. This control word is ordered
from the longest running tests up to the shortest running tests with bit 0 controlling the longest
running test.

PAL may not implement all 47-bits of the fest_control word. PAL communicates if a bit
provides control by placing a zero in that bit. If a bit provides no control, PAL will place a one
in it.

PAL will have two sets of fest_control bits for the two phases of the processor self-test.

PAL provides information about implemented test_control bits at the hand-off from PAL to
SAL for the firmware recovery check. These test_control bits provide control for phase one of
processor self-test. It also provides this information via the PAL procedure call
PAL_TEST_INFO for both the phase one and phase two processor tests depending on which
information the caller is requesting.

PAL interprets these bits as input parameters on two occasions. The first time is when SAL
passes control back to PAL after the firmware recovery check. The second time is when a call
to PAL_TEST_PROC is made. When PAL interprets these bits it will only interpret
implemented fest_control bits and will ignore the values located in the unimplemented
test_control bits.

PAL interprets the implemented bits such that if a bit contains a zero, this indicates to run the
test. If a bit contains a one, this indicates to PAL to skip the test.

If the cs bit indicates that control is not available, the test_control bits will be ignored or
generate an illegal argument in procedure calls if the caller sets these bits.

* ¢s — Control Support: This bit defines if an implementation supports control of the PAL
self-tests via the self-test control word. If this bit is 0, the implementation does not support
control of the processor self-tests via the self-test control word. If this bit is 1, the
implementation does support control of the processor self-tests via the self-test control word.

If control is not supported, GR37 will be ignored at the hand-off between SAL and PAL after
the firmware recovery check and the PAL procedures related to the processor self-tests may
return illegal arguments if a user tries to use the self-test control features.

2:264 Volume 2: Processor Abstraction Layer

11.3

11.3.1

Machine Checks

PALE_CHECK

When a machine check abort (MCA) occurs, PALE_CHECK is responsible for saving minimal
processor state to a uncacheable platform-specific memory location previously registered with PAL
via the PAL_MC_REGISTER_MEM procedure. This platform location is called the Minimal State
Save Area (min-state save area) and is described in Section 11.3.2.3. PALE_CHECK is also
responsible for correcting processor related errors whenever possible. PALE_CHECK terminates
by branching to SALE_ENTRY, passing the state of the processor at the time of the error. The level
of recovery provided by PALE_CHECK is implementation dependent and is beyond the scope of
this specification.

At the hand-off from PALE_CHECK to SALE_ENTRY, error information is passed in the
Processor State Parameter described in Section 11.3.2.1. After exit from PALE_CHECK, more
detailed error information is available by calling the PAL_MC_ERROR_INFO procedure.
Information about implementation-dependent state is available by calling the
PAL_MC_DYNAMIC_STATE procedure. The interrupted process may be resumed by calling the
PAL_MC_RESUME procedure. See Section 11.3.3 for more information on returning to the
interrupted context and Section 11.9, “PAL Procedures” on page 2:284 for detailed descriptions of
all these procedure calls.

Code for handling machine checks must take into consideration the possibility that nested machine
checks may occur. A nested machine check is a machine check that occurs while a previous
machine check is being handled.

PALE_CHECK is entered in the following conditions:
¢« When PSR.mc = 0 and an error occurs which results in a machine check, or

* When PSR.mc changes from 1 to 0 and there is a pending machine check from an earlier error.

PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. PSR.mc will remain set for the
duration of PALE_CHECK, and PALE_CHECK will exit with PSR.mc set. SAL must not clear
PSR.mc to 0 before all the information from the current machine check is logged. If SAL enables
machine checks (by setting PSR.mc=0) during the SAL MCA handling, there is a potential for the
error logs in the processor and the min-state save area to be overwritten by a subsequent MCA
event. PALE_CHECK must attempt to branch to SALE_ENTRY unless code execution is not
possible.

The error information logged will reflect the state at the time the error occurred. State information
from a different point in time will NOT be logged. If complete information is not available a code is
logged which indicates that the information is not available.

» The processor state information used to resume a process for which an error has been corrected
will reflect the state at the time the machine check interruption occurred and will be sufficient
to resume the interrupted process.

* When a single error is signalled multiple times (for example, multiple operations to a single
bad cache line), hardware and firmware will be able to perform the same logging and recovery
as if the error had been signalled once.

Volume 2: Processor Abstraction Layer 2:265

11.3.1.1

11.3.2

2:266

intel.

For testing and configuration purposes, it may be necessary for software to intentionally generate a
machine check. In this case PALE_CHECK will log the error information, but not attempt recovery
before branching to SALE_ENTRY. To allow for this, the PAL_MC_EXPECTED procedure call is
defined to indicate that PALE_CHECK should not to attempt recovery.

Resources Required for Machine Check and Initialization Event
Recovery

While the level of recovery from machine checks is implementation dependent, for each particular
level of recovery there is a set of architecturally required resources. The following paragraphs
define the required and optional resources needed to support firmware and software recovery of
machine checks and initialization events.

* Minimal resources required to allow software recovery of machines checks when PSR.ic=1:

+ XRO register: memory pointer to min-state save area previously registered with PAL via
the PAL_MC_REGISTER_MEM procedure. The layout of this memory area is described
in Section 11.3.2.3.

* Bank zero registers GR 24 through GR 31. These registers are not preserved across
interruptions and may be used as scratch registers by machine check recovery code. See
Section 3.3.7, “Banked General Registers” for the definition of the bank 0 registers.

 Additional resources required to allow software recovery of machine checks when PSR.ic=0.
The presence of these resources is processor implementation specific. The
PAL_PROC_GET_FEATURES procedure described on page 2:355 returns information on the
existence of these optional resources.

+ XIP, XPSR, XFS: interruption resources implemented to store information about the IP,
PSR and IFS when the machine check occurred. A model-specific version of the r f i
instruction must also be implemented to restore the machine context from these resources.

* XR1-XR3: scratch registers implemented to preserve bank 0 GR 24 through GR 31.

Each of the registers described above should be accessed only by PAL in order to support firmware
and software recovery of machine checks.

PALE_CHECK Exit State

The state of the processor on exiting PALE_CHECK is:

* GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static registers
and bank one static registers (GR16-31) at the time of the MCA have been saved in the
min-state save area and are available for use.

* Ifrecovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are undefined and
their contents have been lost. In this case, recovery is not possible. See Section 11.3.1.1
for details.

* GR16 through GR20 (bank 0) contain parameters which PALE_CHECK passes to
SALE_ENTRY for diagnostic and recovery purposes:

* GR16 contains the address to the first available location in the min-state save area for
use by SAL. The address is 8-byte aligned.

e GR17 contains the value of the min-state save area address stored in XRO.

* GRI18 contains the Processor State Parameter, as defined in Figure 11-11.

Volume 2: Processor Abstraction Layer

¢ GR19 contains the PALE_CHECK return address for rendezvous, or 0 if no return is
expected. (See Section 11.3.2.2)

* GR20 contains the SALE_ENTRY State Parameter as defined in Figure 11-14.
FRs: The contents of all floating-point registers are unchanged from the time of the MCA.
Predicates: All predicate registers have been saved in the min-state save area and are available
for use.
BRs: The contents of all branch registers are unchanged from the time of the MCA, except the
following.

* BRO has been saved to the min-state save area and is available for use.

ARs: The contents of all application registers are unchanged from the time of the MCA, except
the RSE control register (RSC), the RSE backing store pointer (BSP), and the ITC counter. The
RSC register is unchanged, except that the RSC.mode field will be set to 0 (enforced lazy
mode) and the RSC register at the time of the MCA has been saved in the min-state save area.
A cover instruction is executed in the PALE_CHECK handler which allocates a new stack
frame of zero size. BSP will be modified to point to a new location, since all the registers from
the current frame at the time of interruption were added to the RSE dirty partition by the
allocation of a new stack frame. The ITC register will not be directly modified by PAL, but
will continue to count during the execution of the MCA handler.

CFM: The CFM register points to a zero-size current frame and all the rotating register bases
are set to zero. The CFM register at the time of the MCA has been saved to the min-state save
area in either the IFS or XFS slot depending on the implementation.

RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time of the MCA.

PSR: PSR.mc is 1; all other bits are 0. The PSR at the time of the MCA 1is saved in the
min-state save area.

CRs: The contents of all control registers are unchanged from the time of the MCA with the
exception of interruption resources, which are described below.

RRs: The contents of all region registers are unchanged from the time of the MCA.
PKRs: The contents of all protection key registers are unchanged from the time of the MCA.
DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the MCA.

PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the MCA.
The contents of the PMD registers are not modified by PAL code, but may be modified if
events it is monitoring are encountered.

Cache: The processor internal cache is enabled and is unchanged from the time of the MCA
except for any lines that were invalidated to correct the error.
TLB: The TCs may be initialized and the TRs are unchanged from the time of the MCA.
Interruption Resources:
* IRR: PALE_CHECK may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

¢ The contents of IIP, IPSR and IFS at the time of the MCA are saved to the min-state save
area and are available for use.

Volume 2: Processor Abstraction Layer 2:267

11.3.21 Processor State Parameter (GR 18)

Figure 11-11. Processor State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13121 10 9 8 7 6 5 4 3 2 10

‘gr‘bO‘b1‘fp‘pr‘br’ar‘rr‘tr‘dr ‘pc‘ cr‘ex‘cm‘rs‘in ’dy‘pm‘pi‘mi’tl ‘hd‘us‘ci‘co‘sy‘mn‘me‘ra‘rz-

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332

The term “valid” in Table 11-5 indicates that the registers are either unchanged from the time of
interruption or that the values have been preserved in the min-state save area.

dsize ‘

Table 11-5. Processor State Parameter Fields

Field Name

Bit

Description

The attempted processor rendezvous was successful if set to 1.

A processor rendezvous was attempted if set to 1.

Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

Min-state save area has been registered with PAL if set to 1.

Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and that
no loads or stores beyond that point occurred. See Table 11-6.

Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this bit
is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-6.

Machine check is isolated. A value of 1 indicates that the error has been isolated by the
system, it may or may not be recoverable. If 0, the hardware was unable to isolate the
error within the CPU and memory hierarchy. The error may have propagated off the
system (to persistent storage or the network). If ¢ci = 0 then us will be set to 1, and co
and sy are cleared to 0. See Table 11-6.

Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-6.

Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi

More information. A value of 1 indicates that more error information about the machine
check event is available by making the PAL_MC_ERROR_INFO procedure call.

Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm

Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy

Processor Dynamic State is valid. (1=valid, 0=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

Interruption caused by INIT. (O=machine check, 1=INIT)

2:268

Volume 2: Processor Abstraction Layer

In

Volume 2: Processor Abstraction Layer

tel.

Table 11-5. Processor State Parameter Fields (Continued)

Field Name Bit Description

rs 17 The RSE is valid. (1=valid, 0=not valid)

cm 18 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 A machine check was expected. (1=expected, 0=not expected)

cr 20 Control registers are valid. (1=valid, 0=not valid)

pc 21 Performance counters are valid. (1=valid, 0=not valid)

dr 22 Debug registers are valid. (1=valid, 0=not valid)

tr 23 Translation registers are valid. (1=valid, 0=not valid)

rr 24 Region registers are valid. (1=valid, 0=not valid)

ar 25 Application registers are valid. (1=valid, 0=not valid)

br 26 Branch registers are valid. (1=valid, 0=not valid)

pr 27 Predicate registers are valid. (1=valid, O=not valid)

fp 28 Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 Preserved bank zero general registers are valid. (1=valid, 0=not valid)

ar 31 General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 | Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

cc 59 Cache check. A value of 1 indicates that a cache related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 TLB check. A value of 1 indicates that a TLB related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

bc 61 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

11.3.2.1.1 Using Processor State Parameter to Determine if Software
Recovery of a Machine Check is Possible

The us, ci, co, and sy bits in the Processor State Parameter are valid only if the error has not been
previously corrected in hardware or firmware (cm bit is 0). Even then, only the bit combinations
shown in Table 11-6 are valid. If the multiple error bit is set (me=1) both the co and sy bits must be
0. The us and ci bits will be set according to the worst case of the errors that occurred.

Table 11-6. Software Recovery Bits in Processor State Parameter

cm | us | ci | co | sy Description
X X The machine check is corrected. The us, ci, co, and sy bits are not valid.

0 The error was not isolated. Software must reset system. Data on disk may be
corrupt.

0 1 1 0 0 The error was isolated but not contained. Corrupt data was not written to 1/0, but
may remain in the CPU or memory untagged. Software must reset system.

0 0 1 0 0 The error was isolated and contained, but is not continuable. The current
instruction stream cannot be restarted without loss of information. Partial
recovery may be possible.

2:269

Table 11-6. Software Recovery Bits in Processor State Parameter (Continued)

11.3.2.2

11.3.2.3

2:270

cm | us | ci | co | sy Description

0 0 1 1 0 The error was isolated, contained, and is continuable. If software can correct the
error the current instruction stream can be continued with no loss of information.

0 0 1 1 1 The error was isolated, contained, and is continuable. The instruction pointer
points to the instruction where the error occurred. If software can correct the error
the current instruction stream can be continued with no loss of information.

Multiprocessor Rendezvous Requirements for Handling Machine
Checks

When PALE_CHECK has determined that an error has occurred which could cause a
multiprocessor system to lose error containment, it must rendezvous the other processors in the
system before proceeding with further processing of the machine check. This is accomplished by
branching to SALE_ENTRY with a non-zero return vector address in GR19. It is then the
responsibility of SAL to rendezvous the other processors and return to PALE_CHECK through the
address in GR19. If the rendezvous was successful GR19 must be set to 0 before return.

At the time PALE_CHECK makes the rendezvous call to SALE_ENTRY, the processor state is
exactly the same as defined in Section 11.3.2, “PALE_CHECK Exit State” with the following
requirement on the use of registers by SAL:

Any processor state not listed below must be either unchanged or restored by SAL before returning
to PALE_CHECK.

* SAL will preserve the values in GR4-GR7 and GR17-GR18.

o SAL will return to PALE_CHECK via the address in GR19.

* SAL will set up GR19 to indicate the success of the rendezvous before returning to PAL.
* GR19 is zero to indicate the rendezvous was successful.
* GR19 is non zero to indicate that the rendezvous was unsuccessful.

+ All other non-banked (GR1-3, GR8-15), bank 0 GRs (GR20-GR31) and BRO are undefined
and available for use by SAL.

After return from the SAL rendezvous call, PALE_CHECK will complete processing the machine
check if the rendezvous was successful and then branch to SALE_ENTRY with GR19 set to zero.

The processor state when transferring to SAL is as defined in Section 11.3.2, “PALE_CHECK Exit
State.” If the rendezvous failed PALE_CHECK will simply construct the Processor State Parameter
and branch to SALE_ENTRY.

Any further discussion of multiprocessor rendezvous, including platform requirements and
implications, is beyond the scope of this specification. See the relevant SAL/Error handling
documents for further information.

Processor Min-state Save Area Layout

The processor min-state save area is 4KB in size and must be in an uncacheable region. The first
1KB of this area is architectural state needed by the PAL code to resume during MCA and INIT
events (architected min-state save area + reserved). The remaining 3KB is a scratch buffer reserved
exclusively for PAL use, therefore SAL and OS must not use this area. The layout of the processor
min-state save area is shown in Figure 11-12.

Volume 2: Processor Abstraction Layer

In

tel.

Figure 11-12. Processor Min-state Save Area Layout

Min-state save ptr + 4AKB —®>

PAL Reserved Memory 3KB

Min-state save ptr + 1KB —®

Architectural 1KB

Min-state save ptr >

The layout for the processors portion of the architectural 1KB processor min-state save area is
shown in Figure 11-13. When SAL registers the area with PAL, it passes in a pointer to offset zero
of the area. When PALE_CHECK is entered as a result of a machine check, it fills in processor
state, processes the machine check, and branches to SALE_ENTRY with a pointer to the first
available memory location that SAL can use in GR16. SAL may allocate a variable sized area
above the address passed in GR16 up to the 1KB architectural limit, but this is internal to SAL and
not known to PAL.

The base address of the min-state save area must minimally be aligned on a 512-byte boundary, but
larger alignments like 4 KB are fine. All saves and restores to and from the min-state save area are
made using 8-byte wide load and store instructions. If the processor min-state save area is not
registered via the PAL_MC_REGISTER_MEM procedure prior to the machine check, software
recovery is not possible.

The value passed in GR16 to SAL may point beyond the defined processor state shown in
Figure 11-13. PAL may use this area for implementation-dependent processor state that needs to be
saved and restored.

Volume 2: Processor Abstraction Layer 2:271

Figure 11-13. Processor State Saved in Min-state Save Area

2:272

0xf8
0xfo
Oxe8
0xe0
0xd8
0xd0
0xc8
0xc0
0xb8
0xb0
Oxa8
0xa0
0x98
0x90
0x88
0x80
0x78
0x70
0x68
0x60
0x58
0x50
0x48
0x40
0x38
0x30
0x28
0x20
0x18
0x10
0x8
0x0

Bank 0 GR31

Bank 0 GR30

Bank 0 GR29

Bank 0 GR28

Bank 0 GR27

Bank 0 GR26

Bank 0 GR25

Bank 0 GR24

Bank 0 GR23

Bank 0 GR22

Bank 0 GR21

Bank 0 GR20

Bank 0 GR19

Bank 0 GR18

Bank 0 GR17

Bank 0 GR16

GR15

GR14

GR13

GR12

GR11

GR10

GR9

GRS

GR7

GR6

GR5

GR4

GR3

GR2

GR1

NaT bits for saved GRs

-4 GR16

= =
0x1c8 BR1
0x1c0 XFS or undefined
0x1b8 XPSR or undefined
0x1b0 XIP or undefined
0x1a8 IFS
0x1a0 IPSR
0x198 P
0x190 RSC
0x188 BRO
0x180 Predicate Registers
0x178 Bank 1 GR31
0x170 Bank 1 GR30
0x168 Bank 1 GR29
0x160 Bank 1 GR28
0x158 Bank 1 GR27
0x150 Bank 1 GR26
0x148 Bank 1 GR25
0x140 Bank 1 GR24
0x138 Bank 1 GR23
0x130 Bank 1 GR22
0x128 Bank 1 GR21
0x120 Bank 1 GR20
0x118 Bank 1 GR19
0x110 Bank 1 GR18
0x108 Bank 1 GR17
0x100 Bank 1 GR16

Volume 2: Processor Abstraction Layer

intel.

11.3.2.4 Definition of SALE_ENTRY State Parameter

Figure 11-14. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
function ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* function — an §-bit field indicating the reason for branching to SALE_ENTRY.
Table 11-7. function Field Values

Function Value Description
RESET 0 System reset or power-on
MACHINE CHECK 1 Machine check event
INIT 2 Initialization event
RECOVERY CHECK 3 Check for recovery condition in SAL

All other values of function are reserved.

11.3.3 Returning to the Interrupted Process

The PAL_MC_RESUME procedure is defined to return to the interrupted context after handling a
machine check or initialization event. See page 2:353 for a description of the PAL_MC_RESUME
procedure. If software attempts to return to the interrupted context without using this procedure,
processor behavior is undefined.

There are certain error cases that may require returning to a new context in order to recover from
the machine check. If this occurs a new context can be returned to via the PAL_MC_RESUME
procedure with the new_context flag set. The caller needs to set up the new processor min-state
save area as shown in Figure 11-13 for all the listed register states. If the caller wants to return to a
context where PSR.ic is zero (i.e., an interruption handler) the IIP, IPSR and IFS values in the
min-state save area must be set up with the first level return values. These are the values for the IP,
PSR and CFM of the interruption handler it wishes to return to. The XIP, XPSR, XFS values in the
min-state save area must be set up with the second level return values. These are the IP, PSR and
CFM values for where the interruption handler will return to. If the caller wants to return to a
context where PSR.ic is one, it must set up the IIP, IPSR, IFS and the XIP, XPSR, and XFS both to
contain the new instruction pointer, PSR value, and CFM values.

When returning to a new context, the memory area from BR1 up to the 1KB architectural limit is
ignored by the PAL_MC_RESUME procedure. The software constructing the new context
min-state save area does not have to worry filling in this memory area with any values. When a new
context is returned to, the state originally saved in the min-state save area (old context) shall be
discarded and never used again.

In order to return to the interrupted context without loss of any architectural state, the caller must
restore all register state that is not stored in the processors min-state save area before making the
PAL_MC_RESUME procedure call. Since BR0 and BR1 are the only two branch registers saved in
the min-state save area, the caller must only use these two branch registers when making the
PAL_MC_RESUME procedure call.

Volume 2: Processor Abstraction Layer 2:273

11.4

11.4.1

11.4.2

2:274

PAL Initialization Events

PALE_INIT

PALE_INIT is entered when an initialization event (INIT) occurs, as a result of the assertion on an
INIT signal to the processor or an INIT interruption occurring. If PSR.mc = 1, the initialization
event is held pending until PSR.mc becomes 0. The purpose of PALE_INIT is to save the
architecturally defined processor state to the Minimal State Save Area (min-state save area) and to
branch to SALE_ENTRY. The code sequence interrupted by the initialization event can be restarted
via PAL_MC_RESUME if PSR.ic = 1. The code sequence interrupted by the initialization event
can be restarted if PSR.ic = 0 and the processor has implemented the optional recovery resources
described in Section 11.3.1.1, “Resources Required for Machine Check and Initialization Event
Recovery.” If PSR.ic = 0 and the optional recovery resources have not been implemented, then the
initialization event is not recoverable.

PALE_INIT Exit State

The state of the processor on exiting PALE_INIT is:

* GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static registers
and bank one static registers (GR16-31) at the time of the INIT have been saved in the
min-state save area and are available for use.

* Ifrecovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are undefined and
their contents have been lost. In this case, recovery is not possible. See Section 11.3.1.1
for details.

* GR16 through GR20 (bank 0) contain parameters which PALE_INIT passes to
SALE_ENTRY for diagnostic and recovery purposes:

* GR16 contains the address to the first available location in the min-state save area for
use by SAL. The address is 8-byte aligned.

* GR17 contains the value of the min-state save area address stored in XRO.

* GRI18 contains the Processor State Parameter, as defined in Figure 11-15 on
page 2:275.

¢ GR19 contains the PALE_INIT return address for rendezvous, or 0 if no return is
expected. (See Section 11.3.2.2)

* GR20 contains the SALE_ENTRY state as defined in Figure 11-14.
* FRs: The contents of all floating-point registers are unchanged from the time of the INIT.
+ Predicates: All predicate registers have been saved in the min-state save area and are available
for use.

* BRs: The contents of all branch registers are unchanged from the time of the INIT except the
following:

* BRO is has been saved to the min-state save area and is available for use.

* ARs: The contents of all application registers are unchanged from the time of the INIT, except
the RSE control register (RSC), the RSE backing store pointer (BSP), and the ITC counter. The
RSC register is unchanged, except that the RSC.mode field will be set to 0 (enforced lazy
mode) and the RSC register at the time of the INIT has been saved in the min-state save area. A
cover instruction is executed in the PALE_INIT handler which allocates a new stack frame of

Volume 2: Processor Abstraction Layer

zero size. BSP will be modified to point to a new location, since all the registers from the
current frame at the time of interruption were added to the RSE dirty partition by the allocation
of a new stack frame. The ITC register will not be directly modified by PAL, but will continue
to count during the execution of the INIT handler.

* CFM: The CFM register points to a zero-size current frame and all the rotating register bases
are set to zero. The CFM register at the time of the INIT has been saved to the min-state save
area in either the IFS or XFS slot depending on the implementation.

» RSE: The RSE is in enforced lazy mode, and all stacked registers are unchanged from the time
of the INIT.

¢ PSR: PSR.mc is 1; all other bits are 0. The PSR at the time of the INIT is saved in the min-state
save area.

* CRs: The contents of all control registers are unchanged from the time of the INIT with the
exception of the interruption resources, which are described below.

* RRs: The contents of all region registers are unchanged from the time of the INIT.
* PKRs: The contents of all protection key registers are unchanged from the time of the INIT.
* DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the INIT.

* PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the INIT. The
contents of the PMD registers are not modified by PAL code, but may be modified if events it
is monitoring are encountered.

» Cache: The contents of the caches are unchanged from the time of the INIT.
» TLB: The TCs may be initialized and the TRs are unchanged from the time of the INIT.
* Interruption Resources:

* IRR: PALE_INIT may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

¢ The contents of IIP, IPSR and IFS at the time of INIT are saved to the min-state save area
and are available for use.

1.4.2.1 Processor State Parameter (GR18)

Figure 11-15. Processor State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 131211 10 9 8 7 6 5 4 3 2 10
‘gr‘bo‘m‘fp‘pr‘br‘ar‘rr‘tr‘dr‘pc‘cr‘ex‘cm‘rs‘in‘dy‘pm‘pi‘mi‘tl‘hd‘us‘ci‘co‘sy‘mn‘me‘ra‘rz-

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 3332

The term “valid” in Table 11-5 indicates that the registers are either unchanged from the time of
interruption or that the values have been preserved in the min-state save area.

Volume 2: Processor Abstraction Layer 2:275

Table 11-8. Processor State Parameter Fields

2:276

Field
name

rz

Bit

INIT

value

X

2

a

Description

The attempted processor rendezvous was successful if set to 1.

ra

a

A processor rendezvous was attempted if set to 1.

me

Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

mn

Min-state save area has been registered with PAL if set to 1.

sy

Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and
that no loads or stores beyond that point occurred. See Table 11-6.

co

Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this
bit is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-6.

Ci

Machine check is isolated. A value of 1 indicates that the error has been isolated by

the system, it may or may not be recoverable. If 0, the hardware was unable to isolate
the error within the CPU and memory hierarchy. The error may have propagated off

the system (to persistent storage or the network). If ¢i = 0 then us will be set to 1, and
co and sy are cleared to 0. See Table 11-6.

us

Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-6.

hd

10

Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

tl

1

Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

12

More information. A value of 1 indicates that more error information about the
machine check event is available by making the PAL_MC_ERROR_INFO procedure
call.

pi

13

Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm

14

Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy

15

Processor Dynamic State is valid. (1=valid, O=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

16

N

Interruption caused by INIT. (0=machine check, 1=INIT)

rs

17

[

The RSE is valid. (1=valid, O=not valid)

cm

18

The machine check has been corrected. (1=corrected, 0=not corrected)

ex

19

A machine check was expected. (1=expected, 0=not expected)

cr

20

Control registers are valid. (1=valid, 0=not valid)

pc

21

Q

Performance counters are valid. (1=valid, 0=not valid)

dr

22

Q

Debug registers are valid. (1=valid, 0=not valid)

tr

23

X| X | X|X|Olo| X

[

Translation registers are valid. (1=valid, 0=not valid)

r

24

Region registers are valid. (1=valid, 0=not valid)

ar

25

Application registers are valid. (1=valid, 0=not valid)

br

26

Branch registers are valid. (1=valid, 0=not valid)

Volume 2: Processor Abstraction Layer

intel.

Table 11-8. Processor State Parameter Fields (Continued)

Field Bit INIT Description

name value

pr 27 xa Predicate registers are valid. (1=valid, 0=not valid)

fp 28 x2 Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 xa Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 x@ Preserved bank zero general registers are valid. (1=valid, 0=not valid)

ar 31 x@ General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize [47:32 |x@ Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

cc 59 0 Cache check. A value of 1 indicates that a cache related machine check occurred.
See the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 0 TLB check. A value of 1 indicates that a TLB related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information.

bc 61 0 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 0 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 0 Uarch check. A value of 1 indicates that a micro-architectural related machine check

occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

a. The values of the fields marked with x are set by the PAL INIT handler based on the INIT handling.

11.4.2.2 Definition of SALE_ENTRY State Parameter

Figure 11-16. SALE_ENTRY State Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
function ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* function — an 8-bit field indicating the reason for branching to SALE_ENTRY.

Table 11-9. function Field Values

Function Value Description
RESET 0 System reset or power-on
MACHINE CHECK 1 Machine check event
INIT 2 Initialization event
RECOVERY CHECK 3 Check for recovery condition in SAL

All other values of function are reserved.

Volume 2: Processor Abstraction Layer 2:277

11.5

11.5.1

Platform Management Interrupt (PMI)

PMI Overview

PMI is an asynchronous highest-priority external interrupt that encapsulates a collection of
platform-specific interrupts. Platform Management Interrupts occur during instruction processing,
causing the flow of control to be passed to the PAL PMI handler. In the process, state is saved in the
interruption registers (IIP, IPSR) by the processor hardware and the processor starts executing
instructions at the PALE_PMI entrypoint. The PAL code will save some additional state in the bank
0 registers. The PAL will either handle the PMI if it is PAL related PMI or transition to the SAL
PMI code if it is a SAL related PMI. Upon completion of processing, the SAL PMI code returns to
PAL PMI code to restore the interrupted processor state and to resume execution at the interrupted
instruction.

As shown in Figure 11-17, PMI code consists of two major components, namely the PAL PMI
handler which handles all processor-specific processing, and the SAL PMI handler which handles
all platform-related processing. The location of the PALE_PMI and SALE_PMI handlers are
programmable. The location of the PALE_PMI handler can be programmed by the
PAL_COPY_PAL procedure described on page 2:317. The SALE_PMI handler can be
programmed by the PAL_PMI_ENTRYPOINT procedure described on page 2:357. If a PMI is
taken very early in the boot sequence before PAL has a chance to register its PALE_PMI
entrypoint, processor operation is undefined. If a SAL related PMI is seen before the SAL PMI
handler is registered, the PAL PMI code will just return to the interrupted context

Figure 11-17. PMI Entrypoints

PAL SAL 0S

- PALE_PMI > SALE_PMI
- ———

The hardware events that can cause the PMI request are referred to as PMI events. PMI events are
the highest priority external interrupts and are only maskable when the system software is
processing very critical tasks with PSR.ic=0. When PSR.ic is 1, PMI events are unmasked. PSR.i
has no effect on PMI events. All PMI events are internally latched into an array of
implementation-specific latches in the processor. The PAL PMI handler reads the latches to
determine what PMI vector requests are pending and dispatches them in priority order. Table 11-10
lists the PMI events and their priority.

Table 11-10. PMI Events and Priorities

2:278

PMI Events Priority
PMI message for PAL (vectors 4-15) High
PMI message for SAL (vectors 1-3)
PMI pin (vector 0) Low

PMI messages can be delivered by an external interrupt controller, or as an inter-processor interrupt
using delivery mode 010. Table 11-11 shows the PMI message vector assignments. Vectors 4-15
are reserved for PAL, and within these PAL vectors, a higher vector number has higher priority.

Volume 2: Processor Abstraction Layer

Vectors 1-3 are available for SAL to use, and within these SAL vectors, a higher vector number has
higher priority. Vector 0 is used to indicate the PMI pin event. The PMI vector number is passed to
the SAL PMI handler in GR 24. Vectors described as Intel reserved will be ignored by the

processor.

Table 11-11. PMI Message Vector Assignments

Priority Vector Description
Low 0 PMI pin
4]
2 1
3
¢ > 2 Available for SAL firmware
High 3 3

IA-32 Machine Check Rendezvous

11.5.2 PALE_PMI Exit State

The state of the processor on exiting PALE_PMI is:
* GRs: The contents of non-banked general registers are unchanged from the time of the
interruption.
* Bank 1 GRs: The contents of all bank one general registers are unchanged from the time
of the interruption.
* Bank 0:GR16-23: The contents of these bank zero general registers are unchanged from
the time of the interruption.
* Bank 0:GR24-31: contain parameters which PALE_PMI passes to SALE_PMI:
* GR24 contains the value decoded as follows:
* Bits 7-0: PMI Vector Number
* Bit 63-8: Reserved
* GR25 contains the value of the min-state save area address stored in XRO.
* GR26 contains the value of saved RSC. The contents of this register shall be
preserved by SAL PMI handler.
* GR27 contains the value of saved BO. The contents of this register shall be preserved
by SAL PMI handler.

Volume 2: Processor Abstraction Layer 2:279

11.5.3

2:280

intel.

* GR28 contains the value of saved B1. The contents of this register shall be preserved
by SAL PMI handler.

* GR29 contains the value of the saved predicate registers. The contents of this register
shall be preserved by SAL PMI handler.

* GR30-31 are scratch registers available for use.

FRs: The contents of all floating-point registers are unchanged from the time of the
interruption.
Predicates: The contents of all predicate registers are undefined and available for use.
BRs: The contents of all branch registers are unchanged, except the following which contain
the defined state.

* BRI is undefined and available for use.

* BRO PAL PMI return address.

ARs: The contents of all application registers are unchanged from the time of the interruption,
except the RSE control register (RSC) and the ITC counter. The RSC.mode field will be set to
0 (enforced lazy mode) while the other fields in the RSC are unchanged. The ITC register will
not be directly modified by PAL, but will continue to count during the execution of the PMI
handler.

CFM: The contents of the CFM register is unchanged from the time of the interruption.

RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time of the
interruption.

PSR: All PSR bits are equal to 0.

CRs: The contents of all control registers are unchanged from the time of the interruption with
the exception of interruption resources, which are described below.

RRs: The contents of all region registers are unchanged from the time of the interruption.
PKRs: The contents of all protection key registers are unchanged from the time of the
interruption.

DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the
interruption.

PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the PMI. The
contents of the PMD registers are not modified by PAL code, but may be modified if events it
is monitoring are encountered

Cache: The processor internal cache is not specifically modified by the PMI handler but may
be modified due to normal cache activity of running the handler code.

TLB: The TCs are not modified by the PALE_PMI handler and the TRs are unchanged from
the time of the interruption.

Interruption Resources:
* IRRs: The contents of IRRs are unchanged from the time of the interruption.
+ IIP and IPSR contain the value of IP and PSR. The IFS.v bit is reset to 0.

Resume from the PMI Handler

To return to the instruction that was interrupted by the PMI event, SAL PMI must branch to the
PAL PMI target address in BRO. All register contents must be preserved as specified in
Section 11.5.2.

Volume 2: Processor Abstraction Layer

11.6 Power Management

This section describes the architecturally supported set of required and optional power states that
may be implemented to reduce power consumption in implementations where this is a design goal.
In addition, the PAL interfaces required to manage these states are described.

Figure 11-18 shows state transitions for the various power states and the software interfaces
required for the transitions.

Figure 11-18. Power States

PAL_HALT_LIGHT

Unmasked external
interrupts, Machine
check, Reset, PMI

LIGHT HALT
Cache
coherent, but
no instruction
execution

NORMAL/
LOW-POWER

A Unmasked externa
Interrupts, Machine
check, Reset, PMI
and INIT and INIT

PAL_HALT Unmasked external

Interrupts, Machine
check, Reset, PMI
and INIT

Y

HALT2-7
No instruction
execution.
Implementation-
dependent state.

PAL_HALT

HALT 1
Cache not
coherent, no
instruction
execution

* NORMAL - the normal, fully functional, highest power state.

* LOW-POWER — An implementation may choose to dynamically reduce power via
microarchitectural low power techniques. The operation of interrupts, snoops, etc., in
low-power mode will be identical to those in normal-power mode. This dynamic power

reduction is optional for an implementation to support. The PAL procedures

PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES returns whether an

implementation supports dynamic power reduction. If an implementation supports dynamic

power reduction then this procedure will allow the caller to enable or disable this feature.

The following software controllable low power states may be provided. They are described below.

e LIGHT_HALT - entered by calling PAL_HALT_LIGHT. This state reduces power by

stopping instruction execution, but maintains cache and TLB coherence in response to external
requests. The processor transitions from this state to the NORMAL state in response to any

unmasked external interrupt (including NMI), machine check, reset, PMI or INIT. An
unmasked external interrupt is defined to be an interrupt that is permitted to interrupt the

Volume 2: Processor Abstraction Layer

2:281

intel.

processor based on the current setting of the TPR.mic and TPR.mmi fields. This state is a
required state.

* HALT 1 — entered by calling PAL_HALT with a power state argument equal to one. This
implementation-dependent low-power state will maintain the processor caches but will ignore
any coherency bus traffic. This state is optional for a processor to implement. It is the
responsibility of the caller to ensure cache coherency in this state.

* HALT 2 - 7 — these are optional implementation-dependent states entered by calling
PAL_HALT with a power state argument in the range of 2-7. Before making this procedure
call, the operating system software should first ascertain that the states are implemented by
calling PAL_HALT_INFO. The information returned from the PAL_HALT_INFO procedure
will also specify the coherency of caches and TLBs for each of these low-power states.

The interval timer within the processor will function at a constant frequency in all the power states
as long as the input clock to the processor is maintained. However, the performance monitor event
that counts the number of processor clock cycles will only increment in either the NORMAL or
LOW-POWER state.

The PAL procedure PAL_HALT_INFO returns information about the power states implemented in
a particular processor. This information allows the caller to decide which low power states are
implemented and which ones to call based on the callers requirements.

1.7 PAL Glossary

Corrected Machine Check (CMC)
A corrected machine check is a machine check that as been successfully corrected by hardware and/or
firmware. Information about the cause of the error is recorded, and an interrupt is set to allow the Operating
System software to examine and diagnose the error. Return is controlled to the program executing at the time
of the error.

Entrypoint
A firmware entrypoint is a piece of code which is triggered by a hardware event, usually the assertion of a
processor pin, or the receipt of an interruption. If return to the caller is done, it is though the RFT instruction.
The currently defined PAL entrypoints are PALE_RESET, PALE_INIT, PALE_PMI, and PALE_CHECK.

Machine Check (MC)
A machine check is a hardware event that indicates that a hardware error or architectural violation has
occurred that threatens to damage the architectural state of the machine, possibly causing data corruption. The
occurrence of the error triggers the execution of firmware code which records information about the error, and
attempts to recover when possible.

OLR
On line replacement. The replacement of a computer component while the system is up and running without
requiring a reboot.

Preserved
When applied to an entrypoint, preserved means that the value contained in a register at exit from the
entrypoint code is the same as the value at the time of the hardware event that caused the entrypoint to be
invoked. When applied to a procedure, preserved means that the value contained in a register at exit from the

2:282 Volume 2: Processor Abstraction Layer

intel.

procedure is the same as the value at entry to the procedure. The value may have been changed and restored
before exit.

Processor Abstraction Layer (PAL)
PAL is firmware that abstracts processor implementation differences and provides a consistent interface to
higher level firmware and software. PAL has no knowledge of platform implementation details.

Procedure
A firmware procedure is a piece of code which is called from other firmware or software, and which uses the
return mechanism of the Itanium® Runtime Calling Conventions to return to its caller.

Reserved
When applied to a data variable, it means that the variable must not be used to convey information. All
software passing the variable must place a value of zero in the variable. The occurrence of a non-zero value
may cause undefined results.

When applied to a value or range of values, any values not defined in the range and specified as reserved must
not be used. The occurrence of a reserved value may cause undefined results.

Scratch
When applied to either an entrypoint or procedure, scratch means that the contents of the register has no
meaning and need not be preserved. Further the register is available for the storage of local variables. Unless
otherwise noted, the register should not be relied upon to contain any particular value after exit.

Stacked Calling Convention
The firmware calling convention which adheres fully to the Itanium® Runtime Calling Conventions. To use
this calling convention, the RSE must be working and usable.

Static Calling Convention
The firmware calling convention which adheres to the Itanium® Runtime Calling Conventions for the static
general registers, branch registers, predicate registers, but for which all other registers are unused except for
the RSE control registers. The RSE is placed in enforced lazy mode, and the stacked general registers or
memory are not referenced.

System Abstraction Layer (SAL)
SAL is firmware that abstracts platform implementation differences for higher level software. SAL has no
knowledge of processor implementation details.

Unchanged
When applied to an entrypoint, unchanged means that the register referenced has not been changed from the
time of the hardware event that caused the entrypoint to be invoked until it exited to higher level firmware or
software. When applied to a procedure, unchanged means that the register referenced has not been changed
from procedure entry until procedure exit. In all cases, the value at exit is the same as the value at entry or the
occurrence of the hardware event.

Volume 2: Processor Abstraction Layer 2:283

11.8

11.9

2:284

PAL Code Memory Accesses and Restrictions

PAL issues load and store operations to memory in the following cases with the following memory
attributes:

* during machine check/INIT handling to the min-state save area memory region registered
with PAL using the UC memory attribute

* during the execution of PAL procedures to the memory buffer allocated by the caller of the
procedure using the memory attribute of the address passed by the caller.

* PAL may also issue loads from the architected firmware address space and loads/stores
from the registered min-state save area whenever it is executing a PAL procedure or
handling PAL based interruptions (reset, MCA, INIT and PMI). PAL code may use either
the UC or WBL memory attribute when accessing these areas.

PAL code will not send IPIs that require any special support from the platform.

PAL Procedures

PAL procedures may be called by higher-level firmware and software to obtain information about
the identification, configuration, and capabilities of the processor implementation, or to perform
implementation-dependent functions such as cache initialization. These procedures access
processor implementation-dependent hardware to return information that characterizes and
identifies the processor or implements a defined function on that particular processor.

PAL procedures are implemented by a combination of firmware code and hardware. The PAL
procedures are defined to be relocatable from the firmware address space. Higher level firmware
and software must perform this relocation during the reset flow. The PAL procedures may be called
both before and after this relocation occurs, but performance will usually be better after the
relocation. In order to ensure no problems occur due to the relocation of the PAL procedures, these
procedures are written to be position independent. All references to constant data done by the
procedures is done in an IP relative way.

PAL procedures are provided to return information or allow configuration of the following
processor features:

* Cache and memory features supported by the processor
 Processor identification, features, and configuration

* Machine Check Abort handling

* Power state information and management

* Processor self test

« Firmware utilities

PAL procedures are implemented as a single high level procedure, named PAL_PROC, whose first
argument is an index which specifies which PAL procedure is being called. Indices are assigned
depending on the nature of the PAL procedure being referenced, according to Table 11-12.

Volume 2: Processor Abstraction Layer

intel.

Table 11-12. PAL Procedure Index Assignment

11.9.1

Index Description
0 Reserved
1-255 Architected procedures; static register calling conventions
256 - 511 Architected procedures; stacked register calling conventions
512 - 767 Implementation-specific procedures; static registers calling conventions
768 - 1023 Implementation-specific procedures; stacked register calling conventions
1024 + Reserved

The assignment of indices for all architected procedures is controlled by this document. The
assignment of indices for implementation-specific procedures is controlled by the specific
processor for which the procedures are implemented. No implementation-specific procedure calls
are required for the correct operation of a processor. No SAL or operating system code should ever
have to call an implementation-specific procedure call for normal activity. They are reserved for
diagnostic and bring-up software and the results of such calls may be unpredictable.

Architected procedures may be designated as required or optional. If a procedure is designated as
optional, a unique return code will be returned to indicate the procedure is not present in this PAL
implementation. It is the caller’s responsibility to check for this return code after calling any
optional PAL procedure

In addition to the calling conventions described below, PAL procedure calls may be made in
physical mode (PSR.it=0, PSR.rt=0, and PSR.dt=0) or virtual mode (PSR.it=1, PSR.rt=1, and
PSR.dt=1). All PAL procedures may be called in physical mode. Only those procedures specified
later in this chapter may be called in virtual mode. PAL procedures written to support virtual mode,
and the caller of PAL procedures written in virtual mode must obey the restrictions documented in
this chapter, otherwise the results of such procedure calls may be unpredictable.

PAL Procedure Summary

The following tables summarize the PAL procedures by application area. Included are the name of
the procedure, the index of the procedure, the class of the procedure (whether required or optional),
and the calling convention used for the procedure (static or stacked), and whether the procedure can
be called in physical mode only or both physical and virtual modes.

Table 11-13. PAL Cache and Memory Procedures

Procedure ldx | Class Conv. Mode Description

PAL_CACHE_FLUSH 1 | Req. Static Both Flush the instruction or data
caches.

PAL_CACHE_INFO 2 |Req. Static Both Return detailed instruction or data
cache information.

PAL_CACHE_INIT 3 |Req. Static Phys. | Initialize the instruction or data
caches.

PAL_CACHE_PROT_INFO 38 |Req. Static Both Return instruction or data cache
protection information.

PAL_CACHE_SHARED_INFO 43 | Opt. Static Both Returns information on which
logical processors share caches.

PAL_CACHE_SUMMARY 4 |Req. Static Both Return a summary of the cache
hierarchy.

Volume 2: Processor Abstraction Layer 2:285

Table 11-13. PAL Cache and Memory Procedures (Continued)

Procedure

ldx

Class

Conv.

Mode

Description

PAL_MEM_ATTRIB

5

Req.

Static

Both

Return a list of supported memory
attributes.

PAL_PREFETCH_VISIBILITY

41

Req.

Static

Both

Used in architected sequence to
transition pages from a cacheable,
speculative attribute to an
uncacheable attribute. See
Section 4.4.11.2, “Physical
Addressing Attribute Transition —
Disabling Prefetch/Speculation
and Removing Cacheability.”

PAL_PTCE_INFO

Req.

Static

Both

Return information needed for
pt c. e instruction to purge entire
TC.

PAL_VM_INFO

Req.

Static

Both

Return detailed information about
virtual memory features supported
in the processor.

PAL_VM_PAGE_SIZE

34

Req.

Static

Both

Return virtual memory TC and
hardware walker page sizes
supported in the processor.

PAL_VM_SUMMARY

Req.

Static

Both

Return summary information
about virtual memory features
supported in the processor.

PAL_VM_TR_READ

261

Req.

Stacked

Phys.

Read contents of a translation
register.

Table 11-14. PAL Processor Identification, Features, and

Configuration Procedures

Procedure

ldx

Class

Conv.

Mode

Description

PAL_BUS_GET_FEATURES

9

Req.

Static

Phys.

Return configurable processor bus
interface features and their current
settings.

PAL_BUS_SET_FEATURES

10

Req.

Static

Phys.

Enable or disable configurable
features in processor bus interface.

PAL_DEBUG_INFO

11

Req.

Static

Both

Return the number of instruction and
data breakpoint registers.

PAL_FIXED_ADDR

12

Req.

Static

Both

Return the fixed component of a
processor’s directed address.

PAL_FREQ_BASE

13

Opt.

Static

Both.

Return the frequency of the output
clock for use by the platform, if
generated by the processor.

PAL_FREQ_RATIOS

14

Req.

Static

Both.

Return ratio of processor, bus, and
interval time counter to processor
input clock or output clock for
platform use, if generated by the
processor.

PAL_LOGICAL_TO_PHYSICAL

42

Opt.

Static

Both

Return information on which logical
processors map to a physical
processor die.

PAL_PERF_MON_INFO

15

Req.

Static

Both

Return the number and type of
performance monitors.

PAL_PLATFORM_ADDR

16

Req.

Static

Both

Specify processor interrupt block
address and 1/O port space address.

PAL_PROC_GET_FEATURES

Req.

Static

Phys.

Return configurable processor
features and their current setting.

2:286

Volume 2: Processor Abstraction Layer

tel.

Table 11-14. PAL Processor Identification, Features, and Configuration Procedures (Continued)

Procedure Idx | Class | Conv. | Mode Description
PAL_PROC_SET_FEATURES 18 |Req. |Static |Phys. Enable or disable configurable
processor features.
PAL_REGISTER_INFO 39 |Req. |Static |Both Return AR and CR register
information.
PAL_RSE_INFO 19 |Req. |Static |Both Return RSE information.
PAL_VERSION 20 |Req. |Static |Both Return version of PAL code.
Table 11-15. PAL Machine Check Handling Procedures
Procedure Idx | Class | Conv. | Mode Description

PAL_MC_CLEAR_LOG 21 |Req. Static | Both Clear all error information from
processor error logging registers.

PAL_MC_DRAIN 22 |Req. Static | Both Ensure that all operations that could
cause an MCA have completed.

PAL_MC_DYNAMIC_STATE 24 | Opt. Static | Phys. | Return Processor Dynamic State for
logging by SAL.

PAL_MC_ERROR_INFO 25 |Req. Static | Both Return Processor Machine Check
Information and Processor Static State
for logging by SAL.

PAL_MC_EXPECTED 23 |Req. |Static |Phys. |Set/Reset Expected Machine Check
Indicator.

PAL_MC_REGISTER_MEM 27 | Req. Static | Phys. |Register min-state save area with PAL
for machine checks and inits.

PAL_MC_RESUME 26 | Req. Static | Phys. | Restore minimal architected state and
return to interrupted process.

Table 11-16. PAL Power Information and Management Procedures

Procedure Idx | Class Conw. Mode Description

PAL_HALT 28 | Opt. Static Phys | Enter the low-power HALT state or an
implementation-dependent low-power
state.

PAL_HALT_INFO 257 |Req. Stacked Both Return the low power capabilities of the
processor.

PAL_HALT_LIGHT 29 |Req. Static Both Enter the low power LIGHT HALT state

Table 11-17. PAL Processor Self Test Procedures
Procedure Idx | Class Conv. Mode Description

PAL_CACHE_LINE_INIT 31 | Req. Static Phys. | Initialize tags and data of a cache line for
processor testing.

PAL_CACHE_READ 259 | Opt. Stacked Phys. | Read tag and data of a cache line for
diagnostic testing.

PAL_CACHE_WRITE 260 | Opt. Stacked Phys. | Write tag and data of a cache for diagnostic
testing.

PAL_TEST_INFO 37 |Req. Static Phys. | Returns alignment and size requirements
needed for the memory buffer passed to
the PAL_TEST_PROC procedure as well
as information on self-test control words for
the processor self tests.

PAL_TEST_PROC 258 | Req. Stacked Phys. | Perform late processor self test.

Volume 2: Processor Abstraction Layer

2:287

Table 11-18. PAL Support Procedures

11.9.2

11.9.2.1

2:288

Procedure Idx | Class Conv. Mode Description

PAL_COPY_INFO 30 |Req. Static Phys. | Return information needed to relocate PAL
procedures and PAL PMI code to memory.

PAL_COPY_PAL 256 |Req. Stacked | Phys. |Relocate PAL procedures and PAL PMI
code to memory.

PAL_ENTER_IA_32_ENV 33 | Opt. Static Phys. | Enter IA-32 System environment.

PAL_PMI_ENTRYPOINT 32 |Req. Static Phys. | Register PMI memory entrypoints with
processor.

PAL Calling Conventions

The following general rules govern the definition of the PAL procedure calling conventions.

Overview of Calling Conventions

There are two calling conventions supported for PAL procedures: static registers only and stacked
registers. Any single PAL procedure will support only one of the two calling conventions. In
addition, PAL procedure may be called in either physical mode (PSR.it=0, PSR.rt=0, and
PSR.dt=0) or virtual mode (PSR.it=1, PSR.rt=1, and PSR.dt=1).

11.9.2.1.1 Static Registers Only

This calling convention is intended for boot time usage before main memory may be available or
error recovery situations, where memory or the RSE may not be reliable. All parameters are passed
in the lower 32 static general registers. The stacked registers will not be used within the procedure.
No memory arguments may be passed as parameters to or from PAL procedures written using the
static register calling convention. To avoid RSE activity, static register PAL procedures must be
called with the br.cond instruction, not the br.call instruction. Please refer to Table 11-22 for a
detailed list of the general register usage for static registers only calling convention.

11.9.2.1.2 Stacked Registers

This calling convention is intended for usage after memory has been made available, and for
procedures which require memory pointers as arguments. The stacked registers are also used for
parameter passing and local variable allocation. This convention conforms to the ltanium™
Software Conventions and Runtime Architecture Guide. Thus, procedures using the stacked register
calling convention can be written in the C language. There is one exception to the runtime
conventions. The first argument to the procedure must also be copied to GR28 prior to making the
procedure call. This allows procedures written using both static and stacked register calling
conventions to call a single PAL_PROC entrypoint. This should be accomplished by having the
stacked register procedures call a stub module which copies GR32 to GR28, then call PAL_PROC.
It is the responsibility of the caller to provide this stub. Please refer to Table 11-23 for a detailed list
of the general register usage for the stacked register calling convention.

Volume 2: Processor Abstraction Layer

11.9.2.2

11.9.2.1.3 Making PAL Procedure Calls in Physical or Virtual Mode

PAL procedure calls which are made in physical mode must obey the calling conventions described
in this chapter, but there are no additional restrictions beyond those noted above. PAL procedure
calls made in virtual mode must have the region occupied by PAL_PROC virtually mapped with an
ITR. It needs to map this same area with either a DTR or DTC using the same translation as the
ITR. In addition, it must also provide a DTR or DTC mapping for any memory buffer pointers
passed as arguments to a procedure. It is the responsibility of the caller to provide these mappings.

If the caller chooses to map the PAL_PROC area or any memory pointers with a DTC it must call
the procedure with PSR.ic = 1 to handle any TLB faults that could occur. The PAL_PROC code
needs to be mapped with an ITR. Unpredictable results may occur if it is mapped with an ITC
register.

Processor State

The PAL procedures are only available to the code running at privilege level 0. They must run in
physical mode (unless specified as callable in virtual mode). PAL procedures are not interruptible
by external interrupt or NMI, since PSR.i must be 0 when the PAL procedure is called. PAL
procedures are not interruptible by PMI events, if PSR.ic is 0. If PSR.ic is 1, PAL procedures can be
interrupted by PMI events. PAL procedures can be interrupted by machine checks and initialization
events.

Generally PAL procedures will not enable interruptions not already enabled by the caller. Any PAL
call that might cause interruptions (besides data TLB faults, see Section 11.9.2.1.3), must install an
IVA handler to handle them. PAL_TEST_PROC may generate any interruptions it needs to test the
processor.

Table 11-19 defines the requirements for the PSR at entry to and at exit from a PAL procedure call.
The operating system must follow the state requirements for PSR shown below. PAL procedure
calls made by SAL may impose additional requirements. PAL_TEST_PROC may change PSR bits
shown as unchanged in order to test the processor. These bits will be preserved in this case. PSR
bits are described in increasing bit number order. Any PSR bit numbers not specified are reserved
and unchanged.

Table 11-19. State Requirements for PSR

PSR bit Description Entry Exit Class
be big-endian memory access enable 0 0 preserved
up user performance monitor enable C C unchanged
ac alignment check C C preserved
mfl floating-point registers f2-f31 written C C preserved
mfh floating-point registers f32-f127 written C C preserved
ic interruption state collection enable 0 0 unchanged

1 1 preserved
i interrupt enable 0 0 unchanged
pk protection key validation enable C C unchanged
dt data address translation enable? 0 0 unchanged
1 1 preserved
dfl disabled FP register f2 to f31 0 0 unchanged
dfh disabled FP register 32 to f127° 0 0 unchanged

Volume 2: Processor Abstraction Layer 2:289

intel.

Table 11-19. State Requirements for PSR (Continued)

PSR bit Description Entry Exit Class

1 1 unchanged

sp secure performance monitors C C unchanged

pp privileged performance monitor enable C C unchanged
di disable ISA transition C C preserved

si secure interval timer C C unchanged

db debug breakpoint fault enable 0 0 unchanged

Ip lower-privilege transfer trap enable 0 0 unchanged

tb taken branch trap enable 0 0 unchanged

rt register stack translation enable? 0 0 unchanged
1 1 preserved

cpl current privilege level 0 0 unchanged
is instruction set 0 0 preserved
mc machine check abort mask® 0 0 preserved

1 1 unchanged

it instruction address translation enable? 0 0 unchanged
1 1 preserved

id instruction debug fault disable 0 0 unchanged

da data access and dirty-bit fault disable 0 0 unchanged

dd data debug fault disable 0 0 unchanged

ss single step trap enable 0 0 unchanged
ri restart instruction 0 0 preserved
ed exception deferral 0 0 preserved
bn register bank 1 1 preserved

ia instruction access-bit fault disable 0 0 unchanged

a. PAL procedures which are called in physical mode must remain in physical mode for the duration of the call.
PAL procedures which are called in virtual mode, may perform specific actions in physical mode, but must
return to the same virtual mode state before returning from the call.

b. PAL_TEST_PROC and an implementation-specific authentication procedure call need to be called with
PSR.dfh equal to 0. If they are not they will return invalid argument. All other PAL procedure calls may be
called with PSR.dfh equal to 0 or 1.

c. Most PAL runtime procedures should be called with PSR.mc = 0 except for code flow involved in handling
machine checks.

11.9.2.2.1 Definition of Terms

The terms used in the definition of the requirements have the following meaning:

Table 11-20. Definition of Terms

Term

Description

entry
exit
0

Start of the first instruction of the PAL procedure.
Start of the first instruction after return to caller’s code.

Must be zero at entry to the procedure or on exit from the procedure. If the value at entry is
not zero, the procedure may return an illegal argument or execute in an undefined manner.

Must be one at entry to the procedure or on exit from the procedure. If the value at entry is
not one, the procedure may return an illegal argument or execute in an undefined manner.

2:290

Volume 2: Processor Abstraction Layer

intel.

Table 11-20. Definition of Terms (Continued)

Term Description

reserved When any input parameter is listed as reserved, this value must be zero. If an input value
has a range of values, any values outside the range, listed as reserved, must not be used.
For either case, the PAL procedure may return an illegal argument or execute in an
undefined manner.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it
must be the same as the value at entry.

unchanged The PAL procedure must not change these values from their entry values during execution
of the procedure.

scratch The PAL procedure may modify these values as necessary during execution of the
procedure. The caller cannot rely on these values.

preserved The PAL procedure may modify these values as necessary during execution of the

procedure. However, they will be restored to their entry values prior to exit from the

procedure.

11.9.2.2.2 System Registers

Table 11-21. System Register Conventions

The PAL_TEST_PROC procedure may change system registers marked as unchanged in order to
fully test the processor. When this is done, the values of the system registers will be preserved.

Name Description Class
DCR Default Control Register preserved
IT™M Interval Timer Match Register unchanged
IVA Interruption Vector Address preserved
PTA Page Table Address preserved
IPSR Interruption Processor Status Register scratch
ISR Interruption Status Register scratch
P Interruption Instruction Bundle Pointer scratch
IFA Interruption Faulting Address scratch
ITIR Interruption TLB Insertion Register scratch
IIPA Interruption Instruction Previous Address scratch
IFS Interruption Function State scratch
1IM Interruption Immediate Register scratch
IHA Interruption Hash Address scratch
LID Local Interrupt ID unchanged
IVR Interrupt Vector Register (read only) unchanged
TPR Task Priority Register unchanged
EOQI End Of Interrupt unchanged
IRRO-IRR3 Interrupt Request Registers 0-3 (read only) unchanged
ITV Interval Timer Vector unchanged
PMV Performance Monitoring Vector unchanged
CcMCV Corrected Machine Check Vector unchanged
LRRO-LRR1 Local Redirection Registers 0-1 unchanged
RR Region Registers preserved
PKR Protection Key Registers preserved
TR Translation Registers unchanged?
TC Translation Cache scratch

Volume 2: Processor Abstraction Layer

2:291

Table 11-21. System Register Conventions (Continued)

Name Description Class
IBR/DBR Break Point Registers preserved
PMC Performance Monitor Control Registers preserved
PMD Performance Monitor Data Registers unchangedb

a. If an implementation provides a means to read TRs for PAL, this should be preserved.
b. No PAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance
monitor events during a procedure call. The exception is PAL_TEST_PROC, which tests the performance

counters.

11.9.2.2.3 General Registers

PAL will use one of two general register calling conventions described in Section 11.9.2.1,
depending on the availability of memory and the stacked registers at the time of the call. The
following tables describe the contents of the general registers.

Table 11-22. General Registers — Static Calling Convention

Register Conventions
GRO always 0
GR1 preserved
GR2 - GR3 scratch, used with 22 bit immediate add
GR4 - GR7 preserved
GR8 - GR11 scratch, procedure return value
GR12 preserved
GR13 unchanged
GR14 - GR27 scratch
GR28 - GR31 input arguments, scratch (PAL index must be passed in GR28)
Bank 0 Registers preserved
(GR16 - GR23)
Bank 0 Registers scratch
(GR 24 - GR31)
GR32 - GR127 unchanged

Table 11-23. General Registers — Stacked Calling Conventions

(GR16 - GR23)

Register Conventions
GRO always 0
GR1 preserved
GR2 - GR3 scratch, used with 22 bit immediate add
GR4 - GR7 preserved
GR8 - GR11 scratch, procedure return value
GR12 special, stack pointer (sp)
GR13 special, thread pointer (tp)
GR14 - GR27 scratch
GR28 input argument, scratch (PAL Index must be passed in GR28)
GR29-GR31 scratch
Bank 0 Registers preserved

2:292

Volume 2: Processor Abstraction Layer

intel.

Table 11-23. General Registers — Stacked Calling Conventions (Continued)

Register Conventions
Bank 0 Registers scratch
(GR 24 - GR31)
GR32 - GR127 stacked registers;

in0 - in95: input arguments (PAL index must be in0)
locO - 1oc95: local variables

out0 - out95: output arguments

The caller must initialize SP for physical and virtual procedure calls only prior to calling a PAL
procedure. A minimum 8 KB of room must be available for the stack space of the PAL procedure.
The caller to a PAL procedure should set up the RSE backing store before making any procedure
calls using the stacked calling conventions. The backing store memory should have a minimum of 8
KB of room for RSE spills.

PAL shall be called with PSR.bn=1. The GR specifications for GR16 through GR31 are for bank
one. The bank zero register requirements are specified as a separate line item.

11.9.2.2.4 Floating-point Registers
Although there is no PAL procedure that passes floating-point parameters, the floating-point

register conventions are the same as those of the ltanium™ Software Conventions and Runtime
Architecture Guide.

11.9.2.2.5 Predicate Registers

The conventions for the predicate registers follow the I/tanium™ Software Conventions and
Runtime Architecture Guide.

11.9.2.2.6 Branch Registers

The conventions for the branch registers follow the Itanium™ Software Conventions and Runtime
Architecture Guide.

11.9.2.2.7 Application Registers

Table 11-24. Application Register Conventions

Register Description Class
KRO-7 Kernel Registers unchanged
RSC Register Stack Configuration Register unchanged
BSP Backing Store Pointer (read only) unchanged?
BSPSTORE Backing Store Pointer for Memory Stores unchanged?
RNAT RSE NaT Collection Register unchanged?
FCR IA-32 Floating-point Control Registers preserved
EFLAG IA-32 EFLAG register preserved
CsD 1A-32 Code Segment Descriptor preserved
SSD IA-32 Stack Segment Descriptor preserved
CFLG IA-32 Combined CRO and CR4 Register preserved

Volume 2: Processor Abstraction Layer

2:293

Table 11-24. Application Register Conventions (Continued)

11.9.2.3

11.9.2.4

11.9.3

2:294

Register Description Class
FSR IA-32 Floating-point Status Register preserved
FIR IA-32 Floating-point Instruction Register preserved
FDR IA-32 Floating-point Data Register preserved
CCcvV Compare and Exchange Compare Value Register scratch
UNAT User NaT Collection Register according to GR class
FPSR Floating-point Status Register preserved
ITC Interval Time Counter unchangedb
PFS Previous Function State preserved
LC Loop Counter Register preserved
EC Epilog Counter Register preserved

a. BSP, BSPSTORE, and RNAT may not be changed by PAL, but the value at exit may be different due to RSE
activity. PAL_TEST_PROC is an exception to this rule, and the RSE contents may not be relied on after
making this procedure call.

b. No PAL procedure writes to the ITC. The value at exit is the value at entry plus the elapsed time of the

procedure call.

PAL procedures that use the static calling conventions do not use stacked registers or the RSE.
Therefore RSE internal state and the CFM are unchanged by these procedures.

Return Buffers

Any addresses passed to PAL procedures as buffers for return parameters must be 8-byte aligned.
Unaligned addresses may cause undefined results.

Invalid Arguments

The PAL procedure calling conventions specify rules that must be followed. These rules specify
certain PSR values, they specify that reserved fields and arguments must be zero filled and specify
that values not defined in a range and defined as reserved must not be used.

If the caller of a PAL procedure does not follow these rules, an invalid argument return value may
be returned or undefined results may occur during the execution of the procedure. If the caller
passes in a PAL procedure index value that is not defined, PAL will return an Unimplemented
procedure (-1) status to the caller.

PAL Procedure Specifications

The following pages provide detailed interface specifications for each of the PAL procedures
defined in this document. Included in the specification are the input parameters, the output
parameters, and any required behavior.

Volume 2: Processor Abstraction Layer

intel.

PAL_BUS_GET_FEATURES

Get Processor Bus Dependent Configuration Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Provides information about configurable processor bus features.

Static Registers Only

Physical
Argument Description
index Index of PAL_BUS_GET_FEATURES within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_BUS_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-25. (1-implemented, 0=not
implemented)
feature_status 64-bit vector of current feature settings. See Table 11-25.
feature_control 64-bit vector of features controllable by software. (1=controllable, 0= not controllable)
Status Value Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Table 11-25 defines the set of possible bus interface features and their bit position in the return
vector. Different busses will implement similar features in different ways. For example, data error
detection may be implemented by ECC or parity. In other cases, certain features may be tied
together. In this case, enabling any one feature in a group will enable all features in the group, and
similarly, disabling any one feature in a group will disable all features. Caller algorithms should be
written to obtain desired results in these instances. Only those configuration features for which a 1
is returned in feature_control can be changed via PAL_BUS_SET_FEATURES.

For all values in Table 11-25, the Class field indicates whether a feature is required to be available
(Req.) or is optional (Opt.). The Control field indicates which features are required to be
controllable. These features will either be controllable through this PAL call or through other
hardware means like forcing bus pins to a certain value during processor reset. The control field
applies only when the feature is available. PALE_CHECK and PALE_INIT should not modify
these features. An operating system should not modify bus features without detailed information
about the platform it is running on.

Table 11-25. Processor Bus Features

Bit Class Control Description

63 Opt. Req. Disable Bus Data Error Checking. When 0, bus data errors are detected and
single bit errors are corrected. When 1, no error detection or correction is done.

62 Opt. Req. Disable Bus Address Error Signalling. When 0, bus address errors are signalled
on the bus. When 1, no bus errors are signalled on the bus. If Disable Bus
Address Error Checking is 1, this bit is ignored.

61 Opt. Req. Disable Bus Address Error Checking. When 0, bus errors are detected, single
bit errors are corrected., and a CMCI or MCA is generated internally to the
processor. When 1, no bus address errors are detected or corrected.

60 Opt. Req. Disable Bus Initialization Event Signaling. When 0, bus protocol errors (BINIT#)
are signaled by the processor on the bus. When 1, bus protocol errors (BINIT#)
are not signaled on the bus. If Disable Bus Initialization Event Checking is 1,
this bit is ignored.

Volume 2: Processor Abstraction Layer 2:295

PAL_BUS_GET_FEATURES

Table 11-25. Processor Bus Features (Continued)

2:296

Bit

Class

Control

Description

59

Opt.

Req.

Disable Bus Initialization Event Checking. When 0, bus protocol errors (BINIT#)
are detected and sampled and an MCA is generated internally to the processor.
When 1, the processor will ignore bus protocol error conditions (BINIT#).

58

Opt.

Req.

Disable Bus Requester Bus Error Signalling. When 0, BERR# is signalled if a
bus error is detected. When 1, bus errors are not signalled on the bus.

57

Opt.

Req.

Disable Bus Requester Internal Error Signalling. When 0, BERR# is signalled
when internal processor requestor initiated bus errors are detected. When 1,
internal requester bus errors are not signalled on the bus.

56

Opt.

Req.

Disable Bus Error Checking. When 0, the processor takes an MCA if BERR# is
asserted. When 1, the processor ignores the BERR# signal.

55

Opt.

Req.

Disable Response Error Checking. When 0, the processor asserts BINIT# if it
detects a parity error on the signals which identify the transactions to which this
is a response. When 1, the processor ignores parity on these signals.

54

Opt.

Req.

Disable Transaction Queuing. When 0, the in-order transaction queue is limited
only by the number of hardware entries. When 1, the processor’s in-order
transactions queue is limited to one entry.

53

Opt.

Req.

Enable a bus cache line replacement transaction when a cache line in the
exclusive state is replaced from the highest level processor cache and is not
present in the lower level processor caches. When 0, no bus cache line
replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

52

Opt.

Req.

Enable a bus cache line replacement transaction when a cache line in the
shared state is replaced from the highest level processor cache and is not
present in the lower level processor caches. When 0, no bus cache line
replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

51-32

N/A

N/A

Reserved

31

Opt.

Opt.

Enable Half transfer rate. When 0, the data bus is configured at the 2x data
transfer rate.When 1, the data bus is configured at the 1x data transfer rate,

30

Opt.

Req.

Disable Bus Lock Mask. When 0, the processor executes locked transactions
atomically. When 1, the processor masks the bus lock signal and executes
locked transactions as a non-atomic series of transactions.

29

Req.

Req.

Request Bus Parking. When 0, the processor will deassert bus request when
finished with each transaction. When 1, the processor will continue to assert
bus request after it has finished, if it was the last agent to own the bus and if
there are no other pending requests.

28-0

N/A

N/A

Reserved

Volume 2: Processor Abstraction Layer

intel.

PAL_BUS_SET_FEATURES

Set Processor Bus Dependent Configuration Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Enables/disables specific processor bus features.

Static Registers Only

Physical
Argument Description
index Index of PAL_BUS_SET_FEATURES within the list of PAL procedures.

feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_BUS_SET_FEATURES procedure.
Reserved 0

Reserved 0

Reserved 0

Status Value | Description

0 Call completed without error
-2 Invalid argument
-3 Can not complete call without error

PAL_BUS_GET_FEATURES should be called to ascertain the implemented processor bus
configuration features, their current setting, and whether they are software controllable, before
calling PAL_BUS_SET_FEATURES. The list of possible processor features is defined in

Table 11-25. Attempting to enable or disable any feature that cannot be changed will be ignored.

Volume 2: Processor Abstraction Layer 2:297

PAL_CACHE_FLUSH

Flush Data or Instruction Caches

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Flushes the processor instruction or data caches.

Static Registers Only

Physical and Virtual

Argument Description

index Index of PAL_CACHE_FLUSH within the list of PAL procedures.
cache_type Unsigned 64-bit integer indicating which cache to flush. See Table 11-26.
operation Formatted bit vector indicating the operation of this call. See Figure 11-19.

progress_indicator

Unsigned 64-bit integer specifying the starting position of the flush operation.

Return Value Description

status Return status of the PAL_CACHE_FLUSH procedure.

vector Unsigned 64-bit integer specifying the vector number of the pending interrupt.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.
Reserved 0

Status Value

Description

2 Call completed without error, but a PMI was taken during the execution of this
procedure.

1 Call has not completed flushing due to a pending interrupt

0 Call completed without error

-2 Invalid argument

-3 Call completed with error

Flushes the instruction or data caches controlled by the processor as specified by the cache_type
parameter. Encoding for the cache_type parameter follows:

Table 11-26. cache_type Encoding

2:298

Value

Description

Flush all caches containing instructions.

Flush all caches containing data.

Flush all caches (instruction and data).

Bl W[N] =~

Make local instruction caches coherent with the data caches.

All other values of cache_type are reserved. If the cache is unified, both instruction and data lines
are flushed, regardless of the value of cache_type.

Flushing all caches containing instructions, causes the instruction and unified caches to be flushed.
Flushing all caches containing data, causes all data and unified caches to be flushed. Flushing all
caches causes all data, instruction, and unified caches to be flushed.

When the caller specifies to make local instruction caches coherent with the data caches, this
procedure will ensure that the local instruction caches will see the effects of stores of instruction
code done on the processor. Refer to Section 4.4.3, “Cacheability and Coherency Attribute” on
page 2:65 for more information on stores and their coherency requirements with local instruction
caches.

The effects of flushing data and unified caches is broadcast throughout the coherence domain. The
effects of flushing instruction caches may or may not be broadcast throughout the coherence
domain. The procedure will perform the necessary serialization and synchronization as required by
the architecture.

Volume 2: Processor Abstraction Layer

PAL_CACHE_FLUSH

This call does not ensure that data in the processors coalescing buffers are flushed to memory. See
Section 4.4.5 on page 2:66 on how to flush the coalescing buffers.

The operation parameter controls how this call will operate. The operation parameter has the
following format:

Figure 11-19. operation Parameter Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

 inv — 1 bit field indicating whether to invalidate clean lines in the cache.

If this bit is 0, all modified cache lines for the specified cache_type are copied back to memory.
Optimally, modified and non-modified cache lines are left valid in the specified cache in a
clean (non-modified) state. However, based on the processor implementation, cache lines in
the specified cache may alternatively be invalidated.

If this bit is 1, all modified cache lines for the specified cache_type are flushed by copying the
cache line to memory. All cache lines in the specified cache are then invalidated.

If cache_type is equal to 4 (make local instruction caches coherent with the data caches) the inv
bit will be ignored.

Table 11-27 will clarify the effects of the inv bit. The modified state represents a cache line that
contains modified data. The clean state represents a cache line that contains no modified data.

int — 1 bit field indicating if the processor will periodically poll for external interrupts while
flushing the specified cache_type(s).

If this bit is a 0, unmasked external interrupts will not be polled. The processor will ignore all
pending unmasked external interrupts until all cache lines in the specified cache_type(s) are
flushed. Depending on the size of the processor’s caches, bus bandwidth and implementation
characteristics, flushing the caches can take a long period of time, possibly delaying interrupt
response times and potentially causing I/O devices to fail.

If this bit is a 1, external interrupts will be polled periodically and will exit the procedure if one
is seen. If an unmasked external interrupt becomes pending, this procedure will return and
allow the caller to service the interrupt before all cache lines in the specified cache_type(s) are
flushed.

Table 11-27. Cache Line State when inv=0

Old State New State Comments
Invalid Invalid
Clean Clean®
Modified Clean? Modified data is copied back to memory

a. Based on the processor implementation the cache line can be invalidated or left in a model-specific clean
state

Table 11-28. Cache Line State when inv =1

Old State New State Comments
Invalid Invalid
Clean Invalid
Modified Invalid Modified data is copied back to memory.

Volume 2: Processor Abstraction Layer 2:299

PAL_CACHE FLUSH inte|®

The progress_indicator is an unsigned 64-bit integer specifying the starting position of the flush
operation. Values in this parameter are model specific and will vary across processor
implementations.

The first time this procedure is called, the progress_indicator must be set to zero. If this procedure
exits due to an external interrupt and this procedure is then again called to resume flushing, the
progress_indicator must be set to the value previously returned by PAL_CACHE_FLUSH.
Software must program no value other than zero or the value previously returned by
PAL_CACHE_FLUSH otherwise behavior is undefined.

This procedure makes one flush pass through all caches specified by cache_type and all sets and
associativities within those caches. The specified cache_type(s) are ensured to be flushed only of
cache lines resident in the caches prior to PAL_CACHE_FLUSH initially being called with the
progress_indicator set to 0.

This procedure ensures that prefetches initiated prior to making this call with progress_indicator
set to 0 are flushed based on the cache_type argument passed.

* If cache_type specifies to flush all instruction caches then the call ensures all prior instruction
prefetches are flushed.

* If cache_type specifies to flush all data caches then the call ensures all prior data prefetches are
flushed.

* If cache_type specifies to flush all caches then the call ensures all prior instruction and data
prefetches are flushed from the caches.

* If cache_type specifies to make local instruction caches coherent with the data caches, then the
call will ensure all prior instruction prefetches are flushed.

Due to the following conditions, software cannot assume that when this procedure completes the
entire flush pass that the specified cache_type(s) are empty of all clean and/or modified cache lines.

+ After an interruption, the flush pass resumes at the interruption point (specified by
progress_indicator). Due to execution of the interrupt handlers during the flush pass, the
specified caches may contain new and possibly modified cache lines in sections of the caches
already flushed. The caller specifies if this procedure should poll for interrupts via the int bit of
the operation parameter.

* Prior prefetches initiated before this procedure is called are disabled and flushed from the
cache as described above. However, if a speculative translation exists in either the ITLB or
DTLB, speculative instruction or data prefetch operation could immediately reload a
non-modified cache line after it was flushed. To ensure prefetches do not occur, software must
remove all speculative translation before calling this routine. Alternatively, software can
disable the TLBs by setting PSR.it, PSR.dt, and PSR.1t to 0.

 The specified caches may also contain PAL firmware code cache entries required to flush the
cache.

+ The specified caches may contain PAL and SAL PMI code if this call was made with PSR.ic =
1 and a PMI interrupt is seen during the execution of the call.

* The specified caches may contain SAL or OS machine check or INIT code if these handlers
run in a cacheable mode and a machine check or INIT event is seen.

* In a processor that contains multiple logical processors, the specified caches may contain new
and possibly modified cache lines in sections of the cache already flushed due to execution of
instructions on other logical processors that share the specified caches. Information about how

caches are shared among logical processors is described in the
PAL_CACHE_SHARED_INFO procedure on page 2:311. Information about logical

2:300 Volume 2: Processor Abstraction Layer

PAL_CACHE_FLUSH

processors on the same physical processor die are described in the
PAL_LOGICAL_TO_PHYSICAL procedure on page 2:335.

This procedure does ensure that all cache lines resident in the specified cache_type(s) prior to this
procedure being initially called are flushed regardless of intervening external interrupts. It also
ensures that prefetches initiated prior to the initial call to this procedure that affect the caches
specified in cache_type, as described above, are flushed regardless of intervening external
interrupts.

To ensure forward progress, PAL_CACHE_FLUSH advances through the cache flush sequence at
least by one cache line before sampling for pending external interrupts. The amount of flushing that
occurs before interrupts are polled will vary across implementations.

PAL_CACHE_FLUSH will return the following values to indicate to the caller the status of the
call.

o Status — When the call returns a 1, it indicates that the call did not have any errors but is
returning due to a pending unmasked external interrupt. To continue flushing the caches, the
caller must call PAL_CACHE_FLUSH again with the value returned in the progress_indicator
return value.

When the call returns a 0, it indicates that the call completed without any errors. All cache lines
that were present in the cache (when the most recent call to PAL_CACHE_FLUSH with a
progress_indicator of zero) are flushed and possibly invalidated. All intermediate calls must
have used the proper progress_indicator, otherwise behavior is undefined.

When the call returns a 2, it indicates that the call completed without any errors but that a PMI
was taken during the execution of this call. This indicates to the caller that all cache lines that
were present in the cache (when the most recent call to PAL_CACHE_FLUSH with a
progress_indicator of zero) are flushed but that code and data related to handling PMIs may be
present in the cache.

vector — If the return status is 1 and this procedure exited due to a pending unmasked external
interrupt, this field returns the interrupt vector number. The external interrupt will have been
removed. The interrupt is considered to be “in-service” and software must service this interrupt
for the specified vector and then issue EOI. If the return status is not 1, the values returned is
undefined.

* progress_indicator — When the return status is 1, specifies the current position in the flush
pass. The value returned is model specific and will vary across processor implementations. If
the return status is not 1, the value returned is undefined.

Volume 2: Processor Abstraction Layer 2:301

PAL_CACHE_INFO

intel.

Get Detailed Cache Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns information about a particular processor instruction or data cache at a specified level in the

cache hierarchy.

Static Registers Only

Physical and Virtual
Argument Description
index Index of PAL_CACHE_INFO within the list of PAL procedures.

cache_level

cache_type

Reserved

Return Value

Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is
requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.

0

Description

status
config_info_1
config_info_2
Reserved

Status Value

Return status of the PAL_CACHE_INFO procedure.
The format of config_info_1 is shown in Figure 11-20.
The format of config_info_2 is shown in Figure 11-21.
0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

This call describes in detail the characteristics of a given processor controlled cache in the cache
hierarchy. It returns information in the config_info_I and config_info_2 returns parameters.

The config_info_I return value has the following structure:

Figure 11-20. config_info_1 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 177 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

2:302

‘ stride

’ line_size ‘ associativity ‘ reserved ‘ at ‘u‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ load_hints

store_hints ‘ load_latency ’ store_latency ‘

* u —bit that is 1 if the cache is unified and 0 if the cache is split.

* at — 2-bit field denoting cache memory attributes, as follows:

Volume 2: Processor Abstraction Layer

intel.

PAL_CACHE_INFO

Table 11-29. Cache Memory Attributes
Value Description
0 Write through cache
Write back cache
2-3 Reserved

* associativity —unsigned 8-bit integer denoting the associativity of the cache. A value of 0
indicates a fully associative cache. A value of 1 indicates a direct mapped cache.

* line_size — unsigned 8-bit integer denoting the binary logarithm (log2) of the minimum write
back size of a flush operation to memory or the line size of the cache if the cache contents
never get flushed to memory (for example an instruction cache).

* stride — unsigned 8-bit integer denoting the binary log of the most effective stride in bytes for
flushing the cache.

* store_latency — unsigned 8-bit integer denoting the number of cycles after issue until the value
is written into the cache. If the cache cannot accept a store (like an instruction cache) the value
returned will be 256 (0xff).

* load_latency — unsigned 8-bit integer denoting the number of processor cycles after issue until
the value may be used if it is found in the cache.

* store_hints — 8-bit vector denoting hints implemented by the processor store instruction. For
instruction caches this bit vector will be zero indicating no store hints are supported.

Table 11-30. Cache Store Hints
Bit # Description
0 Temporal, level 1
1-2 Reserved
3 Non-temporal, all levels
4-7 Reserved
* load_hints — 8-bit vector denoting hints implemented by the processor load instruction.
Table 11-31. Cache Load Hints
Bit # Hint
0 Temporal, level 1
1 Non-temporal, level 1
2 Reserved
3 Non-temporal, all levels
4-7 Reserved

The config_info_2 return value has the following structure:

Volume 2: Processor Abstraction Layer

2:303

PAL_CACHE_INFO i ntGI ®

Figure 11-21. config_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
‘ cache_size ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
tag_ms_bit tag_Is_bit alias_boundary ‘

* cache_size — unsigned 32-bit integer denoting the size of the cache in bytes.

+ alias_boundary — unsigned 8-bit integer indicating the binary log of the minimum number of
bytes which must separate aliased addresses in order to obtain the highest performance.

* tag_ls_bit —unsigned 8-bit integer denoting the least-significant address bit of the tag.
* tag ms_bit — unsigned 8-bit integer denoting the most-significant address bit of the tag.

2:304 Volume 2: Processor Abstraction Layer

intel.

Initialize Caches

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

PAL_CACHE_INIT

Initializes the processor controlled caches.

Static Registers Only

Physical

Argument Description

index Index of PAL_CACHE_INIT within the list of PAL procedures.

level Unsigned 64-bit integer containing the level of cache to initialize. If the cache level can be
initialized independently, only that level will be initialized. Otherwise
implementation-dependent side-effects will occur.

cache_type Unsigned 64-bit integer with a value of 1 to initialize the instruction cache, 2 to initialize the
data cache, or 3 to initialize both. All other values are reserved.

restrict Unsigned 64-bit integer with a value of 0 or 1. All other values are reserved. If restrict is 1

and initializing the specified level and cache_type of the cache would cause side-effects,
PAL_CACHE_INIT will return -4 instead of initializing the cache.

Return Value Description
status Return status of the PAL_CACHE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description

0 Call completed without error

-2 Invalid argument

-3 Call completed with error

-4 Call could not initialize the specified level and cache_type of the cache without side-effects

and restrict was 1.

Initializes one or all the processor’s caches. The effect of this procedure is to initialize the caches
without causing writebacks. This procedure cannot be used where coherency is required because
any data in the caches will be lost.

The level argument must either be -1, indicating all cache levels, or a non-negative number
indicating the specific level to initialize. In the latter case, level/ must be in the range from 0 up to
one less than the cache_levels return value from PAL_CACHE_SUMMARY:

Table 11-32. PAL_CACHE_INIT /evel Argument Values

Value

Description

-1
OtoN

Initializes all cache levels (cache_type and restrict are ignored)
Initialize only the specified cache level.

The restrict argument specifies how to handle potential side-effects, where:

Table 11-33. PAL_CACHE_INIT restrict Argument Values

Volume 2: Processor Abstraction Layer

Value

Description

0

No restriction: initialize the specified level and cache_type of the cache, even if doing so will
cause side effects in other caches.

Restrict initialization to the specified level and cache_type without side effects to other cache
levels. If this cannot be done, return -4.

All other values of restrict are reserved.

2:305

PAL_CACHE_LINE_INIT

intel.

Initialize a Data Cache line

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:306

Initializes the tags and data of a data or unified cache line of a processor controlled cache to known
values without the availability of backing memory.

Static
Physical
Argument Description
index Index of PAL_CACHE_LINE_INIT within the list of PAL procedures.
address Unsigned 64-bit integer value denoting the physical address from which the physical page
number is to be generated. The address must be an implemented physical address, bit 63
must be zero.
data_value 64-bit data value which is used to initialize the cache line.
Reserved 0
Return Value Description
status Return status of the PAL_CACHE_LINE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description

0
-2
-3

Call completed without error
Invalid argument
Can not complete call without error

A line in the data or unified cache is initialized to the values passed in the arguments of this
procedure. The physical page number of the line is derived from the address value passed. The tags
of the line are set to Private, Dirty, and Valid. The cache line is initialized using data_value
repeated until it fills the line. This procedure replicates data_value to a size equal to the largest line
size in the processor-controlled cache hierarchy.

This procedure call cannot be used where coherency is required.

Volume 2: Processor Abstraction Layer

inte|® PAL_CACHE_PROT_INFO

Get Detailed Cache Protection Information

Purpose: Returns protection information about a particular processor instruction or data cache at a specified
level in the cache hierarchy.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_CACHE_PROT_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is
requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.
cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.
Reserved 0
Returns: Return Value Description
status Return status of the PAL_CACHE_PROT_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-22.
config_info_2 The format of config_info_2 is shown in Figure 11-23.
config_info_3 The format of config_info_3 is shown in Figure 11-24.
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: PAL_CACHE_PROT_INFO returns information about the data and tag protection method for the
specified cache. The three returns compose a six-element array of 32-bit protection information
structures.

The config_info_1 return value has the following structure:

Figure 11-22. config_info_1 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
‘ cache_protection[0] ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
’ cache_protection[1] ‘

The config_info_2 return value has the following structure:

Figure 11-23. config_info_2 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
’ cache_protection[2] ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
’ cache_protection[3]

The config_info_3 return value has the following structure:

Figure 11-24. config_info_3 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
’ cache_protection[4] ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
’ cache_protection[5]

Volume 2: Processor Abstraction Layer 2:307

PAL_CACHE_PROT_INFO inte|®

Each cache_protection element has the following structure:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
‘ t_d ‘ method prot_bits tagprot_msb tagprot_Isb data_bits

* data_bits — unsigned 8-bit integer denoting the number of data bits that each unit of protection
covers. For example, if the cache hardware generates 8 bits of ECC per 64 bits of data,
data_bits would be 64. This field is only valid if #_d is 0, 2, or 3.

tagprot_lsb — unsigned 6-bit integer denoting the least-significant tag address bit that this
protection method covers. This field is only valid if ¢ d is 1, 2, or 3.

* tagprot_msb —unsigned 6-bit integer denoting the most-significant tag address bit that this
protection method covers. This field is only valid if #_d is 1, 2, or 3.

* prot_bits — unsigned 6-bit integer denoting the number of protection bits generated for the field
specified by the ¢_d element.

* method — unsigned 4-bit integer denoting the protection method, where:

Value Description

0 no ECC or parity protection
1 odd parity protection

2 even parity protection
3

ECC protection

All other values of method are reserved.

* t_d—2-bit field denoting whether this protection method applies to the tag, the data, or both. If
over both, the tag and data unit could be concatenated with the tag either to the left (more
significant) or to the right (less significant) than a unit of data. For the values of 2 and 3, the
difference of tagprot_msb and tagprot_Isb indicates the number of tag bits that are protected
with the data bits. The data bits are described by the data_bits field below. This field is
encoded as follows:

Value Description
0 Data protection
1 Tag protection
2 Tag+data protection (tag is more significant)
3 Data+tag protection (data is more significant)

When obtaining cache information via this call, information for the data cache should be obtained
first, then if the u bit of the config_info_1 parameter is not set, obtain the information for the
instruction cache.

2:308 Volume 2: Processor Abstraction Layer

intel.

PAL_CACHE_READ

Read Values from the Processor Cache

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Reads the data and tag of a processor-controlled cache line for diagnostic testing.

Stacked Registers
Physical

Argument Description

index Index of PAL_CACHE_READ within the list of PAL procedures.

line_id 8-byte formatted value describing where in the cache to read the data.

address 64-bit 8-byte aligned physical address from which to read the data. The address must be an

implemented physical address on the processor model with bit 63 set to zero.
Reserved 0

Return Value

Description

status
data
length
mesi

Status Value

Return status of the PAL_CACHE_READ procedure.
Right-justified value returned from the cache line.
The number of bits returned in data.

The status of the cache line.

Description

1

0
-1
-2
-3
5
7

The word at address was found in the cache, but the line was invalid.
Call completed without error.

Unimplemented procedure

Invalid argument

Call completed with error.

The word at address was not found in the cache.

The operation requested is not supported for this cache_type and level.

A value is read from the specified cache line, if present. This procedure allows reading cache data,
tag, protection, or status bits.

The line_id argument is an 8-byte quantity in the following format:

Figure 11-25. Layout of /ine_id Return Value
3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

‘ part

‘ way ‘ level ‘ cache_type ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* cache_type —unsigned 8-bit integer denoting whether to read from instruction (1) or data/
unified (2) cache. All other values are reserved.

* level —unsigned 8-bit integer specifying which cache within the cache hierarchy to read. This
value must be in the range from 0 up to one less than the cache_levels return value from
PAL_CACHE_SUMMARY.

* way — unsigned 8-bit integer denoting within which cache way to read. If the cache is
direct-mapped this argument is ignored.

* part —unsigned 8-bit integer denoting which portion of the specified cache line to read:

Volume 2: Processor Abstraction Layer 2:309

PAL_CACHE_READ i ntGI ®

Value Description
0 data
1 tag
2 data protection bits
3 tag protection bits
4 combined protection bits for data and tags®

a. Note that for this part no data is returned. Only protection bits are
returned.

All other values of part are reserved.

The data return value contains the value read from the cache. Its contents are interpreted according
to the line_id.part field as follows:

Part Data
0 64-bit data.
1 right-justified tag of the specified line.
2 right-justified protection bits corresponding to the 64 bits of data at address. If

the cache uses less than 64-bits of data to generate protection, data will contain
more than one value. For example if a cache generates parity for every 8-bits of
data, this return value would contain 8 parity values. The
PAL_CACHE_PROT_INFO call returns information on how a cache generates
protection information in order to decode this return value. If a cache uses
greater than 64-bits of data to generate protection, data will contain the value to
use for the portion of the cache line indicated by address.

right-justified protection bits for the cache line tag.
right-justified protection bits for the cache line tag and 64 bits of data at address.

The length return value contains the number of valid bits returned in data.

The mesi return value contains the status bits of the cache line. Values are defined as follows:

Value Description
0 invalid
1 shared
2 exclusive
3 modified

All other values of mesi are reserved.

To guarantee correct behavior for this procedure, it is required that there shall be no RSE activity
that may cause cache side effects.

2:310 Volume 2: Processor Abstraction Layer

||‘|‘|:e|® PAL_CACHE_SHARED_INFO

Get Information on Caches Shared by Logical Processors

Purpose: Returns information on caches shared between logical processors.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_CACHE_SHARED_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is

requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified
cache. All other values are reserved.
proc_number Unsigned 64-bit integer that specifies for which logical processor information is being

requested. This input argument must be zero for the first call to this procedure and can be a
maximum value of one less than the number of logical processors sharing this cache, which
is returned by the num_shared return value.

Returns: Return Value Description
status Return status of the PAL_CACHE_SHARED_INFO procedure.
num_shared Unsigned integer that returns the number of logical processors that share the processor

cache level and type, for which information was requested.
proc_n_log_info1 | The format of proc_n_log_info1 is shown in Figure 11-26.
proc_n_log_info2 | The format of proc_n_log_info2 is shown in Figure 11-27.

Status: Status Value | Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Description: This procedure will return information about how the processor caches are shared among logical
processors (See “Get Information on Logical to Physical Processor Mappings™ on page 2:335 for a
definition of a logical processor). If the caller is only interested in how many logical processors are
sharing a particular cache level, this procedure will only need to be called once. If the caller is
interested in identifying which logical processors are sharing the processor caches, this procedure
will need to be called a number of times equal to the value returned in num_shared to gather
identification information for all the logical processors sharing the particular cache for which
information is being requested.

Identification information about the logical processors sharing the cache is in the return values
proc_n_cache_infol and proc_n_cache_info2. The format of these return values is shown in
Figure 11-26 and Figure 11-27.

Volume 2: Processor Abstraction Layer 2:311

PAL_CACHE_SHARED_INFO ||‘|‘|:e|®

Figure 11-26. Layout of proc_n_log_info1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tid \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
cid \

* tid — thread id: The thread identifier of the logical processor for which information is being
returned. This value will be unique on a per core basis.
» rv—Reserved
* cid — core id: The core identifier of the logical processor for which information is being
returned. This value will be unique on a per physical processor die basis.
* rv—Reserved
There is no guarantee that the core id's and thread id's will be contiguous on a given physical
processor die.

Figure 11-27. Layout of proc_n_log_info2 Return Value

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
la ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

¢ la —logical address: geographical address of the logical processor for which information is
being returned. This is the same value that is returned by the PAL_FIXED_ADDR procedure
when it is called on the logical processor.

* rv—Reserved

This procedure must be supported on all implementations that contain more than one logical
processor on a physical processor die and returns an unimplemented procedure error code

otherwise.

2:312 Volume 2: Processor Abstraction Layer

inte|® PAL_CACHE_SUMMARY

Get Cache Hierarchy Summary

Purpose: Returns summary information about the hierarchy of caches controlled by the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_CACHE_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_CACHE_SUMMARY procedure.
cache_levels Unsigned 64-bit integer denoting the number of levels of cache implemented by the

processor. Strictly, this is the number of levels for which the cache controller is integrated
into the processor (the cache SRAMs may be external to the processor).

unique_caches Unsigned 64-bit integer denoting the number of unique caches implemented by the
processor. This has a maximum of 2*cache_levels, but may be less if any of the levels in
the cache hierarchy are unified caches or do not have both instruction and data caches.

Reserved 0
Status: Status Value Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: Software is expected to call PAL_CACHE_SUMMARY before calling PAL_CACHE_INFO to
determine the number of times PAL_CACHE_INFO should be called and the amount of storage
that must be allocated to hold all of the information returned by PAL_CACHE_INFO.

Volume 2: Processor Abstraction Layer 2:313

PAL_CACHE_WRITE

Write Values into the Processor Cache

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Writes the data and tag of a processor-controlled cache line for diagnostic testing.

Stacked Registers
Physical
Argument Description
index Index of PAL_CACHE_WRITE within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to write the data.
address 64-bit 8-byte aligned physical address at which the data should be written. The address must
be an implemented physical address on the processor model with bit 63 set to 0.
data unsigned 64-bit integer value to write into the specified part of the cache.
Return Value Description
status Return status of the PAL_CACHE_WRITE procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error.
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-7 The operation requested is not supported for this cache_type and level.

The value of data is written into the specified level, way, and part of the cache. This procedure
allows writing cache data, tag, protection, or status bits.

This procedure may also be used to seed errors into a cache line. It calculates the protection bits
based on the value of data, then inverts a specified bit field before writing data to the cache. Bit
field inversion is only used for writes to the cache data or tag.

If seeding an error into the instruction cache or seeding an unrecoverable error, then return back to
the caller may not be possible.

This procedure call cannot be used where coherency is required.

The line_id argument is an 8-byte quantity in the following format:

Figure 11-28. Layout of line_id Return Value
31 .30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

2:314

‘ part

way ‘ level ‘ cache_type ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ trigger

length ‘ start ‘ mesi ‘

* cache_type — unsigned 8-bit integer denoting whether to write to instruction (1) or data/unified
(2) cache. All other values are reserved.

* level — unsigned 8-bit integer specifying which cache within the cache hierarchy to write data.
This value must be in the range from 0 up to one less than the cache_levels return value from
PAL_CACHE_SUMMARY.

* way —unsigned 8-bit integer denoting within which cache way to write data. If the cache is
direct-mapped this argument is ignored.

* part — unsigned 8-bit integer denoting where to write data into the cache:

Volume 2: Processor Abstraction Layer

inte|® PAL_CACHE_WRITE

Value Description
0 data
1 tag
2 data protection
3 tag protection
4 combined data and tag protection

All other values of part are reserved.

* mesi — unsigned 8-bit integer denoting whether the line should be written as clean or dirty,
shared or exclusive. Though there may be multiple calls to PAL_CACHE_WRITE to the same
cache line, the last call’s mesi will be in effect. Values are defined as follows:

Value Description

invalid
shared

0
1
2 exclusive
3 modified

All other values of mesi are reserved.

* start — unsigned 8-bit integer denoting the least-significant bit of the field in data to invert. If
length is 0 or part is not 0 or 1, this field is ignored.

* length — unsigned 8-bit integer denoting the number of bits to invert. If length is 0, no bits are
inverted and start is ignored. If part is not 0 or 1, this field is ignored.

* trigger — unsigned 8-bit integer denoting whether to trigger the error while in procedure. If
trigger is 0, the procedure writes data and returns. If trigger is 1 and cache_type is data/
unified, the procedure writes data and executes a 64-bit load from address before returning. If
trigger is 1 and cache_type is set to instruction, the procedure writes data and branches to the
address. All other values are reserved.

The data argument contains the value to write into the cache. Its contents are interpreted based on
the part field as follows:

Part Data
0 64-bit data to write to the specified line (with optional bit field inversion).

right-justified tag to write into the specified line (with optional bit field inversion).

2 right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses less
than 64-bits of data to generate protection, data will contain more than one value. For example if a
cache generates parity for every 8-bits of data, this return value would contain 8 parity values. The
PAL_CACHE_PROT_INFO call returns information on how a cache generates protection
information in order to decode this return value. If a cache uses greater than 64-bits of data to
generate protection, data will contain the value to use for the portion of the cache line indicated by
address.

3 right-justified protection bits for the cache line tag.

right-justified protection bits for the cache line tag and 64 bits of data at address.

To guarantee correct behavior for this procedure, it is required that there shall be no RSE activity
that may cause cache side effects.

Volume 2: Processor Abstraction Layer 2:315

PAL_COPY_INFO

intel.

Return Parameters to Copy PAL Code to Memory

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns the parameters needed to copy relocatable PAL code from the firmware address space to
memory.

Static Registers Only

Physical

Argument Description

index Index of PAL_COPY_INFO within the list of PAL procedures.

copy_type Unsigned integer denoting type of procedures for which copy information is requested.
platform_info 8-byte formatted value describing the number of processors and the number of interrupt

controllers currently enabled on the system.
Unsigned integer denoting the number of bytes that SAL needs for the min-state save area
for each processor.

mca_proc_state_i
nfo

Return Value Description
status Return status of the PAL_COPY_INFO procedure.
buffer_size Unsigned integer denoting the number of bytes of PAL information that must be copied to
main memory.
buffer_align Unsigned integer denoting the starting alignment of the data to be copied.
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This procedure is called to obtain the information needed to relocate runtime PAL procedures, PAL
PMI code, and PAL code needed to support IA-32 operating systems from the firmware address
space to memory. The information returned in this call is used by SAL to allocate a memory region
on the required alignment, and call PAL_COPY_PAL to copy the relocatable PAL code.

The copy_type input argument indicates which type of procedure for which copying information is
requested. A value of 0 denotes procedures required for SAL, PMI, and Itanium-based operating
systems. A value of 1 denotes procedures required for [A-32 operating systems. All other values
are reserved. If the copy_type is 0, then SAL shall call PAL_COPY_PAL call subsequently to copy
the PAL procedures and PAL PMI code to the allocated memory region. If the copy_type is 1, SAL
shall pass the allocated memory size and start address through the PAL_ENTER_IA_32_ENV call
before booting an TA-32 OS.

The platform_info input argument is required only when copy_type = 1. If copy_type =0,
platform_info should be 0. Platform_info has the following format.

Figure 11-29. Layout of platform_info Input Parameter

2:316

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

‘ num_iopics ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ num_procs ‘

» num_iopics is the number of interrupt controllers currently enabled on the system.
* num_procs is the number of processors currently enabled on the system.
The buffer_align return value must be a power of two between 4 KB and 256 KB.

Volume 2: Processor Abstraction Layer

intel.

PAL_COPY_PAL

Copy PAL Code to Memory

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Copy relocatable PAL code from the firmware address space to memory.

Stacked Registers
Physical

Argument Description

index Index of PAL_COPY_PAL within the list of PAL procedures.

target_addr Physical address of a memory buffer to copy relocatable PAL procedures and PAL PMI code.
alloc_size Unsigned integer denoting the size of the buffer passed by SAL for the copy operation.
processor Unsigned integer denoting whether the call is being made on the boot processor or an

application processor

Return Value Description

status Return status of the PAL_COPY_PAL procedure.

proc_offset Unsigned integer denoting the offset of PAL_PROC in the relocatable segment copied.
Reserved 0

Reserved 0

Status Value | Description

0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This procedure is called to relocate runtime PAL procedures and PAL PMI code from the firmware
address space to main memory. This procedure also updates the PALE_PMI entrypoint in
hardware. If the call is made on an application processor the copy is not performed. The processor
argument denotes whether the call is being made on the boot processor (value of 0) or an
application processor (value of 1). All other values are reserved.

PAL_COPY_INFO should be called first to determine the size and alignment requirements of the
memory buffer to which the PAL code will be copied. Bit 63 of target_addr must be set
consistently with the cacheability attribute of the memory buffer being copied to. It is PAL's
responsibility to ensure that the firmware address space contents that are being copied from, are not
in any processor caches. It is the caller’s responsibility to ensure that the contents of the memory
buffer copied to, are flushed out of the internal processor's data caches if target_addr has a
cacheable memory attribute.

If a PAL procedure makes calls to internal PAL functions that execute only out of the firmware
address space, that portion of code will continue to execute out of the firmware address space, even
though the main procedure has been copied to RAM. This is true only for some PAL procedures
that can be called only in physical mode.

PAL_COPY_PAL call is mandatory as part of the system boot process. Higher level firmware
should guarantee that PAL_COPY_PAL is called on all processors before OS launch. This is to
guarantee that full processor functionality is available. This procedure can be called more than
once.

Volume 2: Processor Abstraction Layer 2:317

PAL_DEBUG_INFO

Get Debug Registers Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:318

Returns the number of instruction and data debug register pairs.

Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_DEBUG_INFO within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
i_regs

d_regs
Reserved

Status Value

Return status of the PAL_DEBUG_INFO procedure.

Unsigned 64-bit integer denoting the number of pairs of instruction debug registers
implemented by the processor.

Unsigned 64-bit integer denoting the number of pairs of data debug registers implemented
by the processor.

0

Description

0
2
-3

Call completed without error
Invalid argument
Call completed with error

This call returns the number of pairs of registers. Even numbered registers contain breakpoint
addresses and odd numbered registers contain breakpoint mask conditions. For example if i_regs is
4, there are 8 instruction debug registers of which 4 are breakpoint address registers (IBR 5 4 ¢) and
4 are breakpoint mask registers (IBR| 3 5 7). The minimum value for both i_regs and d_regs is 4.

On some implementations, a hardware debugger may use two or more debug register pairs for its
own use. When a hardware debugger is attached, PAL_DEBUG_INFO may return a value for
i_regs and/or d_regs less than the implemented number of debug registers. When a hardware
debugger is attached, PAL_DEBUG_INFO may return a minimum value of 2 for d_regs and a
minimum of 2 for i_regs.

Volume 2: Processor Abstraction Layer

intel.

PAL_ENTER_IA_32_ENV

Enter IA-32 System Environment

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

This call configures the processor for execution of an IA-32 operating system and switches from
the Itanium System Environment to the IA-32 System Environment.

Static Registers Only*

Note: Since this is a special call, it does not follow the PAL static register calling convention.
GR28 contains the index of PAL_ENTER_IA_32_ENV within the list of PAL procedures.
All other input arguments including GR29-GR31 are setup by SAL to values as required
by the IA-32 operating system defined in Table 11-34. The registers that are designated as
preserved, scratch, input arguments and procedure return values by the static procedure
calling convention are not followed by this call. For instance, GRS and GR6 need not be
preserved since these are regarded as scratch by the IA-32 operating system.

Note: In an MP system, this call must be COMPLETED on the first CPU to enter the IA-32 sys-
tem environment (may or may not be the BSP) prior to being called on the remaining pro-
cessors in the MP system.

Physical

GR28 contains the index of the PAL_ENTER_IA_32_ENV call within the list of PAL procedures.
All other input arguments are defined in Table 11-34.

This procedure continues to execute indefinitely in the [A-32 System Environment until power
down, reset, an error condition, or a j npe instruction is executed at privilege level 0. In case of an
error condition or j npe, the procedure transitions the processor back to Itanium System
Environment and continues execution at the physical Itanium termination IP specified in GR3 by
SAL as defined in Table 11-34. The register state at the physical Itanium termination IP is defined
in Table 11-38.

The status is returned in GR4 as defined in Table 11-38.

This PAL firmware call configures the processor for execution of an IA-32 operating system and
switches from the Itanium System Environment to the IA-32 System Environment.

Any required PAL firmware for supporting IA-32 operating systems is copied to the memory buffer
pointed to by GR36. Firmware then configures the processor for execution in the IA-32 System
Environment. This includes:

* Purging the TLB of all entries (both TRs and TCs)

* Programming all [tanium resources — general registers, floating-point registers, predicate,
branch, RSE registers (RSC, BSP, BSPSTORE, RNAT), CCV, UNAT, FPSR, PFS, LC, EC,
GPTA, ITM, TPR, RR and PKR, IBR, DBR, PMC, PMD registers to a state consistent with
[A-32 System Environment.

The configuration of this state is implementation specific, based on implemented Itanium
resources.

This PAL firmware call registers with SAL “call back” points for the following system related
interrupts that may occur during the execution of the IA-32 system environment: OS_MCA and
OS_INIT. SAL code MUST pass these events back through the “call back™ points when these
platform related interruptions occur. The PAL firmware also registers the machine check
rendezvous and wake-up mechanisms to be used during machine check processing.

The firmware then initializes the processor state as supplied in the parameter list.

Volume 2: Processor Abstraction Layer 2:319

PAL_ENTER_IA_32_ENV inte|®

The IA-32 APIC is initially hardware enabled when the IA-32 System Environment is entered. The
initial state of all APIC registers is extracted from the current interruption register values.

Note: Only NMI and ExtINT pending interrupts will be delivered per the IA-32 definition. All
other existing pending interrupts in IRR0-3 are discarded.

MTRR physical memory attribute values and ranges are initialized to the same physical memory

values specified by the SAL System Table.

Note: When the [A-32 System Environment is terminated, the SAL System Table will not reflect
changes made to the MTRR physical attribute values by IA-32 code.

The processor will begin execution at the instruction and IA-32 mode (e.g. Real Mode, Protected

Mode, VM86, 16/32-bit) as defined by the entry parameters in Table 11-34.

Table 11-34 describes the Itanium register state required at entry to the IA-32 System Environment:

Table 11-34. 1A-32 System Environment Entry Parameters

® i ®
Intel It.amlum IA-32 State Description
Register

GR2{31:0} ip First IA-32 instruction set address. |1A-32 physical address or

virtual address if CRO.pg is 1. The upper 32-bits are ignored.

GR3 Termination IP. On termination of the IA-32 System Environment

due to j npe at ring 0 or an error condition, execution of Intel®
Itanium® instructions will continue at this 64-bit physical
address. GR4 indicates the reason for termination.

GR4 Configuration Flags -

flag{0} — if 1 indicates this call is being performed on the Boot
Strap Processor (BSP), if 0 this call is being performed on a
processor other than the BSP.

flag{4:1} — Indicates the entry order in which the processor has
been called to enter the I1A-32 system environment. If first
processor, the value will be zero; if second, the value will be one;
and so on. Warning: If this flag value is incorrectly specified,
the system may crash. Also, this value must be unique on
each processor in an MP system.

flag{63:5} — Reserved.

GR5-6 ignored Ignored

GR7 fsd Initial state of the 1A-32 fs segment descriptor

GR8-15{31:0} eax, ecx, edx, ebx, esp, | Initial 32-bit state of all general purpose registers
ebp, esi, edi

GR16-17 gs, s, es, ds, tr, Idt, ss, | Initial state of all IA-32 segment selectors
cs

GR24,27 esd, dsd Initial state of the IA-32 es and ds segment descriptors.

GR28 PAL index PAL_ENTER_IA_32_ENV index value

GR29-GR31 gsd, Idtd, gdtd Initial state of the 1A-32 gs, Idt, and gdt segment descriptors.

AR25,26 csd, ssd Initial state of the I1A-32 cs and ss segment descriptors.

GR32 MP_Info_Table: Physical address of the MP Information Table described in Table 11-35
below.

GR33 System_Table: Physical address of the SAL System Table. See the SAL Specification for
details. The System Table defines the physical layout of the /0O Port Space, memory, and
all physical memory attributes required for each section of physical memory. The System
Table also defines regions of regular memory, I/O areas and where existing firmware
resides. This information is used to initialize the IA-32 System Environment's MTRRs.

GR34 Reserved

GR35 Reserved

2:320 Volume 2: Processor Abstraction Layer

In

tel.

PAL_ENTER_IA_32_ENV

Table 11-34. IA-32 System Environment Entry Parameters (Continued)

® i ®
Intel It.anlum 1A-32 State Description
Register

GR36 MEMORY_BUFFER: Physical address of the buffer allocated for copying the PAL

procedures to support IA-32 operating systems. Refer to PAL_COPY_INFO for details.

GR37 MEMORY_BUFFER_LEN: Unsigned 64-bit integer containing the size of the buffer

allocated for copying the PAL procedures to support IA-32 operating systems. Refer to
PAL_COPY_INFO for details.

GR38 mca_proc_state_info This is the value that results from calling the
SAL_GET_STATE_INFO_SIZE procedure with the arguments of
mca and proc.

GR39 SAL_IO_Intercept_Function: Physical address of the SAL I/O Intercept callback function.

GR40 SAL_IO_Intercept_Table: Physical address of the SAL 1/O Intercept Table described in

Table 11-36 below.

FR8-15 fp0-7,mmO0-7 Initial IA-32 FP, Intel® MMX™ technology register values

FR16-31 xmmO-7 Initial IA-32 Streaming SIMD Extension register state

AR21 (fcr) fcw, mxcsr Initial 1A-32 numeric and Streaming SIMD Extension control
values

AR24 (eflag) eflags Initial state of IA-32 flags

AR27 (cflg) crO/cr4 Initial values for CRO and CR4

AR28 (fsr) fsw, ftw, mxcsr Initial IA-32 numeric and Streaming SIMD Extension status
values

AR29 (fir) fip, fcs, fop Initial IA-32 numeric environment opcode, selector, and IP

ARS30 (fdr) fea, fds Initial IA-32 numeric environment data selector and offset

KR1 tssd Initial value for IA-32 TSSD

KR2 cr3/er2 Initial values for CR3 and CR2

KR3 idtd Initial value for IA-32 IDTD

CR9 crO/cr4 Initial values for CRO and CR4

PSR -- PSR.ic =0, interrupt collection off
PSR.i = 0, interrupts off
PSR.it, PSR.dt, PSR.rt = 02
PSR.mc = 0, machine checks un-masked
PSR.bn = 1, register bank 1 selected
all other bits must be zero

DCR - All bits must be zero

PTA, GPTA - PTA.ve = 0, GPTA.ve=0, VHPT disabled

LID -- Unique processor ID, EID address for this processor

ITC tsc ITC = time stamp counter

a. virtual translations are off, ALL translations in the TRs and TCs will be ignored and invalidated

Table 11-35 describes the MP Information Table:

Volume 2: Processor Abstraction Layer

2:321

PAL_ENTER_IA_32_ENV

Table 11-35. MP Information Table

2:322

Offset
(in bytes)

Length
(in bytes)

Description

0

8

Address of Local APIC for use by IA-32 operating systems?

8

Number of 1/0 SAPICs on the system.

12

Number of processors on the system

16

Reserved (must be zero)

23

ENENIENES

Checksum. This modulo sum of all the bytes in this table, including
Checksum and Reserved bytes must add up to zero.

24

16

A 16-byte entry for each 1/0O SAPIC on the system containing the
following information:

Byte 0:

* bits 0-3: 1/0 APIC ID of the I/O SAPIC for use by
IA-32 operating systems®

* bits 4-7: Must be zero

Byte 1:

« bit 0: 1 if the I/O SAPIC is enabled

* bits 1-7: Must be 0

Bytes 2-7: Reserved

Bytes 8-15:

+ Address of I/O APIC for use by I1A-32 operating
systems®

24+(16 * Number
of I/O SAPICs)

A 8-byte entry for each processor on the system containing the following
information:

Byte 0: EID of the processor®

Byte 1: ID of the processor®

Byte 2:

« bits 0-3: Local APIC ID of the processor for use by

IA-32 operating systems®

* bits 4-7: Must be zero

Byte 3:

* bit 0: 1 if the processor is enabled

* bits 1-7: Must be 0
Bytes 4-7: Reserved

a. SAL must ensure that this address does not conflict with other device addresses on the platform.

b. SAL must generate a unique ID value and store the same ID in the MP table, for use by IA-32 operating
systems. This must by the physical ID.

c. This is the value set by SAL in the LID register of the processor (CR64).

Table 11-36 describes the SAL 1/O Intercept Table. This table must be 8-byte aligned, with a
minimum size of § bytes and a maximum size of 128 bytes. Also, the memory allocated for this
table must be allocated in multiples of 8 bytes.

Volume 2: Processor Abstraction Layer

intel.

Table 11-36. SAL 1/O Intercept Table

PAL_ENTER_IA_32_ENV

Offset Length Description
(in bytes) (in bytes) p

0 2 Number of 1/0 Ports to be intercepted. This value must be between 0
and 63 inclusively.

2 2 A 2-byte entry for each intercepting port, specifying the intercepting
port number. This word is little endian.

2+(2*Number of 6 - (Number of | Reserved. This ensures that the table is a multiple of 8 bytes long.
Intercepting Ports) intercepting
Ports[1:0] * 2)

Table 11-37 describes the IA-32 resource state set at entry to the [A-32 System Environment.

Note:

SAL must initialize all the IA-32 resources to a known state, otherwise these resources

may contain reset values based on the Itanium architecture and the IA-32 operating system
and applications may not function properly.

Table 11-37. IA-32 Resources at IA-32 System Environment Entry

I1A-32 Resource Initial State
eflags = AR24
eax-edi = GR8-15{31:0}
cs:eip = AR25:GR2
cr0, cr4 = AR27
cr2, cr3 =KR2

es, cs, Ss, ds, fs, gs, Idt, tr

selector = GR16-17{63:0}
descriptor = GR24,AR25,AR26,GR27-31{63:0}

Descriptor values for gs, fs, es, ds, Idt, gdt, ss, cs

=GR29,GR28,GR24,GR27,GR30,GR31,AR26,AR25{63:0}

idt

descriptor = KR3

fp st0-7, mmO-7 = FR8-15

xmmO-7 =FR16-31

fcw, mxcsr(control) = fer

fsw, mxcsr(status), ftw = fsr

fop, fip, fcs =fir

fea, fds = fdr

dr0-3 = 0x0000, disabled debug registers

dr6 = OxFFFFOFFO, disabled debug registers

dr7 = 0x00000400

TSC = equal to interval timer (ITC)

Perf Monitors = cleared

TLBs = flushed

MCHK registers = cleared

MTRRs = MTRRs of IA-32 state are initialized to be consistent with
the memory entries of the SAL System Table.

APIC = disabled, initial support is for Intel 8259A compatible

external interrupt controller

All other register values are ignored on input and may be modified by processor/firmware during
execution within the IA-32 System Environment.

Volume 2: Processor Abstraction Layer

2:323

PAL_ENTER_IA_32_ENV inte|®

During the execution of the [A-32 System Environment, platform events for PAL_MCA,
PAL_INIT, PAL_RESET and PAL_PMI will interrupt the IA-32 System Environment and vector to
PAL firmware.

Execution continues indefinitely in the IA-32 System Environment until power down, an error
condition occurs or until a j mpe instruction is executed at privilege level 0.

The state of all Itanium registers are left in an undefined state, code can only rely on the register
state defined in Table 11-38 following termination. Allocated memory may be reclaimed by SAL or
the Itanium-based OS.

When the TA-32 System Environment is terminated, the SAL System Table will not reflect changes
made to the memory attribute values by IA-32 code.

Current pending interrupts are left pending.

When the IA-32 system mode is terminated, the auxiliary processors (APs) will exit the IA-32
system environment first, followed by the boot-strap processor (BSP). Upon termination, the APs
will start execution in the Itanium instruction set at the termination address specified by the caller.
The BSP will then start executing at the termination IP address after all of the APs have exited the
IA-32 system environment. The SAL code at the termination address must ensure synchronization
of all the processors in an MP system and then continue with the OEM dictated procedure.

Table 11-38 describes the Itanium register values at IA-32 System Environment termination:

Table 11-38. Register Values at IA-32 System Environment Termination

2:324

® 0 ®
Intel It.a nium IA-32 State Description
Register

GR1 Undefined

GR2 ip Address of the 1A-32 JMPE instruction that caused
termination. I1A-32 physical address or virtual address if
CRO0.pgis 1.

GR3 Number of processors that exited the 1A-32 system
environment.

Volume 2: Processor Abstraction Layer

In

tel.

PAL_ENTER_IA_32_ENV

Table 11-38. Register Values at IA-32 System Environment Termination (Continued)

Intel® Itanium®

Register

I1A-32 State

Description

GR4

1A-32 System Environment Termination Reason:

-1
0
1

w

© o N o o

1
12

13

Un-implemented procedure
JMPE detected at privilege level 0

SAL allocated buffer for IA-32 System Environment
operation is too small

1A-32 Firmware Checksum Error

SAL allocated buffer for IA-32 system environment
operation is not properly aligned

Error in SAL MP Info Table

Error in SAL Memory Descriptor Table
Error in SAL System Table
Inconsistent 1A-32 state

IA-32 Firmware Internal Error

IA-32 Soft Reset (Note: remaining register state is
undefined for this termination reason)

Machine Check Error
Error in SAL 1/O Intercept Table

Processor exit due to other processor in MP system
terminating the IA32 system environment. (Note:
remaining register state is undefined for this termination
reason.)

ltanium®-based state corruption by either SAL PMI
handler or 1/O Intercept callback function.

GR5-6

Undefined

GR7

apic id

The defined apic id for the processor from the apic lid register

GR8-15{31:0}

eax, ecx, edx, ebx, esp,
ebp, esi, edi

Final 32-bit state of all general purpose registers

GR16-17

es, cs, ss, ds, fs, gs, Idt,
tr

Final state of all IA-32 segment selectors (bank 1)

GR24,AR25,
AR26, GR27-31

esd, csd, ssd, dsd,
fsd, gsd, Idtd, gdtd

Final state of all IA-32 segment descriptors (bank 1)

GR18-23,25-26,
32-127

Undefined (bank 1)

GR16-31 Bank Register 0 - Undefined

FR8-15 fp0-7, mmO-7 Final IA-32 FP, Intel® MMX™ technology register values

FR16-31 xmmO-7 Final IA-32 Streaming SIMD Extension register values

FR2-7,32-127

PRO0-63

BRO-7 _

RSC, BSP, Undefined

BSPSTORE, RNAT,

CCV, UNAT, FPSR,

PFS, LC, EC

AR21 (fcr) fcw, mxcsr Final IA-32 numeric and Streaming SIMD Extension control
values

AR24 (eflag) eflags Final state of IA-32 flags

AR27 (cflg) crO/cr4 Final values for CRO and CR4

Volume 2: Processor Abstraction Layer

2:325

PAL_ENTER_IA_32_ENV

Table 11-38. Register Values at IA-32 System Environment Termination (Continued)

2:326

Intellq(i;tias:ti:m(@ IA-32 State Description
AR28 (fsr) fsw, ftw, mxcsr Final IA-32 numeric and Streaming SIMD Extension values
AR29 (fir) fip, fcs. fop Final IA-32 numeric environment opcode, selector, and IP
AR3O0 (fdr) fea, fds Final IA-32 numeric environment data selector and offset
KR1 tssd Final value for IA-32 TSSD
KR2 cr3/cr2 Final values for CR3 and CR2
KR3 idtd Final value for IA-32 IDTD
KRO0,4-7 Undefined
PSR -- PSR.ic =0, interrupt collection off
PSR.i = 0, interrupts off
PSR.it, PSR.dt, PSR.rt = 02
PSR.mc = 0, machine checks un-masked
PSR.bn = 1, register bank 1 selected
all other bits are 0
DCR -- Zeros
PTA - PTA.ve= 0, VHPT is disabled
GPTA - GPTA.ve =0
LID - Received unique ID, EID value for this processor
ITC tsc ITC = final time stamp counter value

IFA, IIP, IPSR, ISR,
IIM, IIPA, ITTR, IHA,
IFS, IVA, GPTA,
ITM, IVR, TPR,
IRRO-3, ITV, PMV,
LRRO, LRR1, CMCV

Undefined

TRs, TCs (TLBs)

RR

PKR

IBR, DBR

PMC, PMD

Undefined

a. Virtual translations are off, ALL original translations in the TRs and TCs have been invalidated

Volume 2: Processor Abstraction Layer

intel.

PAL_FIXED_ADDR

Get Fixed Geographical Address of Processor

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns a unique geographical address of this processor on its bus.

Static Registers Only

Physical or Virtual

Argument Description
index Index of PAL_FIXED_ADDR call within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_FIXED_ADDR procedure.
address Fixed geographical address of this processor.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

The address return value will contain a unique unsigned integer denoting the position of this
processor on the current bus. This is an arbitrary number which is expected to have geographical
significance and be unique for the bus to which the processor is connected. If the processor is
connected to multiple busses, the address return value must be unique among all such busses. For
each implementation, the value should be the smallest unique value that can be returned on that
implementation. For example, on a bus which could support 6 processors, the address return value
should occupy no more than 3 bits. In any case, it will never be more than 16 bits.

Volume 2: Processor Abstraction Layer 2:327

PAL_FREQ_BASE in‘te|®

Get Processor Base Frequency

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:328

Returns the frequency of the output clock for use by the platform is generated by the processor.

Static Registers Only

Physical or Virtual

Argument Description
index Index of PAL_FREQ_BASE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_FREQ_BASE procedure.
base_freq Base frequency of the platform if generated by the processor chip.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Can not complete call without error

If the processor outputs a clock for use by the platform, the base_freq return parameter will be the
frequency of this output clock in ticks per second. If the processor does not generate an output
clock for use by the platform, this procedure will return with a status of -1.

Volume 2: Processor Abstraction Layer

intel.

PAL_FREQ_RATIOS

Get Processor Frequency Ratios

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns the ratios of the processor frequency, bus frequency, and interval timer to the input clock of
the processor, if the platform clock is generated externally or to the output clock to the platform, if
the platform clock is generated by the processor.

Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_FREQ_RATIOS within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
proc_ratio

bus_ratio

itc_ratio

Status Value

Return status of the PAL_FREQ_RATIOS procedure.

Ratio of the processor frequency to the input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Ratio of the bus frequency to the input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Ratio of the interval timer counter rate to input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Description

0
-2
-3

Call completed without error
Invalid argument
Can not complete call without error

Each of the ratios returns is an unsigned 64-bit value, where the upper 32 bits contain the numerator
and the lower 32 bits contain the denominator of the ratio.

Volume 2: Processor Abstraction Layer 2:329

PAL_HALT | n‘tel R

Halt Processor

Purpose: Causes the processor to enter the HALT state, or one of the implementation-dependent low-power
states.

Calling Conv: Static Registers Only

Mode: Physical
Arguments: Argument Description
index Index of PAL_HALT within the list of PAL procedures.
halt_state Unsigned 64-bit integer denoting low power state requested.
io_detail_ptr 8-byte aligned physical address pointer to information on the type of 1/O (load/store)
requested.
Reserved 0
Returns: Return Value Description
status Return status of the PAL_HALT procedure.
load_return Value returned if a load instruction is requested in the io_detail_ptr
Reserved 0
Reserved 0
Status: Status Value | Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Description: This call places the processor in a low power state designated by halt_state. This procedure can
optionally let the platform know it is about to enter the low power state via an 1/O transaction.

halt_state is an unsigned 64-bit integer denoting the low power state requested. The value passed
must be a valid halt state in the range from 1 to 7, for which information is returned by
PAL_HALT_INFO. All other values are reserved.

The processor informs the platform that it has entered the requested low-power state in an
implementation-specific manner.

2:330 Volume 2: Processor Abstraction Layer

i n‘tel R PAL_HALT

The layout of the information pointed to by the io_detail_ptr is shown Table 11-39.
Table 11-39. I/O Detail Pointer Description

Offset Description
0x0 1/0 size and type information
0x8 Address for 1/0
0x10 Data value to store

* 1/O size and type information has the format shown in Figure 11-30.
Figure 11-30. I/O Size and Type Information Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/0 size \ 1/0 type |

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* I/O type is an unsigned 8-bit integer denoting the type of I/O transaction to complete.
Table 11-40. 1/O Type Definition

Value Description
0 No transaction
1 Perform a load
2 Perform a store

All other values for /O type are reserved.

* I/O size is an unsigned 8-bit integer denoting the size of the I/O transaction to complete.
Table 11-41. 1/O Size Definition

Value Description
0 No transaction
1 1 byte size
2 2 byte size
4 4 byte size
8 8 byte size

All other values for I/0 size are reserved.

» Address for the I/O transaction is a physical pointer for the load or store. The address passed
should be aligned according to the size of the I/O transaction requested. The most significant
bit (63) of the physical address should be set according to the cacheability attribute wanted for
the I/O transaction.

» The data value to store is the value that will be stored out if the io_type is 2. If io_type is not
equal to a 2, then this value is a don’t care.

If an I/O transaction is requested by the caller, the processor will wait until this transaction has been
received by the platform before entering the low power state.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt (including NMI),
PAL transitions the processor to the normal state. An unmasked external interrupt is defined to be
an interrupt that is permitted to interrupt the processor based on the current setting of the TPR.mic
and TPR.mmi fields in the TPR control register. PAL sets the value in the load_return return
parameter if the io_type is 1, otherwise this value is set to zero.

Volume 2: Processor Abstraction Layer 2:331

PAL_HALT | n‘tel R

If the processor transitions to normal state via an unmasked external interrupt, execution resumes to
the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if PMIs are
masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution resumes to
the caller if machine checks and INITs are masked, otherwise execution will resume to the
corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will reset itself and
start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6 on page 2:281.

2:332 Volume 2: Processor Abstraction Layer

intel.

Get Halt State Information for Power Management

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns information about the processor’s power management capabilities.

PAL_HALT_INFO

Stacked Registers
Physical and Virtual

Argument Description

index Index of PAL_HALT_INFO within the list of PAL procedures.
power_buffer 64-bit pointer to a 64-byte buffer aligned on an 8-byte boundary.
Reserved 0

Reserved 0

Return Value Description

status

Reserved
Reserved
Reserved

Status Value

Return status of the PAL_HALT_INFO procedure.
0
0
0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

The power information requested is returned in the data buffer referenced by power_buffer. Power
information is returned about the 8 power states. The low power states are LIGHT_HALT, HALT,
plus 6 other low power states. The LIGHT_HALT state is index 0 in the buffer, and the HALT state
is index 1. All 8 low power states need not be implemented

The information returned is in the format of Figure 11-31. The information about the HALT states
will be in ascending order of the index values.

Figure 11-31. Layout of power_buffer Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

|

entry_latency exit_latency ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ v ‘co‘im‘

power_consumption

* exit latency — 16-bit unsigned integer denoting the minimum number of processor cycles to
transition to the NORMAL state.

* entry_latency — 16-bit unsigned integer denoting the minimum number of processor cycles to
transition from the NORMAL state.
* power_consumption — 28-bit unsigned integer denoting the typical power consumption of the
state, measured in milliwatts.

 im — 1-bit field denoting whether this low power state is implemented or not. A value of 1
indicates that the low power state is implemented, a value of 0 indicates that it is not
implemented. If this value is O then all other fields are invalid.

* co — 1-bit field denoting if the low power state maintains cache and TLB coherency. A value of

1 indicates that the low power state keeps the caches and TLBs coherent, a value of 0 indicates

that it does not.
The latency numbers given are the minimum number of processor cycles that will be required to

transition the states. The maximum or average cannot be determined by PAL due to its dependency

on outstanding bus transactions.

For more information on power management, please refer to Section 11.6 on page 2:281.

Volume 2: Processor Abstraction Layer

2:333

PAL_HALT_LIGHT | n‘tel R

Cause Processor to Enter Coherent Halt State

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:334

Causes the processor to enter the LIGHT HALT state, where prefetching and execution are
suspended, but cache and TLB coherency is maintained.

Static Registers Only

Physical and Virtual
Argument Description
index Index of PAL_HALT_LIGHT within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_HALT_LIGHT procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This call places the processor in the LIGHT HALT state in an implementation-dependent fashion
where cache and TLB coherency is maintained, but power consumption is minimized.

The processor acknowledges to the platform that it has entered the LIGHT HALT low-power state
in an implementation-specific manner.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt (including NMI),
PAL transitions the processor to the normal state. An unmasked external interrupt is defined to be
an interrupt that is permitted to interrupt the processor based on the current setting of the TPR.mic
and TPR.mmi fields in the TPR control register.

If the processor transitions to normal state via an unmasked external interrupt, execution resumes to
the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if PMIs are
masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution resumes to
the caller if machine checks and INITs are masked, otherwise execution will resume to the
corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will reset itself and
start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6 on page 2:281.

Volume 2: Processor Abstraction Layer

intel.

PAL_LOGICAL _TO_PHYSICAL

Get Information on Logical to Physical Processor Mappings

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns information on the logical to physical processor mapping.

Static Registers Only

Physical and Virtual

Argument Description

index Index of PAL_LOGICAL_TO_PHYSICAL within the list of PAL procedures.
proc_number Unsigned 64-bit integer that specifies for which logical processor information is being

requested. When this input argument is zero, in addition to information about the first logical
processor, log_overview contains the overview information as well. This input argument must
be in the range of zero up to one less than the number of logical processors returned by
num_log in the log_overview return value.

Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_LOGICAL_TO_PHYSICAL procedure.

log_overview The format of log_overview is shown in Figure 11-32. This value is only valid if the
proc_number input argument was zero when the procedure was called, otherwise it returns
zero.

proc_n_log_info1 | The format of proc_n_log_info1 is shown in Figure 11-33.
proc_n_log_info2 | The format of proc_n_log_info2 is shown in Figure 11-34.

Status Value | Description

0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument

-3 Call completed with error

This procedure will return information about the logical processors contained on the physical
processor die that the procedure call is made on. A physical processor die can contain one or more
logical processors, organized into threads and cores. A logical processor is a
compute-capability-centric view of the CPU that allows the physical processor die to execute from
more than one instruction stream. A physical processor die that can execute from n instruction
streams has n logical processors. Threads are logical processors that share core pipeline execution
resources. Cores are defined as a collection of hardware that implements the main execution
pipeline of the processor. Multiple cores on a physical processor die do not share core pipeline
resources but may share caches and bus interfaces. A core may support multiple threads of
execution.

The log_overview return value provides an overview of the logical processors on the physical
processor die this procedure call was made on. The format of the log_overview return argument is
shown in Figure 11-32.

Volume 2: Processor Abstraction Layer 2:335

PAL_LOGICAL_TO_PHYSICAL ||‘|‘|:e|®

Figure 11-32. Layout of log_overview Return Value

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tpc ‘ num_log ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ppid o~] cpP |

* num_log — Total number of logical processors on this physical processor die that were
successfully booted.

* tpc — Threads per core. Number of threads per core.

* rv—Reserved

» ¢pp — Cores per processor. Total number of cores on this physical processor die.
* rv—Reserved

+ ppid — Physical processor die ID. Physical processor die identifier which was assigned at reset
by the platform or bus controller. This value may or may not be unique across the entire
platform since it depends on the platform vendor's policy.

e rv—Reserved

As part of the processor boot flow, some testing of the processor occurs. There is a chance that a
thread experienced a testing failure that did not allow it to successfully boot. Due to this reason, it is
not ensured that num_log will always be equal to cpp multiplied by #pc.

The caller uses the value returned in num_log to gather additional information about the other
logical processors on the same physical processor die. This procedure will need to be called
multiple times (equal to the number of logical processors returned in num_Ilog) to gather all
additional information about the logical processors on the physical processor die this procedure call
was made on. This procedure may be called from any logical processor on the physical processor
die to gather information about all the logical processors. Information about the logical processors
is in the return values proc_n_log_infol and proc_n_log_info2. The format of these return values is
shown in Figure 11-33 and Figure 11-34.

Figure 11-33. Layout of proc_n_log_info1 Return Value

2:336

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tid \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
cid \

* tid — thread id: The thread identifier of the logical processor for which information is being
returned. This value will be unique on a per core basis.

e rv—Reserved

* cid — core id: The core identifier of the logical processor for which information is being
returned. This value will be unique on a per physical processor die basis.

e rv—Reserved

There is no guarantee that the core id's and thread id's will be contiguous on a given physical
processor die.

Volume 2: Processor Abstraction Layer

||‘|‘|:e|® PAL_LOGICAL_TO_PHYSICAL

Figure 11-34. Layout of proc_n_log_info2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

la

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* la —logical address: geographical address of the logical processor for which information is
being returned. This is the same value that is returned by the PAL_FIXED_ADDR procedure

when it is called on the logical processor.
* rv—Reserved

This procedure must be supported on all implementations that contain more than one logical
processor on a physical processor die and returns an unimplemented procedure error code

otherwise.

Volume 2: Processor Abstraction Layer 2:337

PAL_MC_CLEAR _LOG i ntel o

Clear Processor Error Logging Registers

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Clears all processor error logging registers and reset the indicator that allows the error logging
registers to be written. This procedure also checks the pending machine check bit and pending INIT
bit and reports their states.

Static Registers Only

Physical and Virtual
Argument Description
index Index of PAL_MC_CLEAR_LOG within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_MC_CLEAR_LOG procedure.
pending 64-bit vector denoting whether an event is pending.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

This procedure is called to clear processor error logging registers after all error information has
been obtained. This procedures re-enables the logging registers in the case of a subsequent error. It
clears any information that would be returned by either the PAL_MC_ERROR_INFO or
PAL_MC_DYNAMIC_STATE procedures.

This procedure does not clear any pending machine checks. The pending return parameter returns a
value of 0 if no subsequent event is pending, a 1 in bit position 0, if a machine check is pending,
and/or a 1 in bit position 1 if an INIT is pending. All other values are reserved.

Figure 11-35. Pending Return Parameter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12110 9 8 7 6 5 4 3 2 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Table 11-42. Pending Return Parameter Fields

2:338

Field name Description

mc Pending machine check

in Pending initialization event

Volume 2: Processor Abstraction Layer

in‘te|® PAL_MC_DRAIN

Complete Outstanding Transactions

Purpose: Ensures that all outstanding transactions in a processor are completed or that any MCA due to these
outstanding transactions is taken.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_MC_DRAIN within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_MC_DRAIN procedure.
Reserved 0
Reserved 0
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: This call causes all outstanding transactions in the processor to be completed (i.e., loads get their
data returned, stores get issued to the bus, and prefetches are either completed or cancelled). As a
result of completing these outstanding transactions Machine Check Aborts (MCAs) may be taken.
This call is typically issued by code that needs to guarantee that no MCAs due to outstanding
transactions will occur after a given point.

Volume 2: Processor Abstraction Layer 2:339

PAL_MC_DYNAMIC_STATE |nte|®

Returns Dynamic Processor State

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:340

Returns the Machine Check Dynamic Processor State.

Static Registers Only

Physical
Argument Description
index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.
offset Offset of the next 8 bytes of Dynamic Processor State to return. (multiple of 8)
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_MC_DYNAMIC_STATE procedure.
size Unsigned 64-bit integer denoting bytes of Dynamic Processor State returned.
pds Next 8 bytes of Dynamic Processor State.
Reserved 0
Status Value | Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Returns the 8 bytes of Processor Dynamic State from the location specified by the offset argument.
This data is returned in an 8-byte return values, pds. The offset argument specifies the offset from
the start of the processor dependent error information area. The size return argument specifies the
number of bytes actually returned. In order to obtain all of the error information, software must call
PAL_MC_DYNAMIC_STATE with an initial offset value of 0, adding the size returned from the
previous call, until it returns a Status of -2 or the size is equal to 0.

The Processor Dynamic State is implementation dependent.

The information returned by this procedure is cleared by PAL_MC_CLEAR_LOG

Volume 2: Processor Abstraction Layer

intel.

PAL_MC_ERROR_INFO

Get Processor Error Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Volume 2: Processor Abstraction Layer

Returns the Processor Machine Check Information

Static Registers Only

Physical and Virtual
Argument Description
index Index of PAL_MC_ERROR_INFO within the list of PAL procedures.
info_index Unsigned 64-bit integer identifying the error information that is being requested. (See
Table 11-43).
level_index 8-byte formatted value identifying the structure to return error information on.(See Figure).

err_type_index

Return Value

Unsigned 64-bit integer denoting the type of error information that is being requested for the
structure identified in level_index.

Description

status
error_info
inc_err_type

Reserved

Status Value

Return status of the PAL_MC_ERROR_INFO procedure.

Error information returned. The format of this value is dependant on the input values passed.
If this value is zero, all the error information specified by err_type_index has been returned. If
this value is one, more structure specific error information is available and the caller needs to
make this procedure call again with level_index unchanged and err_type_index,
incremented.

0

Description

0
-2
-3
-6

Call completed without error

Invalid argument

Call completed with error

Argument was valid, but no error information was available

This procedure returns error information for machine checks as specified by info_index,
level_index and err_type_index. Higher level software is informed that additional machine check
information is available when the processor state parameter mi bit is set to one. See Table 11-5,
“Processor State Parameter Fields,” on page 2:268 for more information on the processor state
parameter and the mi bit description.

The info_index argument specifies which error information is being requested. See Table 11-43 for
the definition of the info_index values.

2:341

PAL_MC_ERROR_INFO inte|®

Table 11-43. info_index Values

info_index Error Information Type Description

0 Processor Error Map This info_index value will return the processor
error map. This return value specifies the
processor core identification, the processor
thread identification, and a bit-map indicating
which structure(s) of the processor generated the
machine check. This bit-map has the same layout
as the level_index. A one in the structure bit-map
indicates that there is error information available
for the structure. The layout of the level_index is
described in Figure on page 2:342.

1 Processor State Parameter This info_index value will return the same
processor state parameter that is passed at the
PALE_CHECK exit state for a machine check
event (provided a valid min-state save area has
been registered) or will construct a processor
state parameter for a corrected machine check
events. This parameter describes the severity of
the error and the validity of the processor state
when the machine check or CMCI occurred. This
procedure will not return a valid PSP for INIT
events. The Processor State Parameter is
described in Figure 11-11, “Processor State
Parameter,” on page 2:268.

2 Structure Specific Error Information This info_index value will return error information
specific to a processor structure. The structure is
specified by the caller using the level_index and
err_type_index input parameters. The value
returned in error_info is specific to the structure
and type of information requested.

All other values of info_index are reserved. When info_index is equal to 0 or 1, the level_index and
err_type_index input values are ignored. When info_index is equal to 2, the level_index and
err_type_index define the format of the error_info return value.

The caller is expected to first make this procedure call with info_index equal to zero to obtain the
processor error map. This error map informs the caller about the processor core identification, the
processor thread identification and indicates which structure(s) caused the machine check. If more
than one structure generated a machine check, multiple structure bits will be set. The caller then
uses this information to make sub-sequent calls to this procedure for each structure identified in the
processor error map to obtain detailed error information.

The level_index input argument specifies which processor core, processor thread and structure for
which information is being requested. See Table on page 2:343 for the definition of the level index
fields. This procedure call can only return information about one processor structure at a time. The
caller is responsible for ensuring that only one structure bit in the level_index input argument is set
at a time when retrieving information, otherwise the call will return that an invalid argument was
passed.

Figure 11-36. level_index Layout

2:342

31 30 29 28 27 26 25 24 23 222120 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0
\ erf \ ebh \ edt \ eit \ edc \ eic tid cid \

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ems ‘

Volume 2: Processor Abstraction Layer

intel.

Table 11-44. level_index Fields

PAL_MC_ERROR_INFO

Field Name Bit Description
cid 3:0 Processor core ID (default is O for processors with a single core)
tid 7:4 Logical thread ID (default is 0 for processors that execute a single thread)
eic 11:8 Error information is available for 1st, 2nd, 3rd, and 4th level instruction caches
edc 15:12 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified caches
eit 19:16 Error information is available for 1st, 2nd, 3rd, and 4th level instruction TLB
edt 23:20 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified TLB
ebh 27:24 Error information is available for the 1st, 2nd, 3rd, and 4th level processor bus

hierarchy

erf 31:28 Error information is available on register file structures
ems 47:32 Error information is available on micro-architectural structures

The convention for levels and hierarchy in the /evel_index field is such that the least significant bit
in the error information bit-fields represent the lowest level of the structures hierarchy. For example
bit 8 if the eic field represents the first level instruction cache.

The erf field is 4-bits wide to allow reporting of 4 concurrent register related machine checks at one
time. One bit would be set for each error. The ems field is 16-bits wide to allow reporting of
16-concurrent micro-architectural structures at one time. There is no significance in the order of
these bits. If only one register file related error occurred, it could be reported in any one of the

4-bits.

The err_type_index specifies the type of information will be returned in error_info for a particular
structure. See Table 11-45 for the values of err_type_index

Table 11-45. err_type_index Values

err_type_index
value mod 8

Return Value Description

Structure specific error information | The information returned in error_info is dependant
specified by level_index on the structure specified in level_index. See

Table 11-46 for the error_info return formats.

Target address The target address is a 64-bit integer containing the

physical address where the data was to be
delivered or obtained. The target address also can
return the incoming address for external snoops
and TLB shoot-downs that generated a machine
check. The structure specific error information
informs the caller if there is a valid target address to
be returned for the requested structure.

Requester identifier The requester identifier is a 64-bit integer that

specifies the bus agent that generated the
transaction responsible for generating the machine
check. The structure specific error information
informs the caller if there is a valid requester
identifier.

Responder identifier The responder identifier is a 64-bit integer that

specifies the bus agent that responded to a
transaction that was responsible for generating the
machine check. The structure specific error
information informs the caller if there is a valid
responder identifier.

Volume 2: Processor Abstraction Layer

2:343

PAL_MC_ERROR_INFO inte|®

Table 11-45. err_type_index Values (Continued)

err_type_index

value mod 8 Return Value Description

4 Precise instruction pointer The precise instruction pointer is a 64-bit virtual
address that points to the bundle that contained the
instruction responsible for the machine check. The
structure specific error information informs the caller
if there is a valid precise instruction pointer.

5-7 Reserved Reserved

See Table 11-46 for the format of error_info when structure specific information is requested.

Table 11-46. error_info Return Format when info_index = 2 and err_type_index =0

2:344

level_index .
field input error_info return format
eic cache_check return format
edc cache_check return format
eit tlb_check return format
edt tlb_check return format
ebh bus_check return format
erf reg_file_check return format
ems uarch_check return format

The structure specified by the level_index may have the ability to log distinct multiple errors. This
can occur if the structure is accessed at the same time by more than one instruction and the
processor can log machine check information for each access. To inform the caller of this
occurrence, this procedure will return a value of one in the inc_err_type return value.

It is important to note, that when the caller sees that the inc_err_type return value is one, it should
make a sub-sequent call with the err_type_index value incremented by 8. If the structure specific
error information returns that there is a valid target address, requester identifier, responder
identifier or precise instruction pointer these can be returned as well by incrementing the
err_type_index value in the same manner. Refer to the following example for more information.

For example, to gather information on the first error of a structure that can log multiple errors,
err_type_index would be called with the value of 0 first. The caller examines the information
returned in error_info to know if there is a valid target address, requester identifier, responder
identifier, or precise instruction pointer available for logging. If there is, it makes sub-sequent calls
with err_type_index equal to 1, 2, 3 and/or 4 depending on which valid bits are set. Additionally if
the inc_err_type return value was set to one, the caller knows that this structure logged multiple
errors. To get the second error of the structure it sets the err_type_index = 8 and the structure
specific information is returned in error_info. The caller examines this error_info to know if there
is a valid target address, requester identifier, responder identifier, or precise instruction pointer
available for logging on the second error. If there is, it makes sub-sequent calls with err_type_index
equal to 9, 10, 11, and/or 12 depending on which valid bits are set. The caller continues
incrementing the err_type_index value in this fashion until the inc_err_type return value is zero.

As shown in Table 11-46, the information returned in error_info varies based on which structure
information is being requested on. The next sections describe the error_info return format for the
different structures.

Volume 2: Processor Abstraction Layer

PAL_MC_ERROR_INFO

Cache_Check Return Format: The cache check return format is returned in error_info when the
user requests information on any instruction or data/unified caches in the level_index input
argument. The cache_check return format is a bit-field that is described in Figure 11-37 and

Table 11-47.

Figure 11-37. Cache_Check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 181716 15 141312 1110 9 8 7 6 5 4 3 2 1 0

wiv‘ way ‘mv‘ mesi ‘ic ‘dc‘ tl ‘dl - level ‘ op

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘pi‘rp’rq‘tv‘mcc‘pv’ pl ‘iv‘is- index

Table 11-47. Cache_Check Fields

Field
name

Bits

Description

op

3:0

Type of cache operation that caused the machine check:
0 - unknown or internal error

1 -load

2 - store

3 - instruction fetch or instruction prefetch

4 - data prefetch (both hardware and software)

5 - snoop (coherency check)

6 - cast out (explicit or implicit write-back of a cache line)
7 - move in (cache line fill)

All other values are reserved.

level

5:4

Level of cache where the error occurred. A value of 0 indicates the first level of cache.

dl 8 Failure located in the data part of the cache line.
tl 9 Failure located in the tag part of the cache line.
dc 10 Failure located in the data cache
ic 11 Failure located in the instruction cache
mesi 14:12 0 - cache line is invalid.
1 - cache line is held shared.
2 - cache line is held exclusive.
3 - cache line is modified.
All other values are reserved.
mv 15 The mesi field in the cache_check parameter is valid.
way 20:16 | Failure located in the way of the cache indicated by this value.
wiv 21 The way and index field in the cache_check parameter is valid.

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 | Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

Volume 2: Processor Abstraction Layer 2:345

PAL_MC_ERROR_INFO inte|®

Table 11-47. Cache_Check Fields (Continued)

Field Bits Description
name
tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.
rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.
rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.
pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

TLB_Check Return Format: The tlb_check return format is returned in error_info when the user
requests information on any instruction or data/unified TLB in the level_index input argument. The
tlb_check return format is a bit-field that is described in Figure 11-38 and Table 11-48.

Figure 11-38. TLB_Check Layout
3130 29 28 27 26 2524 23 22212019 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0
op ‘itc‘dtc‘ itr ‘dtr_ level .trv‘ tr_slot ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘pi‘rp‘rq‘tv’mcc‘pv’ pl ‘iv‘is

Table 11-48. TLB_Check Fields

:;il:i Bits Description
tr_slot 7:0 Slot number of the translation register where the failure occurred.
trv 8 The tr_slot field in the TLB_check parameter is valid.
dtr 16 Error occurred in the data translation registers
itr 17 Error occurred in the instruction translation registers
dtc 18 Error occurred in data translation cache
itc 19 Error occurred in the instruction translation cache
op 23:20 Type of cache operation that caused the machine check:

0 - unknown

1 - TLB access due to load instruction

2 - TLB access due to store instruction

3 - TLB access due to instruction fetch or instruction prefetch

4 - TLB access due to data prefetch (both hardware and software)

5 - TLB shoot down access

6 - TLB probe instruction (probe, tpa)

7 - move in (VHPT fill)

8 - purge (insert operation that purges entries or a TLB purge instruction)
All other values are reserved.

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the TLB_check parameter is valid.

2:346 Volume 2: Processor Abstraction Layer

intel.

PAL_MC_ERROR_INFO

Table 11-48. TLB_Check Fields (Continued)

Field Bits Description
name
pl 57:56 | Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.
pv 58 The pl field of the TLB_check parameter is valid.
mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.
tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.
rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.
rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.
pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Bus_Check Return Format: The bus_check return format is returned in error_info when the user
requests information on any level of hierarchy of the processor bus structures as specified in the
level_index input argument. The bus_check return format is a bit-field that is described in

Figure 11-39 and Table 11-49.

Figure 11-39. Bus Check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 156 14 1312 1110 9 8 7 6 5 4 3 2 1 0

bsi

hier ‘ sev ‘ type ‘cc‘eb‘ ib ‘ size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘pi‘rp‘rq‘tv‘mcc‘pv‘ pl ‘iv‘is

Table 11-49. Bus Check Fields

:::::: Bits Description
size 4:0 Size in bytes of the transaction that caused the machine check abort.
ib 5 Internal bus error
eb 6 External bus error
cc 7 Error occurred during a cache to cache transfer.
type 15:8 Type of transaction that caused the machine check abort.

0 - unknown

1 - partial read

2 - partial write

3 - full line read

4 - full line write

5 - implicit or explicit write-back operation
6 - snoop probe

7 - incoming or outgoing ptc.g

8 - write coalescing transactions

9 - I/O space read

10 - 1/O space write

11 - inter-processor interrupt message (IPI)
12 - interrupt acknowledge or external task priority cycle
All other values are reserved

Volume 2: Processor Abstraction Layer 2:347

PAL_MC_ERROR_INFO

Table 11-49. Bus Check Fields (Continued)

Field Bits Description
name

sev 20:16 Bus error severity. The encodings of error severity are platform specific.

hier 22:21 This value indicates which level or bus hierarchy the error occurred in. A value of 0
indicates the first level of hierarchy.

bsi 31:24 | Bus error status information. It describes the type of bus error. This field is processor bus
specific.

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 | Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction

pointer has been logged.

Reg_File_Check Return Format: The reg_file_check return format is returned in error_info
when the user requests information on any of the registers as specified in the level_index input
argument. The reg_file_check return format is a bit-field that is described in Figure 11-40 and
Table . When the reg_file_check return format is returned, the target address, the requester
identifier and the responder identifier will always be invalid.

Figure 11-40. Reg_File_Check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

2:348

rnv’ reg_num ‘ op ‘ id

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
mcc‘pv‘ pl ‘ iv ‘ is

Volume 2: Processor Abstraction Layer

intel.

PAL_MC_ERROR_INFO

Table 11-50. Reg_File_Check Fields

Volume 2: Processor Abstraction Layer

Field

name Bits Description
id 3:0 Register file identifier:
0 - unknown/unclassified
1 - General register (bank1)
2 - General register (bank 0)
3 - Floating-point register
4 - Branch register
5 - Predicate register
6 - Application register
7 - Control register
8 - Region register
9 - Protection key register
10 - Data breakpoint register
11 - Instruction breakpoint register
12 - Performance monitor control register
13 - Performance monitor data register
All other values are reserved
op 74 Identifies the operation that caused the machine check
0 - unknown
1-read
2 - write
All other values are processor specific
reg_num 14:8 Identifies the register number that was responsible for generating the machine check
rnv 15 Specifies if the reg_num field is valid
is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.
iv 55 The is field in the reg_file_check parameter is valid.
pl 57:56 | Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.
pv 58 The pl field of the reg_file_check parameter is valid.
mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.
pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise

instruction pointer has been logged.

Uarch_Check Return Format: The uvarch_check return format is returned in error_info when the
user requests information on any of the micro-architectural structures as specified in the level_index
input argument. The uarch_check return format is a bit-field that is described in Figure 11-41 and

Table 11-51.

2:349

PAL_MC_ERROR_INFO

intel.

Figure 11-41. uarch_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

xv‘wv‘ way ‘ op ‘ array_id ‘ level ‘ sid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ pi ‘ rp‘rq ‘ tv ’mcc‘pv‘ pl ‘ iv ‘ is index

Table 11-51. uarch_check Fields

Field
name

Bits

Description

sid

4:0

Structure identification. These bits identify the micro-architectural structure where the
error occurred. The definition of these bits are implementation specific.

level

75

Level of the micro-architectural structure where the error was generated. A value of 0
indicates the first level.

array_id

11:8

Identification of the array in the micro architectural structure where the error was
generated.

0 - unknown/unclassified
All other values are implementation specific

op

15:12

Type of operation that caused the error

0 - unknown

1 - read or load

2 - write or store

All other values are implementation specific

way

21:16

Way of the micro-architectural structure where the error was located.

wv

22

The way field in the uarch_check parameter is valid.

XV

23

The index field in the uarch_check parameter is valid.

39:32 Index or set of the micro-architectural structure where the error was located.

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was 1A-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 | Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier
has been logged.

p 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier
has been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.

2:350

Volume 2: Processor Abstraction Layer

inte|® PAL_MC_EXPECTED

Set/Reset Expected Machine Check Indicator

Purpose: Informs PALE_CHECK whether a machine check is expected so that PALE_CHECK will not
attempt to correct any expected machine checks.

Calling Conv: Static Registers Only

Mode: Physical
Arguments: Argument Description
index Index of PAL_MC_EXPECTED within the list of PAL procedures.
expected Unsigned integer with a value of 0 or 1 to set or reset the hardware resource PALE_CHECK
examines for expected machine checks.
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_MC_EXPECTED procedure.
previous Unsigned integer denoting whether a machine check was previously expected.
Reserved 0
Reserved 0
Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: If the argument expected contains a value of 1, an implementation-dependent hardware resource is
set to inform PALE_CHECK to expect a machine check. If the argument expected is 0, the resource
is reset, so that PALE_CHECK does not expect any following machine checks. All other values of
expected are reserved.

The implementation-dependent hardware resource should be, by default, in the “not expected”
state. Software or firmware should only call PAL_MC_EXPECTED immediately prior to issuing
an instruction which might generated an expected machine check. It should then immediately reset
the bit to the “not expected” state after checking the results of the operation.

The previous return parameter indicates the previous state of the hardware resource to inform
PALE_CHECK of an expected machine check. A value of 0 indicates that a machine check was not
expected. A value of 1 indicated that a machine check was expected. All other values of previous
are reserved.

Volume 2: Processor Abstraction Layer 2:351

PAL_MC_REGISTER_MEM

intel.

Register Memory with PAL for Machine Check and Init

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:352

Registers a platform dependent location with PAL to which it can save minimal processor state in
the event of a machine check or initialization event.

Static Registers Only

Physical

Argument Description

index Index of PAL_MC_REGISTER_MEM within the list of PAL procedures.
address Physical address of the buffer to be registered with PAL.
Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_MC_REGISTER_MEM procedure.
Reserved 0

Reserved 0

Reserved 0

Status Value | Description

0
2
-3

Call completed without error
Invalid argument
Call completed with error

PAL places the address passed in the XRO register, which is used by PAL as the min-state save area
in the event of a machine check or initialization event. The size and layout of the area referenced by
the address parameter is defined in Section 11.3.2.3. The address must be aligned on a 512 byte
boundary. The min-state save area must be in uncacheable memory.

Volume 2: Processor Abstraction Layer

inte|® PAL_MC_RESUME

Restore Minimal Architected State and Return

Purpose: Restores the minimal architectural processor state, sets the CMC interrupt if necessary, and
resumes execution.

Calling Conv: Static Registers Only

Mode: Physical
Arguments: Argument Description
index Index of PAL_MC_RESUME within the list of PAL procedures.
set_cmci Unsigned 64 bit integer denoting whether to set the CMC interrupt. A value of 0 indicates not
to set the interrupt, a value of 1 indicated to set the interrupt, and all other values are
reserved.
save_ptr Physical address of min-state save area used to used to restore processor state.
new_context Unsigned 64-bit integer denoting whether the caller is returning to a new context. A value of
0 indicates the caller is returning to the interrupted context, a value of 1 indicates that the
caller is returning to a new context.
Returns: Return Value Description
status Return status of the PAL_MC_RESUME procedure?.
Reserved 0
Reserved 0
Reserved 0
a. This procedure returns to the caller only in an error situation.
Status: Status Value | Description
-2 Invalid argument
-3 Call completed with error

Description: This procedure will restore the processor minimal architected state and optionally set the CMC
interrupt.

If the set_cmci argument is set to one, this procedure will set the CMC interrupt and return to the
interrupted context. The CMC interrupt handler will be invoked sometime after returning to the
interrupted context.

The save_ptr argument specifies the processor min-state save area buffer from which the processor
state will be restored. This pointer has the same alignment and size restrictions as the address
passed to PAL_MC_REGISTER_MEM procedure on page 2:352.

This procedure is used to resume execution of the interrupted context for both machine check and
initialization events. This procedure can resume execution to the same context or a new context. If
software attempts to resume execution for these events without using this call, processor behavior
is undefined.

If the caller is resuming to the same context, the new_context argument must be set to 0 and the
save_ptr argument has to point to a copy of the min-state save area written by PAL when the event
occurred.

If the caller is resuming to a new context, the new_context argument must be set to 1 and the
save_ptr argument must point to a new min-state save area set up by the caller.

Please see Section 11.3.3 on page 2:273 3for more information on resuming to the interrupted
context.

Volume 2: Processor Abstraction Layer 2:353

PAL_MEM_ATTRIB

Get Memory Attributes

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns the memory attributes implemented by processor.

Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_MEM_ATTRIB within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value Description

status
attrib
Reserved
Reserved

Status Value

Return status of the PAL_MEM_ATTRIB procedure.

8-bit vector of memory attributes implemented by processor.
0

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

Returns a 8-bit vector in the low order 8 bits of the return register that specifies the set of memory
attributes implemented by the processor. The return register is formatted as follows:

Figure 11-42. Layout of attrib Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

2:354

ma ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Each bit in the bit field ma represents one of the eight possible memory attributes implemented by
the processor. The bit field position corresponds to the numeric memory attribute encoding defined
in Section 4.4, “Memory Attributes.”

Volume 2: Processor Abstraction Layer

intel.

PAL_PERF_MON_INFO

Get Processor Performance Monitor Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns Performance Monitor information about what can be counted and how to configure the
monitors to count the desired events.

Static Registers Only

Physical and Virtual
Argument Description
index Index of PAL_PERF_MON_INFO within the list of PAL procedures.
pm_buffer An address to an 8-byte aligned 128-byte memory buffer.
Reserved 0
Reserved 0
Return Value Description

status
pm_info
Reserved
Reserved

Status Value

Return status of the PAL_PERF_MON_INFO procedure.
Information about the performance monitors implemented.
0

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

PAL_PERF_MON_INFO is called to determine the number of performance monitors and the
events which can be counted on the performance monitors. For more information on performance
monitoring, see Section 7.2, “Performance Monitoring.” pm_info is a formatted 64-bit return
register, as shown in Figure 11-43.

Figure 11-43. Layout of PM_info Return Value
3130 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

retired

cycles ‘ width generic ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Table 11-52. PM_info Fields

Field name Description
generic Unsigned 8-bit number defining the number of generic PMC/PMD pairs.
width Unsigned 8-bit number in the range 0:60 defining the number of implemented counter bits.
cycles Unsigned 8-bit number defining the event type for counting processor cycles.
retired Unsigned 8-bit number defining the event type for retired instruction bundles.

The pm_buffer argument points to a 128-byte memory area where mask information is returned.
The layout of pm_buffer is shown in Table 11-53.

Table 11-53. PM_buffer Layout

Volume 2: Processor Abstraction Layer

Offset Description
0x0 256-bit mask defining which PMC registers are implemented.
0x20 256-bit mask defining which PMD registers are implemented.
0x40 256-bit mask defining which registers can count cycles.
0x60 256-bit mask defining which registers can count retired bundles.

2:355

PAL_PLATFORM_ADDR inte|®

Set Processor Interrupt Block Address and I/O Port Space Address

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:356

Specifies the physical address of the processor Interrupt Block and I/0 Port Space.
Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_PLATFORM_ADDR within the list of PAL procedures.

type Unsigned 64-bit integer specifying the type of block. 0 indicates that the processor interrupt
block pointer should be initialized. 1 indicates that the processor I/O block pointer should be
initialized.

address Unsigned 64-bit integer specifying the address to which the processor 1/O block or interrupt

block shall be set. The address must specify an implemented physical address on the
processor model, bit 63 is ignored.

Reserved 0

Return Value Description

status Return status of the PAL_PLATFORM_ADDR procedure.
Reserved 0

Reserved 0

Reserved 0

Status Value | Description

0 Call completed without error
-2 Invalid argument
-3 Call completed with error

PAL_PLATFORM_ADDR specifies the physical address that the processor shall interpret as
accesses to the SAPIC memory or the I/O Port space areas.

The default value for the Interrupt block pointer is 0x00000000 FEE00000. If an alternate address
is selected by this call, it must be aligned on a 2 MB boundary, else the procedure will return an
error status. The address specified must also not overlay any firmware addresses in the 16 MB
region immediately below the 4GB physical address boundary.

The default value for the I/O block pointer is to the beginning of the 64 MB block at the highest
physical address supported by the processor. Therefore, its physical address is implementation
dependent. If an alternate address is selected by this call, it must be aligned on a 64MB boundary,
else the procedure will return an error status. The address specified must also not overlay any
firmware addresses in the 16 MB region immediately below the 4GB physical address boundary.

The Interrupt and I/O Block pointers should be initialized by firmware before any Inter-Processor
Interrupt messages or 1/0 Port accesses. Otherwise the default block pointer values will be used.

Volume 2: Processor Abstraction Layer

inte|® PAL_PMI_ENTRYPOINT

Setup SAL PMI Entrypoint in Memory

Purpose: Sets the SAL PMI entrypoint in memory.
Calling Conv: Static Registers Only

Mode: Physical
Arguments: Argument Description
index Index of PAL_PMI_ENTRYPOINT within the list of PAL procedures.
SAL_PMI_entry 256-byte aligned physical address of SAL PMI entrypoint in memory.
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_PMI_ENTRYPOINT procedure.
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: This procedure is called to set the SAL PMI entrypoint so that the SAL PMI code shall be executed
out of main memory instead of the firmware address space. Some processor implementations will
allow initialization of the PMI entrypoint only once. Under those situations, this procedure may be
called only once after a boot to initialize the PMI entrypoint register. Subsequent calls will return a
status of -3. This call must be made before PMI is enabled by SAL.

Volume 2: Processor Abstraction Layer 2:357

PAL_PREFETCH_VISIBILITY ||‘|‘|:e|®

Make Processor Prefetches Visible

Purpose: Used in the architected sequences for memory attribute transitions described in Section 4.4.11,
“Memory Attribute Transition” to transition a page (or set of pages) from a one memory attribute to
another.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_PREFETCH_VISIBILITY within the list of PAL procedures.
trans_type Unsigned integer specifying the type of memory attribute transition that is being performed
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_PREFETCH_VISIBILITY procedure.
Reserved 0
Reserved 0
Reserved 0
Status: Status Value | Description
1 Call completed without error; this call is not necessary on remote processors
0 Call completed without error; this call must also be performed on all remote processors in the
coherence domain
-2 Invalid argument
-3 Call completed with error

Description: This call is intended to be used only in the architected sequences described in Section 4.4.11,
“Memory Attribute Transition.” Use of this procedure outside the context of this sequence results
in undefined behavior.

The trans_type input indicates if a user is transitioning virtual addressing memory attributes (input
value of 0) or physical addressing memory attributes (input value of 1). All other values are
reserved.

This procedure, when used for transitioning virtual memory attributes, will ensure that all
prefetches that were initiated by the processor to the cacheable, speculative memory prior to the
call, will either not be cached; have been aborted; or are visible to subsequent f ¢ instructions.
(from both the local processor and from remote processors).

This procedure when used for transitioning physical memory attributes will ensure that all
prefetches that were initiated by the processor to the cacheable, limited speculative memory prior to
the call, will either not be cached; have been aborted; or are visible to subsequent f ¢ instructions
(from both the local processor and from remote processors). It will also terminate the ability for the
processor to make speculative references to any limited speculation pages. For the processor to
make any speculative reference to a limited speculation page after this call, there must be a
non-speculative reference made to that page after this call.

If the processor implementation does not require this procedure call to be made on remote
processors in the sequences, this procedure will return a 1 upon successful completion.

A return value of 0 upon successful completion of this procedure is an indication to software that
the processor implementation requires that this call be performed on all processors in the coherence
domain to make prefetches visible in the sequences.

These return code can be used to tune the architected sequence to the particular system on which is
running; see Section 4.4.11, “Memory Attribute Transition” for details.

2:358 Volume 2: Processor Abstraction Layer

intel.

PAL_PROC_GET_FEATURES

Get Processor Dependent Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Volume 2: Processor Abstraction Layer

Provides information about configurable processor features.

Static Registers Only

Physical

Argument Description

index Index of PAL_PROC_GET_FEATURES within the list of PAL procedures.
Reserved 0

feature_set Feature set information is being requested for.

Reserved 0

Return Value Description

status
features_avail
feature_status
feature_control

Status Value

Return status of the PAL_PROC_GET_FEATURES procedure.
64-bit vector of features implemented. See Table 11-54.

64-bit vector of current feature settings. See Table 11-54.
64-bit vector of features controllable by software.

Description

1

0
-2
-3
-8

Call completed without error; The feature_set passed is not supported but a feature_set of a
larger value is supported

Call completed without error

Invalid argument

Call completed with error

feature_set passed is beyond the maximum feature_set supported

PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES procedure calls are used
together to describe current settings of processor features and to allow modification of some of
these processor features.

The feature_set input argument for PAL_PROC_GET_FEATURES describes which processor
feature_set information is being requested. Table 11-54 describes processor feature_set zero. The
feature_set values are split into two categories: architected and implementation-specific. The
architected feature_sets have values from 0-15. The implementation-specific feature_sets are
values 16 and above. The architected feature_sets are described in this document. The
implementation-specific feature_sets are described in processor-specific documentation.

This procedure will return an invalid argument if an unsupported architectural feature_set is passed
as an input. Implementation-specific feature_sets will start at 16 and will expand in an ascending
order as new implementation-specific feature_sets are added. The return status is used by the caller
to know which implementation-specific feature_sets are currently supported on a particular

processor.

For each valid feature_set, this procedure returns which processor features are implemented in the
features_avail return argument, the current feature setting is in feature_status return argument, and
the feature controllability in the feature_control return argument. Only the processor features which
are implemented and controllable can be changed via PAL_PROC_SET_FEATURES.

In Table 11-54, the class field indicates whether a feature is required to be available (Regq.) or is
optional (Opt.). The control field indicates which features are required to be controllable. Req.
indicates that the feature must be controllable, Opt. indicates that the feature may optionally be
controllable, and No indicates that the feature cannot be controllable. The control field applies only
when the feature is available. The sense of the bits is chosen so that for features which are
controllable, the default hand-off value at exit from PALE_RESET should be 0. PALE_CHECK
and PALE_INIT will not modify these features.

2:359

PAL_PROC_GET_FEATURES

Table 11-54. Processor Features

2:360

Bit

Class

Control

Description

63

Opt.

Req.

Enable BERR promotion. When 1, the Bus Error (BERR) signal is promoted to the
Bus Initialization (BINIT) signal, and the BINIT pin is asserted on the occurrence of
each Bus Error. Setting this bit has no effect if BINIT signalling is disabled. (See
PAL_BUS_GET/SET_FEATURES)

62

Opt.

Req.

Enable MCA promotion. When 1, machine check aborts (MCAs) are promoted to the
Bus Error signal, and the BERR pin is assert on each occurrence of an MCA. Setting
this bit has no effect if BERR signalling is disabled. (See PAL_BUS_GET/
SET_FEATURES)

61

Opt.

Req.

Enable MCA to BINIT promotion. When 1, machine check aborts (MCAs) are
promoted to the Bus Initialization signal, and the BINIT pin is assert on each
occurrence of an MCA. Setting this bit has no effect if BINIT signalling is disabled.
(See PAL_BUS_GET/SET_FEATURES)

60

Opt.

Enable CMCI promotion When 1, Corrected Machine Check Interrupts (CMCI) are
promoted to MCAs. They are also further promoted to BERR if bit 39, Enable MCA
promotion, is also set and they are promoted to BINIT if bit 38, Enable MCA to BINIT
promotion, is also set. This bit has no effect if MCA signalling is disabled (see
PAL_BUS_GET/SET_FEATURES)

59

Opt.

Req.

Disable Cache. When 0, the processor performs cast outs on cacheable pages and
issues and responds to coherency requests normally. When 1, the processor
performs a memory access for each reference regardless of cache contents and
issues no coherence requests and responds as if the line were not present. Cache
contents cannot be relied upon when the cache is disabled.

WARNING: Semaphore instructions may not be atomic or may cause Unsupported
Data Reference faults if caches are disabled.

58

Opt.

Req.

Disable Coherency. When 0, the processor uses normal coherency requests and
responses. When 1, the processor answers all requests as if the line were not
present.

57

Opt.

Req.

Disable Dynamic Power Management (DPM). When 0, the hardware may reduce
power consumption by removing the clock input from idle functional units. When 1,
all functional units will receive clock input, even when idle.

56

Opt.

Req.

Disable a BINIT on internal processor time-out. When 0, the processor may generate
a BINIT on an internal processor time-out. When 1, the processor will not generate a
BINIT on an internal processor time-out. The event is silently ignored.

55

Opt.

Req.

Enable external notification when the processor detects hardware errors caused by
environmental factors that could cause loss of deterministic behavior of the
processor. When 1, this bit will enable external notification, when 0 external
notification is not provided. The type of external notification of these errors is
processor-dependent. A loss of processor deterministic behavior is considered to
have occurred if these environmentally induced errors cause the processor to
deviate from its normal execution and eventually causes different behavior which can
be observed at the processor bus pins. Processor errors that do not have this effects
(i.e., software induced machine checks) may or may not be promoted depending on
the processor implementation.

54-
48

N/A

N/A

reserved

47

Opt.

Opt.

Disable Dynamic branch prediction. When 0, the processor may predict branch
targets and speculatively execute, but may not commit results. When 1, the
processor must wait until branch targets are known to execute.

46

Opt

Opt.

Disable Dynamic Instruction Cache Prefetch. When 0, the processor may prefetch
into the caches any instruction which has not been executed, but whose execution is
likely. When 1, instructions may not be fetched until needed or hinted for execution.
(Prefetch for a hinted branch is allowed even when dynamic instruction cache
prefetch is disabled.)

Volume 2: Processor Abstraction Layer

intel.

PAL_PROC_GET_FEATURES

Table 11-54. Processor Features (Continued)

Bit

Class

Control

Description

45

Opt.

Opt.

Disable Dynamic Data Cache Prefetch. When 0, the processor may prefetch into the
caches any data which has not been accessed by instruction execution, but which is
likely to be accessed. When 1, no data may be fetched until it is needed for
instruction execution or is fetched by an Ifetch instruction.

44

Opt.

Req.

Disable Spontaneous Deferral. When 1, the processor may optionally defer
speculative loads that do not encounter any exception conditions, but that trigger
other implementation-dependent conditions (e.g., cache miss). This behavior is
gated by the programming model described in Section 5.5.5, “Deferral of Speculative
Load Faults” on page 2:88. When 0, spontaneous deferral is disabled.

43

Opt.

Opt.

Disable Dynamic Predicate Prediction. When 0, the processor may predict predicate
results and execute speculatively, but may not commit results until the actual
predicates are known. When 1, the processor shall not execute predicated
instructions until the actual predicates are known.

42

Opt.

No

XR1 through XR3 implemented. Denotes whether XR1 - XR3 are implemented for
machine check recovery. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

41

Opt.

No

XIP, XPSR, and XFS implemented. Denotes whether XIP, XPSR, and XFS are
implemented for machine check recovery. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

40-

N/A

N/A

reserved

38

Opt.

No

Simple implementation of unimplemented instruction addresses. Denotes how an
unimplemented instruction address is recorded in [IP on an Unimplemented
Instruction Address trap. When 1, the full unimplemented address is recorded in IIP;
when 0, the address is sign extended (virtual addresses) or zero extended (physical
addresses). See Section 3.3.5.3, “Interruption Instruction Bundle Pointer (IIP —
CR19)” for details. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

Volume 2: Processor Abstraction Layer

2:361

PAL_PROC_SET_FEATURES

Set Processor Dependent Features

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:362

Enables/disables specific processor features.

Static Registers Only

Physical
Argument Description
index Index of PAL_PROC_SET_FEATURES within the list of PAL procedures.

feature_select
feature_set

64-bit vector denoting desired state of each feature (1=select, 0=non-select).
Feature set to apply changes to. See PAL_PROC_GET_FEATURES for more information on
feature sets.

Reserved 0
Return Value Description
status Return status of the PAL_PROC_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0
Status Value | Description

1

0
-2
-3
-8

Call completed without error; The feature_set passed is not supported but a feature_set of a
larger value is supported

Call completed without error

Invalid argument

Call completed with error

feature_set passed is beyond the maximum feature_set supported

PAL_PROC_GET_FEATURES should be called to ascertain the implemented processor features
and their current setting before calling PAL_PROC_SET_FEATURES. The list of possible
processor features is defined in Table 11-54. Any attempt to set processor features which cannot be
set will be ignored.

Volume 2: Processor Abstraction Layer

in‘te|® PAL_PTCE_INFO

Get PTCE Purge Loop Information

Purpose: Returns information required for the architected loop used to purge (initialize) the entire TC.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_PTCE_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_PTCE_INFO procedure.
tc_base Unsigned 64-bit integer denoting the beginning address to be used by the first PTCE
instruction in the purge loop.
tc_counts Two unsigned 32-bit integers denoting the loop counts of the outer (loop 1) and inner (loop 2)

purge loops. count1 (loop 1) is contained in bits 63:32 of the parameter, and count2 (loop 2)
is contained in bits 31:0 of the parameter.
tc_strides Two unsigned 32-bit integers denoting the loop strides of the outer (loop 1) and inner (loop 2)
purge loops. stride1 (loop 1) is contained in bits 63:32 of the parameter, and stride2 (loop 2)
is contained in bits 31:0 of the parameter.

Status: Status Value | Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Description: No explicit hardware support is required by this call. See the purge loop example in the description
of the pt c. e instruction in Chapter 2, “Instruction Reference” in Volume 3.

Volume 2: Processor Abstraction Layer 2:363

PAL_REGISTER_INFO

Return Information about Implemented Processor Registers

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Returns information about implemented Application and Control Registers.

Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_REGISTER_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer denoting what register information is requested.
Reserved 0

Reserved 0

Return Value Description

status
reg_info_1
reg_info_2
Reserved

Status Value

Return status of the PAL_REGISTER_INFO procedure.

64-bit vector denoting information for registers 0-63. Bit 0 is register 0, bit 63 is register 63.
64-bit vector denoting information for registers 64-127. Bit O is register 64, bit 63 is register
127.

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

This procedure is called to obtain information about the implementation of Application Registers
and Control Registers. Table 11-55 shows the information that is returned for each request.

Table 11-55. info_request Return Value

2:364

info_request

Meaning of Return Bit Vector

0

A 0-bit in the return vector indicates that the corresponding Application Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Application
Register is implemented.

A 0-bit in the return vector indicated that the corresponding Application Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Application
registers may cause side effects when read.

A 0-bit in the return vector indicates that the corresponding Control Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Control Register is
implemented.

A 0-bit in the return vector indicated that the corresponding Control Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Control
Register may cause side effects when read.

All others

Reserved.

Volume 2: Processor Abstraction Layer

intel.

Get RSE Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

PAL_RSE_INFO

Returns information about the register stack and RSE for this processor implementation.

Static Registers Only

Physical or Virtual

Argument Description

index Index of PAL_RSE_INFO within the list of PAL procedures.
Reserved 0

Reserved 0

Reserved 0

Return Value

Description

status
phys_stacked
hints
Reserved

Status Value

Return status of the PAL_RSE_INFO procedure.
Number of physical stacked general registers.
RSE hints supported by processor.

0

Description

0
-2
-3

Call completed without error
Invalid argument
Call completed with error

The return parameter phys_stacked contains a 64-bit unsigned integer that specifies the number of
physical registers implemented by the processor for the stacked general registers, r32-r127.
phys_stacked will be an integer multiple of 16 greater than or equal to 96.

The return parameter hints contains a 2-bit field that specifies which RSE load/store hints are

implemented.

Figure 11-44. Layout of hints Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0
[1]]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

A bit field value of 1 specifies that the corresponding mode is implemented; a value of 0 specifies
that the mode is not implemented. The bit field encodings are:

Table 11-56. RSE Hints Implemented

li si RSE Hints Class
0 0 enforced lazy Required
0 1 eager stores Optional
1 0 eager loads Optional
1 1 eager stores and loads Optional

“Lazy” is the default RSE mode and must be implemented. Hardware is not required to implement

any of the other modes.

Volume 2: Processor Abstraction Layer

2:365

PAL_TEST_INFO in‘te|®

Information for Processor Self-test

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

2:366

Returns the alignment and size requirements needed for the memory buffer passed to the
PAL_TEST_PROC procedure as well as information on self-test control words for the processor
self-tests.

Static Registers Only

Physical

Argument Description

index Index of PAL_TEST_INFO within the list of PAL procedures.

test_phase Unsigned integer that specifies which phase of the processor self-test information is being

requested on. A value of 0 indicates the phase two of the processor self-test and a value of 1
indicates phase one of the processor self-test. All other values are reserved.
Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_TEST_INFO procedure.

bytes_needed Unsigned 64-bit integer denoting the number of bytes of main memory needed to perform
the second phase of processor self-test.

alignment Unsigned 64-bit integer denoting the alignment required for the memory buffer.

st_control 48-bit wide bit-field indicating if control of the processor self-tests is supported and which bits

of the test_control field are defined for use.

Status Value | Description

0 Call completed without error
-2 Invalid argument
-3 Call completed with error

PAL_TEST_INFO returns the size and alignment requirements for the memory buffer that is
passed to the PAL_TEST_PROC procedure and returns information on the implementation of the
self-test control word based on the test_phase input argument. Please see Section 11.2.3, “PAL
Self-test Control Word” on page 2:264 for more information on the self-test control word.

When test_phase is equal to zero, information is returned about phase two of the processor self-test.
These are the tests that require external memory to execute properly. When test_phase is equal to
one, information is returned about phase one of the processor self-test. These are the tests that are
normally run during PALE_RESET and do not require external memory to properly execute. When
information is requested about phase one of the processor self-test a memory buffer and alignment
argument will be returned as well since these tests may need to save and restore processor state to
this memory buffer if executed from the PAL_TEST_PROC procedure.

Volume 2: Processor Abstraction Layer

intel.

PAL_TEST_PROC

Perform a Processor Self-test

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Performs the second phase of processor self test.
Stacked Registers

PAL_TEST_PROC may modify some registers marked unchanged in the Stacked Register calling
convention. See additional description below.

Physical
Argument Description
index Index of PAL_TEST_PROC within the list of PAL procedures.
test_address 64-bit physical address of main memory area to be used by processor self-test. The memory
region passed must be cacheable, bit 63 must be zero.
test_info Input argument specifying the size of the memory buffer passed and the phase of the
processor self-test that should be run. See Figure 11-45.
test_params Input argument specifying the self-test control word and the allowable memory attributes that
can be used with the memory buffer. See Figure 11-46.
Return Value Description
status Return status of the PAL_TEST_PROC procedure.
self-test_state Formatted 8-byte value denoting the state of the processor after self-test. The format is

described in Section 11.2.2.2, “Definition of Self Test State Parameter” on page 2:262.
Reserved 0
Reserved 0

Status Value | Description

0 Call completed without error
-2 Invalid argument
-3 Call completed with error

The PAL_TEST_PROC procedure will perform a phase of the processor self-tests as directed by
the test_info and the fest_control input parameters.

test_address points to a contiguous memory region to be used by PAL_TEST_PROC. This memory
region must be aligned as specified by the alignment return value from PAL_TEST_INFO,
otherwise this procedure will return with an invalid argument return value. The PAL_TEST_PROC
routine requires that the memory has been initialized and that there are no known uncorrected
errors in the allocated memory.

The test_info input parameter specifies the size of the memory buffer passed to the procedure and
which phase of the processor self-test is requested to be run (either phase one or phase two).

Figure 11-45. Layout of test_info Argument

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
buffer_size ’

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
test_phase ’ buffer_size

* buffer_size indicates the size in bytes of the memory buffer that is passed to this procedure.
buffer_size must be greater than or equal in size to the bytes_needed return value from
PAL_TEST_INFO, otherwise this procedure will return with an invalid argument return value.

* test_phase defines which phase of the processor self-tests are requested to be run. A value of
zero indicates to run phase two of the processor self-tests. Phase two of the processor self-tests
are ones that require external memory to execute correctly. A value of one indicates to run
phase one of the processor self-tests. Phase one of the processor self-tests are tests run during

Volume 2: Processor Abstraction Layer 2:367

intel.

PALE_RESET and do not depend on external memory to run correctly. When the caller
requests to have phase one of the processor self-test run via this procedure call, a memory
buffer may be needed to save and restore state as required by the PAL calling conventions. The
procedure PAL_TEST_INFO informs the caller about the requirements of the memory buffer.

The test_params input argument specifies which memory attributes are allowed to be used with the
memory buffer passed to this procedure as well as the self-test control word. The self-test control
word test_control controls the run-time and coverage of the processor self-test phase specified in
the fest_phase parameter.

Figure 11-46. Layout of test_param Argument

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ test_control reserved attributes ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
‘ test_control ‘

* attributes specifies the memory attributes that are allowed to be used with the memory buffer
passed to this procedure. The attributes parameter is a vector where each bit represents one of
the virtual memory attributes defined by the architecture. The bit field position corresponds to
the numeric memory attribute encoding defined in Section 4.4, “Memory Attributes.” The
caller is required to support the cacheable attribute for the memory buffer, otherwise an invalid
argument will be returned.

* test_control is the self-test control word corresponding to the fest_phase passed. This
test_control directs the coverage and run-time of the processor self-tests specified by the
test_phase input argument. Information about the self-test control word can be found in
Section 11.2.3, “PAL Self-test Control Word” on page 2:264 and information on if this feature
is implemented and the number of bits supported can be obtained by the PAL_TEST_INFO
procedure call. If this feature is implemented by the processor, the caller can selectively skip
parts of the processor self-test by setting fest_control bits to a one. If a bit has a zero, this test
will be run. The values in the unimplemented bits are ignored. If PAL_TEST_INFO indicated
that the self-test control word is not implemented, this procedure will return with an invalid
argument status if the caller sets any of the test_control bits.

PAL_TEST_PROC will classify the processor after the self-test in one of four states:
CATASTROPHIC FAILURE, FUNCTIONALLY RESTRICTED, PERFORMANCE
RESTRICTED, or HEALTHY. These processor self-test states are described in Figure 11-9 on
page 2:262. If PAL_TEST_PROC returns in the FUNCTIONALLY RESTRICTED or
PERFORMANCE RESTRICTED states the self-test_status return value can provide additional
information regarding the nature of the failure. In the case of a CATASTROPHIC FAILURE, the
procedure does not return.

The procedure will only perform memory accesses to the buffer passed to it using the memory
attributes indicated in the attributes bit-field. The caller must ensure that the memory region passed
to the procedure is in a coherent state.

PAL_TEST_PROC may modify PSR bits or system registers as necessary to test the processor.
These bits or registers must be restored upon exit from PAL_TEST_PROC with the exception of
the translation caches, which are evicted as a result of testing. PAL_TEST_PROC is free to
invalidate all cache contents. If the caller depends on the contents of the cache, they should be
flushed before making this call. PAL_TEST_PROC requires that the RSE is set up properly to
handle spills and fills to a valid memory location if the contents of the register stack are needed.
PAL_TEST_PROC requires that the memory buffer passed to it is not shared with other processors
running this procedure in the system at the same time. PAL_TEST_PROC will use this memory
region in a non-coherent manner.

2:368 Volume 2: Processor Abstraction Layer

intel.

PAL_VERSION

Get PAL Version Number Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns PAL version information.

Static registers only

Physical or Virtual

Argument Description
index Index of PAL_VERSION within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_VERSION procedure.
min_pal_ver 8-byte formatted value returning the minimum PAL version needed for proper operation of
the processor. See Figure 11-47.
current_pal_ver 8-byte formatted value returning the current PAL version running on the processor. See
Figure 11-47.
Reserved 0
Status Value Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

PAL_VERSION provides the caller the minimum PAL version needed for proper operation of the
processor as well as the current PAL version running on the processor.

The min_pal_ver and current_pal_ver return values are 8-byte values in the following format:

Figure 11-47. Layout of min_pal_ver and current_pal_ver Return Values

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PAL_A_version

* PAL_B_version is a 16-bit binary coded decimal (BCD) number that provides identification
information about the PAL_B firmware.

* PAL_vendor is an unsigned 8-bit integer indicating the vendor of the PAL code.

* PAL_A_version is a 16-bit binary coded decimal (BCD) number that provides identification
information about the PAL_A firmware. In the split PAL_A model, this return value is the
version number of the processor-specific PAL_A. The generic PAL_A version is not returned
by this procedure in the split PAL_A model.

The version numbers selected for the PAL_A and PAL_B firmware is specific to the PAL_vendor.
The version numbers selected will always have the property that later versions of firmware will
have a higher number than earlier versions of firmware.

Volume 2: Processor Abstraction Layer 2:369

PAL_VM_INFO in‘te|®

Get Virtual Memory Information

Purpose: Return information about the virtual memory characteristics of the processor implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_VM_INFO within the list of PAL procedures.
tc_level Unsigned 64-bit integer specifying the level in the TLB hierarchy for which information is
required. This value must be between 0 and one less than the value returned in the
vm_info_1.num_tc_levels return value from PAL_VM_SUMMARY.
tc_type Unsigned 64-bit integer with a value of 1 for instruction translation cache and 2 for data or
unified translation cache. All other values are reserved.
Reserved 0
Returns: Return Value Description
status Return status of the PAL_VM_INFO procedure.
tc_info 8-byte formatted value returning information about the specified TC.
tc_pages 64-bit vector containing a bit for each page size supported in the specified TC, where bit
position n indicates a page size of 2**n.
Reserved 0
Status: Status Value | Description
0 Call completed without error.
-2 Invalid argument.
-3 Call completed with error.

Description: The fc_info return is an 8-byte quantity in the following format:

Figure 11-48. Layout of tc_info Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ num_entries ‘ num_ways ‘ num_sets ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* num_sets —unsigned 8-bit integer denoting the number of hash sets for the specified level
(1=fully associative)

* num_ways — unsigned 8-bit integer denoting the associativity of the specified level (1=direct).

* num_entries — unsigned 16-bit integer denoting the number of entries in the specified TC.

+ pf—flag denoting whether the specified level is optimized for the region’s preferred page size
(1=optimized). tc_pages indicates which page sizes are usable by this translation cache.

* ut— flag denoting whether the specified TC is unified (1=unified).

+ tr — flag denoting whether installed translation registers will reduce the number of entries
within the specified TC.

The num_entries will always equal num_ways * num_sets. For a direct mapped TC, num_ways = 1

and num_sets = num_entries. For a fully associative TC, num_sets = 1 and num_ways =
num_entries.

2:370 Volume 2: Processor Abstraction Layer

inte|® PAL_VM_PAGE_SIZE

Get Virtual Memory Page Size Information

Purpose: Returns page size information about the virtual memory characteristics of the processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual
Arguments: Argument Description
index Index of PAL_VM_PAGE_SIZE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of the PAL_VM_PAGE_SIZE procedure.
insertable_pages 64-bit vector containing a bit for each architected page size that is supported for TLB
insertions and region registers.
purge_pages 64-bit vector containing a bit for each architected page size supported for TLB purge
operations.
Reserved 0
Status: Status Value Description
0 Call completed without error.
-2 Invalid argument
-3 Call completed with error.

Description: The values returned from this call are all 64-bit bitmaps. One bit is set for each page size
implemented by the processor where bit n represents a page size of 2**n. Please refer to Table 4-4
on page 2:47 for the minimum page sizes that are supported.

The insertable_pages returns the page sizes that are supported for TLB insertions and region
registers.

The purge_pages returns the page sizes that are supported for the TLB purge operations.

Volume 2: Processor Abstraction Layer 2:371

PAL_VM_SUMMARY i ntGI ®

Get Virtual Memory Summary Information

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Returns summary information about the virtual memory characteristics of the processor
implementation.

Static Registers Only

Physical and Virtual
Argument Description
index Index of PAL_VM_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of the PAL_VM_SUMMARY procedure.
vm_info_1 8-byte formatted value returning global virtual memory information.
vm_info_2 8-byte formatted value returning global virtual memory information.
Reserved 0
Status Value | Description
0 Call completed without error.
-2 Invalid argument
-3 Call completed with error.

The vm_info_1 return is an 8-byte quantity in the following format:

Figure 11-49. Layout of vm_info_1 Return Value

2:372

31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 156 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

hash_tag_id ‘ max_pkr ‘ key_size ‘ phys_add_size ‘vw‘

63

62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

num_tc_levels ‘ num_unique_tcs ‘ max_itr_entry ‘ max_dtr_entry ‘

vw — 1-bit flag indicating whether a hardware TLB walker is implemented (1 = walker
present).

phys_add_size — unsigned 7-bit integer denoting the number of bits of physical address
implemented.

key_size —unsigned 8-bit integer denoting the number of bits implemented in the PKR key
field.

max_pkr — unsigned 8-bit integer denoting the maximum PKR index (number of PKRs-1).

hash_tag_id — unsigned 8-bit integer which uniquely identifies the processor hash and tag
algorithm.

max_dtr_entry —unsigned 8 bit integer denoting the maximum data translation register index
(number of dtr entries - 1).

max_itr_entry — unsigned 8 bit integer denoting the maximum instruction translation register
index (number of itr entries - 1).

num_unique_tcs — unsigned 8-bit integer denoting the number of unique TCs implemented.
This is a maximum of 2*num_tc_levels.

num_tc_levels —unsigned 8-bit integer denoting the number of TC levels.

The vm_info_2 return is an 8-byte quantity in the following format:

Volume 2: Processor Abstraction Layer

i ntel R PAL_VM_SUMMARY

Figure 11-50. Layout of vm_info_2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rid_size ‘ impl_va_msb ‘

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* impl_va_msb — unsigned 8-bit integer denoting the bit number of the most significant virtual
address bit. This is the total number of virtual address bits - 1.

* rid_size —unsigned 8-bit integer denoting the number of bits implemented in the RR.rid field.

Volume 2: Processor Abstraction Layer 2:373

PAL_VM_TR_READ i ntGI ®

Read a Translation Register

Purpose:

Calling Conv:

Mode:

Arguments:

Returns:

Status:

Description:

Reads a translation register.

Stacked Registers
Physical
Argument Description
index Index of PAL_VM_TR_READ within the list of PAL procedures.
reg_num Unsigned 64-bit number denoting which TR to read.
tr_type Unsigned 64-bit number denoting whether to read an ITR (0) or DTR (1). All other values are
reserved.
tr_buffer 64-bit pointer to the 32-byte memory buffer in which translation data is returned.
Return Value Description
status Return status of the PAL_VM_TR_READ procedure.
TR_valid Formatted bit vector denoting which fields are valid. See Figure 11-51.
Reserved 0
Reserved 0
Status Value | Description
0 Call completed without error.
-2 Invalid argument
-3 Call completed with error.

This procedure reads the specified translation register and returns its data in the buffer starting at
tr_buffer. The format of the data is returned in Translation Insertion Format, as described in
Figure 4-5, “Translation Insertion Format,” on page 2:44. In addition, bit 0 of the IFA in Figure 4-5
(an ignored field in the figure) will return whether the translation is valid. If bit 0 is 1, the
translation is valid.

Some fields of the translation register returned may be invalid. The validity of these fields is
indicated by the return argument 7R_valid. If these fields are not valid, the caller should ignore the
indicated fields when reading the translation register returned in #_buffer.

Figure 11-51. Layout of TR_valid Return Value

2:374

31 30 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+ av — denotes that the access rights field is valid

* pv — denotes that the privilege level field is valid

+ dv — denotes that the dirty bit is valid

+ mv — denotes that the memory attributes are valid.
A value of 1 denotes a valid field. A value of 0 denotes an invalid field. Any value returned in an
invalid field must be ignored.

The tr_buffer parameter should be aligned on an 8 byte boundary.

Warning: This procedure may have the side effect of flushing all the translation cache entries
depending on the implementation.

Volume 2: Processor Abstraction Layer

intgl.

Part Ill: System Programmer’s
Guide

In

tel.

About the System Programmer’s
Guide 1

1.1

Part II: System Programmer s Guide is intended as a companion section to the information
presented in Part I: System Architecture Guide. While Part I provides a crisp and concise
architectural definition of the Itanium instruction set, Part II provides insight into programming and
usage models of the Itanium system architecture. This section emphasizes how the various
architecture features fit together and explains how they contribute to high performance system
software.

The intended audience for this section is system programmers who would like to better understand
the Itanium system architecture. The goal of this document is to:

» Familiarize system programmers with Itanium system architecture principles and usage
models.

* Provide recommendations, code examples, and performance guidelines.

This section does not re-define the Itanium instruction set. Please refer to Part I: System
Architecture Guide as the authoritative definition of the system architecture.

The reader is expected to be familiar with the contents of Part [and is expected to be familiar with
modern virtual memory and multi-processing concepts. Furthermore, this document is platform
architecture neutral (i.e. no assumptions are made about platform architecture capabilities, such as
busses, chipsets, or I[/O devices).

Overview of the System Programmer’s Guide

The Itanium architecture provides numerous performance enhancing features of interest to the
system programmer. Many of these instruction set features focus on reducing overhead in common
situations. The chapters outlined below discuss different aspects of the Itanium system architecture.

Chapter 2, “MP Coherence and Synchronization” describes Itanium-based multi-processing
synchronization primitives and the Itanium memory ordering model. This chapter also discusses
programming rules for self- and cross-modifying code. This chapter is useful for application and
system programmers who write multi-threaded code.

Chapter 3, “Interruptions and Serialization” discusses how the Itanium architecture, despite its
explicitly parallel instruction execution semantics, provides the system programmer with a precise
interruption model. This chapter describes how the processor serializes execution around
interruptions and what state is preserved and made available to low-level system code when
interruptions are taken. This chapter introduces the interrupt vector table and describes how
low-level kernel code is expected to transfer control to higher level operating system code written
in a high-level programming language. This chapter is useful for operating system and firmware
programmers.

Volume 2: About the System Programmer’s Guide 2:377

2:378

intel.

Chapter 4, “Context Management” describes how operating systems need to preserve [tanium
register contents. In addition to spilling and filling a register’s data value, the Itanium architecture
also requires software to preserve control and data speculative state associated with that register,
i.e. its NaT bit and ALAT state. This chapter also discusses system architecture mechanisms that
allow an operating system to significantly reduce the number of registers that need to be
spilled/filled on interruptions, system calls, and context switches. These optimizations improve the
performance of an Itanium-based operating system by reducing the amount of required memory
traffic. This chapter is useful for operating system programmers.

Chapter 5, “Memory Management” introduces various memory management strategies in the
Itanium architecture: region register model, protection keys, and the virtual hash page table usage
models are described. This chapter is of interest to virtual memory management software
developers.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation. This chapter describes various speculation
software models and their associated operating system implications. This chapter is of interest to
operating system developers and compiler writers.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction
emulation handlers that Itanium-based operating systems are expected to support. This chapter is
useful for operating system developers.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the Itanium-based software stack
provides complete IEEE-754 compliance. This includes a discussion of the floating-point software
assist firmware, the FP SWA EFI driver. This chapter also describes how Itanium-based operating
systems are expected to support IEEE floating-point exception filters. This chapter is useful for
operating system developers and floating-point numerics experts.

Chapter 9, “IA-32 Application Support” outlines how software needs to perform instruction set
transitions, and what low-level kernel handlers are required in an [tanium-based operating system
to support IA-32 applications. This chapter is useful for operating system developers.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software. Basic
interrupt prioritization, masking, and harvesting capabilities are discussed in this chapter. This
chapter is of interest to operating system developers and to device driver writers.

Chapter 11, “I/O Architecture” describes the /O architecture with a focus on platform
considerations and support for the existing IA-32 1/O port space platform infrastructure. This
chapter is of interest to operating system developers and to device driver writers.

Chapter 12, “Performance Monitoring Support” describes the performance monitor architecture
with a focus on what kind of operating system support is needed from Itanium-based operating
systems. This chapter is of interest to operating system and performance tool developers.

Chapter 13, “Firmware Overview” introduces the firmware model and how various firmware layers
(PAL, SAL, EFI) work together to enable processor and system initialization and operating system
boot. This chapter also discusses how firmware layers and the operating system work together to
provide error detection, error logging, as well as fault containment capabilities. This chapter is of
interest to platform firmware and operating system developers.

Volume 2: About the System Programmer’s Guide

1.2 Related Documents

The following documents are referred to fairly often in this document. For more details on software
conventions and platform firmware, please consult these manuals (available at
http://developer.intel.com).

[SWC]“Itanium® Software Conventions and Runtime Architecture Guide”

[EFI] “Extensible Firmware Interface (EFI) Specification”

Volume 2: About the System Programmer’s Guide 2:379

2:380

Volume 2: About the System Programmer’s Guide

intel.

MP Coherence and Synchronization 2

2.1

211

This chapter describes how to enforce an ordering of memory operations, how to update code
images, and presents examples of several simple multiprocessor synchronization primitives on a
processor based on the Itanium architecture. These topics are relevant to anyone who writes either
user- or system-level software for multiprocessor systems based on the Itanium architecture.

The chapter begins with a brief overview of Itanium memory access instructions intended to
summarize the behaviors that are relevant to later discussions in the chapter. Next, this chapter
presents the Itanium memory ordering model and compares it to a sequentially-consistent ordering
model. It then explores versions of several common synchronization primitives. This chapter closes
by describing how to correctly update code images to implement self-modifying code,
cross-modifying code, and paging of code using programmed 1/0.

An Overview of Intel® Itanium® Memory Access
Instructions

The Itanium architecture provides load, store, and semaphore instructions to access memory. In
addition, it also provides a memory fence instruction to enforce further ordering relationships
between memory accesses. As Section 4.4.7, “Memory Access Ordering” on page 1:63 describes,
memory operations in the Itanium architecture come with one of four semantics: unordered,
acquire, release, or fence. Section 2.2 on page 2:384 describes how the memory ordering model
uses these semantics to indicate how memory operations can be ordered with respect to each other.

Section 2.1.1 defines the four memory operation semantics. Section 2.2, Section 2.3, and

Section 2.4 present brief outlines of load and store, semaphore, and memory fence instructions in
the Itanium architecture. Refer to Section 2, “Instruction Reference” on page 3:9 for more
information on the behavior and capabilities of these instructions.

Memory Ordering of Cacheable Memory References

The Itanium architecture has a relaxed memory ordering model which provides unordered memory
opcodes, explicitly ordered memory opcodes, and a fencing operation that software can use to
implement stronger ordering. Each memory operation establishes an ordering relationship with
other operations through one of four semantics:

* Unordered semantics imply that the instruction is made visible in any order with respect to
other orderable instructions.

* Acquire semantics imply that the instruction is made visible prior to all subsequent orderable
instructions.

* Release semantics imply that the instruction is made visible after all prior orderable
instructions.

» Fence semantics combine acquire and release semantics (i.e. the instruction is made visible
after all prior orderable instructions and before all subsequent orderable instructions).

Volume 2: MP Coherence and Synchronization 2:381

2.1.2

213

intel.

In the above definitions “prior” and “subsequent” refer to the program-specified order. An
“orderable instruction” is an instruction that the memory ordering model can use to establish
ordering relationshipsl. The term “visible” refers to all architecturally-visible (from the standpoint
of multi-processor coherency) effects of performing an instruction. Specifically,

+ Accesses to uncacheable or write-coalescing memory regions are visible when they reach the
processor bus.

* Loads from cacheable memory regions are visible when they hit a non-programmer-visible
structure such as a cache or store buffer.

+ Stores to cacheable memory regions are visible when they enter a snooped (in a
multi-processor coherency sense) structure.

Memory access instructions typically have an ordered and an unordered form (i.e. a form with
unordered semantics and a form with either acquire, release, or fence semantics). The Itanium
architecture does not provide all possible combinations of instructions and ordering semantics. For
example, the [tanium instruction set does not contain a store with fence semantics.

Section 4.4.7, “Memory Access Ordering” on page 1:63 and Section 4.4.7, “Sequentiality Attribute
and Ordering” on page 2:69 discuss ordering, orderable instructions, and visibility in greater depth.

Section 2.2 on page 2:384 describes how the ordering semantics affect the Itanium memory
ordering model.

Loads and Stores

In the Itanium architecture, a load instruction has either unordered or acquire semantics while a
store instruction has either unordered or release semantics. By using acquire loads (I d. acq) and
release stores (st . r el), the memory reference stream of an Itanium-based program can be made to
operate according to the IA-32 ordering model. The Itanium architecture uses this behavior to
provide IA-32 compatibility. That is, an Itanium acquire load is equivalent to an IA-32 load and an
Itanium release store is equivalent to an IA-32 store, from a memory ordering perspective.

Loads can be either speculative or non-speculative. The speculative forms (I d. s, | d. sa, and
| d. a) support control and data speculation.

Semaphores

The Itanium architecture provides a set of three semaphore instructions: exchange (xchg), compare
and exchange (cnpxchg), and fetch and add (f et chadd). Both cnpxchg and f et chadd may have
either acquire or release semantics depending on the specific opcode chosen. The xchg instruction
always has acquire semantics. These instructions read a value from memory, modify this value
using an instruction-specific operation, and then write the modified value back to memory. The
read-modify-write sequence is atomic by definition.

1. The ordering semantics of an instruction do not imply the orderability of the instruction. Specifically, unordered ordering semantics alone
do not make an instruction unorderable; there are orderable instructions with each of the four ordering semantics.

2:382

Volume 2: MP Coherence and Synchronization

2.1.31

2.1.3.2

Considerations for using Semaphores

The memory location on which a semaphore instruction operates on must obey two constraints.
First, the location must be cacheable (the f et chadd instruction is an exception to this rule; it may
also operate on exported uncacheable locations, UCE). Thus, with the exception of f et chadd to
UCE locations, the Itanium architecture does not support semaphores in uncacheable memory.
Second, the location must be naturally-aligned to the size of the semaphore access. If either of these
two constraints are not met, the processor generates a fault.

The exported uncacheable memory attribute, UCE, allows a processor based on the Itanium
architecture to export fetch and add operations to the platform. A processor that does not support
exported f et chadd will fault when executing a f et chadd to a UCE memory location. If the
processor supports exported f et chadd but the platform does not, the behavior is undefined when
executing a f et chadd to a UCE memory location.

Sharing locks between [A-32 and Itanium-based code does work with the following restrictions:

« Itanium-based code can only manipulate an IA-32 semaphore if the IA-32 semaphore is
aligned.

* Itanium-based code can only manipulate an IA-32 semaphore if the IA-32 semaphore is
allocated in write-back cacheable memory.

An Itanium-based operating system can emulate IA-32 uncacheable or misaligned semaphores by
using the technique described in the next section.

Behavior of Uncacheable and Misaligned Semaphores

A processor based on the Itanium architecture raises an Unsupported Data Reference fault if it
executes a semaphore that accesses a location with a memory attribute that the semaphore does not
support.

If the alignment requirement for Itanium-based semaphores is not met, a processor based on the
Itanium architecture raises an Unaligned Data Reference fault. This fault is taken regardless of the
setting of the user mask alignment checking bit, UM.ac.

The DCR.Ic bit controls how the processor behaves when executing an atomic [A-32 memory
reference under an external bus lock. When the DCR.Ic bit (see Section 3.3.4.1, “Default Control
Register (DCR — CR0)”) is 1 and an IA-32 atomic memory reference requires a non-cacheable or
misaligned read-modify-write operation, an IA-32_Intercept(Lock) fault is raised. Such memory
references require an external bus lock to execute correctly. To preserve LOCK pin functionality, an
Itanium-based operating system can virtualize the bus lock by implementing a shared cacheable
global LOCK variable.

To support existing IA-32 atomic read-modify-write operations that require the LOCK pin, an
Itanium-based operating system can use the DCR.Ic bit to intercept all external TIA-32
read-modify-write operations. Then, the IA-32_Intercept(Lock) handler can emulate these
operations by first acquiring a cacheable virtualized LOCK variable, then performing the required
memory operations non-atomically, and then releasing the virtualized LOCK variable. This
emulation allows the read-modify-write sequence to appear atomic to other processors that use the
semaphore.

Volume 2: MP Coherence and Synchronization 2:383

214

2.2

2.21

Memory Fences

The memory fence instruction (nf) is the only instruction in the Itanium instruction set with fence
semantics. This instruction serializes the set of memory accesses before the memory fence in
program order with respect to the set of memory accesses that follow the fence in program order.

Memory Ordering in the Intel® Itanium® Architecture

Understanding a system’s memory ordering model is key to writing either user- or system-level
multiprocessor software that uses shared memory to communicate between processes and also that
executes correctly on a shared-memory multiprocessor system. For a general introduction to
memory ordering models, see Adve and Gharachorloo [AG95].

Four factors determine how a processor or system based on the Itanium architecture orders a group
of memory operations with respect to each other:

* Data dependencies define the relationship between operations from the same processor that
have register or memory dependencies on the same address!. This relationship need only be
honored by the local processor (i.e. the processor that executes the operations).

» The memory ordering semantics define the relationship between memory operations from a
particular processor that reference different addresses. For cacheable references, this
relationship is honored by al/ observers in the coherence domain.

+ Aligned release stores and semaphore operations (both require and release forms) become
visible to all observers in the coherence domain in a single total order except each processor
may observe its own release stores (via loads or acquire loads) prior to their being observed

2
globally~.

* Non-programmer-visible state, such as store buffers, processor caches, or any
logically-equivalent structure, may satisfy read requests from loads or acquire loads on the
local processor before the data in the structure is made globally visible to other observers.

In the Itanium architecture, dependencies between operations by a processor have implications for
the ordering of those operations at that processor. The discussion in Section 2.2.1.6 on page 2:388
and Section 2.2.1.7 on page 2:389 explores this issue in greater depth.

The following sections examine the Itanium ordering model in detail. Section 2.2.1 presents several
memory ordering executions to illustrate important behaviors of the model. Section 2.2.2 discusses
how memory attributes and the ordering model interact. Finally, Section 2.2.3 describes how the
Itanium memory ordering model compares with other memory ordering models.

Memory Ordering Executions

Multiprocessor software that uses shared memory to communicate between processes often makes
assumptions about the order in which other agents in the system will observe memory accesses. As
Section 2.1.1 on page 2:381 describes, the Itanium architecture provides a rich set of ordering
semantics that allows software to express different ordering constraints on a memory operation,

1. Thatis, A precedes B in program order and A produces a value that B consumes. This relationship is transitive.
Consequently, each such operation appears to become visible to each observer in the coherence domain at the same time, with the exception
that a release store can become visible to the storing processor before others.

2:384

Volume 2: MP Coherence and Synchronization

2211

such as a load. Writing correct multiprocessor software requires that the programmer (or compiler)
select the ordering semantic appropriate to enforce the expected behavior.

For example,