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CHAPTER 1 
INTRODUCTION TO THE i486™ PROCESSOR 

The i486 ™ processor offers the highest performance for DOS, OS/2, Windows and 
UNIX System V/386 applications. It is 100% binary compatible with 386™ DX and SX 
microprocessors. One million transistors integrate cache memory, floating-point hard­
ware and memory management on-chip while retaining binary compatibility with previ­
ous members of the 86 architectural family. Frequently-used instructions execute in one 
cycle, resulting in RISC performance levels. An eight-Kbyte unified code and data cache 
combined with an 80/106 Mbyte/sec burst bus at 25/33 MHz ensure high system through­
put even with inexpensive DRAMs. 

New features enhance multiprocessing systems. New instructions speed manipulation of 
memory-based semaphores. On-chip hardware ensures cache consistency and provides 
hooks for multi-level caching. 

The built-in self-test extensively tests on-chip logic, cache memory and the on-chip pag­
ing translation cache. Debug features include breakpoint traps on code execution and 
data accesses. 

Features of the i486 processor include: 

• Full binary compatibility with 386 DX CPU, 386 SX CPU, 376™ embedded processor, 
80286, 8086, and 8088 processors 

• Execution unit designed to execute frequently-used instructions in one clock cycle 

• 32-bit integer processor for performing arithmetic and logical operations 

• Internal floating-point arithmetic unit for supporting the 32-, 64-, and 80-bit formats 
specified in IEEE standard 754 (object-code compatible with 38TM DX and 387 SX 
math coprocessors) 

• Internal 8K-byte cache memory, which provides fast access to recently-used instruc­
tions and data 

• Bus control signals for maintaining cache consistency in multiprocessor systems 

• Segmentation, a form of memory management for creating independent, protected 
address spaces 

• Paging, a form of memory management which provides access to data structures 
larger than the available memory space by keeping them partly in memory and partly 
on disk 

• Restartable instructions that allow a program to be restarted following an exception 
(necessary for supporting demand-paged virtual memory) 

• Pipelined instruction execution overlaps the interpretation of different instructions 

• Debugging registers for hardware support of instruction and data breakpoints 

The i486 processor is object-code compatible with three other 386 processors: 

• 386 DX Processor (32-bit data bus) - A cost-effective form for high-end personal 
computers and mid-range workstations. 
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• 386 SX Processor (16-bit data bus) - The 386 processor adapted for mid-range per­
sonal computers, which are sensitive to the higher system cost of a 32-bit bus. 

• 376 Embedded Processor (16-bit data bus) - A reduced form of the 386 processor 
optimized for embedded applications, such as process controllers. The 376 processor 
lacks the paging and 8086-compatibility features provided in the i486 processor. The 
376 processor is available in a surface-mount plastic package, which provides the 
lowest cost and smallest form factor for any implementation of the 386 processor. 

The operating mode of the i486 processor determines which instructions and architec­
tural features are accessible. The i486 processor has three modes for running programs: 

• Protected mode uses the native 32-bit instruction set of the processor. In this mode 
all instructions and architectural features are available. 

• Real-address mode (also called "real mode") emulates the programming environ­
ment of the 8086 processor, with a few extensions (such as the ability to break out of 
this mode). Reset initialization places the processor into real mode. 

• Virtual-8086 mode (also called "V86 mode") is another form of 8086 emulation 
mode. Unlike real-address mode, virtual-8086 mode is compatible with protection and 
memory-management. The processor can enter virtual-8086 mode from protected 
mode to run a program written for the 8086 processor, then leave virtual-8086 mode 
and re-enter protected mode to continue a program which uses the 32-bit instruction 
set. 

1.1 ORGANIZATION OF THIS MANUAL 

This book presents the architecture of the i486 processor in five parts: 

• Part I - Application Programming 

• Part II - System Programming 

• Part III - Numeric Processing 

• Part IV - Compatibility 

• Part V - Instruction Set 

• Appendices 

These divisions are determined by the architecture and by the ways programmers use 
this book. The first three parts are explanatory, showing the purpose of architectural 
features, developing terminology and concepts, and describing instructions as they relate 
to specific purposes or to specific architectural features. The remaining parts are refer­
ence material for programmers developing software for the i486 processor. 

The first four parts cover the operating modes and protection mechanism of the i486 
processor. The distinction between application programming and system programming is 
related to the protection mechanism of the i486 processor. One purpose of protection is 
to prevent applications from interfering with the operating system. For this reason, cer­
tain registers and instructions are inaccessible to application programs. The features 
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discussed in Part I and Part III are those which are accessible to applications; the fea­
tures in Part II are available only to programs running with special privileges, or pro­
grams running on systems where the protection mechanism is not used. 

The features available to application programs in protected mode and to all programs in 
virtual-8086 mode are the same. These features are described in Part I and Part III of 
this book. The additional features available to system programs in protected mode are 
described in Part II. Pait IV describes real-address mode and virtual-8086 mode, as well 
as how to run a mix of 16-bit and 32-bit programs. 

1.1.1 Part 1-Application Programming 

This part presents the features used by most application programmers. It does not in­
clude features used in numeric applications, which are discussed in Part III. 

Chapter 2 - Basic Programming Model: Introduces the models of memory organization. 
Defines the data types. Presents the register set used by applications. Introduces the 
stack. Explains string operations. Defines the parts of an instruction. Explains address 
calculations. Introduces interrupts and exceptions as they apply to application 
programming. 

Chapter 3 - Application Instruction Set: Surveys the instructions commonly used for 
application programming. Considers instructions in functionally related groups; for ex­
ample, string instructions are considered in one section, while control-transfer instruc­
tions are considered in another. Explains the concepts behind the instructions. Details of 
individual instructions are deferred until Part IV, the instruction-set reference. 

1.1.2 Part 11-System Programming 

This part presents the features used by operating systems, device drivers, debuggers, and 
other software which support application programs. Some additional information rele­
vant to systems programming is presented in Part III. 

Chapter 4 - System Architecture: Describes the features of the i486 processor used by 
system,programmers. Introduces the registers and data structures of the i486 processor 
which are not discussed in Part I or Part III. Introduces the system-oriented instructions 
in the context of the registers and data structures they support. References the chapters 
in which each register, data ~tructure, and instruction is discussed in more detail. 

Chapter 5 - Memory Management: Presents details of the data structures, registers, and 
in'structions which support segmentation. Explains how system designers can choose be­
tween an unsegmented ("flat") model of memory organization and a model with 
segmentation. 

Chapter 6 - Protection: Discusses protection as it applies to segments. Explains the im­
plementation of privilege rules, stack switching, pointer validation, user and supervisor 
modes. Protection aspects of multitasking are deferred until the following chapter. 
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Chapter 7 - Multitasking: Explains how the hardware of the i486 processor supports 
multitasking with context-switching operations and intertask protection. 

Chapter 8 - Input/Output: Describes the I/O features of the i486 processor, including 
I/O instructions, protection as it relates to I/O, and the I/O permission bit map. 

Chapter 9 - Exceptions and Interrupts: Explains the basic interrupt mechanisms of the 
i486 processor. Shows how interrupts' and exceptions relate to protection. Discusses all 
possible exceptions, listing causes and including information needed to handle and re­
cover from each exception. 

Chapter 10 - Initialization: Defines the condition of the processor after reset initializa­
tion. Explains how to set up registers, flags, and data structures. Shows how to test the 
on-chip cache and the translation lookaside buffer. Contains an example of an initializa-
tion program. . 

Chapter 11-Debugging: Tells how to use the debugging registers of the i486 processor. 

Chapter 12 - Caching: Explains the general concept of caching and the specific mecha­
nisms used by the internal cache on the i486 processor. 

Chapter 13 - Multiprocessing: Explains the instructions and flags which support multiple 
processors with shared memory. . 

1.1.3 Part 111- Numeric Processing 

This part explains the floating-point arithmetic features of the i486 processor. These 
features are an object-code compatible implementation of the features provided by the 
387 DX or SX math coprocessor used with the 386 DX or SX processor. 

Chapter 14 - Introduction to Numeric Applications: Gives an overview of the floating­
point unit and reviews the concepts of numerical computation. 

Chapter IS-Architecture of the Numeric Unit: Presents the floating-point registers and 
data types available to both applications and systems programmers. 

Chapter 16-Special Computational Situations: Discusses the special values that can be 
represented in the real formats of the i486 processor - denormal numbers, zeros, infini­
ties, NaNs (Not a Number)-as well as the numerical exceptions. This chapter should be 
read thoroughly by systems programmers, but can be skimmed by applications program­
mers. Many of these special situations may never arise in applications programs. 

Chapter 17 - Floating-Point Instructions: Surveys the instructions commonly used for 
numeric processing. Details of individual instructions are deferred until Part V, the 
instruction-set reference. 

1-4 



INTRODUCTION TO THE i486 ™ PROCESSOR 

Chapter IS-Numeric Applications: Describes the i486 processor's floating-point arith­
metic facilities. Gives short programming examples in both assembly language and high­
level languages. 

Chapter 19-5ystem-Level Considerations: Provides information of interest to systems 
software writers. 

Chapter 20-Numeric Programming Examples: Provides detailed examples of assembly­
language numeric programming with the i486 processor, including conditional branching, 
conversion between floating-point values and their ASCII representations, and use of 
trigonometric functions. 

1.1.4 Part IV - Compatibility 

This part explains the features of the architecture which support programs written for 
earlier Intel processors. The native mode of execution is an upward-compatible superset 
of the environment of the 80286 and 386 DX processors. All three execution modes have 
support for 16-bit programming: 16-bit operations can be performed in protected mode 
using the operand-size prefix, programs written for the 8086 processor or the real mode 
of the 80286 processor can run in real mode on the 386 DX processor, and a virtual 
machine monitor can be used to emulate real mode using virtual-8086 mode, even while 
multitasking with 32-bit programs. . 

Chapter 21- Executing 80286 and 386 DX Processor Programs: Explains the program­
ming differences between the 80286 and .i486 processors, and between the 386 DX and 
i486 processors. 

Chapter 22 - Real-Address Mode: Explains the real mode of the i486 processor. In this 
mode, the i486 processor appears as a fast real-mode 80286 or 386 DX processor or a 
fast 8086 processor enhanced with additional instructions. 

Chapter 23 - Virtual-8086 Mode: Describes how the i486 processor supports execution of 
one or more 8086, 8088, 80186 or 80188 programs in an i486 processor protected-mode 
environment. . 

Chapter 24-Mixing 16-Bit and 32-Bit Code: Explains how the i486 processor can mix 
16-bit and 32-bit modules within the same program or task. Any particular module can 
use both 16-bit and 32-bit operands and addresses. 

Chapter 25-Compatibility with 8087, 80287, and 387 DXMath Coprocessors: Com­
pares the floating-point arithmetic of the i486 processor with the arithmetic of the nu­
merics coprocessors used with earlier Intel processors. 
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1.1.5 Part V -Instruction Set 

Parts I, II, and III present the general features of the instruction set as they relate to 
specific aspects of the architecture. Part V presents the instructions in alphabetical or­
der, with the detail needed by assembly language programmers and programmers of 
debuggeis, compilers, operating systems, etc. Instruction descriptions inClude an algo­
rithmic description of operations, effect of flag settings, effect on flag settings, effect· of 
operand- and address-size attributes, and exceptions which may be generated. 

1.1.6 Appendice~ 

The appendices present tables of encodings and other details in a format designed for 
quick reference by programmers. 

1.2 RELATED LITERATURE 

The following books contain additional material related to Intel processors: 

Introduction to the 80386, Order Number 231252 
80386 Processor Hardware Reference Manual, Order Number 231732 
80386 Processor System Software Writer's Guide, Order Number 231499 
80386 High-Peifonnance 32-Bit CHMOS Microprocessor with Integrated Memory Manage­
ment, Order Number 231630 . 
376™ Embedded Processor Programmer's Reference Manual, Order Number 240314 
386™ DX Processor Programmer's Reference Manual, Order Number 230985 
386™ SX Processor Programmer's Reference Manual, Order Number 240331 
80387 Programmer's Reference Manual, Order Number 231917 
376™ High-Peifonnance 32-Bit Embedded Processor, Order Number 240182 
386™ SX Microprocessor, Order Number 240187 
Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843 

The i486™ Microprocessor Hardware Reference Manual is the companion of this book for 
use by hardware designers. It contains information which may be useful to programmers, 
especially system programmers. Order Number 240552 . . 

The i186™ Microprocessor Data Sheet contains the latest information regarding device 
parameters (voltage levels, bus cycle timing, priority of simultaneous exceptions and 
interrupts, etc.). Order Number 240440 

The i486™ Microprocessor Product Brief Book describes many related products commonly 
used with i486 CPU. Order Number 240459. 

1.3 NOTATIONAL CONVENTIONS· 

This manual uses special notation for data-structure formats, for symbolic representation 
of instructions, and for hexadecimal numbers. A review of this notation makes the man­
ual easier to read. 
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1.3.1 Bit and Byte Order 

In illustrations of data structures in memory, smaller addresses appear toward the bot­
tom of the figure; addresses increase toward the top. Bit positions are numbered from 
right to left. The numerical value of a set bit is equal to two raised to the power of the bit 
position. The i486 processor is a "little endian" machine; this means the bytes of a word 
are numbered starting from the least significant byte. Figure 1-1 illustrates these 
conventions. 

Numbers are usually expressed in decimal notation (base 10). When hexadecimal 
(base 16) numbers are used, they are indicated by an 'H' suffix. 

1.3.2 Undefined Bits and Software Compatibility 

In many register and memory layout descriptions, certain bits are marked as reserved. 
When bits are marked as undefined or reserved, it is essential for compatibility with 
future processors that software treat these bits as having a future, though unknown, 
effect. Software should follow these guidelines in dealing with reserved bits: 

• Do not depend on the states of any reserved bits when testing the values of registers 
which contain such bits. Mask out the reserved bits before testing. 

• Do not depend on the states of any reserved bits when storing to memory or to a 
register. 

• Do not depend on the ability to retain information written into any reserved bits . 

•. When loading a register, always load the reserved bits with the values indicated in the 
documentation, if any, or reload them with values previously stored from the same 
register. 

GREATEST 
ADDRESS 

31 

DATA STRUCTURE 

23 15 7 

UNDEFINED 

o ~ BIT OFFSET 

28 

24 

20 

16 

12 

8 

BYTE 3 BYTE 2 BYTE 1 BYTE 0 
4 SMALLEST 
o ADDRESS 

t 
BYTE OFFSET 

Figure 1-1. Bit and Byte Order 
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NOTE 

Depending upon the values of reselVed register bits will make software dependent upon 
the unspecified manner in which the i486 processor handles these bits. Depending 
upon reselVed values risks incompatibility with future processors. AVOID ANY SOFT­
·WARE DEPENDENCE UPON THE STATE OF RESERVED i486 PROCESSOR 
REGISTER BITS .. 

1.3.3 Instruction Operands 

When instructions are represented symbolically, a subset of the assembly language for 
the i486 processor is used. In this subset, an instruction has the following format: 

label: mnemonic argument!, argument2, argument3 

where: 

• A label is an identifier which is followed by a colon. 

• A mnemonic is a reserved name for a class of instruction. opcodes which have the 
same function. 

• The operands argumentl, argument2, and argument3 are optional. There may be from 
zero to three operands, depending on the opcode. When present, they take the form 
of either literals or identifiers for data items. Operand identifiers are either reserved 

, names of registers or are assumed to be assigned to data items declared in another 
part of the program (which may not be shown in the example). 

When two operands are present in an arithmetic or logical instruction, the right op­
erand is the source and the left operand is the destination. Some assembly languages 
put the source and destination in reverse order. 

For example: 

LOADREG: MOV EAX, SUBTOTAL 

In this example LOAD REG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. 

1.3.4 Hexadecimal Numbers 

Base 16 numbers are represented by a string of hexadecimal digits followed by the char­
acter H. A hexadecimal digit is a character from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, F). A leading zero is added if the number would otherwise begin with one of the 
digits A-F. For example, OFH is equivalent to the decimal number 15. 
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1.3.5 Segmented Addressing 

The i486 processor uses byte addressing. This means memory is organized and accessed 
as a sequence of bytes. Whether one or more bytes are being accessed, a byte number is 
used to address memory. The memory which can be addressed with this number is called 
an address space. 

The i486 processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. For ex­
ample, a program can keep its code (instructions) and stack in separate segments. Code 
addresses would always refer to the code space, and stack addresses would always refer 
to the stack space. An example of the notation used to show segmented addresses is 
shown below. 

CS:EIP 

This example refers to a byte within the code segment. The byte number is held in the 
EIP register. 

1.3.6 Exceptions 

An exception is an event which occurs when an instruction causes an error. For example, 
an attempt to divide by zero generates an exception. There are several different types of 
exceptions, and some of these types may provide error codes. An error code reports 
additional information about the error. Error codes are produced only for some excep­
tions. An example of the notation used to show an exception and error code is shown 
below. 

#PF(fault code) 

This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions which produce 
error codes may not be able to report an accurate code. In this case, the error code is 
zero, as shown below. 

#PF(O) 
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CHAPTER 2 
BASIC PROGRAMMING MODEL 

This chapter describes the application programming environment (except for the 
floating-point features) as seen by assembly-language programmers. The chapter intro­
duces the architectural features which directly affect the design and implementation of 
application programs. Floating-point applications are described separately in Part III. 

The basic programming model consists of these parts: 

• Memory orgaJ)ization 

• Data types 

• Registers 

• Instruction format 

• Operand selection 

• Interrupts and exceptions 

Note that input/output is not included as part of the basic programming model. System 
designers may choose to make I/O instructions available to applications or may choose to 
reserve these functions for the operating system. For this reason, the I/O features of the 
i486 ™ processor are discussed in Part II. 

This chapter contains a section for each feature of the architecture normally visible to 
applications. 

2.1 MEMORY ORGANIZATION 

The memory on the bus of an i486 processor is called physical memory. It is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical 
address, which ranges from zero to a maximum of 232 -1 (4 gigabytes). Memory manage­
ment is a hardware mechanism for making reliable and efficient use of memory. When 
memory management is used, programs do not directly address physical memory. Pro­
grams address a memory model, called virtual memory. 

Memory management consists of segmentation and paging. Segmentation is a mecha­
nism for providing multiple, independent address spaces. Paging is a mechanism to sup­
port a model of a large address space in RAM using a small amount of RAM and some 
disk storage. Either or both of these mechanisms may be used. An address issued by a 
program is a logical address. Segmentation hardware translates a logical address into an 
address for a continuous, unsegmented address space, called a linear address. Paging 
hardware translates a linear address into a physical address. 

Memory may appear as a single, addressable space like physical memory. Or, it may 
appear as one or more independent memory spaces, called segments. Segments can be 
assigned specifically for holding a program's code (instructions), data, or stack. In fact, a 
single program may have up to 16,383 segments of different sizes and kinds. Segments 
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can be used to increase the reliability of programs and systems. For example, a pro­
gram's stack can be put into a different.segment than its code to prevent the stack from 
growing into the code space and overwriting instructions with data. 

Whether or not multiple segments are used, logical addresses are translated into linear 
. addresses by treating the address as an offset into a segment. Each segment has a seg­
ment descriptor, which holds its base address and,sizelimit. If the offset does not exceed 
the limit, and no other condition exists which would prevent reading the segment, the 
offset and base address are added together to form the linear address. 

The linear address produced by segmentation is used directly as the physical address if 
bit 31 of the CRO register is clear (the CRO register is discussed in Chapter 4). This 
register bit controls whether paging is used or not used. If the bit is set, the paging 
hardware is used to translate the linear address into the physical address. 

The paging hardware gives another level of organization to memory. It breaks the linear 
address space into fixed blocks of 4K bytes, called pages. The logical address space is 
mapped into the linear address space, which is mapped into some number of pages. A 
page may be in memory or on disk. When a logical address is issued, it is translated into 
an address for a page in memory, or .an exception is issued. An exception gives the 
operating system a chance to read the page from disk and update the page mapping. The 
program which generated the exception then can be restarted without generating an 
exception. ' 

If multiple segments are used, they are part of the programming environment seen by 
application programmers. If paging is used, it is normally invisible to the application 
programmer. It only becomes visible when there is an interaction between the applica­
tion program and the paging algorithm used by the operating system. When all of the 
pages in memory are used, the operating system uses its paging algorithm to decide 
which memory pages should be sent to disk. All paging algorithms (except random algo­
rithms) have some kind of worst-case behavior which may be exercised by some kinds of 
application programs. 

The architecture of the i486 processor gives designers the freedom to choose a different 
memory model for each program, even when more than one program is running at the 
same time. The model of memory organization can range between the following 
extremes: 

• A "flat" address space where the code, stack, and data spaces are mapped to the 
same linear addresses. To the greatest extent possible, this eliminates segmentation 
by allowing any type of memory reference to access any type of data. 

• A segmented address space with separate segments for the code, data, and stack 
spaces. As many as 16,383 linear address spaces of up to 4 gigabytes each can be used. 

Both models' can provide memory protection. Models intermediate between these ex­
tremes also can be chosen. The reasons for choosing a particular memory model and the 
manner in which system programmers implement a model are discussed in Part 11-
System Programming. . 
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2.1.1 Unsegmented or "Flat" Model 

The simplest memory model is the flat model. Although there isn't a mode bit or control 
register which turns off the segmentation mechanism, the same effect can be achieved by 
mapping all segments to the same linear addresses. This will cause all memory opera­
tions to refer to the same memory space. 

In a flat model, segments may cover the entire 4 gigabyte range of physical addresses, or 
they may cover only those addresses which are mapped to physical memory. The advan­
tage of the smaller address space is it provides a minimum level of hardware protection 
against software bugs; an exception will occur if any logical address refers to an address 
for which no memory exists. 

2.1.2 Segmented Model 

In a segmented model of memory organization, the logical address space consists of as 
many as 16,383 segments of up to 4 gigabytes each; or a total as large as 246 bytes (64 
terabytes). The processor maps this 64 terabyte logical address space onto the physical 
address space (up to 4 gigabytes) by the address translation mechanism described in 
Chapter 5. Application programmers may ignore the details of this mapping. The advan­
tage of the segmented model is that offsets within each address space are separately 
checked and access to each segment can be individually controlled. 

A pointer into a segmented address space consists of two parts (see Figure 2-1). 

1. A segmentselector, which is a 16-bit field which identifies a segment. 

2. An offset, which is a 32-bit byte address within a segment. 

The processor uses the segment selector to find the linear address of the beginning of 
the segment, called the base address. Programs access memory using fixed offsets from 
this base address, so an object-code module may be loaded into memory and run without 
changing the addresses it uses (dynamic linking). The size of a segment is defined by the 
programmer, so a segtpentcan be exactly the size of the module it contains. 

2.2 DATA TYPES 

Bytes, words, and doublewords are the principal data types (see Figure 2-2). A byte is 
'eight bits. The bits are numbered 0 through 7, bit 0 being the ~east significant bit (LSB). 

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits. 
The bits of a word are numbered from 0 through 15, bit 0 again being the least signifi­
cant bit. The byte containing bit 0 of the word is called the low byte; the byte containing 
bit 15 is called the high byte. On the i486 processor, the low byte is stored in the byte with 
the lower address. The address of the low byte also is the address of the word. The 
'address of the high byte is used only when the' upper half of the word is being accessed 
separately from the lower half. 
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Figure ~-1. Segmented Addressing 

A doubleword is four bytes occupying any four consecutive addresses. A doubleword 
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again 
being the least significant bit. The word containing bit 0 of the doubleword is called the 
low word; the word containing bit 31 is called the high word. The low word is stored in 
the two bytes with the lower addresses. The address of the lowest byte is the address of 
the doubleword. The higher addresses are used only when the upper word is being 
accessed separately from the lower word, or. when individual bytes are being accessed. 
Figure 2-3 illustrates the arrangement of bytes within words and doublewords. . 

Note that words do not need to be aligned at even-numbered addresses' and double­
words. do not need to be aligned at addresses evenly divisible by four. This allows maxi­
mum flexibility in data structures (e.g., records containing mixed byte, word, and 
doubleword items) and efficiency in mem,ory utilization. Because the i486 processor has 
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Figure 2-3. Bytes, Words, and Doublewords in Memory 
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a 32-bit data bus, communication between processor and memory takes place as double­
word transfers aligned to addresses evenly divisible by four; the processor converts dou­
bleword transfers aligned to other addresses into multiple transfers. These unaligned 
operations reduce speed by requiring extra bus cycles. For maximum speed, data struc­
tures (especially stacks) should be designed so, whenever possible, word operands are 
aligned to even addresses and doubleword operands are aligned to addresses evenly 
divisible by four. . 

Although bytes, words, and doublewords are the fundamental types of operands, the 
processor also supports additional interpretations of these operands. Specialized instruc­
tions recognize the following data types (shown in Figure 2-4): 

• Integer: A signed binary number held in a 32-bit doubleword, 16-bit word, or 8-bit 
byte. All operations assume a two's complement representation .. The sign bit is lo­
cated in bit 7 in a byte, bit 15 in a word, and bit 31 in a doubleword. The sign bit is set 
for negative integers, clear for positive integers and zero. The value of an 8-bit integer 
is from -128 to + 127; a 16-bit integer from - 32,768 to + 32,767; a 32-bit integer 
from - 231 to + 231 -1... . .. 

• Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word, 
or 8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from 0 to 
65,535; a 32-bit ordinal from 0 to 232 - 1. . . . 

• Near Pointer: A 32-bitlogical address. A near pointer is an offset within a segment. 
Near pointers are used for all pointers in a flat memory model, or for references 
within a segment in a segmented model. 

• Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a 
32-bit offset. Far- pointers are used in a segmehted memory model to access other 
segments. 

• String: A conti§uous sequence of bytes, words, or doublewords. A string may contain 
from zero to 2- 2 - 1 bytes (4 gigabytes). 

• Bit field: A contiguous sequence of bits. A bit field may begin at any bit position of 
any byte and may contain up to 32 bits. 

• Bit string: A contiguous sequence of bits. A bit string may begin at any bit position of 
any byte and may contain up to 232 

- 1 bits. 

• BCD: A representation of a binary-coded decimal (BCD) digit in the range 0 through 
9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit is 
stored in each byte. The magnitude of the number is the binary value of the low-order 
half-byte; values 0 to 9 are valid and are interpreted as the value of a digit. The 
high-order half-byte must be zero during multiplication and division; it may contain 
any value during addition and subtraction. 

• Packed BCD: A representation of binary-coded decimal digits, each in the range 0 to 
9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to 7 
is more significant than the digit in bits o.to 3. Values 0 to 9 are valid for a digit. 

• Floating-Point' Types:- For a discussion of the data types used by floating-point instruc­
tions, see Chapter 15. 
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BYTE INTEGER 
7·BIT MAGNITUDE 
'-BIT SIGN 

WORD INTEGER 
15·BIT MAGNITUDE 
1·BIT SIGN 

DOUBLEWORD INTEGER 
31·BIT MAGNITUDE 
1·BIT SIGN 

BYTE ORDINAL 
8·BIT MAGNITUDE 

WORD ORDINAL 
16·BIT MAGNITUDE 

DOUBLEWORD ORDINAL 
32·BIT MAGNITUDE 

BCD INTEGER 
4·BIT DIGIT PER BYTE 
4·BIT DIGIT PER BYTE 

PACKED BCD INTEGER 
4·BIT PER HALF·BYTE 
4·BIT PER HALF· BYTE 

NEAR POINT 
32·BIT OFFSET 
4·BIT DIGIT PER BYTE 

FAR POINTER 
32·BIT OFFSET 
16·BIT SELECTOR 

BIT FIELD 
UP TO 32 BITS 

BIT STRING 
UP TO 4 GIGABITS 

BYTE STRING 
UP TO 4 GIGABYTES 
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2.3 REGISTERS 

The i486 processor contains sixteen registers which may be used by an application pro­
grammer. As Figure 2-5 shows, these registers may be grouped as: 

1. General registers. These eight 32-bit registers are free for use by the programmer. . 

2. Segment registers. These registers hold segment selectors associated with different 
forms of memory access. For example, there are separate segment registers for ac­
cess to code and stack space. These six registers determine, at any given time, which 
segments of memory are currently available . 

. 3 .. Status and control registers. These registers report and allow modification of the 
state of the i486 processor. 

2.3.1 General Registers 

The general registers are the 32-:bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, 
and ED!. These registers are used to hold operands for logical and arithmetic opera~ 
tions. They also may be used to hold operands for address calculations (except the ESP 
register cannot be used as an index operand). The names of these registers are derived 
from the names of the general registers on the 8086 processor, the AX, BX, CX, DX, 
,BP, SP, SI, and DI registers. As Table 2-1 shows, the low 16 bits of the general registers 
can be referenced using these names. 

Each byte of the 16-bit registers AX, BX, CX, and DX also have other names. The byte 
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low 
bytes). 

Table 2-1. Register Names 

8-Blt 16·Blt 32·Blt 

AL AX EAX 
AH 
BL BX EBX 
BH 
CL CX ECX 
CH 
OL OX EOX 
OH 

SI ESI 
01 EOI 
BP EBP 
SP ESP 
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Figure 2-5. Application Register Set 
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All of the general-purpose registers are available for address calculations and for the 
results of most arithmetic and logical operations; however, a few instructions assign 
specific registers to hold operands. For example, string instructions use the contents of 
the ECX, ESI, and EDI registers as operands. By assigning specific registers for these 
functions, the instruction set can be encoded more compactly. The instructions using 
specific registers include: double-precision multiply and divide, I/O, strings, translate; 
loop, variable shift and rotate, and stack operations. 

2.3.2 Segment Registers 

Segmentation gives system designers the flexibility to choose among various models of 
memory organization. Implementation of memory models is the subject of Part 11-
System Programming. 

The segment registers contain 16-bit segment selectors, which index into tables in mem­
ory. The tables hold the base address for each segment, as well as other information 
regarding memory access. An unsegmented model is created by mapping each segment 
to the same place in physical memory, as shown in Figure 2-6. 

At any instant, up to six segments of memory are immediately available. The segment 
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments. 
Each register is associated with a particular kind of memory access (code, data, or stack). 
Each register specifies a segment, from among the segments used by the program, which 
is used for its kind of access (see Figure 2-7). Other segments can be used by loading 
. their segment selectors into the segment registers. 

DIFFERENT LOGICAL SEGMENTS 

GS .... ----..... 

FS 

ES 

OS 

CS 

SS ..... ----.... 

ONE PHYSICAL ADDRESS SPACE 

.. 

Figure 2·6. An Unsegmented Memory 
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- DATA 
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DATA 
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DATA 
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Figure 2-7. A Segmented Memory 
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The segment containing the instructions being executed is called the code segment. Its 
segment selector is held in the CS register. The i486 processor fetches instructions from 
the code segment, using the contents of the EIP register as an offset into the segment. 
The CS register is loaded as the result of interrupts, exceptions, and instructions which 
transfer control between segments (e.g., the CALL, IRET and JMP instructions). 

Before a procedure is called, a region of memory needs to be allocated for a stack. The 
'stack is used to hold the return address, parameters passed by the calling routine, and 
temporary variables allocated by the procedure. All stack operations use the SS register 
to find the stack segment. Unlike the CS register, the SS register can be loaded explic­
itly, which permits application programs to set up stacks. 

The DS, ES, FS, and GS registers allow as many as four data' segments to be available 
simultaneously. Four data segments give efficient and secure access to different types of 
data structures. For example, separate data segments can be created for the data struc­
tures of the current module, data exported from a higher-level module, a dynamically­
created data structure, and data shared with another program. If a bug causes a program 
to run wild, the segmentation mechanism can limit the damage to only those segments 
allocated to the program. An operand within a data segment is addressed by specifying 
its offset either in an instruction or a general register. 

Depending on the structure of data (i.e., the way data is partitioned into segments), a 
program may require access to more than four data segments. To access additional 
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segments, the DS, ES, FS, and OS registers can be loaded by an application program 
during execution. The only requirement is to load the appropriate segment register be­
fore accessing data in its segment. 

A base address is kept for each segment. To address data within a segment, a 32-bit 
offset is added to the segment's base address. Once a segment is selected (by loading the 
segment selector into a segment register), an instruction only needs to specify the offset. 
Simple rules define which segment register is used to form an address when only an 
offset is specified. 

2.3.3 Stack Implementation 

Stack operations are supported by three registers: 

1. Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a 
system is limited only by the maximum number of segments. A stack ·may be up to 4 
gigabytes long, the maximum size of a segment on the i486 processor. One stack is 
available at a time -the stack whose segment selector is held in the SS register. This 
is the current stack, often referred to simply as "the" stack. The SS register is used 
automatically by the processor for all stack operations. 

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack 
(TOS) in the current stack segment. It is used by PUSH and POP operations, sub-:­
routine calls and returns, exceptions, and interrupts. When an item is pushed onto 
the stack (see Figure 2-8), the processor decrements the ESP register, then writes 

STACK SEGMENT 

31 

TOP OF STACK 

OJ 
PUSHES PUT THE 
TOP OF STACK AT 
LOWER ADDRESSES 

o 
BOTTOM OF STACK 
(INITIAL ESP VALUE) 

J ESP 
I 

rn. POPS PUT THE 
TOP OF STACK AT 
HIGHER ADDRESS 

Figure 2-8. Stacks 
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the item at the new TOS. When an item is popped off the stack, the processor 
copies it from the TOS, then increments the ESP register. In other words, the stack 
grows down in memory toward lesser addresses. 

3. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to 
access data structures passed on the stack. For example, on entering a subroutine 
the stack contains the return address and some number of data structures passed to 
the subroutine. The subroutine adds to the stack whenever it needs to create space 
for temporary local variables. As a result, the stack pointer moves around as tempo­
rary variables are pushed and popped. If the stack pointer is copied into the base 
pointer before anything is pushed on the stack, the base pointer can be used to 
reference data structures with fixed offsets. If this is not done, the offset to access a 
particular data structure would change whenever a temporary variable is allocated 
or de-allocated. 

When the EBP register is used to address memory, ,the current stack segment is 
selected (i.e., the SS segment). Because the stack segment does not have to be 
specified, instruction encoding is more compact. The EBP register also can be used 
to address other segments. 

Instructions, such as the ENTER and LEAVE instructions, are provided which au­
tomatically set up the EBP register for convenient access to variables. 

2.3.4 Flags Register 

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register 
named EFLAGS. Figure 2-9 defines the bits within this register. The flags control cer­
tain operations and indicate the status of the i486 processor. 

The flags may be considered in three groups: status flags, control flags, and system flags. 
Discussion of the system flags occurs in Part II. 

2.3.4.1 STATUS FLAGS 

The status flags of the EFLAGS register report the kind of result produced from the 
execution of arithmetic instructions. The MOV instruction does not affect these flags. 

'Conditional j~mps and subroutine calls allow a program to sense the state of the status 
flags and respond to them. For example, when the counter controlling a loop is decre­
mented to zero, the state of the ZF flag changes, and this change can be used to sup­
press the conditional jump to the start of the loop. 

The status flags are shown in Table 2-2. 

2.3.4.2 CONTROL FLAG 

The control flag DF of the EFLAGS register controls string instructions. 

DF (Direction Flag, bit 10) 
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Figure 2-9. EFLAGS Register 

Table 2-2. Status Flags 

Purpose Condition Reported 

240486i10 

overflow Result exceeds positive or negative limit of number range 
sign Result is negative (less than zero) 
zero Result is zero 
auxiliary carry Carry out of bit position 3 (used for BCD) 
parity Low byte of result has even parity (even number of set bits) 
carry flag Carry out of most significant bit of result 

Setting the DF flag causes string instructions to auto-decrement, that is, to process 
strings from high addresses to low addresses. Clearing the DF flag causes string instruc­
tions to auto-increment, or to process strings from low addresses to high addresses. 

2.3.4.3 INSTRUCTION POINTER 

The instruction pointer (EIP) register contains the offset into the current code segment 
for the next instruction to execute. The instruction pointer is not directly available to the 
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programmer; it is controlled implicitly by control-transfer instructions Gumps, returns, 
etc.), interrupts, and exceptions. 

The EIP register is advanced from one instruction boundary to the next. Because of 
instruction prefetching, it is only an approximate indication of the bus activity which 
loads instructions into the processor. 

The i486 processor does not fetch single instructions. The processor prefetches aligned 
128-bit blocks of instruction code in advance of instruction execution. (An aligned 
128-bit block begins at an address which is clear in its low four bits.) These blocks are 
fetched without regard to the boundaries between instructions. By the time an instruc­
tion starts to execute, it already has been loaded into the processor and decoded. This is 
a performance feature, because it allows instruction execution to be overlapped with 
instruction prefetch and decode. 

When a jump or call is executed, the processor prefetches the entire aligned block con­
taining the destination address. Instructions which have been prefetched or decoded are 
discarded. If a prefetch would generate an exception, such as a prefetch beyond the end 
of the code segment, the exception is not reported until the execution of an instruction 
containing at least one exception-generating byte. If the instruction is discarded, no 
exception is generated. 

In real mode prefetching may cause the processor to access addresses not anticipated by 
programmers. In protected mode exceptions are correctly reported when these addresses 
are executed. There may not be hardware mechanisms which account for real mode 
behavior of the processor. For example, if a system does not return the RDY # signal 
(the signal which terminates a bus cycle) for bus cycles to unimplemented addresses, 
prefetching must be prevented from referencing these addresses. If a system implements 
parity checking, prefetching must be prevented from accessing addresses beyond the end 
of parity-protected memory. (Alternatively, RDY # can be returned even for bus cycles 
to unimplemented addresses, and parity errors can be ignored on prefetches beyond the 
end of parity-protected memory.) 

Prefetching can be kept from referencing a particular address by placing enough dis­
tance between the address and the last executable byte. For example, to keep prefetch­
ing away from addresses in the block from lOOOOH to 1000FH, the last executable byte 
should be no closer than OFFEEH. This places one free byte followed by one free, 
aligned, 128-bit block between the last byte of the last instruction and the address which 
must not be referenced. The prefetching behavior of the i486 processor is 
implementation-dependent; future Intel® products may have different prefetching 
behavior. 

2.4 INSTRUCTION FORMAT 

The information encoded in an instruction includes a specification of the operation to be 
performed, the type of the operands to be manipulated, and the location of these oper­
ands. If an operand is located in memory, the instruction also must select, explicitly or 
implicitly, the segment which contains the operand. 
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An instruction may have various parts and formats. The exact format of instructions is 
shown in Appendix B; the parts of an instruction are described below. Of these parts, 
only the opcode is always present. The other parts mayor may not be present, depending 
on the operation involved and the location and type of the operands. The parts of an 
instruction, in order of occurrence, are listed below: 

• Prefixes: one or more bytes preceding an instruction which modify the operation of 
the instruction. The following prefixes can be used by application programs: 

1. Segment override - explicitly specifies which segment register an instruction 
should use, instead of the default segment register. 

2. Address size - switches between 16- and 32-bit addressing. Either size can be the 
default; this prefix selects the non-default size. 

3. Operand size - switches between 16- and 32-bit data size. Either size can be the 
default; this prefix selects the non-default size. 

4. Repeat - used with a string instruction to cause the instruction to be repeated 
for each element of the string. 

• Opcode: specifies the operation performed by the instruction. Some operations have 
several different opcodes, each specifying a different form of the operation. 

• Register specifier: an instruction may specify one or two register operands. Register 
specifiers occur either in the same byte as the opcode or in the same byte as the 
addressing-mode specifier. 

• Addressing-mode specifier: when present, specifies whether an operand is a register 
or memory location; if in memory, specifies whether a displacement, a base register, 
an index register, and scaling are to be used. 

• SIB (scale, index, base) byte: wheri the addressing-mode specifier indicates an index 
register will be used to calculate the address of an operand, a SIB byte is included in 
the instruction to encode the base register, the index register, and a scaling factor. 

• Displacement: when the addressing-mode specifier indicates a displacement will be 
used to compute the address of an operand, the displacement is encoded in the 
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is 
used in the common case when the displacement is sufficiently small. The processor 
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign. 

• Immediate operand: when present, directly provides the value of an operand. Imme­
diate operands may be bytes, words, or doublewords. In cases where an 8:-bit imme­
diate operand is used with a 16- or 32-bit operand, the processor extends the eight-bit 
operand to an integer of the same sign and magnitude in the larger size. In the same 
way, a 16-bit operand is extended to 32-bits. 
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2.5 OPERAND SELECTION 

An instruction acts on zero or more operands. An example of a zero-operand instruction 
is the NOP instruction (no operation). An operand can be held in any of these places: 

• In the instruction itself (an immediate operand). 

• In a register (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP, 
or EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the 
case of 8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers; 
or the EFLAGS register for flag operations). Use of 16-bit register operands requires 
use of the 16-bit operand size prefix (a byte with the value 67H preceding the 
instruction). 

• In memory. 

• At an I/O port. 

Access to operands is very fast. Register and immediate operands are available on­
chip - the latter because they are. prefetched as: part of interpreting the instruction. 
Memory operands residing in theon-chip cache can be accessed just as fast. 

Of the instructions which have operands, some specify operands implicitly; others specify 
operands explicitly; still others use a combination of both. For example: 

Implicit operand: AAM 

By definition, AAM (ASCII adjust for multiplication) operates on the contents of 
the AX register. 

Explicit operand: XCHG EAX 1 EBX 

The operands to be exchanged are encoded in the instruction with the opcode. 

Implicit and explicit operands: PUSH COUNTER 

The memory variable COUNTER (the explicit operand)· is copied to the top of the 
stack (the implicit operand). 

Note that most instructions have implicit operands. All arithmetic instructions, for exam­
ple, update the EFLAGS register. 

An instruction can explicitly reference one or two operands. Two-operand instructions, 
such as MOV, ADD, and XOR, generally overwrite one of the two participating oper­
ands with the result. This is the difference between the source operand (the one unaf­
fected by the operation) and the destination operand (the one overwritten by the result). 
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For most instructions, one of the two explicitly specified operands - either the. source or 
the destination - can be either in a register or in memory. The other operand must be in 
a register or it must be an immediate source operand. This puts the explicit two-operand 
instructions into the following groups: . 

• Register to register 

• Register to memory 

• Memory to register 

• Immediate to register 
c/O 

• Immediate to memory 

Certain string instructions and stack manipulation instructions, however, transfer data 
from memory to memory. Both operands of ' some string instructions are in memory and 
are specified implicitly. Push and pop stack operations allow transfer between memory 
operands and the memory-based stack. 

Several three-operand instructions are provided, such as' the IMUL, SHRD, and SHLD 
instructions. Two of the three operands are specified explicitly, as for the two-operand 
instructions, while a third is taken from the ECX register or supplied. as an immediate. 
Other three-operand instructions, such as the string instructions when used with a repeat 
prefix, take all their operands from registers. 

2.5.1 Immediate Operands 

Certain instructions use data from the instruction itself as one (and sometimes two) of 
the operands. Such an operand is called an immediate operand. It may be a byte, word, 
or doubleword. For example: 

SHR PATTERN, 2 

One byte of the instruction holds the value 2, the number of bits by which to shift the 
variable PATTERN. 

TEST PATTERN, 0FFFF00FFH 

A doubleword of the instruction holds the mask which is used to test the variable 
PATTERN. 

IMUL ex, MEMWORD, 3 

A word in memory is multiplied by an immediate 3 and stored into the CX register. 

All arithmetic instructions (except divide) allow the source operand to be an immediate 
value. When the destination is the EAX or AL register, the instruction encoding is one 
byte shorter than with the other general registers. 
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2.5.2 Register Operands 

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX, 
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, 
DI,SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, 
or DL). 

The i486 processor has instructions for referencing the segment registers (CS, DS, ES, 
SS, FS, and GS). These instructions are used by application programs only if system 
designers have chosen a segmented memory model. 

The i486 processor also has instn;lctions for changing the state of individual flags in the 
EFLAGS register. Instructions have been provided for setting and clearing flags which 
often need to be accessed. The other flags, which are not accessed so often, can be 
changed by pushing the contents of the EFLAGS register on the stack, making changes 
to it while it's on the stack, and popping it back into the register. 

2.5.3 Memory Operands 

Instructions with explicit operands in memory must reference the segment containing 
the operand and the offset from the beginning of the segment to the operand. Segments 
are specified using a segment-override prefix, which is a byte placed at the beginning of 
an instruction. If no segment is specified, simple rules assign the segment by default. The 
offset is specified in one of the following ways: 

1. Most instructions which access memory contain a byte for specifying the addressing 
method of the operand. The byte, called the modR/M byte, comes after the opcode 
and specifies whether the operand is in a register or in memory. If the operand is in 
memory, the address is calculated from a segment register and any of the following 
values: a base register, an index register, a scaling factor, and a displacement. When 
an index register is used, the modR/M byte also is followed by another byte to 
specify the index register and scaling factor. This form of addressing is the most 
flexible. 

2. A few instructions use implied address modes: 

A MOV instruction with the AL or EAX register as either source or destination can 
address memory with a doubleword encoded in the instruction. This special form of 
the MOV instruction allows no base register, index register, or scaling factor to be 
used. This form is one byte shorter than the general-purpose form. 

String operations address memory in the DS segment using the ESI register, (the 
MOVS, CMPS, OUTS, LODS, and SCAS instructions) or using the ES segment and 
EDI register (the MOVS, CMPS, INS, and STOS instructions). 

Stack operations address memory in the SS segment using the ESP register (the 
PUSH, POP, PUSHA, PUSHAD, POPA, POPAD, PUSH~ PUSHFD,POP~ 
POPFD, CALL, RET, IRET, and IRETD instructions, exceptions, and interrupts). 
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2.5.3.1 SEGMENT SELECTION 

Explicit specification of a segment is optional. If a segment is not specified using a 
segment-override prefix, the processor automatically chooses a segment according to the 
rules of Table 2-3. (If a flat model of memory organization is used, the rules for selecting 
segments are not apparent to application programs.) 

Different kinds of memory ,access have different default segments. Data operands usu­
ally use the main data segment (the DS segment). However, the ESP and EBP registers 
are used for addressing the stack, so when either register is used, the stack segment (the 
SS segment) is selected. 

Segment-override prefixes are provided for each of the segment registers. Only the fol­
lowing special cases have a default segment selection which is not affected by a segment­
override prefix: 

• Destination strings in string instructions use the ES segment 

• Destination of a push or source of a pop uses the SS segment 

• Instruction fetches use the CS segment 

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION 

The modR/M byte provides the most flexible form of addressing. Instructions which have 
a modR/M byte after the opcode are the most common in the instruction set. For mem:­
ory operands specified by a modR/M byte, the offset within the selected segment is the 
sum of three components: 

• A displacement 

• A base register 

• An index register (the index register may be multiplied by a factor of 2, 4, or 8) 

Table 2-3. Default Segment Selection Rules 

Type of Reference 
Segment Used 

Default Selection Rule 
Register Used 

Instructions Code Segment Automatic with instruction fetch. 
CS register 

Stack Stack Segment All stack pushes and pops. Any mem-
SS register ory reference which uses ESP or ESP 

as a base register. 

Local Data Data Segment All data references except when rela-
DS register' tive to stack or string destination. 

Destination Strings E-Space Segment Destination of string instructions. 
ES register 
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The offset which results from adding these components is called an effective address. 
Each of these components may have either a positive or negative value. Figure 2-10 
illustrates the full set of possibilities for modR/M addressing. 

The displacement component, because it is encoded in the instruction, is useful for 
relative addressing by fixed amounts, such as: 

• Location of simple scalar operands. 

• Beginning of a statically allocated array. 

• Offset to a field within a record. 

The base and index components have similar functions. Both use the same set of general 
registers. Both can be used for addressing which changes during program execution, 
such as: 

• Location of procedure parameters and local variables on the stack. 

• The beginning of one record among several occurrences of the same record type or in 
an array of records. 

• The beginning of one dimension of multiple' dimension array. 

• The beginning of a dynamically allocated array. 

The uses of general registers as base or index components differ in the following 
respects: 

• The ESP register cannot be used as an index register. 

• When the ESP or EBP register is used as the base, the SS segment is the default 
selection. In all other cases, the DS segment is the default selection. 

The scaling factor permits efficient indexing into an array when the array elements are 2, 
4, or 8 bytes.' The scaling of the index register is done in hardware at the time the 
address is evaluated. This eliminates an extra shift or multiply instruction. 

SEGMENT + BASE + (INDEX * SCALE) + DISPLACEMENT 

{

CS} ~~~X} {~~~} {1} { ~ SS ED~ EDX 2 NO DISPLACEMENT 
~~ + EBX + :.BX * + 8.BIT DISPLACEMENT 
FS ~~~ EBP 4 32·BIT DISPLACEMENT 
GS ESI ESI 8 

EDI EDI 

. 240486i11 

Figure 2-10. Effective Address Computation 
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The base, index, and displacement components may be used in any combination; any of 
these components may be null. A scale factor can be used only when an index also is 
used. Each possible combination is useful for data structures commonly used by pro'­
grammers in high-level languages and assembly language. Suggested uses for some com­
binations of address components are described below. 

DISPLACEMENT 

The displacement alone indicates the offset of the operand. This form of addressing is 
used to access a statically allocated scalar operand. A byte, word, or doubleword dis­
placement can be used. 

BASE 

The offset to the operand is specified indirectly in one of the general registers, as for 
"based" variables. 

BASE + DISPLACEMENT 

A register and a displacement can ?e used together for two distinct purposes: 

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displace­
ment component encodes the offset of the beginning of the array. The register holds 
the results of a calculation to determine the offset to a specific element within the 
array. 

2. Access a field of a record. The base register holds the address of the beginning of 
the record, while the displacement is an offset to the field. . , 

An important special case of· this combination is access to parameters in a procedure 
activation record. A procedure activation record is the stack frame created when a sub­
routine is entered. In this case, the EBP register is the best choice for the base registef, 
because it automatically selects the stack segment. This is a compact encoding for this 
common function. 

(INDEX * SCALE) + DISPLACEMENT 

This combination is an efficient way to index into a static array when the element size is 
2, 4, or 8 bytes. The displacement addresses the beginning of the array, the index register 
holds the subscript of the desired array element, and the processor automatically con­
verts the subscript into an index by applying the scaling factor. 

BASE + INDEX + DISPLACEMENT 

Two registers used together support either a two-dimensional array (the displacement 
holds the address of the beginning of the array) or one of several instances of an array of 
records (the displacement is an offset to a field within the record). 
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BASE + (INDEX * SCALE) + DISPLACEMENT 

This combination provides efficient indexing of a two-dimensional array when the ele­
ments of the array are 2, 4, or 8 bytes in size. 

2.6 INTERRUPTS AND EXCEPTIONS 

The i486 processor has two mechanisms for interrupting program execution: 

1. Exceptions are synchronous events which are responses of the processor to certain 
conditions detected during the execution of an instruction. 

2. Interrupts are asynchronous events typically triggered by external devices needing 
attention. 

Interrupts and exceptions are alike in that both cause the processor to temporarily sus­
pend the program being run in order to run a program of higher priority. The major 
distinction between these two kinds of interrupts is their origin. An exception is always 
reproducible by re-executing the program which caused the exception, while an interrupt 

. can have a complex, timing-dependent relationship with programs. 

Application programmers normally are not concerned with handling exceptions or inter­
rupts. The operating system, monitor, or device driver handles them. More information 
on interrupts for system programmers may be found in Chapter 9. Certain kinds of 
exceptions, however, are relevant to application programming, and many operating sys­
tems give application programs the opportunity to service these exceptions. However, 
the operating system defines the interface between the application program and the 
exception mechanism of the i486 processor. Table 2-4 lists the interrupts and exceptions. 

• A divide-error exception results when the DIY or IDlY instruction is executed with a 
zero denominator or when the quotient is too large for the destination operand. (See 
Chapter 3 for more information on the DIY and IDIV instructions.) 

• A debug exception may be sent back to an application program if it results from the 
TF (trap) flag. 

• A breakpoint exception results when an INT3 instruction is executed. This instruction 
is used by some debuggers to stop program execution at specific points. 

• An overflow.exception results when the INTO instruction is executed and the OF 
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction. 

• A bounds-check exception results when the BOUND instruction is executed with an 
array index which falls outside the bounds of the array. See Chapter 3 for a discussion 
of the BOUND instruction. 

• The device-not-available exception occurs whenever the processor encounters an es­
cape instruction and either the TS (task switched) or the EM (emulate coprocessor) 
bit of the CRO control register is set. 
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Table 2-4. Exceptions and Interrupts 

Vector 
Description 

Number 

0 Divide Error 

1 Debugger Call 

2 NMI Interrupt 

3 Breakpoint 

4 INTO-detected Overflow 

5 BOUND Range Exceede'd 

6 Invalid Opcode 

7 Device Not Available 

8 Double Fault 

9 (Intel® reserved. Do not use. 
Not used by i486™ CPU.) 

10 Invalid Task State Segment 

11 Segment Not Present 

12 Stack Exception 

13 General Protection 

'14 Page Fault 

15 (Intel reserved. Do not use.) 

16 Floating-Point Error 

17 Alignment Check 

18-31 (Intel reserved. Do not use.) 

32-255 Maskable Interrupts 

• An alignment-check exception is generated for unaligned memory operations in user 
mode (privilege level 3), provided both AM and AC are set. Memory operations at 
supervisor mode (privilege levels 0, 1, and 2), or memory operations which default to 
supervisor mode, do n'ot generate this exception. ' 

The INT instruction generates an interrupt whenever it is executed; the processor treats 
this interrupt as an exception. Its effects (and the effects of all other exceptions) are 
determined by exceptiori handler routines in the application program or the operating 
system. The INT instruction itself is discussed in Chapter 3. See Chapter 9 for a more 
complete description of exceptions. 

Exceptions caused by segmentation and paging are handled differently than interrupts. 
Normally, the contents of the program cou~ter (EIP register) are saved on the stack 
when an exception or interrupt is generated. But exceptions resulting from segmentation 
and paging restore the contents of some processor registers to their state before interpre­
tation of the instruction began. The saved contents of the program counter address the 
instruction which caused the exception, rather than the instruction after it. This lets the 
operating system fix the exception-generating condition and restart the program which 
generated the exception. This mechanism is completely transparent to the program. 
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CHAPTER.3 
APPLICATION PROGRAMMING 

This chapter is an overview of the integer instructions which programmers can use to 
write application software for the i486™ processor. The instructions are grouped by 
categories of related functions. (Additional application instructions for operating on 
floating-point operands are described in Part III.) 

The instructions not discussed in this chapter or Part III normally are used only by 
operating-system programmers. Part II describes these system-level instructions~ 

These instruction descriptions are for the i486 processor in protected mode. The instruc­
tion set in this mode is a 32-bit superset of the instruction set used in Intel® 16-bit 
processors. In real-address mode or virtual-8086 mode, the i486 processor appears to 
have the architecture of a fast, enhanced 8086 processor with instruction set extensions. 
See Chapters 21, 22, 23, 24 and 25 for more information about running the 16-bit in­
struction set. All of the instructions described in this chapter are available. in all modes. 

The instruction set descriptions in Chapter 26 contain more detailed information on all 
instructions, including encoding, operation, timing, effect on flags, and exceptions which 
may be generated. 

3.1 DATA MOVEMENT INSTRUCTIONS 

These instructions provide convenient methods for moving bytes, words, or doublewords 
between memory and the processor registers. They come in three types: . 

1. General-purpose data movement instructions. 

2. Stack manipulation instructions. 

3. Type-conversion· instructions. 

3.1.1 General-Purpose Data Movement Instructions 

MOV (Move) transfers a byte, word, or doubleword from the source operand to the 
destination operand. The MOV instruction is useful for transferring data along any of 
these paths: 

• To a register from memory 

• To memory from a register 

• Between general registers 

• Immediate data to a register 

• Immediate data to memory 
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The MOV instruction cannot move from memory to memory or from a segment register 
to a segment register. MeJl.1ory-to~memory moves can be performed, however, by the 
string move instruction MOVS. A special form of the MOV instruction is provided for 
transferring data between the AL or EAX registers and a location in memory specified 
by a 32-bit offset encoded in the instruction. This form of the instruction does not allow 
a segment override, index register, or scaling factor to be used. The encoding of this 
form is one byte shorter than the encoding of the general-purpose MOV instruction. A 
similar encoding is provided for moving an 8-, 16-, or 32-bit immediate into any of the 
general registers. 

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place 
of three MOV instructions. It does not require a temporary location to save the contents 
of one operand while the other is being loaded. The XCHG instruction is especially 
useful for implementing . semaphores or similar data structures for process 
synchronization. 

The XCHG instruction can swap two byte operands, two word operands, or two double­
word operands. The operands for the XCHG instruction may be two register operands, 
or a register operand and a memory operand. When used with a memory operand, 
XCHG automatically activates the LOCK signal. (See Chapter 13 for more information 
on bus locking). 

3.1.2 Stack Manipulation Instructions 

PUSH (Push) decrements the stack pointer (ESP register), then copies the source oper­
and to the top of stack (see Figure 3-1). The PUSH instruction often is used to place 
parameters on the stack before calling a procedure. Inside a procedure, it ~an be used to 
reserve space on the stack for temporary variables. The PUSH instruction operates on 

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD 

31 o 31 o 

..- ESP 

DOUBLEWORD ~ ESP 

240486i12 

Figure 3-1. PUSH Instruction 
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memory operands, immediate operands, and register operands (including segment regis­
ters). A special form of the PUSH instruction is available for pushing a 32-bit general 
register on the stack. This form has an encoding which is one byte shorter than the 
general-purpose form. 

PUSHA (Push All Registers) saves the contents of the eight general registers on the 
stack (see Figure 3-2). This instruction simplifies procedure calls by reducing the number 
of instructions required to save the contents of the general registers. The' processor 
pushes the general registers on the stack in the following order: EAX, ECX, EDX, EBX, 
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the 
PUSHA instruction is reversed using' the POPA instruction. 

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by 
the ESP register) to the destination operand, and then increments the ESP register to 
point to the new top of stack. See Figure 3-3. POP moves information from the stack to 
a general register, segment register, or to memory. A special form of the POP instruction 
is available for popping a doubleword from the stack to a general register. This form has 
an encoding which is one byte shorter than the general-purpose form. 

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION 

31 o 31 ' o 

I- ESP 

EAX 

ECX 

EDX 

EBX 

OLD ESP 

EBP 

ESI 

EDI f- ESP 

240486i13 

Figure 3-2. PUSHA Instruction 
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, BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD 

31 o 31 o 

1-4- ESP 

DOUBLEWORD ..- ESP 

, .240486i14 

Figure 3-3. POP Instruction ' 

POPA(Pop All Registers) pops the data saved on the stack by PUSHA into the general 
registers, except for the ESP register. The ESP register is restored by the action of 
reading the stack (popping). See Figure 3-4. 

3.1.3 Type Conversion Instructions 

The type conversion instructions convert bytes into words, words into doublewords, and 
doublewords into 64-bit quantities (called quadwords). These instructions are especially 
useful for converting signed integers, because they automatically fill the extra bits of the 
larger item with the value of the sign bit of the smaller item. This results in an integer of 
the same sign and magnitude, but a larger format. This kind of conversion, shown in 
Figure 3-5, is called sign extension. 

There are two kinds of type conversion instructions: 

• The CWD, CDO, CBW, and CWDE instructions which only operate on data in the 
EAX register. 

• The MOVSX and MOVZX instructions, which permit one operand to be in a general 
register while letting the other operand be in memory or a register. 

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word) 
double the size of the source operand. The CWD instruction copies the sign (bit 15) of 

, the word in the AX register into every bit position in the DX register. The CDO instruc­
, tion copies the sign (bit 31) of the doubleword in the EAX register into every bit posi­
tion in the EDX register. The CWD instruction can be used to produce a doubleword 
dividend from a word before a word division, and the CDO instruction. can be used to 
produce a quadword dividend from a doubleword before doubleword division. 
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BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION 

31 o 31 

EAX 

ECS 

EDX 

EBX 

IGNORED 

EBP 

ESI 

EDI - ESP 

Figure 3·4. POPA Instruction 
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Figure 3·5. Sign Extension 
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CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into 
every bit position in the AX register. 

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in 
the AX register into every bit position in the EAX register. 

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an8- or 
16-bit value to 32-bit value by using the value of the sign to fill empty positions .. 

MOVZX (Move with Zero Extension) extends an 8-bit value 'to a'16-bit value or an 8- or 
16-bit value to 32-bit value by clearing the empty bit positions. 

3.2 BINARY ARITHMETIC INSTRUCTIONS 

The arithmetic instructions of the i486 processor operate on numeriC data encoded in 
binary. Operations include the add, subtract, multiply, and divide as well as increment, 
decrement, compare, and change sign (negate). Both signed and unsigned binary inte­
gers are supported. The' binary arithmetic instructions' may also be used as steps in 
arithmetic on decimal integers. Source operands can be immediate values, general reg­
isters, or memory. Destination operands can be general registers or memory (except 
when the source operarid is in memory). The basic arithmetic instructions have special 
forms for using an immediate value as the source operand and the AL or EAX registers 
as the destination operand. These forms are one byte shorter than the general-purpose 
arithmetic instructions. 

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of 
result which was produced. The kind of instruction used to test the flags depends on 
whether the data is being interpreted as signed or unsigned. The CF flag contains infor­
mation relevant to unsigned integers; the SF and OF flags contain information relevant 
to signed integers. The ZF flag is relevant to both signed and unsigned integers; the ZF 
flag is set when all bits of the result are clear. 

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to re~ 
flect the size of the operation. For example, an 8-bit ADD instruction sets the CF flag if 
the sum of the operands exceeds 255 (decimal). 

If the integer is unsigned, the CF flag may be tested after one of these arithmetic oper~ 
ations to determine whether the operation required a carry or borrow to be propagated 
to the next stage of the operation. The CF flag is set if a carry occurs (addition instruc­
tions ADD, ADC, AAA, and DAA) or borrow occurs (subtraction instructions SUB, 
SBB, AAS, DAS, CMP, and NEG). 

The INC and 'DEC instructions do not change the, state of the CF flag. This allows the 
instructions to be used to update counters used for loop control without changing the 
reported state of arithmetic results. To test the arithmetic state of the counter, the ZF 

. flag can be tested to detect loop termination, or the ADD and SUB instructions can be 
used to update the 'value held by the counter. 
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Th~ SF and OF flags support signed integer arithmetic. The SF flag has the value of the 
sign bit of the result. The most significant bit (MSB) of the magnitude of a signed 
integer is the bit next to the sign - bit 6 of a byte, bit 14 of a word, or bit 30 of a 
doubleword. The OF flag is set in either of these cases: 

• A carry was generated from the MSB into the sign bit but no carry was generated out 
of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other 
words, the result was greater than the greatest positive number which could be rep­
resented in two's complement form. 

• A carry was generated from the sign bit into the MSB but no carry was generated into 
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG) . 

. In other words, the result was smaller than the smallest negative number which could 
be represented in two's complement form. 

These status flags are tested by either kind of conditional instruction: lee Gump on 
condition ee) or SETee (byte set on condition). 

3.2.1 Addition and Subtraction Instructions 

ADD (Add Integers) replaces the destination operand with the sum of the source and 
destination operands. The qF, SF, ZF, AF, PF, and CF flags are affected. 

ADC (Add Integers with Carry) replaces the destination operand with the sum of the 
source and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the 
ADC instruction performs the same operation as the ADD instruction. An ADC instruc­
tion is used to propagate carry when adding numbers in stages, for example when using 
32-bit ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF 
flags are affected. 

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the 
state of the CF flag. This allows the use of INC instructions to update counters in loops 
without disturbing the status flags resulting from an arithmetic operation used for loop 
control. The ZF flag can be used to detect when carry would have occurred. Use an 
ADD instruction with an immediate value of 1 to perform an increment which updates 
the CF flag. A one-byte form of this instruction is available when the operand is a 
general register. The OF, SF, ZF, AF, and PF flags are affected. 

SUB (Subtract Integers) subtracts the source operand from the destination operand and 
replaces the destination operand with the result. If a borrow is required, the CF flag is 
set. The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF, 
ZF, AF, PF, and CF flags are affected. 

SBB(Subtract Integers with Borrow) subtracts the source operand from the destination 
operand and replaces the destination operand with the result, minus 1 if the CF flag is 
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB 
instruction. An SBB instruction is used to propagate borrow when subtracting numbers 
in stages, for example when using 32-bit SUB instructions to subtract one quadword 
operand from another. The OF, SF, ZF, AF, PF, and CF flags are affected. 
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DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction pre­
serves the state of the CF flag. This allows the use of the DEC instruction to update 
counters in loops without disturbing the status flags resulting from an arithmetic opera­
tion used for loop control. Use a SUB instruction with an immediate value of 1 to 
perform a decrement which updates the CF flag. A one-byte form of this instruction is 
available when the operand is a general register. The OF, SF, ZF, AF, and PF flags are 
affected. 

3.2.2 Comparison and Sign Change Instruction 

CMP (Compare) subtracts the source operand from the destination operand. It updates 
the OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination 
operands. A subsequent Jee or SETee instruction can test the flags. 

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG 
instruction is to change the sign of a two's complement operand while keeping its mag­
nitude. The OF, SF, ZF, AF, PF, and CF flags are affected. 

3.2.3 Multiplication Instructions 

The i486 processor has separate multiply instructions for unsigned and signed operands. 
The MUL instruction operates on unsigned integers, while the IMUL instruction oper­
ates on signed integers as well as unsigned. 

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source 
operand and the AL, AX, or EAX register. If the source is a byte, the processor multi­
plies it by the value held in the AL registe'r and returns the double-length result in the 
AH and AL registers. If the source operand is a word, the processor mUltiplies it by the 
value held in the AX register and returns the double-length result in the DX and AX 
registe~s. If the source operand is a doubleword, the processor multiplies it by the value 
held in the EAX register and ,returns the quadword result in the EDX and EAX regis­
ters. The MUL instruction sets the CF and OF flags when the upper half of the result is 
n'on-zero; otherwise, the flags are cleared. The state of the SF, ZF, AF, and PF flags is 
undefined. 

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL 
instruction has three forms: 

1. ,A one-operand form. The operand may be a byte, word, or doubleword located in 
memory or in a" general register. This instruction uses the EAX and EDX registers 
as implicit operands in the same way as the MUL instruction. 

2. A two-operand form. One of the source operands is in a general register while the 
other may be in a general register or memory., The result replaces the general­
register operand. 

3. A three-operand form; two are source operands and one is the destination. One of 
the source operands is an immediate value supplied by the instruction; the second 
may be in memory or in a general register. The result is stored in a general register. 
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The immediate . operand is a two's complement signed integer. If. the immediate 
operand is a byte, the processor automatically sign-extends it to the size of the 
second operand before performing the multiplication. 

The three forms are similar in most respects: 

• The length of the product is calculated to twice the length of the operands. 

• The CF and OF flags are set when significant bits are carried into the upper half of 
the result. The CF and OF flags are cleared when the upper half of the result is the 
sign-extension of the lower half. The state of the SF, ZF, AF, and PF flags is 
undefined. 

However, forms 2 and 3 differ because the product is truncated to the length of the 
operands before it is stored in the destination register. Because of this truncation, the 
OF flag should be tested to ensure that no significant bits are lost. (For ways to test the 
OFflag, see. the JO, INTO, and PUSHFinstructions.) 

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the 
operands are signed 'or unsigned, the lower half of the" product is the same. The CF. and 
OF flags, however, cannot be used to determine if the upper half of the result is 
non-zero. 

3.2.4 Division Instructions 

The i486 processor has separate division instructions for unsigned and signed operands. 
The DIY instruction operates on unsigned integers, while the IDlY instruction operates 
on both signed and unsigned integers. In either case, a divide-error exception is gener­
ated if the divisor is zero or if the quotient is too large for the AL, AX, or EAX register. 

DIV (Unsigned Integer Divide) performs an unsigned division of the AL,' AX, or EAX 
register by the source operand. The dividend (the accumulator) is twice the size of the 
divisor (the source operand); the quotient and remainder have the same size as the 
divisor, as shown in Table 3-1. 

Non-integral results are truncated toward O. The remainder is always smaller than the 
divisor. For unsigned byte division, the largest quotient is 255. For unsigned word divi­
sion, the largest quotient is 65,535. For unsigned doubleword division the largest quo­
tient is 232 -1. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined. 

Table 3-1. Operands for Division 

Operand Size 
Dividend Quotient Remainder 

(Divisor) 

'Byte AX register AL register AH register 
Word OX and AX AX register OX register 
Doubleword EDX and EAX EAX register EDX register 
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IDIV (Signed Integer Divide) performs a' signed division of the· accumulator by the 
source operand. The IDlY instruction uses the same registers as the DIY instruction. 

For signed byte division, the maximum positive quotient is + 127, and the minimum 
negative quotient is - 128. For signed word division, the maximum positive quotient is 
+ 32,767, and the minimum negative quotient is - 32,768. For signed doubleword divi­
sion the maximum positive quotient is 2

32 -1, the minimum negative quotient is - 231. 

Non-integral results are truncated towards O. The remainder always has the same sign as 
the dividend and is less than the divisor in magnitude. The state of the OF, SF, ZF, AF, 
PF, and CF flags is undefined. 

3.3 DECIMAL ARITHMETIC INSTRUCTIONS 

Decimal arithmetic is performed by combining the binary arithmetic instructions (al­
ready discussed in the prior section) with the decimal arithmetic instructions. The deci­
mal arithmetic instructions are used in one of the following ways: 

• To adjust the results of a previous binary arithmetiC operation to produce a valid 
. packed or unpacked decimal result. . 

• To adjust the inputs to a subsequent binary arithmetic operation so that the operation 
will produce a valid packed or unpacked decimal result. These instructions operate 
only on the AL or AH registers. Most use the AF flag. 

3.3.1 Packed BCD Adjustment Instructions 

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed dec­
imaloperands in the AL register. A DAA instruction must follow the addition of two 
pairs of packed decimal numbers (one digit in each half-byte) to obtain a pair of valid 
packed decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF, 
and CF flags are affected. The state of the OF flag is undefined. 

DAS (Decimal Adjust after Subtraction) adjusts the result of subtr~cting two valid 
packed decimal operands in the AL register. A DAS instruction must always follow the 
subtraction of one pair of packed qecimal numbers (one digit in each half-byte) from 
another to obtain a pair of valid packed decimal digits as results. The CF flag is set if a 
borrow is needed. The SF, ZF, AF, PF, and CF flags are affected. The state of the OF 
flag is undefined. 

3.3.2 Unpacked BCD Adjustment Instructions 

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid 
unpacked decimal number, and clears the.upper 4 bits. An AAA instruction~ust follow 
the addition 'of two unpacked decimal operands in the AL register. The CF flag is set 
and the contents of the AH register are incremented if a carry occurs. The AF and CF 

. flags are affected. The state of the OF, SF, ZF, and PF flags is undefined. . 
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AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid 
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow 
the subtraction of one unpacked decimal operand from another in the AL register. The 
CF flag is set and the contents of the AH register are decremented if a borrow is 
needed. The AF and CF flags are affected. The state of the OF, SF, ZF, and PF flags is 
undefined. 

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two 
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of 
two decimal numbers to produce a valid decimal result. The upper digit is left in the AH 
register, the lower digit in the AL register. The SF, ZF, and PF flags are affected. The 
state of the AF, OF, and CF flags is undefined. 

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers 
to prepare for the division of two valid unpacked decimal operands, so that the quotient 
produced by the division will be a valid unpacked decimal number. The AH register 
should contain the upper digit and the AL register should contain the lower digit. This 
instruction adjusts the value and places the result in the AL register. The AH register 
will be clear. The SF, ZF, and PF flags are affected. The state of the AF, OF, and CF 
flags is undefined. 

3.4 LOGICAL INSTRUCTIONS 

The logical instructions have two operands. Source operands can be immediate values, 
general registers, or memory. Destination, operands can be general registers or memory 
(except when the source operand is in memory). The logical instructions modify the state 
of the flags. Short forms of the instructions are available when the an immediate source 
operand is applied to a destination operand in the AL or EAX registers. The group of 
logical instructions includes: 

• Boolean operation instructions 

• Bit test and modify instructions 

• Bit scan instructions 

• Rotate and shift instructions 

• Byte set on condition 

3.4.1 Boolean Operation Instructions 

The logical operations are performed by the AND, OR, XOR, and NOT instructions. 

NOT (Not) inverts the bits in the specified operand to form a one's complement of the 
operand. The NOT instruction is a unary operation which uses a single operand in a 
register or memory. NOT has no effect on the flags. 
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TheANO, OR, andXOR instructions perform the standard logical operations "and," 
"or," and "exclusive or." These instructions can use the following combinations ·of 
operands: 

• . Two register operands 

• A general register operand with a memory operand 

• An immediate operand with either a general register operand or a memory operand 

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag 
undefined, and update the SF, ZF, and PF flags. 

3.4.2 Bit Test and Modify Instructions 

This group of instructions operates on a single bit which can be in memory or in a 
general register. The: location of the ,bit is specified as an offset from the low end of the 
operand. The value of the offset either may be given by an immediate byte in the instruc­
tion or may be contained in a .general register. 

These instructions first assign the value of the selected bit to the CF flag. Then a new 
value is assigned to the selected bit, as determined by the operation. The state of the 
OF, SF, ZF, AF, and PF flags is undefined. Table 3-2 defines these instructions. 

3.4.3 Bit Scan Instructions 

These instructions scan a word or doubleword for a set bit and store the bit index (an 
integer representing the bit position) of the ·first set bit into a register. The bit string 
being scanned may be in a register or in memory. The ZF flag is set if the entire word is 
clear, otherwise the' ZF flag is cleared. In the former case, the value of the destination 
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined. 

BSF (Bit Scan Fonvard) scans low-to-high (from bit 0 toward the upper bit positions). 

BSR (Bit Scan Reverse) scans high-to-Iow (from the uppermost bit toward bit 0). 

3.4.4 Shift and Rotate Instructions 

The shift and rotate instructions rearrange the bits within an operand. 

Table 3-2. Bit Test and Modify Instructions 

Instruction Effect on CF Flag Effect on Selected Bit 

BT (Bit Test) CF flag ~ Selected Bit no effect 
BTS (Bit Test and Set) CF flag ~ Selected Bit Selected Bit ~ 1 
BTR(Bit Test and Reset) CF flag +- Selected Bit Selected Bit ~' 0 
BTC (Bit Test and Complement) CF flag ~ Selected Bit Selected Bit ~ - (Selected Bit) 
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These instructions fall into the following classes: 

• Shift instructions 

• Double shift instructions 

• Rotate instructions 

3.4.4.1 SHIFT INSTRUCTIONS 

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords. 
An arithmetic shift right copies the sign bit into empty bit positions on the upper end of 
the operand, while a logical shift right fills clears the empty bit positions. An arithmetic 
shift is a fast way to perform a simple calculation. For example, an arithmetic shift right 
by one bit position divides an integer by two. A logical shift right divides an unsigned 
integer or a positive integer, but a signed. negative integer loses its sign bit. 

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their 
treatment of the bit positions emptied by shifting the contents of the operand. Note that 
there is no difference between an arithmetic shift left and a logical shift left. Two names, 
SAL and SHL, are supported for this instruction in the assembler. 

A count specifies the number of bit positions to shift an operand. Bits can be shifted up 
to 31 places. A shift instruction can give the count in any of three ways. One form of shift 
instruction always shifts by one bit position. The second form gives the count as an 
immediate operand. The third form gives the count as the value contained in the CL 
register. This last form allows the count to be a result from a calculation. Only the low 
five bits of the CL register are used. 

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the 
CF flag is left with the value of the last bit shifted out of. the operand. In a single-bit 
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the 
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position, 
the state of the OF flag is undefined. On a shift of one or more bit positions, the SF, ZF, 
PF, and CF flags are affected, and the state of the AF flag is undefined. 

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left 
by one bit position or by the number of bits specified in the count operand (an immedi­
ate value or a value contained in the CL register). Empty bit positions are cleared. See 
Figure 3-6. 

SUL (Shift Logical Left) is another name for the SAL instruction. It is supported in the 
assembler. 

SUR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right 
by one bit position or by the number of bits specified in the count operand (an immedi­
ate value or a value contained in the CL register). Empty bit positions are cleared. See 
Figure 3-7. 
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INITIAL STATE: 

CF OPERAND 

~ 10001000100010001000100010001111 

AFTER 1·81T SHLISAL INSTRUCTION: 

00010001000100010001000100011110 o 

AFTER 10·81T SHL/SAL INSTRUCTION: 

'0010001000100010001~110000000000 o 

240486i17 

Figure 3-6. SHUSAL Instruction 

INITIAL STATE: 

OPERAND CF 

I 10001000100010001000100010001111 o 
AFTER 1·81T SHR INSTRUCTION: 

o 01000100010001000100010001000111 

AFTER 10·81T SHR INSTRUCTION: 

o 00000000001000'100010001000100010 

240486i18 

Figure 3-7. SHR Instruction 

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand 
to the right by one bit position or by the number of bits specified in the count operand 
(an immediate value or a value contained in theCL register). The sign of the operand is 
preserved by clearing empty bit positions if the operand is positive, or setting the empty 
bits if the operand is negative. See Figure 3-8. 
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INITIAL STATE (POSITIVE OPERAND): 

OPERAND CF 

I 01000100010001000100010001000111 ~ 

AFTER 1·81T SAR INSTRUCTION: 

00100010001000100010001000100011 

INITIAL STATE (NEGATIVE OPERAND): 

OPERAND CF 

110001000100010001000100010000111 ~ 

AFTER 1·81T SAR INSTRUCTION 

11100010001000100010001000100011 

240486i19 

Figure 3-8. SAR Instruction 

Even though this instruction can be used to divide integers by an integer power of two, 
the type of division is not the same as that produced by the IDIV instruction. The 
quotient from the IDlY instruction is rounded toward zero, whereas the "quotient" of 
the SAR instruction is rounded toward negative infinity. This difference is apparent only 
for negative numbers. For example, when the IDlY instruction is used to divide - 9 by 4, 
the result is - 2 with a remainder of - 1. If the SAR instruction is used to shift - 9 right 
by two bits, the result is - 3. The "remainder" of this kind of division is + 13; however, 
the SAR instruction stores only the high-order bit of the remainder (in the CF flag). 

3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS 

These instructions provide the basic operations needed to implement operations on long 
unaligned bit strings. The double shifts operate either on word or doubleword operands, 
as follows: 

• Take two word operands and produce a one-word result (32-bit shift). 

• Take two doubleword operands and produce a doubleword result (64-bit shift). 
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Of the two operands, the source operand must be in a register while the destination 
operand may be in a register or in memory. The number of bits to be shifted is specified 
either in the CL register or in an immediate byte in the instruction. Bits shifted out of 
the source operand fill empty bit positions in the destination operand, which also is 
shifted. Only the destination operand is stored. 

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the 
CF flag is set to the value of the last bit shifted out of the destination operand, and the 
SF, ZF, and PF flags are affected. On a shift of one bit position, the OF flag is set if the 
sign of the operand changed, otherwise it is cleared. For shifts of more than one bit 
position, the state of the OF flag is undefined. For shifts of one or more bit positions, 
the state of AF flag is undefined. 

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling 
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The 
result is stored back into the destination operand. The source operand is not modified. 

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while 
filling empty bit positions with bits shifted out of the source operand (see Figure 3-10). 
The result is stored back into the destination operand. The source operand is not 
modified. 

3.4.4.3 ROTATE INSTRUCTIONS 

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits 
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits 
are emptied during a rotation. 

Rotate instructions use only the CF and. OF flags. The CF flag may act as an extension 
of the operand in two of the rotate instructions, allowing a bit to be isolated and then 
tested by a conditional jump instruction (JC or JNC). The CF flag always contains the 
value of the last bit rotated out of the operand, even if the instruction does not use the 
CF flag as an extension of the operand. The state of the SF, ZF, AF, and PF flags is not 
affected. 

DESTINATION (MEMORY OR REGISTER) 

31 o 
SOURCE (REGISTER) 

240486i20 

Figure 3-9. SHLD Instruction 
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31 . o 

SOURCE (REGISTER) 

31 o 
DESTINATION (MEMORY OR REGISTER) 

240486i21 

Figure 3-10. SHRD Instruction 

In a single-bit rotation, the OF flag is set if the operation changes 'the uppermost bit 
(sign bit) of the destination operand. If the sign bit retains its original value, the OF flag 
is cleared. After a rotate of more than one bit position, the value of the OF flag is 
undefined. 

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one 
bit position or by the number of bits specified in the count operand (an immediate value 
or a value contained in the CL register). For each bit position of the rotation, the bit 
which exits from the left of the operand returns at the right. See Figure 3-11. 

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by 
one bit position or by the number of bits specified in the count operand (an immediate 
value or a value contained in the CL register). For each bit position of the rotation, the 
bit which exits from the right of the operand returns at the left. See Figure 3-12. 

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destina­
tion operand left by one bit position or by the number of bits specified in the count 
operand (an immediate value or a value contained in the CL register). 

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on 
the upper end of the destination operand. Each bit which exits from the left side of the 
operand movesinto th~ CF flag. At the same time, the bit in the CF flag enters the right 
side. See Figure 3-13. 

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword desti­
nation operand right by one bit position or by the number of bits specified in the count 
operand (an immediate value or a value contained in the CL register). 

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower 
end of the destination operand. Each bit which exits from the right side of the operand 
moves into the CF flag. At the same time, the bit in the CF flag enters the left side. See 
Figure 3-14. 
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31 0 

~~.~-'--~I ____________ D_E_S_T_IN_A_TI_O_N_(M __ EM_O_R_Y_O_R __ R_EG_�_sT_E_R_) _____________ ~ 

240486i22 

Figure 3-11. ROL Instruction 

31 o 

~--------------DE-S-T-IN~A-T-IO-N-(-M-E-M-O-RY--O-R-R-EG-I-S-TE_R_) ____________ ~I~---~---•. ~ 

240486i23 

Figure 3-12. ROR Instruction 

DESTINATION (MEMORY OR REGISTER) 

240486i24 

Figure 3-13. RCL Instruction 

DESTINATION (MEMORY OR REGISTER) 

'240486i25 

Figure 3-14. RCR Instruction 
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3.4.4.4 FAST "bit bit" USING DOUBLE-SHIFT INSTRUCTIONS 

One purpose of the double shift instructions is to implement a bit string move, with 
arbitrary misalignment of the bit strings. This is called a "bit bIt" (BIT BLock Transfer). 
A simple example is to move a bit string from an arbitrary offset into a doubleword­
aligned byte string. A left-to-right string is moved 32 bits at a time if a double shift is 
used inside the move loop. 

MOV ESI,ScrAddr 
MOV EDI,DestAddr 
MOV EBX,WordCnt 
MOV CL,RelOffset 
MOV EDX,CESIl 
ADD ESI,4 

BltLoop: 
LODS 
SHLD EDX,EAX,CL 
XCHG EDX,EAX 
STOS 
DEC EBX 
JNZ BltLoop 

relative offset Dest-Src 
load first word of source 
bump source address 

·new low order part in EAX 
EDX overwritten with aligned stuff 
Swap high and low words 
Write out next aligned chunk 
Decrement loop count 

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest 
possible performance. Without a double shift, the best which can be achieved is 16 bits 
per loop iteration by using a 32-bit shift, and replacing the XCHG instruction with a 
ROR instruction by 16 to swap the high and low words of registers. A more general loop 
than shown above would require some extra masking on the first doubleword moved 
(before the main loop), and on the last doubleword moved (after the main loop), but 
would have the same 32-bits per loop iteration as the code above. 

3.4.4.5 FAST BIT STRING INSERT AND EXTRACT 

The double shift instructions also make possible: 

• Fast insertion of a bit string from a register into an arbitrary bit location in a larger 
bit string in memory, without disturbing the bits on either side of the inserted bits 

• Fast extraction of a bit string into a register from an arbitrary bit location in a larger 
bit string in memory, without disturbing the bits on either side of the extracted bits 

The following coded examples illustrate bit. insertion and extraction under various 
conditions: 

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e., spans 
four bytes or less): 

Insert a right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 
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2. The length of the bit string is an immediate value 
and the bit offset is held in a register. 

The ESI register holds .the right-justified bit string 
to be inserted. 
The EDI register holds the bit offset of the start of the 
substring. 
The EAX register and ECX are also used. 

MOV ECX,EDI 
SHR EDI,3 
AND CL,7H 
MOV EAX, [EDIlstrg_base 
ROR EAX,CL 
SHRD EAX,ESI,length 
ROL EAX,length 
ROL EAX,CL 
MOV [EDIlstrg_base,EAX 

save original offset 
divide offset by 8 (byte addr) 
get low three bits of offset 
move string ·dword into EAX 
right justify old bit field 
bring in new bits 
right justify new bit field 
bring to final position 
replace doubleword in memory 

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans five 
bytes or less): 

Insert a right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 
2. The length of the bit string is an immediate value 

and the bit offset is held in a register. 

The ESI register holds the right-justified bit string 
to be inserted. 
The EDI register holds the bit offset of the start of the 
sUbstring. 

. i The EAX, EBX, ECX, and EDI registers also are used. 

MOV ECX, EDI temp storage for offset 
SHR EDI,5 i divide offset by 32 (dwords) 
SHL EDI,2 multiply by 4 (byte address) 
AND CL,1FH get low five bits of offset 
MOV EAX,[EDIlstrg_base move low string dword into EAX 
MOV EDX,[EDIlstrg_base+4 other string dword into EDX 
MOV EBX,EAX temp storage for part of string 
SHRD EAX,EDX,CL shift by offset within dword 
SHRD EAX,EBX,CL shift by offset within dword 
SHRD EAX, ESI, length bring in new bits 
ROL EAX,length right justify new bit field 
MOV EBX,EAX temp storage for string 
SHLD EAX,EDX,CL shift by offset within word 
SHLD EDX,EBX,CL shift by offset within word 
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MOV [EDIlstrg_base,EAX 
MOV [EDIlstrg_base+4,EDX 

j replace dword in memory 
j replace dword in memory 

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e., 
spans four or five bytes): 

Insert right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 
2. The length of the bit string is 32 bits 

and the bit offset is held in a register. 

The ESI register holds the 32-bit string to be inserted. 
The EDI register holds the bit offset to the start of the 
sUbstring. 
The EAX, EBX, ECX, and EDI registers also are used. 

MOV EDX,EDI save original offset 
SHR EDI,S divide offset by 32 (dwords) 
SHL EDI,2 multiply by 4 (byte address) 
AND CL,lFH isolate low five bits of offset 
MOV EAX,[EDIlstrg_base move low string dword into EAX 
MOV EDX,[EDIlstrg_base+4 other string dword into EDX 
MOV EBX,EAX temp storage for part of string 
SHRD EAX,EDX shift by offset within dword 
SHRD EDX,EBX shift by offset within dword 
MOV EAX,ESI move 32-bit field into position 
MOV EBX,EAX temp storage for part of string 
SHLD EAX,EDX shift by offset within word 
SHLD EDX,EBX shift by offset within word 
MOV [EDIlstrg_base,EAX replace dword in memory 
MOV [EDIlstrg_base,+4,EDX replace dword in memory 

4. Bit String Extraction from Memory (when the bit string is 1-25 bits long, i.e., spans 
four bytes or less): 

Extract a right-justified bit string into a register from 
a bit string in memory. 

Assumptions: 
1) The base of the string array is doubleword aligned. 
2) The length of the bit string is an immediate value 

and the bit offset is held in a register. 

The EAX register hold the right-justified, zero-padded 
bit string that was extracted. 
The EDI register holds the bit offset of the start of the 
sUbstring. 
The EDI, and ECX registers also are used. 
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MOV ECX,EDI 
SHR EDI,3 
AND CL,7H 
MOV EAX,[EDIlstrg_base 
SHR EAX,CL 
AND EAX,mask 
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temp storage for offset 
divide offset by.8 (byte addr) 
get low three bits of offset 
move string dword into EAX 
shift by offset within dword 
extracted bit field in EAX 

5. Bit String Extraction from Memory (when bit string is 1-32 bits long, i.e., spans five 
bytes or less): 

Extract a right-justified bit string into a 'r~gister from a' 
bit string in memory. 

Assumptions: 
1) The base of the string array is doubleword aligned. 
2) The length of the bit string is an imm~diate 

value and the bit offset is held in a register. 

The EAX register holds the right-justified, zero-padded 
bit string that was extracted. 
The EDI register holds the bit offset of the start of the 
substring. ' 
The EAX, EBX, and ECX registers also are used. 

MOV ECX,EDI temp storage for offset 
SHR EDI,S divide offset by 32 (dwords) 
SHL EDI,2 multiply by4 (byte address) 
AND CL,lFH get.low five bits of offset in 
MOV EAX,[EDIlstrg_base move l6w str{ng dword into EAX 
MOV EAX,[EDIlstrg_base +4 other string dword into EDX 
SHRD EAX,EDX,CL shift right by offset in dword 
AND EAX,mask extracted 'bi t field in EAX 

3.4.5 Byte-Set-On-Cond ition Instructions 

This group of instructions sets a byte to the value of zero or one, depending' on any of 
the 16 conditions defined by the status flags. The byte may be in a register or in memory. 
These instructions are especially useful for implementing Boolean expressions in high-
level languages such as Pascal. . . 

Some languages represent a logical one as an integer with all bits set. This can be done 
by using the SETcc instruction with the mutually exclusive condition, then decrementing 
the result. 

SETcc (Set Byte on Condition cc) loads the value 1 into a byte if condition cc is true; 
clears the byte otherwise. See Appendix D for a definition of the possible conditions. 
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3.4.6 Test Instruction 

TEST (Test) performs the logical "and" of the two operands, clears the OF and CF 
flags, leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can 
be tested by conditional control transfer instructions or the byte-set-on-condition in­
structions. The operands may be bytes, wC?rds, or doublewords. 

The difference between the TEST and AND instructions is the TEST instruction does 
not alter the destination operand. The difference between the TEST and BT instructions 
is the TEST instruction can test the value of multiple bits in one operation, while the BT 
instruction tests a single bit. 

3.5 CONTROL TRANSFER INSTRUCTIONS 

The i486 processor provides both conditional and unconditional control transfer instruc­
tions to direct the flow of execution. Conditional transfers are executed only for certain 
combinations of the state of the flags. Unconditional control transfers are always 
executed. 

3.5.1 Unconditional Transfer Instructions 

The JMP, CALL, RET, INT and IRET instructions' transfer execution to a destination 
in a code segment. The destination can be within the same code segment (near transfer) 
or in a different code segment (far transfer). The forms of these instructions which 
transfer execution to other segments are discuss'ed in a later section of this chapter. If 
the model of memory organization used in a particular application does not make seg­
ments visible to application programmers, far transfers will not be used. 

3.5.1.1 JUMP INSTRUCTION 

JMP (Jump) unconditionally transfers execution to the destination. The JMP instruction 
is a one-way transfer of execution; it does not save a return address on the stack. 

The JMP instruction transfers execution from the current routine to a different routine. 
The address of the routine is specified in the instruction, in a register, or in memory. The 
location of the address determines whether it is interpreted as a relative address or an 
absolute address. . 

Relative Address. A relative jump uses a displacement (immediate mode constant used 
for address calculation) held in the instruction. The displacement is signed and variable­
length (byte or doubleword). The destination address is formed by adding the displace­
ment to the address held in the EIP register. The EIP register then contains the address 
of the next instruction to be executed. 
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Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the 
following ways: 

1. The program can jump to an address in a general register. This 32-bit value is copied 
into the EIP register and execution continues. 

2. The destination address can be a memory operand specified using the standard 
addressing modes. The operand is copied into the EIP register and execution 
continues. 

3.5.1.2 CALL INSTRUCTIONS 

CALL (Call Procedure) transfers execution and saves the address of the instruction 
following the CALL instruction for later use by a RET (Return) instruction. CALL 
pushes the current contents of the EIP register on the stack. The RET instruction in the 
called procedure uses this address to transfer execution back to the calling program: 

CALL instructions, like JMP instructions, have relative· and absolute forms. 

Indirect CALL instructions specify an absolute address in one of the following ways: 

1. The program can jump to an address in a general register. This 32-bit value is copied 
into the EIP register, the return address is pushed on the stack, and execution 
continues. 

2. The destination address can be a memory operand specified using the standard 
addressing modes. The operand is copied into the EIP register, the return address is 
pushed on the stack, and execution continues. 

3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS 

RET (Return From Procedure) terminates a procedure and transfers execution to the 
instruction following the CALL instruction which originally invoked the procedure. The 
RET instruction restores the contents of the EIP register which were pushed on the 
stack when the procedure was called. 

The RET instructions have an optional immediate operand. When present, this constant 
is added to the contents of the ESP register, which has the effect of removing any 
parameters pushed on the stack before the procedure call. 

IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET 
instruction differs from the RET instruction in that it also restores the EFLAGS register 
from the stack. The contents of the EFLAGS register are stored on the stack when an 
interrupt occurs. . 

3.5.2 Conditional Transfer Instructions 

The conditional transfer instructions are jumps which transfer execution if the states in 
the EFLAGS register match conditions specified in the instruction. 

3-24 



APPLICATION PROGRAMMING 

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS 

Table 3-3 shows the mnemonics for the jump instructions. The instructions listed as pairs 
are alternate names for the same instruction. The assembler provides these names for 
greater clarity in program listings. 

A form of the conditional jump instructions is available which uses a displacement added 
to the contents of the EIP register if the specified condition is true. The displacement 
may be a byte or doubleword. The displacement is signed; it can be used to jump for­
ward or backward. 

3.5.2.2 LOOP INSTRUCTIONS 

The loop instructions are conditional jumps which use a value placed in the ECX regis­
ter as a count for the number of times to run a loop. All loop instructions decrement the 
contents of the ECX register on each reposition and terminate when zero is reached. 
Four of the five loop instructions accept the ZF flag as a condition for terminating the 
loop before the count reaches zero. 

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements 
the contents of the ECX register before testing for the loop-terminating condition. If 
contents of the ECX register are non-zero, the program jumps to the destination speci­
fied in the instruction. The LOOP instruction causes the execution of a block of code to 
be repeated until the count reaches zero. When zero is reached, execution is transferred 

Table 3-3. Conditional Jump Instructions 

Unsigned Conditional Jumps 

Mnemonic Flag States Description 
JNJNBE (CF or ZF) =0 above/not below nor equal 
JAE/JNB CF=O above or equal/not below 
JB/JNAE CF=1 below/not above nor equal 
JBE/JNA (CF or ZF) =1 below or equal/not above 
JC CF=1 carry 
JE/JZ ZF=1 equal/zero 
JNC CF=O not carry 
JNE/JNZ ZF=O not equal/not zero 
JNP/JPO PF=O not parity/parity odd 
JP/JPE PF=1 parity/parity even 

Signed Conditional Jumps 

JG/JNLE ((SF xor OF) orZF) =0 greater/not less nor equal 
JGE/JNL (SF xor OF) = 0 greater or equal/not less 
JL/JNGE (SF xor OF) = 1 . less/not greater nor equal 
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater 
JNO OF=O not overflow 
JNS SF=O not sign (non-negative) 
JO OF=1 overflow 
JS SF=1 sign (negative) 
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to the instruction immediately following the LOOP instruction. If the value in the ECX 
register is zero when the instruction is first called, the count is pre-decremented to 
OFFFFFFFFH and the LOOP runs 232 times. 

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same 
instruction. These instructions are conditional jumps which decrement the contents of 
the ECX register before testing for the loop-terminating condition. If the contents of the 
ECX register are non-zero and the ZF flag is set, the program jumps to the destination 
specified in the instruction. When zero is reached or the ZF flag is' clear, execution is 
transferred to the instruction immediately following the LOOPE/LOOPZ instruction. 

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not 'Zero) are synonyms 
for the same instruction. These instructions are conditional jumps which decrement the 
contents of the ECX register before testing for the loop-terminating condition. If the 
contents of the ECX r~gister are non-zero and the ZF flag is clear, the program jumps to 
the destination specified in the instruction. When zero is reached or the ZF flag is set, 
execution is transferred to the instruction immediately following the LOOPE/LOOPZ 
instruction. 

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES 

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the 
ECX register holds a value of zero. The JECXZ instruction is used in combination with 
the LOOP instruction and with the string scan and comp'are instructions. Because these 
instructions decrement the contents of the ECX register before testing for zero, a loop 
will run 232 times if the loop is' entered with a zero value in the ECX register. The 
JECXZ instruction is used to create loops which fall through without executing when the 

, initial value is zero. A JECXZ instruction at the beginning of a loop can be used to jump 
out of the loop if the count is zero. When used with repeated string scan and compare 
instructions, the JECXZ instruction can determine whether the loop terminated due to 
the count or due to satisfaction of the scan or compare conditions. 

3.5.3 Software Interrupts 

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of 
execution to an exception or interrupt handler. 

INTn (Software Interrupt) calls the handler specified 'by an interrupt vector encoded in 
the instruction. The INT instruction may specify any interrupt type. This instruction is 
used to support multiple types of software interr~pts or to test the operation of interrupt 
service routines. The interrupt service routine terminates with an IRET instruction, 
which returns execution to the instruction following the INT instruction . 

. INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF 
flag is set. If the flag' is clear, execution continues without calling the handler. The OF 
flag is set by arithmetic, logical, and string instructions. This instruction supports the use 
of software interrupts for handling error conditions, such as arithmetic overflow. 
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BOUND (Detect Value Out of Range) compares the signed value held in a general reg­
ister against an upper and lower limit. The handler for the bounds-check exception is 
called if the value held in the register is less than the lower bound or greater than the 
upper bound. This instruction supports the use of software interrupts for bounds check­
ing, such as checking an array index to make sure it falls within the range defined for the 
array. 

The BOUND instruction has two operands. The first operand specifies the general reg­
ister being tested. The second operand is the base address of two words or doublewords 
at adjacent locations in memory. The lower limit is the word or doubleword with the 
lower address; the upper limit has the higher address. The BOUND instruction assumes 
that the upper limit and lower limit are in adjacent memory locations. These limit values 
cannot be register operands; if they are, an invalid-opcode exception occurs. 

The upper and lower limits of an array can reside just before the array itself. This puts 
the array bounds at a constant offset from the beginning of the array. Because the 
address of the array already will be present in a register, this practice avoids extra bus 
cycles to obtain the effective address of the array bounds. 

3.6 STRING OPERATIONS 

String operations manipulate large data structures in memory, such as alphanumeric 
character strings. See also the section on I/O for information about the string I/O in­
structions (also known as block I/O instructions). 

The string operations are made by putting string instructions (which execute only one 
iteration of an operation)· together with other features of the instruction set, such as 
repeat prefixes. The string instructions are: 

MOVS - Move String 
CMPS - Compare string 
SCAS - Scan string 
LODS - Load string 
STOS - Store string 

After a string instruction executes, the string source and destination registers point to 
the next elements in their strings. These registers automatically increment or decrement 
their contents by the number of bytes occupied by each string element. A string element 
can be a byte, word, or doubleword. The string registers are: 

ESI - Source index register 
EDI - Destination index register 

String operations can begin at higher addresses and work toward lower ones, or they can 
begin at lower addresses and work toward higher ones. The direction is controlled by: 

DF - Direction flag 
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If the DF flag is clear, the registers are incremented. If the flag is set, the registers are 
decremented. These instructions set and clear the flag: 

STD - Set direction flag instruction 
CLD - Clear direction flag instruction 

To operate on more than one element of a string, a repeat prefix must be used, such as: 

REP - Repeat while the ECX register not zero 
REPE/REPZ - Repeat while the ECX register not zero and the ZF flag is set 
REPNE/REPNZ - Repeat while the ECX register not zero and the ZF flag is clear 

Exceptions or interrupts which occur during a string instruction leave the registers in a 
state which allows the string instruction to be restarted. The source and destination 
registers point to the next string elements, the EIP register points to the string instruc­
tion, and the ECX register has the value it held following the last successful iteration. 
All that is necessary to restart the operation is to service the interrupt or fix the source 
of the exception, then execute an IRET instruction. 

3.6.1 Repeat Prefixes 

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While 
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated 
operation of a string instruction. This form of iteration allows string operations to pro­
ceed much faster than would be possible with a software loop. 

When a string instruction .has a repeat prefix, the operation executes until one of the 
termination conditions specified by the prefix i~ satisfied. 

For each repetition of the instruction, the string operation may be suspended by an 
exception or interrupt. After the exception or interrupt has been serviced, the string 
operation can restart where it left off. This mechanism allows long string operations to 
proceed without affecting the interrupt response time of the system. 

All three prefixes shown in Table 3-4 cause the instruction to repeat until the ECX 
register is decremented to zero, if no other termination condition is satisfied. The repeat 
prefixes differ in their other termination condition. The REP prefix has no other termi­
nation condition. The REPE/REPZ and REPNE/REPNZ prefixes are used exclusively 
with the SCAS (Scan String) and CMPS (Compare String) instructions. The REPE/ 
REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates if 

Table 3-4. Repeat Instructions 

Repeat Prefix Termination Condition 1 Termination Condition 2 

REP ECX=O none 
REPE/REPZ ECX=O ZF=O 
REPNE/REPNZ ECX=O ZF=1 
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the ZF flag is set. The ZF flag does not require initialization before execution of a 
repeated string instruction, because both the SCAS and CMPS instructions·affect the ZF 
flag according to the results of the comparisons they make. 

3.6.2 Indexing and Direction Flag Control 

Although the general registers are completely interchangeable under most conditions, 
the string instructions require the use of two specific registers. The source and destina­
tion strings are in memory addressed by the ESI and EDI registers. The ESI register 
points to source operands. By default, the ESI register is used with the DS segment 
register. A segment-override prefix allows the ESI register to be used with the CS, SS, 
ES, FS, or GS segment registers. The EDI register points to destination operands. It 
uses the segment indicated by the ES segment register; no segment override is allowed. 
The use of two different segment registers in one instruction permits operations between 
strings in different segments. 

When ESI and EDI are used in string instructions, they automatically are incremented 
or decremented after each iteration. String operations can begin at higher addresses and 
work toward lower ones, or they can begin at lower addresses and work toward higher 
ones. The direction is controlled by the DF flag. If the flag is clear, the registers are 
incremented. If the flag is set, the registers are decremented. The STD and CLD in­
structions set and clear this flag. Programmers should always put a known value in the 
DFflag before using a string instruction. 

3.6.3 String Instructions 

MOVS (Move String) moves the string element addressed by the ESI register to the 
location addressed by the EDI register. The MOVSB instruction moves bytes, the 
MOVSW instruction moves words, and the MOVSD instruction moves doublewords. 
The MOVS instruction, when accompanied by the REP prefix, operates as a memory­
to-memory block transfer. To set up this operation, the program must initialize the ECX, 
ESI, and EDI registers. The ECXregister specifies the number of elements in the block. 

CMPS (Compare Strings) subtracts the destination string element from the source string 
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written 
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is 
cleared. CMPSB compares bytes, CMPSW compares words, and CMPSD compares 
doublewords. 

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL 
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF 
flags. The string and the register are not modified. If the values are equal, the ZF flag is 
set; otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction 
scans words; the SCASD instruction scans doublewords. 
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When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS 
instructions, the loop which is formed is terminated by the 'loop counter or the effect the 
SCAS or CMPS instruction has on the ZF flag. 

LODS (Load String) places the source string element addressed by the ESI register into 
the EAX register for doubleword strings, into the AX register for word strings, or into 
the AL register for byte strings. This instruction usually is used in a loop, where other 
instructions process each element of the string as they appear in the register. 

STOS (Store String) places the source string element from the EAX, AX, or AL register 
into the string addressed by the EDI register. This instruction usually is used in a loop, 
where it writes to memory the result of processing a string element read from memory 
with the LODS instruction. A REP STOS instruction is the fastest way to initialize a 
large block of memory. 

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES 

These instructions provide machine-language support for implementing block-structured 
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify 
procedure entry and exit in compiler-generated code. They support a structure of point­
ers and local variables on the stack called a stack frame. 

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of 
block-structured languages. In these languages, a procedure has access to its own vari­
ables and some number of other variables defined elsewhere in the program. The scope 
of a procedure is the set of variables to which it has access. The rules for scope vary 
among languages; they may be based on the nesting of procedures, the division of the 
program into separately-compiled files, or some other modularization scheme. 

The ENTER instruction has two operands. The first specifies the number of bytes to be 
reserved on the stack for dynamic storage in the procedure being entered. Dynamic 
storage is the memory allocated for variables created when the procedure is called, also 
known as automatic variables. The second parameter is the lexical nesting level (from 0 
to 31) of the procedure. The nesting level is the depth of a procedure in the hierarchy of 
a block-structured program. The lexical level has no particular relationship to either the 
protection privilege level or to the I/O privilege level. 

The lexical nesting level determines the number of stack frame pointers to copy into the 
new stack frame from the preceding frame. A stack frame pointer is a doubleword used 
to access the variables of a procedure. The set of stack frame pointers used by a proce­
dure to access the variables of other procedures is called the display. The first double­
word in the display is a pointer to the previous stack frame. This pointer is used by a 
LEAVE instruction to undo the effect of an ENTER instruction by discarding the cur­
rent stack frame. 
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Example: ENTER 2048,3 

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two 
previous stack frames in the stack frame for this procedure. 

After the· ENTER instruction creates the display for a procedure, it allocates the 
dynamic (automatic) local variables for the procedure by decrementing the contents of 
the ESP register by the number of bytes specified in the first parameter. This new value 
in the ESP register serves as the initial top-of-stack for all PUSH and POP operations 
within the procedure. 

To allow a procedure to address its display, the ENTER instruction . leaves the EBP 
register pointing to the first doubleword in the display. Because stacks grow down, this is 
actually the doubleword with the highest address in the display. Data manipulation 
instructions which specify the EBP register as a base register automatically address 
locations within the stack segment instead of the data segment. 

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical 
level is 0, the non-nested form is used. The non-nested form pushes the contents of the 
EBP register on the stack, copies the contents of the ESP register into the EBP register, 
and subtracts the first operand from the contents of the ESP register to allocate dynamic 
storage. The non-nested form differs from the nested form in that no stack frame point­
ers are copied. The nested form of the ENTER instruction occurs when the second 
parameter (lexical level) is not zero. 

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the 
number of bytes of dynamic storage to allocate for local variables, and LEVEL is the 
lexical nesting level. 

The main procedure (in which all other procedures are nested) operates at the highest 
lexical level, level 1. The first procedure it calls operates at the next deeper lexical level, 
level 2. A level 2 procedure can access the variables of the main program, which are at 

Push EBP 
Set a temporary value FRAM~PTR : = ESP 
If LEVEL 0 then 

End if 

Repeat LEVEL - 1) times: 
EBP :=EBP -4 
Push the doubleword pointed to by EBP 

End repeat 
Push FRAM~PTR 

EBP :=FRAM~PTR 
ESP: = ESP - STORAGE 

Figure 3-15. Formal Definition of the ENTER Instruction 
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fixed locations specified by the compiler. In the case of level 1, the ENTER instruction 
allocates only the requested dynamic storage on the stack because there is no previous 
display to copy. 

A procedure which calls another procedure at a lower lexical level gives the called pro­
cedure access to the variables of the caller. The ENTER instruction provides this access 
by placing a pointer to the calling procedure's stack frame in the display. 

A procedure which calls another procedure at .the same lexica.- level should not give 
access to its variables. In this case, the ENTER instruction copies only that part of the 
display from the calling procedure which refers to previously nested procedures ope rat­
ingat higher lexical levels. The new stack frame does not include the pointer for 
addressing the calling procedure's stack frame. 

The ENTER instruction treats a re-entrant procedure' as, a call to a procedure at the 
same lexical level. In this case, each succeeding iteration of the re-entrant procedure can 
address only its own variables and the variables of the procedures within which it is 
nested. A re-entrant procedure always can address its own variables;, it does not require 
pointers to the stack frames of previous iterations. 

By copying only the stack frame pointers 'of, procedures at higher lexical levels, the 
ENTER instruction makes certain that procedures access only those variables of higher 
lexical levels, not those at parallel lexical levels (see Figure 3·J6). 

Block-structured languages can use the lexical levels defined by ENTER to control ac­
cess to the variables of nested procedures. In the figure, for example, if PROCEDURE 
A calls PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C 

MAIN (LEXICAL LEVEL 1) 

PROCEDURE A (LEXICAL LEVEL 2) 

PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

PROCEDURE D (LEXICAL LEVEL 4) 

240486i26 

Figure 3-16. Nested Procedures 
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will have access to the variables of MAIN and PROCEDURE A, but not those of 
PROCEDURE B because they are at the same lexical level. The following definition 
describes the access to variables for the nested procedures in the figure. 

1. MAIN has variables at fixed locations. 

2. PROCEDURE A can access only the variables of MAIN. 

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE B cannot access the variables of PROCEDURE C or PROCE­
DURED. 

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE C cannot acces~ the variables of PROCEDURE B or PROCE­
DURED. 

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, 
and MAIN. PROCEDURE D cannot access the variables of PROCEDURE B. 

In the following diagram, an ENTER instruction at the beginning of the MAIN program 
creates three doublewords of dynamic storage for MAIN, but copies no pointers from 
other stack frames (See Figure 3-17). The first doubleword in the display holds a copy of 
the last value in the EBP register before the ENTER instruction was executed. The 
second doubleword (which, because stacks grow down, is stored at a lower address) 
holds a copy of the contents of the EBP register following the ENTER instruction. After 
the instruction is executed, the EBP register. points to the first doubleword pushed on 
the stack, and the. ESP register points to t~e last doubleword in the stack frame. 

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (See 
Figure 3-18). The first doubleword is the last value held in MAIN's EBP register. The 
second doubleword is a pointer to MAIN's stack frame which is copied from the second 
doubleword in MAIN's display. This happens to be another copy of the last value held in 
MAIN's EBP register. PROCEDURE A can access variables in MAIN because MAIN 

DISPLAY [ 

DYNAMIC [ 
STORAGE 

OLD EBP 

MAIN'S EBP 

~ EBP 

~ ESP 

Figure 3-17. Stack Frame After Entering MAIN 
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DISPLAY [ 

DYNAMIC [. 
STORAGE . 

." 

OLD EBP 

MAIN'S EBP 

MAIN'S EBP 

MAIN'S EBP 

. PROCEDURE A'S EBP 

~ EBP 

~ EBP 

Figure 3-18. Stack Frame After Entering PROCEDURE A 
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is at level 1. Therefore the base address for the dynamic storage used in MAIN is the 
current address in the EBP' register, plus four bytes to account for the saved contents of 
MAIN's EBP register. All dynamic variables for MAIN are at fixed, positive offsets from 
this value. 

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new 
display (See Figure 3-19). The first doubleword holds a copy of the last value in PRO­
CEDURE A's EBP register. The second and third doublewords are copies of the two 
stack frame pointers in PROCEDURE A's display. PROCEDURE B can access vari­
ables in PROCEDURE A and MAIN by using the stack frame pointers in its display. 

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new 
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the 
last value in PROCEDURE B's EBP register. This is used by the LEAVE instruction to 
restore PROCEDURE B's stack frame. The second and third doublewords are copies of 
,the two stack frame pointers in PROCEDURE A's display. If PROCEDURE C were at 
the next deeper lexical level from PROCEDURE B, a fourth doubleword would be 
copied, which would be the stack frame pointer to PROCEDURE B's local variables. 

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCE· 
DURE C is not intended to access PROCEDURE B's variables. This does not mean 
that PROCEDURE C is completely isolated from PROCEDURE B; PROCEDURE C 
is called by PROCEDURE B, so the pointer to the returning stack frame is a pointer to 
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D'SPUY [ 

DYNAMIC [ 
STORAGE 

OLD EBP 

MAIN'S EBP 

MAIN'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE A'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE B'S EBP 

04- EBP 

~ ESP 

Figure 3-19. Stack Frame After Entering PROCEDURE B 
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PROCEDURE B's stack frame. In addition, PROCEDURE B can pass parameters to 
PROCEDURE C either on the stack or through variables global to both procedures 
(Le., variables in the scope of both procedures). 

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The 
LEAVE instruction does not have any operands. The LEAVE instruction copies the 
contents of the EBP register into the ESP register to release all stack space allocated to 
the procedure. Then the LEAVE instruction restores the old value of the EBP register 
from the stack. This simultaneously restores the ESP register to its original value. A 
subsequent RET instruction then can remove any arguments and the return address 
pushed on the stack by the calling program for use by the procedure. 

3.8 FLAG CONTROL INSTRUCTIONS 

The flag control instructions change the state of bits in the EFLAGS· register, as showri 
in Table 3-5. 
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DISP~V [ 

DYNAMIC [ 
STORAGE 

OLD EBP 

MAIN'S EBP 

MAIN'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE A'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE B'S EBP 

PROCEDURE B'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE C'S EBP 

~ EBP 

I.- ESP 

Figure 3-20. Stack Frame After Entering· PROCEDURE C 

Table 3-5. Flag Control Instructions 

Instruction . Effect 

STC (Set Carry Flag) CF~ 1 
CLC (Clear Carry Flag) CF~O . 
CMC (Complement Carry Flag) CF ~ - (CF) 
CLD (Clear Direction Flag) DF~O 

STD (Set Direction Flag) DF~ 1 

3-36 

240486i30 



APPLICATION PROGRAMMING 

3.8011 Carry and Direction Flag Control Instructions 

The carry flag instructions are useful with instructions like the rotate-with-carry instruc­
tions RCL and RCR. They can initialize the carry flag, CF, to a known state before 
execution of an instruction which copies the flag into an operand. 

The direction flag control instructions set or clear the direction flag, DF, which controls 
the direction of string processing. If the DF flag is clear, the processor increments the 
string index registers, ESI and EDI, after each iteration of a string instruction. If the DF 
flag is set, the processor decrements these index registers. 

3.8.2 Flag Transfer Instructions 

Though specific instructions exist to alter the CF and DF flags, there is no direct method 
of altering the other application-oriented flags. The flag transfer instructions allow a 
program to change the state of the other flag bits using the bit manipulation instructions 
once these flags have been moved to the stack or the AH register. 

The LAHF and SAHF instructions deal with five of the status flags, which are used 
primarily by the arithmetic and logical instructions. 

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register 
bits 7, 6, 4, 2, and 0, respectively (see Figure 3-21). The contents of the remaining bits 5, 
3, and 1 are left undefined. The contents of the EFLAGS register remain unchanged. 

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF, 
ZF, AF, PF, and CF flags, respectively (see Figure 3-21). 

The PUSHF and POPF instructions are not only useful for storing the flags in memory 
where they can be examined and modified, but also are useful for preserving the state of 
the EFLAGS register while executing a subroutine. 

I ; I ; I : I ; I : I ; I : I ; I 
THE BIT POSITIONS OF THE FLAGS ARE THE SAME, 
WHETHER THEY ARE HELD IN THE EFLAGS REGISTER 
OR THE AH REGISTER. BIT POSITIONS SHOWN AS 
o OR 1 ARE INTEL RESERVED. DO NOT USE. 

Figure 3-21. Low Byte of EFLAGS Register 
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PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see 
Figure 3-22). The PUSHFD instruction pushes the entire EFLAGS register onto the 
stack (the RF flag reads as clear, however). 

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 14, 
11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege 
level of the current code segment is 0 (most privileged), the JOPL bits (bits 13 and 12) 
also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected. 
ThePOPFD instruction pops a doubleword into the EFLAGS register, and it can 
change the state of the AC bit (bit 18) as well as the bits affected by a POPF instruction. 

3.9 NUMERIC INSTRUCTIONS 

The i486 processor includes hardware and instructions for high-precision numericoper­
ations on a variety of numeric data types, including 80-bit extended real and 64-bit long 
integer. Arithmetic, comparison, transcendental, and data transfer instructions are avail­
able. Frequently-used constants are also provided, to enhance the speed of numeriC 
calculations. 

The numeric instructions are embedded in the instruction stream of the i486 processor, 
as though they were being executed by a single device having both integer and floating­
point capabilities. But the floating-point unit of the i486 CPU actually works in parallel 
with the integer unit, resulting in higher performance. 

Part III of this ~anual, Chapters 14-18, describe the numeric instructions in more detail. 

.... 1 ~I----------------------~·I PUSHFD/POPFD 

1-011 ~I-----------•• II PUSHF/POPF 

31 15 

o A V R o N 
.oJ 00 o 0 o 0 o 0 o 0 o 0 o 0 a. 

C MF T 2 F F 

BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED. 
DO NOT USE. 

o 

I T S Z o A o P 1 C 
F F F F F F F 

Figure 3-22. Flags Used with PUSHF and POPF 
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3.10 SEGMENT REGISTER INSTRUCTIONS 

There are several distinct types of instructions which use segment registers. They are 
grouped together here because, if system designers choose an unsegmented model of 
memory organization, none of these instructions are used. The instructions which deal 
with segment registers are: 

1. Segment-register transfer instructions. 
MOV SegReg, ••• 
MOV "', SegReg 
PUSH SegReg 
POP SegReg 

2. Control transfers to another executable segment. 

3. 

JMP far 
CALL far 
RET far 

Data pointer instructions. 
LDS reg, 48-bit memory operand 
LES reg, 48-bit memory operand 
LFS reg, 48-bit memory operand 
LGS reg, 48-bit memory operand 
LSS reg, 48-bit memory operand 

4. Note that the following interrupt-related instructions also are used in unsegmented 
systems. Although they can transfer execution between segments when segmentation 
is used, this is transparent to the application programmer. 
INT n 
INTO 
BOUND 
IRET 

3.10.1 Segment-Register Transfer Instructions 

Forms of the MOV, POP, and PUSH instructions also are used to load and store seg­
ment registers. These forms operate like the general-register forms, except that one 
operand is a segment register. The MOV instruction cannot copy the contents of a 
segment register into another segment register. 

The POP and MOV instructions cannot place a value in the CS register (code segment); 
only the far control-transfer instructions affect the CS register. When the destination is 
the SS register (stack segment), interrupts are disabled until after the next instruction. 

On the 386™ DX processor, loading a segment register always resulted in locked read 
and write cycles to set the Accessed bit. On the i486 processor, locked cycles are gener­
ated only if the Accessed bit is not already set. 
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No 16-bit operand size prefix is needed when transferring data between a segment reg­
ister and a 32-bit general register. 

3.10.2 Far Control Transfer Instructions 

The far control-transfer instructions transfer execution to a destination in another seg­
ment by replacing the contents of the CS register. The destination is specified by a far 
pointer, which is a 16-bit segment selector and a 32-bit offset into the segment. The far 
pointer can be an immediate operand or an operand in memory. 

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS 
registers on the stack. 

Far RET. An intersegment RET instruction restores the values of the CS and EIP reg­
isters from the stack. 

3.10.3 Data Pointer Instructions 

The data pointer instructions load a far pointer into the processor registers. A far 
pointer consists of a 16-bit segment selector, which is loaded into a segment register, and 
a 32-bit offset into the segment, which is loaded into a general register. 

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS 
register and a general register. The source operand must be a memory operand, and the 
destination operand must be ':l general register. 

~xample: LDS ESI, STRING_X 

Loads the DS register with the segment selector for the segment addressed by 
STRING~, and loads the offset within the segment to STRING~ into the ESI 
register. Specifying the ESI register as the destination operand is a convenient way 
to prepare for a string operation, when the source string is not in the current data 
segment. 

LES (Load Pointer Using ~S) has the same effect as the LDS instruction, except the 
segment selector is loaded into the ES register rather than the DS register. 

~xample: LES EDI, DESTINA TION_X 

Loads the ES register with the segment selector for the segment addressed by DES­
TINATION~, and loads the offset within the segment to DESTINATION~ into 
the EDI register.' This instruction is a convenient way to select a destination for 
string operation if the desired location is not in the current E-data segment. 

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS 
register receives the segment selector rather than the DS register. 
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LGS (LOad Pointer Using GS) has the same effect as the LDS instruction, except the GS 
register receives the segment selector rather than the DS register. 

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS 
register receives the segment selector rather than the DS register. This instruction is 
especially important, because it allows the two registers which identify the stack (the SS 
and ESP registers) to be changed in one uninterruptible operation. Unlike the other 
instructions which can load the SS register, interrupts are not inhibited at the end of the 
LSS instruction. The other instructions, such as POP SS, turn off interrupts to permit 
the following instruction to load the ESP register without an intervening interrupt. Since 
both the SS and ESP registers can be loaded by the LSS instruction, there is no need to 
disable or re-enable interrupts. 

3.11 MISCELLANEOUS INSTRUCTIONS 

The following instructions do not fit in any of the previous categories, but are no less 
important. 

The BSWAP, XADD, and CMPXCHG instructions are not available on 386 DX or SX 
microprocessors. A, 386 CPU can perform the same operations in multiple instructions. 
To use these instructions, always include functionally-equivalent code for 386 CPUs. Use 
the code in Figure 3-23 to determine whether these instructions can be used. 

,3.11.1 Address Calculation Instruction 

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory 
(rather than its contents) into the destination operand. The source operand must be in 
memory, and the destination operand must be a general register. This instruction is 
especially useful for initializing the ESI or EDI registers before the execution of string 
instructions.or initializing the EBX register before an XLAT instruction. The LEA in­
struction can perform any indexing or scaling which may be needed. 

Exanmple: LEA EBX, EBCDIC_TABLE 

Causes, the processor to place the address of the starting location of the table la-
beled EBCDIC_TABLE into EBX. ' 

3.11.2 No-Operation Instruction 

NOP (No Operation) occupies a byte of code space. When executed, it increments the 
EIP register to point at the next instruction, but affects nothing else. 
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$title("Oetermirie CPU id for 386 or i486 CPUs") 

,name CPU IO 
public i8386 

code segment er public use32 

Identify the current CPU being executed. 
Return with EAX=O for i486 CPU or EAX=l for 386 cpu. 
Leave ESP, EBP, EBX, ESI, and EOIunchanged. 

, 
is386 proc near 

mov edx,esp 
and esp, not 3 
pushfd 
pop eax 
mov ecx,eax 
xor eax,40000H' 
push eax 
popfd 
pushfd 
pop eax 
xor eax,ecx 

. shr eax,l8 
and eax,l 
push ecx 
popfd 
mov esp,edx 
ret 

is386 endp 

code ends 
end 

Save current stack pointer to align it 
Align stack to avoid AC fault 
Push EFLAGS 
Get EFLAGS value 
Save original EFLAGS 
Flip AC bit in EFLAGS 
Copy to EFLAGS 

; Get new EFLAGS value 
, ;.' Put into eax 

See if AC bit changed 
EAX-4000H if 386 CPU, 0 if i486 CPU 
SetEAX-l if 386 CPU, 0 if i486 CPU 
Ignore all other bits 

Restore original EFLAGS register 
Restore original stack pointer 

Figure 3-23. CPUJD Detection Code 

3.11.3 Translate Instruction 

XLATB (Translate) replaces the contents of the AL register with a byte read from a 
translation table in memory. The contents of the AL register are interpreted as an 
unsigned index into this table, with the contents of the EBX register used as the base 
address. The XLAT instruction does the same operation and loads its result into the 
same register, but it gets the byte operand from memory. This function is used to convert 
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character codes from one alphabet into another. For example, an ASCII code could be 
used to look up its EBCDIC equivalent. 

3.11.4 Byte Swap Instruction 

BSWAP (Byte Swap) reverses the byte order in a 32-bit register operand. Bit positions 
7 .. 0 are exchanged with 31..24, and bit positions 15 .. 8 are exchanged with 23 .. 16. This 
instruction is useful for converting between "big-endian" and "little-endian" data for­
mats. Executing this instruction twice in a row leaves the register in the same value as 
before. This instruction also speeds execution of decimal arithmetic by operating on four 
digits at a time as shown in Figure 3-24. See introduction for Section 3.11 regarding 386 
processors when using BSW AP. 

3.11.5 Exchange-and-Add Instruction 

XADD (Exchange and Add) takes two operands: a source operand in a register and a 
destination operand 'in a register or memory. The source operand is replaced with the 
destination operand, and the destination operand is replaced with the sum of the source 
and destination operands. The flags ,reflect the result of the addition. This instruction 
can be combined with LOCK in a multiprocessing system to allow multiple processors to 
execute one do loop. See introduction for Section 3.11 regarding 386 processors when 
using XADD. 

3.11.6 Compare-and-Exchange Instruction 

CMPXCHG (Compare and Exchange) takes three operands: a source operand in a reg­
ister, a destination operand in a register or memory, and the accumulator (i.e., the AL, 
AX, or EAX register, depending on operand size). If the values in the destination oper­
and and the accumulator are equal, the destination operand is replaced with the source 
operand. Otherwise, the original value of the destination operand is loaded into the 
accumulator. The flags reflect the result which would have been obtained by subtracting 
the destination operand from the accumulator. The ZF flag is set if the values in the 
destination operand and the accumulator were equal, otherwise it is cleared. 

The CMPXCHG instruction is useful for testing and modifying semaphores. It performs 
a check to see if a semaphore is free, and if so mark it allocated else get the id of the 
current owner in one uninterruptible operation. In a single processor system, it elimi­
nates the need to switch to level 0 to disable interrupts to execute multiple instructions. 
For multiple processor systems, CMPXCHG can be combined with LOCK to perform all 
bus cycles atomically. See introduction for Section 3.11 regarding 386 processors when 

'using CMPXCHG. 
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$title('ASCII Add/Subtract With BSWAP') 

cod:e 

name ASCII_arith 

segment er public use32 

Add a ,string of 4 ASCII decimal digits together. 
The upper nibble MUST ,be 3. 
OS: [ESI] points at operand 1 
OS: [EBX] points at operand 2 

.OS: [EOI] points at the destination 

add10 proc near 

Perform ASCII add using BSWAP instruction on i486 CPU. 

mov 
bswap 
add 
mov 
bswap 
add 
rcr 
mov 
and 
sub 
shr 
and 

add 

or 
bswap 
mov 
rcl 
ret 

eax, [esi] 
eax 
eax,96969696H 
ecx, [ebx] 
ecx 
eax,ecx 
ch,l 
edx, eax 
eax,OFOFOFOFOH 
edx,eax 
eax,4 
eax,OAOAOAOAH 

eax,edx 

eax,30303030H 
eax 
[edi],eax 
c~,l 

Get low four digits of first operand 
Put into big-endian form 
Adjust for addition so carries work 
Get low four digits of second operand 
Put into big endian form 
00 the add with inter-digit carry 
Save the carry flag 
Save the value 
Extract upper nibble 
Zero out upper nibble of each byte 
Prepar. for fixup . 
If non-zero upper nibble then form 
10 as adjustment value to lower nibble 
Form adjusted lower nibble value 
upper nibbles may be 1 from adjustment, 
Convert back to ASCII 
Back to little-endian 
Set destination 
Restore carry 

add10 endp 

. ' 
I 

sub10 

Subtract a string of 4 ASCII decimal digits together. 
The upper nibble must be 3. 
OS: [ESI] points at operand 1 
OS: [EBX] points at operand 2 [ESI]-[EBX] 
OS: [EOI] points at the destination 

proc near 

Perform ASCII subtract using BSWAP instruction on i486 CPU. 

Figure 3-24. ASCII Arithmetic Using BSWAP (Part 1 of 2) 
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mov 
bswap 
mov 
bswap 
sub 
rcr 
mov 
and 
sub 
shr 
and 

add 

or 
bswap 
mov 
rcl 
ret 

sublO 
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eax, [esi] 
eax 
ecx, [ebx] 
ecx 
eax,ecx 
ch,l 
edx,eax 
eax,OFOFOFOFOH 
edx,eax 
eax,4 
eax,OAOAOAOAH 

eax,edx 

eax,30303030H 
eax 
[edi],eax 
ch,l 

endp 

Get low four digits of first operand 
Put into big-endian form 
Get low four digits of second operand 
Put into big endian form 
Do the subtract with inter-digit borrow 
Save the carry flag 
Save the value 
Extract upper nibble, F if borrow happened 
Zero out upper nibble of each byte 
Prepare for fixup 
If non-zero upper nibble then form 
10 as adjustment value to lower nibble 
Form adjusted lower nibble value 
upper nibbles may be 1 from adjustment 
Convert back to ASCII 
Back to little-endian 
Set destination 
Restore borrow 

code ends 
end 

Figure 3-24. ASCII Arithmetic Using BSWAP (Part 2 of 2) 
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CHAPTER 4 
SYSTEM ARCHITECTURE 

Many of the architectural features of the i486™ processor are used only by system pro­
grammers. This chapter presents an overview of these features. Application program­
mers may need to read this chapter, and the following chapters which describe the use of 
these features, in order to understand the hardware facilities used by system program­
mers to create a reliable and secure environment for application programs. The system­
level architecture also supports powerful debugging features 'which application 
programmers may wish to use during program development. 

The system-level features of the architecture include: 

Memory Management 
Protection . 
Multitasking 
Input/Output 
Exceptions and Interrupts 
Initialization· 
Coprocessing and Multiprocessing 
Debugging 
Cache Management 

These features are supported by registers and instructions, all of which are introduced in 
the following sections. The purpose of this chapter is not to explain each feature in 
detail, but rather to place the remaining chapters of Part II in perspective. When a 
register or instruction is mentioned, it is accompanied by an explanation or a reference 
to a following chapter. 

4.1 SYSTEM REGISTERS 

The registers intended for use by system programmers fall into these categories: 

EFLAGS Register 
Memory-Management Registers 
Control Registers 
Debug Registers 
Test Registers 

The system registers control the execution environment of application programs. Most 
systems restrict access to these facilities by application programs (although systems cal) 
be built where all programs run at the most privileged level, in which case application 
programs are allowed to modify these facilities). 
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4.1.1 System Flags 

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging, 
task switching, and the virtual-SOS6 mode. An application program should ignore these 
flags, and should not attempt to change their state. In most systems,' an attempt t'q 
change the state of a system flag by an application program results in an exception~ 
These flags are shown in Figure 4-1. ' 

AC (Alignment Check Mode, bit IS) 

Setting the AC flag and the AM bit in the CRO register enables alignment checking on 
memory references. An alignment-check exception is generated when ,reference is made 
to an unaligned operand, such as a word at an odd byte address or a doubleword at an 
address which is not an integral multiple of four. Alignment-check exceptions are gen­
erated only in user mode (privilege level 3). Memory references which default toprivi­
lege level 0, such as segment descriptor loads, do not generate this exception even when 
caused by a memory reference in user-mode. 

The alignment check interrupt can be used to check alignment of data. This is useful 
when exchanging data with other processors like iS60™ 64-bit microprocessor which 
require all data to be aligned. The alignment check interrupt can also be used by.inter­
preters to flag some pointers as special by misaligning the pointer. This eliminates over­
head of checking each pointer and only handle the special pointer when used. 

31 

o 0 

111111111 
8765432109876543210 

o A V RoO 
....I o D I T S Z 0 A 0 P 1 C o 0 o 0 o 0 o 0 o 0 0 

C M F F !!:: F F F F F F F F F 

ALIGNMENT CHECK (AC) J J 
VIRTUAL 8086 MODE(VM) 
RESUME FLAG (RF) 
NESTED FLAT (NFl 
I/O PRIVILEGE LEVEL (IOPL) 
INTERRUPT ENABLE FLAG (IF) 
TRAP FLAG (TF) 

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED 
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ. 

Figure 4·1. System Flags 
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VM (Virtual-8086 Mode, bit 17) 

Setting the VM flag places the processor in virtual-8086 mode, which is an emulation of 
the programming environment of an 8086 processor. See Chapter 23 for more 
information. 

RF (Resume Flag, bit 16) 

The RF flag temporarily disables debug' exceptions so that an instruction can be re­
started after a debug exception without immediately causing another debug exception. 
When the debugger is entered, this flag allows it to run normally rather than recursively 
calling itself until the stack overflows. The RF flag is not affected by the POPF instruc­
tion, but it is affected by the POPFD and IRET instructions. See Chapter 9 and 
Chapter 11 for details. 

NT (Nested Task, bit 14) 

The processor uses the nested task flag to control chaining of interrupted and called 
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is affected 
by the POPF, POPFD, and IRET instructions. Improper changes to the state of this flag 
can generate unexpected exceptions in application programs. See Chapter 7 and 
Chapter 9 for more information on nested tasks. 

10PL (I/O Privilege Level, bits 12 and 13) 

The I/O privilege level is used by the protection mechanism to control access to the I/O 
address space. The privilege level of the code segment currently executing (CPL) and the 
10PL determine whether this field can be modified by the POPF, POPFD, and IRET 
instructions. See Chapter 8 for more information. 

IF (Interrupt-Enable Flag, bit 9) 

Setting the IF flag puts the processor in a mode in which it responds to maskable inter­
rupt requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF 
flag has no effect on either exceptions or nonmaskable interrupts (NMI interrupts). The 
CPL and 10PL determine whether this field can be modified by the CLI, STI, POPF, 
POPFD, and IRET instructions. See Chapter 9 for more details about interrupts. 

TF (Trap Flag, bit 8) 

Setting the TF flag puts the processor into single-step mode for debugging. In this mode, 
the processor generates a debug exception after each instruction, which allows a pro­
gram to be inspected as it executes each instruction. Single-stepping is just one of several 

. debugging features of the i486 processor. If an application program sets the TF flag 
using the POPF, POPFD, or IRET instructions, a debug exception is generated. See 
Chapter 9 and Chapter 11 for more information. 
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4.1.2 Memory-Management Registers 

Four registers of the i486 processor specify the location of the data structures which 
control segmented memory management, as shown in Figure 4-2. Special instructions are 
provided for loading and storing these registers. The GDTR and IDTR registers may be 
loaded with instructions which get a six-byte block of data from memory. The LDTR and 
TR registers may be loaded with instructions which take a 16-bit segment selector as an 
operand. The remaining bytes of these registers are then loaded automatically by the 
processor from the descriptor refe~enced by the op~rand. 

Most systems will protect the instructions which ,load memory-management registers 
from use by application programs (although a system, in which no pro!ection is used is 
possible). 

GDTR Global Descriptor Table Register 

This register holds the 32-bit base address and 16-bit segment limit for the global de­
scriptor table (GDT). When a reference is made,to data in memory, a segment selector 
is used to find a segment descriptor in the GDT or LDT.A segment descriptor contains 
the base address for a segment. See Chapter 5 for an 'explanation of segmentation. 

LDTR Local Descriptor Table Register 

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit segment 
selector for the local descriptor table (LDT). The segment which contains the LDT has 
a segment descriptor in the GDT. There is no segment descriptor for the GDT.' When a 
reference is made to data in memory, a segment selector is used to' find a segment 
descriptor in the GDT or LDT. 'A segment descriptor contains the 'base address for a 
segment. See Chapter 5 for an explanation of segmentation. 

SYSTEM ADDRESS REGISTERS 
47 32·BIT LINEAR BASE ADDRESS 16 15 LIMIT' 0 

GDTRI 
LDTR~----------~-------r---------t 

~------------------~------~ 
SYSTEM SEGEMENT 

REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED) 

'15 0' 32·BIT LINEAR BASE ADDRESS 32·BIT SEGMENT LIMIT ATIRIBUTES' 

II II TR SELECTOR 

IDTR SELECTOR 

240486i34 

Figure 4-2. Memory Management Registers 
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IDTR Interrupt Descriptor Table Register 

This register holds the 32-bit base address and 16-bit segment limit. for the interrupt 
descriptor table (IDT). When an interrupt occurs, the interrupt vector is used as an 
index to get a gate descriptor from this table. The gate descriptor contains a pointer used 
to start up the interrupt handler. See Chapter 9 for details of the interrupt mechanism. 

TR Task Register 

This register holds the 32-bit base address, 16-bit segment limit, descriptor attributes; 
and 16-bit segment selector for the task currently being executed. It references a task 
state segment (TSS) descriptor in the global descriptor table. See Chapter 7 for a de­
scription of the multitasking features of the i486 processor. 

4.1.3 Control Registers 

Figure 4-3 shows the format of the control registers CRO, CR1, CR2, and CR3. Most 
systems prevent application programs from loading the control registers (although an 
unprotected system would allow this). Application programs can read this register to 
determine if a numerics coprocessor is present. Forms of the MOV instruction allow the 
register to be loaded from or stored in general registers. For example: . 

MOV EAX, CRe 
MOV CR3, E8X 

The CRO register contains system control flags, which control modes or indicate states 
which apply generally to the processor, rather than to the execution of an individual task. 
A program should not attempt to change any of the reserved bit positions. Reserved bits 
should always be set to the value previously read. 

31 23 15 

PAGE DIRECTORY BASE REGISTER (PBDR) 

PCN 
GDW 

29 

PAGE FAULT LINEAR ADDRESS 

RESERVED 

RESERVED 

Figure 4-3. Control Registers 
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The LMSW instruction can only modify the lower 16 bits of CRO. 

PG (Paging, bit 31) 

This bit enables paging when set and disables paging when clear. See Chapter 5 for more 
information about paging. See Chapter 10 for information on how to enable paging. 

When an exception is generated during paging, the CR2 register has the 32-bit linear 
address which caused the exception. See Chapter 9 for more information about handling 
exceptions generated during paging (page faults). 

When paging is used, the CR3 register has the 20 most-significant bits of the address of 
the page directory (the first-level page table). The CR3 register is also known as the 
page-directory base register (PDBR). Note that the page directory must be aligned to a 
page boundary, so the low 12 bits of the register are ignored. Unlike the 386™ DX 
processor, the i486 processor assigns functions to two of these bits. These are: 

PCD (Page-Level Cache Disable, bit 4 of CR3) 

The state of this bit is driven on the PCD pin during bus cycles which are not paged, 
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus 
cycles when paging is not enabled. The PCD pin is used to control caching in an external 
cache on a cycle-by-cycle basis. 

PWT (Page-Level Writes Transparent, bit 3 of CR3) 

The state of this bit is driven on the PWT pin during bus cycles which are not paged, 
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus 
cycles when paging is not enabled. The PWT pin is used to control write-through in an 
external cache on a cycle-by-cycle basis. 

CD (Cache Disable, bit 30) 

This bit enables the internal cache when dear and disables the cache when set. Cache 
misses do not cause cache line fills when the bit is set. Note that cache hits are not 
disabled; to completely disable the cache, the cache must be flushed. See Chapter 12 for 
information on caching. 

NW (Not Write-through, bit 29) 

This bit enables write-throughs and cache invalidation cycles when clear and disables 
invalidation cycles and write-throughs which hit in the cache when set. See Chapter 12 
for information on caching. Disablingwrite-throughs can allow stale. data to appear in 
the cache. 
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AM (Alignment Mask, bit 18) 

This bit allows alignment checking when set and disables alignment checking when clear. 
Alignment checking is performed only when the AM bit is set, the AC flag is set, and the 
CPL is 3 (user mode). 

WP (Write Protect, bit 16) 

When set, this bit write-protects user-level pages against supervisor-mode access. When 
this bit is clear, read-only user-level pages can be written by a supervisor prqcess. This 
feature is useful for implementing the copy-on-write method of creating a new process 
(forking) used by some operating systems, such as UNIX. 

NE (Numeric Error, bit 5) 

This bit enables the standard mechanism for reporting floating-point numeric errors 
when set. When NE is clear and the IGNNE# input is active, numeric errors are ig­
nored. When the NE bit is clear and the IGNNE# input is inactive, a numeric error 
causes t~e processor to stop and wait for an interrupt. The interrupt is generated by 
using the FERR# pin to drive an input to the interrupt controller (the FERR# pin 
emulates the ERROR# pin of the 80287 and 38TM DX coprocessors). The NE bit, 
IGNNE# pin, and FERR# pin are used with external logic to implement PC-style error 
reporting. 

ET (Extension Type, bit 4) 

This bit is one to indicate support of 387 DX math coprocessor instructions (Intel® 
reserved). 

TS (Task Switched, bit 3) 

The processor sets the TS bit with every task switch and tests it when interpreting 
floating-point arithmetic instructions. This bit allows delaying save/restore of numeric 
content until the numeric data is actually used. The CL TS instruction will clear this bit. 

EM (Emulation, bit 2) 

When either the EM and TS bits are set, execution of a WAIT or numeric instruction 
generates the coprocessor-not-available exception. EM can be set to cause exception 7 
on any WAIT or numeric instruction. 

MP (Math Present, bit 1) 

On the 80286 and 386 DX processors, the MP bit controls the function of the WAIT 
instruction, which is used to synchronize with a coprocessor. When running programs on 
the i486 processor, this bit should be set. 
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PE (Protection Enable, bit 0) 

Setting the PE bit enables segment-level protection. See Chapter 6 for more information 
about protection. See Chapter 10 and Chapter 22 for information on how to enable 
paging. 

4.1.4 Debug Registers 

The debug registers bring advanced debugging abilities' to the i486 processor, including 
data breakpoints and the ability to set instruction breakpoints without modifying code 
segments (useful in debugging ROM-based software). Only programs executing at the 
highest privilege level can access these registers. See Chapter 11 for a complete descrip­
tion of their formats and use. The debug registers are shown in Figure 4-4. 

4.1.5 Test Registers 

The test registers are not a formal part of the architecture. They are an implementation­
dependent facility provided for testing the translation lookaside buffer (TLB) and the 
cache. See Chapter 10 for a complete description of their' formats and use. The test 
registers are shown in Figure 4-5. 

31 23 15 7 o 

LENIRZVlLENIR~LENIRIWILENIRIW 00 o 0 0 ol~I~I~I~WI~ GL GL 
33221100 1 1 00 DR7 

0000000000000000 ~IS S 000000000 SS S S 
I TS 0 32 1 0 

DRS 

RESERVED DR5 

RESERVED DR4 

BREAKPOINT 3 LINEAR ADDRESS DR3 

BREAKPOINT 2 LINEAR ADDRESS DR2 
r . 

BREAKPOINT 1 LINEAR ADDRESS DR1 

. 
BREAKPOINT 0 LINEAR ADDRESS ORO 

NOTE: 0 MEANS INTEL RESERVED. DO NOT DEFINE. 
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Figure 4-4. Debug Registers 
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31 
1 1 1 
2109876543210 
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LINEAR ADDRESS V 0 o U 
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U w 
# :0000 C 

E C 
UNUSED SET SELECT N T 

T l 

LINEAR ADDRESS V lRU VALID 000 

DATA 

V VALID 
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ENT ENTRY 

Figure 4-5. Test Registers 

4.2 SYSTEM INSTRUCTIONS 

System instructions deal with functions such as: 

1. Verification of pointer parameters (see Chapter 6): 

TR7 

TR6 

TR5 

TR4 

TR3 

240486i37 

Instruction Description Useful to Protected from 
Application? Application? 

ARPL Adjust RPL No No 
LAR Load Access Rights Yes No 
LSL Load Segment Limit Yes No 
VERR Verify for Reading Yes No 
VERW Verify for Writing Yes No 
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2. Addressing descriptor tables (see Chapter 5): 

Instruction Description Useful to Protected from 
Application? Application? 

LLOT Load LOT Register Yes No 
SLOT Store· LOT Register .Yes No 
LGOT Load GOT Register No Yes 
SGOT Store GOT Register No No 

3. Multitasking (see Chapter 7):. 
.. 

Instruction Description Useful to Protected from 
Application? Application? 

LTR Load Task Register No Yes 
STR Store Task Register Yes No 

4. Floating-Point Numerics (see Part III): . 

Instruction Description Useful to Protected from 
Application? Application? 

CLTS Clear TS bit in CRO No Yes 
ESC Escape Instructions Yes No 
WAIT Wait Until Yes No 

Coprocessor Not Busy 

5. Input and Output (see Chapter 8): 

Instruction Description Useful to Protected from 
Application? Application? 

IN Input Yes Can be 
OUT Output Yes Can be 
INS Input String Yes Can' be 
OUTS Output String Yes Can be 

6. Interrupt control (see Chapter 9): 

Instruction Description Useful to Protected from 
Application? Application? 

CLI Clear IF flag Can be . Can'be 
STI Store IF flag Can be Can be 
LlOT Load lOT Register No Yes 
SlOT Store lOT Register No No 
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7. Debugging (see Chapter 11): 

Instruction Description Useful to Protected from 
Application? Application? 

MOV Load and store debug No Yes 
registers 

8. Cache Management: 

Instruction Description Useful to Protected from 
Application? Application? 

INVD Invalidate cache, No Yes 
no write-back 

WBINVD Invalidate cache, No Yes 
with write-back 

INVLPG Invalidate TLB entry No Yes 

9. System Control: 

Instruction Description Useful to Protected from 
Application? Application? 

SMSW Store MSW No No 
LMSW Load MSW No Yes 
MOV Load And Store Control Register No Yes 
HLT Halt Processor No Yes 
LOCK Bus Lock No Can Be 

The SMSW and LMSW instructions are provided for compatibility with the 80286 pro­
cessor. A program for the i486 processor should not use these instructions. A program 
should access the Control Registers using forms of the MOV instruction. The LMSW 
instruction does not affect the PG, CD, NW, AM, WP, NE or ET bits, and it cannot be 
used to clear the PE bit. . 

The HLT instruction stops the processor until an enabled interrupt or RESET signal is 
received. (Note that the NMI interrupt is always enabled.) A special bus cycle is gener­
ated by the processor to indicate halt mode has been entered. Hardware may respond to 
this signal in a number of ways. An indicator light on the front panel may be turned on. 
An NMI interrupt for recording diagnostic information may be generated. Reset initial­
ization may be invoked. Software designers may need to be aware of the response of 
hardware to halt mode. 

The LOCK instruction prefix is used to invoke a locked (atomic) read-modify-write 
operation when modifying a memory operand. The LOCK# signal is asserted and the 
processor does not respond to requests for bus control during a locked operation. This 
mechanism is used to allow reliable communications between processors in multiproces­
sor systems. 

In addition to the chapters mentioned above, detailed information about each of these 
instructions can be found in the instruction reference chapter, Chapter 26. 
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CHAPTER 5 
MEMORY MANAGEMENT 

Memory management is a hardware mechanism which lets operating systems create sim­
plified environments for running programs. For example, when several programs are 
running at the same time, they must each be given an independent address space. If they 
all had' to share the, same address space, each would have to perform difficult and time­
consuming checks to avoid interfering with the others. 

Memory management consists of segmentation and paging. Segmentation is used to give 
each program several independent, protected address spaces. Paging is used to support 
an environment where large address space~ are simulated using a small amount of RAM 
and some disk storage. System designers may choose to use either or both of these 
mechanisms. When several programs are running at .the same time, either mechanism 
c'an be used to protect programs against interfere~ce from other programs. 

Segmentation allows memory to be completely unstructured and simple, like the memory 
model of an 8-bit processor, or highly structured with address translation and protection. 
The memory management features apply to units called segments. Each segment is an 
independent, protected address space. Access to segments is controlled by data which 
describes its size, the privilege level required to access it~ the kinds of memory references 
which can be made to it (instruction fetch, stack push or pop, read operation, write 
operation, etc.), and whether it is present in memory. 

Segmentation is used to control memory access, which is useful for catching bugs during 
program development and for increasing the reliability of the final product. It also is 
used to simplify the linkage of object code modules. There is no reason to write position­
independent code when full use is made of the segmentation mechanism, because all 
memory references can be made relative to the base addresses of a module's code and 
data segments. Segmentation can be used to create ROM-based software modules, in 
which fixed addresses (fixed, in the sense that they cannot be changed) are offsets from 
a segment's base address. Different software systems can have the ROM modules at 
different physical addresses because the segmentation mechanism will direct all memory 
references to the right place. 

In a simple memory architecture, all addresses referto the same address space. This is 
the memory model us'ed by 8-bit microprocessors, such as the 8080 processor, where the 
logical address is the physical address. The i486 ™ processor can be used in this way by 
mapping all segments into the same address space and keeping paging disabled. This 
might be done where an older design is being updated to 32-bit technology without also 
adopting the new architectural features. 

. . , 

An application also could make partial use of segmentation. A frequent cause of soft­
ware failures is the growth of the stack into the instruction code or data of a program. 
Segmentation can be used to, prevent this., The stack can be put in an address space 
separate from the address space for either code or data. Stack addr:esses always would 
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refer to the memory in the stack segment, while data addresses always would refer to 
memory in the data segment. The stack segment would have a maximum size enforced by 
hardware. Any attempt to grow the stack beyond this size would generate an exception. 

A complex system of programs may make full use of segmentation. For example, a 
system in which programs share data in r~al time can have precise control of access to 
that data. Program bugs appear as exceptions generated when a program makes im­
proper access. This is useful as an aid to debugging during program development; and it 
also may be used to trigger error-recovery procedures in systems delivered to the end 
user. 

Segmentation hardware translates a segmented (logical) address into an address for a 
continuous, unsegmented address space, called a linear address. If paging is enabled, 
paging hardware translates 'a linear address into a physical address. If paging is not 
enabled, the linear address is used as the physical address. The physical address appears 
on the address bus coming out of the processor. 

Paging is a mechanism used to sit;nulate a large, unsegmented address space using a 
small, fragmented address space and some disk storage. Paging provides access to data 
structures larger than the available memory space by keeping them partly in memory and 
partly on disk. 

Paging is applied to units of 4K bytes called pages. When a program attempts to access a 
page which is on disk, the program is interrupted in a special way. Unlike other excep­
tions and interrupts, an exception generated due to address translation restores the 
contents of the· processor registers to values which allow the exception-generating in­
struction to be re-executed.This special treatment is called instruction restart. It allows 
the operating system to read the page from disk, update the mapping of linear addresses 
to physical addresses for that page, and restart the program. This process is transparent 
to the program. 

If an operating system never sets bit 31 of the eRO register (the PG bit), the paging 
mechanism will never be enabled. Linear addresses will be used as physical addresses. 
This. might be done where a design using a 16-bit processor is being updated to use a 
32-bit processor. An operating system written for a 16-bit processor does not use paging 
because the size of its address space is so small (64K bytes) that it is more efficient to 
swap e~tire segments between RAM and disk, rather than individual pages. 

Paging would be enabled for operating systems which can support demand-paged virtual 
memory, such as UNIX. Paging is transparent to application software, so an operating 
system intended to support application programs written for 16-bit processors may run 
those programs with paging enabled. Unlike paging, segmentation is not transparent to 
application programs. Programs which use segmentation must be run with the segments 
they were designed to use. 
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5.1 SELECTING A SEGMENTATION MODEL 

A model for the segmentation of memory is chosen on the basis of reliability and per­
formance. For example, a system which has several programs sharing data in real time 
would get maximum performance from a model which checks memory references in 
hardware. This would be a multi-segment model. . 

At the other extreme, a system which has just one program may get higher performance 
from an unsegmented or "flat" model. The elimination of "far" pointers and segment­
override prefixes reduces code size and increases execution speed. Context switching is 
faster, because the contents of the segment registers no longer have to be saved or 
restored. 

Some of the benefits of segmentation also can be provided by paging. For example, data 
can be shared by mapping the same pages onto the address· space of each program. 

5.1.1 Flat Model 

The simplest model is the flat model. In this model, all segments are mapped to the 
entire physical address space. A segment offset can refer to either code or data areas. To 
the greatest extent possible, this model removes the segmentation mechanism from the 
architecture seen by either the system designer or the application programmer. This 
might be done for a programming environment ~ike UNIX, which supports 'paging but 
does not support segmentation. 

A segment is defined by a segment descriptor. At least two segment descriptors must be 
created for a flat model, one for code references and one for data references. Both 
descriptors have the same base address value. Whenever memory is accessed, the con­
tents of one of the segment registers are used to select a segment descriptor. The seg­
ment descriptor provides' the base address of the segment and it~ limit, as well as access 
control information (see Figure 5-1). 

SEGMENT SEGMENT PHYSICAL 
REGISTERS DESCRIPTORS MEMORY 

CS EPROM 
4G 

SS 

DS 
DRAM 

0 

ES 
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Figure 5-1. Flat Model 
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ROM usually is put at the top of the physical address space, because the processor 
begins execution at OFFFFFFFOH. RAM is placed at the bottom of the address space 
because the initial base address for the DS data segment after reset initialization is O. 

For a flat model, each descriptor has a base address of 0 and a segment limit of 4 
gigabytes. By setting the segment limit to 4 gigabytes, the segmentation mechanism' is 
kept from generating exceptions for memory references which fall outside of a segment. 
Exceptions could still be generated by the paging or segmentation protection mecha­
nisms, but these also can be removed from the memory model. 

5.1.2 Protected Flat Model 

The protected flat model is like the flat model, except the segment limits are set to 
include only the range of addresses for which memory actually exists. A general­
protection exception will be generated on any attempt to access unimplemented mem­
ory. This might be used for systems in which the paging mechanism is disabled, because 
it provides a minimum level of hardware protection against some kinds of program bugs. 

In this model, the segmentation hardware prevents programs from addressing non­
existent memory locations. The consequences of being allowed access to these memory 
locations are hardware-dependent. For example, if the processor does not receive a 
READY # signal (the signal used to acknowledge and terminate a bus cycle), the bus 
cycle does not terminate and program execution stops. 

Although no program should make an attempt to access these memory locations, an 
attempt may occur as a result of program bugs. Without hardware checking of addresses, 
it is possible that a bug' could suddenly stop program execution. With hardware checking, 
programs fail in a controlled way. A diagnostic message can appear and recovery proce-
dures can be attempted. . 

An example of a protected flat'model is shown' in' Figure 5-2. Here, segment descriptors 
have been set up to cover only those ranges of memory which exist. A code and a data 
segment cover the EPROM and DRAM of physical memory. The code segment limit can 
be optionally set to allow access to DRAM area. The data segme~t limit must be set to 
the sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be ad­
dressed just beyond the end of DRAM area. 

5.1.3 Multi-Segment Model 

The most sophisticated model is the multi-segment model. Here; the full capabilities of 
,the segmentation mechanism are used. Each program is given its own table of segment 
descriptors, and its own segments. The segments can be completely private to the pro­
-gram, or they can be shared with specific other programs. Access between programs and 
particular segments can be individually controlled. 

5-4 



SEGMENT 
REGISTERS 

CS 

ES 

SS 

DS 

MEMORY MANAGEMENT 

SEGMENT 
DESCRIPTORS 

PHYSICAL 
MEMORY 

EPROM 

MEMORY I/O 

DRAM 

4G 4G 

LOGICAL 
OFFSETS 

MEMORY I/O 

DRAM 

EPROM 
_______ .. 0 0 ..... __ _ 

Figure 5-2. Protected Flat Model 

240486i39 

Up to six segments can be ready for immediate use. These are the segments which have 
segment selectors loaded in the segment registers. Other segments are accessed by load­
ing their segment selectors into the segment registers (see Figure 5-3). 

Each segment is a separate address space. Even though they may be placed in adjacent 
blocks of physical memory, the segmentation mechanism prevents access to the contents 
of one segment by reading beyond the end of another. Every memory operation is 
checked against the limit specified for the segment it uses. An attempt to address mem­
ory beyond the end of the segment generates a general-protection exception. 

The segmentation mechanism only enforces the address range specified in the segment 
descriptor. It is the responsibility of the operating system to allocate separate address 
ranges to each segment. There may be situations in which it is desirable to have seg­
ments which share the same range of addresses. For example, a system may have both 
code and data stored in a ROM. A code segment descriptor would be used when the 
ROM is accessed for instruction fetches. A data segment descriptor would be used when 
the ROM is accessed as data. 

5.2 SEGMENT TRANSLATION 

A logical address consists of the 16-bit segment selector for its segment and a 32-bit 
offset into the segment. A logical address is translated into a linear address by adding 
the offset to the base address of the segment. The base address comes from the segment 
descriptor, a data structure in memory which provides the size and location of a segment, 
as well as access control information. The segment descriptor comes from one of two 
tables, the global descriptor table (GDT) or the local descriptor table (LDT). There is 

5-5 



SEGMENT 
REGISTERS 

CS 

SS 

DS 

ES 

FS 

GS 

MEMORY MANAGEMENT 

SEGMENT 
DESCRIPTORS 

PHYSICAL 
MEMORY 

Figure 5-3. Multi-Segment Model 

240486i40 -

one GDT for all programs in the system, and one LDT foreach separate program being 
run. If, the operating system allows, different programs can share the same LDT. The 
system also may be set up with no LDTs; all programs will then use the GDT. 

Every logical address is associated with a segment (even if the system maps all segments 
into the same linear address space). Although a program may have thousands of seg­
ments, only six may be available for immediate use. These are the six segments whose 
segment selectors are loaded in the processor. The segment selector holds information 
used to translate the logical address into the corresponding linear 'address. 

Separate segment registers exist in the processor for each kind of memory reference (code 
space, stack space, and data spaces). They hold the segment selectors for the segments 
currently in use. Access to other segments requires loading a segment register using a 
form of the MOY instruction. Up to four data spaces may be available at the same time, 
thus providing a total of six segment registers. 
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When a segment selector is loaded,' the base address, segment limit, and access control 
information also are loaded into the segment register. The processor does not reference 
the descriptor tables again until another segment selector is loaded. The information 
saved in the processor allows it to translate addresses without making extra bus cycles. In 
systems in which multiple processors have access to the same descriptor tables, it is the 
responsibility of software to reload the segment registers when the descriptor tables are 
modified. If this is not done, an old segment descriptor cached in a segment register 
might be used after its memory-resident version has been modified. 

The segment selector contains a 13-bit index into one of the descriptor tables. The index 
is scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit 
base address of the descriptor table. The base address comes from either the global 
descriptor table register (GDTR) or the local descriptor table register (LDTR). These 
registers hold the linear address of the beginning of the descriptor tables. A bit in the 
segment selector specifies which table to use, as shown in Figure 5-4. 

The translated address is the linear address, as shown in Figure 5-5. If paging is not 
used, it is also the physical address. If paging is used, a second level of address transla­
tion produces the physical address. This translation is described in Section 5.3. 

5.2.1 Segment Registers 

Each kind of memory reference is associated with a segment register. Code, data, and 
stack references each access the segments specified by the contents of their segment 
registers. More segments can be made available by loading their segment selectors into 
these registers during program execution. 

Every segment register has a "visible" part and an. "invisible" part, as shown in 
Figure 5-6. There are forms of the MaY instruction to load the visible part of these 
segment registers. The invisible part is loaded by the processor. 

The operations which load these registers are instructions for application programs (de­
scribed in Chapter 3). There are two kinds of these instructions: 

1. Direct load instructions such as the MaY, pop, LDS, LSS, LGS, and LFS instruc­
tions. These instructions explicitly reference the segment registers. 

2. Implied load instructions such as the far pointer versions of the CALL and JMP 
instructions. These instructions change the contents of the CS register as an inciden­
tal part of their function. 

When these instructions are used, the visible part of the segment register is loaded with 
a segment selector. The processor automatically fetches the base address, limit, type, and 
other information from the descriptor table and loads the invisible part of the segment 
register. 

Because most instructions refer to segments whose selectors already have been loaded 
into segment registers, the processor can add the logical-address offset to the segment 
base address with no performance penalty. 
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A segment selector points to the information which defines a segment, called a segment 
descriptor. ·A ·program may have more segments than the six whose segment selectors 
occupy segment registers. When this is true, the program uses forms of the MOV in­
struction to change the contents of these registers when it needs to access a new 
segment. 

A segment selector identifies a segment descriptor by specifying a descriptor table and a 
descriptor within' that table. Segment selectors are visible to application programs as a 
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Figure 5-5. Segment Translation 
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Figure 5-6. Segment Registers 

part of a pointer variable, but the values of selectors are usually assigned or modified by 
link editors or linking loaders, not application programs. Figure 5-7 shows the format of 
a segment selector. 

Index: Selects one of 8192 descriptors in a descriptor table. The processor mUltiplies the 
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the 
base address of the descriptor table (from the GDTR or LDTR register). 

Table Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a 
set bit selects the current LDT. 

Requester Privilege Level: When this field contains a privilege level having a greater 
value (i.e., less privileged) than the program, it overrides the program's privilege level. 
When a program uses a less privileged segment selector, memory accesses take place at 
the lesser privilege level. This is used to guard against a security violation in which a less 
privileged program uses a more privileged program to access protected data. 
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For example, system utilities or device drivers must run with a high level of privilege in 
order to access protected facilities such as the control registers of peripheral interfaces. 
But they must not interfere with other protected facilities, even if a request to do so is 
received from a less privileged program. If a program requested reading a sector of disk 
into memory occupied by a more privileged program, such as the operating system, the 
RPL can be used to generate a general-protection exception when the less privileged 
segment selector is used. This exception occurs even though the program using the seg­
ment selector would have a sufficient privilege level to perform the operation on its own. 

Because the first entry of the GDT is not used by the processor, a selector which has an 
index of 0 and a table indicator of 0 (i.e., a selector which points to the first entry of the 
GDT) is used as a "null selector." The processor does not generate an exception when a 
segment register (other than the CS or ·SS registers) is loaded with a null selector. It 
does, however, generate an exception when a segment register holding a null selector is 
used to access memory. This feature can be used to initialize unused segment registers. 

5.2.3 Segment Descriptors 

A segment descriptor..is a data structure in memory which provides the processor with 
the size and location of a segment; as well as control and status information. Descriptors 
typically are created by compilers, linkers, loaders, or the operating system, but not 
application programs. Figure 5-8 illustrates the two general descriptor formats. The sys­
tem segment descriptor is' described more fully in Chapter 6. All types of segment de­
scriptors take one of these formats. 

Base: Defines the location of the segment within the 4 gigabyte physical address space. 
The processor puts together the three base address fields to form a single 32-b~t value. 
Segment base values should be aligned to 16 byte boundaries to allow programs to 
maximize performance by aligning code/data on 16 byte boundaries . 

• i I. . , 

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (212
). When the 

bit is clear, the segment limit is interpreted in units of one byte; when set, the segment 
limit is interpreted in units of 4K bytes (one page). Note that thetwelve'least significant 
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bits of the address are not tested when scaling is used. For example, a limit of 0 with the 
Granularity bit set results in valid offsets from 0 to 4095. Also note that only the Limit 
field is affected. The base address remains byte granular. 

Limit: Defines the size of the segment. The processor puts together the two limit fields 
to form a 20-bit value. The processor interprets the limit in one of two ways, depending 
on the setting of the Granularity bit: . 

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in 
increments of 1 byte. 

2. If the Granularity bit is set, the Limit has a value from 4 kilobytes to 4 gigabytes, in 
increments of 4K bytes. . 
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For most segments, a logical address inay have an offset ranging from 0 to the limit. 
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit 
field; they may be addressed with any offset except those from 0 to the limit (see the 
Type field, below). This is done to allow segments to be created in which increasing the 
value held in the Limit field allocates new memory at the bottom of the segment's 
address space, rather than' at the top. Expand-down segments are intended to hold 
stacks, but it is not necessary to use them. If a stack is going to be put in a segment which 
does not need to change size, it can be a normal data seg~ent. 

S bit: Determines whether a given segment is a system segment or a code or data seg­
ment. If the S bit is set, then the segment is either a code ora data segment. If it is clear, 
then the segment is a system segment. 

D bit: Indicates the default length for operands and effective addresses. If the D bit is 
set, then 32-bit operands and 32-bit effective addressing modes are assumed. If it is 
clear, then 16-bit operands and addressing modes are assumed. 

Type: The interpretation of this field depends on whether the segment descriptor is for 
an application segment or a system segment. System segments have a slightly different 
descriptor format, discussed in Chapter 6. The Type field' of a memory descriptor spec, 
ifies the kind of access which may be made to a segment, and its direction of growth (see 
Table 5-1). 

Table 5-1. Application ·Segment Types 

Number E W A 
Descriptor 

Description 
Type 

0 0 0 0 Data Read-Only 
1 0 0 1 Data Read-Only, accessed 
2 0 1 0 Data Read/Write 
3 0 1 1 ' Data Read/Write, accessed 
4 1 0 0 Data Read-Only, expand-down 
5 1 0 1 Data Read-Only, expand-down, accessed 
6 1 1 0 Data Read/Write, expand-down 
7 1 1 1 Data Read/Write, expand-down, accessed 

Number C R A 
Descriptor 

Description 
Type 

8 0 0 b Code Execute-Only 
9 0 0 1 Code Execute-Only, accessed 

10 0 1 0 Code Execute/Read 
11 0 1 1 Code Execute/Read, accessed 
12 1 0 0 Code Execute-Only, conforming 
13 1 0 1 Code Execute-Only, conforming, accessed 
14 1 1 0 Code . Execute/Read-Only, conforming 
15 1 1 1 Code Execute/Read-Only, conforming, accessed 
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For data segments, the three lowest bits of the type field can be interpreted as expand­
down (E), write enable (W), and accessed (A). For code segments, the three lowest bits 
of the type field can be interpreted as conforming (C), read enable (R), and 
accessed (A). 

Data segments can be read-only or read/write. Stack segments are data segments which 
must be read/write. Loading the SS register with a segment selector for any other type of 
segment generates a general-protection exception. If the stack segment needs to be able 
to change size, it can be an expand-down data segment. The meaning of the segment 
limit is reversed for an expand-down segment. While an offset in the range from 0 to the 
segment limit is valid for other kinds of segments (outside this range a general­
protection exception is generated), in an expand-down segment these offsets are the 
ones which generate exceptions. The valid offsets in an expand-down segment are those 
which generate exceptions in the other kinds of segments. Expand-up segments must be 
addressed by offsets which are equal or less than the segment limit. Offsets into expand­
down segments always must be greater than the segment limit. This interpretation of the 
segment limit causes memory space to be allocated at the bottom of the segment when 
the segment limit is increased, which is correct for stack segments because they grow 
toward lower addresses. If the stack is given a segment which does not change size, it 
does not need to be an expand-down segment. 

Code segments can be execute-only or execute/read. An execute/read segment might be 
used, for example, when constants have been placed with instruction code in a ROM. In 
this case, the constants can be read either by using an instruction with a CS override 
prefix or by placing a segment selector for the code segment in a segment register for a 
data segment. ' 

Code segments can be either conforming or non-conforming. A transfer of execution 
into a more privileged conforming segment keeps the current privilege level. A transfer 
into a non-conforming segment at a different privilege level results in a general­
protection exception, unless a task gate is used (see Chapter 6 for a discussion of multi­
tasking). System utilities which do not access protected facilities, such as data-conversion 
functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decoding, math library) 
and some types of exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND 
range exceeded) may be loaded in conforming code segments. 

The Type field also reports whether the segment has been accessed. Segment descriptors 
initially report a segment as having been accessed. If the Type field then is set to a value 
for a segment which has not been accessed, the processor restores the value if the seg­
ment is accessed. By clearing and testing the low bit of the Type field, software can 
monitor segment usage (the low bit of the Type field also is called the Accessed bit). 

For example, a program development system might clear all of the Accessed bits for the 
segments of an application. If the application crashes, the states of these bits can be used 
to generate a map of all the segments accessed by the application. Unlike the break­
points provided by the debugging mechanism (Chapter 11), the ,usage information ap­
plies to segments rather than physical addresses. 
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The processor may update the Type field when a segment is accessed, even if the access 
is a read cycle. If the descriptor tables have been put in ROM, it may be necessary for 
hardware to prevent the ROM from being enabled onto the data bus during a write 
cycle. It also may be necessary to return the READY# signal to the processor when a 
write cycle to ROM occurs, otherwise the cycle does not terminate. These features of the 
hardware design are necessary for using ROM-based descriptor tables with the 386™ 
DX processor, which always sets the Accessed bit when a segment descriptor is loaded . 
.The i486 processor, however, only sets the Accessed bit if it is not already set. Writes to 
descriptor tables in ROM can be avoided by setting the Accessed bits in every 
descriptor. . 

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used 
to control access to the segment, using the protection mechanism described in Chapter 6. 

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present 
exception when· a selector for the descriptor is loaded into a segment register. This is 
used to detect access to segments which have become unavailable. A segment can be­
come unavailable when the system needs to create free memory., Items in memory, such 
as character fonts or device drivers, which currently are not being used are de-allocated. 
An item is de-allocated by marking the segment "not present" (this is done· by clearing 
the Segment-Present bit). The memory occupied by the segment then can be put to 
another use. The next time the de-allocated item is needed, the segment-not-present 
.exception will indicate the segment needs to be loaded into memory. When this kind of 
memory management is provided in a manner invisible to application programs, it is 
called virtual memory. A system may maintain a total amount of virtual memory far larger 
than physical memory by keeping only a few segments present in physical memory at any 
one time. 

Figure 5-9 shows the format of a descriptor when the Segment-Present bit is clear. When 
this bit is clear, the operating system is free to use the locations marked Available to 
store its own data, such as information regarding the whereabouts of the missing 
segment. 
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Figure 5-9. Segment Descriptor (Segment Not Present) 
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5.2.4 Segment Descriptor Tables. 

A segment descriptor table is an array of segment descriptors. There are two kinds of 
descriptor tables: 

• The global descriptor table (GDT) 

• The local descriptor tables (LDT) 

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table 
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable 
in length and may contain up to 8192 (213

) descriptors. The first descriptor in the GDT 
is not used by the processor. A segment selector to this "null descriptor" does not 
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Figure 5-10. Descriptor Tables 
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generate an exception when loaded into a segment register, but it always generates an 
exception when an attempt is made to access memory using the descriptor. By initializing 
the segment registers with this segment selector, accidental reference to unused segment 
registers can be guaranteed to generate an exception. 

5.2.5 Descriptor Table Base Registers 

The processor finds the global descriptor table (GDT) and interrupt descriptor table 
(IDT) using the GDTR and IDTR registers. These registers hold 32-bit base addresses 
for tables· in the linear address space. They also; hold 16-bit limit values for the size of 
these tables. When the registers are loaded or stored, a 48-bit. "pseudo-descriptor" is 
accessed in memory, as shown in Figure 5-11. The GDT and IDT should be aligned on a 
16 byte boundary to maximize performance due to cache line fills. 

The limit value is expressed in bytes. As with segments, the limit value is added to the 
base address to get the address of the last valid byte. A limit value of 0 results in exactly 
one valid byte. Because segment descriptors are always eight bytes, the limit should 
always be one less than an integral multiple of eight (Le., 8N -. 1). The. LGDT and 
'SGDT instructions read and write the GDTR register; the LIDT and SIDT instructions 
read and write the IDTR register. . 

A third descriptor table is the local descriptor table. (LDT). It is identified using a 16-bit 
segment selector held in the LDTR register. The LLDT and SLDT instructions read and 
write the segment selector in the LDTR register. The LDTR register also holds the base 
address and limit for the LDT, but these are loaded automatically by the processor from 
the segment descriptor for the LDT. The LDT should be aligned on a 16 byte boundary 
to maximize performance due to cache line fills. 

Alignment check faults may be generated by storing a pseudo-descriptor in user mode 
(privilege level 3). User-mode programs normally do not store pseudo-descriptors, but 
the possibility of generating an alignment check fault in this way can be avoided by 
placing the pseudo-descriptor at an odd word address (i.e., an address which is 2 MOD 
4). This causes the processor to store an aligned word, followed by an aligned 
doubleword. . 

47 16 15 o 
BASE ADDRESS LIMIT 

5 2 1 o. 

BYTE ORDER IS SHOWN BELOW 
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Figure 5-11. Pseudo-Descriptor Format 
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5.3 Page Translation 

A linear address is a 32-bit address into a uniform, unsegmented- address space. This 
address space may be a large ~hysical address space (i.e., an address space composed of 
4 gigabytes of RAM), or paging can be used to simulate this address space using a small 
amount of RAM and some disk storage. When paging is used, a linear address is trans­
lated into its corresponding physical address, or an exception is generated. The excep­
tion gives ,the operating system a chance to read the page from disk (perhaps sending a 
different page out to disk in the process), then restart the instruction ,which generated 
the exception. 

Paging is different from segmentation through its use of small, fixed-size pages. Unlike 
segments, which usually are the same size as the data structures they hold, on the i486 
processor, pages are always 4K bytes. If segmentation is the only form of address trans­
lation which is used, a data structure which is present in physical memory will have all of 
its parts in -memory. If paging is used, a data structure may be partly in memory and 
partly in disk storage. 

The information which maps linear addresses into physical' addresses and exceptions is 
held in data structures in memory called page tables. As with segmentation, this informa­
tion is cached in processor registers to minimize the number of bus cycles required for 
address translation. Unlike segmentation, these processor registers are completely invis­
ible to application programs. (For testing purposes, these registers are visible to pro­
grams running with, maximum privileges; see Chapter 10 for details.) 

The paging mechanism treats the 32-bit linear address as having three parts, two 10-bit 
indexes into the page tables and a 12-bit offset into the page addressed by' the page 
tables. Because both the virtual pages in the linear address space and the physical pages 
of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12 
bits of the address. These 12 bits pass straight through the paging hardware, whether 
paging is enabled or not. Note that this is different from segmentation, because segments 
can start at any byte address. 

The upper 20 bits of the address are used to index into the page tables. If every page in 
the linear address space were mapped by a single page table in RAM, 4 megabytes 
would be needed. This is not done. Instead, two levels of page tables are used. The top 
level page table is called, the page directory. It maps the upper 10 bits of the linear 
address to the second level of page tables. The second level of page tables maps the 
middle 10 bits of the linear address to the base address of a page in physical memory 
(called a page frame address). 

An exception may be generated based on the contents of the page table or the page 
directory. An exception gives the operating system a chance to bring in a page table from 
disk storage. By allowing the second-level page tables to be sent to disk, the paging 
mechanism can support mapping of the entire linear address space using only a few 
pages in memory. 
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The CR3 register holds the page frame address of the page directory. For this reason, it 
also is called the page directory base register or PDBR. The upper 10 bits of the linear 
address are scaled by four (the number of bytes in a page table entry) and added to the 
value in the PDBR register to get the physical address of an entry in the page directory~ 
Because the page frame address is always clear in its lowest 12 bits, this addition is 
performed by concatenation (replacement of the low 12 bits with the scaled inde~). ' 

When the entry in the page directory is accessed, a number of checks are performed. 
Exceptions may be generated if the page is protected or is not present in memory. If no 
exception is generated, the upper 20 bits of the page table entry are used as the page 
frame address of a second-level page table. The middle 10 bits of the linear address are 
scaled by four (again, the size of a page table entry) and concatenated with the page 
frame address to get the physical address of an entry in the second-level page table. 

Again, access checks' are performed, and exceptions may' be generated. If no exception 
occurs, the upper 20 bits of the second-level page table entry are concatenated with the 
lowest 12 bits of the linear address to form the physical address of the operand (data) in 
memory. 

Although this process may seem complex, it all takes place with very little overhead. The 
processor has a cache for· page table entries called the translationlookaside buffer 
(TLB). The TLB' satisfies most requests for reading the page tables. Extra bus cycles 
occur only when a new page is accessed. The page size (4K bytes) is large enough so that 
very few bus cycles are made to the page tables, compared to the number of bus cycles 
made to instructions and data. At the same time, the page size is small enough to make 
efficient use of memory. (No matter how small a data structure is, it occupies at least 
one page of memory.) 

5.3.1 PG Bit Enable~ Paging 

If paging is enabled, a second stage of address translation is used to generate the phys­
ical address from the linear address. If paging is not enabled, the linear address is used 
as the physical address. . 

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is 
set by the operating system during software initialization. The PG bit must be set if the 
operating system is running more than one program in virtual-8086 mode or if demand­
paged virtual memory is used. 

5.3.2 Linear Address 

Figure 5-12 shows the format of a linear address. 
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31 22 21 12 11 o 

DIRECTORY I. TABLE .1 OFFSET 
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Figure 5-12. Format of a Linear Address 

'-----'-- OPERAND 

PAGE DIRECTORY PAGE TABLE 

PG DIR ENTRY 1---..... 

PGTBL ENTRY 

CR3 
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Figure 5-13. Page Translation 

Figure 5-13 shows how the processor translates the DIRECTORY, TABLE, and OFF­
SET fields of a linear address into the physical address using two levels of page tables. 
The paging mechanism uses the DIRECTORY field as an index into a page directory, 
the TABLE field as an index into the page table determined by the page directory, and 
the OFFSET field to address an operand within the page specified by the page table. 

5.3.3 Page Tables 

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096 
bytes of memory or, at most, 1K 32-bit entries. All pages, including page directories and 
page tables, are aligned to 4K-byte boundaries. 

Two levels of tables are used to address a page of memory. The top level is called the 
page directory. It addresses up to 1K page tables in the second level. A page table in the 

. second level addresses up to 1K pages in physical memory. All the tables addressed by 
one page directory, therefore, can address 1M or 220 pages. Because each page contains 
4K or 212 bytes, the tables of one page directory can span the entire linear address space 
of the i486 processor (220 x 212 = 232). .:.. 
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The physical address of the current page directory is stored in the CR3 register, also 
called the page directory base register (PDBR). Memory management software has the 
option of using one page directory forall tasks, one page directory for each task, or some 
combination of the two. See Chapter 10 for information on initialization of the CR3 
register. See Chapter 7 for how the contents of the CR3 register can change for each 
task. 

5.3.4 Page-Table Entries 

Entries in either level of page tables have the same format. Figure 5-14 illustrates this 
format. 

5.3.4.1 PAGE FRAME ADDRESS 

The page frame address is the base address of a page. In a page table entry, the upper 
20 bits are used to specify a 'page frame address, and the -lowest 12 bits specify control 
and status bits for the page. In a page directory, the page frame address is the address of 
a page table. In a second-level page table, the page frame address is the address of a 
page containing instructions or data. 

5.3.4.2 PRESENT BIT 

The Present bit indicates whether the page frame address in a page table entry maps to 
a page in physical memory. When set, the page is in memory. 

When the Present bit is clear, the page is not in memory, and the rest of the page table 
entry is available for the' operating system, for example, to store information regarding 
the whereabouts of the missing page. Figure 5;.15 illustrates the format of a page table 
entry when the Present bit is clear. 

31 

PAGE FRAME ADDRESS 31 .. 12 

P 
RIW 
u/s 
PWT 
PCD 
A 
o 
AVAIL. 

- PRESENT 
- READIWRITE 
- USER/SUPERVISOR 
- PAGE WRITE TRANSPARENT 
- PAGE CACHE DISABLE 
- ACCESSED 
- DIRTY 
- AVAILABLE FOR SYSTEMS 

PROGRAMMER USE 
NOTE: 0 INDICATES INTEL RESERVED. DO NOT DEFINE. 

Figure 5-14. Format of a Page Table Entry 
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31 1 0 

AVAILABLE lui 
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Figure 5-15. Format of a Page Table Entry for a Not-Present Page 

If the Present bit is clear in either level of page tables when an attempt is made to use a 
page table entry for address translation, a page-fault exception is generated. In systems 
which support demand-paged virtual memory, the following sequence of events then 
occurs: 

1. The operating system copies the page from disk storage into physical memory. 

2. The operating system loads the page frame address into the page table entry and 
sets its Present bit. Other bits, such as the R/W bit, may be set, too. 

3. Because a copy of the old page table entry may still exist in the translation lookaside 
buffer (TLB), the operating system empties it. See Section 5.3.5 for a discussion of 
the TLB and how to empty it. 

4. The program which caused the exception is then restarted. 

Since there is no Present bit in CR3 to indicate when the page directory is not resident 
in memory, the page directory pointed to by CR3 should always be present in physical 
memory. 

5.3.4.3 ACCESSED AND DIRTY BITS 

These bits provide data about page usage in both levels of page tables. The Accessed bit 
is used to report read or write access to a page or second-level page table. The Dirty bit 
is used to report write access to a page. 

With the exception of the Dirty bit in a page directory entry, these bits are set by the 
hardware; however, the processor does not clear either of these bits. The processor sets 
the Accessed bits in both levels of page tables before a read or write operation to a page. 
The processor sets the Dirty bit in the second-level page table before a write operation 
to an address mapped by that page table entry. The Dirty bit in directory entries is 
undefined. 

The operating system may use the Accessed bit when it needs to create some free mem­
ory by sending a page or second-level page table to disk storage. By periodically clearing 
the Accessed bits in the page tables, it can see which pages have been used recently. 
Pages which have not been used are candidates for sending out to disk. 
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The operating system may use the Dirty bit when a page is sent back to disk. By clearing 
the Dirty bit when the page is brought into memory, the operating system can see if it 
has received any write access. If there is a copy of the page on disk and the copy in 
memory has not received any writes, there is no need to update disk from memory. 

See Chapter 13 for how the i486 processor updates the Accessed and Dirty bits in 
multiprocessor systems. 

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS 

,The ReadIWrite and User/Supervisor bits are used for proteCtion checks applied to 
pages, which the processor performs at the same time as address translation. See Chap­
ter 6 for more information on protection. 

5.3.4.5 PAGE-LEVEL CACHE CONTROL BITS 

The PCD and PWT bits are used for page-level cache management. Software can control 
the caching of individual pages or second-level page tables using these bits. See 
Chapter 12 for more information on caching. 

5.3.5 Translation Lookaside Buffer 

The processor stores the most recently used page table entries in an on-chip cache called 
'the translation lookaside buffer or TLB. Most paging is performed using the contents of 
the TLB. Bus cycles to the page tables are performed only when a new page is used. 

The TLB is invisible to application programs, but not to operating systems. Operating­
system programmers must flush the TLB (dispose of its page table entries) when entries 
in the page tables are changed. If this is not done, old data which has not received the 
changes might get used for address translation. A change to an entry for a page which is 
not present in memory does not require flushing the TLB, because entries for not­
present pages are not cached. 

The TLB is flushed when the CR3 register is loaded. The CR3 register can be 10,aded in 
either of two ways: 

'1. Explicit loading using MOV instructions, such as: 

MV CR3, EAX 

2. Implicit loading by a task switch which changes the contents of the CR3 register. 
(See Chapter 7 for more information on task switching.) 

. An individual entry in the TLB can be flushed using an INVLPG instruction. This is 
useful when the mapping of an individual page is changed. 

5-22 



MEMORY MANAGEMENT 

5.4 COMBINING SEGMENT AND PAGE TRANSLATION 

Figure 5-16 combines Figure 5-5 and Figure 5-13 to summarize both stages of translation 
from a logical address to a physical address when paging is enabled. Options available in 
both stages of address translation can be used to support several different styles of 
memory management. 

5.4.1 Flat Model 

When the i486 processor is used to run software written without segments, it may be 
desirable to remove the segmentation features of the i486 processor. The i486 processor 
does not have a mode bit for disabling segmentation, but the same effect can be achieved 
by mapping the stack, code, and data spaces to the same range of linear addresses. The 
32-bit offsets used by i486 processor instructions can cover the entire linear address 
space. 

When paging is used, the segments can be mapped to the entire linear address space. If 
more than one program is being run at the same time, the paging mechanism can be 
used to give each program a separate address space. 

LO 
AD 

16 o 32 
GICAL 

SELECTOR I DRESS 

DESCIPT10R TAJE 

L.., DESCRIPTOR + SEGMENT ~ 

LINEAR I 
ADDRESS DIRECTORY TABLE 

I 

PAGE DIRECTORY 

L..., ... PG DIR ENTRY r--

L CR3 ]------l 

o 
OFFSET I 

I OFFSET 
I PAGE FRAME 

I OPERAND 

PAGE TABLE 

1 PG TBl ENTRY 

Figure 5-16. Combined Segment and Page Address Translation 
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5.4.2 Segments Spanning Several Pages 

The architecture allows segments which are larger the size of a page (4K bytes). For 
example, a large data structure may span thousands of pages. If paging were not used, 
access to any part of the data structure would require the entire data structure to be 
present in physical memory. With paging, only the page containing the part being ac­
cessed needs to be in memory. 

5.4.3 Pages Spanning Several Segments 

Segments also may be smaller than the size of a page. If one of these segments is placed 
in a page which is not shared with another segment, the extra memory is wasted. For 
example, a small data structure, such as a I-byte semaphore, occupies 4K bytes if it is 
placed in a page by itself. If many semaphores are used, it is more efficient to pack them 
into a single page. 

5.4.4 Non-Aligned Page and Segment Boundaries 

The architecture does not enforce any correspondence between the boundaries of pages 
and segments. A page may contain the end of one segment and the beginning of another. 
Likewise, a segment may contain the end of one page and the beginning of another. 

5.4.5 Aligned Page and Segment Boundaries 

Memory-management software may be simpler and more efficient if it enforces some 
alignment between page and segment boundaries. For example, if a segment which may 
fit in one page is placed in two pages, there may be twice as much paging overhead to 
support access to that segment. 

5.4.6 Page-Table Per Segment 

An approach to combining paging and segmentation which simplifies memory­
management software is to give each segment its own page table, as shown in 
Figure 5-17. This gives the segment a single entry in the page directory which provides 
the access control information for paging the segment. 
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Figure 5-17. Each Segment Can Have Its Own Page Table 
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CHAPTER 6 
PROTECTION 

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks 
from interfering with each other. For example, protection can keep one task from over-
writing the instructions or data· of another task. ' 

During program development, the protection mechanism can give a clearer picture of 
program bugs. When a program makes an unexpected reference to the wrong memory 
space, the protection mechanism can block the event and report its occurrence. 

In end-user systems, the protection mechanism can guard against the possibility of soft­
ware failures caused by undetected program bugs. If a program fails, its 'effects can be 
confined to a limited domain. The operating system can be protected against damage, so 
diagnostic information can be recorded and automatic recovery may be attempted. 

Protection may be applied to segments and pages. Two bits in a processor register define 
the privilege level of the program currently running (called the current privilege level or 
CPL). The CPL is checked during address translation for segmentation and paging. 

Although there is no control register or mode bit for turning off the protection mecha­
nism, the same effect can be achieved by assigning privilege level 0 (the highest level of 
privilege) to all segment selectors, segment descriptors, and page table entries. 

6.1 SEGMENT-LEVEL PROTECTION 

Protection provides the ability to limit the amount of interference a malfunctioning pro­
gram can inflict on other programs and their data. Protection is a valuable aid in soft­
ware development because it allows software tools (operating system, debugger, etc.) to 
survive in memory undamaged. When an application program fails, the software is avail­
able to report diagnostic messages, and the debugger is available for post-mortem anal­
ysis of memory and registers. In production, protection can make software more reliable 
by giving the system an opportunity to initiate recovery procedures. 

Each memory reference is checked to verify that it satisfies the protection checks. All 
checks are made before the memory cycle is started; any violation prevents the cycle 
from starting and results in an exception. Because checks are performed in parallel with 
address translation, there is no performance penalty. There are five protection checks: 

1. Type check 

2. Limit check 

3. Restriction of addressable domain 

4. Restriction of procedure entry points 

5. Restriction of instruction set 
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A protection violation results in an exception. See Chapter 9 for an explanation of the 
exception mechanism. This chapter describes the protection violations which lead to 
exceptions. 

6.2 SEGMENT DESCRIPTORS AND PROTECTION 

Figure 6-1 shows the fields of a segment descriptor which are used by the protection 
mechanism. Individual bits in the Type field also are referred to by the names of their 
functions. ' 

Protection parameters are placed in the descriptor when it is created. In general, appli­
cation programmers do not need to be concerned about protection parameters. 

31 

BASE 31:24 

DATA SEGMENT DESCRIPTOR 

21111111111 
09876 543 2 1 0 9 8 7 

LIMIT 
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P 1 0 EWA 

19:16 L 
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31 
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19:16 L 
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DPL DESCRIPTOR PRIVILEGE LEVEL 
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+0 
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+4 

Figure 6·1. Descriptor Fields Used for Protection (Part 1 of 2) 
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Figure 6-1. Descriptor Fields Used for Protection (Part 2 of 2) 
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When a program loads a segment selector into a segment register, the processor loads 
both the base address of the segment and the protection information. The invisible part 
of each segment register has storage for the base, limit, type, and privilege level. While 
this information, is resident in the segment register, subsequent protection checks on the 
same segment can be performed with no performance penalty. 

6.2.1 Type Checking 

In addition to the descriptors for 'application code and data segments, the i486™ proces­
sor has descriptors for system segments and gates. These are data structures used for 
managing tasks (Chapter 7) and exceptions and interrupts (Chapter 9). Table 6-1 lists all 
the types defined for system segments and gates. Note that not all descriptors define 
segments; gate descriptors hold pointers to procedure entry points. 

The Type fields of code and data segment descriptors include bits which further define 
the purpose of the segment (see Figure 6-1): 

• The Writable bit in a data-segment descriptor controls whether programs can write to 
the segment. 

• The Readable bit in an executable-segment descriptor specifies whether programs 
can read from the segment (e.g., to access constants stored in the code space). A 
readable, executable segment may be read in two ways: 

1. With the CS register, by using a CS override prefix. 

2. By loading a selector for the descriptor into a data-segment register (the DS, ES, 
FS, or OS registers). 
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Table 6·1. System Segment and Gate Types 

Type Description 

0 reserved 
1 Available 80286 TSS 
2 LOT 
3 Busy 80286 TSS 
4 Call Gate. 
5 Task Gate 
6 80286 Interrupt Gate 
7 80286 Trap Gate 
8 reserved 
9 Available i486™ CPU TSS 

10 reserved 
11 Busy i486 CPU TSS 
12 i486 CPU Call Gate 
13 reserved 
14 i486 CPU Interrupt Gate 
15 i486 CPU Task Gate 

Type checking can be used to detect programming errors which would attempt to use 
segments in ways not intended by the programmer. The processor examines type infor­
mation on two kinds of occasions: 

1. When a selector for a descriptor is loaded into a segment register. Certain segment 
registers can contain only certain descriptor types; for example: 

• The CS register only can be loaded with a selector for an executable segment. 

• Selectors of executable segments which are not readable cannot be loaded into 
data-segment registers. 

• Only selectors of writable data segments can be loaded into the SS register. 

2. Certain segments can be us~d by instr~ctions only in certain predefined ways; for 
example: 

• No instruction may write into an executable segment. 

• No instruction may write into a data segment if the writable bit is not set. 

• No instruction may read an executable segment unless the readable bit is set. 

6.2.2 Limit Checking 

The Limit field of a segment descriptor prevents programs from addressing outside the 
segment. The effective value of the limit depends on the setting of the G bit (Granularity 
bit). For data segments, the limit also depends on the E bit (Expansion Direction bit). 
The E bit is a designation for one bit of the Type field, when referring to data segment 
descriptors. 
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When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor. 
In this case, the limit ranges from 0 to OFFFFFH (220 - 1 or 1 megabyte). When the 
G bit is set, the processor scales the value in the Limit field by a factor of 212. In this case 
the limit ranges from OFFFH (212 - 1 or 4K bytes) to OFFFFFFFFH (232 - 1 or 
4 gigabytes); Note that when scaling is used, the lower twelve bits of the address are not 
checked against the limit; when the G bit is set and the segment limit is 0, valid offsets 
within the segment are 0 through 4095. 

For all types of segments except expand-down data segments (stack segments), the value 
of the ,limit is one less than the size, in bytes, of the segment. The processor causes a 
general-protection exception in any of these cases: 

• Attempt to access a memory byte at an address > limit 

• Attempt to access a memory word at an address> (limit - 1) 

• Attempt to access a memory doubleword at an address > (limit - 3) 

For expand-down data segments, the li~it has the same function but is interprete'd 
differently. In these cases the range of valid offsets is' from (limit + 1) to ~32 -1. An 
expand-down seg~ent has maximum size when the segment limit is O. 

Limit checking catches programming errors such as runaway subscripts and invalid 
pointer calculations. These errors are detected when they occur, so identification of the 
cause is easier. Without limit checking; these errors could overwrite critical memory in 
another module, and the existence of these errors would not be discovered until the 
damaged module crashed, an event which may occur long after the actual error. Protec­
tion can block these errors and report their source. 

In addition to limit checking on segments, there is limit checking on the descriptor 
tables. The GDTR and IDTR registers contain a 16-bit limit value. It is used by the 
processor to prevent programs from selecting a segment descriptor outside the descrip­
tor table. The limit of a descriptor table identifies the last valid byte of the table. Be­
cause each descriptor is eight bytes long, a table which" contains up to N descriptors 
should have a limit of 8N - 1. 

A descriptor may be given a zero value. This refers to the first descriptor in the GDT, 
which is not used. Although this descriptor may be loaded into a segment register, any 
attempt to reference memory using this descriptor will generate a general-protection 
exception. 

6.2.3 Privilege Levels 

The protection mechanism recognizes four privilege levels, numbered from 0 to 3. The 
greater numbers mean lesser privileges. If all other proteCtion checks are satisfied, a 
general-protection exception is generated if a program attempts to access. a segment 
using a less privileged level (greater priVilege number) than that applied to the segment. 
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Although no control register or mode bit is provided for turning off the protection 
mechanism, the same effect' can be achieved by assigning all privilege levels the value of 
O. (The PE bit in the CRO, register is not an enabling bit for the protection mechanism 
alone; it is used to enable "protected mode," the mode of program execution in which 
the full 32-bit architecture is available. When protected mode is disabled, the processor 
operates in "real-address mode," where it appears as a fast, enhanced 8086 processor.) 

Privilege levels can be used to improve the reliability of operating systems. By giving the 
operating system the highest privilege level, it is protected from damage by bugs in other 
programs. If a program crashes, the operating system has a chance to generate a diag­
nostic message and attempt recovery procedures. 

Another level of privilege can be established for other parts of the system software, such 
as the programs which handle peripheral devices, called device drivers. If a device driver 
crashes, the operating system should be able to report a diagnostic message, so it makes 
sense to protect the operating 'system against bugs in device drivers. A device driver, 
however, may service an important peripheral such as a disk drive. If the application 
program crashed, the device driver should not corrupt the directory structure of the disk, 
so it makes sense to protect device drivers against bugs in applications. Device drivers 
should be given an intermediate privilege level between the operating system and the 
application programs. Application programs are given the lowest privilege level. 

Figure 6-2 shows how these levels of privilege can be interpreted as rings of protection. 
The center is for the segments containing the most critical software, usually the kernel of 
an operating system. Outer rings are for less critical software. 

The following data structures contain privilege levels: 
, . 

• ,The lowest two bits of the CS segment register hold the current privilege level (CPL). 
This is the privilege level of ~he program being run. The lowest two bits of the SS 
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level 
of the code segment from, which instructions are being " fetched. The CPL changes 
when control is transferred to a code segment with a different privilege level. 

• Segment descriptors contain a field called the descriptor privilege level (DPL). The 
DPL is the privilege level applied to a segment. . 

• Segment selectors 'contain a field called the requested privilege level (RPL). The RPL is 
intended to represent the privilege level of the procedure which created the selector. 
If the RPL is a less privileged level than the CPL, it overrides the CPL. When a more 
privileged program receives a segment selector from a less privileged program, the 
RPL causes the memory access take place at the less privileged level. 

Privilege levels are checked when the selector of a descriptor is loaded into a segment 
register. The checks used for.data access differ from those used· for transfers of execu­
tion among executable segments; therefore, the two types of access are considered sep­
arately in the following sections. 
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PROTECTION RINGS 
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Figure 6-2. Protection Rings 

6.3 RESTRICTING ACCESS TO DATA 

To address operands in memory, a segment selector for a data segment must be loaded 
into a data-segment register (the DS, ES, FS, OS, or SS registers). The processor checks 
the segment's privilege levels. The check is performed when the segmeqt selector is 
loaded. As Figure 6-3 shows, three different privilege levels enter into this type of priv­
ilege check. 

The three privilege levels which are checked are: 

1. The CPL (current privilege level) of the program. This is held in the two least­
significant bit positions of the CS register. 

2. The DPL (descriptor privilege level) of the segment descriptor of the segment con­
taining the operand. 

3. The RPL (requestor's privilege level) of the selector used to specify the segment 
containing the operand. This is held in the two lowest bit positions of the. segment 
register used to access the operand (the SS, DS, ES, FS, or GS registers). If the 
operand is in the stack segment, the RPL is the same as the CPL. 
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Instructions may load a segment register only if the DPL of the segment is the same or a 
less privileged level (greater privilege number) than the less privileged of the CPL and 
the selector's RPL. 

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data 
segments at all privilege levels are accessible; when the CPL is 1, only data segments at 
privilege levels 1· through 3 are accessible; when the CPL is 3; only data segments at 
privilege level 3 are accessible. 

6.3.1 Accessing Data in Code Segments 

It may be desirable to store data ina code segment, for example, when both code and 
data are provided in ROM. Code segments may legitimately hold constants; it is not 
possible to write to a segment defined as a code segment, unless a data segment is 
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mapped to the same address space. The following methods of accessing data in code 
segments are possible: 

1. Load a data-segment register with a segment selector for a nonconforming, read­
able, executable segment. 

2. Load a data-segment register with a segment selector for a conforming, readable, 
executable segment. 

3. Use a code-segment override prefix to read a readable, executable segment whose 
selector already is loaded in the CS register. 

The same rules for access to data segments apply to case 1. Case 2 is always valid 
because the privilege level of a code segment with a set Conforming bit is effectively the 
same as the CPL, regardless of its DPL. Case 3 is always valid because the DPL of the 
code segment selected by the CS register is the CPL. 

6.4 RESTRICTING CONTROL TRANSFERS 

With the i486 processor, control transfers are provided by the JMP, CALL, RET, INT, 
and IRET instructions, as well as by the exception and interrupt mechanisms. Excep­
tions and interrupts are special cases discussed in Chapter 9. This chapter discusses only 
the JMP, CALL, and RET instructions. 

The "near" forms of the JMP, CALL, and RET instructions transfer program control 
within the current code segment, and therefore are subject only to limit checking. The 
processor checks that the destination of the JMP, CALL, or RET instruction does not 
exceed the limit of the current, code segment. This limit is cached in the CS register, so 
protection checks for near transfers require no performance penalty. 

The operands of the "far" forms of the JMP and CALL instruction refer to other seg­
ments, so the processor performs privilege checking. There are two ways a JMP or 
CALL instruction can refer to another segment: 

1. The operand selects the descriptor of another executable segment. 

2. The operand selects a call gate descriptor. This gated form of transfer is discussed in 
Chapter 7. 

As Figure 6-4 shows, two different privilege levels enter into a privilege check for a 
control transfer which does not use a call gate: 

1. The CPL (current privilege level). 

2. The DPL of the descriptor of the destination code segment. 

Normally. the CPL is equal to the DPL of the segment which the processor is currently 
executing. The CPL may, however, be greater (less privileged) than the DPL if the 
current code segment is a conforming segment (as indicated by the Type field of its 
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segment descriptor). A conforming segment runs at the privilege level of the calling 
procedure. The processor keeps a record of the CPL cached in the CS register; this value 
can be different from the DPL in the segment descriptor of the current code segment. 

The processor only permits a JMP or CALL instruction' directly into another segment if 
one of the following privilege rules is satisfied: ' 

• The DPL of the segment is equal to the current CPL. 

• The segment is a conforming code segment, and its DPL is less (more privileged) than 
the currentCPL. 

Conforming segments are used for programs, such as math libraries and some kinds of 
exception handlers,' which support applications but do not require, access to protected 
system facilities. When control is transferred to a conforming segment, the CPL does not 
change, even if the selector used to address the segment has a different RPL. This is the 
only condition in which the CPL may be different from the DPL of the current code 
segment. 

Most code segments are not conforming. For these' segments, control can be transferred 
without a gate only to other code segments at the same level of privilege. It is sometimes 
necessary, however, to transfer control to higher privilege levels. This is accomplished 

6-10 



PROTECTION 

with the CALL instruction using call-gate descriptors, which is explained in Chapter 7. 
The JMP instruction may never transfer control toa nonconforming segment whose 
DPL does not equal the CPL. 

6.5 GATE DESCRIPTORS 

To provide protection for control transfers among executable segments at different priv­
ilege levels, the i486 processor uses gate descriptors. There are four kinds of gate 
descriptors: . 

• Call gates 

• Trap gates 

• Interrupt gates 

• Task gates 

Task gates are used for task switching and are discussed in Chapter 7. Chapter 9 explains 
how trap gates and interrupt gates are used by. exceptions and interrupts. This chapter is 
concerned only with call gates. Call gates are a form of protected control transfer. They 
are used for control transfers between different privilege levels. They only need to be 
used in systems in which more than one privilege level is used. Figure 6-5 illustrates the 
format of a call gate. 

A call gate has two main functions: 

1. To define an entry point of a procedure. 

2. To specify the privilege level required to enter a procedure. 

31 

32·BIT CALL GATE 

1111111 
65432109876543 

D 
OFFSET IN SEGMENT 31:16 P P o 1 1 0 o 0 o 0 0 

L 

o 

DWORD 
COUNT 

SEGMENT SELECTOR OFFSET IN SEGMENT 15:00 

DPL DESCRIPTOR PRIVILEGE LEVEL 
P SEGMENT PRESENT 

Figure 6-5. Call Gate 

6-11 

+ 4 

+ 0 

240486i59 



PROTECTION 

Call. gate descriptors are used by CALL and JUMP instructions in the same manner as 
code segment descriptors. When the hardware recognizes that the segment selector for 
the destination refers to a gate descriptor, the operation of the instruction is determined 
by the contents of the call gate. A call gate descriptor may reside in the GDT or in an 
LDT, but not in the interrupt descriptor table (IDT). 

The selector and offset fields of a gate form a pointer to the entry point of a procedure. 
A call gate guarantees that all control transfers to other segments go to a valid entry 
point, rather than to the middle of. a procedure (or worse, to the middle of an instruc­
tion). The operand of the control transfer instruction is not the segment selector and 
offset within the segment to the procedure's entry point. Instead, the segment selector 
points to a gate descriptor, and the offset is not used. Figure 6-6 shows this form of 
addressing. 

I .... ------DESTINATION ADDRESS-----....,.~I 

15 o 31 o 

l SELECTOR I OFFSET WITHIN SEGMENT 

1 
NOT USED 

DESCRIPTOR TABLE 

~ I I 

OFFSET DPL I COUNT 

SELECTOR OFFSET 

I I 

~ 
I 1 

BASE I DPL I BASE 

+ BASE 

I I 

PROCEDURE ENTRY POINT 

Figure 6';'6. Call Gate Mechanism 

6-12 

GATE 
DESCRIPTOR 

CODE SEGMENT 
DESCRIPTOR 

240486i60 



PROTECTION 

As shown" in Figure 6-7, four different privilege levels are used to check the validity of a 
control transfer through a call gate. 

The privilege levels checked during a transfer of execution through a call gate are: 

1. The CPL (current privilege level). 

2. The RPL (requestor's privilege level) of the segment selector used to specify the call 
gate. 

3. The DPL (descriptor privilege level) of the gate descriptor. 

4. The DPL of the segment descriptor of the destination code segment. 

The DPL field of the gate descriptor determines from which privilege levels the gate may 
be used. One code segment can have several procedures which are intended for use from 
different privilege levels. For example, an operating system may have some services 
which are intended to be used by both the operating system and application software, 
such as routines to handle character I/O, while other services may be intended only for 
use by operating system, such as routines which initialize device drivers. 

Gates can be used for control transfers to more privileged levels or to the same privilege 
level (though they are not necessary for transfers to the same level). Only CALL instruc.:. 
tions can use gates to transfer to less privileged levels. A JMP instruction may use a gate 
only to transfer control to a code segment with the same privilege level, or to a conform­
ing code segment with the same or a more privileged level. 

For a JMP instruction to a nonconforming segment, both of the following privilege rules 
must be satisfied; otherwise, a general-protection exception is generated. 

MAX (CPL,RPL) =::; gate DPL 
destination code segment DPL = CPL 

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the 
following privilege rules must be satisfied; otherwise, a general-protection exception is 
generated. 

MAX (CPL,RPL) =::; gate DPL 
destination code segment DPL =::; CPL 

6.5.1 Stack Switching 

A procedure call to a more privileged level does the following: 

1. Changes the CPL. 

2. Transfers control (execution). 

3. Switches stacks. 
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All inner protection rings (privilege levels 0, 1, and 2); have their own stacks for receiv­
ing calls from less privileged levels. If the caller were to provide the stack, and the stack 
was too small, the called procedure might crash as a result of insufficient stack space. 
Instead, less privileged programs are prevented from crashing more privileged programs 
by creating a new stack when a call is made to a more privileged level. The new stack is 
created, parameters are copied from the old stack, the contents of registers are saved, 
and execution proceeds normally. When the procedure returns, the contents of the saved 
registers restore the original stack.. A complete description of the task switching mecha­
nism is provided in Chapter 7. 

The processor finds the space to create new stacks using the task state segment (TSS), as 
shown in Figure 6-8. Each task has its own TSS. The TSS contains initial stack pointers 
for the inner protection rings. The operating system is responsible for creating each TSS 
and initializing its stack pointers. An initial stack pointer consists of a segment selector 
and an initial value for the ESP register (an initial offset into the segment). The initial 
stack pointers are strictly read-only values. The processor does not change them while 
the task runs. These stack pointers are used only to create new stacks when calls· are 
made to more privileged levels. These stacks disappear when the called procedure re­
turns. The next time the procedure is called, a new stack is created using the initial stack 
pointer. 

32·BIT TASK STATE SEGMENT 

31 a 

64 

I SS2 18 

ESP2 14 

I SS1 10 

ESP1 OC 

I ssa 8 

ESPO 4 

I o 
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Figure 6-8. Initial Stack Pointers in a TSS 
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When a call gate is used to change privilege levels, a new stack is created by loading an 
address from the TSS. The processor uses the DPL of the destination code segment (the 
new CPL) to select the initial stack pointer for privilege level 0, 1, or 2. 

The DPL of the new stack segment must equal the new CPL; if not, a stack-fault excep.; 
tion is generated. It is the responsibility of the operating system to create stacks and 
stack-segment descriptors for all pdvilege levels which are used. The stacks must be 
read/write as'specified in the Type field of their segment descriptors. They must contain 
enough space, as specified in the Limit field, to hold the contents of the SS and ESP 
registers, the return address, and the parameters and temporary variables required by 
the called procedure. 

As with calls within a privilege level, parameters for· the procedure are placed on the 
stack. The parameters are copied to the new stack. The parameters, can be accessed 
within the called procedure using the same' relative addresses which would have been 
used ifno stack switching had occurred. The count field of a call gate tells the processor 
how many doublewords (up to 31) to copy from the caller's stack to the stack of the 
called procedure. If the count is 0, no parameters are copied. 

If more than 31 doublewords of data need to be passed to the called procedure, one of 
the parameters can be a pointer to a data structure, or the saved contents of the SS and 
ESP registers may be used to access parameters in the old stack space. . 

The processor performs the following stack-related steps in executing a procedure call 
'between privilege levels. 

1. The stack of the called procedure is checked to make certain it is large enough to 
hold the parameters and the saved contents of registers; if not, a stack exception is 
generated. 

2. The old contents of the SS and ESP registers are pushed onto the stack of the called 
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the 
zero-extended upper word is Intel reserved; do not use). 

3. The parameters are copied from the stack of the caller to the stack of the called 
procedure. 

4. A pointer to the instruction after the CALL instruction (the old contents of the CS 
and EIP registers) is pushed onto the new stack. The contents of the SS and ESP 
registers after the call point to this return pointer on the stack. 

Figure 6-9 illustrates the stack frame before, during, and after a successful interlevel 
, procedure call and return. 

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure 
at privilege level 3 cannot be called by a less privileged procedure. The stack for privilege 
level 3 is preserved by the contents of the SS and EIP registers which have been saved on 
the stack of the privilege level called .from level 3. 
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A call using a call gate does not check the values of the words copied onto the new stack. 
The called procedure should check each parameter for validity. A later section discusses 
how the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check 
pointer values. 

6.5.2 . Returning from a Procedure 

The "near" forms of the RET instruction only transfer control within the current code 
segment, therefore are subject only to limit checking. The offset to the instruction fol­
lowing the CALL instruction is popped from the stack into the ElP register. The proces­
sor checks that this offset does not exceed the limit of the current code segment. 

The "far" form of· the RET instruction pops the return address which was pushed onto 
the stack by an earlier far CALL instruction. Under normal conditions, the return 
pointer is valid, because it was generated by a CALL or lNT instruction. Nevertheless, 
the processor performs privilege checking because· of the possibility that the current 
procedure altered the pointer or failed to maintain the stack properly. The RPL of the 
code-segment selector popped off the stack by the return instruction should have the 
privilege level of the calling procedure. 
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A return to another segment can change privilege levels, but only toward less privileged 
levels. When a RET instruction encounters a saved CS value whose RPL is numerically 
greater than the CPL (less privileged level), a return across privilege levels occurs. A 
return of this kind performs these steps: 

1. The checks shown in Table 6-2 are made, and the CS, EIP, SS, and ESPregisters 
are loaded with their former values, which' were saved on the stack. 

2. The old contents of the SS and ESP registers (from the top of the current stack) are 
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP 

Table 6-2. Interlevel Return Checks 

Type of Check Exception Type Error Code 

top-of-stack must be within stack segment stack 0 
limit 

top-of-stack + 7 must be within stack seg- stack 0 
ment limit, 

RPL of return code segment must be protection Return CS 
greater than the CPL 

Return code segment selector must be protection Return CS 
non-null 

Return code segment descriptor must be protection Return CS 
within descriptor table limit 

Return segment descriptor must be a . protection Return CS 
code segment 

Return code segment is present segment not present Return CS 

OPL of return non-conforming code seg- protection Return CS 
ment must equal RPL of return code seg- . 
ment selector, or OPL of return conforming 
code segment must be less than or equal 
to RPL of return code segment selector 

ESP + N + 15* must be within the stack stack fault Return CS 
segment limit 

segment selector at ESP + N + 12* must protection Return CS 
be non-null 

segment descriptor at ESP + N + 12* protection Return CS 
must be within descriptor table limit I 

stack segment descriptor must be rea'dl protection Return CS 
write 

stack segment must be present stack fault Return CS 

old stack segment OPL must be equal to protection Return CS 
RPL of old code segment 

old stack segment selector must have an protection Return CS 
RPL equal to the OPt.: of the old stack 
segment 

*N is the value of the immediate operand supplied with the RET instruction. 
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value is not checked against the limit of the stack segment. If the ESP value is 
beyond the limit, that fact is not recognized until the next stack operation. (The 
contents of the SS and ESP registers for the returning procedure are not preserved; 
normally, their values are the same as those contained in the TSS.) 

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of 
these registers refer to segments whose DPL is less than the new CPL (excluding 
conforming code segments), the segment register is loaded with the null selector 
(Index = 0, TI = 0). The RET instruction itself does not signal exceptions in these 
cases; however, any subsequent memory reference using a segment register contain­
ing the null selector will cause a general-protection exception. This prevents less 
privileged code from accessing more privileged segments using selectors left in the 
segment registers by a more privileged procedure. 

6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM 

Instructions which can affect the protection mechanism or influence general system per­
formance can only be executed by trusted procedures. The i486 processor has two classes 
of such instructions: 

1. Privileged instructions - those used for system control. -

2. Sensitive instructions - those used for I/O and I/O-related activities. 

6.6.1 Privileged Instructions 

The instructions which affect protected facilities can be executed only when the CPL is 0 
(most privileged). If one of these instructions is executed when the CPL is not 0, a 
general-protection exception is generated. Thes~ instructions include: 

CLTS 
HLT 
LGDT 
LIDT 
-LLDT 
LMSW 
LTR 
MOV to/from CRO 
MOV to/from DRn 
MOV to/from TRn 

6.6.2 Sensitive Instructions 

- Clear Task-Switched Flag 
- Halt Processor 

_ .:...- Load GDT Register 
- Load IDT Register 
- Load LDT Register 
-Load Machine Status Word 
- Load Task Register 
- Move to Control Register 0 
- Move to Debug Register n 
- Move to Test Register n 

Instructions which deal with I/O need to be protected, but they also need to be used by 
procedures executing at privilege levels other than 0 (the most privileged level). The 
-mechanisms for protection of I/O operations are covered in detail in Chapter 8. 
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6.7 INSTRUCTIONS FOR POINTER VALIDATION 

Pointer validation is necessary for maintaining isolation between privilege levels. It con­
sists of the following steps: 

1. Check if the supplier of the pointer is allowed to access the segment. 

2. Check if the segment type is compatib~e with its use~ 

3. Check if the pointer offset exceeds the segment limit. 

Although the i486 processor automatically performs checks 2 and 3 during instruction 
execution, software must assist in performing the first check. The ARPL instruction is 
provided for this purpose. Software also can use steps 2 and 3 to check for potential 
violations, rather than waiting for an exception to be generated. The LAR, LSL, VERR, 
and VER W instructions are provided for this purpose. ' , 

An additional check, the alignment check, can be applied in user mode. When both the 
AM bit in CRO and the AC flag are set, unaligned memory references generate excep­
tions. This is useful for programs which use the low two bits of pointers to identify the 
type of data structure they address. For example, a subroutine in a math library may 
accept pointers to numeric data structures. If the type of this structure is assigned a code 
of 10 (binary) in the lowest two bits of pointers to this type, math subroutines can correct 
for the type code by adding a displacement of -10 (binary). If the· subroutine should 
ever receive the wrong pointer type, an unaligned reference would be produced, which 
would generate an exception. Alignment checking accelerates the processing of pro­
grams written in symbolic-processing (i.e., Artificial Intelligence) languages such as Lisp, 
Prolog, Small talk, and C++. It can be used to speed up pointer tag type checking. 

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a 
compatible privilege level and type. The LAR instruction has one operand - a segment 
selector for a descriptor whose access rights are to be checked. The segment descriptor 
must be readable at a privilege level which is numerically greater (less privileged)' than 
the CPL and the selector's RPL. If the descriptor is readable, the LAR instruction gets 
the second doubleword of the descriptor, masks this value with OOFxFFOOH, stores the 
result into the specified 32-bit destination register, and sets the ZF flag. (The x indicates 
that the corresponding four bits of the stored value are undefined.) Once loaded, the· 
access rights can be tested. All valid descriptor types can be tested by the LAR instruc­
tion. If the RPL or CPL is greater than the DPL, or if the segment selector would exceed 
the limit for the descriptor table, no access rights are returned, and the ZF flag is 
cleared. Conforming code segments may be accessed from any privilege level. 

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If 
the descriptor referenced by the segment selector (in memory or a register) is readable 
at the CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte 
granular limit calculated from the concatenated limit fields and the G bit of the descrip­
tor. This only can be done for descriptors which describe segments (data, code, task 
state, and local descriptor tables); gate descriptors are inaccessible. (Table 6-3 lists in 
detail which types are valid and which are not.) Interpreting the limit is a function of the 
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Table 6·3. Valid Descriptor Types for LSL Instruction 

Type Code Descriptor Type Valid? 

0 reserved no 

1 reserved no 

2 LOT yes 

3 reserved no 

4 reserved no 

5 Task Gate no 

6 reserved no 

7 reserved no 

8 reserved no 

9· Available i486™ CPU TSS yes 

A reserved no 

B Busy i486 CPU TSS yes 

C i486 CPU Call Gate no 

0 reserved no 

E i486 CPU Interrupt Gate no 
. F i486 CPU Trap Gate no 

segment type. For example, downward-expandable data segments (stack segments) treat 
the limit differently than other kinds of segments. For both the LAR and LSL instruc­
tions, the ZF flag is set if the load was successful; otherwise, the ZF flag is cleared. 

6.7.1 Descriptor Validation 

The i486 processor has two instructions, VERR and VERW, which determine whether a 
segment selector points to a· segment which can be read or written using the CPL. Nei­
ther instruction causesa prot~ction fault if the segment cannot be accessed. 

VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that 
~egment is readable using the CPL. The VERR instruction checks the following: 

• The segment selector points to a segment descriptor within the bounds of the GDT or 
an LDT. 

• The segment selector indexes to a code or data segment descriptor. 

• The segment is readable and has a compatible privilege level. 

The privilege check for data segments and nonconforming code segments verifies that 
the DPL must be a less privileged level than either the CPL or the selector's RPL. 
Conforming segments are not checked for privilege level. 

VERW (Verify for Writing) provides the same capability as the VERR instruction for 
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag 
if the segment can be written. The instruction verifies the descriptor is within bounds, is 
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a segment descriptor, is writable, and has a DPL which is a less privileged level than 
either the CPL or the selector's RPL. Code segments are never writable, whether· con­
forming or not. 

6.7.2 Pointer Integrity and RPL 

The requested privilege level (RPL) can prevent accidental use of pointers which crash 
more privileged code from a less privileged level. 

A common example is a file system procedure, FREAD (filejd, n_bytes, buffecptr). 
This hypothetical procedure reads data from a disk file into a buffer, overwriting what­
ever is already there. It services requests from programs operating at the application 
level, but it must run in a privileged mode in order to read from the system I/O buffer. If 
the application program passed this procedure a bad buffer pointer, one which pointed 
at critical code or data in a privileged address space, the procedure could cause damage 
which would crash the system. 

Use of the RPL can avoid this problem. The RPL allows a privilege override to be 
assigned to a selector. This privilege override is intended to be the privilege level of the 
code segment which generated the segment selector. In the above example, the RPL 
would be ~he CPL of the application program which called the system level procedure. 
The i486 processor automatically checks any segment selector loaded into a seginent 
register to determine whether its RPL allows access. 

To take advantage of the processor's checking of the RPL, the called procedure need 
only check that all segment selectors passed to it have an RPL for the same or a less 
privileged level as the original caller's CPL. This guarantees that the segment selectors 
are not more privileged than their source. If a selector is used to access a segment which 
the source would not be able to access directly, i.e. the RPL is less privileged than the 
segment's DPL, a general-protection exception is generated when the selector is loaded 
into a segment register. 

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector to 
be the larger (less privileged) of its original value and the value of the RPL field for a 
segment selector stored in a general register. The RPL fields are the two least significant 
bits of the segment selector and the register. The latter ~ormally is a copy of the caller's 
CS register on the stack. If the adjustment changes the selector's RPL, the ZF flag is set; 
otherwise, the ZF flag is cleared. . 

6.8 PAGE-LEVEL PROTECTION 

Protection applies to both segments and pages. When the flat model for memory seg­
mentation has been used, page-level protection prevents programs from interfering with 
each other. 
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Each memory reference is checked to verify that it satisfies the protection checks. All 
checks are made before the memory cycle is started; any violation prevents the cycle 
from starting and results in an exception. Because checks are performed in parallel with 
address translation, there is no performance penalty. There are two page-level protec­
tion checks: 

1. Restriction of addressable domain 

2. Type checking 

A protection violation results in an exception. See Chapter 9 for an explanation of the 
exception mechanism. This chapter describes the protection violations which lead to 
exceptions. 

6.8.1 Page-Table Entries Hold Protection Parameters 

Figure 6-10 highlights the fields of a page table entry which control access to pages. The 
protection checks are applied for both first- and second-level page tables. 

6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN 

Privilege is interpreted differently for pages and segments. With segments, there are four 
privilege levels; ranging from 0 (most privileged) to 3 (least privileged). With pages, 
there are two levels of privilege: 

1. Supervisor level (U/S = 0) - for the operating system, other system software (such as 
device drivers), and protected system data (such as page tables) 

2. User level (U IS = 1) - for application code and data. 

The privilege levels used for segmentation are mapped into the privilege levels used for 
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is 
3, the processor is running at user level.When the processor is running at 'supervisor 
level, all pages are accessible. When the processor is running at user level, only pages 
from the user level are accessible. 

RIW READIWRITE 
U/S USER/SUPERVISOR 

240486i64 

Figure 6-10. Protection Fields of a Page Table Entry 
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6.8.1.2 TYPE CHECKING 

Only two types of pages are recognized by the protection mechanism: 

1. Read-only access (R/W = 0) 

2. Read/write access (R/W = 1) 

When the processor is running at supervisor level with the WP bit in the eRO register 
clear (its state following reset initialization), all pages are both readable and writable 
(write-prote,ction is ignored). When the processor is running at user level, only pages 
which belong to user level and are marked for read/write access are writable. User-level 
pages which are read/write or read-only are readable. Pages from the supervisor level are 
neither readable nor writable from user level. A general-protection exception is gener­
ated on any attempt to violate the protection rules. 

Unlike the 386™ DX processor, the i486 processor allows .user-mode pages to be write­
protected against supervisor mode access. Setting the WP bit in the CRO register enables 
supervisor-mode sensitivity to user-mode, write-protected pages. This feature is useful 
for implementing the copy-on-write strategy used by some operating systems, such as 
UNIX, for task creation (also called forking or spawning). 

When a new task is created, it is possible to copy the entire address space of the parent 
task. This gives the child task a complete, duplicate set of the parent's· segments and 
pages. The copy-on-write strategy saves memory space and time by mapping the child's 
segments and pages to the same segments and pages used by the parent task. A private 
copy of a page gets created only when one of the tasks writes to the page. 

6.8.2 Combining Protection of Both Levels of Page Tables 

For anyone page, the protection attributes of its page directory entry (first-level page 
table) may differ from those of its second-level page table entry. The i486 processor 
checks the protection for a page by examining the protection specified in both the page 
directory (first-level page table) and the second-level page table. Table 6-4· shows the 
protection provided by the possible combinations of protection attributes when the WP 
bit is clear. 

6.8.3 Overrides to Page ~rotection 

Certain accesses are checked as if they are privilege-level 0 acc,esses, for any value 
of CPL: 

• Access to segment descriptors (LDT, GDT, TSS and IDT). 

• Access to inner stack during a CALL instruction, or exceptions and interrupts, when 
a change of privilege level occurs. 
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Table 6-4. Combined Page Directory and Page Table Protection 

Page Directory Entry Page Table Entry Combined Effect 

Privilege Access Type Privilege Access Type Privilege Access Type 

User Read-Only User Read-Only User Read-Only 
User Read-Only User Read-Write User Read-Only 
User Read-Write User Read-Only User Read-Only 
User Read-Write User Read-Write User Read/Write 
User Read-Only Supervisor Read-Only User Read-Only 
User Read-Only Supervisor Read-Write User Read-Only 
User Read-Write Supervisor Read-Only User Read-Only 
User Read-Write Supervisor Read-Write User Read/Write 
Supervisor Read-Only User Read-Only User Read-Only 
Supervisor Read-Only User Read-Write User Read-Only 
Supervisor Read-Write User Read-Only User Read-Only 
Supervisor Read-Write User Read-Write User Read/Write 
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write 
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write 
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write 
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write 

6.9 COMBINING PAGE AND SEGMENT PROTECTION 

When paging is enabled, the i486 processor first evaluates segment protection, then 
evaluates page protection. If the processor detects a protection violation at either the 
segment level or the page level, the operation does not go through; an exception occurs 
instead. If an exception is generated by segmentation, no paging exception is generated 
for the operation. 

For example, it is possible to define a large data segment which has some parts which are 
read-only and other parts which are read-write. In this case, the page directory (or page 
table) entries for the read-only parts would have the U/S and R/W bits specifying no 
write access for all the pages described by that directory entry (or for individual pages 
specified in the second-level page tables). This technique might be used, for example, to 
define a large data segment, part of which is read-only (for shared data or ROMmed 
constants). This defines a "flat" data space as one large segment, with "flat" pointers 
used to access this "flat" space, while protecting shared data, shared files mapped into 
the virtual space, and supervisor areas. 
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CHAPTER 7 
MULTITASKING 

The i486™ processor provides hardware support for multitasking. A task is a program 
which is running, or waiting to run while another program is running. A task is invoked 
by an interrupt, exception, jump, or call. When one of these forms of transferring exe­
cution is used with a destination specified by an entry in one of the descriptor tables, this 
descriptor can be a type which causes a new task to begin execution after saving the state 
of the current task. There are two types of task-related descriptors which can occur in a 
descriptor table: task state segment descriptors and task gates. When execution is passed 
to either kind. of descriptor, a task switch occurs. 

A task switch is like a procedure call, but it saves more processor state information. A 
procedure call only saves the contents of the general registers, and it might save the 
contents of only one register (the EIP register). A procedure call pushes the contents of 
the saved registers on the stack, in order that a procedure may call itself. When a 
procedure calls itself, it is said to be re-entrant. 

A task switch transfers execution to a completely new environment, the environment of a 
task. This requires saving the contents of nearly all the processor registers, such as the 
EFLAGS register. Unlike procedures, tasks are not re-entrant. A task switch does not 
push anything on the stack. The processor state information is saved in a data structure 
in memory, called a task state segment. 

The registers and data structures which support multitasking are: 

• Task state segment 

• Task state segment descriptor 

• Task register 

• Task gate descriptor 

With these structures, the i486 processor can switch execution from one task to another, 
with the context of the original task saved to allow the task to be restarted. In addition to 
the simple task switch, the i486 processor offers two other task-management features: 

1. Interrupts and exceptions can cause task switches (if needed in the system design). 
The processor not only performs a task switch to handle the interrupt or exception, 
but it automatically switches back when the interrupt or exception returns. Inter­
rupts may occur during interrupt tasks. 

2. With each switch to another task, the i486 processor also can switch to another 
LDT. This can be used to give each task a different logical-to-physical address map­
ping. This is an additional protection feature, because tasks can be isolated and 
prevented from interfering with one another. The PDBR register also is reloaded. 
This allows the paging mechanism to be used to enforce the isolation between tasks. 
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Use of the multitasking mechanism is optional. In some applications, it may not be the 
best way to manage program execution. Where extremely fast response to interrupts is 
needed, the time required to save the processor state may be too great. A possible 
compromise in these situations is to use the task-related data structures, but perform 
task switching in software. This allows a smaller processor state to be saved. This tech­
nique can be one of the optimizations used to enhance system performance after the 
basic functions of a system have been implemented. 

7.1 TASK STATE SEGMENT 

The processor state information needed to restore a task is saved in a type of segment, 
called a task state segment or TSS. Figure 7-1 shows the format of a TSS for an i486 CPU 
task (compatibility with 80286 tasks is provided by a different kind of TSS; see Chapter 
21). The fields of a TSS are divided into two main categories: 

1. Dynamicfields the processor updates with each task switch. These fields store: 

• The general registers (EAX, ECX, ED X, EBX, ESP, EBP, ESI, and EDI). 

• The segment registers (ES, CS, SS, DS, FS, and GS). 

• The flags register (EFLAGS). 

• The instruction pointer (EIP). 

• The selector for the' TSS of the previous task (updated only when a return is 
expected). 

2. Static fields the processor reads, but does not change. These fields are set up when 
a task is created. These fields store: 

• The selector for the task's LDT. 

• The logical address of the stacks for privilege levels 0, 1, and 2. 

• The T-bit (debug trap bit) which, when set, causes the processor to raise a debug 
exception when a task switch occurs. (See Chapter 11 for more information on 
debugging). 

• The base address for the I/O permission bit map. If present, this map is stored in 
the TSS at higher addresses. The base address points to the beginning of the 
map. (See Chapter 8 for more information about the I/O permission bit map.) 

If paging is used, it is important to avoid placing a page boundary within the part of the 
TSS which is read by the processor during a task switch (the first 108 bytes). If a page 
boundary is placed within this part of the TSS, the pages on either side of the boundary 
must be present at the same time. It is an unrecoverable error to 'receive a page fault or 
general-protection exception after the processor has started to read the TSS. 

7.2 TSS DESCRIPTOR 

The task state segment, like all other segments, is defined by a descriptor. Figure 7-2 
shows the format of a TSS descriptor. 
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Figure 7-1. Task State Segment 
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The Busy bit in the Type field indicates whether the task is busy. A busy task is currently 
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a 
value of 11 (decimal) indicates a busy task. Tasks are not re-entrant. The i486 processor 
uses the Busy bit to detect an attempt to call a task whose execution has been 
interrupted. 
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TSS DESCRIPTOR 
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DPL DESRIPTOR PRIVILEGE LEVEL 
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LIMIT SEGMENT LIMIT 
P SEGMENT 'PRESENT 
TYPE SEGMENT TYPE 
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Figure 7-2. TSS Descriptor 

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions 
similar to their use in data-segment descriptors. The Limit field must have a value equal 
to or greater than 67H, one byte less than the minimum size of a task state. An attempt 
to switch to a task whose TSS descriptor has a limit less than 67H generates an excep­
tion. A larger limit is required if an I/O permission map is used. A larger limit also may 
be required for the operating system, if the system stores additional data in the TSS. 

A procedure with access to a TSS descriptor can cause a task switch. In most systems, 
the DPL fields of TSS descriptors should be clear, so only privileged software can per­
form task switching. 

Access to a TSS descriptor does not give a procedure the ability to read or modify the 
descriptor. Reading and modification only can be done using a data descriptor mappe~ 
to the same location in memory. Loading a TSS descriptor into a seginent register gen­
erates an exception. TSS descriptors only may reside in the GDT. An attempt to access 

, a TSS using a selector with a set TI bit (which indicates the current LDT) generates an 
exception.' ..' 

7.3 TASK REGISTER 

The task register (TR) is used to find the current TSS. Figure 7-3 shows the path by 
which the processor accesses the TSS. 
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TASK STATE SEGMENT 
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GLOBAL 
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Figure 7-3. TR Register 

The task register has both a "visible" part (i.e., a part which can be read and changed by 
software) and an "invisible" part (i.e., a part maintained by the processor and inaccessi­
ble to software). The selector in the visible portion indexes to a TSS descriptor in the 
GDT. The processor uses the invisible portion of the TR register to retain the base and 
limit values from the TSS descriptor. Keeping these values in a register makes execution 
of the task more efficient, because the processor does not need to fetch these values 
from memory to reference the TSS of the current task. 
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The LTR' and STR instructions are used to modify and read the visible portion of the 
task register. Both instructions take one operand, a 16-bit segment selector located in 
memory or a general register. 

LTR (Load task register) loads the visible portion of the task register with the operand, 
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the 
invisible portion with information from the TSS descriptor. The LTR instruction is a 
privileged instruction; it may be executed only when the CPL is O. The LTR instruction 
generally is used during system initialization to put an initial value in the task register; 
afterwards, the contents of the TR register are changed by events which cause a task 
switch. . 

STR (Store task register) stores the visible portion of the task register in a general 
register or memory. The STR instruction is not privileged. 

7.4 TASK GATE DESCRIPTOR 

A task gate descriptor provides an indirect,' protected reference to a task. Figure 7-4 
illustrates the format of a task gate. 

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is 
not used. 

The DPL of a task gate controls access to the descriptor for a task switch. A procedure 
may not select a task gate descriptor unless the selector's RPL and the CPL of the 
procedure are numerically less than or equal to the DPL of the descriptor. This prevents 
less privileged procedures from causing a task switch. (Note that when a task gate is 
used, the DPL of the destination TSS descriptor is no~ used.) , 

TASK GATE DESCRIPTOR 

1111111 
31 654 3 2 1 0 9 8 7 o 

D 
RESERVED P P o 0 1 0 1 RESERVED +4 

L 

TSS SEGMENT SELECTOR RESERVED +0 

DPL 'DESCRIPTOR PRIVILEGE LEVEL 
P SEGMENT PRESENT 
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Figure 7-4. Task Gate Descriptor 
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A procedure with access to a task gate can cause a task switch, as can a procedure with 
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy 
three needs: 

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the 
TSS descriptor, each task should have only one such descriptor. There may, how­
ever, be several task gates which, select a single TSS descriptor. 

2. The need to provide selective access to tasks. Task gates fill this need, because they 
can reside in an LDT and can have a DPL which is different from the TSS descrip­
tor's DPL. A procedure which does not have sufficient privilege to use the TSS 
descriptor in the GDT (which usually has a DPt of 0) can still call another task if it 
has access to a task gate in its LDT. With task gates, the operating system can limit 
task switching to specific tasks., 

3. The need for an interrupt or exception to cause a task switc.h. Task gates also may 
reside in the IDT, which allows interrupts and 'exceptions to cause task switching. 
When an interrupt or exception supplies a vector to:a task gate, the i486 processor 
switches to the indicated task. 

Figure 7-5 illustrates how both a task gate in an LDT and a task gate in the IDT can 
identify the same task. 

7.5 TASK SWITCHING 

The i486 processor transfers execution to another task in any of four cases: 

1. The current task executes a JMP or CALL to a TSS descriptor. 

2. The current task executes a JMP or CALL to a task gate. 

3. An interrupt or exception indexes to a task gate in the IDT. 

4. The current task executes an IRET when the NT flag is set. 

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all 
ordinary mechanisms of the i486 processor which can be used in circumstances in which 
no task switch occurs. The descriptor type (when a task is called) or the NT flag (when 
the task returns) make the difference between the standard mechanism and the form 
which causes a task switch. 

To cause a task switch, a JMP or CALL instruction can transfer execution to either a 
TSS descriptor or a task gate. The effect is the same in either case: the i486 processor 
transfers execution to the specified task. 

An exception 'or interrupt causes a task switch when it indexes to a task gate in the IDT. 
If it indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See 
Chapter 9 for more information on the interrupt mechanism. 
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An interrupt service routine always returns execution to the interrupted procedure, 
which may be in another task. If the NT flag is clear, a normal return occurs. If the NT 
flag is set, a task switch occurs. The task receiving the task switch is specified by the TSS 
selector in the TSS of the interrupt service routine. 

A task switch has these steps: 

1. Check that the current task is allowed to switch to the new task. Data-access privi­
lege rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and 
the task gate must be greater than or equal to both·the CPL and the RPL of the gate 
selector. Exceptions, interrupts, and IRET instructions are permitted to switch tasks 
regardless of the DPL of the destination task gate or TSS descriptor. 
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2. Check that the TSS descriptor of the new task is marked present and has a valid 
limit (greater than or equal to 67H). Any errors up to this point occur in the context 
of the current task. These errors restore any changes made in the processor state 
when an attempt is made to execute the error-generating instruction. This lets the 
return address for the exception handler point to the error-generating. instruction, 
rather than the instruction following the error-generating instruction. The exception 
handler can fix the condition which caused the error, and restart the task. The 
intervention of the exception handler can be completely transparent to the applica­
tion program. 

3. Save the state of the current task. The processor finds the base address of the, 
current TSS in the task register. The processor registers are copied into the current 
TSS (the EAX, ECX, ED X, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS, 
and EFLAGS registers). 

4. Load the TR register with the selector to the new task's TSS descriptor, set the new 
task's Busy bit, and set the TS bit in the CRO register. The selector is either the 
operand of a JMP or CALL instruction, or it is taken from a task gate .. 

5. Load the new task's state from its TSS and continue execution. The registers loaded 
are the LDTR register; the EFLAGS register; the general registers EIP, EAX, 
ECX, ED X, EBX, ESP, EBP, ESI, EDI; and the segment registers ES, CS, SS, DS, 
FS, and GS. Any errors detected in this step occur in the context of the new task. To 
an exception handler, the first instruction of the new task appears not to have 
executed. 

Note that the state of the old task is always saved when a task switch occurs. If the task 
is resumed, execution starts with the instruction which normally would have been next. 
The registers are restored to the values they held when the task stopped running. 

Every task switch sets the TS (task switched) bit in the CRO register. The TS.bit is useful 
to system software for coordinating the operations of the integer unit with the floating­
point unit or a coprocessor. The TS bit indicates that the context of the floating-point 
unit or coprocessor may be different from that of the current task. Chapter 10 discusses 
the TS bit and coprocessors in more detail. 

Exception service routines for exceptions caused by task switching (e'xceptions resulting 
from steps 5 through 17 shown in Table 7-1) may be subject to recursive calls if they 
attempt to reload the segment selector which generated the exception. The cause of the 
exception (or the first. of multiple causes) should be fixed before reloading the selector. 

The privilege level at which the old task was running has no relation to the privilege level 
of the new task. Because the tasks are isolated by their separate address spaces and task 
state segments, and because privilege rules control access to a TSS, no privilege checks 
are needed to perform a task switch. The new task begins executing at the privilege level 
indicated by the RPL of new contents of the CS register, which are loaded from the TSS. 
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Table 7-1. Checks Made during a Task Switch 

Step Condition Checked Exceptlon1 Error Code Reference 

1 TSS descriptor is present in NP New Task's TSS 
memory 

2 TSS descriptor is not busy GP New Task's TSS 

3 TSS segment limit greater TS New Task's TSS 
than or equal to 103 

4 Registers are loaded from the values in the TSS 

'5 LOT selector of new task is TS New Task's TSS 
valid2 

6 Code segment OPL matches TS New Code Segment 
selector RPL 

7 SS selector is valid2 GP New Stack Segment 

8 Stack segment is present in SF New Stack Segment 
memory 

9 Stack segment OPL matches SF New Stack Segment 
CPL ., 

10 LOT.of new task is present in TS New Task's TSS 
memory 

11 CS selector is valid2 . TS New Code Segment 

12 Code' segment is present in NP New Code Segment 
memory 

13 Stack segment OPL matches GP New Stack Segment 
selector RPL 

. 14 OS, ES, FS, and GS selec- GP New Data Segment 
tors are valid2 

15 OS, ES, FS, and GS GP New Data Segment 
segments are readable 

16 OS, ES, FS, and GS NP New Data Segment 
segments are present in , 

memory " 

17 OS, ES, FS, and GS segment GP New Data Segment 
OPL greater than or equal to 
CPL (unless these are con-
forming segments) 

NOTES: Future Intel® processors may use a different order of checks. 
1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS exception, 

SF = Stack exception. . " 
2. A selector is valid if it is in a compatible type of table (e.g., an LOT seleCtor may not be in any table 

except the GOT), occupies an address within the table's segment limit, and refers to a compatible type of 
descriptor (e.g., a selector in the CS register only is valid when it indexes to a descriptor for a code 
segment; the descriptor type is specified in its Type field). 
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7.6 TASK LINKING 

The Link field of the TSS and the NT flag are used to return execution to the previous 
task. The NT flag indicates whether the currently executing task is nested within the 
execution of another task, and the Link field of the current task's TSS holds the TSS 
selector for the higher-level task, if there is one (see Figure 7-6). 

When an interrupt, exception, jump, or call causes a task switch, the i486 processor 
copies the segment selector for the current task state segment into the TSS for the new 
task and sets the NT flag. The NT flag indicates the'Link field of the TSS has been 
loaded with a saved TSS selector. The new task releases control by executing an IRET 
instruction. When an IRET instruction is executed, the NT flag is checked. If it is set, 
the processor does a task switch to the previous task. Table 7-2 summarizes the uses of 
the fields in a TSS which are affected by task switching. 

Note that the NT flag may be modified by software executing at any privilege level. It is 
possible for a program to set its NT bit and execute an IRET instruction, which would 
have the effect of invoking the task specified in the Link field of the current task's TSS. 
To keep spurious task switches from succeeding, the operating. system should initialize 
the Link field of every TSS it creates. 
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Figure 7-6. Nested Tasks 
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Table 7-2 .. Effect of a Task Switch on Busy, NT, and Link Fields 

Effect of CALL 
Effect of IRET" Field Effect of ,Jump Instruction or 

Instruction Interrupt 

Busy bit of new task Bit is set. Must have Bit is set. Must have No change. Must be 
been clear before. been clear before. set. 

Busy bit of old task Bit is cleared. No change. Bit is cur- Bit is cleared. 
rently set. 

NT flag of new task Flag is cleared. Flag is set. No change. 

NT flag of old task No change. No change. Flag is cleared. 

Link field of new task. No change. , Loaded with selector No change. 
for old task's TSS. 

Link field of old task. No change. No change. No change. 

7.6.1 Busy Bit Prevents Loops 

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one 
saved task context, the context saved in the TSS, therefore a task only may be' called 
once before it terminates. The chain of suspended tasks may grow to any length, due to 
multiple interrupts, exceptions, jumps, and calls. The Busy bit prevents' a task from being 
called if it is in this chain. A re-entrant task switch would overwrite the old TSS for the 
task, which would break the chain. 

The processor manages the Busy bit as follows: 

1. When switching to a task, the processor sets the Busy bit of the new task. 

2. When switching from a task, the processor. clears the Busy bit of the old task if that 
task is not to be placed in the chain (i.e., the instruction causing the task switch is a 
JMP or IRET instruction). If the task is placed in the chain, its Busy bit remains set. 

3. When switching to a task, the processor generates a general-protection exception if 
the Busy bit of the new task already is set. 

In this way, the processor prevents a task from switching to itself or to any task in the 
chain, which prevents re-entrant task switching. 

The Busy bit may be used in multiprocessor configurations, because the processor as­
serts a b~s lock when it sets or clears the Busy bit. This keeps two processors from 
invoking the same task at the same time. (See Chapter 13 for more information· on 
multiprocessing. ) 
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7.6.2 Modifying Task Linkages 

Modification of the chain of suspended tasks may be needed to resume an interrupted 
task before the task which interrupted it. A reliable way to do this is: 

1. Disable interrupts. 

2. First change the Link field in the TSS of the interrupting task, then clear the Busy 
bit in the TSS descriptor of the task being removed from the chain. 

3. Re-enable interrupts. 

7.7 TASK ADDRESS SPACE 

The LDT selector and PDBR (CR3) field of the TSS can be used to give each task its 
own LDT and page tables. Because segment descriptors in the LDTs are the connections 
between tasks and segments, separate LDTs for each task can be used to set up individ­
ual control over these connections. Access to any particular segment can be given to any 
particular task by placing a segment descriptor for that segment in the LDT for that task. 
If paging is enabled, each task can have its own set of page tables for mapping linear 
addresses to physical addresses. 

It also is possible for tasks to have the same LDT: This is a simple and memory-efficient 
w,ay to allow some tasks to communicate with or control each other, without dropping 
the protection barriers for the entire system. 

Because all tasks have access to the GDT, it also is possible to create shared 'segments 
accessed through segment descriptors in this table. 

7.7.1 Task Linear-Io-Physical Space Mapping 

The choices for arranging the linear-to-physical mappings of tasks fall into two general 
classes: 

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled, 
this is the only choice. Without paging, all linear addresses map to the same physical 
addresses. When paging is enabled, this form of linear-to-physical mapping is ob­
tained by using one page directory for all tasks. The linear space may exceed the 
available physical space if demand-paged virtual memory is supported. 

2. Independent linear-to-physical mappings for each task. This form of mapping comes 
from using a different page directory for each task. Because the PDBR (page direc­
tory base register) is loaded from the TSS with each task switch, each task may have 
a different page directory. 

The linear address spaces of different tasks may map to completely distinct physical 
addresses. If the entries of different page directories point to different page tables and 
the page tables point to different pages of physical memory, then the tasks do not share. 
any physical addresses. 
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The task state segments must lie in a space accessible to all tasks so"that the mapping of 
TSS addresses does not change while the processor is reading and updating the TSSs 
during a task switch. The linear space mapped ,by theGDT also should be mapped toa 
shared physical space;' otherwise, the purpose of the GDT is defeated. Figure 7-7 shows 
how the linear spaces of two tasks can overlap in the physical space by sharing page 
tables. 

7.7.2 Task Logical Address Space' 

By itself, an overlapping linear-to-physical space mapping does not allow sharing of data 
among tasks. To share data, tasks must also have a common logical-to-linear space map­
ping; i.e., they also must have access to descriptors which 'point into· a shared linear 
address space. There are three ways to create shared logical-to-physical address-space 
mappings:, . " 

1. 'Through the segment descriptors in theGDT. All tasks have access to the descrip­
tors in the GDT. If those descriptors point into a linear-address space which is 
mapped to a common physical-address space for all tasks, then the tasks can share 
data and instructions. 

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selec~ 
tors in their TSSs select the same LDT for use in address translation. Segment 
descriptors in the LDT addressing linear, space. mapped to overlapping phy~ical 
space provide shared physical memory. This 'method of sharing is more selective 
than sharing by the GDT; the sharing can be limited to specific tasks. Other tasks in 
the system may have. different LDTs which do not give them access to the shared 
areas. 

I ' I ~ , I 

3. Through segment descriptors in the LDTs which map to the same l'inear address 
space. If the linear address space is mapped to the same physical space by the page 
mapping of the tasks involved, these' descriptors permit the tasks to ,share space. 
Such descriptors are commonly called "aliases." This method of sharing is even 
more selective than those listed above; other descriptors in the LDTs may point to 
independent linear addresses which are not shared. 
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Figure 7-7. Overlapping Linear-ta-Physical Mappings 

7-15 





Input/Output 8 





CHAPTER 8 
INPUT/OUTPUT 

This chapter explains the input/output architecture of the i486 ™ processor. Input/output 
is accomplished through I/O ports, which are registers connected to peripheral devices. 
An I/O port can be an input port, an output port, or a bidirectional port. Some I/O ports 
are used for carrying data, such as the transmit and receive registers of a serial interface. 
Other I/O ports are used to control peripheral devices, such as the control registers of a 
disk controller. 

The i486 processor always synchronizes I/O instruction execution with external bus ac­
tivity. All previous instructions are completed before an I/O operation begins. In partic­
ular, all writes held pending in the i486 CPU write buffers will be completed before an 
I/O read or write is performed. 

The input/output architecture is the programmer's model of how these ports are ac':' 
cessed. The discussion of this model includes: 

• Methods of addressing I/O ports. 

• Instructions which perform I/O operations. 

• The I/O protection mechanism. 

8.1 I/O ADDRESSING 

The i486 processor allows I/O ports to be addressed in either of two ways: 

• Through a separate I/O address space accessed using I/O instructions. 

• Through memory-mapped I/O, where I/O ports appear in the address space of phys­
ical memory. 

The use, of a separate I/O address space is supported' by special instructions and a 
hardware protection mechanism. When memory-mapped I/O is used, the general­
purpose'instruction set can be used to access I/O ports, and protection is provided using 
segmentation or paging. Some system designers may prefer to use the I/O facilities built 
into the processor, while others may prefer the simplicity of a single physical address 
space. . 

If segmentation or paging is used for protection of the I/O address space, the A VL fields 
in segment descriptors or page table entries may be used to mark pages containing I/O 
as unrelocatable and unswappable. The A VL fields are provided for this kind of use, 
where a system programmer needs to make an extension to the address translation and 
protection mechanisms. 

Hardware designers use these ways of mapping I/O ports into the address space when 
they design the. address decoding circuits of a system. I/O ports can be mapped so that 
they appear in the I/O address space or the address space of physical memory (or both). 
System progr~mmers may need to discuss with hardware designers the kind of I/O ad­
dressing they would like to have. 
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8.1.1 I/O Address Space 

The i486 processor provides a separate I/O address space, distinct from the address 
space for fhysical memory, where I/O ports can be placed. The I/O address space con­
sists of 21 (64K) individually addressable 8-bit ports; any two consecutive 8-bit ports can 
be treated as a 16-bit port, and any four consecutive ports can be a 32-bitport. Extra bus 
cycles are requited if a port crosses the boundary between two doublewords in physical 
memory. 

The M/IO# pin on the i486 processor indicates when a bus cycle to the I/O address 
space occurs. When a separate I/O address space is used, it is the responsibility of the 
hardware designer to make use of this signal to select I/O ports rather than memory. In 
fact, the use of the separate. I/O address space simplifies the hardware design because 
these ports can be selected by a single signal; unlike other processors, it is not necessary 
to decode a number of upper address lines in order to set up a separate I/O address 
space., 

A program can specify the address of a port in two ways. With an immediate byte 
constant, the program can specify: ' , ,,' 

• 256 8-bit ports numbered 0 through 255. 

• 128 16-bit ports numbered 0, 2, 4, ... , 252, 254. 

• 64 32-bit ports numbered 0, 4, 8, ... , 248, 252. 

Using a value in the DX register, the program can specify: 

• 8-bit ports numbered 0 through 65535. 

• 16-bit ports numbered 0, 2, 4, . '0 • , 65532, 65534. 

• 32-bit ports numbered 0, 4, 8, ... , 65528, 65532. 

The i486 processor can transfer 8, 16, or 32 bits to a device in the I/O space. Like words 
in memory, 16-bit ports should be aligned to even addresses so that all 16 bits can be 
transferred in a single bus cycle. Like doublewords in memory, 32-bit ports' should be 
aligned to addresses. which are multiples of four. The processor supports data transfers 
to unaligned ports, but there is a performance penalty because an extra bus cycle must 
be used. 

The IN and OUT instructions move data' between a register and a port in the I/O 
address space. The instructions INS and OUTS move strings of data between the mem­
ory address space and ports in the I/O address space. 

I/O port addresses OF8H through OFFH are reserved for use by Intel®. Do not assign I/O 
ports to these addresses. 

The exact order of bus cycles used to access ports which require more than one bus cycle 
is undefined. For example, an OUT instruction which loads an unaligned doubleword 
port at location 2H accesses the word at 4H before accessing the word at 2H. This 
behavior is neither defined, nor guaranteed to remain the same in future Intel products. 
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If software needs to produce a particular order of bus cycles, this order must be specified 
explicitly. For example, to load a word-length port at 4H followed by loading a word port 
at 2H, two word-length instructions must be used, rather than a single doubleword 
instruction. 

Note that although the i486 processor automatically masks parity errors for certain types 
of bus cycles, such as interrupt acknowledge cycles, it does not mask parity for bus cycles 
to the I/O address space. Programmers may need to be aware of this behavior as a 
possible source of spurious parity errors. 

8.1.2 Memory-Mapped I/O 

I/O devices may be placed in the address space for physical memory. This is called 
memory-mapped I/O. As long as the devices respond like memory components, they can 
be used with memory-mapped I/O. 

Memory-mapped I/O provides additional programming flexibility. Any instruction which 
references memory may be used to access an I/O port located in the memory space. For 
example, the MOV instruction can transfer data between any register and a port. The 
AND, OR, and TEST instructions may be used to manipulate bits in the control and 
status registers of peripheral devices (see Figure 8-1). Memory-mapped I/O can use the 
full instruction set and the full complement of addressing modes to address I/O. ports. 

PHYSICAL MEMORY 
~""""""""""""""""""""~N 

ROM 

INPUT/OUTPUT PORT 

INPUT/OUTPUT PORT 

INPUT/OUTPUT PORT 

RAM 

240486i72 

Figure 8-1. Memory-Mapped I/O 
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To optimize performance, the i486 CPU allows reads to be re-ordered ahead of buffered 
writes in certain precisely-defined circumstances. (See the i486™ Processor Hardware 
Reference Manual for further details about ·the operation of the write buffer.) Using 
memory-mapped I/O on the i486 CPU therefore creates the possibility that an I/O read 
will be performed before the memory write of a previous instruction. To eliminate this 
possibility, use an I/O instruction for:the read. 

Using a'n I/O instruction for an I/O write can also be advantageous because it guarantees 
that the write will be completed before the next instruction begins 'execution. If I/O 
writes are used to control system hardware, then this sequence of events is desirable, 
since it guarantees that the next instruction will be executed in the new state .. 

If caching is enabled, either external hardware or the paging mechanism (the PCO bit in 
the page table entry) must be used to prevent caching of I/O data. ' 

, I'; 

Memory-mapped I/O, like any other memory reference, is subject to access protection 
and con,tro!. See ~hapter 6 for a dis~ussion of me~ory protection. 

8.2 I/O INSTRUCTIONS 

The I/O instructions of the i486 pro~essor provide access to the processor's I/O ports for 
the transfer of data. These instructions have the, address of a port .in the I/O address 
space as an operand. There are two kinds of I/O instructions: 

1. Those which transfer a single item (byte, word, or doubleword) to or from a register. 

2. Those which transfer strings of items (strings of bytes, words, or doublewords) lo­
cated in memory. These are known as "string I/O instructions" or "block I/O 
instructions. " 

These instructions cause the M/IO# signal to be driven low (logic 0) during a bus cycle, 
which indicates to external hardware dIat ac~ess to the I/O address space is taking place. 

, If memory-mapped I/O is used, there is no reason to use I/O instructions. ' 

8.2.1 Register I/O Instructions 

" The I/O instructions IN and OUT move data between I/O ports and the EAX register 
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The IN and 
OUT instructions address I/O ports either directly, with the address of one of 256 port 
addresses coded in the instruction, or indirectly using an address in the OX register to 
select one of 64K port addresses. These instructions synchronize program execution to 
external hardware. The i486 processor write buffers are cleared and program execution 
delayed until the last ready of the last bus cycle has been returned. 
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IN (Input from Port)' transfers a byte, word, or doubleword from an input port to the 
AL, AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port 
to the AL register. A word IN instruction transfers 16 bits from the port to the AX 
register. A doubleword IN instruction transfers 32 bits from the port to the EAX 
register. 

OUT (Output from Port) transfers a byte, word, or doubleword from the AL, AX, or 
EAX registers to an output port. A byte OUT instruction transfers 8 bits from the AL 
register to the selected port. A word OUT instruction transfers 16 bits from the AX 
register to the port. A doubleword OUT instruction transfers 32 bits from the EAX 
register to the port. 

8.2.2 Block I/O Instructions 

The INS and OUTS instructions move blocks of data between I/O ports and memory. 
Block I/O instructions use an address in the DX register to address a port in the I/O 
address space. These instructions use the DX register to specify: 

• 8-bit ports numbered 0' through 65535. 

• 16-bit ports numbered 0, 2, 4, ... , 65532, 65534. 

• 32-bit ports numbered 0, 4, 8, ... , 65528, 65532. 

Block I/O instructions use ei,ther the SI or DI register to address memory. For each 
transfer, the SI or DI register is incremented or decremented, as specified by the DF 
'flag.' , 

The INS and OUTS instructions, when used with repeat prefixes, perform block input or 
output operations. The repeat prefix REP modifies the INS and OUTS instructions to 
transfer blocks of data between an I/O port and memory. These block I/O instructions 
are string instructions (see Chapter 3 for more on string instruction~). They simplify 
programming and increase the speed of data transfer by eliminating the need to use a 
separate LOOP instruction or an intermediate register to hold the data. 

The string I/O instructions operate on byte strings, word strings, or doubleword strings. 
After each transfer, the memory address in the ESI or EDI registers is incremented or 
decremented by 1 for byte operands, by 2 for word operands, or by 4 for doubleword 
operands. The DF flag controls whether the register is incremented (the DF flag is 
clear) or decremented (the DF flag is set). 

INS (Input String from Port) transfers a byte, word, or doubleword string, element from 
an input port to memory. The INSB instruction transfers a byte from the selected port to 
the memory location addressed by the ES and EDI registers. The INSW instruction 
transfers a word. The INSD instruction transfers a doubleword. A· segment override 
prefix cannot be used to specify an alternate destination segment. ,Combined with a REP 
prefix, an INS instruction makes repeated read cycles to the port, and puts the data into 
consecutive. locations. in memory. 
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OUTS (Output String from Port) transfers a byte, word, or doubleword string element 
from memory to an output port. The OUTSB instruction transfers a byte from the mem­
ory location addressed by the ES and EDI registers to the selected port. The OUTSW 
instruction transfers a word. The OUTSD instruction transfers a doubleword. A segment 
override prefix cannot be used to specify an alternate source segment. Combined with a 
REP prefix, an OUTS instruction reads consecutive locations in memory, and writes the 
data to an output port. 

8.3 PROTECTION AND I/O 

The I/O architecture has two protection mechanisms: 

1. The 10PL field in the EFLAGS register controls access to the I/O instructions. 

2. The I/O permission bit map of a TSS segment controls access to individual ports in 
the· I/O address space. 

These protection mechanisms are available only when a separate' I/O address space is 
used. When memory-mapped I/O is used, protection is provided using segmentation or 
paging. . . 

8.3.1 I/O Privilege Level 

In systems where I/O pro'tection is used, access to I/O instructions is controlled by the 
10PL field in the EFLAGS register. This permits the operating system to adjust the 
privilege level needed to perform I/O. In a typical protection ring model, privilege levels 
o and 1 have access to the I/O instructions. This lets the operating system and the device 
drivers perform I/O, but keeps applications and less privileged device drivers from ac­
cessing the I/O address space. Applications access I/O through the operating system .. 

The following instructions can be executed only if CPL s 10PL: 

IN 
INS 
OUT 
OUTS 
CLI 
STI 

-Input 
- Input String 
-Output 
- Output String 
- Clear Interrupt-Enable Flag 
- Set Interrupt-Enable Flag 

These instructions are called "sensitive" instructions, because they are sensitive to the 
10PL field. In virtual-8086 mode, 10PL is not used; only the I/O permission bit map 
limits access to I/O ports (see Chapter 23). 

To use sensitive instructions, a procedure must run at a privilege level at least as privi­
leged as that specified by the 10PL field. Any attempt by a less privileged procedure to 
use a sensitive instruction results in a general-protection exception. Because each task 
has its own copy of the EFLAGS register, each task can have a different 10PL. 
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A task can change 10PL only with the POPF instruction; however, such changes are 
privileged. No procedure may changer its 10PL unless it is running at privilege level O. 
An attempt by a less privileged procedure to change the 10PL does not result in an 
exception; the 10PL simply remains unchanged. 

The POPF instruction also may be used to change the state of the IF flag (as can the 
CLI and STI instructions); however, changes to the IF flag using the POPF instruction 
are 10PL-sensitive. A procedure may change the setting of the IF flag with a POPF 
instruction only if it runs with a CPL at least as privileged as the IOPL. An attempt.by a 
less privileged procedure to change the IF flag does not result in an exception; the IF 
flag simply remains unchanged. 

8.3.2 I/O Permission Bit Map 

The i486 processor can generate exceptions for references to specific I/O addresses. 
rhese addresses are specified in the I/O permission bit map in the TSS (see Figure 8-2). 
The size of the, map and its location in the TSS are variable. The processor finds the I/O 

TASK STATE SEGMENT 

11111111 I 
110 PERMISSION 

BIT MAP 

1/0 MAP BASE I 

NOTE: BASE ADDRESS FOR 1/0 BIT MAP 
MUST NOT EXCEED DFFF (HEXA· 
DECIMAL) 

LAST BYTE OF BIT MAP MUST BE 
FOLLOWED BY A BYTE WITH ALL 
BITS SET. 

Figure 8·2. I/O Permission Bit Map 
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permission bit map with the I/O map base address in the TSS. The base address' is a 
16-bit offset into the TSS. This is an offset·to the beginning of the bit map. The limit of 
the TSS is the limit on the size of the I/O permission bit map. 

Because each task has its own TSS, each task has its own I/O permission bit map. Access 
to individ~al I/O ports can be granted to individual tasks. 

If CPL :$; IOPL in protected mode, then the processor allows I/O-operations to proceed. 
If CPL > OPL, or if the processor is operating in virtual 8086 mode, then the processor 
checks the I/O permission map. Each bit in the map corresponds to an I/O port byte 
address; for example, the control bit for address 41 (decimal) in the I/O address space is 
found at bit position 1 of the sixth byte in the bit map. The processor tests all the bits 
corresponding to the I/O port being addressed; for example, a doubleword operation 
tests four bits corresponding to four adjacent byte addresses. If any tested bit is set, a 
general-protection exception is generated. If all tested bits are clear, the I/O operation 
proceeds. 

Because I/O ports which are not aligned to word and doubleword boundaries are per­
mitted, it is possible that the processor may need to access two bytes in the bit map when 
I/O permission is checked. For maximum speed, the processor has been designed to read 
two bytes for every access to an I/O port. To prevent exceptions from being generated 
when the ports with the highest addresses are accessed, an extra byte needs to come 
after the table. This byte must have all of its bits set, and it must be within the segment 
limit. 

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O 
addresses not spanned by the map are treated as if they had set bits in the map. For 
example, if the TSS segment limit is 10 bytes past the bit map base address, the map has 
11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O address 
. space generate exceptions. 

If the I/O bit map base address is greater than or equal to the TSS segment limit, there 
. is no I/O permission map, and all I/O instructions generate exceptions. The base address 
must be less than or equal to ODFFFH. 
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CHAPTER 9 
EXCEPTIONS AND INTERRUPTS 

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The 
task or procedure is called a handler.. Interrupts occur at random times during the exe­
cution of a program, in response to signals from hardware. Exceptions occur when in­
structions are executed which provoke exceptions. Usually, the servicing of interrupts 
and exceptions is performed in a manner transparent to application programs. Interrupts 
are used to handle events external to the processor, such as requests to service periph­
eral devices. Exceptions handle conditions detected by the processor in the course of 
executing instructions, such as division by O. 

There are two sources for interrupts and two sources for exceptions: 

1. Interrupts 

• Maskable interrupts, which are received on the INTR input of the i486™ proces­
sor. Maskable interrupts do not occur unless the interrupt-enable flag (IF) is set. 

• Nonmaskable interrupts, which are received on the NMI (Non-Maskable Inter­
rupt) input of the processor. The processor does not provide a mechanism to 
prevent nonmaskable interrupts. . 

2. Exceptions 

• Processor-detected exceptions. These are further classified as faults, traps, and 
aborts. 

3. Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions may 
trigger exceptions. These instructions often are called "software interrupts," but the 
processor handles them as exceptions. 

This chapter explains the features of the i486 processor which control and respond to 
interrupts. 

9.1 EXCEPTION AND INTERRUPT VECTORS 

The processor associates an. identifying number with each different type of interrupt or 
exception. This number is called a vector. 

The NMI interrupt and the exceptions are assigned vectors in the range o through 31. 
Not all of these vectors are currently used by the processor; unassigned vectors in this 
range are reserved for possible future uses. Do not use unassigned vectors. 

The vectors for maskable interrupts are determined by hardware. External interrupt 
controllers (such as Intel®'s 8259A Programmable Interrupt Controller) put the vector 
on the bus of the i486. processor during its interrupt-acknowledge cycle. Any vectors in 
the range 32 through 255 can be used. Table 9-1 shows the. assignment of exception and 
interrupt vectors. 
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Table 9-1. Exception and Interrupt Vectors 

Vector Number Description 

0 Divide Error 
1 1 Debug Exception 

2 NMI Interrupt ,I 

3 ; Breakpoint 
4 INTO-detected Overflow 
5 , BOUND Range Exceeded 
6 . , Invalid Opcode 
7 ' Device Not Available ; 

8 Double Fault , , 

9 (Intel® reserved. Do not use. 
Not used by i486™ CPU.) 

10 Invalid Task State Segment ' 
11 Segment Not Present 
12 Stack Fault 
13 General Protection 
14 Page Fault 
15 (Intel reserved. Do not use.) 
16 Floating-Point Error 
17 Alignment Check 

18-31 (Intel reserved. Do not use.) 
32-255 Maskable Interrupts 

Exceptions are classified as faults, traps, or aborts depending 'on the way they are re­
ported and whether restart of the instruction which caused the exception is supported. 

Faults-A fault is an'exception which is reported at the instruction boundary prior to the 
instruction in which the exception was detected. The fault is reported with the machine 
restored to a state which permits the instruction to be restarted. The return address for 
the fault. handler points to the instruction which generated the fault, rather than the 
instruction following the faulting instruction. 

Traps - A trap is an exception which is reported at the instruction boundary immediately 
after the instruction in which the exception was detected. 

Aborts - An abort is an exception which does not always report the location of the 
instruction causing the exception and does not allow restart of the program which caused 
the exception. Aborts are used to report severe errors, such as hardware errors and 
inconsistent or illegal. values in system tables. 

9.2 INSTRUCTION RESTART 

For most exceptions and interrupts, transfer of execution does not take place until the 
end· of the current instruction. This leaves the EIP register pointing at the instruction 
which comes after the instruction which was being executed' when the exception or in­
terrupt occurred. If the instruction has a repeat prefix, transfer takes place atthe end of 
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the current iteration with the registers set to execute the next iteration; But if the excep­
tion is a fault, the processor registers are restored to the state they held before execution 
of the instruction began. This permits instruction restart. 

Instruction restart is used to handle exceptions which block access to operands. For 
example, an application program could make reference to data in a segment which is not 
present in memory. When the exception occurs, the exception handler must load the 
segment (probably from a hard disk) and resume execution beginning with the instruc­
tion which caused the exception. At the· time the exception occurs, the instruction may 
have altered the contents of some of the processor registers. If the instruction read an 
operand from the stack, it is necessary to restore the stack pointer to its previous value. 
All of these restoring operations are performed by the processor in a manner completely 
transparent to the application program. 

When a fault occurs, the EIP register is restored to point to the instruction which re­
ceived the exception. When the exception handler returns, execution resumes with this 
instruction. ' 

9.3 ENABLING AND DISABLING INTERRUPTS 

Certain conditions and flag settings cause the processor to inhibit certain kinds of inter­
rupts and exceptions. 

9.3.1 NMI Masks Further NMls 

While an NMI interrupt handler is exec~ting, the processo~ disables additional calls to 
the procedure or task which handles the interrupt until the next IRET instruction is 
executed. This prevents stacking up calls to the interrupt handler. It is recommended 
that interrupt gates be used for NMI's in order to disable nested maskable interrupts, 
since an IRET instruction from the maskable-interrupt handler would re-enable NMI. 

9.3.2 IF Masks INTR' 

The IF flag can turn off servicing of interrupts received on the INTR pin of the proces­
sor. When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set, 
INTR interrupts are serviced. As with the other flag bits, the processor clears the IF flag 
in response to a RESET signal. The STI and CLI instructions set and clear the IF flag. 

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) put the IF flag 
(bit 9 in the EFLAGS register) in a known state. These instructions may be executed 
only if the CPL is an equal or more'privileged level than the IOPL.A general-protection 
exception is generated if they are executed with a lesser privileged level. 
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The· IF flag also is affected by the following operations: 

• The PUSHF instruction stores all fl~gs on the stack, where they can be examined and 
modified. The POPF instruction can be used to load the modified form back into the 
EFLAGS register. 

• Task switches and the POPF and IRET instructions load the EFLAGS register; 
therefore, they can be used to modify the setting of the IF· flag. 

• Interrupts through interrupt gates automatically clear the IF flag, which disables in­
terrupts. (Interrupt gates are explained later.in this chapter). 

9.3.3 RF Masks Debug Faults 

The RF flag in the EFLAGS register can ,be used ,to turn off servicing of debug faults. If 
it is clear, debug faults are serviced; if it is set, they are ignored. This is used to suppress 
multiple calls to the debug exception handler when a breakpoint occurs. 

For example, an instruction breakpoint may have been set for an instruction which ref­
erences data in a segment which is not present in memory; When the· instruction is 
executed for the first time, the breakpoint generates a debug exception. Before the 
debug handler returns, it should set the RF flag in the copy of the EFLAGS register 
saved on the stack. This allows the segment-not-present fault to be reported after the 
debug exception handler transfers execution back to the instruction. If the flag is not set, 
another debug exception occurs after the debug exception handler returns. 

The processor sets the RF bit in the saved contents of the EFLAGS register when the 
other faults occur, so multiple debug exceptions are not generated when the instruction 
is restarted due to the segment-not-present fault. The processor clears its RF flag when 
the execution of the faulting instruction completes. This allows an instruction breakpoint 
to be generated for the following· instruction. (See Chapter 11 for more information on 
debugging. ) ..,. ' 

9.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts 

Software which needs to change stack segments often uses a pair of instructions; for 
example:' ' 

MOV SS, AX 
MOV ESP, StackTop 

If an interrupt or exception occurs after the segment selector has been loaded but before 
the ESP register has been loaded, these two parts of the logical address into the stack 
space are inconsistent for the duration of the interrupt or exception handler. , 

9-4 



EXCEPTIONS AND INTERRUPTS 

To prevent this situation, the i486 processor inhibits interrupts, debug exceptions, and 
single-step trap exceptions after either a MOY to SS instruction or a POP to SS instruc­
tion, until the instruction boundary following the next instruction is reached. General­
protection faults may still be generated. If the LSS instruction is used to modify the 
contents of the SS register, the problem does not occur. 

9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND 
INTERRUPTS 

If more than one exception or interrupt is pending at an instruction boundary, the pro­
cessor services them in a predictable order. The priority among classes of exception and 
interrupt sources is shown in Table 9-2. The processor first services a pending exception 
or interrupt from the class which has the highest priority, transferring execution to the 
first instruction of the handler. Lower priority exceptions are discarded; lower priority 
interrupts are held pending. Discarded exceptions are re-issued when the interrupt han­
dler returns execution to the point of interruption. 

9.5 INTERRUPT DESCRIPTOR TABLE 

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a 
,descriptor for the procedure or task which services the associated event. Like the GDT 
and LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of 
the IDT may contain a descriptor. To form an index into the IDT, the processor scales 
the exception or interrupt vector by eight, the number of bytes in a descriptor. Because 

Table 9-2. Priority Among Simultaneous Exceptions and Interrupts 

Priority Descriptions 

Highest Debug Trap Exceptions from the last instruction 
(TF flag set, T bit in TSS set, or data breakpoint) 
Debug Fault Exceptions for the next instruction (code breakpoint) 
Non-Maskable Interrupt 
Maskable Interrupt 
Faults from fetching next instruction (Segment-Not-Present Fault or General-
Protection Fault) 
Faults from instruction decoding (Illegal Opcode, instruction too long, or 
privilege violation) if WAIT instruction, Coprocessor-Not-Available 

. Exception (TS and MP bits of CRO set) if ESC instruction, Coprocessor-Not-
Available 
Exception (EM or TS bits of CRO set) if WAIT or ESC instruction, 
Coprocessor-Error 
Exception (Error# pin asserted) 
Segment-Not-Present Faults, Stack Faults, and General-Protection Faults for 
memory operands 
Alignment Faults for memory operands 

Lowest Page Faults for memory operands 
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there are only 256 vectors, the IDT need not contain more than 256 descriptors. It can 
contain fewer than 256 descriptors; descriptors are required only for the interrupt vec-
tors which may occur. ' 

The IDT may reside anywhere in physical memory. As Figure 9-1 shows, the processor 
locates the IDT using the IDTR register. This register holds both a 32-bit base address 
and 16-bit limit for the IDT. The LIDT and SIDT instructions load and store the con­
tents of the IDTR register. Both instructions have one operand, which is the address of 
six bytes in memory. 

If a vector references a descriptor beyond the limit, the processor enters shutdown 
mode. In this mode, the processor stops executing instructions until an NMI interrupt is 
received or reset initialization is invoked. The processor generates a special bus cycle to 

IDTR REGISTER 

47 16 15 o 

I lOT BASE ADDRESS IDT LIMIT 

INTERRUPT 
DESCRIPTOR TABLE 

+ I 
INTERRUPT 

INTERRUPT. #N .. 

I 
GATE FOR 

INTERRUPT #3 

I 

GATE FOR 
INTERRUPT #2 

I 
GATE FOR 

INTERRUPT #1 

240486i74 

Figure.9-1. 10TR Register Locates lOT in Memory 
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indicate it has entered shutdown mode. Software designers may need to be aware of the 
response of hardware to receiving this signal. For example, hardware may turn on an 
indicator light on the front panel, generate an NMI interrupt to record diagnostic infor­
mation, or invoke reset initialization. 

LIDT (Load IDT register) loads the IOTR register with the base address and limit held 
in the memory operand. This instruction can be executed only when the CPL is O. It 
normally is used by the initialization code of an operating system when creating an lOT. 
An operating system also may use it to change from one lOT to another. 

SIDT (Store IDT register) copies the base and limit value stored in IOTR to memory. 
This instruction can be executed at any privilege level. 

9.6 IDT DESCRIPTORS 

The lOT may contain any of three kinds of descriptors: 

• Task gates 

• Interrupt gates 

• Trap gates 

Figure 9-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate 
in an lOT is the same as the task gate in the GOT o.r an LOT already discussed in 
Chapter 7.) 

9.7 INTERRUPT TASKS AND INTERRUPT PROCEDURES 

Just as a CALL instruction can call either a procedure or a task, so an exception or 
interrupt can "call" an interrupt handler as either a procedure or a task. When respond­
ing to an exception or interrupt, the processor uses the exception or interrupt vector to 
index to a descriptor in the lOT. If the processor indexes to an interrupt gate or trap 
gate, it calls the handler in a manner similar to a CALL to a call gate. If the processor 
finds a task gate, it causes a task switch in a manner similar to a CALL to a task gate. 

9.7.1 Interrupt Procedures 

An interrupt gate or trap gate indirectly references a procedure which runs in the con­
text of the currently executing task, as shown in Figure 9-3. The selector of the gate 
points to an executable-segment descriptor in either the GOT or the current LOT. The 
offset field of the gate descriptor points to the beginning of the exception or interrupt 
handling procedure. 

The i486 processor calls an exception or interrupt handling procedure in much the same 
manner as a procedure call; the differences are explained in the following sections. 
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9.7.1.1 STACK OF INTERRUPT PROCEDURE 

240486i76 

Just as with a transfer of execution using a CALL instruction, a transfer to an exception 
or interrupt handling procedure uses the stack to store the processor state. As Figure 9-4 
shows, an interrupt pushes the contents of the EFLAGS register onto the stack before 
pushing the address of the interrupted instruction. 
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Figure 9-4. Stack Frame After Exception or Interrupt 

,Certain types of exceptions also push an error code on the stack. An exception handler 
can. lise the error code to help diagnose the exception. 

9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE 

An interrupt procedure differs from a normal procedure in the method of leaving the 
procedure. The IRET instruction is used to exit from an interrupt procedure. The IRET 
instruction is similar to the RET instruction except that it increments the contents of the 
ESP register by an extra four bytes and restores the saved flags into the EFLAGS reg­
ister. The IOPL field of'the EFLAGS register is restored only if the CPL is O. The IF 
flag is changed only if CPL =::; IOPL. ' ' , 
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9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDURE 

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after 
its current value is saved on the stack as part of the saved contents of the EFLAGS 
register. In so doing, the processor prevents instruction tracing from affecting interrupt 
response. A subsequent IRET instruction restores the TF flag to the value in the saved 
contents of the EFLAGS register on the stack. 

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An 
interrupt which uses an interrupt gate clears the IF flag, which prevents other interrupts 
from interfering with the current interrupt handler. A subsequent IRET instruction re­
stores the IF flag to the value in the saved contents of the EFLAGS register on the 
stack. An interrupt through a trap gate does not change the, IF flag. 

9.7.1.4 PROTECTION IN INTERRUPT PROCEDURES 

The privilege rule which governs interrupt procedures 'is similar to that for procedure 
calls: the processor does not permit an interrupt to transfer execution to a procedure in 
a less privileged segment (numerically greater privilege level). An attempt to violate this 
rule results in a general-protection exception. 

Because interrupts generally do not occur at predictable times, this privilege rule effec~ 
tively imposes restrictions on the privilege levels at which exception and interrupt han­
dling procedures can run. Either of the following techniques can be used to keep the 
privilege rule from being violated. 

• The exception or interrupt handler can be placed in a conforming code segment. This 
technique can be used by handlers for certain exceptions (divide error, for example). 
These handlers must use only the data available on the stack. If the handler needs 
data from a data segment, the data segment would have to have privilege level 3, 
which would make it unprotected. 

• The handler can be placed in a code segment with privilege level O. This handler 
would always run, no matter what CPL the program has. 

9.7.2 Interrupt Tasks 

A task gate in the IDT indirectly references a task, as Figure 9-5 illustrates. The segment 
selector in the task gate addresses a TSS descriptor in the GDT. 

When an exception or interrupt calls a task gate in the IDT, a task switch results. 
Handling an interrupt with a separate task offers two advantages: 

• The entire context is saved automatically. 

• The interrupt handler can be isolated from other tasks by giving it a separate address 
space. This is done by giving it a separate LDT. 
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Figure 9-5. "Interrupt Task Switch 

A task switch caused by an interrupt operates in the same manner as the other task 
switches described in Chapter 7. The interrupt task returns to the interrupted task by 
executing an IRET instruction. 

Some exceptions return an error code. If the task switch is caused by one of these, the 
processor pushes the code onto the stack corresponding to the privilege level of the 
interrupt handler. 
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When interrupt tasks are used in an operating system for the i486 processor, there are 
actually two, mechanisms which can create new tasks: the software scheduler (partof the 
operating system) and the hardware scheduler (part of the processor's interrupt mecha­
nism). The, software scheduler needs to accommodate interrupt tasks which may be 
generated when interrupts are enabled. 

9.8 ERROR CODE 

With exceptions related to a sp'ecific segment, the processor pushes an error code onto 
the stack of the 'exception handler (whether it is 'a procedure or task). The error code 
has the format shown in Figure 9-6. The error code resembles a segment selector; how­
ever instead of an RPL field, the error code contains two one-bit fields: 

1. The processor sets the EXT bit if an event external 'to the program caused th~ 
, ex~eption. 

2. The processor sets the IDT bit if the index portion of the error code refers to a gate 
descriptor in the IDT. 

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT 
(TI bit clear) or to the LDT (TI bit set). The remaining 14 bits are·the upper bits of the 
selector for the segment. In some cases the error code, is null (i.e., all bits in the lower 
word are clear). 

The error code is pushed on the stack as a doubleword. This is done to keep the stack 
aligned on addresses which are multiples of four. The upper halfof the doubleword is 
reserved. 

9.9 EXCEPTION CONDITIONS 

The following'sections describe conditions which generate exceptions. Each description 
classifies the exception as a fault, trap, or abort. This classification provides information 
needed by system programmers for restarting the procedure in which the exception 
occurred: 

,. Faults - The saved contents of the CS and EIP registers point to the instruction which 
, generated the fault. 

RESERVED 

240486i79 

Figure 9-6. Error Code 
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• Traps - The saved contents of the CS and EIP registers stored when the, trap occurs 
point to the instruction to be executed after, the instruction which generated the trap. 
If a trap is detected during an instruction 'which tran'sfers execution, the saved con­
tents of the CSandEIP registers reflect the transfer. For example,' if a trap is de­
tected in a JMP instruction, the saved contents of the CS and EIP registers point to 
the destination of the JMP instruction, not to the instruction at the next address 
above the JMP instruction. 

• Aborts - An abort is an exception which permits neither precise location of the in­
struction causing the exception nor restart of the program which caused the excep­
tion. Aborts are used. to report severe errors, 'such as hardware errors and 

. inconsistent or illegal values in system tables~ 

9.9.1 Interrupt 0 - Divide Error 

The divide-error fault occurs during a DIV or an IDIV instruction when the divisor is O. 

9.9.2 Interrupt 1 - Debug Exceptions 

The processor generates a debug exception for a number of conditions; whether the 
exception is a fault or a trap depends on the, condition, as shown below: 

• Instruction address breakpoint fault 

• Data address breakpoint trap 

• General detect fault 

• Single-step trap 

• Task-switch breakpoint trap 

The processor does not push an error code for this exception. An exception handler can 
examine the debug registers to determine which condition caused the exception. See 
Chapter 11 for more detailed information about debugging and the debug registers. 

9.9.3 Interrupt 3 - Breakpoint 

The INT 3 instruction generates a breakpoint trap. The INT 3 instruction is one byte 
long, which makes it easy to replace an opcode in a code segment in RAM with the 
breakpoint opcode. The' operating system or a debugging tool can use a data segment 
mapped to the same physical address space as the code segment to place an INT 3 
instruction in places where it is desired to call the debugger. Debuggers use breakpoints 
as a way to suspend program execution in order to examine registers, variables, etc. 

The saved contents of the CSand EIP registers point to the byte following the break~ 
'point. If a debugger allows the suspended program to resume execution, it replaces the 
INT 3 instruction with the original opcode at the location of the breakpoint, and it 
decrements the saved contents of the EIP register before returning. See Chapter 11 for 
more information on debugging. 
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9.9.4 Interrupt 4 - Overflow 

The overflow trap occurs when the processor executes an INTO instruction with the OF 
flag set. Because signed and unsigned arithmetic both use some of the same instructions, 
the processor cannot determine when overflow actually occurs. Instead, it sets the OF 
flag when the results, if interpreted as signed numbers, would be out of range. When 
doing arithmetic on signed operands, the OF flag can be tested directly or the INTO 
instruction can be used. 

9.9.5 Interrupt 5 - Bounds Check 

The bounds-check fault is generated when the processor, while executing a BOUND 
instruction, finds that the operand exceeds the specified limits. A program can use the 
BOUND instruction to check a signed array index against signed limits defined in a 
block of memory. 

9.9.6 Interrupt 6 -Invalid Opcode . 

The invalid-opcode fault is generated when an invalid opcode is detected by the execu­
tion unit. (The exception is not detected until an attempt is made to execute the invalid 
opcode; i.e., prefetching an invalid opcode does not cause this exception.) No error code 
is pushed on the stack. The exception can be handled within the same task. 

This exception also occurs when the type of operand is invalid for the given opcode. 
Examples include an intersegment JMP instruction using a register operand, or an LES 
instruction with a register source operand. 

A third condition which generates this exception is the use of the LOCK prefix with an 
instruction which may not be locked. Only certain instructions may be used with bus 
locking, and only forms of these instructions which write toa destination in memory may 
be used. All other uses of the LOCK prefix generate an invalid-opcode exception. 

NOTE 
Table 9-3 is a list of undefined opcodes that are reserved by Intel. These opcodes 
do not generate interrupt 6. 

9.9.7 Interrupt 7 -Device Not Available 

The device-not-available fault is generated by either of two conditions: 

• The processor executes an ESe instruction, and the EM bit of the eRO register is set. 

• The processor executes a WAIT or ESe instruction, and the TS bit of the eRO 
register is set. 
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Table 9·3. Intel® Reserved Opcodes 

Single Byte 

I 82 
, , 06 

F1 

I 

Double Byte 

OF 07 
OF 10 
OF 11 
OF 12 
OF 13 .' 
F6XX 
F7XX 

CO XX 
C1 XX 
00 XX 
01 XX 
02 XX 
03 XX 

Interrupt 7 thus occurs when the programmer ,wants ESC instructions to be handled by 
software (EM set), or when.a WAIT or ESC instruction is encountered andthe context 
of the floating-point unit is different from that of the current task. 

i' 

On the 80286 and 386 processors, theMP bit in the eRa register is used with the TS bit 
to determine if WAIT instructions should generate exceptions. For programs running on 
the i486 processor, the MP bit should always be set. 

9.9.8 Interrupt 8 - Dou~le Fault 

Normally, when the processor detects an exception while trying to call the handler for a 
prior exception, the two exceptions can be handled serially. If, however, the processor 
cannot handle them serially, it signals the double-fault exception instead. To determine 
when two faults are to be signalled as a double fault, the i486 processor divides the 
exceptions into three classes: benign, exceptions, contributory exceptions, and page 
faults. Table 9-4 shows this classification. 

When two benign exceptions or interrupts occur, or one benign and one contributory, 
the two events can be handled in succession. When two contributory events occur, they 
cannot be handled, and a double-fault exception is generated. 

If a benign or contributory exception is followed by a page fault, the two events can be 
handled in s'uccession. This is also true if a page fault is followed by a benign exception. 
-However if a page fault is followed by a contributory exception or another page fault, a 
double~fault abort is generated. 
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Table 9·4. Interrupt and Exception Classes 

Class Vector Number Description 

1 Debug Exceptions 
2 NMI Interrupt 

Benign 
3 Breakpoint 
4 Overflow 

Exceptions 
5 Bounds Check 

and Interrupts 
·6 Invalid Opcode 

7 Device Not Available 
16 Floating-Point Error 

0 Divide Error 

Contributory 
10 Invalid TSS 
11 Segment Not Present 

Exceptions 
12 Stack Fault 
13 General Protection 

Page Faults 14 Page Fault 

An initial segment of page fault encountered while prefetching instructions is outside the 
domain of Table 9-4. Any further faults generated while the processor is attempting to 
trarisfer control to the appropriate fault handler could still lead to a double-fault 
sequence. 

The processor always pushes an error code onto the stack of the double-fault handler; 
however, the error code is always O. The faulting instruction may not be restarted. If ·any 
other exception occurs while attempting to call the double-fault handler, the processor 
enters shutdown mode. This mode is similar to the state following execution of a HLT 
instruction. No instructions are executed until an NMI interrupt or a RESET signal is 
received. If the shutdown occurs while the processor is executing an NMI interrupt 
handler, then only a RESET can restart the processor. The processor generates a special 
bus cycle to indicate it has entered shutdown mode. 

9.9.9 Interrupt 9 - (Intel® reserved. Do not use.) 

Interrupt 9, the coprocessor-segment overrun abort, is generated in 386 CPU/387 math 
coprocessor systems when the 386 CPU detects a page or segment violation' while trans­
ferring the middle portion of a 387 math coprocessor operand. This interrupt is not 
generated by the i486 processor; interrupt 13 occurs instead. 

9.9.10 Interrupt 10 -Invalid TSS 

An invalid-TSS fault is generated if a task switch to a segment with an invalid TSS is 
attempted. A TSS is invalid in the cases shown in Table 9-5. An error code is pushed 
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Table 9-5. Invalid TSS Conditions 

Error Code Index Description 

TSS segment TSS segment limit less than 67H 
LDT segment Invalid LDT or LDT not present 
Stack segment . Stack segment selector exceeds descriptor table limit 
Stack segment Stack segment is not writable 
Stack segment Stack segment DPL not compatible with CPL 
Stack segment Stack segment selector RPL not compatible with CPL 
Code segment Code segment selector exceeds descriptor table limit 
Code segment Code segment is not executable 
Code segment Non-conforming code segment DPL not equal to CPL .. 
Code segment Conforming code segment DPL greater than CPL 
Data segment Data segment selector exceeds descriptor table limit 
Data segment Data segment not readable 

onto the stack of the exception handler to help identify the cause of the fault. The EXT 
bit indicates whether the exception was caused by a condition outside the control of the 
program (e.g., if an external interrupt using a task gate attempted a task switch to an 
invalid TSS). 

This fault can occur either in the context of the original task or in the context of the new 
task. Until the processor has completely verified the presence of the new TSS, .the ex­
ception occurs in the context of the original task. Once the existence of the new TSS is 
verified, the task switch is considered complete; i.e., the TR register is loaded with a 
selector for the new TSS and, if the switch is due to a CALL or interrupt, the Link field 
of the new TSSreferenc'es the'old TSS. Any errors discovered by the processor after this 
point are handled in the context of the ne'w task. 

To ensure, a TSS is available to process the exc<?ption, the handler for an invalid-TSS 
exception niu,stbe a task called using a task gate. 

9.9.11 Interrupt 11 - Segment Not Present 

The segment-not-present fault is generated when the processor detects that the' present 
bit of a descriptor is clear. The processor can generate this fault in any of these cases: 

• Whiie attempting to load the CS, DS, ES, FS, or OS registers; loading the SS register, 
however, causes a stack fault. ' , 

• While attempting to load the LDT register using' an LLDT instruction; loading the 
LDT register during a task switch operation, however, causes an invalid-TSS 
exception. 

• While attempting to use a gate descriptor which is marked segmen't-not-present. 

This fault is' restartable. If the exception handler loads the segment and, returns, the 
interrupted program resumes execution. 
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If a segment-not-present exception occurs during a task switch, not all the steps of the 
task switch are complete. During a task switch, the processor first loads all the segment 
registers, then checks their contents for validity. If a segment-not-present exception is 
discovered, the remaining segment registers have not been checked and therefore may 
not be usable for referencing memory. The segment-not-present handler should not rely 
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and as 
registers without causing another exception. The exception handler should check all 
segment registers before trying to resume the new task; otherwise, general protection 
faults may result later under conditions which make diagnosis more difficult. There are 
three ways to handle this case: 

1. Handle the segment-not-present fault with a task. The task switch back to the inter­
rupted task causes the processor to check the registers as it loads them from the 
.TSS. 

2. Use the PUSH and POP instructions on all segment registers. Each POP instruction 
causes· the processor to check the new contents of the segment register; 

3. Check the saved contents of each segment register in the TSS, simulating the test 
which the processor makes when it loads a segment register; 

This exception pushes an error code onto the stack. The EXT bit of the error code is set 
if an event external to the program caused an interrupt which subsequently referenced a 
not-present segment. The IDT bit is set if the error code refers to an IDT entry (e.g., an 
INT instruction referencing a not-present gate). 

An operating system typically uses the segment-not-present exception to implement vir­
tual memory at the segment level. A not-present indication in a gate descriptor, however, 
usually does not indicate that a segment is not present (because gates do not necessarily 
correspond to segments). Not-present gates may be used by an operating system to 
trigger exceptions of special significance to the operating system. 

9.9.12 Interrupt 12 - Stack Exception 

A stack fault is generated under two conditions: 

• As a result of a limit violation· in any operation which refers to the SS register. This 
,inc1udes:stack-orientedinstructions such as POP, PUSH, ENTER, and LEAVE, as 
well as other memory references which implicitly use the stack (for example, MOV 
AX, [BP + 6]). The ENTER instruction generates this exception when there is too 
little space for allocating local variables. ., 

• When attempting to load the SS register with a descriptor which is marked segment­
not-present but is otherwise valid. This can occur in a task switch, a CALL instruction 
to a different privilege level, a return to a different privilege level, an LSS instruction, 
or a MOV or POP instruction to the SS register; 
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When the processor detects a stack exception, it pushes an error code onto the stack of 
the exception handler. If the exception is due to a not-present stack segment or to 
overflow of the new stack during an interlevel CALL, the error code contains a selector 
to the segment which caused the exception (the. exception handler can test the present 
bit in the descriptor to determine which exception occurred); otherwise, the error code 
is O. 

An instruction generating this fault is restartable in all cases. The return address pushed 
onto the exception handler's stack points to the instruction which needs to be restarted. 
This instruction usually is the one which caused the exception; however, in the case of a 
stack exception from loading a not-present stack-segment descriptor during a task 
switch, the indicated instruction is the first instruction of the new task. 

When a stack exception occurs during a task switch, the segment registers may not be 
usable for addressing memory. During a task switch, the selector values are loaded be­
fore the descriptors are checked. If. a stack exception is generated, the remaining seg­
ment registers have not been checked and may cause exceptions if they are used. The 
stack fault handler should not expect to use the segment selectors found in the CS, SS, 
DS, ES, FS, and GS registers without causing another exception. The exception handler 
should check all segment registers before trying to resume the new task; otherwise, 
general protection faults may result later under conditions where diagnosis is more 
difficult. 

9.9.13 Interrupt 13-General Protection 

All protection violations which do not cause another exception cause a general­
protection exception. This includes (but is not limited to): 

• Exceeding the segment limit wh~n using the CS, DS; ES, FS, ,?r GS segments. 

• Exceeding the segment limit when referencing a descriptor table. 

• Transferring execution to a segment which is not executable. 

• Writing to a read-only data segment or a code segment. 

• Reading from an execute-only code segment. 

o Loading the SS register with a selector for a read-only segment (unless the selector 
comes from a TSS during a task switch, in which case an invalid-TSS exception 
occurs). 

• Loading the SS, DS, ES, FS, or GS register with a selector for a system segment. 

• Loading the DS, ES, FS, or GS register with a selector for an execute-only code 
segment. 

• Loading the SS register with the selector of an executable segment. 

• Accessing memory using the DS, ES, FS, or GS register when it contains a null 
selector. 

• Switching to a busy task. 

• Violating privilege rules. 
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• Exceeding the instruction length limit of 15 bytes (this only can occur when redun.; 
dant prefixes are placed before an instruction). 

• Loading the CRO register with a set PG bit (paging enabled) and a clear PE bit 
(protection disabled). 

• Interrupt or exception through an interrupt or trap gate from'virtual-8086 mode to a 
handler at a privilege level other than O. 

The general-protection exception is a fault. In response to a general-protection excep­
tion, the processor pushes an error code onto the exception handler's stack. If loading a 
descriptor causes the exception, the error code contains a selector to the descriptor; 
,otherwise, the error code is null. The source of the selector in an error code may be any 
of the following: 

1. An operand of the instruction. 

2. A selector from a gate which is the operand of the instruction. 

3. A selector from a TSS involved in a task switch. 

,9.9.14 Interrupt 14 - Page Fault 

A page fault occurs when paging is enabled (the PG bit in the CRO register is set) and 
the processor detects one of the following conditions while translating a linear address to 
a physical address: 

• The page-directory or page-table entry needed for the address translation has a clear 
Present bit, which indicates that a page table or the page containing the operand is 
not present in physical memory. 

• The procedure does not have sufficient privilege to access the indicated page. 

The processor provides the page fault handler two items of information which aid in 
diagnosing the exception and recovering from it: 

• An error code on the stack. The error code for a page fault has a format different 
from that for other exceptions (see Figure 9-7). The error code tells the exception 
handler three things: 

1. Whether the exception was due to a not-present page or to an access rights 
violation. 

2. Whether the processor was executing at user or supervisor level at the time of 
the exception. 

3. Whether the memory access which caused the exception was a read or wri~e. 

• The contents of the CR2 register. The processor loads the CR2 register, with the 
32-bit linear address which 'generated the exception. The' exception handler can ,use 
this address to locate the corresponding page directory and page table entries. If 
another page fault can occur during execution of the page fault handler, the handler 
should push the contents of the CR2 register onto the stack. 
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FIELD VALUE DESCRIPTION 

U/S 0 The access causing the fault originated when 
the processor was executing In supervisor mode. 

1 The access causing the fault Originated when 
the processor was executing In user mode. 

W/R 0 The access causing the fault was a read. 

1 The access causing the fault was a write. 

P 0 The fault was caused by a not·present page. 

1 The fault was caused by a page-level 
protection violation 
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Figure 9-7. Page Fault Error Code 

9~9.14.1 PAGE FAULT DURING TASK SWITCH 

These operations during a tas~ switch cause access to memory: 

1. . ·Write the· state of the original task in the TSS of that task. 

2. Read the GDT to locate the TSS descriptor of the new task. 

3. Read the TSS of the new task to check the types of segment descriptors from the 
TSS. 

4. May read the LDT of the new task in order to verify the segment registers stored in 
the new TSS. 

A page fault can result from accessing any of these operations. In the last two cases the 
exception occurs in the context of the new task. The instruction pointer refers to the next 

. instruction of the new task, not· to the instruction which caused the task switch (or the 
last instruction to be executed, in the case of an interrupt). If the design of the operating 
system permits page faults .to occur during task-switches, the page-fault handler should 
be called through a task gate .. 
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9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER 

Special care should be taken to ensure that a page fault does not cause the processor to 
use an invalid stack pointer (SS:ESP). Software written for Intel 16-bit processors often 
uses a pair of instructions to change to a new stack; for example: 

MOV SS, AX 
MOV SP, StackTop 

With the i486 processor, because the second instruction accesses memory, it is possible 
to get a page fault after the selector in the SS segment register has been changed but 
before the contents of the SP register have received the corresponding change. At this 
point, the two parts of the stack pointer SS:SP (or, for 32-bit programs, SS:ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer. 

The processor does not use the inconsistent stack pointer if the handling of the page 
fault causes a stack switch to a well defined stack (i.e., the handler is a task or a more 
privileged procedure). However, if the page fault occurs at the same privilege level and 
in the same task as the page fault handler, the processor will attempt to use the stack 
indicated by the inconsistent stack pointer. 

In systems which use paging and handle page faults within the faulting task (with trap or 
interrupt gates), software executing at the same privilege level as the page fault handler 
should initialize a new stack by using the LSS instruction rather than an instruction pair 
shown above. When the page fault handler is running at privilege level 0 (the normal 
case), the problem is limited to programs which run at privilege level 0, typically the 
kernel of the operating system. 

9.9.15 Interrupt 16 - Floating-Point Error 

A floating-point-error fault signals an. error generated by a floating-point arithmetic 
instruction. Interrupt 16 can occur only if the NE bit in the eRO register is set. See 
Chapter 16 for more information on floating-point error reporting. 

9.9.16 Interrupt 17 - Alignment Check 

An alignment-check fault can be generated for access to unaligned operands. For exam­
ple, a word stored at an odd byte address, or a doubleword stored at an address which is 
not an integer multiple of four. Table 9-6 lists the alignment requirements by data type. 
To enable alignment checking, the following conditions must be true: 

• the AM bit in the CRO register is set 

• the AC flag is set 

• CPL is 3 (user mode) 

9-23 



EXCEPTIONS AND INTERRUPTS 

Table 9-6. Alignment Requirements by Data Type 

Data Type Address Must Be Divisible By 
, 

WORD 2 
DWORD ' ' ; 4 
Short REAL 4 
Long REAL 8 
TEMPREAL 8 

" 

Selector 2 
48-bit Segmented Pointer 4 
32-bit Flat Pointer 4 
32-bit Segmented Pointer 2 
48-bit .. Pseudo-Descriptor" 4 
FSTENV/FLDENV save area 4 or 2, depending on opera'nd size 
FSAVE/FRSTOR save area 4 or 2, depending on o~erand size 
Bit String 4 

Alignment checking is useful for programs which use the low two bits ' of pointers to 
identify the, type of data structure they address. For example, a subroutine in 'a math 
library may accept pointers to numeric data structures. If the type of this structure is 
assigned a code of 10 (binary) in the lowest two bits of pointers to this type, math 
subroutines can correct for the type code by adding a displacement of - 10 (binary). If 
the subroutine should ever receive the wrong pointer type, an unaligned reference would 
be produced, which would generate an exception. 

~lignment-check faults are generated only.in user mode' (p'rivilege level 3). 'Memory 
references which default to privilege level 0, such as segment descriptor loads, do not 
generate alignment-check faults, even when caused by a memory reference made in user 
mode. 

Storing a 48-bit pseudo-descriptor (the memory ~mage of the contents of a gescriptor 
table base register) in user mode can generate an alignment-check fault. Although user­
mode programs do not normally store pseudo-descriptors, the fault can be avoided by 
aligning the pseudo-descriptor to an odd word address (i.e., an addres's which is' 
2 MOD 4). 

FSA VE and FRSTOR instructions generate unaligned references which can cause 
alignment-check faults. These instructions are rarely needed by application programs. 

9.10 EXCEPTION SUMMARY 

Table 9-7, summarizes the exceptions recognized by the i486 processor. 

9.11 ERROR CODE SUMMARY 

Table 9-8 summarizes the error information which is available with each exception. 
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Table 9-7. Exception Summary 

Vector 
Return Address 

Exception Source of the 
Description Points to Faulting 

Number 
Instruction? 

Type Exception 

Division by Zero 0 Yes FAULT DIV and IDIV instruc-
tions 

Debug Exceptions 1 *1 *1 Any code or data refer-
ence 

Breakpoint 3 No TRAP INT 3 instruction 

Overflow 4 No TRAP INTO instruction 

Bounds Check 5 Yes FAULT BOUND instruction 

Invalid Opcode 6 Yes FAULT Reserved Opcodes 

Device Not 7 Yes FAULT ESC and WAIT instruc-
Available tions 

Double Fault 8 Yes ABORT Any instruction 

Invalid TSS 10 Yes FAULT2 JMP, CALL, IRET in-
structions, interrupts, 
and exceptions 

Segment Not Present 11 Yes FAULT Any instruction which 
changes segments 

Stack Fault 12 Yes FAULT Stack operations 

General Protection 13 Yes FAULTfTRAp3 Any code or data refer-
ence 

Page Fault 14 Yes FAULT Any code or data refer-
ence 

Floating-Point Error 16 Yes FAULT4 ESC and WAIT instruc-
tions 

Alignment Check 17 Yes FAULT Any data reference 

Software Interrupt o to 255 No TRAP INT n instructions 

1. Debug exceptions are either traps or faults. The exception handler can distinguish between traps and 
faults by examining the contents of the DR6 register. 

2. An invalid-TSS exception cannot be restarted if it occurs during processing of an interrupt or exception. 

3. All general-protection faults are restartable. If the fault occurs while attempting to call the handler, the 
interrupted program is restartable, but the interrupt may be lost. 

4. Floating-point errors are not reported until the first ESC or WAIT instruction following the ESC instruction 
which generated the error. 
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Table 9-8. Error Code Summary 

Description Vector Is an Error 
Number Code Generated? 

Divide Error 0 No 
Debug Exceptions 1 No 
Breakpoint 3 No 
Overflow 4 No 
Bounds Check 5 No 
Invalid Opcode 6 No 
Device Not Available 7 No 
Double Fault 8 Yes (always zero) 
Invalid TSS 10 Yes 
Segment Not Present 11 Yes 
Stack Fault 12 Yes 
General Protection 13 Yes 
Page Fault 14 Yes 
Floating-Point Error 16 No 
Alignment Check 17 Yes (always zero) 
Software Interrupt 0-255 No 
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CHAPTER 10 
INITIALIZATION 

The i486 ™ processor has an input, called the RESET pin, which invokes reset initializa­
tion. After RESET is asserted, some registers of the i486 processor are set to known 
states. These known states, such as the contents of the EIP register, are sufficient to 
allow software to begin execution. Software then can build the data structures in mem­
ory, such as the GOT and. lOT tables, which are used by system and application 
. software. 

Hardware asserts the RESET signal at power-up. Hardware may assert this signal at 
other times. For example, a button may be provided for manually invoking reset initial­
ization. Reset also may be the response of hardware to receiving a halt or shutdown 
indication. 

After reset initialization, the OH register holds a number which identifies the processor 
type. Binary object code can be made compatible with other Intel processors by using 
this number to select the' correct initialization software. Note the i486 processor has 
several processing modes. It begins execution in a mode which emulates an 8086 proces­
sor, called real-address mode. If protected mode is to be used (the mode in which the 
32-bit instruction set is available), the initialization software changes the setting of a 
mode bit in the CRO register. ( 

.10.1 PROCESSOR STATE AFTER RESET 

A self test may be requ'ested at power-up: The self test is requested by asserting the 
AHOLO input during the falling edge of the RESET signal. It is the responsibility of the 
hardware designer to Rrovide the request for self test, if desired. If the self test is se­
lected, it takes about 220 clock periods to complete. (Intel® reserves the right to change 
the exact number of periods without notification.) 

The EAX register is clear if the i486 processor passed the test. A non-zero value in the 
EAX register after self test indicates the processor is faulty. If the, self test is not re­
quested, the contents of the EAX register after reset initialization are undefined (pos­
sibly non-zero).' The OX register holds a component identifier and revision number after 
-reset initialization, as shown in Figure 10-1. The OH register contains the value 4, which 
indicates an i486 processor. The OL register contains a unique identifier of the revision 
level. 

The state of the CRO register following power-up is shown in -Figure 10-2. These states 
put the processor into real-address mode with paging disabled. 

The state of the EBX, ECX, ESI,EOI, EBP, ESP, GOTR, LOTR, TR, debug registers 
(other than OR7), and floating-point operand stack is undefined following power-up. 
Software should not depend on any undefined states. The state of the flags and other 
registers following power-up is shown in Table 10-1. 
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I- EDX REGISTER -\ 
I- DX REGISTER ~ 

31 16 15 8 7 0 

I RESERVED I DEVICE ID I STEPPING ID I 
Figure 10-1. Contents of the EDX Register After Reset 

rrr 0 PAGING ENABLED r 0 CACHING ENABLED 
I rO WRITE·THROUGH 

r--:" 0 ALIGNMENT CHECK DISABLED 
I "rO WRITE·PROTECT DISABLED 

31 30 28 ' ENABLED , 18 16 5 4 3 2 1 0 

P C N A W N E T E MP 

G D W M P E T SM P E 

o EXTERNAL FLOATING·POINT ERROR REPORTIN~:!J 
, 0 (NOT USED) 

o NO TASK SWITCH-
o ESC INSTRUCTIONS NOT TRAPPED 

o WAIT INSTRUCTIONS NOT TRAPPED 
o REAL MODE 

Figure 10-2. Contents of the CRO Register After Reset 
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Note that the invisible parts of the CS and DS segment registers are initialized to values 
which allow execution to begin, even though segments have not been defined. The base 
address for the code segment is set to 64K below the top of the physical address space, 
which allows room for a ROM to hold the initialization software. The base address for 
the data segments are set to the bottom of the physical address space (address 0), where 
RAM is expected to be. To preserve these addresses, no instruction which loads the 
segment registers should be executed until a descriptor table has been defined and its 
base address and limit have been loaded into the GDTR register. If CS is reloaded while 
in real mode, it will point to the lowest 1 Megabyte of physical memory. 

10.2 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE 

. After reset initialization, software sets up data structures needed for the processor to 
perform basic system functions, such as handling interrupts. If the processor remains in 
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Table 10-1. Processor State Following Power-Up 

Register State (hexadecimal) 

EFLAGS 00000002H 1 

EIP OOOOFFFOH 
CS OFOOOH2 

OS 00OOH3 

SS OOOOH 
ES OOOOH3 

FS OOOOH 
GS OOOOH 
IOTR (base) OOOOOOOOH' 
IOTR (limit) 03FFH 
OR7 OOOOH 

Floating-Point Unit Registers4 

Control Word 037FH 
Status Word OOOOH 
Tag Word OFFFFH 
IP Offset OOOOOOOOH 
Oata Operand Offset OOOOOOOOH 
CS Selector OOOOH 
Operand Selector OOOOH 
Opcode OOOH 

NOTE: Undefined bits are reserved. Software should not depend on the states of any of these bits. 
1. The high fourteen bits of the EFLAGS register are undefined following power-up. All of the flags are clear. 
2. The invisible part of the CS register holds a base address of OFFFFOOOOH and a limit of OFFFFH. 
3. The invisible parts of the OS and ES registers hold a base address of a and a limit of OFFFFH. 
4. The registers of the floating-point unit are not initialized unless the built-in self-test is invoked. 

real-address mode, software sets up data structures in the form used by the 8086 proces­
sor. If the. processor is going to operate in protected mode, software sets up data struc­
tures in the form used by the 80286 and i486 processors, then switches modes. See 
Section 10.7 for an example. 

10.2.1 System Tables 

In real-address mode, no descriptor tables are used. The interrupt vector table, which 
starts at address 0, needs to be loaded with pointers to exception and interrupt handlers 
before interrupts can be enabled. The NMI interrupt is always enabled. If the interrupt 
vector table and the NMI interrupt handler need to be loaded into RAM, there will be a 
period of time following reset initialization when an NMI interrupt cannot be handled. 

10.2.2 NMI Interrupt 

Hardware must provide a mechanism to prevent an NMI interrupt from being generated 
while software is unable to handle it. For example, the interrupt vector table and NMI 
interrupt handler can be provided in ROM. This allows an NMI interrupt to be handled 
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immediately after reset initialization. Another solution would be to provide a mechanism 
which passes the NMI signal through an AND gate controlled by a bit in an I/O port. 
Hardware can clear the bit when the processor is reset, and software can set the bit 
when it is ready to handle NMI interrupts. System software designers should be aware of 
the mechanism used by hardware to protect software from NMI interrupts following 
reset. 

10.2.3 First Instruction 

Execution begins with the instruction addressed by the initial contents of the CS and IP 
registers. To allow the initialization software to be placed in a ROM at the top of the 
address space, the high 12 bits of addresses issued for the code segment are set, until the 
first instruction which ioads the CS register, such as a far jump or call. As a result, 
instruction fetching begins from address OFFFFFFFOH .. Because the size of the ROM is 
unknown, the first instruction is intended to be a jump to the beginning of the initializa-;­
tion software. If protected mode will be used and the processor is still in real mode, theri 
only near jumps should be pedormed within the ROM-based software. After a far jump 
is executed, addresses issued for the code segment are clear in their high 12 bits. 

10.2.4 Enabling Caching. 

The cache is enabled by cleariilg the CD and NW bits in the CRO register. This enables 
caching, write-through, and cache invalidation cycles. Because all cache lines are 'invalid 
following reset initialization, it is unnecessary to flush the cache before enabling caching. 

Under circumstances where cache lines may be marked as valid, the cache may need to 
be flushed before enabling caching. This may occur 'as a result of using the test registers 
to run test patterns through the cache memory as part of confidence testing during 
software initialization. ' r 

10.3 SWITCHING TO PROTECTED MODE 

Before switching to protected mode, a minimum set of system data structures must be 
created, and a minimum num~er of registers mus~ be initialized. 

10.3.1 System Tables 

To allow protected mode software to access programs and data, at least one descriptor 
table, the GDT, and two descriptors must be created. Descriptors are needed for a code 
segment and a data segment. The stack can be be placed in a normal read/write data 
segment, so no descriptor for the stack is 'required. Before the GDTcan be used, the 
base address and' limit for the GDT must be loaded into the GDTR register using an 
LGDT instruction. . 
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10.3.2 NMI Interrupt 

If. hardware allows NMI interrupts to be. generated, the lOT and a gate for the NMI 
interrupt handler need to be created. Before the lOT can be used, the base address and 
limit for the lOT must be loaded into the IOTR register using an LIOT instruction. 

10.3.3 PE Bit 

Protected mode is entered by setting the PE bit in the CRO, register. Either an LMSW or 
MOV CRO instruction may be used to set this bit (the MSW register is part of the CRO 
register). Because the processor overlaps the interpretation of several instructions, it is 
necessary to discard the instructions which already have been read into the processor. A 
JMP instruction immediately after the LMSW instruction changes the flow of execution, 
so it has the effect of emptying the processor of instructions which have been fetched or 
decoded. 

After entering protected mode, the segment registers continue to hold the contents they 
had in real address mode. Software should reload all the segment registers. Execution in 
protected mode begins with a CPL of O. ' 

10.4 SOFTWARE INITIALIZATION IN PROTECTED MODE 

The data structures needed in protected mode are determined by the memory manage­
ment features which are used. The processor supports segmentation models which range 
from a single, uniform address space (flat model) to a highly structured model with 
several independent, protected address spaces for each task (multi-segmented model). 
Paging can be enabled for allowing access to large data structures which are partly in 
memory and partly on disk. Both of these forms of address translation require data 
structures which are set up .by the operating system and used by the memory manage­
ment hardware. 

10.4.1 Segmentation 

A flat model without paging only requires a GOT with one code and one data segment 
descriptor. A flat model with paging requires code and data descriptors for supervisor 
mode and another set of code and data descriptors for user mode. In addition, it re­
quires a page directory and at least one second-level page table. 

A multi-segmented model may require additional segments for the operating system, as 
well as segments and LOTs for each application program. LOTs require segment de­
scriptors in the GOT. Most operating systems, such as OS/2, allocate new,segments and 
LOTs as they are needed. This provides maximum flexibility for handling a dynamic 
programming environment, such as an engineering workstation. An embedded system, 
such as a process controller, might pre-allocate a fixed number of segments and LOTs 
for a fixed number of application programs. This would be a simple and efficient way to 
structure the software environment of a system which requires fast real-time 
performance. 
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10.4.2 Paging 

Unlike segmentation, paging is controlh!d by a mode bit. If the PO bit in the CRO 
register is clear (its state following reset initialization), the paging mechanism is com­
pletdy absent from the processor architecture seen by programmers. 

If the PO bit is set, paging is enabled. The bit may be set using a MOV CRO instruction. 
Before setting the PO bit, the following conditions must be true: 

• Software has .created at l'east two page tables, the page dire'ctory a'nd at least one 
second-level page table. 

• The PDBR register (same as the CR3 register) isJoaded with th~ base address of the 
page directory. . 

• The processor is in protected mode (paging is not available in real-address mode). If 
all other restrictions are met, the PO and PE bits can be set at the same time. 

As with the PE bit, setting the PO bit must be followed immediately with a JMP instruc­
tion. Also, the code which sets the PO bit must come from a page which has the same 
physical address after paging is enabled. 

10.4.3 Tasks , 

If the multitasking mechanism is not used, it is unnecessary to initialize.the TR register. 

If the multitasking me~hanism is used, a TSS and a TSS descriptor for the initialization 
software must be created. TSS descriptors must not be marked as busy when they are 
created; TSS descriptors should be marked as busy only as a side-effect of performing a 
task switch. As with descriptors for LDTs, TSS descriptors reside in the ODT. The LTR 
instruction is used to load a selector for the TSS descriptor of the initialization software 
into the TR register. This instruction marks the TSS descriptor as busy, but does not 
perform a task switch. The selector must be loaded before performing the first. task 
swi'tch, because a task switch copies the current task state into the TSS. After the L TR 
instruction has been used, further operations on the TR register are performed by task 
switching. As with segments and LDTs, TSSs and TSS descriptors can be either pre­
allocated or allocated as needed. 

10.5 TLB TESTING 

The i486 processor provides a mechanism for testing the translation lookaside buffer 
,(TLB), the cache used for translating linear addresses to physical addresses. Although 
· failure of the TLB hardware is extremely unlikely, users may wish to include TLB con­
fidence tests among other power-up tests for the i486 processor. 
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NOTE 
This TLB testing mechanism is unique to the i486 processor and may not be contin­
ued in the same way in future processors. Software which uses this mechanism may be 
incompatible with future processors. 

10.5.1 Structure of the TLB 

The TLB is a fo~r-way set-associative memory. Figure 10-3 illustrates its structure. In the 
data block, there are eight sets of four data entries each. A data entry in the TLB 
consists' of the ~O high-order bits of a physical address. These 20 bits can be interpreted 
as the base address of a page, which is by definition clear in its 12 low-order bits. 

The TLB translates a linear address into a physical address, and so is only concerned 
with the high-order 20 bits of either; the low-order 12 bits (these constitute the offset into 
the page) are the same in both the linear and the physical address. 

Corresponding to the block of data entries is a block of valid, attribute and tag entries. 
The tag entry consists of the 17 high-order bits of a linear address. In translating ad­
dresses, the processor uses bits 12, 13, and 14 of the linear address to select one of the 
eight sets, and then checks the four tags of that set for a match with the high-order 17 
bits of the linear address. If a match is found among the tags of the selected set, and the 
corresponding valid bit equals 1, then the linear address is translated by replacing its 
high-order 20 bits with the 20 bits of the corresponding data entry. 

LRU 
BLOCK 

VALID, ATIRIBUTE 
AND TAG BLOCK 

WAY 0 WAY 1 WAY 2 WAY 3 

/ 

/ 
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SET 1 
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Figure 10-3.· TLB Structure 
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Three LRU bits are provided with each set; they track the use of the data in the set, and 
are checked when a new entry is needed (and none of the entries in the set is invalid). A 
pseudo-LRU'replacerpent algorithm is used. 

10.5.2 Test Registers 

Two test registers, shown in Figure 10-4, are provided for the purpose of testing. The 
TR6 register is the TLB test command register, and the TR7 register is the TLB test 
data register. These registers are accessed by forms of the MOV instruction. The MOV 
instructions are defined in both real-address mode and protected mode. The test regis­
ters are privileged resources; in protected mode, the MOV instructions which access 
them can be executed only at privilege level 0 (most privileged). Art attempt to read or 
write the test registers from any other privilege level causes a general-protection 
exception. 

Unlike the TLB of the 386 DX processor, the TLB of the i486 processor can be accessed 
without disabling paging. Also unlike the 386 DX processor, the TLB of the i486 proces­
sor uses a pseudo-LRU cache replacement algorithm to select entries for de-allocation 
when a new entry is needed and the TLB is full. 

The TLB test command register (TR6) contains a command and an address tag: 

• C This is the Command bit. There are two TLB testing commands: write entries into 
the TLB, and perform TLB lookups. To cause an write into the TLB entry, move a 
doubleword into the TR6 register which contains a clear C bit. To cause an TLB 
lookup (read), move a doubleword into the TR6 register which contains a set C bit. 
TLB operations are triggered by writing to the TR6 register. 

• Linear Address On a TLB write, a TLB entry is allocated to this linear address; the 
rest of that TLB entry is assigned using the value of the TR 7 register and the value 
just written into the TR6 register. On a TLB lookup, the TLB is interrogated with this 
value; if one and only one TLB entry matches, the rest of the fields of the TR6 and 
TR 7 registers are set from the matching TLB entry. 

1 1 1 
31 2 1 098 7 654 3 210 

P P 
o 0 r R 

PHYSICAL ADDRESS CW L R U E o 0 
DT P 

TR7 

LINEAR ADDRESS V 0 o U 
# 

U w # ~OOOOC TR6 
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Figure 10-4.' TLB Test Registers 
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• V This bit indicates the TLB entry contains valid data. Entries in the TLB which are 
not loaded with page table entries have a clear V bit. All V bits are cleared by writing 
to the CR3 register, which has the effect of emptying or "flushing" the TLB. The 
TLB must be flushed after modifying the page tables, because otherwise unmodified 
data might get used for address translation. 

• D, D# The D bit (and its complement). 

• U, U# The U/S bit (and its complement). 

• W, W# The R/W bit (and its complement). 

These bits are provided in both true and complement form for extra flexibility during 
TLB lookups. The meaning of these pairs of bits is given in Table 10-2. 

The TLB test data register (TR7) holds data read from or data to be written to the TLB: 

• Physical Address This is the data field of the TLB. On a write to the TLB, the TLB 
entry allocated to the linear address in the TR6 register is set to this value. On aTLB 
lookup (read), the data field (physical address) from the TLBis loaded into ,this field. 

• PCD Corresponds to the PCD bit of a page table entry. 

• PWT Corresponds to the PWT bit of a page table entry. 

• LRU On a TLB read, corresponds to the bits used in the pseudo-LRU cache replace­
ment algorithm. The states which are reported are the value of these bits before the 
TLB lookup. TLB lookups which result in hits and TLB writes can change these bits. 

• PL On a TLB write, a set PL bit causes the REP field of the TR7 register to be used 
for selecting which of four associative blocks'of the TLB entry is loaded. If the PL bit 
is clear, the internal pointer of the paging unit is used to select the block. The internal 
pointer is driven by the pseudo-LRU cache replacement algorithm. On a TLB lookup 
(read), the PL bit indicates whether the read was a hit (the PL bit is set) or a miss 
(the PL bit is clear). 

• REP For a TLB write, selects which of four associative blocks of the TLB is to be 
written. For a TLB read, if the PL bit is. set, REP reports in which of the four 
associative blocks the tag was found; if the PL bit is clear, the contents of this field 
are undefined. 

Table 10-2. Meaning of Bit Pairs in the TRS Register 

Bit Bit# Effect on TLB Lookup Effect on TLB Write 

0 0 Do not match undefined 

0 1 Match if the bit is clear Clear the bit 

1 0 Match if the bit is set Set the bit 

1 1 Match if set or clear undefined 
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10.5.3 Test Operations 

To write a TLB entry: 

1. Move a doubleword to the TR 7 register which contains the desired physical address, 
PCD, PWT, PL, and REP values. If the PL bit is set, the REP field selects the 
associative block in which to place the entry. If the PL bit is clear, the internal 
pointer is used. 

2. Move a doubleword to the TR6 register which contains the appropriate linear ad­
dress, and values for the V, D, U, and W bits. The C bit must be clear. 

Do not write duplicate tags; the results of doing so are undefined. 

To lookup (read) a TLB entry: 

1. Move a doubleword to the TR6 register which contains the appropriate linear ad­
dress and attributes. The C bit must be set. 

2. Read the TR 7 register. If the PL bit in the TR 7 register is set, then the rest of the 
register contents report the TLB contents. If the PL bit is clear, then the other 
values in the TR7 register, except the LRU bits, are undefined. 

For the purposes of testing, the V bit functions as another bit of address. The V bit for 
a lookup request should usually be set, so that uninitialized tags do not match. Lookups 
with the V bit clear are unpredictable if any tags are uninitialized. 

10.6 CACHE TESTING 

The i486 processor provides a mechanism for testing the cache used for instructions and 
data., Although failure of the cache hardware is extremely unlikely, users may wish to 
include cache confidence tests among other power-up tests for the i486 processor. 

NOTE 

This cache testing mechanism is unique to the i486 processor and may not be contin­
ued in the same way in future processors. Software which uses this mechanism may be 
incompatible with future processors. ' 

Caching must be disabled while performing cache testing. 

10.6.1 Structure of the Cache 

The cache is a four-way set-associative memory. This means that a data block from a 
given location in main memory can be stored in any of four locations in the cache. 
Four-way association is a compromise between the speed of direct-mapped cache on 
cache hits and the high hit ratio of fully associative cache. It permits rapid searches of 
the cache to find data while providing a high proportion of cache hits. 
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Figure 10-5. Cache Structure 

The cache consists of three blocks: 

• Data Block-contains up to 8K-bytes of data and instructions. The data block is di­
vided into four arrays; each containing 128 cache lines. Each cache line holds data 
from 16 successive memory addresses, beginning with an address divisible by 16. To 
each 7-bit index into the arrays of the data block there correspond four cache lines, 
one from each array. Four cache lines with the same index are called a set. 

• Tag Block-contains one 21-bit tag for each line of data in the cache. The tag block is 
therefore also divided into four arrays, each containing 128 tags. The tag consists of 
the high-order 21 bits of the physical address of the data stored in the corresponding 
cache line. 

• Valid and LRU Block-contains one 7-bit quantity for each of the 128 sets of cache 
lines. Four bits are used to mark the cache lines in the set individually as valid or 
invalid. The other three bits track the use of the data in the set, and are checked 
when a cache line-fill is needed (and none of the lines in the set is invalid). As in the 
TLB, a pseudo-LRU cache replacement algorithm is used. 
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Cache addressing is performed by splitting the high-order 28 bits of the physiCal address 
into two parts. The highest-order 21 bits are the tag field, and are used to distinguish the 
cached data from any other 16-byte data line that could have been stored in the same 
set. The next-highest 7 bits are the index field, and determine the set in which the data 
can be stored. 

10.6.2 Test Registers 

Three test registers, shown in Figure 10-6, are provided for the purpose of testing. The 
TR3 register is the cache test data register, the TR4 register is the cache test status 
register, and the TR5 register is the cache test. control register. These registers are 
accessed by forms of the MOY instruction. Th~ MOY instructions are defined in both 
real-address mode and protected mode. The test registers are privileged resources; in 
protected mode, the MOY instructions which 'access them can be executed only at priv.;. 
ilege level 0 (most privileged). An attempt to, read or write the test registers from any 
other privilege level causes a general-protection exception. 

The cache test data register (TR3) contains a doubleword to write to the .cathe fill 
buffer, or a doubleword read from the cache read buffer. The fill and read buffers each 
have storage for four doublewords, which pass through this register one at a time. A 
particular doubleword in either buffer is addressed using the 2-bit Entry Select field 
(bits 2 and 3) in the TR5 register. ' '. , ' 

1 1 1 
31 2 1 0 9 8 7 654 3 2 1 0 

E C 
UNUSED SET SELECT N T TR5 

T 'l 

TAG I V lRU VALID UNUSED TR4 
(RD) (RD) 

DATA TR3 

V VALID 
CTl CONTROL 
ENT ENTRY 

'240486i86 

,Figure 10-6. Cache Test Registers 
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The cache test status register (TR4) contains Valid and LRU bits, and a tag: 

• Valid (bits 3 .. 6) On a cache lookup, these are the four Valid bits of the set which was 
accessed. 

• LRU On a cache lookup, these are the three LRU bits of the set which was accessed. 
On a cache write, these bits are ignored; the LRU bits in the cache are updated by 
the pseudo-LRU cache replacement algorithm. 

• Valid (bit ]()) This is the Valid bit for the particular entry which was accessed. On a 
cache lookup, it is a copy of one of the bits reported in bits 3 .. 6. On a cache write, it 
becomes the new valid bit for the entry and set selected. 

• Tag Address On a cache write, this is the address which becomes the tag. 

The cache test control register (TRS) contains the 7-bit set select, 2-bit entry select, 
and a 2-bit control field: 

Control The functions encoded by these bits are shown in Table ·10-3. 

• Entry Select During a cache read or write, selects. one of the four entries in the set 
addressed by the Set Select; during cache-fill-buffer writes or read-buffer reads, se­
lects one of the four doublewords in a line. 

• Set Select Selects one of the 128 sets. 

Writing to TRS with either bit 0 or bit 1 set causes a cache access. TRS cannot be read. 

10.6.3 Test Operations 

Before cache testing: 

1. Disable caching by setting the CD bit in the CRO register. 

To write to the cache fill buffer: 

1. Load the TRS register with a value in the Entry Select field which addresses one of 
the four doublewords in the cache fill buffer. The value of the Control field must be 
00 (binary). 

2. Load the TR3 register with the data to be written to the cache fill buffer. The write 
to the buffer is triggered by loading this register. 

3. Repeat steps 1 and 2 above for each of the remaining three doublewords in the 
cache fill buffer. 

Table 10-3. Encoding of Cache Test Control Bits 

Control Bits 
Description Bit 1 Bit 0 

00 Write to cache fill buffer, or read from cache read buffer. 
01 Perform cache write. 
10 Perform cache read. 
11 Flush the cache (mark all entries as invalid). 
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To write to the cache: 

1. Lmidthe c'ache fill buffer, as described above. 

2. Load the TR4 register with the tag (bits 11..31) and a valid bit (bit 10). The other 
bits of the TR4 register (bits 0 .. 9) have no effect on the cache write. ' ' 

3. Load the TR5 register with Control, Entry Select, 'and Set Select values; The value 
,in the. Control field must be 01 (binary). The cache write is trigg~red by loading this 
register. ' 

To read from the cache: 

1. Load the TR5 register with Control, Entry Select, and Set Select values. The value 
in the Control field must be 10 (binary). The cache read is triggered by loading this 
register. ,The cache read loads the TR4 register with th~ tag for the entry which was 
read, and the LRU and Valid bits for the entire set which was read. The cache read 
loads the cache read buffer with 128 bits· of data. The buffer can be read' using the 
following procedure. . 

To read from the cache read buffer: 

1. Load the TR5 register with Control and Entry Select values. The Entry Select value 
addresses one of the four doublewords in the cache read buffer. The value in the 
Control field must be 00 (binary). 

2. Read a doubleword from the cache read buffer by unloading the TR3 register. The 
read from the buffer is triggered by unloading this register. 

3. Repeat steps 1 and 2 above for each of the remaining three doublewords in the 
cache read buffer. 

To flush the cache: 

1.' Load .the TR5 register with a Control value. The value in the Control field must be 
11 (binary). None of the other fields have any meaning in this case. The cache flush 
is triggered by loading this register. All of the LRU bits and Valid bits are cleared. 

10.7 INITIALIZATION EXAMPLE 

The following program templates are provided by Intel for your benefit in developing 
software for the i486 processor. 

'j simpini t. asm 
Initialization code for,simple flat (linear) model example 

*********************************************************************** 
Version 2.0 
Copyright Intel Corp., 1988 

'j This template is intended for your benefit in developing applications/ 
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systems using Intel i486CTM) or Intel386CTM) family microprocessors. 
Intel hereby grants you permission to modify and incorporate it as 
needed. 

************************************************************************ 
This is an example of initialization code to put either the i486CTM) 
processor, 386CTM) DX processor, 386CTM) SX processor or 376CTM) processor 
into flat mode. All of memory is treated as simple linear RAM. 
There are no interrupt routines. The builder creates the GDT 
alias and IDT alias and places them, by default, in GDT[l] and GDT[2]. 
After entering protected mode, this code jumps to an ASM386/486 startup 
routine for a C application. You can change this JMP address to that of 
your code, or make the label of your code C_STARTUP. 

NAME simpstart 
EXTRN c_startup:near 

pe_flag 
data_sele 
CODEMACRO 

ENDM 

equ 1 
equ 20H 
opprefx 
db 66H 

name of object module 
this is the label jmped to after init_code 

for setting PE bit 
offset of _phantom_data_ in GDT.CGDT[4]) 
macro to change default operand size 

init_code SEGMENT ER PUBLIC 
GDT_DESC is a public symbol referred to in the build file. The LOCATION 
definition in the TABLE section of the build file points to this label; 
the builder stores the base and limit for the named table at this 
location in memory. 

PUBLIC gdt_desc 
gdt_dese ·dp ? 

START is a label that points to the true beginning of our executable 
code. The BOOTSTRAP control causes the builder to place a short jump 
to the named label in this case, START) at the component reset vector. 

PUBLIC start 
Since this code initializes either an i486, 386 DX, 386 SX or 376 processor 
into protected mode, the first instructions at START test for component 
type. The i486 or 386 DX or 386 SX processor at reset is in real or 
compatibility mode: the PE bit is off and the D bit for CS is not set. 
Instructions execute in their 16-bit form. The 376 processor at reset 
has the PE bit on as well as the D bit, so instructions execute in their 
32-bit form. 

nop 
nop 

start: 
eld 
smsw bx 
test bl,l 
jnz pestart 

NOPs are for initializing a i486 or 386 DX 
or 386 SX processor 

clear direction flag 
check for processor type at reset 
use SMSW rather than MOV for speed 
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Loading the GDTR at REALSTART or PEST ART depends on user hardware 
returning a READY after a write to ROM. 

realstart: is an i486 or 386 DX or 386 SX processor and in 
opprefx 16-bit real mode, use operand prefix to 
mov eax,offset gdt_desc , get 32-bit address of GDT pointer 
opprefx use operand prefix to 
and eax,0ffffh make address relative to reset area 
19dtw cs:[eax] load 24 bits of base into GDTR. 

mov ax,bx 
or al,pe_flag 
Imsw ax 
jmp next 

pestart: 
mode 

mov eax,offset gdt_desc 
and eax, 0ffffh 
19dt cs:[eax] 

next: 
xor eax,eax 
mov al,datLselc 
mov ds,ax 
mov ss,ax 
mov es,ax 
mov fs,ax 
mov gs,ax 
test bl,l 
jnz pejump 

opprefx 
pejump: 

jmp far ptr c_startup 
iniLcode ENDS 

END 
cstart.asm 

copy machine status word 
set PE bit 
load machine status word withPE bit set 
flushprefetchqueue 

is a 376 processor and in 32~bit protected 

get 32-bit address of GDT pointer 
make address relative to reset area 
load 32 bits of base into GDTR 

initialize data selectors 
GDT[4] is _phantom_data_ 

use operand prefix for i486 or 386 DX or 386 SX 
processor jump 
first far jump causes A31-20 to drop low 

An ASM386/486 module to initializ~ the stack and call a C application 

*********************************************************************** 

Version 2.0 
Copyright Intel Corp., 1988 
This template is intended for your benefit in developing applications/ 
systems using Intel i486(TM) or InteI386(TM) family microprocessors. 
Intel hereby grants you permission to modify and incorporate it as 
needed. 

************************************************************************ 
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NAME cstart 
EXTRN main:near 
PUBLIC c_startup 

stack STACKSEG 1024 

data SEGMENT RW PUBLIC 
data ENDS 
code32 SEGMENT ER PUBLIC 

c_startup: 
mov esp,stackstart stack 
call main 
hlt 

code32 ENDS 
/* simple.c 

INITIALIZATION 

name of the object module 
label of the C application to be called 
public symbol used in processor initialization 
code 

initialize stack pointer 
call C application 
halt processor 

C38b/48b(TM) application code for simple flat model example' 

**************************************************************************** 

Version 2.0 
Copyright Intel Corp., 1988 
This template is intended for your benefit in developing applications/ 
systems using Intel i48b(TM) or InteI38b(TM) family microprocessors. Intel 
hereby grants you permission to modify and incorporate it as needed. 

**************************************************************************** 

*/ 
char message[l="IT WORKS" 

main () 
{ 

int array_count[101; 
aray_count[11 1; 
aray_count[21 2; 
aray_count[31 3; 
aray_count[41 4; 
aray_count[51 5; 
aray_count[bl b; 
aray_count[71 7; 
aray_count[81 8; 
} 

simple.bld 
Build file for input to BLD38b/48b to create simple flat model example 

*********************************************************************** 
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Version 2.0 
Copyright Intel Corp., 1988 
This template is intended for your benefit in developing applications/ 
systems using Intel i48b(TM) or InteI38b(TM) family microprocessors. 
Intel hereby grants you permission to modify and incorporate it as 
needed. 

************************************************************************ . 

simplej -- build program id 
SEGMENT 

*segments (DPL 0), 
_phantom_code_ (DPL 0), 
_phantom_data_ (DPL 0), 

Give all user segments a DPL of 0. 
These two segments are created by 
the builder when the FLAT control is 
used. 
Their default DPL is 0j they are listed 
here for reference only. 

iniLcode Put initialization code at reset area. 
(BASE 0ffff0300H)j 

TABLE 
create GDT 

GDT 
"simpstart" initialization 

(LOCATION = gdt_desc, 

BASE = 0ffff0100H 
)j end GDT 

TASK 
main_task 

)j 

TABLE 

(BASE 0ffff0200H, 
DATA data, 

CODE main, 

STACKS = (stack), 

NO INTENABLED. 

-- GDT_DESC is a public symbol in the 
module. 

In a buffer starting at GDT_DESC, 
BLD38b/48b places the GDT base and 
GDT limit values. Buffer must be 
b bytes long. The base and limit 
values are places in this buffer 
as two bytes of limit plus 
four bytes of base in the format 
required for use by the LGDT 
instruction. 

Task is for *ICD(TM)-48b or ICE(TM)-38b 
or ICE(TM)-37b emulator initialization. 

Points to a segment that 
indicates initial DS value. 
Entry point is main, which 
must be a public id. 
Segment id points to stack 
segment. Sets the initial SS:ESP. 
Disable interrupts. 
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ldt1 (NOT CREATED);. 

END 

INITIALIZATION 

Builder does not place LDT in object 
module, but contents appear in listing. 

Note: ICD-486 is an in-circuit debugger for the i486 CPU. This product 
is scheduled for availability in the fourth quarter of 1989. 

echo off 
echo simple. bat 
echo A DOS batch file for generating ~ bootloadable simple flat model 
echo *********************************************************************** 
echo * * 
echo * Version 2.0 * 
echo * Copyright Intel Corp., 1988 * 
echo * This template is i.ntended for your benef i tin developing * 
echo * applications/systems using Intel i486(TM) or InteI386(TM) family * 
echo * microprocessors. Intel hereby grants you permission to modify * 
echo * and incorporate it as needed. * 
echo * * 
echo *********************************************************************** 
REM 
REM The following two invocations of ASM386/486 create object modules 
REM "simpinit.obj" and "cstart.obj". The assembler issues warnings with 
REM each invocation due to the use of privileged instructions in the files. 
REM The "debug" control directs ASM386/486 to include extra informatio~ 
REM useful in symbolic debugging. The listing files are "simpinit.lst" and 
REM "cstart.lst". 
echo *echo asm386 simpinit.asm debug mod486 
asm386 simpinit.asm debug mod486 
echo (1 warning due to use of privileged instructions) 
echo * 
echo asm386 cstart.asm debug mod486 
asm386 cstart.asm debug mod486 
echo (1 warning due to use of privileged instructions) 
REM 
REM The invocation of C-386/486 creates an object module "simple.obj". The 
REM "regal locate" control directs the compiler to optimize the allocation of 
REM register variables. The "code" control causes placement of a pseudo-
REM assembly language listing at the end of the listing file. "Debug" 
REM directs C-386/486 to include extra information useful in symbolic 
REM debugging. The listing file is "simple. 1st". 
echo * 
echo c386 simple.c debug regal locate code mod486 
c386 simple.c debug regal locate code mod486 
REM 
REM BND386/486 combines the input segments and resolves symbolic addressing. 
REM The "noload" control directs the binder to create a linkable (rather 
REM than loadable) file. The "debug" control indicates that the binder does 
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REM not purge debug information. "Object" directs the output file to be 
REM named "simple.bnd". The listing file is "simple.mpl". 
echo * 
echo bnd38b simple.obj,simpinit.obj,cstart.obj noload debug object 
(simple.bnd) mod48b 
bnd38b simple.obj,simpinit.obj,cstart.obj noload debug object (simple.bnd) mod48b 
REM 
REM The goal is an absolute bootloadable file (all addresses fixed in 
REM memory) suitable for loading into an ICD-48b(TM) in-circuit debugger or an ICE-38b(TM) 
REM or ICE-37b(TM) in-circuit emulator. BLD38b/48b creates such an absolute module, 
REM necessary descriptor tables, and a task for initializing the emulator. The 
REM "buildfile" control identifies "simple.bld" as the build file •. The 
REM "bootstrap" control identifies the symbol "start" as the label of the 
REM instruction to be jumped to by the bootstrap jump placed at 0fffffff0H. 
REM The "flat" control directs the builder to configure the file in a flat 
REM model, where all code resides in the _phantom_code_ segment and all data 
REM resides in the _phantom_data_ segment. The "mod48b" control causes the 
REM builder to issue messages to guide creation of the object module for an 
REM i48b(TM) processor. The "mod37b" control causes the builder to issue 
REM messages to guide creation of the object module for a 37b(TM) 
REM processor. You can remove either control to create an object module for 
REM a 38b(TM) DX processor. The listing file is "simple.mp2". The final system 
REM is "simple". 
echo * 
echo bld38b simple.bnd buildfile (simple.bld) bootstrap (start) flat mod48b 
bld38b simple.bnd buildfile (simple.bld) bootstrap (start) flat mod48b 
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CHAPTER 11 
DEBUGGING 

The i486™ processor has advanced debugging facilities which are particularly important 
for sophisticated software systems, such as multitasking operating systems. The failure 
conditions for these software systems can be very complex and time-dependent. The 
debugging features of the i486 processor give the system programmer valuable tools for 
looking at the dynamic state of the processor. 

The debugging support is accessed through the debug registers. They hold the addresses 
of memory locations, called breakpoints, which invoke debugging software. An exception 
is generated when a' memory operation is made to one of these addresses. A breakpoint 
is specified for a particular form of memory access, such as an instruction fetch or a 
doubleword write operation. The debug registers support both instruction breakpoints 
and data breakpoints. 

With other processors, instruction breakpoints are set by replacing normal instructions 
with breakpoint instructions. When the breakpoint instruction is executed, the debugger 
is called. But with the debug registers of the i486 processor, this is not necessary. By 
eliminating the need to write into the code space, the debugging process is simplified 
(there is no need to set up a data segment mapped to the same, memory as the code 
segment) and breakpoints can be set in ROM-based software. In addition, breakpoints 
can, be 'se(o~ reads and writes to data which allows real-time monitoring of variables. 

11.1 'DEBUGGING SUPPORT 

The features of the architecture which support debugging are: 

• Reserved debug interrupt vector- Specifies a procedure or task to be called when an 
event for the debugger occurs. ' 

• ,Debug address registers - Specifies the addresses of up to four breakpoints. 
\1' r • 

• ,Debug control register-Specifies the forms of memory access for the breakpoints. 

• Debug" status register- Reports conditions which were in effect at the time of the 
exception. 

• Trap bit of TSS (T-bit)-Generates a debug exception when an attempt is made to 
perform a task switch to a task with this bit set in its TSS. 

• Resume flag (RF) - Suppresses multiple exceptions to the same instruction. 

• !rap flag (TF) - Generates a debug exception after every execution of an instruction. 

• " Breakpoint instruction,.... Calls .the debugger (generates a debug exception). This in-
struction is an alternative way to set code breakpoints. It is especially useful when 
more than four breakpoints are desired, or when breakpoints are being placed in the 
source code. ' 

• Reserved interrupt vector for breakpoint exception - Calls a procedure or task when a 
breakpoint instruction is executed. 
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These features allow a debugger to be called either as a separate task or as a procedure 
in the context of the current task. The following conditions can be used to call the 
debugger: 

• Task switch to a specific task. 

• Execution of the breakpoint instruction. 

• Execution of any instruction. 

• Execution of an instruction at a specified address. 

• Read or write of a' byte, word, or doubleword at a specified address. 

• Write to a byte, word, or doubleword ata specified address. 

• Attempt to change the contents of a debug register. 

11.2 DEBUG REGISTERS· 

Six registers are used to control debugging. These registers are accessed by forms of the 
MOV instruction. Adebug register may be the source or destination operand for one of 
these instructions. The debug registers are privileged resources; the MOV instructions 
which access them may be executed only at privilege level O. An attempt to read or write 
the debug registers from any other privilege level generates a general-protection excep­
tion. Figure 11-1 shows the format of the debug registers. 

'11.2.1 Debug Address Registers (ORO-OR3) 

Each of these registers holds the linear address for one of the four breakpoints. If paging 
is enabled, these addresses are translated to physical addresses by the paging algorithm. 
Each breakpoint condition is specified further by the contents of the DR7 register. 

11.2.2 Debug Control Register (OR7) 

The debug control register shown in Figure 11-1 specifies, the sort of memory access 
associated with each breakpoint. Each address in registers DRO to DR3 corresponds to a 
field R/WO to ~/W3 in the DR7 register. The processor interprets these bits as follows: 

00 - Break on instruction execution only 
01- Break on data writes only 
10-undefined 
11-Break on data reads or writes but not instruction fetches 
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DEBUG REGISTERS 

3 3 2 2 2 2 222 222 1 111 1 1 1 1 1 1 
1 0 9 8 7 6 S 4 3 2 1 0 9 8 7 6 S 4 3 2 1 0 9 8 7 6 5 4 3 21 O· 

L R L R L R L R 
E I E I E I E I o 0 0 000 G L G L G L G L G L 
N W N W N W N W E E 3 3 2 2 1 1 o 0 DR7 

3 3 2 2 1 1 0 0 

000 000 0 0 0 0 0 0 o 000 B B gOOOOOOOOO B B B B 
T S 3 2 1 0 

DR6 

RESERVED DRS 

RESERVED DR4 

BREAKPOINT 3 PHYSICAL ADDRESS DR3 

BREAKPOINT 2 PHYSICAL ADDRESS DR2 

BREAKPOINT 1 PHYSICAL ADDRESS DR1 

BREAKPOINT 0 PHYSICAL ADDRESS ORO 

BITS MARKED 0 ARE RESERVED. DO NOT USE. 

240486i87 

Figure 11-1. Debug Registers 

The LEND to LEN3 fields in the DR7 register specify the size of the breakpointed 
location in memory. A size of 1, 2, or 4 bytes may be specified. The length fields are 
interpreted as follows: 

OO-one-byte length 
01- two-byte length 
10 - undefined 
11-four-byte length 

If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using 
any other length is undefined. 

The low eight bits of the DR7 register (fields LO to L3 and GO to G3) individually enable 
the four address breakpoint conditions. There are two levels of enabling: the local (LO 
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through L3) and global (GO through G3) levels. The local enable bits are automatically 
cleared by the processor on every task switch to avoid unwanted breakpoint conditions in 
the new task. They are used to breakpoint conditions in a single task. The global enable 
bits are not cleared by a task switch. They are used to enable breakpoint conditions 
which apply to all tasks. 

The i486 processor always uses exact data breakpoint matching in debugging. That is, if 
any of the Ln/Gn bits are set, the processor slows execution so that data breakpoints are 
reported for the instruction which triggered the breakpoint, rather than the next instruc­
tion to execute. In such a case, one-clock instructions which access memory will take two 
clocks to execute. 

In the 386™ DX processor, exact data breakpoint matching will not occur unless it is 
enabled by setting either the LE or the GE bit. The i486 processor ignores these bits. 

11.2.3 Debug Status Register (DR6) 

The debug status register shown in Figure 11-1 reports conditions sampled at the time 
the debug exception was generated. Among other information, it reports which break­
point triggered the exception. 

When an enabled breakpoint generates a debug exception, it loads the low four bits of 
this register (BO through B3) before entering the debug exception handler. The B bit is 
set if the condition described by the DR, LEN, and R/W bits is true, even if the break­
point is not enabled by the Land G bits. The processor sets the B bits for all breakpoints 
which match the conditions present at the time the debug exception is generated, 
whether or not they are enabled. 

The BT bit is associated with the T bit (debug trap bit) of the TSS (see Chapter 6 for the 
format of a TSS). The processor sets the. BT bit before entering the debug handler if a 
task switch has occurred to a task with a set T bit in its TSS. There is no bit in the DR7 
register to enable 9r disable this exception; the T bit of the TSS is the only enabling bit. 

The BS bit is associated with the TF flag. The BS bit is set if the debug exception was 
triggered by the single-step execution mode (TF flag set). The single-step mode is the 
highest-priority debug exception; when the BS bit is set, any of the other debug status 
bits also may be set. 

The BD bit is set if the next instruction will read or write one of the eight debug registers 
.while they are being used by in-circuit emulation. 

Note that the contents of the DR6 register are never cleared by the processor. To avoid 
any confusion in identifying debug exceptions, the debug handler should clear the regis-
ter before returning. ' 
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11.2.4 Breakpoint Field Recognition 

The address and LEN bits for each of the four breakpoint conditions define a range of 
sequential byte addresses for a data breakpoint. The LEN bits permit specification of a 
one-, two-, or four-byte range. Two-byte ranges must be aligned on word boundaries 
(addresses which are multiples of two) and four-byte ranges must be aligned on double­
word boundaries (addresses which are multiples of four). These requirements are en­
forced by the processor; it uses the LEN bits to mask the lower address bits in the debug 
registers. Unaligned code or data breakpoint addresses do not yield the expected results. 

A data breakpoint for reading or writing is triggered if any of the bytes participating in a 
memory access is within the range defined by a breakpoint address register and its LEN 
bits. Table 11-1 gives some examples of combinations of addresses and fields with mem­
ory references which do and do not cause traps. 

A data breakpoint for an unaligned operand can be made from two sets of entries in the 
breakpoint registers where each entry is byte-aligned, and the two entries together cover 
the operand. This breakpoint generates exceptions only for the operand, not for any 
neighboring bytes. 

Instruction breakpoint addresses must have a length specification of one byte (LEN 
00); the behavior of code breakpoints for other operand sizes is undefined. The proces­
sor recognizes an instruction breakpoint address only when it points to the first byte of 
an instruction. If the instruction has any prefixes, the breakpoint address must point to 
the first prefix. 

Table 11-1. Breakpointing Examples 

Comment Address (hex) Length (in bytes) 

Register Contents ORO AOO01 1 (LENO = 00) 
Register Contents OR1 AOO02 1 (LENO = 00) 
Register Contents OR2 80002 2 (LENO = 01) 
Register Contents OR3 COOOO 4 (LENO = 11) 

AOO01 1 
AOO02 1 
AOO01 2 
AOO02 2 

Memory Operations Which Trap 80002 2 
80001 4 
CODOC 4 
COO01 2 
COO03 1 

AOOOO 1 
Memory Operations Which AOO03 4 
Don't Trap 80000 2 

COO04 4 
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11.3 DEBUG EXCEPTIONS 

Two of the interrupt vectors of the i486 processor are reserved for debug exceptions. 
The debug exception .is the usual way to invoke debuggers designed for .the i486 pro<;es­
sor; the breakpoint exception is intended for putting breakpoints in debuggers. 

11.3.1 Interrupt 1 - Debug Exceptions 

The handler for this exception usually isa debugger or part of a debugging system. The 
processor generates a debug exception for. any' of several conditions. The debugger can 
check flags in the DR6 and DR7 registers to determine which condition caused the 
exception and which other conditions also might apply. Table 11-2 shows the states of 
these bits for each kind of breakpoint condition. 

" " 

Instruction breakpoints are faults; other debug exceptions are traps. The debug excep­
tion may report either or both at one time. The following sections present details for 
each class of debug exception. 

11.3.1.1 INSTRUCTION-~REAKPOINT FAULT ' .. 

The processor reports an instruction breakpoint before it executes the breakpointed 
instruction (Le., a debug exception caused by an instruction breakpoint is a fault). 

The RF flag permits the debug exception hamller to n!start instructions which cause 
faults other than debug faults. When one of these faults occurs, ,the system software 
'writer must set the RF bit in the copy of the EFLAGS register which is pushed on the 
stack in the debug exception handler routine. This bit is set in preparation of resuming 
the program's execution at the breakpoint address without generatirig another break­

. point fault on the same instruction. (Note: The RF bit does not cause breakpoint trap's 

. to be ignored, nor other kinds of faults.) , 

Table 11·2. Debug Exception Conditions 

Flags Tested Description 

BS = 1 Single-step trap 

BO = 1 and (GEO = 1 or LEO = 1) Breakpoint defined by DRO, LEND, and R/WO 

B1 = 1 and (GE1 = 1 or LE1 ;" 1) Breakpoint defined by DR1, LEN1, and R/W1 

B2 = 1 and (GE2 = 1 or LE2 = 1) Breakpoint defined by DR2, LEN2, and R/W2 

B3 = 1 and (GE3 = 1 or LE3 =1) Breakpoint defined by DR3, LEN3, and R/W3 

BD = 1 Debug registers in use for in-circuit ,emulation 

BT = 1 Task switch 
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The processor clears the RF flag at the successful completion of every instruction except 
after the IRET instruction, the POPF instruction, and JMP, CALL, or INT instructions 
which cause a task switch. These instructions set the RF flag to the value specified by the 
the saved copy of the EFLAGS register. 

The processor sets the RF flag in the copy of the EFLAGS register pushed on the stack 
before entry into any fault handler. When the fault handler is entered for instruction 
breakpoints, for example, the RF flag is set in the copy of the EFLAGS register pushed 
on the stack; therefore, the IRET instruction which returns control from the exception 
handler will set the RF flag in the EFLAGS register, and execution will resume at the 
breakpointed instruction without generating another breakpoint for the same 
instruction. 

If, after a debug fault, the RF flag is set and the debug handler retries the faulting 
in,struction, it is possible that retrying the instruction will generate other faults. ,The 
restart of the instruction after these faults also occurs with the RF flag set, so repeated 
debug faults continue to be suppressed. The processor clears the RF flag, only after 
successful completion of the instruction. 

11.3.1.2 DATA-BREAKPOINT TRAP 

A data-breakpoint exception is a trap; i.e., the processor generates an exception for a 
data breakpoint after executing the instruction which accesses the breakpointed memory 
location. 

When using data breakpoints, it is recommended either the LE or GE bits of the DR7 
register also be set. If either the LE or GE bits are set, any data breakpoint trap is 
reported immediately after completion of the instruction which accessed· the break­
pointed memory location. This immediate reporting is done by forcing the i486 processor 
execution unit to wait for completion of data operand transfers before. beginning execu­
tion of the next instruction. If neither bit is set, data breakpoints may not be generated 
until one instruction after the data is accessed, or they may not be generated at all. This 
is because instruction execution normally is overlapped with memory transfers. Execu­
tion of the next instruction may begin before the memory operations of the previous 
instruction are completed. 

Ifa debugger needs to save the contents of a write breakpoint location, it should save 
the original contents before setting the breakpoint. Because data breakpoints are traps, 
the original data is overwritten before the trap exception is generated. The handler can 
report the saved value after the breakpoint is triggered. The data in the debug registers 
can be used to address the new value stored· by the instruction which triggered the 
breakpoint. 
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11.3.1.3 GENERAL-DETECT FAULT 

The general-detect fault occurs when an attempt is made to use the debug registers at 
the same time they are being used by in-circuit· emulation. This additional protection 
feature is provided to guarantee emulators can have full control over the debug registers 
when required. The exception handler can detect this condition by checking the state of 
the BD bit of the ·DR6 register. . 

11.3;1.4 SINGLE-STEP TRAP 

This trap occurs after an instruction is executed if the TF flag was set before the instruc­
tion was executed. Note the exception does not occur after an instruction which sets the 
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step 
trap does not occur until after the instruction following the POPF instruction. 

The processor clears the TF flag before calling the exception handler. If the TF flag was 
set in a TSS at the time of a task switch, the exception occurs after the first instruction· is 
executed in the new task. 

The single-step flag normally is not cleared by privilege changes inside a task. The INT 
instructions, however, do clear the TF flag. Therefore, software debuggers which single­
step code must recognize and emulate INT n or INTO instructions rather than executing 
them directly. 

To maintain protection, the operating system should check the current execution privi­
lege level after any. single-step. trap to see if single stepping should continue at the 
current privilege level. 

The interrupt priorities guarantee that if an external interrupt occurs, single stepping 
stops. When both an external interrupt and a single step interrupt occur together, the 
single step interrupt is processed first. This clears the TF flag. After saving the return 
address or switching tasks, the external interrupt input is examined before the first in­
struction of the single step handler executes. If the external interrupt is ·still pending, 
then it is serviced. The external interrupt handler does not run in single-step mode. To 
single step an interrupt handler, single step an INTn instruction which calls the interrupt 
handler. 

11.3.1.5 TASK-SWITCH TRAP 

The debug exception also occurs after a task switch if the T bit of the new task's TSS is 
set. The exception occurs after control has passed to the new task, but before the first 
instruction of that task is executed. The exception handler can detect this condition by 
examining the BT bit of the DR6 register. 

Note that if the debug exception handler is a task, the Tbit of its TSS should not be set. 
Failure to observe this rule will put the processor in a loop. 
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11.3.2 Interrupt 3 - Breakpoint Instruction 

The breakpoint trap is caused by execution of the INT 3 instruction. Typically, a debug­
ger prepares a breakpoint by replacing the first opcode byte of an instruction with the 
opcode for the breakpoint instruction. When execution of the INT 3 instruction calls the 
exception handler, the return address points to the first byte of the instruction following 
the INT 3 instruction. 

With older processors, this feature is used extensively for setting instruction breakpoints. 
With the i486 processor, this use is more easily handled using the debug registers. How­
ever, the breakpoint exception still is useful for breakpointing debuggers, because the 
breakpoint exception can call an exception handler other than itself. The breakpoint 
exception also can be useful when it is necessary to set a greater number of breakpoints 
than permitted by the debug registers, or when breakpoints are being placed in the 
source code of a program under development. 
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CHAPTER 12 
CACHING 

The i486™ processor has an on-chip internal cache for storing 8K bytes of instructions 
and data. The cache raises system performance by satisfying an internal read request 
more quickly than a bus cycle to memory. This also reduces the processor's use of the 
external bus. The internal cache is transparent to program operation. 

The i486 processor can use an external second-level cache outside of the processor chip. 
An external cache normally improves performance and reduces bus bandwidth required 
by the i486 processor. 

Caches require special consideration in multiprocessor systems. When one processor 
accesses data cached in another processor, it must not receive incorrect data. If it mod­
ifies data, all other processors which access that data must receive the modified data. 
This property is called cache consistency. The i486 processor provides mechanisms which 
maintain cache consistency in the presence of multiple processors and external caches. 

The operation of internal and external caches is transparent to application software, but 
knowledge of the behavior of these caches may be useful in optimizing software perfor­
mance. In multiprocessor systems, maintenance of cache consistency may require inter­
vention by system software. 

The cache is available in all execution modes: real mode, protected mode, and virtual-
8086 mode. For properly designed single-processor systems, the cache can be initially 
enabled and not require further control. 

12.1 INTRODUCTION TO CACHING 

Caches are often implemented as associative memories. An associative memory has extra 
storage for each unit of memory, called a tag. When an address is applied to an associa­
tive memory, each tag simultaneously compares itself against the address. If a tag 
matches the address, access is provided to the unit of memory associated with the tag. 
This is called a cache hit. If no match occurs, the cache signals a cache miss. A cache miss 
requires a bus cycle to access main memory. 

To gain efficiency in the implementation of the internal cache, storage is allocated in 
chunks of 128-bits, called cache lines. External caches are not likely to use cache lines 
smaller than those of the internal cache. 

The cache of the i486 processor does not support partially-filled cache lines, so caching a 
single doubleword requires caching four doublewords. This would be an inefficient use 
of the cache if it were not for the fact that the processor rarely makes access to random 
locations in memory. Over any small span of time, the processor usually accesses a small 
number of areas in memory, such as the code segment or the stack, and it usually 
accesses many neighboring addresses in these areas. 
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To simplify the hardware implementation, cache lines can only be mapped to aligned 
128-bit blocks of main memory. (An aligned 128-bit block begins at an address which is 
clear in its low four bits.) When a new cache line is allocated, the processor loads a block 
from main memory into the .cache line. This operation is called a cache line fill. Allocated 
cache lines are said to be valid. Unallocated cache lines are invalid. 

Caching can be write-through or write-back. On reads, both forms of caching operate as 
described above. On writes, write-through caching updates both cache memory and main 
memory; write-back caching updates only the cache memory. Write-back caching up­
dates main memory when a write-back operation is performed. Write-back operations 
are triggered when cache lines need to be de-allocated, such as when new cache lines are 
being allocated in a cache which is already full. Write-back operations also are triggered 
by the mechanisms used to maintain cache consistency. 

The internal cache of the i486 processor is a write-through cache. It can be used with 
external caches which are write-through, write-back, or a mixture of both. 

12.2 OPERATION OF THE INTERNAL CACHE 

Software controls the operating mode of the cache. Caching can be enabled (its state 
following reset initialization), caching can be disabled while valid cache lines exist (a 
mode in which the cache acts like a fast, internal RAM), or caching can be fully 
disabled. . . 

Precautions must be followed when disabling the cache. Whenever CD is set to 1, the 
i486 processor will not read external memory if a copy is still in the cache. Whenever 
NW is set to 1, the i486 processor will not write to external memory if the data is in the 
cache. This means stale data can develop in the i486 CPU cache. This stale data will not 
be written to external memory if NW is later set to 0 or that cache line is later overwrit­
ten as a result of a cache miss. In general, the cache should be flushed when disabled. 

It is possible to freeze data in the cache by loading it using test registers while CD and 
NW are set. This is useful to provide guaranteed cache hits for time critical interrupt 
code and data. 

Note that all segments should start on 16 byte boundaries to allow programs to align 
code/data in cache lines. 

12.2.1 Cache Disabling Bits 

Table 12-1 summarizes the modes enabled by the CD and NW bits. 
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Table 2-1. Cache Operating Modes 

·CD NW Description 

1 1 Caching is disabled, but valid cache lines continue to 
. respond. To completely disable the cache, enter this 
mode and perform a cache flush. To use the cache as a 
fast internal RAM, preload the cache with valid cache 
lines by careful choice of memory operations or by using 
the test registers. In this mode, writes to valid cache lines 
update the cache, but do not update main memory. 

1 0 No new cache lines are allocated, but valid cache lines 
continue to respond. 

0 1 Invalid setting. A general-protection exception with an er-
ror code of zero is generated. 

0 0 Caching is enabled. 

12.2.2 Cache Management Instructions 

The INVD and WBINVD instructions are used to invalidate the contents of the internal 
and extermll caches. The INVD instruction flushes the internal cache and generates a 
special bus cycle which indicates that external caches also should be flushed. (The re­
sponse of hardware to receiving a cache flush bus cycle is implementation dependent; 
hardware might use some other mechanism for maintaining cache consistency.) 

There is only one difference between the WBINVD and INVD instructions. The 
WBINVD instruction generates a special bus cycle which indicates external, write-back 
caches should write-back modified data to main memory. This cycle is produced imme­
diately before the cycle to flush the cache. 

12.2.3 Self-modifying Code 

A write tO,an instruction in the cache will modify it in both cache and memory, but if the 
instruction was prefetched before the write, the old version of the instruction could be 
the one executed. To prevent this, flush the instruction prefetch unit by coding a jump 
instruction immediately after any write that modifies an instruction. 

12.3 PAGE-LEVEL CACHE MANAGEMENT 

The i486 processor defines two bits in entries in the page directory and second-level 
page tables which are reserved on 386 processors. These bits are used to drive processor 
output pins. These bits are used to manage the caching of pages. 
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12.3.1 Cache Management· Bits 

The PCD and PWT bits control. caching on a page-by-page basis. The PCD bit (page~ 
level cache disable) affects the operation of the internal cache. Both the PCD bit and the 
PWT bit (page-level write-through) drive processor output pins for controlling external 
caches. The treatment of these signals by external ~ardware is implementation­
dependent; 'for example, some hardware systems may control the caching of pages by 
decoding some of the high address bits. 

There are three potential sources of the bits used to drive the PCD and PWT outputs of 
the processor: the CR3 register, the page directory, and the second-level page tables. 
The processor outputs are driven by the CR3 register for bus cycles where paging is not 
used to generate the address, such as the loading of an entry in the page directory. The 
outputs are driven by a page directory entry when an entry from a second-level page 
table is accessed. The outputs are driven by a second-level page table entry when instruc­
tions or data in memory are accessed. 

12.3.1.1 pee BIT 

When a page table entry has a set PCD bit (bit position 4), caching of the page is 
disabled, even if hardware is requesting caching by asserting the KEN# inp'ut~'When the 
PCD bit is clear, ~aching may be requested by hardware on a cycle-by-:cycle'basis. ' 

Disabling caching is necessary for pages which contain memory-mapped I/O ports .. It 
also is useful for pages which do not provide a performance benefit when cached, such as 
initialization software. 

Regardless of the page-table entries, the i486 processor will force, thePCD ,output 
HIGH whenever the CD (Cache Disable) bit in CRO is set .. 

12.3.1.2 PWT BIT 

When a page table entry has a set PWT bit (bit position 3), a write-through caching 
policy is specified for data in the corresponding page. Clearing the PWT bit al1ow's~ the 
possibility of using a write-back policy for the page. Since the internal cache of the i486 
processor is a write-through cache, it is not affected by the state of the PWT bit. Exter­
nal .caches however may use write-back caching, and so can use the output signal driven 
by the PWT bit to control,caching policY,on a page-by-page basis.' 

In multiprocessor systems, enabling write-through may be advantageous for shared mem­
ory, particularly for memory locations written infrequently by one processor, but read 
often by many processors. 
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CHAPTER 13 
MULTIPROCESSING 

The i486™ processor supports multiprocessing on the system bus. Processors on the 
system bus can have different bus widths. 

Multiprocessors can increase particular aspects of system performance. For example, a 
computer graphics system may use an i860™ CPU for fast rendering of raster images, 
while an i486 processor is used to support a standard operating system, such as UNIX or 
OS/2. Multiprocessing systems are sensitive to two design issues: 

• Maintaining cache consistency - When one processor accesses data cached in another 
processor, it must not receive incorrect data. If it modifies data, all other processors 
which access that data must receive the modified data. 

• Reliable communication - Processors need to be able to communicate with each other 
in a way which eliminates interference when more than one processor simultaneously 
accesses the same area in memory. 

Cache consistency was discussed earlier, in Chapter 12. Reliable communication is dis­
cussed in the following section, which describes the mechanism used to "lock" the bus. 

13.1 LOCKED AND PSEUDO-LOCKED BUS CYCLES 

While the system architecture of multiprocessor systems varies greatly, they generally 
have a need for reliable communication with memory. A processor in the act of updating 
the Accessed bit of a segment descriptor, for example, should reject other attempts to 
update the descriptor until the operation is complete. 

It also is necessary to have reliable communication with other processors. Bus masters 
need to exchange data in a reliable way. For example, a bit in memory may be shared by 
several bus masters for use as a signal that some resource, such as a peripheral device, is 
idle. A bus master may test this bit, see that the resource is free, and change the state of 
the bit. The state would indicate to other potential bus masters that the resource is in 
use. A problem could arise if another bus master reads the bit between the time the first 
bus master reads the bit and the time the state of the bit is changed. This condition 
would indicate to both potential bus masters that the resource is free. They may inter­
fere with each other as they both attempt to use the resource. The processor prevents 
this problem through support of locked bus cycles; requests for control of the bus are 
ignored during locked cycles. 

The i486 processor protects the integrity of certain critical memory operations by assert­
ing an output signal called LOCK#. Reads and .writes of aligned 64-bit operands and 
(128-bit) instruction prefetches are protected by an output called PLOCK#. It is the 
responsibility of the hardware designer to use these signals to control memory access 
among processors. 
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The processor automatically asserts one of these signals during certain critical memory 
operations. Software can specify which other memory operations need to have LOCK# 
asserted. 

The features of the general-purpose multiprocessing interface include: 

• The LOCK# signal, which appears on a pin of the processor. 

• The PLOCK# signal, which appears on a pin of the processor. 

• The LOCK instruction prefix, which allows software to assert LOCK#. 

• Automatic assertion of LOCK# for some kinds of memory operations. 

• Automatic assertion of PLOCK# for some other kinds of memory operations. 

13.1.1 LOCK Prefix and the LOCK# Signal 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix can be used with the 
following i486 CPU instructions when they modify memory. An invalid-opcode exception 
results from using the LOCK prefix before any other instruction, or with these instruc­
tions when no write operation is made to memory (i.e., when the destination operand is 
in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the desti­
nation operand, but may lock a larger memory area. For example, typical 8086 and 80286 
configurations lock the entire physical memory space. 

Semaphores (shared memory used for signalling between multiple processors) should be 
accessed using identical address and length. For example, if one processor accesses a 
semaphore using word access, other processors should not access the semaphore using 
byte access. 

The integrity of the lock is not affected by the alignment of the memory field.' The 
LOCK# signal is asserted for as many bus cycles as necessary to update the entire 
operand. 
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13.1.2 Automatic Locking 

There are some critical memory operations for which the processor automatically asserts 
the LOCK# signal. These operations are: 

• Acknowledging interrupts. 

After an interrupt request, the interrupt controller uses the data bus to send the 
interrupt vector of the source of the interrupt to the processor. The processor asserts 
LOCK# to ensure no other data appears on the data bus during this time. 

• Setting the Busy bit of a TSS descriptor. 

The processor tests and sets the Busy bit in the Type field of the TSS descriptor when 
switching to a task. To ensure two different processors do not switch to the same task 
simultaneously, the processor asserts the LOCK# signal while testing and setting 
this bit. 

• Updating segment descriptors. 

When loading a segment descriptor, the processor will set the Accessed bit if the bit is 
clear. During this operation, the processor asserts LOCK# so the descriptor will not 
be modified by another processor while it is being updated. For this action to be 
effective, operating-system procedures which update descriptors should use the fol­
lowing steps: 

- Use a locked operation when updating the access-rights byte to mark the de­
scriptor not-present, and specify a value for the Type field which indicates the 
descriptor is being updated. 

- Update the fields of the descriptor. (This may require several memory accesses; 
therefore, LOCK cannot be used.) 

- Use a locked operation when updating the access-rights byte to mark the de­
scriptor as valid and present. 

Note that the 386 DX processor always updates the Accessed bit, whether it is clear 
or not. The i486 processor only updates the Accessed bit if it is not already set. 

• Updating page-directory and page-table entries. 

When updating page-directory and page-table entries, the processor uses locked cy­
cles to set the Accessed and Dirty bits. 

• Executing an XCHG instruction. 

The i486 processor always asserts LOCK# during an XCHG instruction which refer­
ences memory (even if the LOCK prefix is not used). 

13.1.3 Pseudo-Locking 

The PLOCK# pin indicates that the current bus cycle and the following one should be 
treated as an atomic transfer. By implementing the pseudo-lock mechanism, system 
hardware can guarantee atomic reads and writes of 64-bit operands. The operand must 
be aligned to a doubleword boundary, so that the read or write requires no more than 
two bus cycles to be completed. 
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The pseudo-lock mechanism can also be used to protect instruction pre fetches and other 
transfers of more than 32 bits. For a detailed discussion of the PLOCK# signal, its 
timing and its various uses, see the i486™ Processor Hardware Reference Manual. 

/'.' 

13-4 



Part III 
Numeric Processing 





Introduction to 14 
Numeric Applications 





CHAPTER 14 
INTRODUCTION TO NUMERIC APPLICATIONS 

The i486™ processor contains a high-performance numerics processing element that pro~ 
vides significant numeric capabilities and direct support for floating-point, extended­
integer, and BCD data types. The i486 Floating Point Unit (FPU) easily supports 
powerful and accurate numeric applications through its implementation, with radix 2, of 
the IEEE Standard 854 for Floating-Point Arithmetic. The i486 processor provides 
floating-point performance comparable to that of large minicomputers while offering 
compatibility with object code for 8087, 80287, 387™ DX and 387 SX math coprocessors. 

14.1 HISTORY 

The i486 FPU is compatible with its predecessors, the earlier Intel® 8087, 80287 and 387 
DX. Programs designed to use the 8087, 80287 or 387 math coprocessor should run 
unchanged on the i486 processor. 

The 8087 NPX was designed for use in 8086-family systems. The 8086 was the first 
microprocessor family to partition the processing unit to permit high-performance nu­
meric capabilities. The 8087 NPX for this processor family implemented a complete 
numeric processing environment in compliance with an early proposal for IEEE Stan­
dard 754 for Binary Floating-Point Arithmetic. 

With the 80287 Numeric Processor Extension, high-speed numeric computations were 
extended to 80286 high-performance multitasking and multiuser systems. Multiple tasks 
using the numeric processor extension were afforded the full protection of the 80286 
memory management and protection features. 

The 387 DX and SX math coprocessors are Intel's third generation numerics processors. 
They implement the final IEEE Std 754, adds new trigonometric instructions, and uses a 
new design and CHMOS-III process to allow higher clock rates and require fewer clocks 
per instruction. Together, the 387 math coprocessor with additional instructions and the 
improved standard brought even more convenience and reliability to numerics program­
ming and made this convenience and reliability available to applications that need the 
high-speed and large memory capacity of the 32-bit environment of the ,386 ™ 
microprocessor. 

The FPU of the i486 processor is an on-chip equivalent of the 387 DX conforming to 
both IEEE Std 754 and the more recent, generalized IEEE Std 854. Having the FPU on 
chip results in a considerable performance improvement in numerics-intensive computa­
tion. Figure 14-1 illustrates the relative performance of 5-MHz 8086 CPU/8087 NPX, 
8-MHz 80286 CPU/80287 NPX, 20-MHz 386 DX CPU/387 DX systems, an9 a 33-MHz 
i486 processor, in executing numerics-oriented applications. 

14.2 PERFORMANCE 

Table 14-1 compares the execution times of several i486 CPU numeric instructions with 
the equivalent operations executed on a 16-MHz 387 DX math coprocessor. As 
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Table 14-1. Numeric Processing Speed Comparisons 

240486i88 

Floating-Point Instruction 
Approximate Performance Ratio: 

33 MHz i486™ + 16 MHz 386™ OX/387™ OX 

ST. ST(i) Addition 4.2 

dword_var Division 2.0 

stack(0).(1) assumed Logarithm 2.5 

stack(O) assumed Arctangent 2.2 

stack(O) assumed Exponentiation 2.2 

ST(O). ST(i) Data Transfer 5.5 

indicated in the table, the 33-MHz i486 floating-point processor provides about 5 times 
the performance of a 16-MHz 387 DX math coprocessor. A 33-MHz i486 processor 
multiplies 32-bit and 64-bit floating-point numbers in about .33 and .42 microseconds, 
respectively. Of course, the actual performance of the processor in a given system de­
pends on the characteristics of the individual application. 

The i486 Integer Unit (IU) and FPU coordinate their activities in a manner transparent 
to software. Moreover, built-in coordination facilities allow the IU to proceed with other 
instructions while the FPU is simultaneously executing numeric instructions. Programs 
can exploit this concurrency of execution to further increase system performance and 
throughput. 
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14.3 EASE OF USE 

The i486 FPU provides more than raw execution speed for computation-intensive tasks; 
it brings the functionality and power of accurate numeric computation into the hands of 
the general user. These features are available in most high-level languages available for 
the i486 processor. 

Like the 8087, 80287 and 387 DX that preceded'it, the i486 FPU is explicitly designed to 
deliver stable, accurate results when programmed using straightforward "pencil and 
paper" algorithms. IEEE Std 754 specifically addresses this issue, recognizing the fun­
damental importance of making numeric computations both easy and safe to use. 

For example, most computers can overflow when two single-precision floating-point 
numbers are multiplied together and then divided by a third, even if the final result is a 
perfectly valid 32-bit number. The i486 FPU delivers the correctly rounded result. Other 
typical examples of undesirable machine behavior in straightforward calculations occur 
when computing financial rate of return, which involves the expression (1 + i)n or when 
solving for roots of a quadratic equation: 

-b ± ,/b2 
- 4ac 

2a 

If a does not equal 0, the formula is numerically unstable when the roots are nearly 
coincident or when their magnitudes are wildly different. The formula is also vulnerable 
to spurious over/underflows when the coefficients a, b, and c are all very big or all very 
tiny. When single-precision (4-byte) floating-point coefficients are given as data and the 
formula is evaluated in the i486 FPU's normal way, keeping all intermediate results in its 
stack, the FPU produces impeccable single-precision roots. This happens because, by 
default and with no effort on the programmer's part, the FPU evaluates all those sub ex­
pressions with so much extra precision and range as to overwhelm any threat to numer­
ical integrity. 

If double-precision data and results were at issue, a better formula would have to be 
used, and once again the i486 FPU's default evaluation of that formula would provide 
substantially enhanced numerical integrity over mere double-precision evaluation. 

On most machines, straightforward algorithms will not deliver consistently correct results 
(and will not indicate when they are incorrect). To obtain correct results on traditional 
machines under all conditions usually requires sophisticated numerical techniques that 
are foreign to most programmers. General application programmers using straightfor­
ward algorithms will produce much more reliable programs using the i486 processor. 
This simple fact greatly reduces the software investment required to develop safe, accu­
rate computation-based products. 
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Beyond traditional numerics support for scientific applications, the i486 processor has 
built-in facilities for commercial computing. It can process decimal numbers of up to 18 
di~its without round-off errors, performing exact arithmetic on integers as large as 264 or 
10 8. Exact arithmetic is vital in accounting applications where rounding errors may 
introduce monetary losses that cannot be reconciled. 

The i486 processor contains a number of optional nu~erical facilities that can be in­
voked by sophisticated users. These advanced features include directed rounding, grad­
ual underflow, and programmed exception-handling facilities. 

These automatic exception-handling facilities permit a high degree of flexibility in nu­
meric processing software, without burdening the programmer. While performing nu­
meric calculations, the i486 processor automatically detects exception conditions that 
can potentially damage a calculation (for example, X + 0 or .yx when X < 0). By 
default, on-chip exception logic handles these exceptions so that a reasonable result is 
produced and execution may proceed without program interruption. Alternatively, the 
processor can invoke a software exception handler to provide special results whenever 
various types of exceptions are detected. 

14.4 APPLICATIONS 

The i486 processor's versatility and performance make it appropriate to a broad array of 
numeric applications. In general, applications that exhibit any of the following charac­
teristics can benefit by implementing numeric processing on the i486 processor: 

• Numeric data vary over a wide range of values, or include nonintegral values. 

• Algorithms produce very large or very small intermediate results. 

• Computations must be very precise; i.e., a large number of significant digits must be 
maintained. 

• Performance requirements exceed the capacity of traditional microprocessors. 

• Consistently safe, reliable results must be delivered using a programming staff that is 
not expert in numerical techniques. 

Note also that the i486 processor can reduce software development costs and improve 
the performance of systems that use not only real numbers, but operate on multipreci-
sion binary or decimal integer values as well. . 

A few examples, which show how the i486 processor might be used in specific numerics 
applications, are described below. In many cases, these types of systems have been im­
plemented in the past with minicomputers or small mainframe. computers. 

• Business data processing-The i486 FPU's ability to accept decimal operands and 
produce exact decimal results of up to 18 digits greatly simplifies accounting program­
ming. Financial calculations that use power functions can take advantage of the i486 
processor's exponentiation and logarithmic instructions. Many business software 
packages can benefit from the speed and accuracy of the i486 FPU. 
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• Simulation - The large (32-bit) memory space and raw speed of the i486 processor 
make it suitable for attacking large simulation problems, which heretofore could only 
be executed on expensive mini and mainframe computers. For example, complex elec­
tronic circuit simulations using SPICE can be performed on an i486 processor. Simu­
lation of mechanical systems using finite element analysis can employ more elements, 
resulting in more detailed analysis or simulation of larger systems. 

• Graphics transformations - The i486 processor can be used in graphics applications, 
with the FPU performing many functions concurrently with the operation of the IU; 
these functions include rotation, scaling, and interpolation. By also using an 82786 
Graphics Display Controller to perform high-speed drawing and window manage­
ment, very powerful and highly self-sufficient terminals can be built from a small 
number of parts. 

• Process control- The i486 FPU solves dynamic range problems automatically, and its 
extended precision allows control functions to be fine-tuned for more accurate and 
efficient performance. Using the i486 processor to implement control algorithms also 
contributes to improved reliability and safety, while the processor's speed can be 

, exploited in real-time operations. 

• Computer numerical control (CNC) - The i486 processor can move and position ma­
chine tool heads with accuracy in real-time. Axis positioning also benefits from the 
hardware trigonometric support provided by the FPU. 

• Robotics - Coupling small size and modest power requirements with powerful com­
putational abilities, the i486 processor is ideal for on-board six-axis positioning. 

• Navigation - Very small, lightweight, and accurate inertial guidance systems can be 
implemented with the i486 processor. Its built-in trigonometric functions can speed 
and simplify the calculation of position from bearing data. 

• Data acquisition - The i486 processor can be used to scan, scale, and reduce large 
quantities of data as it is collected, thereby lowering storage requirements and time 
required to process the data for analysis. 

The preceding examples are oriented toward traditional numerics applications. There 
are, in addition, many other types of systems that do not appear to the end user as 
computational, but can employ the i486 processor's numerical capabilities to advantage. 
The imaginative system designer has an opportunity similar to that created by the intro­
duction of the microprocessor itself. Many applications can be viewed as numerically­
based if sufficient computational power is available to support this view (e.g., character 
generation for a laser printer). This is analogous to the thousands of successful products 
that have been built around "buried" microprocessors, even though the products them­
selves bear little resemblance to computers. 

14.5 PROGRAMMING INTERFACE 

The i486 processor has a class of instructions known as ESCAPE instructions, all having 
a common format. These ESC instructions are numeric instructions for the FPU. These 
numeric instructions are part of a single integrated instruction set. 

Numeric processing in the i486 processor centers around the floating-point register 
stack. Programmers can treat these eight 80-bit registers either as a fixed register set, 
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with instructions operating on explicitly-designated registers, or asa classical stack, with 
instructions operating on the top one or two stack elements. 

Internally, the i486 FPU holds all numbers in a uniform 80-bit'extended format.' Oper­
ands that may be represented in memory as 16-, 32.;, or 64-bit integers, 32-, 64-, or 80-bit 
floating-point numbers, or 18-digit packed BCD numbers, are automatically converted 
into extended format as they are loaded into the FPU registers. Computation results are 
subsequently converted back into one of these destination data formats when they are 
stored into memory from the FPU registers. . 

Table 14-2 lists each of the seven numeric data types supported by the i486 FPU, show­
ing the data format for each type. The table also shows the approximate range of nor­
malized values that can be represented with each type. Denormal values .. are also 
supported in each of the real types, as required .by IEEE Std 854. Denormals are dis­
cussed in Chapter 16. 

All operands are stored in memory with the least significant digits starting at the initial 
(lowest) memory address. Numeric instructions access .and store memory operands using 
only this initial address. For maximum system performance, every operand should start 
at a memory address divisible by the smallest power of two greater. than the operand's 
length (in bytes). 

Table 14..:3 lis'ts the numeric instructions by class. No special programming tools are 
necessary to use the numerical capabilities of the i486 processor, because all of i the 
numeric instructions and data types are directly supported by the ASM386/486 Assem­
bler, by high-level languages from Intel,' and by assemblers and compilers produced by 
many independent software vendors. Numeric routines for the i486 processor can be 
written in ASM386/486 Assembler or any of the following higher-level languages from 
Intel: 

PL/M - 386/486 
C.-386/486 
FORTRAN - 386/486· 

. ADA-386/486 

Data Type Bits 

Word integer 16 
Short integer 32 
Long integer , 64 
Packed decimal 80 
Single real 32 
Double real 64 
Extended real* 80 

Table 14·2. Numeric Data Types 

Significant 
Approximate Normalized 

Digits 
Range (Decimal) 

(Decimal) 

4 -32,768 s x s + 32,767 
9 - 2 x 109 S X S + 2 x 1 09 

18 - 9 x 1018 S X S + 9 X 1018 

18 - 99 ... 99 S x S + 99 ... 99 (18 digits) 
7 1.18 x 10-38 < I x 1'< 3.40 X 1038 

15-16 2.23 x 10-308 -< I x 1< 1.79 X 10308 

19 3.37 x 10-4932 < I x I < 1.18 X 104932 

*Equivalent to double extended format of IEEE Std 854. 
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Table 14-3. Principal Numeric Instructions 

Class Instruction Types 

Data Transfer Load (all data types), Store (all data types), Exchange 

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide 
Reversed, Square Root, Scale, Extract, Remainder, Integer Part, 
Change Sign, Absolute Value 

Comparison Compare, Examine, Test 

Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2x -1, 
Y ·Log2(X), y. Log2 (X+ 1) 

Constants 0, 1, 11", Log 102, Loge2, Log2 10, Log2e 

Processor Control Load Control Word, Store Control Word, Store Status Word, Load 
Environment, Store Environment, Save, Restore, Clear 
Exceptions, Initialize 

In addition, all of the development tools supporting the 8086/8087, 80286/80287 and 
386 OX CPU/387 OX NPX can also be used to develop numerical software for the i486 
processor. 

All of these high-level languages provide programmers with access to the computational 
power and speed of the i486 processor without requiring an understanding of its archi­
tecture. Such architectural considerations as concurrency and synchronization are han­
dled automatically by these high-level languages. For the ASM386/486 programmer, 
specific rules for handling these issues are discussed in a later section of this manual. 
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CHAPTER 15 
ARCHITECTURE OF THE FLOATING-POINT UNIT 

To the programmer, the i486 ™ FPU appears as a set of additional registers, data types, 
and instructions. Refer to Chapter 26 for detailed explanations of the numerical instruc­
tion set. This chapter explains the numerical registers and data types of the i486 
archi tecture. 

15.1 NUMERICAL REGISTERS 

The i486 numerical registers consist of 

• Eight individually-addressable 80-bit numeric registers, organized as a register stack. 

• Three 16-bit registers containing: 

The FPU status word. 
The FPU control word. 
The tag word. 

• Error pointers, consisting of: 

Two 16-bit registers containing selectors for the last instruction and operand. 
Two 32-bit registers containing offsets for the last instruction and operand. 
One II-bit register containing the opcode of the last non-control FPU instruction. 

All of the i486 numeric instructions focus on the contents of these FPU registers. 

15.1.1 The FPU Register Stack 

The i486 FPU register stack is shown in Figure 15-1. Each of the eight numeric registers 
in the stack is 80 bits wide and is divided into fields corresponding to the i486 processor's 
extended real data type. 

Numeric instructions address the data registers relative to the register on the top of the 
stack. At any point in time, this top-of-stack register is indicated by the TOP (stack 
TOP) field in the FPU status word. Load or push operations decrement TOP by one and 
load a value into the new top register. A store-and-pop operation stores the value from 
the current TOP register and then increments TOP by one. Like stacks in memory, the 
FPU register stack grows down toward lower-addressed registers. 

Many numeric instructions have several addressing modes that permit the programmer 
to implicitly operate on the top of the stack, or to explicitly operate on specific registers 
relative to the TOP. The ASM386/486 Assembler supports these register addressing 
modes, using the expression ST(O), or simply ST, to represent the current Stack Top and 
ST(i) to specify the ith register from TOP in the stack (0 :5 i :s; 7). For example, if TOP 
contains 011B (register 3 is the top of the stack), the following statement would add the 
contents of two registers in the stack (registers 3 and 5): 

FADD ST, ST(2) 

15-1 



ARCHITECTURE OF THE FLOATING-POINT UNIT 

FPU DATA REGISTERS 
TAG 

FIELD 
79 78 64 63 0 1 0 

RO SIGN EXPONENT SIGNIFICAND 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

15 0 47 0 

CONTROL REGISTER INSTRUCTION POINTER 

STATUS REGISTER DATA POINTER 

TAG WORD 

240486i89 

Figure 15-1. i486™ FPU Register Set, 

The stack organization and top-relative addressing of the numeric registers simplify sub­
routine programming by allowing routines to pass parameters on the register stack. By 
using the stack to pass parameters rather than using "dedicated" registers, calling rou­
tines gain more flexibility in how they use the stack. As long as the stack is notfull, each 
routine simply loads the parameters onto the stack before calling a particular subroutine 
to perform a numeric calculation. The subroutine then addresses its parameters as ST, 
ST(I), etc., even though TOP may, for example; refer to physical register 3 in one invo-
cation and physical register 5 in another. ' 

15.1.2 The FPU Status Word 

The 16-bit status word shown in Figure 15-2 reflects the overall state of the FPU. This 
status word may be stored into memory using the FSTSW/FNSTSW, FSTENV/ 
FNSTENV, and FSA VE/FNSA VE instructions, and can be transferred into the AX 
register with the FSTSW AX/FNSTSW AX instructions, allowing the FPU status to be 
inspected by the Integer Unit. 

TheB-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the 
ES bit (bit 7 of the status word). 

The four FPU condition code bits (C3-CO) are similar to the flags in a CPU: the i486 
processor updates these bits to reflect the outcome of arithmetic operations. The effect 
of these instructions on the condition code bits is summarized in Table 15-1. These 
condition code bits are used principally for conditional branching. The FSTSW AX 
instruction stores the FPU status word directly into the AX register, allowing these 
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FPU BUSY 

P"'""'l ........ -------- TOP OF STACK POINTER r H-1-----.-0 l-CONDITION CODE 

ERROR SUMMARY STATUS ------' 

STACK FAULT --------........ 

EXCEPTION FLAGS 

PRECISION ---------... 

UNDERFLOW---------...... 

OVERFLOW -------------' 

ZERO DIVIDE -------------1 
DENORMALIZED OPERAND -----------' 

INVALID OPERATION -----------.... 

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE. 
SEE TABLE 2-1 FOR INTERPRETATION OF CONDITION CODE. 
TOP VALUES: 

000 = REGISTER 0 IS TOP OF STACK 
001 = REGISTER 115 TOP OF STACK 

111 = REGISTER 7 IS TOP OF STACK 
FOR DEFINITIONS OF EXCEPTIONS, REFER TO CHAPTER 3. 

Figure 15-2. i486™ FPU Status Word 
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condition codes to be inspected efficiently by i486 code. The SAHF instruction can copy 
C3-CO directly to i486 flag bits to simplify condit~onal branching. Table 15-2 shows the 
mapping of these bits to the i486 flag bits. 

Bits 12-14 of the status word point to the FPU register that is the current Top of Stack 
(TOP). The significance of the stack top has been described in the prior section on the 
register stack. 

Figure 15-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the 
exception summary status (ES) bit. ES is set if any unmasked exception bits are set, and 
is cleared otherwise. Bits 0-5 indicate whether the FPU has detected one of six possible 
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Table 15-1. Condition Code Interpretation 

Instruction CO C3 C2 C1 

FCOM, FCOMP, 
FCOMPP, FTST, 

Operand is not Zero 
FUCOM, FUCOMP, Result of comparison 

comparable or O/U# 
FUCOMPP, FICOM, 
FICOMP 

FXAM Operand class 
Sign 
or O/U# 

FPREM, FRREM1 02 
; 

00 
: 0 = reduction complete 01 

1 = reduction incomplete or O/U# 

FIST, FBSTP, 
FRNDINT, FST, 
FSTP, FADD, 
FMUl, FDIV, 

Roundup 
FDIVR, FSUB, UNDEFINED 
FSUBR, FSCAlE, 

or O/U# 

FSORT, FPATAN, 
F2XM 1, FYL2X, 
FYL2XP1 

Roundup 
FPTAN, FSIN, 

UNDEFINED 
0= reduction complete or O/U# 

FCOS, FSINCOS 1 = reduction incomplete (UNDEFINED 
if C2= 1) 

FCHS, FABS, 
FXCH, FINCSTP, 
FDECSTP, Con-

Zero 
stant loads, FX- YNDEFINED 

or O/U# 
TRACT, FLO, FllD, 
FBlD, FSTP (ext. 
real) 

FlDENV, FRSTOR Each bit loaded from memory 

FlDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINED 
FClEX 

, 

FINIT, FSAVE Zero Zero Zero Zero 

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0). ' 

Reduction IfFPREM and FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial re­
mainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and 
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this 
case the original operand remains at the top of the stack. 

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

UNDEFINED Do not rely on finding any specific value in these bits. 
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Table 15-2. Correspondence Between FPU and IU Flag Bits 

FPU Flag IU Flag 

Co CF 
C1 (none) 

C2 PF 

C3 ZF 

exception conditions since these status bits were last cleared or reset. They are "sticky" 
bits, and can only be cleared by the instructions FINIT, FCLEX, FLDENV, FSAVE, 
and FRSTOR. 

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack 
overflow or underflow from other kinds of invalid operations. When SF is set, bit 9 (C1) 

distinguishes between stack overflow (C1 1) and underflow (C1 = 0). 

15.1.3 Control Word 

The FPU provides the programmer with several processing options, which are selected 
by loading a word from memory into the control word. Figure 15-3 shows the format and 
encoding of the fields in the control word. 

The low-order byte of this control word configures the numerical exception masking. Bits 
0-5 of the control word contain individual masks for each of the six floating-point excep­
tion conditions recognized by the i486 processor. The high-order byte of the control 
word configures the FPU processing options, including 

• Precision control 

• Rounding control 

The precision-control bits (bits 8-9) can be used to set the FPU internal operating 
precision at less than the default precision (64-bit significand). These control bits can be 
. used to provide compatibility with the earlier-generation arithmetic processors having 
less precision than the i486 processor or 387. math coprocessor. The precision-control 
bits affect the results of only the following five arithmetic instructions: ADD, SUB(R), 
MUL, DIV(R), and SORT. No other operations are affected by PC. 

The r~unding-control bits (bits 10-11) provide for the common round-to-nearest mode, 
as well as directed rounding and true chop. Rounding control affects only the arithmetic 
instructions (refer to Chapter 16 for lists of arithmetic and non arithmetic instructions). 

15.1.4 The FPU Tag Word 

The tag word indicates the contents of each register in the register stack; as shown in 
Figure 15-4. The tag word is used by the FPU itself to distinguish between empty and 
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___ -------------RESERVED 

... - ________ (INFINITY CONTROL), 

.1 !--l ~----l-' -==:~~;I~:~:~~:::~~ 
15 7 0 

Ix:x:xH + 1 ~C Ix:xl*I*I*1 
RESERVED _----'--Itt I ' 
EXCEPTION MASKS 

PRECISION 

UNDERFLOW ------------

OVERFLOW -------------

ZERO DIVIDE -------------... 

DENORMALIZED OPERAND----------..... 

INVALID OPERATION -------------... 

ROUNDING CONTROL 
OO-ROUND TO NEAREST OR EVEN 
01-ROUND DOWN (TOWARD-co) 
10-ROUND UP (TOWARD +(0) 
11-CHOP (TRUNCATE TOWARD ZERO) 

PRECISION CONTROL , 
00-24 BITS (SINGLE PRECISION) 
01-(RESERVED) 
10-53 BITS (DOUBLE PRECISION) 
11-64 BITS (EXTENDED PRECISION) 

*Thls "Infinity control" bit Is not meaningful to the 1486'· PROCESSOR. 
To maintain compatibility with 80287, this bit can be programmed; 
however, regardless of Its value, the 1486'· FPU treats Infinity In the affine 
sense ( -00 < +00 ). 

Figure 15-3. i486™ FPU Control Word Format 
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nonempty register locations. Programmers of exception handlers may use this tag infor­
mation to check the contents of a numeric register without performing complex decoding 
of the actual data in the register. The tag values from the tag word correspond to phys­
ical registers 0-7. Programmers must use the current top-of-stack (TOP) pointer stored 
in theFPU status word to associate these tag values with the relative stack registers 
ST(O) through ST(7). 

The exact values of the tags are generated during execution of the FSTENV and FSAVE 
instructions according to the actual contents of the nonempty stack locations. During 
execution of other instructions, the i486 processor updates the TW only, to indicate 
whether, a stack location is empty or nonempty. 
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TAG VALUES: 
00 = VALID 
01 = ZERO 
10 = SPECIAL:INVALlD(NaN, UNSUPPORTED), INFINITY, OR DENORMAL 
11 = EMPTY 

Figure 15-4. Tag Word Format 

15.1.5 The Numeric Instruction and Data Pointers 

240486i92 

The instruction and data pointers provide support for programmed exception-handlers. 
These registers are accessed by the ESC instructions FLDENV, FSTENV, FSAVE, and 
FRSTOR. Whenever the i486 processor decodes an ESC instruction, it saves the instruc­
tion address, the operand address (if prese~t), and the ins.truction opcode . 

. When stored in memory, the instruction and data pointers appear in one of four formats, 
depending on the operating mode of the processor (protected mode or real-address 
mode) and depending on the operand-size attribute in effect (32-bit operand or 16-bit 
operand). In virtual-8086 mode, the real-address mode formats are used. 

Figures 15-5 through 15-8 show these pointers as they are stored following an FSTENV 
instruction. 

32-BIT PROTECTED MODE FORMAT 

31 23 15 7 

RESERVED CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 
I 

IPOFFSET 

RESERVED CS SELECTOR 
I 

DATA OPERAND OFFSET 

RESERVED OPERAND SELECTOR 

o 
OH 

4H 

8H 

CH 

10H 

14H 

18H 

240486i93 

Figure 15-5. Protected Mode Numeric Instruction and Data Pointer Image in Memory, 
32-Bit Format 
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32-BIT REAL-ADDRESS MODE FORMAT 

31 23 15 7 o 

RESERVED CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 

RESERVED INSTRUCTION POINTER 10 •. 0 

o 0 0 01 INSTRUCTION POINTER 31 .. 10 10 1 OPCODE 10 .. 0 

RESERVED OPERAND POINTER 15 .. 0 

o 0 0 01 OPERAND POINTER 31 .• 1. 10 0 0 0 0 0 0 0 0 0 0 0 

OH 

4H 

8H 

CH 

10H 

14H 

18H 

Figure 15-6. Real Mode Numeric Instruction and Data Pointer Image in Memory, 
32-Bit Format 

15 

16-BIT PROTECTED MODE FORMAT 

7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IP OFFSET 

CSSELECTOR 

OPERAND OFFSET 

OPERAND SELECTOR 

o 

OH 

2H 

4H 

6H 

8H 

AH 

CH 

240486i94 

240486i95 

Figure 15-7. Protected Mode Numeric Instruction and Data Pointer Image in Memory, 
16-Bit Format 

The FSTENV and FSA VE instructions store this data into memory, allowing exception 
handlers to determine the precise nature of any numeric exceptions that may be 
encountered. 

The instruction address saved points to any prefixes that preceded the instruction, as in 
the 387 and 80287 math coprocessors. This is different from the 8087, for which the 
instruction address points only to the ESC instruction opcode. 

Note that the processor control instructions FINIT, FLDCW, FSTCW, FSTSW, 
FCLEX, FSTENV, FLDENV, FSA VE, and FRS TOR do not affect the data pointer. 
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15 

16-BIT REAL-ADDRESS MODE AND 
VIRTUAL-BOB6 MODE FORMAT 

7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER .... 0 

IP 1 •. 1. 101 OPCODE 10 .. 0 

OPERAND POINTER .... 0 

o 

DP 10.1. 10 I 0 0 0 0 0 0 0 0 0 0 0 

OH 

2H 

4H 

6H 

BH 

AH" 

CH 

Figure 15-8. Real Mode Numeric Instruction and Data Pointer Image in Memory, 
16-Bit Format 
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Note also that, except for the instructions just mentioned, the value of the data pointer is 
undefined if the prior ESC instruction did not have a memory operand: 

15.2 COMPUTATION FUNDAMENTALS 

This section covers numeric programming concepts that are common to all applications. 
It describes the i486 FPU's internal number system and the various types of numbers 
that can be employed in numeric programs. The most commonly used options for round-
ing and precision (selected by fields in the control word) are described, with exhaustive 
coverage of less frequently used facilities deferred to later sections. Exception conditions 
that may arise during execution of floating-point instructions are also described along 
with the options that are available for responding to these exceptions. 

15.2.1 Number System 

The system of real numbers that people use for pencil and paper calculations is concep­
tually infinite and continuous. There is no upper or lower limit to the magnitude of the 
numbers one can employ in a calculation, or to the precision (number of significant 
digits) that may be required to represent them. For any given real number, there are 
always arbitrarily many numbers both larger and smaller. There are also arbitrarily many 
numbers between any two real numbers. For example, between 2.5 and 2.6 are 2.51, 
2.5897, 2.500001, etc. 
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While ideally it would be desirable for a computer to be able to operate on the entire 
real number system, in practice this is not possible. Computers, no matter how large, 
ultimately have fixed-size registers and memories that limit the system of numbers that 
can be accommodated. These limitations determine both the range and the precision of 
numbers. The result is a set of numbers that is finite and discrete, rather than infinite 
and continuous. This sequence is a subset of the real numbers that is designed to form a 
useful approximation of the real number system. 

Figure 15-9 superimposes the basic i486 floating-point number system on a real number 
line (decimal numbers are shown for clarity, although the i486 processor actually repre­
sents numbers in binary). The dots indieate the subset of real numbers the i486 proces­
sor can represent as data and final results of calculations. The range of double-precision, 
normalized numbers is approximately ±2.23 x 10- 308 to ± 1.79 x 10308

• Applications 
that are required to deal with data and final results outside this range are rare. For 
reference, the range of the IBM System 370* is about ±0.54 x 10- 78 to ±0.72 x 1076

• 

The finite spacing in Figure 15-9 illustrates that the i486 processor can represent a great 
many, but not all, of the real numbers in its range. There is always a gap between two 
adjacent floating-point numbers, and it is possible for the result of a calculation to fall in 
this space. When this occurs, the FPU rounds the true result to a number that it can 
represent. Thus, a real number that requires more digits than the FPU can accommo­
date (e.g., a 20-digit number) is represented with some loss of accuracy. Notice also that 
the representable numbers are not distributed evenly along the real number line. In fact, 

I 
~ NEGATIVE RANGE I 
I (NORMALIZED) ~ 
: -:5 -4 -3 -2 -1 : 

HI I I I" I I J 0 t- 1.79 x 1()308 -2.23 x'10-308 

POSITIVE RANGE 
(NORMALIZED) 

I 
~I 

s· 1 
1.79 X 10308 J 

+2 • • • 

1- Ct.ooooooooooooooo 
(NOT REPRESENTABLE) 

1.999999999999999 

PRECISION ~16 DIGITS---.j 

Figure 15-9. Double-Precision Number System 
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the same number of representable numbers exists between any two successive powers of 
2 (i.e., as many representable numbers exist between 2 and 4 as between 65,536 and 
131,072). Therefore, the gaps between representable numbers are larger as the numbers 
increase in magnitude. All integers in the range ±264 (approximately ± 1019), however, 
are exactly representable. 

In its internal operations, the FPU actually employs a number system that is a substan­
tial superset of that shown in Figure 15-9. The internal format (called extended real) 
extends the representable (normalized) range to about ± 3.37 x 10- 4932 to ± 1.18 x 
104932, and its precision to about 19 (equivalent decimal) digits. This format is designed 
to provide extra range and precision for constants and intermediate results, and is not 
normally intended for data or final results. 

From a practical standpoint, the i486 processor's set of real numbers is sufficiently large 
and dense so as not to limit the yast majority of applications. Compared to most com­
puters, including mainframes, the i486 processor provides a very good approximation of 
the real number system. It is important to remember, however, that it is not an exact 
representation, and that computer arithmetic on real numbers is inherently approximate. 

15.2.2 Data Types and Formats 

The i486 processor recognizes seven numeric data types for memory-based values, di­
vided into three classes: binary integers, packed decimal integers, and binary reals. A 
later section describes how these formats are stored in memory (the sign is always lo­
cated in the highest-addressed byte). 

Figure 15-10 summarizes the format of each data type. In the figure, the most significant 
digits of all numbers (and fields within numbers) are the leftmost digits. 

15.2.2.1 BINARY INTEGERS 

The three binary integer formats are identical except for length, which governs the range 
that can be accommodated in each format. The leftmost bit is interpreted as the num­
ber's sign: 0 = positive and 1 = negative. Negative numbers are represented in standard 
two's complement notation (the binary integers are the only i486 processor format to use 
two's complement). The quantity zero is represented with a positive sign (all bits are 0). 
The i486 processor word integer format is identical to the 16-bit signed integer data type; 
the short integer format is identical to the 32-bit signed integer data type. 

The binary integer formats exist in memory only. When used by the i486 FPU, they are 
automatically converted to the 80-bit extended real format. All binary integers are ex­
actly representable in the extended real format. 
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MOST SIGNIFICANT BYTE HIGHEST ADDRESSED BYTE 
DATA 

FORMATS RANGE PRECISION 

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 oj 7 

WORD INTEGER 10" 16 BITS 
I ,(TWO'S 

COMPLEMENT) 
15 0 

SHORT INTEGER 10e 32 BITS 
I~TWO'S 
COMPLEMENT) 

31 0 

. , 

LONG INTEGER 10'· 64 BITS I~TWO'S 
COMPLEMENT) 

63 0 

PACKED BCD 10" 18 DIGITS 
;1 Ie' MAGNITUDE S X d" d,. d,. d,. d13 d,. d" d,o de d. d7 d. d. d. d3 d. 

79 72 

SINGLE PRECISION 10. 3 • 24BITS ;1 BIASED I I S EXPONENT SIGNIFICAND 

31 23 0 

DOUBLE 10. 30• 53 BITS SI BIASED I SIGNIFICAND J PRECISION EXPONENT 
63 52 0 

EXTENDED 10 •• 83• 64 BITS SI 
BIASED tTl SIGNIFICAND 

PRECISION EXPONENT 
79 64636 

(1) S = SIGN BIT (0 = positive, 1 = negative) 
(2) dn = DECIMAL DIGIT (TWO PER TYPE) 
(3) X = BITS HAVE NO SIGNIFICANCE; 387 MATH COPROCESSOR IGNORES WHEN LOADING, ZEROS WHEN 

STORING 
(4) A = POSITION OF IMPLICIT BINARY POINT 
(5) I = INTEGER BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL, IMPLICIT IN 

SINGLE AND DOUBLE PRECISION 
(6) EXPONENT BIAS (NORMALIZED VALUES): 

SINGLE: 127 (7FH) 
DOUBLE: 1023 (3FFH) 
EXTENDED REAL: 16383 (3FFFH) 

(7) PACKED BCD: (-1)5 (0" ... 0 0 ) 

(8) REAL: (-1)" (2E'BIAS) (FoF, ... ) 

Figure 15-10. Numerical Data Formats 

15.2.2.2 DECIMAL INTEGERS 

d, do I 

0 

J 
0 

240486i98 

Decimal integers are stored in packed decimal notation, with two decimal digits 
"packed" into each byte, except the leftmost byte, which carries the sign bit (0 = positive, 
1 = negative). Negative numbers are not stored in two's complement form and are distin­
guished from positive numbers only by the sign bit. The most significant digit of the 
number is the leftmost digit. All digits must be in the range 0-9. . 
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The decimal integer format exists in memory only. When used by the i486 FPU, it. is 
automatically converted to the 80-bit extended real format. All decimal integers are 
exactly.representable in the extended real format. 

15.2.2.3. REAL NUMBERS 

The i486 processor represents real numbers of the form: 

where: 

s = 0 or 1 
E = any integer between Emin and Emax, inclusive 
bi = 0 or 1 , 
P = number of bits of precision 

Table 15-3 summarizes the parameters for each of the three real-number formats. 

The i486 processor stores real numbers in a three-field binary format that resembles 
scientific, or exponential, notation. The format consists of the following fields: 

• The number's significant digits are held in the significand field, bo~b1 b2b3oobp -1' (The 
term "significand" is analogous to the term "mantissa" used to describe floating point 
numbers on some computers.) 

• The exponent field, e = E + bias, locates the binary point within the significant digits 
(and therefore determines the number's magnitude). (The term "exponent" is analo­
gous to the term "characteristic" used to describe floating point numbers on some 
computers.) 

• The I-bit sign field indicates whether the number is positive or negative. Negative 
numbers differ from positive numbers only in the sign bits of their significands. 

Table 15-3. Summary of Format Parameters 

Format 
Parameter 

Single Double Extended 

Format width in bits 32 64 80 

P (bits of precision) 24 53 64 

Exponent width in bits 8 11 15 

Emax +127 +1023 + 16383 

Emin -126 -1022 -16382 

Exponent bias +127 +1023 + 16383 
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Table 15-4 shows how the real number 178.125 (decimal) is stored in the single real 
format. The table lists a progression of equivalent notations that express the same value 
to show how a number can be converted from one form to another. (The ASM386/486 
and PL/M-386/486 language translators perform a similar process when they encounter 
programmer-defined real number constants.) Note that not every decimal fraction has 
an exact binary equivalent. The decimal number 1/10, for example, cannot be expressed 
exactly in binary Gust as the number 1/3 cannot be expressed exactly in decimal). When 
a translator encounters such a value, it produces a rounded binary approximation of the 
decimal value. 

The i486 processor usually carries the digits of the significand in normalized form. This 
means that, except for the value zero, the significand contains an integer bit and fraction 
bits as follows: 

l~fff...ff 

where ~ indicates an assumed binary point. The number of fraction bits varies according 
to the real format: 23 for single, 52 for double, and 63 fOr extended real. By normalizing 
real numbers so that their integer bit is always a 1, the i486 processor eliminates leading 
zeros in small values (I X 1 < 1). This technique maximizes the number of significant 
digits that can be accommodated in a significand of a given width. Note that, in the 
single and double formats, the integer bit is implicit and is not actually stored; the integer 
bit is physically present in the extended format only. 

If one were to examine only the significand with its assumed binary point, all normalized 
real numbers would have values greater than or equal tol and less than 2. The exponent 
field locates the actual binary point in the significant digits. Just as in decimal scientific 
notation, a positive exponent has the effect of moving the binary point to the right, and 
a negative exponent effectively moves the binary point to the left, inserting leading zeros 
as necessary. An unbiased exponent of zero indicates that the position of the assumed 
binary point is also the position of the actual binary point. The exponent field, then, 
determines a real number's magnitude. 

Table 15-4. Real Number Notation 

Notation Value 

Ordinary Decimal 178.125 

Scientific Decimal 1~78125E2 

Scientific Binary 1 ~011 00,1 0001 E111 

Scientific Binary 1~0110010001E10000110 

(Biased Exponent) 

Sign Biased Exponent Significand 

Single Format (Normalized) 
0 10000110 01100100010000000000000 

1 ~(implicit) 
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In order to simplify comparing real numbers (e.g., for sorting), the i486 processor stores 
exponents in a biased form. This means that a constant is added to the tme exponent 
described above. As Table 15-3 shows, the value of this bias is different for each real 
format. It has been chosen so as to force the biased exponent to be a positive value. This 
allows two real numbers (of the same format and sign) to be compared as if they are 
unsigned binary integers. That is, when comparing them bitwise from left to right (be­
ginning with the leftmost exponent bit), the first bit position that differs orders the 
numbers; there is no need to proceed further with the comparison. A number's true 
exponent can be determined simply by subtracting the bias value of its format. 

The single and double real formats exist in memory only. If a number in one of these 
formats is loaded into an FPU register, it is automatically converted to extended format, 
the format used for all internal operations. Likewise, data in registers can be converted 
to single or double real for storage in memory. The extended real format may be used in 
memory also, typically to store intermediate results that cannot be held in registers. 

Most applications should use the double format to store real-number data and results; it 
provides sufficient range and precision to return correct results with a minimum of pro­
grammer attention. The single real format is appropriate for applications that are con­
strained by memory, but it should be recognized that this format provides a smaller 
margin of safety. It is also useful for the debugging of algorithms, because roundoff 
problems will manifest themselves more quickly in this format. The extended real format 
should normally be reserved for holding intermediate results, loop accumulations, and 
constants. Its extra length is designed to shield final results from the effects of rounding 
and overflow/underflow in intermediate calculations. However, the range and, precision 
of the double format are adequate for most microcomputer applications. 

15.2.3 Rounding Control 

Internally, the i486 FPU employs three extra bits (guard, round, and sticky bits) that 
enable it to round numbers in accord with the infinitely precise true result of a compu­
tation; these bits are not accessible to programmers. Whenever the destination can rep­
resent the infinitely precise true result, the FPU delivers it. Rounding occurs in 
arithmetic and store operations when the format of the destination cannot exactly rep­
resent the infinitely precise true result. For example, a real number may be rounded if it 
is stored in a shorter real format, or in an integer format. Or, the infinitely precise true 
result may be rounded when it is returned to a register. 

The i486 FPU has four rounding modes, selectable by the RC field in the control word 
(see Figure 15-3). Given a true result b that cannot be represented by the target data 
type, the FPU determines the two representable numbers a and c that most closely 
bracket b in value (a < b < c). The processor then rounds (changes) b to a or to c 
according to the mode selected by the RC field as shown in Table 15-5. Rounding 
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Table 15-5. Rounding Modes 

RC Field Rounding Mode Rounding Action 

00 Round to nearest Closer to b of a or c; if equally close, select 
even number (the one whose least significant 
bit is zero). 

01 Round down (toward :.... 00 ) a 

10 Round up (toward + 00) c 

11 Chop (toward 0) Smaller in magnitude of a or c. 

NOTE: a < b < c; a and c are successive representable numbers; b is not representable. 

introduces an error in a result that is less than one unit in the last place to which the 
result is rounded. 

• "Round to nearest" is the default mode and is suitable for most applications; it 
provides the most accurate and statistically unbiased estimate of the true result. 

• The "chop" or "round toward zero" mode is provided for integer arithmetic 
applications. 

• "Round up" and "round down" are termed directed rounding and can be used to 
implement interval arithmetic. Interval arithmetic is used to determine upper and 
lower bounds for the true result of a multi-step computation, when the intermediate 
results of the computation are subject to rounding. 

Rounding control affects only the arithmetic instructions (refer to Chapter 16 for lists of 
arithmetic and nonarithmetic instructions). 

15.2.4 Precision Control 

The i486 FPU allows results to be calculated with either 64, 53, or 24 bits of precision in 
the significand as selected by the precision control (PC) field of the control word. The 
default setting, and the one that is best suited for most applications, is the full 64 bits of 
significance provided by the extended real format. The other settings are required by the 
IEEE standard and are provided to obtain compatibility with the specifications of cer­
tain existing programming languages. Specifying less precision nullifies the advantages of 
the extended format's extended fraction length. When reduced precision is specified, the 
rounding of the fractional value clears the unused bits on the right to zeros. Precision 
Control affects only the instructions FADD, FSUB, FMUL, FDIV, and FSQRT. 
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CHAPTER 16 
SPECIAL COMPUTATIONAL SITUATIONS 

Besides being able to represent positive and negative numbers, the numerical data for­
mats may be used to describe other entities. These special values provide extra flexibility, 
but most users will not need to understand them in order to use the numerics capabili­
ties of the i486™ processor successfully. This section describes the special values that 
may occur in certain cases and the significance of each. The numeric exceptions are also 
described, for writers of exception handlers and for those interested in probing the limits 
of numeric computation using the i486 processor. 

The material presented in this section is mainly of interest to programmers concerned 
with writing exception handlers. Many readers will only need to skim this section. 

When discussing these special computational situations, it is useful to distinguish be­
tween arithmetic instructions and non arithmetic instructions. Nonarithmetic instructions 
are those that have no operands or transfer their operands without substantial change; 
arithmetic instructions are those that make significant changes to their operands. 
Table 16-1 defines these two classes of instructions. 

16.1 SPECIAL NUMERIC VALUES 

The numerical data formats of the i486 processor encompass encodings for a variety of 
special values in addition to the typical real or integer data values that result from 
normal calculations. These special values have significance and can express relevant 
information about the computations or operations that produced them. The various 
types of special values are 

• Denormal real numbers 

• Zeros 

• Positive and negative infinity 

• NaN (Not-a-Number) 

• Indefinite 

• Unsupported formats 

The following sections explain the origins and significance· of each of these special val­
ues. Tables 16-6 through 16-9 at the end of this section show how each of these special 
values is encoded for each of the numeric data types. 

16.1.1 Denormal Real Numbers 

The i486 processor generally stores nonzero real numbers in normalized floating-point 
form; that is, the integer (leading) bit of the significand is always a one. (Refer to 
Chapter 15 for a review of operand formats.) This bit is explicitly stored in the extended 
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Table 16·1. Arithmetic and Nonarithmetic Instructions 

Nonarlthmetlc Instructions Arithmetic Instructions 

FABS F2XM1 

FCHS FAOO (P) 

FCLEX FBLO 
FOECSTP FBSTP 
FFREE FCOMP(P)(P) 
FINCSTP Feos' " 

FINIT FOIV(R)(P) 

FLO (register-to-register) FIAOO 

FLO (extended format from memory) FICOM(P) 

FLO constant FIOIV(R) 
FLOCW FILO 
FLOENV FIMUL 

FNOP FIST(P) 

FRSTOR FISUB(R) 

FSAVE FLO (conversion) 

FST(P) (register-to-register) FMUL(P) 

FSTP (extended format to memory) FPATAN 
FSTCW FPREM 
FSTENV FPREM1 
FSTSW I FPTAN 

FWAIT FRNOINT 
FXAM FSCALE 
FXCH FSIN 

FSINCOS 
FSQRT 
FST(P) (conversion) 
FSUB(R)(P) 
FTST 
FUCOM(P)(P) 
FXTRACT 
FYL2X 
FYL2XP1 

format, and is implicitly assumed to be a one (l,:l) in the single and double formats. Since 
leading zeros are eliminated, normalized storage allows the maximum number of signif­
icant digits to. be held in a significand of a given width. 

When a numeric value becomes very close to zero, normalized floating-point storage 
cannot be used to express the value accurately. The term tiny is used here to precisely 
define what values require spec~al handling. A number R is said to be tiny when - 2Emm 

< R < 0 or 0 < R < + 2Emm. (As defined in Chapter 15, Emin is -126 for single 
format, -1022 for double format,and -16382 for extended format.) In other words, a 
nonzero number is tiny if its exponent would be too negative to store in the destination 
format. 
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To accommodate these instances, the i486 processor can store and operate on reals that 
are not normalized, i.e., whose significands contain one or more leading zeros. Denor­
mals typically arise when the result of a calculation yields a value that is tiny. 

Denormal values have the following properties: 

• The biased floating-point exponent is stored at its smallest value (zero) 

• The integer bit of the significand (whether explicit or implicit) is zero 

The leading zeros of denormals permit smaller numbers to be represented, at the possi­
ble cost of some lost precision (the number of significant bits is reduced by the leading 
zeros). In typical algorithms, extremely small values are most likely to be generated as 
intermediate, rather than final, results. By using the extended real format for holding 
intermediate values, quantities as small as ± 3.37 x 10 - 4932 can be represented; this 
makes the occurrence of denormal numbers a rare phenomenon in i486 numerical ap­
plications. Nevertheless, the i486 processor can load, store, and operate on denormal­
ized real numbers when they do occur. 

Denormals receive special treatment by the i486 processor in three respects: 

• The i486 processor avoids creating denormals whenever possible. In other words, it 
always normalizes real numbers except in the case of tiny numbers. 

• The i486 processor provides the unmasked underflow exception to permit program­
mers to detect cases when denormals would be created. 

• The i486 processor provides the denormal exception to permit programmers to detect 
cases when denormals enter into further calculations. 

Denormalizing means incrementing the true result's exponent and inserting a corre­
sponding leading zero in the significand, shifting the rest of the significand one place to 
the right. Denormal values may occur in any of the single, double, or extended formats. 
Table 16-2 shows the range of denormalized values in each format. 

Denormalization produces either a denormal or a zero. Denormals are readily identified 
by their exponents, which are always the minimum for their formats; in biased form, this 
is always the bit string: 00 .. 00. This same exponent value is also assigned to the zeros, but 
a denormal has a nonzero significand. A denormal in a register is tagged special. 
Tables 16-8 and 16-9 later in this chapter show how denormal values are encoded in 
·each of the real data formats. 

Table 16-2. Denormalized Values 

Smallest Magnitude Largest Magnitude 
Format 

(Exact) (Approx.) (Exact) (Approx.) 

Single Precision 2- 150 10-46 2-126_2-150 10-38 

Double Precision 2- 1075 10-324 2-1022 _ 2- 1075 10- 308 

Extended 2-16461 10- 4956 2-16382 _ 2-16461 10- 4932 
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The de normalization process causes loss of significance if low-order one-bits bits are 
shifted off the right of the significand. In a severe case, all the significand bits of the true 
result are shifted out and replaced by the leading zeros. In this case, the result of denor­
malization is a true zero, and, if the value is in a register, it is tagged as a zero. 

Denormals are rarely encountered in most applications. Typical debugged algorithms 
generate extremely small results during the evaluation of intermediate sub expressions; 
the final result is usually of an appropriate magnitude for its single or double format real 
destination. If intermediate results are held in temporary real, as is recommended, the 
great range of this format makes underflow very unlikely. Denormals are likely to arise 
only when an application generates a great many intermediates, so many that they can­
not be held on the register stack or in extended format memory variables. If storage 
limitations force the use of single or double format reals for intermediates, and small 
values are produced, underflow may occur, and, if masked, may generate denormals. 

When a denormal number is single or double format is used as a source operand and the 
denormal exception is masked, the i486 FPU automatically nonnalizes the number when 
it is converted to extended format. 

16.1.1.1 DENORMALS AND GRADUAL UNDERFLOW 

Floating-pont arithmetic cannot carry out all operations exactly for all operands; approx­
imation is unavoidable when the exact result is not representable as a floating-point 
variable. To keep the approximation mathematically tractable, the hardware is made to 
conform to accuracy standards that can be modeled by certain inequalities instead of 
equations. Let the assignment 

X~Y@Z (where @ is some operation) 

represent a typical operation. In the default rounding mode (round to nearest), each 
operation is carried out with an absolute error no larger than half the separation be­
tween the two floating-point numbers closest to the exact results. Let x be the value 
stored for the variable whose name in the program is X, and similarly y for Y, and z for 
Z. Normally y and z will differ by accumulated errors from what is desired and from what 

. would have been obtained in the absence of error. For the calculation of x we assume 
that y and z are the best approximations available, and we seek to compute x as well as 
we can. If y@z is representable exactly, then we expect x = y@z, and that is what we get 
for every algebraic operation on the i486 processor FPU (Le., when y@z is one of y + z, 
y - z, y xz, y + z, sqrt z). But if y@z must be approximated, as is usually the case, then x 
must differ fromy@z by no more than half the difference between the two representable 
numbers that straddle y@z. That difference depends on two factors: 

1. The precision to which the calculation is carried out, as determined either by the 
precision control bits or' by the format used in memory. On the i486 processor, the 
precisions are single (24 significant bits), double (53 significant bits), and extended 
(64 significant bits). 
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2. How close y@z is to zero. In this respect the existence of denormal numbers on the 
i486 processor provides a distinct advantage over systems that do not admit denor­
mal numbers. 

In any floating-point number system, the density of representable numbers is greater 
near zero than near the largest representable magnitudes. However, machines that do 
not use denormal numbers suffer from an enormous gap between zero and its closest 
neighbors. Figures 16-1 and 16-2 show what happens near zero in two kinds of floating­
point number systems. 

Figure 16-1 shows a floating-point number system that (like the i486 processor) admits 
denormal numbers. For simplicity, only the non-negative numbers appear and the figure 
illustrates a number system that carries just four significant bits instead of the 24, 53, or 
64 significant bits that the i486 processor offers. 

Each vertical tick mark stands for a number representable in four significant bits, and 
the longer verticals stand for powers of 2. The horizontal marks are evenly spaced; those 
uncrossed by vertical tick marks stand for numbers unrepresentable at this precision. 
The'denormal numbers lie between 0 and the nearest normal power of 2. They are no 
less dense than the remaining nonzero numbers. 

Figure 16-2 shows a floating-point number system that (unlike the i486 or 387 FPUs) 
does not admit denormal numbers. There are two large gaps, one onthe positive side of 
zero (as illustrated) and one on the negative side of zero (not illustrated). The "gap 
between zero and the nearest neighbor of zero differs from the gap between that neigh­
bor and the next bigger number by a factor of about 8.4 x 106 for single, 4.5 x 1015 for 
double, and 9.2 x 1018 for extended format. Those gaps would complicate error analysis. 

0·······)·······1·· .. ····· .. ···-··1--··· .. -· .. ········ ... ··· ............... -.. (---- .......... ---- .. -- ... ---. 
Oenormale 

240486i99 

Figure 16-1. Floating-Point System with Denormals 

I ••••••• 1-· .. t ............... -1- ............ • ...... • ...... + .............. t ........... -1-"""",,,,,·,,,,,,,,,,,,,,, + .............. . 

····Nor •• 1 Nullbers·····~ 

240486i100 

Figure 16-2. Floating-Point System without Denormals 
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The advantage of denormal numbers is apparent when one considers what happens in 
either case when the underflow exception is masked and y@z falls into the space be­
tween zero and the smallest normal magnitude. The i486 processor returns the nearest 
denormal number. This action might be called "gradual underflow." The effect is no 
different from the rounding that can occur when y@z falls in the normal range. 

On the other hand, the system that does not have denormal numbers returns zero as the 
result, an action that can be much more inaccurate than rounding. This action could be 
called "abrupt underflow." The i486 FPU and 387 math coprocessor handle denormal 
values differently values differently than the 8087/80287 math coprocessors. See Section 
16.2.4 for more details. 

16.1.2 Zeros 

The value zero in the rea~ and .decimal integer formats may be signed either positive or 
negative, although the sign of a binary integer zero is always positive. For computational 
purposes, the value of zero always behaves identically, regardless of sign, and typically 
the fact that a zero may be signed is transparent to the programmer. If necessary, the 
F.XAM instruction may be used to determine a zero's sign. 

A programmer can code a zero, or it can be created by the FPU as its masked response 
to an underflow exception. If a zero is loaded or generated in a register, the register is 
tagged zero. Table 16-3 lists the results of instructions executed with zero operands and 
also shows how a zero may be created from nonzero operands. ' 

Table 16-3. Zero Operands and Results 

. Operation Operands Result 

FLD,FBLD ±O *0 
FILD +0 +0 
FST,FSTP ,FRNDINT ±O *0 

+X +01 

-X _01 

FBSTP ±o *0 
FIST,FISTP ±O *0 

+X +03 

-X -04 

FCHS +0 -0 
-0 +0 

FABS ±o +0 
Addition +0 plus +0 +0 

-0 plus -0 -0 
+0 plus -0, -0 plus +0 ±02 
-X plus +X, +X plus -X ±02 
::to plus ±X, ±X plus ±o #X 
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Table 16-3. Zero Operands and Results 

Operation Operands Result 

Subtraction +0 minus -0 +0 
-0 minus +0 -0 
+ 0 minus + 0, - 0 minus ±02 
-0 ±02 
+ X minus + X, - X minus -#X 
-X #X 
±o minus ±X 
±X minus ±o 

Multiplication ±o x ±o (BO 
±o x ±X, ±X x ±o €BO 
+X x +Y, -X x -y +01 

+x X -Y, -X x +y -01 

Division ±o + ±o Invalid Operation 
±X + ±o (Boo (Zero Divide) 
±X + ±oo (Bo 
+0 + +X, -0 + -X +0 
+ 0 + - X, - 0 + + X -0 
-X + -Y, +X + +Y +01 

-X + +Y, +X + -Y -01 

FPREM,FPREM1 ±O rem ±o Invalid Operation 
±X rem ±o Invalid Operation 
+0 rem ±X +0 
-0 rem ±X -0 
+X rem ±Y + 0 Y exactly divides X 
-X rem ±Y - 0 Y exactly divides X 

FSQRT ±o *0 
Compare ±O:+X ±o < +X 

±o:±o ±o = ±o 
±O:-X ±o> -X 

FTST ±o ±o = 0 
FXAM +0 C3 = 1; C2=C1 = Co=O 

-0 C3 =C1 =1; C2=CO=0 
FSCALE ±o scaled by - 00 *0 

±o scaled by + 00 Invalid Operation 
± 0 scaled by X *0 

FXTRACT +0 ST= +O,ST(1)= - 00, 

-0 Zero divide 
ST= -O,ST(1) = - 00, 

Zero divide 
FPTAN ±o *0 
FSIN (or SIN ±O *0 

result of FSINCOS) 
FCOS (or COS ±O +1 

result of FSINCOS) 
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Table 16-3. Zero Operands and Results 

Operation Operands Result 

FPATAN 

F2XM1 

FYL2X 

FYL2XP1 

X and Y 
1 

±o + +X 
±o + -X 
±X + ±o 
±o + +0 
±o + -0 
+ 00 + ±o 
- 00 + ±o 
±o + + 00 

±o + -00 

+0 
-0 
±Y x 10g(±0) 
±O x 10g(±0) 
+ Y x 10g(±0+ 1) 
-Y x log(±0+1) 

denote nonzero positive operands. 
When extreme underflow denormalizes the result to zero. 

*0 
*'IT 
#'IT/2 
*0 
*'IT 
+'IT/2 
-'IT/2 
*0 
*'IT 
+0 
-0 
Zero Divide 
Invalid Operation 
*0 
-*0 

2 
3 

Sign determined by rounding mode: + for nearest, up, or chop, - for down. 
When 0 < X < 1 and rounding mode is not up. 

4 
* 
# 
-# 
ffi 

When - 1 < x < 0 and rounding mode is not down. 
Sign of original zero operand. 
Sign of original X operand. 
Complement of sign of original X operand. 
Exclusive OR of the signs of the operands. 

16.1.3 Infinity 

The real formats support signed representations of infinities. These values are encoded 
with a biased exponent of all ones and a significand of 1aOO .. OO; if the infinity is in a 
register, it is tagged special. 

A programmer can code an infinity, or it can be created by the FPU as its masked 
response to·an overflow or a zero divide exception. Note that depending on rounding 
mode, the masked response may create the largest valid value representable in the des­
tination rather than infinity. 

The signs of the infinities are observed, and comparisons are possible. Infinities are 
always interpreted in the affine sense; that is, - 00 < (any finite number) < + 00. 

Arithmetic on infinities is always exact and, therefore, signals no exceptions, except for 
the invalid operations specified in Table 16-4. . 

·16.1.4 NaN (Not-a-Number) 

A NaN (Not a Number) is a member of a class of special values that exists in the real 
formats only. A NaN has an exponent of l1..lIB, may have either sign, and may have 
any significand except 1aOO .. OOB, which is assigned to the infinities. A NaN in a register 
is tagged special. 
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Operation 

FLD,FBLD 
FST,FSTP,FRNDINT 
FCHS 

FABS 
Addition 

Subtraction 

Multiplication 

Division 

FPREM,FPREM1 

FSQRT 

Compare 

FTST 
FSCALE 

FXTRACT 
FXAM 
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Table 16-4. Infinity Operands and Results 

Operands 

±oo 
±oo 
+00 

-00 

±oo 
+ 00 plus + 00 

- 00 plus - 00 

+ 00 plus - 00 

- 00 plus + 00 

± 00 plus ±X 
±X plus ± 00 

+ 00 minus - 00 

- 00 minus + 00 

+ 00 minus + 00 

- 00 minus - 00 

± 00 minus ±X 
±X minus ± 00 

±oo X ±oo 
±oo X ±Y, ±Y X ±oo 
±O x ±oo, ±oo X ±o 
±oo+±oo 
± 00 + ±X 
±X -:- ± 00 

± 00 + ±O 
± 00 rem ± 00 

± 00 rem ±X 
±X rem ± 00 

-00 

+00 

+00:+00 

-00:-00 

+00:-00 

-00:+00 

+ 00 : ±X 
- 00 : ±X 
±X: + 00 

±X: - 00 

+00 

-00 

± 00 scaled by - 00 

± 00 scaled by + 00 

± 00 scaled by ± X 
± 0 scaled by - 00 

± 0 scaled by 00 

± Y scaled by + 00 

± Y scaled by - 00 

±oo 
+00 

-00 

16-9 

*00 

*00 

-00 

+00 

+00 

+00 

-00 

Result 

Invalid Operation 
Invalid Operation 
*00 

*00 

+00 

-00 

Invalid Operation 
Invalid Operation 
*00 

-*00 

Eeoo 
ffioo 
Invalid Operation 
Invalid Operation 
ffioo 
ffio 
ffioo 
Invalid Operation 
Invalid Operation 
$X, a = 0 
Invalid Operation 
+00 

+00 = +00 

-00 = -00 

+00 > -'00 

-00 < +00 

+ 00 > X 
- 00 < X 
X < + 00 

X > + 00 

+ 00 >0 
- 00 <0 
Invalid Operation 
*00 

*00 

±01 
Invalid Operation 
#00 

#0 
ST = * 00, ST(1) = + 00 

CO=C2=1;C1 =C3=0 
CO=C1 =C2=1; C3=0 



X 
Y 
* 
-* 
$ 
(B 
# 
1 
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Table 16-4. Infinity Operands and Results 

Operation Operands 

FPATAN ±oo + ±X 
±Y + + 00 
±Y + - 00 
±oo + +00 
±oo+ -00 
± 00 + ±o 
+0 + + 00 
+0 + - 00 
-0 + +00 
-0 + - 00 

F2XM1 +00 
- 00 

FYL2X ±oo x log (1) 
±oo X log (X>1) 
±oo x log (0 < X < 1 ) 
± Y x log (+ 00) 
± 0 x log (+ 00) 
± Y x log (- 00) 

FYL2XP1 ± 00 x log (1) 
± 00 x log (X>O) 
± 00 x log (- 1 < X < 0) 
± Y x log (+ 00) 
± 0 x log (+ 00) 
± Y x log (- 00) 

Zero or nonzero positive operand. 
Nonzero positive operand. 
Sign of original· infinity operand. 
Complement of sign of original infinity operand. 
Sign of original operand. 
Exclusive OR of signs of operands. 
Sign of the original Y operand. 
Sign of original zero operand. 

Result 

*'IT/2 
#0 
#'IT 
*'IT/4 
*3'IT/4 
*'IT/2 
+0 
+ 'IT 
-0 
-'IT 
+00 
-1 
Invalid Operation 
*00 
-*00 
#00 
Invalid Operation 
Invalid Operation 
Invalid Operation 
*00 
-*00 
#00 
Invalid Operation 
Invalid Operation 

There are two classes of NaNs: signaling (SNaN) and quiet (QNaN). Among the 
QNaNs, the value real indefinite is of special interest. 

16.1.4.1 SIGNALING NaNs 

A signaling NaN is a NaN that has a zero as the most significant bit of its significand. 
The rest of the significand may be set to any value. The FPU never generates a signaling 
NaN as a result; however, it recognizes signaling NaNs when they appear as operands. 
Arithmetic operations (as defined at the beginning of this chapter) on a signaling NaN 
cause an invalid-operation exception (except for load operations from the stack, FXCH, 
FCHS, and FABS). 

By unmasking the invalid operation exception, the programmer can use signaling NaNs 
to trap to the exception handler. The generality of this approach and the large number 
of NaN values that are available provide the sophisticated programmer with a tool that 
can be applied to a variety of special situations. 
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For example, a compiler could use signaling NaNs as references to uninitialized (real) 
array elements. The compiler could pre initialize each array element with a signaling 
NaN whose significand contained the index (relative position) of the element. If an 
application program attempted to access an element that it had not initialized, it would 
use the NaN placed there by the compiler. If the invalid operation exception were un­
masked, an interrupt would occur, and the exception handler would be invoked. The 
exception handler could determine which element had been accessed, since the operand 
address field of the exception pointers would point to the NaN, and the NaN would 
contain the index number of the array element. 

16.1.4.2 QUIET NaNs 

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The 
i486 processor creates the quiet NaN real indefinite (defined below) as its default re­
sponse to certain exceptional conditions. The i486 processor may derive other QNaNs by 
converting an SNaN. The i486 processor converts a SNaN by setting the most significant 
bit of its significand to one, thereby generating an QNaN. The remaining bits of the 
significand are not changed; therefore, diagnostic information that may be stored in 
these bits of the SNaN is propagated into the QNaN. 

The i486 processor will generate the special QNaN; real indefinite, as its masked re­
sponse to an invalid operation exception. This NaN is signed negative; its significand is 
encoded 1,:l100 .. 00. All other NaNs represent values created by programmers or derived 
from values created by programmers. 

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as 
the masked response for invalid-operation exceptions and as the result of an operation 
in which at least one of the .operands is a QNaN. The i486 processor applies the rules 
shown in Table 16-5 when generating a QNaN. 

Note that handling .of a QNaN operand has greater priority than all exceptions except 
certain invalid-operation exceptions (refer to the section "Exception Priority" in this 
chapter). 

Table 16-5. Rules for Generating QNaNs 

Operation Action 

Real operation on an SNaN and a ONaN. Deliver the ONaN operand. 

Real operation on two SNaNs. Deliver the ONaN that results from converting 
the SNaN that has the larger significand. 

Real operation on two ONaNs. Deliver the ONaN that has the larger 
significand. 

Real operation on an SNaN and another Deliver the ONaN that results from converting 
number. the SNaN. 

Real operation on a ONaN and another Deliver the ONaN. 
number. 

Invalid operation that does not involve NaNs. Deliver the default ONaN real indefinite. 
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Quiet NaNs could be :used, for example, to speed up debugging. In its early testing 
phase, a program often contains multiple errors. An exception handler could be written 
to save diagnostic information in memory whenever it was invoked. After storing the 
diagnostic data, it could supply a quiet NaN as the result of the erroneous instruction, 
and that NaN could point to its associated diagnostic area in memory. The program 
would then continue, creating a different NaN for each error. When the program ended, 
the NaN results could be used to access the diagnostic data saved at the time the errors 
occurred. Many errors could thus be diagnosed and corrected in one test run. 

In embedded applications which use computed results in further computations, an un­
detected QN aN can invalidate all subsequent results. Such applications should therefore 
periodically check for QNaNs and provide a recovery mechanism to be used if a QNaN 
result is detected. 

16.1.5 Indefinite 

For each numeric data type, one unique encoding is reserved for representing the special 
value indefinite. The i486 processor produces this encoding as its response to a masked 
invalid-operation exception. 

In the case of reals, the indefinite value is a QNaN as discussed in the prior section. 

Packed decimal indefinite may be stored with a FBSTP instruction; attempting to use this 
encoding in aFBLD instruction, however, will have an undefined result; thus indefinite 
cannot be loaded from a packed decimal integer.' 

In the binary integers, the same encoding ,may represent either indefinite or the largest 
negative number supported by the format (- 215

, - 23
\ or - 263

). The i486 processor 
will store this encoding as its masked response to an invalid operation, or when the value 
in a source register represents or rounds to the largest negative integer representable by 
the destination. In situations where its origin may be ambiguous, the invalid-operation 
exception flag can be examined to see if the value was produced by an exception re­
sponse. When this encoding is loaded or used by an integer arithmetic or compare 
operation, it is always interpreted as a negative number; thus indefinite cannot be loaded 
from a binary integer. 

16.1.6 Encoding of, Data Types 

Tables 16-6 through 16-9 show how each of the special values just described is encoded 
for each of the numeric data types. In these tables, the least-significant bits are shown to 
the right and are stored in the lowest memory addresses. The sign bit is always the 
left-most bit of the highest-addressed byte. 
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16.1.7 Unsupported Formats 

The extended format permits many bit patterns that do not fall into any of the previously 
mentioneq categories. Table 16-10 shows these unsupported formats. Some of these 
encodings were supported by the 80287 math coprocessor; however, most of them are 
not supported by the 387 and'i486 FPUs. These changes are required due to changes 
made in the final version of IEEE Std 754 that eliminated these data types. 

The categories of encodings formerly known as pseudo-NaNs, pseudoinfinities, and un­
normal, numbers are not supported. The i486 processor raises the invalid-operation ex­
ception when they are encountered as operands. 

The encodings formerly known as pseudodenormal numbers are not generated by the 
i486 processor; however, they are correctly utilized when encountered as operands. The 
exponent is treated as if it were 00 .. 01 and the mantissa is unchanged. The denormal 
exception is raised. 

Table 16-6. Binary Integer Encodings 

Class Sign Magnitude 

(Largest) 0 11..11 
U) 
CD 

~ 
'iii 
0 a. 

(Smallest) 0 00 .. 01 

Zero 0 00 .. 00 

U) 
(Smallest) 1 11..11 

CD 
> :; 
0) 
CD 
z 

(Largest/lndefinite*) 1 00 .. 00 

Word: 15 bits 
Short: 31 bits 
Long: 63 bits 

*If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the 
FPU interprets it as thelargest negative number representable in the format. .. - 2 15, - 2 31 , or - 263. The 
FPU delivers this encoding to an integer destination in two cases: 

1. If the result is the largest negative number. 
2. As the response to a masked invalid operation exception, in which case it represents the special value 

integer indefinite. 
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Table 16-7. Packed Decimal Encodings 

Magnitude 
Class Sign 

I I I I·· ·1 digit digit digit digit digit 

(Largest) 0 0000000 1 001 1 001 1 001 1 001 ... 1 001 
II) 
Q) 

~ 
·iii 
0 

Do 

(Smallest) 0 0000000 0000 0000 0000 0000 ... 0001 

Zero 0 0000000 0000 0000 0000 0000 ... 0000 

II) 
Zero 1 0000000 0000 0000 0000 0000 ... 0000 

Q) 

> 
(Smallest) ; 1 0000000 0000 0000 0000 0000 ... 0000 

C) 
Q) 

z 

(Largest) 1 0000000 1 001 1 001 1 001 1 001 ... 1 001 

Indefinite* 1 1111111 1 1 1 1 1 1 1 1 U U U U** UUUU ... UUUU 

- 1 byte - - 9 bytes -

*The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception. 
Attempting to load this value via FBLD produces an undefined result. 

**UUUU means bit values are undefined and may contain any value. 

16-14 



SPECIAL COMPUTATIONAL SITUATIONS 

Table 16-8. Single and Double Real Encodings 

Class Sign 
Biased Significand 

Exponent ff-ft* 

0 11..11 11 .. 11 

Quiet 
CI) 

0 11 .. 11 10 .. 00 z 
. CIS 
z 

0 11 .. 11 01 .. 11 

Signaling 
CI) 

0 11..11 00 .. 01 CD 

~ 
'iii Infinity 0 11 .. 11 00 .. 00 
0 
D-

O 11 .. 10 11 .. 11 

Normals 

CI) 0 00 .. 01 00 .. 00 
CiS 
CD 0 00 .. 00 11 .. 11 II: 

Denormals 

0 00 .. 00 00 .. 01 

Zero 0 00 .. 00 00 .. 00 

Zero 1 00 .. 00 00.00 

1 00 .. 00 00 .. 01 

CI) Denormals 
CiS 
CD 1 00 .. 00 11 .. 11 II: 

1 00 .. 01 00 .. 00 
CI) 
CD Normals > :; 

1 11 .. 10 11 .. 11 C) 
CD z 

Infinity 1 11 .. 11 00 .. 00 

1 11 .. 11 00 .. 01 

Signaling 
CI) 

z 1 11 .. 11 01 .. 11 
CIS z 

Indefinite 1 11 .. 11 10 .. 00 
Quiet 

1 11 .. 11 11 .. 11 

Single: - 8 bits - - 23 bits -
Double: - 11 bits - - 52 bits -

*Integer bit is implied and not stored. 

16-15 



SPECIAL COMPUTATIONAL SITUATIONS 

Table 16-9. Extended Real Encodings 

Class Sign 
Biased Significand 

Exponent I.ff-ff 

0 11 .. 11 1 11..11 

Quiet 
U) 

0 11..11 1 10 .. 00 z 
tV 
Z 

0 11..11 1 01..11 

Signaling 
U) 

0 11..11 1 00 .. 01 Q) 

~ 
1 00 .. 00 'en Infinity 0 11..11 

0 
Q, 

0 11..10 111..11 

Normals 

U) 0 00 .. 01 1 00 .. 00 
ca 
Q) 0 '. 00 .. 00 011..11' a: 

Denormals 

0 00 .. 00 1 00 .. 01 

Zero 0 00 .. 00 000,.00 

Zero 1 00 .. 00 000 .. 00 

1 00 .. 00 000 .. 01 

U) Denormals 
ca 
Q) 1 00 .. 00 011..11 a: 

1 00 .. 01 1 00 .. 00 
U) 
Q) Normals > :; 

1 11..10 111..11 m 
.Q) 

z 
Infinity 1 11..11 1 00 .. 00 

1 11..11 1 00 .. 01 

Signaling 
U) 

1 11..11 1 01..11 z 
tV 
Z 

Indefinite 1 11..11 1 10 .. 00 
Quiet 

1 11..11 1 11..11 

- 15 bits - - 64 bits -
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Table 16-10. Unsupported Formats 

Class Sign 
Biased Slgnlflcand 

Exponent f.ff--ff 

0 11..11 011..11 
0 Quiet 
" en ~z 0 11..11 o 10 .. 00 
en co a.z 

0 11..11 001 .. 11 
en Signaling Q) 

.~ 0 11..11 000 .. 01 
~ 
0 Pseudoinfinity 0 11..11 000 .. 00 a. 

0 11..10 011..11 

en Unnormals 
co 0 00 .. 01 000 .. 00 
Q) 

a: 
0 00 .. 00 1 11..11 

Pseudodenormals 
0 00 .. 00 1 00 .. 00 

1 00 .. 00 1 11..11 

en Pseudodenormals 
co 1 00 .. 00 1 00 .. 00 
Q) 

a: 
1 11..10 011..11 

en 
Unnormals Q) 

.~ 1 00 .. 01 000 .. 00 m 
C) 
Q) Pseudoinfinity 1 11..11 000 .. 00 z 

1 11..11 001..11 
0 Signaling 
" en ~z 1 11..11 000 .. 01 en co a.z 

1 11..11 011..11 
Quiet 

1 11..11 o 10 .. 00 

- 15 bits - - 64 bits -:-

16.2 NUMERIC EXCEPTIONS 

The i486 processor can recognize six classes of numeric exception conditions while exe­
cuting numeric instructions: 

1. I - Invalid operation 

• Stack fault 

• IEEE standard invalid operation 

2. Z- Divide-by-zero 

3. D - Denormalized operand 

4. 0 - Numeric overflow 
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5. U - Numeric underflow 

6. P- Inexact result (precision) 

16.2.1 Handling Numeric Exceptions 

When numeric exceptions occur, the i486 processor takes one of two possible courses of 
action: 

• The FPU can itself handle the exception, producing the most reasonable result and 
allowing numeric program execution to continue undisturbed. 

• A software exception handler can be invoked to handle the exception. 

Each of the six exception conditions described above has a corresponding flag bit in the 
FPU status word and a mask bit in the FPU control word. If an exception is masked (the 
corresponding mask bit in the control word = 1), the i486 processor takes an appropri­
ate default action and continues with the computation. If the exception is unmasked 
(mask = 0), a software exception handler is invoked immediately before execution of the 
next WAIT or non-control floating-point instruction. Depending on the value of the NE 
bit of the CRO control register, the exception handler is invoked either (NE = 1) 
through interrupt vector 16 or (NE = 0) through an external interrupt. 

Note that when exceptions are masked, the FPU may detect mUltiple exceptions in a 
single instruction, because it continues executing the instruction after performing its 
masked response. For example, the FPU could detect a denormalized operand, perf9rm 
its masked response to this exception, and then detect an underflow. 

16.2.1.1 AUTOMATIC EXCEPTION HANDLING 

The i486 processor has a default fix-up activity for every possible exception condition it 
may encounter. These masked-exception responses are designed to be safe and are gen­
erally acceptable for most numeric applications. 

As an example of how even severe exceptions can be handled safely and automatically 
using the default exception responses, consider a calculation of the parallel resistance of 
several values using only the standard formula (Figure 16-3). If R1 becomes zero, the 
circuit resistance becomes zero. With the divide-by-zero and precision exceptions 
masked, the i486 processor will produce the correct result. 

By masking or unmasking specific numeric exceptions in the FPU control word, pro­
grammers can delegate responsibility for most exceptions to the i486 processor, reserving 
the most severe exceptions for programmed exception handlers. Exception-handling 
software is often difficult to write, and the masked responses have been tailored to 
deliver the most reasonable result for each condition. For the majority of applications, 
masking all exceptions yields satisfactory results with the least programming effort. Cer­
tain exceptions can usefully be left unmasked during the debugging phase of software 
development, and then masked when the clean software is actually run. An invalid­
operation exception for example, typically indicates a program error that must be 
corrected. 
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EQUIVALENT RESISTANCE = 

+ + 

240486i101 

Figure 16·3. Arithmetic Example Using Infinity 

The exception flags in the FPU status word provide a cumulative record of exceptions 
that have occurred since these flags were last cleared. Once set, these flags can be 
cleared only by executing the FCLEX (clear exceptions) instruction, by reinitializing the 
FPU, or by overwriting the flags with an FRSTOR or FLDENV instruction. This allows 
a programmer to mask all exceptions, run a calculation, and then inspect the status word 
to see if any exceptions were detected at any point in the calculation. 

16.2~ 1.2 SOFTWARE EXCEPTION HANDLING 

If the FPU encounters an unmasked exception condition, a software exception handler is 
invoked immediately before execution of the next WAIT or non-control floating-point 
instruction. The exception handler is invoked either through interrupt vector 16 or 
through an external interrupt, depending on the value of the NE bit of the CRO control 
register. 

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately 
before the execution of the next non-control floating-point or WAIT instruction. Inter­
rupt 16 is an operating-system call that invokes the exception handler. Chapter 9 con­
tains a general discussion of exceptions and interrupts on the i486 processor. 

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception 
causes the processor to freeze immediately before executing the next non-control 
floating-point or WAIT instruction. The frozen processor waits for an external interrupt, 
which must be supplied by external hardware in response to the FERR# output of the 
processor. (Regardless of the value of NE, an unmasked numerical exception causes the 
FERR# output to be activated.) In this case, the external interrupt invokes the 
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exception-handling routine. If NE = 0 but the IGNNE# input is active, the processor 
disregards the exception and continues. Error reporting via external interrupt is sup­
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility 
issues. 

The exception-handling routine is normally a part of the systems software. Typical ex­
ception responses may include: 

• Incrementing an exception counter for later display or printing 

• Printing or displaying diagnostic information (e.g., the FPU environment and 
registers) 

• Aborting further execution, or using the exception pointers to build an instruction 
that will run without exception and executing it 

Applications programmers should consult their operating system's reference manuals for 
the appropriate system response to numerical exceptions. For systems programmers, 
some details on writing software exception handlers are provided in Chapter 19. 

16.2.2 Invalid Operation 

This exception may occur in response to two general classes of operations: 

1. Stack operations 

2. Arithmetic operations 

The stack flag (SF) of the status word indicates which class of operation caused the 
exception. When SF is 1 a stack operation has resulted in stack overflow or underflow; 
when SF is 0, an arithmetic instruction has encountered an invalid operand. 

16.2.2.1 STACK EXCEPTION 

When SF is 1, indicating a stack operation, the OIU# bit of the condition code (bit C1) 
distinguishes between stack overflow and underflow as follows: 

OIU# = 1 Stack overflow-an instruction attempted to push down a nonempty stack 
location. 

OIU # = 0 Stack underflow - an instruction attempted to read an operand from an 
empty stack location. 

When the invalid-operation exception is masked, the FPU returns the QNaN indefinite. 
This value overwrites the destination register, destroying its original contents. 

When the invalid-operation exception is not masked, an exception handler is invoked. 
TOP is not changed, and the source operands remain unaffected. 

16-20 



SPECIAL COMPUTATIONAL SITUATIONS 

16.2.2.2 INVALID ARITHMETIC OPERATION 

This class includes the invalid operations defined in IEEE Std 854. The FPU reports an 
invalid operation in any of the cases shown in Table 16-11. Also shown in this table are 
the FPU's responses when the invalid exception is masked. When unmasked, an excep­
tion handler is invoked, and the operands remain unaltered. An invalid operation gen­
erally indicates a program error. 

16.2.3 Division by Zero 

If an instruction attempts to divide a finite nonzero operand by zero, the FPU will report 
a zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instruc­
tions that perform division internally: FYL2X and FXTRACT. The masked response for 
FDIV and FYL2X is to return an infinity signed with the exclusive OR of the signs of 

Table 16-11. Masked Responses to Invalid Operations 

Condition Masked Response 

Any arithmetic operationon an unsupported Return the ONaN indefinite. 
format. 

Any arithmetic operation on a signaling NaN. Return a ONaN (refer to the section "Rules for 
Generating ONaNs"). 

Compare' and test operations: one or both oper- Set condition codes "not comparable." 
ands is a NaN. 

Addition of opposite-signed infinities or subtrac- Return the ONaN indefinite. 
tion of like-signed infinities. 

Multiplication: 00 x 0; or 0 x 00. Return theONaN indefinite. 

Division: 00 + 00; or 0 + O. Return the ONaN indefinite. 

Remainder instructions FPREM, FPREM1 when Return the ONaN indefinite; set C2 • 

modulus (divisor) is zero or dividend is 00. 

Trigonometric instructions FCaS, FPTAN, FSIN, Return theONaN indefinite; set C2 • 

FSINCaS when argument is 00. 

FSORT of negative operand (except FSORT Return the ONaN indefinite. 
(-0) ,= -0), FYL2X of negative operand (except 
FYL2X (- 0) = - 00), FYL2XP1 of operand more 
negative than -1. 

FIST(P) instructions when source register is Store integer indefinite. 
empty, a NaN, 00, or exceeds representable 
range of destination. 

FBSTP instruction when source register is Store packed decimal indefinite. 
empty, a NaN, 00, or exceeds 18 decimal digits. ' 

FXCH instruction when one or both registers are Change empty registers to the QNaN indefinite 
tagged empty. and then perform exchange. 
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the operands. For FXTRACT, ST(1) is set to - 00; ST is set to zero with the same sign 
as the original operand. If the divide-by-zero exception is unmasked, an exception han­
dler is invoked; the operands remain unaltered. 

16.2.4 Denormal Operand 

If an arithmetic instruction attempts to operate on a denormal operand, the FPU reports 
the denormal-operand exception. Denormal operands may have reduced significance 
due to lost low-order bits, therefore it may be advisable in certain applications to pre­
clude operations on these operands. This can be accomplished by an exception handler 
that responds to unmasked denormal exceptions. Most users will mask this exception so 
that computation may proceed; any loss of accuracy will be analyzed by the user when 
the final result is delivered. 

When this exception is masked, the FPU sets the D-bit in the status word, then proceeds 
with the instruction. Gradual underflow and denormal numbers as handled on the i486 
processor will produce results at least as good as, and often better than what could be 
'obtained from a machine that flushes underflows to zero. In fact, a denormal operand in 
single- or double-precision format will be normalized to the extended-real format when 
·loaded into the FPU. Subsequent operations will benefit from the additional precision of 
the extended-real format used internally. 

When this exception is not masked, the D-bit is set and the exception handler is invoked. 
The operands are not changed by the instruction and are available for inspection by the 
exception handler. 

The i486 FPU and 387 math coprocessors handle denormal values differently than the 
8087 and 80287. This change is due to revisions in the IEEE standard before being 
approved. The difference in operation occurs when the denormal exception is masked. 
The i486 FPU and 387 math coprocessors will automatically normalize denormals. The 
8087 and 80287 math coprocessors will generate a denormal result. 

The difference in denormal handling is usually not an issue. The denormal exception is 
normally masked for the 387 and i486 FPUs. For programs that also run on a 80287 
math coprocessor, the denormal exception is often unmasked and an exception handler 
is provided to normalize any denormal values. Such an exception handler is redundant 
for the i486 and 387 DX FPUs. The default exception handler should be used. 

A program can detect at run-time whether it is running on a 387 or i486 FPU or the 
older 8087/80287 math coprocessors. The code sequence in Figure 16-4 is recommended 
to recognize an 8087/80287. The example in Figure 16-4 can be used to selectively mask 
the denormal exception for a 387 DX or i486 FPU. A denormal exception handler 
should also be provided to support an 8087/80287 math coprocessor. This code example 
can also be used to set a flag to allow use of new instructions added to the 387 and i486 
FPUs beyond the instructions of the 8087/80287 math coprocessors. 
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ST 

Use default infinity mode: 
projective for 8~87/8~287, 

affine for 387 DX and i48b FPU 
Generate infinity 

Form negative infinity 

FCOMPP Compare +infinity with -infinity 
8~87/8~287 will say they are equal FSTSW temp 

MOV AX, temp 
SAHF 
JZ Using_8~87 

Figure 16-4. Coprocessor Detection Code 

16.2.5 Numeric Overflow and Underflow 

If the exponent of a numeric result is too large for the destination real format, the FPU 
signals a numeric overflow. Conversely, if the exponent of a result is too small to be 
represented in the destination format, a numeric underflow is signaled. If either of these 
exceptions occur, the result of the operation is outside the range of the destination real 
format. 

Typical algorithms are most likely to produce extremely large and small numbers in the 
calculation of intermediate, rather than final, results. Because of the great range of the 
extended-precision format, overflow and underflow are relatively rare events in most 
numerical applications for the i486 processor. 

16.2.5.1 OVERFLOW 

The overflow exception can occur whenever the rounded true result would exceed in 
magnitude the largest finite number in the destination format. The exception can occur 
in the execution of most of the arithmetic instructions and in some of the conversion 
instructions; namely, FST(P), F(I)ADD(P), F(I)SUB(R)(P), F(I)MUL(P), FDIV(R)(P), 
FSCALE, FYL2X, and FYL2XPl. 
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The response to an overflow condition depends on whether the overflow excepti6'n' is 
masked: 

• Overflow exception masked. The value returned depends on the rounding mode as 
Table 16-12 illustrates. 

• Overflow exception not masked. The unmasked response depends on whether the 
instruction is supposed. to store the result on the stack or in memory: 

If the destination is the stack, then true result is divided by 224,576 and rounded. 
(The bias 24,576 is equal to 3 x 213

.) The significand is rounded to the appro­
priate precision (according to the precision control (PC) bit of the control word, 
for those instructions controlled by PC, otherwise to extended precision). The 
roundup bit (C1) of the status word is set if the significand was rounded upward. 

The biasing of the exponent by 24,576 normally translates the number as nearly 
as possible to the middle of the exponent range so that, if desired, it can be used 
in subsequent scaled operations with less risk of causing further exceptions. 
With the instruction FSCALE, however, it can happen that the result is too 
large and overflows even after biasing. In this case; the unmasked response is 
exactly the same as the masked round-to-nearest response, namely ± infinity. 
The intention of this feature is to ensure the trap handler will discover that a 
translation of the exponent by - 24574 would not work correctly without oblig­
ing the programmer of Decimal-to-Binary or Exponential functions to determine 
which trap handler, if any, should be invoked. 

If the destination is memory (this can occur only with the store instructions), 
then no result is stored in memory. Instead, the operand is left intact in the 
stack. Because the data in the stack is in extended-precision format, the excep­
tion handler has the option either of reexecuting the store instruction after 
proper adjustment of the operand or of rounding the significand on the stack to 
the destination's precision as' the standard requires. The exception handler 
should ultimately store a value into the destination location in Inemory if the 
program is to continue. 

Table 16-12. Masked Overflow Results 

Rounding Sign of 
Result Mode True Result 

To nearest + +00 
- - 00 

Toward - 00 + Largest finite positive number 
- -00 

Toward + 00 + +00 
- Largest finite negative number 

Toward zero + Largest finite . positive ·number .. 
- Largest finite negative number 
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16.2.5.2 UNDERFLOW 

Underflow can occur in the execution of the instructions FST(P), FADD(P), 
FSUB(RP), FMUL(P), F(I)DIV(RP), FSCALE, FPREM(l), FPTAN, FSIN, FCaS, FS­
INCaS, FPATAN, F2XMl, FYL2X, and FYL2XP1. 

Two related events contribute to underflow: 

1. Creation of a tiny result which, because it is so small, may cause some other excep­
tion later (such as overflow upon division). 

2. Creation of an inexact result; i.e. the delivered result differs from what would have 
been computed were both the exponent range and precision unbounded. 

Which of these events triggers the underflow exception depends on whether the under­
flow exception is masked: 

1. Underflow exception masked. The underflow exception is signaled when the result is 
both tiny and inexact. 

2. Underflow exception not masked. The underflow exception is signaled when the 
result is tiny, regardless of inexactness. 

The response to an underflow exception also depends on whether the exception is 
masked: 

1. Masked response. The result is denormal or zero. The precision exception is also 
triggered. 

2. Unmasked response. The unmasked response depends on whether the instruction is 
supposed to store the result on the stack or in memory: 

• If the destination is the stack, then the true result is multiplied by 224
,576 and 

rounded. (The bias 24,576 is equal to 3 x 213
.) The significand is rounded to the 

appropriate precision (according to the precision control (PC) bit of the control 
word, for those instructions controlled by PC, otherwise to extended precision). 
The roundup bit (C1) of the status word is set if the significand was rounded 
upward. 

The biasing of the exponent by 24,576 normally translates the number as nearly 
as possible to the middle of the exponent range so that, if desired, it can be used 
in subsequent scaled operations with less risk of causing further exceptions. With 
the instruction FSCALE, however, it can happen that the result is too tiny and 
underflows even after biasing. In this case, the unmasked response is· exactly the 
same as the masked round-to-nearest response, namely ± O. The intention of this 
feature is to ensure the trap handler will discover that a translation by + 24576 
would not work correctly without obliging the programmer of Decimal-to-Binary 
or Exponential functions to determine which trap handler, if any, should be 
invoked. 

• If the destination is memory (this can occur only with the store instructions), then 
no result is stored in memory. Instead, the operand is left intact in the stack. 
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Because the data in the stack is in extended-precision format, the exception han­
dler has the option either of reexecuting the store instruction after proper adjust­
ment of the operand, or of rounding the significand on the stack to the 

, destination's precision as the standard requires. The exception handler ShOlIld 
ultimately store a value into the destination location in memory if the program is 
to continue. 

16.2.6 Inexact (Precision) 

This exception condition occurs if the result of an operation is not exactly representable 
in, the destination format. For example, the fraction 1/3 cannot be precisely represented 
in binary form. This exception occurs frequently and indicates that some (generally ac­
ceptable) accuracy has been lost. 

By their nature, the transcendental instructions typically cause the inexact exception. 

The, C1 (roundup) bit of the status word indicates whether the inexact result was 
rounded up (C1 = 1) or chopped (C1 = 0). 

The inexact exception accompanies the underflow exception when there is also a loss of 
accuracy. When underflow is masked, the underflow exception is signaled only when 
there is a loss of accuracy; therefore the precision flag is always set as well. When 
underflow is unmasked, there may or may not have been a loss of accuracy; the precision 
bit indicates which is the case. 

This exception, is provided for applications that need to perform exact· arithmetic only. 
Most applications will mask this exception. The FPU delivers the rounded or over/ 
underflowed result to the destination, regardless of.whether a trap occurs. 

16.2.7 Exception Priority 

The i486 processor deals with exceptions according to a predetermined precedence. 
Precedence in exception handling means that higher-priority exceptions are flagged and 
results are delivered according to the requirements of that exception. Lower-priority 
exceptions may not be flagged even if they occur. For example, dividing an SNaN by zero 
causes an invalid-operand exception (due to the SNaN) and not a zero-divide exception; 
the masked result is the QNaN real indefinite, not 00. A denormalor' inexact (precision) 
exc;eption, however, can accompany a numeric underflow or overflow exception. 

The precedence among numeric exceptions is as follows: 

1. Invalid operation exception, subdivided' as follows: 

a. Stack underflow. 

b. Stack overflow. 

c. Operand o~ unsupported format. 

d. SNaN operand. 
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2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing 
with it has precedence over lower-priority exceptions. For example, a QNaN divided 
by zero results in a QNaN, not a zero-divide exception. 

3. Any other invalid-operation exception not mentioned above or zero divide. 

4. Denormal operand. If masked, then instruction execution continues, and a lower­
priority exception can occur as well. 

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well. 

6. Inexact result (precision). 

16.2.8 Standard Underflow/Overflow Exception Handler 

As long as the underflow and overflow exceptions are masked, no additional software is 
required to cause the output of the i486 processor to conform to the requirements of 
IEEE Std 854. When unmasked, these exceptions give the exception handler an addi­
tional option in the case of store instructions. No result is stored in memory; instead, the 
operand is left intact on the stack. The handler may round the significand of the operand 
on the stack to the destination's precision as the standard requires, or it may adjust the 
operand and reexecute the faulting instruction. 
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CHAPTER 17 
FLOATING-POINT INSTRUCTION SET 

The floating-point instructions available on the i486 ™ processor can be grouped into six 
functional classes: 

• Data Transfer Instructions 

• Nontranscendental Instructions 

• Comparison Instructions 

• Transcendental Instructions 

• Constant Instructions 

• Control Instructions 

In this chapter, the instruction classes are described as a collection of resources available 
to ASM386/486 programmers. For details of format, encoding, and execution times, see 
the instruction reference pages in Chapter 26. 

The 38rM math coprocessors and i486 FPU have more instructions than the 8087/80287 
math coprocessors. Some 386 DX microprocessor systems use an 80287 math coproces­
sor. See Figure 16-4 for an example of how to detect whether an 8087/80287 math 
coprocessor is present to use the new instructions when available. 

17.1 SOURCE AND DESTINATION OPERANDS 

The typical floating-point instruction takes one or two operands, which can come from 
the FPU register stack or from memory. Many instructions, such as FSIN, automatically 
operate on the top FPU stack element. Others allow, or require, the programmer to 
code the operand(s) explicitly along with the instruction mnemonic. Still others accept 
one explicit operand and one implicit operand (usually the top FPU stack element). 

Whether specified by the programmer or supplied by default, floating-point operands 
are of two basic types,sources and destinations. A source operand provides an input to an 
instruction, but is not altered by its execution. Even when an instruction converts the 
source operand from one format to another (e.g., real to integer), the conversion is 
performed in an internal work area to avoid altering the source operand. A destination 
operand may also provide an input to an instruction; on execution, however, the instruc­
tion returns a result to the destination, overwriting its previous contents. 

Many instructions allow their operands to be coded in more than one way. For example, 
FADD (add real) may be written without operands, with only a source, or with a desti­
nation and a source. When both destination and source operands are specified, the 
destination must precede the source on the command line, and both must come from the 
FPU stack. 
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Memory operands can be coded with any of the memory-addressing methods provided 
by the ModR/M byte. To review these methods (BASE = (INDEX X SCALE) + 
DISPLACEMENT), refer to Chapter 2. Floating-point instructions with memory oper­
ands either read from memory or write to it; no floating-point instruction does both.For 
a detailed description of each instruction, including its range of possible encodings, see 
the reference pages in Chapter 26. 

17.2 DATA TRANSFER INSTRUCTIONS 

These instructions (summarized in Table 17-1) move operands among elements of the 
register stack, and between the stack top and memory. Any of the seven data types can 
be converted to extended-real and loaded (pushed) onto the stack in a single 'operation; 
they can be stored to memory in the same manner. The data transfer instructions auto­
maticallyupdate the FPU tag word to reflect whether the register is empty or full fol­
lowing the instruction. 

17.3 NONTRANSCENDENTAL INSTRUCTIONS 

The nontranscendental instruction set provides a wealth of variations on the basic add, 
subtract, mUltiply, and divide operations, and a number of other useful functions. These 
range from a simple absolute value instruction to instructions which perform exact mod­
ulo division, round real numbers to integers, and scale values by powers of two. 
Table 17-2 shows the nontranscendental operations provided, apart from basic 
arithmetic. 

The basic arithmetic instructions (addition, subtraction, inultiplication and division) are 
designed to encourage the development of very efficient algorithms. In particular, they 
allow the programmer to reference memory as easily as the FPU 'register stack. 
Table 17-3 summarizes the available operation/operand forms that are provided for basic 
arithmetic. In addition to the four normal operations, there are "reversed" subtraction 

Table 17-1. Data Transfer Instructions 

Real Integer Packed Decimal 

FLO Load Real FILD Load Integer FBLD Load Packed Decimal 

FST Store Real FIST Store Integer 

FSTP Store Real and Pop FISTP Store Integer and FBSTP . Load Packed Decimal 
Pop and Pop 

FXCH Exchange registers 
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Table 17-2. Nontranscendental Instructions (Besides Basic Arithmetic) 

Mnemonic Operation 

FSQRT Square Root 
FSCALE Scale 
FXTRACT Extract Exponent and Significand 
FPREM Partial Remainder 
FPREM1* IEEE Standard Partial Remainder 
FRNDINT Round to Integer 
FABS Absolute Value 
FCHS Change Sign 

*Not available on 8087/80287 math coprocessor. 

Table 17-3. Basic Arithmetic Instructions and Opernads 

Instruction Form 
Mnemonic Operand Forms: 

Form Destination, Source 

Classical Stack Fop {ST(1), ST} 
Classical Stack, extra pop FopP {ST(1), ST} 
Register Fop ST{i) , ST or ST, ST(i) 
Register, pop FopP ST(i), ST 
Real Memory Fop {ST} single-real/double-real 
Integer Memory Flop {ST} word-integer/short-integer 

NOTES: 

Braces ({}) surround implicit operands; these are not coded, but are supplied by the assembler. 

op= ADD DEST ~ DEST + SRC 
SUB DEST ~ ST - Other Operand 
SUBR DEST ~ Other Operand - ST 
MUL DEST ~ DEST x SRC 
DIV DEST ~ ST + Other Operand 
DIVR DEST ~ Other Operand + ST 

and division instructions which eliminate the need for many exchanges between ST(O) 
and ST(l). The variety of instruction and operand forms give the programmer unusual 
flexibility: 

• Operands can be located in registers or memory. 

• Results can be deposited in a choice of registers. 

• Operands can be a variety of numerical data types: extended real, double real, single 
real, short integer or word integer, with automatic conversion to extended real per­
formed by the FPU. 

Five basic instruction forms can be used across all six operations, as shown in Table 17-3. 
The classical stack form can be used to make the FPU operate like a classical stack 
machine. No operands are coded in this form, only the instruction mnemonic. The FPU 
picks the source operand from the stack top (ST) and the destination from the next stack 
element (ST(l». After performing its calculation, it returns the result to ST(l) and then 
pops ST, effectively replacing the operands by the result. 
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The register form is a generalization of the classical stack form; the programmer speci­
fies the' stack top as one operand and any register on the stack as the other operand. 
Coding the stack top as the destination provides a convenient way to access a constant, 
held elsewhere in the stack, from the top stack. The destination need not always be ST, 
however. The basic two-operand instructions allow the use of another register as the 
destination. Using ST as the source allows, for example, adding the stack top into a 
register used as an accumulator. 

Often the operand in the stack top is needed for one operation but then is of no' further 
use in the computation. The register pop form can be used to pick up the stack top as 
the source operand, and then discard it by popping the stack. Coding operands of ST(1), 
ST with a register pop mnemonic is equivalent to a classical stack operation: the top is 
popped and the result is left at the new top. 

The two memory forms increase the flexibility of the non transcendental instructions. 
They permit a real number or a binary integer in memory to be used directly as a source 
operand. This is useful in situations where operands are not used frequently enough to 
justify holding them in registers. Note that any memory-addressing method can be used 
to define these operands, so they can be elements in arrays, structures, or other data 
organizations, as well as simple scalars. 

17.4 COMPARISON INSTRUCTIONS 

The instructions of this class allow numbers of all supported real and integer data types 
to be compared. Each of these instructions (Table 17-4) analyzes the top stack element, 
often in relationship to another operand, and reports the result as a condition code 
(flags CO, C2, and C3) in the status word. 

The basic operations are compare, test (compare with zero), and examine (report type, 
sign, and normalization). Special forms of the compare operation are provided to opti­
mize algorithms by allowing direct comparisons with binary integers and real numbers in 
memory, as well as popping the stack after a comparison. 

Table 17-4. Comparison Instructions 

Mnemonic Operation, 

FCOM Compare Real 
FCOMP Compare Real and Pop 
FCOMPP Compare Real and Pop Twice 
FICOM Compare Integer 
FICOMP Compare Integer and Pop 
FTST Test 
FUCOM* Unordered Compare Real 
FUCOMP* Unordered Compare Realand Pop 
FUCOMPP* Unordered Compare Real and Pop Twice 
FXAM Examine 

*Not available on 8087/80287 math coprocessor. 
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The FSTSW AX (store status word) instruction can be used after a comparison to trans­
fer the condition code to the AX register for inspection. The TEST instruction is recom­
mended for using the FPU flags (once they are in the AX register) to control conditional 
branching. First check to see if the comparison resulted in unordered. This can happen, 
for instance, if one of the operands is a NaN. TEST the contents of the AX register 
against the constant 0400H; this will clear ZF (the Zero Flag of the EFLAGS register) if 
the original comparison was unordered, and set ZF otherwise. The JNZ instruction can 
now be used to transfer control (if necessary) to code which handles the case of unor­
dered operands. With the unordered case now filtered out, TEST the contents of the 
AX register against the appropriate constant from Table 17-5, and then use the corre­
sponding conditional branch. 

It is not always necessary to filter out the unordered case when using this algorithm for 
conditional jumps. If the software has been thoroughly tested, and incorporates periodic 
checks for QNaN results (as recommended in Chapter 16), then it is not necessary to 
check for unordered every time a comparison is made. 

Instructions other than those in the comparison group can update the condition code. To 
ensure that the status word is not altered inadvertently, store it immediately following a 
comparison operation. 

17.5 TRANSCENDENTAL INSTRUCTIONS 

The instructions in this group (Table 17-6) perform the time-consuming core calcula­
tions for all common trigonometric, inverse trigonometric, hyperbolic, inverse hyper­
bolic, logarithmic, and exponential functions. The transcendentals operate on the top 
one or two stack elements, and they return their results to the stack. The trigonometric 
operations assume their arguments are expressed in radians. The logarithmic and expo­
nential operations work in base 2. 

The results of transcendental instructions are highly accurate. The absolute value of the 
relative error of the transcendental instructions is guaranteed to be less than 2- 62

• (Rel­
ative error is the ratio between the absolute error and the exact value.) 

The trigonometric functions accept a practically unrestricted range of operands, whereas 
the other transcendental instructions require that arguments be more restricted in range. 
FPREM or FPREM1 can be used to bring the otherwise valid operand of a periodic 
function into range. Prologue and epilogue software can be used to reduce arguments 

Table 17-5. TEST Constants for Conditional Branching 

Order Constant Branch 

ST > Operand 4500H JZ 
ST < Operand 0100H JNZ 
ST = Operand 4000H JNZ 
Unordered 0400H JNZ 
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Table 17-6. Transcendental Instructions 

Mnemonic Operation 

FSIN* Sine 
FCOS* I Cosine 
FSINCOS* Sine and Cosine 
FPTAN** Tangent 
FPATAN Arctangent of ST(1) + ST 
F2XM1** 2x - 1; X is in ST 
FYL2X Y x IOg2X; Y is in ST(1), X is.in ST 
FYL2XP1 Y x IOg2(X + 1); Y is in ST(1), X is in ST 

*Not available on 80287/8087 math coprocessor. 
**Operand range extended over 80287/8087 math coprocessor. 

for other instructions to the expected range and to adjust the result to correspond to the 
original arguments if necessary. The instruction descriptions in the reference pages of 
Chapter 26 document the allowed operand range for each instruction. 

When the argument of a trigonometric function is in range, it is automatically reduced 
by the appropriate multiple of 211' (in 66-bit precision), by means of the same mechanism 
used in the FPREM and FPREM1 instructions. The value of 11' used in the automatic 
reduction has been chosen so as to guarantee no loss of significance in the operand, 
provided it is within the specified range. The internal value of 11' is: 

4 * O.C90FDAA2 2168C234 C H 

A program may use an explicit value for 11' in computations whose results later appear as 
arguments to trigonometric functions. In such a case (in explicit reduction of a trigon~­
metric operand outside the specified range, for example), the value used for 11' should be 
the same as the full 66-bit internal 11'. This will insure that the results are consistent with 
the automatic argument reduction performed by the trigonometric functions. The 66-bit 
11' cannot be represented as an extended-real value, so it must be encoded as two or more 
numbers. A common solution is to represent 11' as the sum of a high11' which contains the 
33 most-significant bits and a 10w11' which contains the 33 least-significant bits. When 
using this two-part 11', all computations should be performed separately on each part, 
with the results added only at the end. 

The complications of maintaining a consistent value of 11' for argument reduction can be 
avoided, either by applying the trigonometric functions only to arguments within the 
range of the automatic reduction mechanism, or by performing all argument reductions 
(down to a magnitude less than 11'/4) explicitly in software. 

17.6 CONSTANT INSTRUCTIONS 

Each of these instructions (Table 17-7) pushes a commonly used constant onto the stack. 
(ST(7) must be empty to avoid an invalid exception.) The values have full extended real 
precision (64 bits) and are accurate to approximately 19 decimal digits. Because an 
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Table 17-7. Constant Instructions 

Mnemonic Operation 

FLDZ Load +0.0 
FLD1 Load +1.0 
FLDPI Load'lT 
FLDL2T Load log2 10 ' 
FLDL2E Load log2e 
FLDLG2 Load log102 
FLDLN2 Load loge2 

external real constant occupies 10 memory bytes, the constant instructions, which are 
only two bytes long, save storage and improve execution speed, in addition to simplifying 
programming. 

The constants used by these instructions are stored internally in a format more precise 
than extended real. When loading the constant, the FPU rounds the more precise inter­
nal constant according the RC (rounding control) bit of the control word. However, in 
spite of this rounding, the precision exception is not raised (to maintain compatibility). 
When the rounding control is set to round to nearest, the FPU produces the same 
constant that is produced by the 8087 and 80287 numeric coprocessors. 

17.7 CONTROL INSTRUCTIONS 

The FPU control instructions are shown in Table 17-8. The FSTSW instruction is com­
monly used for conditional branching. The remaining instructions are not typically used 
in calculations; they provide control over the FPU for system-level activities. These ac­
tivities include initialization of the FPU, numeric exception handling, and task switching. 

Table 17-8. Control Instructions 

Mnemonic Operation 

FINIT / FNINIT Initialize FPU 
FLDCW Load Control Word 
FSTCW / FNSTCW Store Control Word 
FSTSW / FNSTSW Store Status Word 
FSTSW AX / FNSTSW AX* Store Status Word to AX Register 
FCLEX / FNCLEX Clear Exceptions 
FSTENV / FNSTENV Store Environment 
FLDENV Load Environment 
FSAVE / FNSAVE Save State 
FRSTOR Restore State 
FINCSTP Increment Stack-Top Pointer 
FDECSTP Decrement Stack-Top Pointer 
FFREE Free Register 
FNOP No Operation 
FWAIT Report FPU Error 

*Not available on 8087 math coprocessor. 
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As shown in Table 17-8, certain instructions have alternative mnemonics. The instruc­
tions which initialize the FPU, clear exceptions, or store (all or part of) the FPU envi­
ronment come.in two forms: 

• Wait-the mnemonic is prefixed only with an F, such as FSTSW. This form checks for 
unmasked numeric exceptions . 

• No-wail-the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores 
unmasked numeric exceptions. 

When the control instruction is coded using the no-wait form of the' mnemonic, the 
ASM386/486 assembler does not precede the ESC instruction with a WAIT instruction, 
and the processor does not test for a floating-point error condition before executing the 
control instruction. 

The only no-wait instructions are those shown in Table 17-8. All other floating-point 
instructions are automatically synchronized by the processor; all operands are trans­
ferred before the next instruction is initiated. Because of this automatic synchronization, 
non-control floating~point instructions need not be preceded by a WAIT instruction' in 
order to execute correctly. 

Exception synchronization relies on the WAIT instruction. Since the Integer Unit and 
the FPU operate in parallel, it is possible in the case of a floating-point exception for the 
processor to disturb information vital to exception recovery before the exception-handler 
can be invoked. Coding a WAIT or FW AIT instruction in the proper place can prevent 
this. See Chapter 18 for details. . 

It 'should also be noted that the 8087 instructions FENI and FDISI and the 80287 in­
struction FSETPM perform no function in the i486 processor. If theseopcodes are 
detected in the instruction stream, the i486 processor performs no specific operation and 
no internal states are affected. Chapter 25 contain a more complete description of the 
differences between floating-point operations on the i486 processor and on 8087, 80287, 
and 387 DX numeric coprocessors. 
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CHAPTER 18 
NUMERIC APPLICATIONS 

18.1 PROGRAMMING FACILITIES 

This section describes how programmers in ASM386/486 and in a variety of higher-level 
languages can make use of the i486 ™ processor's numerics capabilities. 

The level of detail in this section is intended to give programmers a basic understanding 
of the software tools that can be used for numeric programming, but this information 
does not document the full capabilities of these facilities. Complete documentation is 
available with each program development product. 

18.1.1 High-Level Languages 

A variety of Intel® high-level languages are available that automatically make use of the 
numeric instruction set when appropriate. These languages include C-386/486 and 
PL/M-386/486. In addition many high-level language compilers are available from inde­
pendent software vendors. 

Each of these high-level languages has special numeric libraries allowing programs to 
take advantage of the capabilities of the FPU. No special programming conventions are 
necessary to make use of the FPU when programming numeric applications in any of 
these languages. 

Programmers in PL/M-386/486 and ASM386/486 can also make use of many of these 
library routines by using routines contained in the Support Library. These libraries im­
plement many of the functions provided by higher-level languages, including exception 
handlers, ASCII-to-floating-point conversions, and a more complete set of transcenden­
tal functions than that provided by the i486 numeric instruction set. 

18.1.2 C Programs 

C programmers automatically cause the C compiler to generate i486 numeric instruc­
tions when they use the double and float data types. The float type corresponds to the 
single real format; the double type corresponds to the double real format. The statement 
#include (math.h) causes mathematical functions such as sin and sqrt to return values of 
type double. Figure 18-1 illustrates the ease with which C programs can make use of the 
i486 processor's numerics capabilities. 
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/****************************************************** 
* * 
* 
* 

SAMPLE C PROGRAM * 
* 

******************************************************/ 

/** Include /usr/include/stdio.h if necessary **/ 
/** Include math declarations for transcendenatals and others **/ 

#include </usr/include/math.h> 
#define PI 3.1415926535897943 

main() 
{ 

double 
double 
int 

sin result, cos result: 
angle_deg = O.O~ angle_rad: 
i, no_of_trial = 4: 

fore i = 1: i <= no_of_trial: i++){ 
angle_rad = angle_deg * PI / 180.0: 
sin_result = sin (angle_rad): 
cos result = cos (angle rad): 
pri;;tf("sine of %f degr-;;es equals %f\n", angle_deg, sinJesult): 
printf("cosine of %f degrees equals %f\n\n", angle_deg, cosJesult); 
angle_deg = angle_deg + 30.0; 
} 

/** etc. **/ 
} 

Figure 18-1. Sample C-386/486 Program 

18.1.3 PL/M-386/486 

Programmers in PL/M-386/486 can· access a very useful subset of the i486· processor's 
riumeric capabilities. The PL/M-386/486 REAL data type corresponds to the single real 
(32-bit) format. This data type provides a range of about 8.43 x 10- 37 S I X I:S; 3.38 X 

1038
, with about seven significant decimal digits. This representation is adequate for the 

data manipulated by many microcomputer applications. 

The utility of the REAL data type is extended by the PL/M-386/486 compiler's practice 
of holding intermediate results in the extended real format. This means that the full 
range and precision of the processor are utilized for intermediate results. Underflow, 
overflow, and rounding exceptions are most likely to occur during intermediate compu­
tations rather than during calCulation of an expression's final· result. Holding intermedi­
ate results in extended-precision real format greatly reduces the likelihood of overflow 
and underflow and eliminates roundoff as a serious source of error until the final assign­
ment of the result is performed. 
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The compiler generates floating-point instructions to evaluate expressions that contain 
REAL data types, whether variables or constants or both. This means that addition, 
subtraction, multiplication, division, comparison, and assignment of REALs will be per­
formed by the FPU. INTEGER expressions, on the other hand, are evaluated by the 
Integer Unit. 

Five built-in procedures (Table 18-1) give the PL/M-386/486 programmer access to FPU 
control instructions. Prior to any arithmetic operations, a typical PL/M~386/486 program 
will set up the FPU using the INIT$REAL$MATH$UNIT procedure and then issue 
SET$REAL$MODE to configure the FPU. SET$REAL$MODE loads the FPU control 
word, and its 16-bit parameter has the format shown for the control word in Chapter 14. 
The recommended value of this parameter is 033EH (round to nearest, 64-bit precision, 
all exceptions masked except invalid operation). Other settings may be used at the pro­
grammer's discretion. 

If any exceptions are unmasked, an exception handler must be provided in the form of 
an interrupt procedure that is designated to be invoked via interrupt vector number 16. 
The exception handler c~m use the GET$REAL$ERROR procedure to obtain the low­
order byte of the FPU status word and to then clear the exception flags. The byte 
returned by GET$REAL$ERROR contains the exception flags; these can be examined 
to ,determine the source of the exception. 

The SA VE$REAL$STATUS and RESTORE$REAL$STATUS procedures are pro­
vided for multitasking environments where a running task that uses the FPU may be 
preempted by another task that also uses the FPU. It is the responsibility of the operat­
ing system to issue SAVE$REAL$STATUS before it executes any statements that affect 
the FPU; these include the INIT$REAL$MATH$UNIT and SET$REAL$MODE pro­
cedures as well ,as arithmetic expressions. SA VE$REAL$ST ATUS saves the FPU state 
,(registers, status, and control words, etc.) on the memory stack. RESTORE$REAL­
$STATUS reloads the state information; the preempting task must invoke this proce-
dure before terminating in order to restore the FPU to its state at the time the running 
task was preempted. This enables the preempted task to resume execution from the 
point of its preemption. 

Table 18-1. PUM-386/486 Built-In Procedures 

Procedure 
FPU Control 

Description 
Instruction 

INIT$REAL$MATH$UNIT FINIT Initialize FPU 

SET$REAL$MODE FLDCW Set exception masks, rounding precision, and 
infinity controls. 

GET$REAL$ERROR FNSTSW Store, then clear, exception flags. 
& FNCLEX 

SAVE$REAL$STATUS FNSAVE Save FPU state. 

RESTORE$REAL$STATUS FRSTOR Restore FPU state. 
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18.1.4 ASM386/486 

The ASM386/486 assembly language provides programmers with complete access to all 
of the facilities of the processor. 

18.1.4.1 DEFINING DATA 

The ASM386/486 directives shown iri Table 18-2 allocate storage for numeric variables 
and constants. As with other storage allocation directives, the assembler associates a 
type with any variable defim~d with these directives. The type value is equal to the length 
of the storage unitin bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of 
any variable coded in an instruction to be certain that it is compatible with the instruc­
tion. For example, the coding FIADD ALPHA will be flagged as an error if ALPHA's 
type is not 2 or 4, because integer addition is only available for word and short integer 
(doubleword) data types. The operand's type also tells the assembler which machine 
instruction to produce; although to the programmer there is only an FIADD instruction, 
a different machine instruction is required for each operand type. 

On occasion it is desirable to use an instruction with an operand that has no declared 
type. For example, if register BX points to a short integer variable, a programmer may 
want. to code FIADD [BX]. This can be done by informing the assembler of the oper­
and's type in the instruction, coding FIADD DWORD PTR [BX]. The corresponding 
overrides for the other storage allocations are WORD PTR, QWORD PTR, and 
TBYTE PTR. 

The assembler does not, however, check the types of operands used in processor control 
instructions; Coding FRSTOR [BP] implies that the programmer has set up register BP 
to point to the location (probably in the stack) where the processor's 94-byte state record 
has been previously saved. 

The initial values for numeric constants may be coded in several different ways. Binary 
integer constants may be specified as bit strings,decimal integers, octal integers, or 

. hexadecimal strings. Packed decimal values are normally written as decimal integers, 
although the assembler will accept and convert other representations of integers. Real 
values may be written as ordinary decimal real numbers (decimal point required), as 
decimal numbers in scientific notation, or as hexadecimal strings. Using hexadecimal 
strings is primarily intended for defining special values such as infinities, NaNs, and 
denormalized numbers. Most programmers will find that ordinary decimal and scientific 
decimal provide the simplest way to initialize numeric constants. Figure 18-2 compares 

. several ways of setting the various numeric data types to the same initial value. 

Table 18-2. ASM386/486 Storage Allocation Directives 

Directives Interpretation Data Types 

DW Define Word Word integer 
DD Define Doubleword Short integer, short real 
DQ Define Quadword Long integer, long real 
DT Define Tenbyte Packed decimal, temporary real 
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THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126 
NOTE TWO'S COMPLETE STORAGE OF HEGATIVE BIHARY IHTEGERS. 

i EVE N FORCE WORD ALIGHMENT 
WORD_INTEGER DW 111111111000010B BIT STRIHG 
SHORT_I NTEGER DD OFrrFrr92H HEX STRIHG MUST START 

WITH DIGIT 
LONG_INTEGER DO - 126 ORDINARY DECIMAL 
SINGLE_REAL DD - 126.0 HOTE PRESEHCE OF 
DOUBLE_REAL DD -1.26E2 "SCIENTIFIC" 
PACKED_DECIMAL DT - 126 ORDIHARY DECIMAL 

IN THE FOLLOWIHG, SIGN AHD EXPOHEHT IS 'COOS' 

i 

SIGNIFICAND IS '7EOO ..• 00', 'R' IHFORMS ASSEMBLER THAT 
THE STRING REPRESENTS A REAL DATA TYPE. 

EXTENDED_REAL DT OC0057EOOOOOOOOOO.0000R i HEX STRING 

Figure 18-2. Sample Numeric Constants 

, , 

INTEGER 

Note that preceding numeric variables and constants with the ASM386/486 EVEN direc­
tive ensures that the operands will be word-aligned in memory. The best performance is 
obtained when data transfers are double-word aligned. All numeric data types occupy 
integral numbers of words so that no storage is "wasted" if blocks of variables are de­
fined together and preceded by a single EVEN declarative. 

18.1.4.2 RECORDS AND STRUCTURES 

The ASM386/486 RECORD and STRUC (structure) declaratives can be very useful in 
numeric programming. The record facility can be used to define the bit fields of the 
control, status, and tag words. Figure 18-3 shows one definition of the status word and 
how it might be used in· a routine that· polls the FPU until it has completed an 
instruction. 

Because structures allow different but related data types to be grouped together, they 
often provide a natural way to represent "real world" data organizations. The fact that 
the structure template may be "moved" about in memory adds to its flexibility. 
Figure 18-4 shows a simple structure that might be used to represent data consisting of a 
series of test score samples. This sample structure can be reorganized, if necessary, for 
the sake of more efficient execution. If the two double real fields were listed before the 
integer fields, then (provided that the structure is instantiated only at addresses divisible 
by eight) all the fields would be optimally aligned for efficient memory access and cach­
ing. A structure could also be used to define the organization of the information stored 
and loaded by the FSTENV and FLDENV instructions. 
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i RESERVE SPACE FOR STATUS WORD 
STATUS_WORD 
i LAY OUT STATUS WORD"FIELDS 
STATUS RECORD 
& BUSY: 
, COHD_CODE3: 

STACK_TOP: 
COHD_CODE2 
COHD_CODE1 
COHD_CODEO 
I HT_REG: 
S_FLAG: 
P_FLAG: 
U_FLAG: 
O_FLAG: 
Z_FLAG: 
D_FLAG: 
I_FLAG: 

j REDUCE UHTIL 
REDUCE: FPREMI 

I, 
I, 
3, 
I, 
I, 
I, 
I, 
I, 
I, 
I, 
I, 
I, 
I, 
1 

COMPLETE 

FHSTSW STATUS_WORD 
TEST STATUS_WORD, MASK_COHD_CODE2 
JHZ REDUCE 

Figure 18-3. Status Word Record Definition 

SAMPLE STRUC 
H_OBS DD SHORT IHTEGER 
MEAH DO DOUBLE REAL 
MODE DW WORD IHTEGER 
STD_DEV DO ; DOUBLE REAL 
i ARRAY OF OBSERVATIOHS -- WORD IHTEGER 
TEST_SCORES DW 1000 DUP (1) 

SAMPLE EHDS 

Figure 18-4. Structure Definition 

18.1.4.3 Addressing Methods 

Numeric data in memory can be accessed with .any of the memory addressing methods 
provided by.the ModR/M byte and (optionally) the SIB byte. This means that numeric 

. data types can be incorporated in data aggregates ranging from simple to complex ac­
cording to the needs of the application. The addressing methods and the ASM386/486 
notation used to specify them in instructions make the accessing of structures, arrays, 
arrays of structures, and other organizations direct and straightforward. Table 18-3 gives 
several examples of numeric instructions coded with operands that illustrate different 
addressing methods. 
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Table 18-3. Addressing Method Examples 

Coding Interpretation 

FIAOO ALPHA ALPHA is a simple scalar (mode is direct). 

FOIVR ALPHA.BETA BETA is a field in a structure that is "overlaid" on ALPHA 
(mode is direct). 

FMUL aWORO PTR [BX] BX contains the address of a long real variable (mode is 
register indirect). 

FSUB ALPHA [SI] ALPHA is an array and SI contains the offset of an array 
element from the start of the array (mode is indexed). 

FILO [BP].BETA BP contains the address of a structure on the CPU stack 
and BETA is a field in the structure (mode is based). 

FBLO TBYTE PTR [BX] [01] BX contains the address of a packed decimal array and 01 
contains the offset of an array element (mode is based 
indexed). 

18.1.5 Comparative Programming Example 

Figures 18-5 and 18-6 show the PL/M-386/486 and ASM386/486 code for a simple nu­
meric program, called ARRSUM. The program references an array (X$ARRA Y), which 
contains 0-100 single real values; the integer variable N$OF$X indicates the number of 
-array elements the program is to consider. ARRSUM steps through X$ARRA Y accu­
mulating three sums: 

• SUM$X, the sum of the array values 

• SUM$INDEXES, the sum of each array value times its index, where the index of the 
first element is 1, the second is 2, etc. 

• SUM$SQUARES, the sum of each array element squared 

(A true program, of course, would go beyond these steps to store and use the results of 
these calculations.) The control word is set with the recommended values: round to 
nearest, 64-bit precision, interrupts enabled, and all exceptions masked except invalid 
operation. It is assumed that an exception handler has been written to field the invalid 
operation if it occurs, and that it is invoked by interrupt pointer 16., -

The PL/M-386/486 version of ARRSUM (Figure 18-5) is very straightforward and illus­
trates how easily the numerics capabilities of the i486, processor can be used in this 
language. After declaring variables, the program calls built-in procedures to initialize the 
FPU and to load to the control word. The program clears the sum variables and then 
steps through X$ARRA Y with a DO-loop. The loop control takes into account 
PL/M-386/486's practice of considering the index of the first element of an array to be O. 
In the computation of SUM$INDEXES, the built-in- procedure FLOAT converts 1+1 
from integer to real because the language does not support "mixed mode" arithmetic. 
One of the strengths of. the i486 FPU, of course, is that it does support arithmetic on 
mixed data types (because all values are converted internally to the 80-bit extended­
precision real format). 
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/*********************************************************** 
* 
* 
* 

ARRAYSUH HODDUlE 
* 
* 
* 

***********************************************************/ 

array$sum: do; 

declare (sumSx, sumSindexes, sum$squares) real; 
'declare x$array(100) real; 
declare (nSofSx, i) integer; 
dec l are control $ FPU litera II y I 033eh I ; 

/* Assume x$array and n$of$x are initialized */ 
call init$real$math$unit; 
ca II set$rea l $mode( control $ FPU); 

/* Clear sums */ 
sum$x, sum$indexes, sum$squar~s = 0.0; 

/* loop through array, accumulating sums */' 
do i = 0 to n$of$x . 1; 

end; 

sum$x = sum$x + x$array(i); 
sum$indexes = sum$indexes + (x$array(i)*float(i+1»; 
sumSsquares = sum$squares + (x$array(i)*x$array(i»; 

/* etc. */ 

end arraySsum; 

Figure 18-5. Sample PL/M-386/486 Program 

The ASM386/486 version (Figure 18-6) defines the external procedure INITFPU, which 
makes the different initialization requirements of the processor and its emulator trans­
parent to the source code. After defining the data and setting up the segment registers 
and stack pointer, the program calls INITFPU and loads the control word. The compu­
tation begins' with the next three instructions, which clear three registers by loading 
(pushing) zeros onto the stack. As shown in Figure 18-7, these registers remain at the 
bottom of the stack throughout the computation while temporary values are pushed on 
and popped off the' stack above them. 1 

The program uses the LOOP instruction to control its iteration through XARRAY; 
register ECX, which LOOP automatically decrements, is loaded with N_OF~, the num­
ber of array elements to be summed. Register ,ESI is used to select (index) the array 
elements. The program steps through XARRA Y from 'back to front, so ESI is initialized 
to point at the element just beyond the first element to be processed. The ASM386/486 
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name arraysum 

; Define initialization routine 

extrn initFPU:far 

; Allocate space for data 

data segment rw public 
control_FPU dw 033eh 
n_of_x dd ? 
x_array dd 100 dup (?) 

sum squares dd ? 
sum=indexes dd ? 
sum x dd ? 
dat; ends 

; Allocate CPU stack space 

stack stackseg 400 

; Begin code 

code segment er publ i c 

assume ds:data, ss:stack 

start: 
mov ax, data 
mov ds, ax 
mov ax, stack 
mov eax, Oh 
mov ss, ax 
mov esp, stackstart stack 

Assume x array and n of x have 
been initialized --

Prepare the FPU or its emulator 

call initFPU 
fldcw control_FPU 

Clear three registers to hold 
running sums 

fldz 
fldz 
fldz 

Figure 18-6. Sample ASM386/486 Program 
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Setup ECX as loop counter and ESI 
as index into x_array 

mov ecx, n_of_x 
illlJl ecx 
mov esi, eax 

ESI now contains index of last 
element + 1 
Loop through x_array and 
accUlllJlate Sllll 

sllll_next: 
backup one element and push on 
the stack 

sub esi, type x_array 
fld x_array[esi] 

add to the Sllll and duplicate x 
on the stack 

fadd st(3), st 
fld st 

square it and add into the sum of 
(index+1) and discard 

flllJl 
faddp 

st, st 
st(2), st 

reduce index for next iteration 

dec n_of_x 
loop sllll_next 

Pop SllllS into memory 

poPJesul ts: 
fstp 
fstp 
fstp 
fwait 

Etc. 

sllll_squares 
sllll_indexes 
Sllll_X 

code ends 
end start, ds:data, ss:stack 

Figure 18-6. Sample ASM386/486 Program (Contd.) 
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FLDZ, FLDZ, FLDZ FLD X ARRA YISI) -
ST(O) 

ST(1) 

ST(2) 

0.0 

0.0 

0.0 

su 

su 

su 

M_SQUARES 

M_INDEXES 

M_X 

ST(O) 

ST(1) 

ST(2) 

ST(3) -----FADD ST(3) ST __ --- .-
ST(O) _ARRAY (19) 2.5 X ST(O) 

ST(1) UM_SQUARES 0.0 S ST(1) 

ST(2) UM_INDEXES 0.0 S ST(2) 

ST(3) UM_X 2.5 S ST(3) 

ST(4) -

2.5 

0.0 

0.0 

FLD ST -
2.5 

2.5 

0.0 

0.0 

2.5 

FMULST ST ----__ -- FADDP ST(2), ST , .- -

ST(O) 

ST(1) 

ST(2) 

ST(3) 

ST(4) 

ST(O) 

ST(1) 

ST(2) 

ST(3) 

6.25 

2.5 

0.0 

0.0 

2.5 

FIMUL N of X 

50.0 

6.25 

0.0 

2.5 

X 

X 

_ARRAY(19)Z 

_ARRAY (19) 

UM_SQUARES 

UM_INDEXES 

S 

S 

ST(O) 

ST(1) 

ST(2) 

ST(3) 

S UM_X ."... 

."...."...."... 

X_A RRAY (19)'20 

_SQUARES 

_INDEXES 

SUM 

SUM 

SUM 

ST(O) 

ST(1) 

ST(2) 

2.5 

6.25 

0.0 

2.5 

FADDP ST(2), ST -

6.25 

50.0 

2.5 

X_ARRAY (19) 

SUM_SQUARES 

SUM_INDEXES 

SUM_X 

X_ARRAY (19) 

X_ARRAY(19) 

SUM_SQUARES 

SUM_INDEXES 

>LARRAY (19) 

SUM_SQUARES 

SUM_INDEXES 

SUM_SQUARES 

SUM_INDEXES 

SUM_X 

Figure 18-7. Instructions and Register Stack 

240486i102 

TYPE operator is used to determine the number of bytes in each array element. This 
permits changing XARRA Y to a double-precision real array by simply changing its 
definition (DO to DO) and reassembling. 

Figure 18-7 shows the effect of the instructions in the program loop on the FPU register 
stack. The figure assumes that the program is in its first iteration, that N_OF -.X is 20, and 
that XARRAY(19) (the 20th element) contains the value 2.5. When the loop termi­
nates, the three sums are left as the top stack elements so that the program ends by 
simply popping them into memory variables. 
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18.2 CONCURRENT PROCESSING 

Because the i486 Integer Unit and FPU are separate execution units, it is possible for 
the FPU to execute numeric instructions in parallel with instructions executed by the IU. 
This simultaneous execution of different instructions is called concurrency. 

No special programming techniques are required to gain the advantages of concurrent 
execution; numeric instructions for the FPU are simply placed in line with the instruc­
tions for the IU. Integer and numeric instructions are initiated in the same order as they 
are encountered in the instruction stream. However, because numeric operations per­
formed by the FPU generally require more time than integer operations, the IU can 
often execute several of its instructions before the FPU completes a numeric instruction 
previously initiated. 

This concurrency offers obvious advantages in terms of execution perfo'rmance, but con­
currency also imposes several rules that must be observed in order to assure proper 
synchronization of the IU and FPU. 

All Intel high-level languages automatically provide for and manage concurrency in the 
FPU. Assembly-language programmers, however, must understand and manage some 
areas of concurrency in exchange for the flexibility and performance of programming in 
assembly language. This section is for the assembly-language programmer or well­
informed high -level-language programmer. 

18.2.1 Managing Concurrency 

The activities of numeric programs can be split into two major areas: program control 
and arithmetic. The program control part performs activities such as deciding what func­
tions to perform, calculating addresses of numeric operands, and loop control. The arith­
metic part simply adds, subtracts, multiplies, and performs other operations on the 
numeric operands. The i486 processor is designed to handle these two parts separately 
and efficiently. 

Concurrency management is required to check for an exception before letting the pro­
cessor change a value just used by the FPU. Almost any numeric instruction can, under 
the wrong circumstances, produce a numeric exception. For programmers in higher-level 
languages, all required synchronization is automatically provided by the appropriate 
compiler. For assembly-language programmers exception synchronization remains the 
responsibility of the programmer. 

A complication is that a programmer may not expect his numeric program to cause 
numeric exceptions, but in some systems, they may regularly happen. To better under­
stand these points, consider what can happen when the FPU detects an exception. 
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Depending on options determined by the software system designer, the i486 processor 
can perform one of two things when a numeric exception occurs: 

• The FPU can provide a default fix-up for selected numeric exceptions. Programs can 
mask individual exception types to indicate that the FPU should generate a safe, 
reasonable result whenever that exception occurs. The default exception fix-up activ­
ity is treated by the FPU as part of the instruction causing the exception; no external 
indication of the exception is given. When exceptions are detected, a flag is set in the 
numeric status register, but no information regarding where or when is available. If 
the FPU performs its default action for all exceptions, then the need for exception 
synchronization is not manifest. However, as will be shown later, this is not sufficient 
reason to ignore exception synchronization when designing programs that use the 
FPU. 

• As an alternative to the default fix-up of numeric exceptions, the IU can be notified 
whenever an exception occurs. When a numeric exception is unmasked and the ex­
ception occurs, the FPU stops further execution of the numeric instruction and sig­
nals this event. On the next occurrence of an ESC or WAIT instruction, the processor 
traps to a software exception handler. The exception handler can then implement any 
sort of recovery procedures desired for any numeric exception detectable by the FPU. 
Some· ESC instructions do not check for exceptions. These are the nonwaiting forms 
FNINIT, FNSTENV, FNSA VE, FNSTSW, FNSTCW, and FNCLEX. 

When the FPU signals an unmasked exception condition, it is requesting help. The fact 
that the exception was unmasked indicates that further n~meric program execution un­
der the arithmetic and programming rules of the FPU is unreasonable. 

If concurrent execution is allowed, the state of the processor when it recognizes the 
exception is undefined. It may have changed many of its internal registers and be exe­
cuting a totally different program by the time the exception occurs. To handle this situ­
ation, the FPU has special registers updated at the start of each numeric instruction to 
describe the state of the numeric program when the failed instruction was attempted. 

Exception synchronization ensures that the FPU is in a well-defined state after an un­
masked numeric exception occurs. Without a well-defined state, it would be impossible 
for exception recovery routines to determine why the numeric exception occurred, or to 
recover successfully from .the exception. 

The following two sections illustrate the 'need to always consider exception synchroniza­
tion when writing numeric code, even when the code is initially intended for execution 
with exceptions masked. If the code is later moved to an environment where exceptions 
are unmasked, the same code may not work correctly. An example of how some instruc­
tions written without exception synchronization will work initially, but fail when moved 
into a new environment, is shown in Figure 18-8. 

18.2.1.1 INCORRECT EXCEPTION SYNCHRONIZATION 

In Figure 18-8, three instructions are shown to load an integer, calculate its square root, 
then increment the integer. The synchronous execution of the FPU will allow this pro­
gram to execute correctly when no exceptions occur on the FILD instruction. 
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INCORRECT ERROR SYNCHRONIZATION 

FPU In!tructlon 
integer In!tructlon alter! operand 
!Ub5equent FPU In!tructlon _. error from 

prevlou! F,PU In!tructlon detected here 

PROPER ERROR SYNCHRONIZATION, 

FPU in!tructlon 
5ub!equent FPU In!tructlon _. error from 

prevlou! FPU ln5tructlon detected here 
integer ln5tructlon alter! operand 

Figure 18-8. Exception Synchronization Examples 

This situation changes if the numeric register stack is extended to memory. To extend 
the FPU stack to memory, the invalid exception is unmasked. A push to a full register or 
pop from an empty register sets SF and causes an invalid exception. 

The recovery routine for the exception must recognize this situation, fix up the stack, 
then perform the original operation. The recovery routine will not work correctly in the 
first example shown in the figure. The problem is that the value of COUNT is incre­
mented before the exception handler is invoked, so that the recovery routine will load an 
incorrect value of COUNT, causing the program to fail or behave unreliably. 

18.2.1.2 PROPER EXCEPTION SYNCHRONIZATION 

Exception synchronization relies on the WAIT instruction. Whenever an unmasked nu­
merical exception occurs, the FPU asserts an error-condition signal internal to the pro­
cessor. When the next WAIT instruction (or non-control ESC instruction) is 
encountered, the error-condition signal is acknowledged and a software exception han­
dler is invoked. (See Chapter 16 for a more detailed discussion of the various floating­
point error-reporting mechanisms.) If this WAIT or ESC instruction is properly placed, 
the processor will not yet have disturbed any information vital to recovery from the 
exception. 
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CHAPTER 19 
SYSTEM-LEVEL CONSIDERATIONS 

System programming for i486 1M processor systems requires a more detailed understand­
ing of the FPU than does application programming. Such things as initialization, excep­
tion handling, and data and error synchronization are all the responsibility of the systems 
programmer. These topics are covered in detail in the sections that follow. 

19.1 ARCHITECTURE 

On a software level, the FPU appears as an extension of the Integer Unit. On the 
hardware level, however, the mechanisms by which the FPU and IU interact are more 
complex. This section describes this interaction and points out features that are of inter­
est to systems programmers. 

19.1.1 Independent of Addressing Mode 

Unlike the 80287 NPX (but like the 38TM NPX), the FPU of the i486 processor operates 
the same regardless of whether the processor is operating in real-address mode, in pro­
tected mode, or in virtual 8086 mode. 

Numeric instructions can utilize any memory location accessible by the task currently 
executing. When operating in protected mode, all references to memory operands are 
automatically verified by the memory management and protection mechanisms as for any 
other memory references by the currently-executing task. Protection violations associ­
ated with numeric instructions automatically cause the processor to trap to an appropri­
ate exception handler. 

To the numerics programmer, the operating mode affects only the manner in which the 
FPU instruction and data pointers are represented in memory following an FSA VE or 
FSTENV instruction. Each of these instructions produces one of four formats depending 
on both the operating mode and on the operand-size attribute in effect for the instruc­
tion. The differences are detailed in the discussion of the FSA VE and FSTENV instruc­
tions in Chapter 26. 

19.2 PROCESSOR INITIALIZATION AND CONTROL 

One of the principal responsibilities of systems software is the initialization, monitoring, 
and control of the hardware and software resources of the system, including the FPU. In 
this section, issues related to system initialization and control are described, including 
the handling of exceptions that may occur during the execution of numeric instructions. 
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19.2.1 System Initialization 

During initialization of an i486 processor system, systems software must initialize the 
FPU and set flags in CRO to reflect the state of the numeric. environment. These activi­
ties can be quickly and easily performed as part of the overall system initialization. 

19.2.2 Configuring the Numerics Environment 

System software must load the appropriate values into the MP, EM, and NE bits of the 
CRO control register. 

The MP (Monitor coProcessor) bit determines whether WAIT instructions trap when 
the con-text of the FPU is different from that of the currently executing task. If MP = 1 
and TS = 1, then a WAIT instruction will cause a Device Not Available fault (interrupt 
vecto(7). The MP bit was used on the 80286 and 386™ DX microprocessors to support 
the use of a WAIT instruction to wait on a device other than a numeric coprocessor. The 
device would report its status through the BUSY # pin. Since the i486 processor does not 
have such a pin, the MP bit has no relevant use, and should be set to 1 for normal 
operation. 

The EM (EMulate coprocessor) bit determines whether ESC instructions are executed 
by the FPU (EM = 0) or trap via interrupt vector 7 to be ~andled by software (EM , = 
1). The EM bit was used on the 386 DX microprocessor so that numeric applications 
written for a 386 DX CPU/387 DX system could be run in the absence of a 387 DX 
coprocessor with a software 387 DX emulator. For normal operation of the i486 proces­
sor, .the EM bit should ,be cleared to O. 

The NE (Numeric Exception) bit determines whether unmasked floating-point' excep­
tions are handled through interrupt vector 16 (NE = 1) or through external interrupt 
(NE = 0). In systems using an external interrupt controller to invoke numeric exception 
handlers, the NE bit should be cleared to O. Other systems can make use of the auto­
matic error reporting through interrupt 16, and should set the NE bit to 1. See section 
19.2.5 below for a discussion of numeric exception handling. 

19.2.3 Initializing the FPU 

Initializing the FPU simply means placing the FPU in a known state unaffected'by any 
activity performed earlier. A single FNINIT instruction performs this initialization. All 
the error masks are set, all registers are tagged empty, TOP is set to zero, and default 
rounding and precision controls are set. Table 19-1 shows the state of the FPU following 
FINIT or FNINIT. 

The FNINIT instruction leaves the FPU in the same state as that which results from a 
hardware RESET signal ,with Built-In Self-Test. When the Built-In Self-Test is not re­
quested, a hardware RESET leaves the FPU state unchanged. An, FNINIT instruction 
should be executed after reset. 
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Table 19-1. FPU State Following Initialization 

Field Vaiue Interpretation 

Control Word 037FH 
(Infinity Control)* 0 Affine 
Rounding Control 00 Round to nearest 

Precision Control 11 64 bits 
Exception Masks 111111 All exceptions masked 

Status Word OOOOH 
(Busy) 0 -
Condition Code 0000 -
Stack Top 000 Register 0 is stack top 
Exception Summary 0 No exceptions 
Stack Flag a -
Exception Flags 000000. No exceptions 

Tag Word FFFFH 
Tags 11 Empty 

Registers N.C. Not changed 

Exception Pointers 
Instruction Code Cleared 
Instruction Address Cleared 

Operand Address Cleared 

*The i486™ processor does not have infinity control. This value is listed to emphasize that programs written 
for the 80287 may not behave the same on the i486 processor if they depend on this bit. 

19.2.4 Emulation 

Setting the EM bit to 1 will cause the i486 processor to trap via interrupt vector 7 
(Device Not Available) to a software exception handler whenever it encounters an ESC 
instruction. The EM bit was used to run numeric applications on a 386 processor with a 
software 387 emulator. Numeric applications designed to be run with a non-standard 387 
emulator may not run successfully on the i486 processor without the emulator. Setting 
the EM bit to 1 makes it possible to run such applications, or programs which use 
non-standard floating-point arithmetic, on the i486 processor. 

19.2.5 Handling Numerics Exceptions 

Once the FPU has been initialized and normal execution of applications has been com­
menced, the FPU may occasionally require attention in order to recover from numeric 
processing exceptions. This section provides details for writing software exception han­
dlers for numeric exceptions. Numeric processing exceptions have already been intro­
duced in Chapter 16. 
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If the FPU encounters an unmasked exception condition, a software exception handler is 
invoked immediately before execution of the next WAIT or non-control floating-point 
instruction. The exception handler is invoked either through interrupt vector 16 or 
through an external interrupt, depending on the value of the NE bit of the CRO control 
register. 

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately 
before the exception of the next non-control floating-point or WAIT instruction. Inter­
rupt 16 is an operating-system call that invokes the exception handler. Chapter 9 con­
tains a general discussion of exceptions and interrupts on the i486 processor. 

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception 
causes the processor to freeze immediately before executing the next non-control 
floating-point or WAIT instruction. The frozen processor waits for an external interrupt, 
which must be supplied by external hardware in response to the FERR# output of the 
processor. (Regardless of the value of NE, an unmasked numerical exception causes the 
FERR# output to be activated.) In this case, the external interrupt invokes the 
exception-handling routine. If NE = 0 but the IGNNE# input is active, the processor 
disregards the exception and continues. Error reporting via external interrupt is sup­
ported for DOS compatibility. Chapter 25 contains further discussion of compatibility 
issues. 

When handling numeric errors, the processor has two responsibilities: 

• It must not disturb the numeric context when an error is detected. 

• It must clear the error and attempt recovery from the error. 

Although the manner in which programmers may treat these responsibilities varies from 
one implementation to the next, most exception handlers will include these basic steps: 

• Store the FPU environment (control, status, and tag words, operand and instruction 
pointers) as it existed at the time of the exception. 

• Clear the exception bits in the status word. 

• Enable interrupts. 

• Identify the exception by examining the status and control words in the saved 
environment. 

• Take some system-dependent action to rectify the exception. 

• Return to the interrupted program and resume normal execution. 

19.2.6 Simultaneous Exception Response 

In cases where multiple exceptions arise simultaneously, the FPU signals one exception 
according to the precedence shown at the end of Chapter 16. This means, for example, 
that an SNaN divided by zero results in an invalid operation, not in a zero divide 
exception. 
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19.2.7 Exception Recovery Examples 

Recovery routines for numeric exceptions can take a variety of forms. Tiley can change 
the arithmetic and programming rules of the FPU. These changes may redefine the 
default fix-up for an error, change 'the appearance of the FPU to the programmer, or 
change how arithmetic is defined on the FPU. 

A change to an exception response might be to perform denormal arithmetic on den or­
mals loaded from memory. A change in appearance might be extending the register stack 
into memory to provide an "infinite" number of numeric registers. The arithmetic of the 
FPU can be changed to automatically extend the precision and range of variables when 
exceeded. All these functions can be implemented on the i486 processor via numeric 
exceptions and associated recovery routines in a manner transparent to the application 
programmer. 

Some other possible application-dependent actions might include: 

• Incrementing an exception counter for later display or printing 

• Printing or displaying diagnostic information (e.g., the FPU environment and 
registers) 

• Aborting further execution 

• Storing a diagnostic value (a NaN) in the result and continuing with the computation 

Notice that an exception mayor may not constitute an error, depending on the applica­
tion. Once the exception handler corrects the condition causing the exception, the 
floating-point instruction that caused the exception can be restarted, if appropriate. This 
cannot be accomplished using the IRET instruction, however, because the trap occurs at 
the ESC or WAIT instruction following the offending ESC instruction. The exception 
handler must obtain (using FSA VE or FSTENV) the address of the offending instruc­
tion in the task that initiated it, make a copy of it, execute the copy in the context of the 
offending task, and then return via IRET to the current instruction stream. 

In order to correct the condition causing the numeric exception, exception handlers must 
recognize the precise state of the FPU at the time the exception handler was invoked, 
and be able to reconstruct the state of the FPU when the exception initially occurred. To 
reconstruct the state of the FPU, programmers must understand when, during the exe­
cution of a numeric instruction, exceptions are actually recognized. 

Invalid operation, zero divide, and denormalized exceptions are detected before an op­
eration begins, whereas overflow, underflow, and precision exceptions are not raised 
until a true result has been computed. When a before exception is detected, the FPU 
register stack and memory have not yet been updated, and appear as if the offending 
instructions has not been executed. 
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When an after exception is detected, the register. stack and memory appear as if the 
instruction has run to completion; i.e., they may be updated. (However, in a store or 
store-and-pop operation, unmasked over/underflow is handled like a before exception; 
memory is not updated and the stack is not popped.) The programming examples con­
tained in Chapter 20 include an outline of several exception handlers to process numeric 
exceptions. 
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CHAPTER 20 
NUMERIC PROGRAMMING EXAMPLES 

The following sections contain examples of numeric programs for the i486™ processor 
written in ASM386/486. These examples are intended to illustrate some of the tech­
niques useful for programming i486 processor systems for numeric applications. 

20.1 CONDITIONAL BRANCHING EXAMPLE 

As discussed in Chapter 15, several numeric instructions post their results to the condi­
tion code bits of the FPU status word. Although there are many ways to implement 
conditional branching following a comparison, the basic approach is as follows: 

• Execute the comparison. 

• Store the status word. (The FPU status word can be stored directly into AX register.) 

• Inspect the condition code bits. 

• Jump on the result. 

Figure 20-1 is a code fragment that illustrates how two memory-resident double-format 
real numbers might be compared (similar code could be used with the FTST instruc­
tion). The numbers are called A and B, and the comparison is A to B. 

The comparison itself requires loading A onto the top of the FPU register stack and 
then comparing it to B, while popping the stack with the same instruction. The status 
word is then written into the AX register. 

A and B have four possible orderings, and bits C3, C2, and CO of the condition code 
indicate which ordering holds. These bits are positioned in the upper byte of the FPU 
status word so as to correspond to the. zero, parity, and carry flags (ZF, PF, and CF), 
when the byte is written into the flags. The code fragment sets ZF, PF, and CF of the 
EFLAGS register to the values of C3, C2, and CO of the FPU status word, and then uses 
the conditional jump instructions to test the flags. The resulting code is extremely com­
pact, requiring only seven instructions. 

The FXAM instruction updates all four condition code bits. Figure 20-2 shows how a 
jump table can be used to determine the characteristics of the value examined. The jump 
table (FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for 
each possible condition code setting. Note that four of the table entries contain the same 
value, "EMPTY." The first two condition code settings correspond to "EMPTY." The 
two other table entries that contain "EMPTY" will never be used on the i486 processor 
or the 38rM math coprocessors, but may be used if the code is executed with an 80287. 

The program fragment performs the FXAM and stores the status word. It then manip­
ulates the condition code bits to finally produce a number in register AX that equals the 
condition code times 2. This involves zeroing the unused bits in the byte that contains 
the code, shifting C3 to the right so that it is adjacent to C2, and then shifting the code 
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A DQ' 
B DQ 

FL D A 
FCOMP B 
FSTSW AX 

LOA D A 0 N TOT 0 P 0 F FPU S T A C K 
COMPARE A:B,POP A ' 
STORE RESULT TO AX REGISTER 

CPU AX REGISTER CONTAINS CONDITION CODES 
(RESULTS OF COMPARE) 

LOAD CONDITION CODES INTO FLAGS 

SAHF 

USE CONDITIONAL JUMPS TO DETERMINE O'RDERING OF A TO B 

JP A_B_UNORDERED ; TEST C2 ( P F) 
JB A_LESS TEST CO ( C F) 
JE A_EQUAL TEST C3 (ZF) 

A_G REA TE R : CO ( C F ) . o , C3 (ZF) . 
A_EQUAL: CO (C F) · o , C3 ( ZF) . 
A_LESS: CO (C F) · " C3 (Z F) . 0 

A_B_UNORDERED: C2 (PF) · , 

Figure 20-1. Conditional Branching for Compares 

to multiply it by 2. The resulting value is used as an index that selects one of the dis­
placements from FXAM_TBL (the multiplication of the condition code'is required be­
cause of the 2-byte length of each value in FXA~TBL). The unconditional JMP 
instruction effectively vectors through the jump table to the labeled routine that contains 
code (not shown in the example) to process each possible result of the FXAM 
instruction. 

20.2 EXCEPTION HANDLING EXAMPLES' 

There are many approaches, to writing exception handlers. One useful technique is to 
cOlisider the exception handler procedure as consisting of "prologue," "body," and "ep­
ilogue" sections of code. This procedure is invoked via interrupt number 16. 
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i JUMP TABLE FOR EXAMINE ROUTINE 

DD POS_UNNORM, POS NAN, NEG_UNNORM, NEG_NAN, 
POS_NORM, paS_INFINITY, NEG_NORM, 
NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZERO, 
EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY 

EXAMINE ST AND STORE RESULT (CONDITION CODES) 

FXAM 
XOR EAX,EAX i CLEAR EAX 
FSTSW AX 

CALCULATE OFFSET INTO JUMP TABLE 

AND AX,0100011100000000B i CLEAR ALL BITS EXCEPT C3, C2-CO 
SHR EAX,S SHIFT C2-CO INTO PLACE (OOOXXXOO) 
SAL AH,S POSITION C3 (OOXOOOOO) 
OR AL,AH DROP C3 IN ADJACENT TO C2 (OOXXXXOO) 
XOR, AH,AH CL~AR OUT THE OLD COpy OF C3 

JUMP TO THE ROUTINE 'ADDRESSED' BY CONDITION CODE 

JMP FXAM_TBLIEAXI 

HERE ARE THE JUMP TARGETS, ONE TO HANDLE 
EACH POSSIBLE RESULT OF FXAM 

POS_UNNORM: 

paS_NAN: 

NEG_UNNORM: 

NEG_NAN: 

paS_NORM: 

paS_INFINITY: 

NEG_NORM: 

NEG_INFINITY: 

POS_ZERO: 

EMPTY: 

NEG_ZERO: 

POS_DENORM: 

NEG_DENORM: 

Figure 20-2. Conditional Branching for FXAM 
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In the transfer of control to the exception handler, interrupts have been disabled by 
hardware. The prologue performs all functions that must be protected from possible 
interruption by higher-priority sources. Typically, this involves saving registers and trans­
ferring diagnostic information from the FPU to memory. When the critical processing 
has been completed, the prologue may re-enable interrupts to allow higher-priority in­
terrupt handlers to preempt the exception handler. 

The body of the exception handler examines the diagnostic information and makes a 
response that is necessarily application-dependent. This response may range from halt­
ing execution, to displaying a message, to attempting to repair the problem and proceed 
with normal execution. 

The epilogue essentially reverses the actions of the prologue, restoring the processor so 
that normal execution can be resumed. The epilogue must not load an unmasked excep­
tion flag into the FPU or another exception will be requested immediately. 

Figures 20-3 through 20-5 show the ASM386/486 coding of three skeleton exception 
handlers. They show how prologues and epilogues can be written for various situations, 
but provide comments indicating only where the application dependent exception han-, 
dling body should be placed. 

PRO C , 

SAVE REGISTERS, ALLOCATE STACK SPACE 
FOR FPU S TATE I MAG E 

PUSH EBP 
MOV EBP,ESP 
SUB ESP,10S 

SAVE FULL FPU STATE, ENABLE INTERRUPTS 
FNSAVE [EBP-l0S] 
S T I 

APPLICATION-DEPENDENT EXCEPTION HANDLING 
CODE GOES HERE 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
(WHICH IS IN MEMORY) 

RESTORE MODIFIED STATE IMAGE 
MOV BYTE PH [EBP-l04], OH 
FRSTOR [EBP-l0B] 

DEALLOCATE STACK SPACE, RESTORE REGISTERS 
MOVE ESP,EBP 

POP EBP 

RETURN TO INTERRUPTED CALCULATION 
IRET 

SAVE_ALL ENDP 

Figure 20-3. Full~State Exception Handler 
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SAVE_ENVIRONMENT PROC 

SAVE REGISTERS, ALLOCATE STACK SPACE 
FOR FPU E N V I RON MEN T 

PUS~ EBP 

MOV EBP,ESP 
SUB ESP,28 

SAVE ENVIRONMENT, ENABLE INTERRUPTS 
FNSTENV [EBP-281 
S T I 

APPLICATION EXCEPTION-HANDLING CODE GOES HERE 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
(WHICH IS IN MEMORY> 

RESTORE MODIFIED ENVIRONMENT IMAGE 
MOV BYTE PTR [EBP-241, OH 
fLDENV [EBP-281 

DE-ALLOCATE STACK SPACE, RESTORE REGISTERS 
MOV ESP,EBP 
POP EBP 

RETURN TO INTERRUPTED CALCULATION 
IRE T 

SAVE_ENVIRONMENT ENDP 

/ 

Figure 20-4. Reduced-Latency Exception Handler 

Figures 20-3 and 20-4 are very similar; their only substantial difference is their choice of 
instructions to save and restore the FPU. The tradeoff here is between the increased 
diagnostic information provided by FNSAVE and the faster execution of FNSTENV. 
For applications that are sensitive to interrupt latency or that do not need to examine 
register contents, FNSTENV reduces the duration of the "critical region," during which 
the processor does not recognize another interrupt request. 

After the exception handler body, the epilogues prepare the processor to resume execu­
tion from the point of interruption (i.e., the instruction following the one that generated 
the unmasked exception). Notice that the exception flags in the memory image that is 
loaded into the FPU are cleared to zero prior to reloading (in fact, in these examples, 
the entire status word image is cleared). 

The examples in Figures 20-3 and 20-4 assume that the exception handler itself will not 
cause an unmasked exception. Where this is a possibility, the general approach shown in 
Figure 20-5 can be employed. The basic technique is to save the full FPU state and then 
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LOCAL CONTROL DW ASSUME INITIALIZED 

REENTRANT PROC 

SAVE REGISTERS, ALLOCATE STACK SPACE FOR 
FPU S TATE I MAGE 

PUSH EBP 

MOV EBP,ESP 
SUB ESP,10S 

SAVE STATE, LOAD NEW CONTROL WORD, 
ENABLE INTERRUPTS 

FNSAVE IEBP-l0S1 
FLDCW LOCAL_CONTROL 
S T I 

APPLICATION EXCEPTION HANDLING CODE GOES HERE. 
AN UNMASKED EXCEPTION GENERATED HERE WILL 
CAUSE THE EXCEPTION HANDLER TO BE REENTERED. 
IF LOCAL STORAGE IS NEEDED, IT MUST BE 
ALLOCATED ON THE STACK. 

CLEAR EXCEPTION FLAGS IN'STATUS WORD 
(WHICH IS IN MEMORY> 
RESTORE MODIFIED STATE IMAGE 

MOV BYTE PTR [EBP-l04I, OH 
FRSTOR [EBP-l0S1 

DE-ALLOCATE STACK SPACE, RESTORE REGISTERS 
MOV ESP,EBP 

POP EBP 
RETURN TO POINT OF INTERRUPTION 
I IRE T 

REENTRANT ENDP 

Figure 20-5. Reentrant Exception, Handler 
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to load a new control word in the prologue. Note that considerable care should be taken 
when designing an exception handler of this type to prevent the handler from being 
reentered endlessly. 

20.3 FLOATING-POINT TO ASCII CONVERSION EXAMPLES 

Numeric programs must typically format their results at some point for presentation and 
inspection by the program user. In many cases, numeric results are formatted as ASCII 
strings for printing or display. This example shows how floating-point values can be 
converted to decimal ASCII character strings. The function shown in Figure 20-6 can be 
invoked from PL/M-386/486, Pascal-386/486, FORTRAN-386/486, or ASM386/486 
routines. 

Shortness, speed, and accuracy were chosen rather than providing the maximum number 
of significant digits possible. An attempt is made to keep integers in their own domain to 
avoid unnecessary conversion errors. 

Using the extended precision real number format, this routine achieves a worst case 
accuracy of three units in the 16th decimal position for a noninteger value or integers 
greater than 1018

• This is double precision accuracy. With values having decimal expo­
nents less than 100 in magnitude, the accuracy is one unit in the 17th decimal position. 

Higher precision can be achieved with greater care in programming, larger program size, 
and lower performance. 

20.3.1 Function Partitioning 

Three separate modules implement the conversion. Most of the work of the conversion 
is done in the module FLOATING_ TO.ASCII. The other modules are provided sepa­
rately, because they have a more general use. One of them, GET_POWER_10, is also 
used by the ASCII to floating-point conversion routine. The other small module, 
TOS_ST ATUS, identifies what, if anything, is in the top of the numeric register stack. 

20.3.2 Exception Considerations 

Care is taken inside the function to avoid generating exceptions. Any possible numeric 
value is accepted. The only possible exception is insufficient space on the numeric reg­
ister stack. 

The value passed in the numeric stack is checked for existence, type (NaN or infinity), 
and status (denormal, zero, sign). The string size is tested for a minimum and maximum 
value. If the top of the register stack is empty, or the string size is too small, the function 
returns with an error code. 

Overflow and underflow is avoided inside the function for very large or very small 
numbers. 
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SOURCE 

+1 Stitle(IConvert a floating point number to ASCIII) 

public floating_to_ascii 
extrn get-POwer_10:near,tos_status:near 

This subroutine will convert the floating point 
number in the top of the'NPX stack to an ASCII 
string and separate power of 10 scaling value 
(in binary). The maximum width of the ASCII string 
formed is controlled by a parameter which must be 
> 1. Unnormal values, denormal values, and psuedo 
zeroes will be correctly converted. However, unnormals 
and pseudo zeros are no longer supported formats on the i486 processor 
( in conformance with the IEEE floating point ' 
standard) and hence not generated internally. A 
returned value will indicate how many binary bits 

'of precision were lost in an unnormal or denormal 
value. The magnitude (in terms of binary power) 
of a pseudo zero will also be indicated. Integers 
less than 10**18 in magnitude are accurately converted 
if the destination ASCII string field is wide enough 
to hold all the digits. Otherwise the value is converted 
to scientific notation. 

The status of the conversion is identified by the 
return value, it can be: 

o conversion complete, string_size is defined 
1 invalid arguments 
2 exact integer conversion, string_size is defined 
3 indefinite 
4 + NAN (Not A Number) 
5 - NAN 
6 + Infinity 
7 - Infinity 
8 pseudo zero found, string_size is defined 

The PLM-386/486 calling convention is: 

floating_to_ascii: 
procedure (number,denormalJPtr,string_ptr,size_ptr, 
field_size, power_ptr) word external; , 
declare (denormalJPtr,string_ptr,powerJPtr,size_ptr) 
pointer; 
declare field_size word, 
string size based size ptr word; 
declar; number real; - , 
declare denormal integer based denormal_ptr; 

Figure 20-6. Floating-Point to ASCII Conversion Routine 
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declare power integer based power_ptr; 
end floating_to_ascii; 

The floating point value is expected to be 
on the top of the FPU stack. This subroutine 
expects 3 free entries on the FPU stack and 
will pop the passed value off when done. The 
generated ASCII string will have a leading 
character either 1.1 or 1+1 indicating the sign 
of the value. The ASCII decimal digits will 
immediately follow. The numeric value of the 
ASCII string is (ASCII STRING.)*10**POWER. If 
the given number was zero, the ASCII string will 
contain a sign and a single zero chacter. The 
value string size indicates the total length of 
the ASCII string including the sign character. 
String(O)' will always hold the sign. It is 
possible for string_size to be less than 
field size. This occurs for zeroes or integer 
values. A pseudo zero will return a special 
return code. The denormal count will indicate 

the power of two originally associated with the 
value. The power of ten and ASCII string will 
be as if the value was an ordinary zero. 

This subroutine is accurate up to a maximum of 
18 decimal digits for integers. Integer values 
will have a decimal power of zero associated 
with them. For non integers, the result will be 
accurate to within 2 decimal digits of the 16th 
decimal place(double precision). The exponentiate 
instruction is also used for scaling the value into 
the range acceptable for the BCD data type. The 
rounding mode in effect on entry to the 
subroutine is used for the conversion. 

The following registers are not transparent: 

eax ebx ecx edx esi edi eflags 

Define the'stack layout. 

ebp_save 
es_save 
returnJ>tr 
powerJ>tr 
field_size 
sizeJ>tr 
stringJ>tr 
denormalJ>tr 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

dword ptr [ebpl 
ebp_save + size ebp_save 
es_save + size es_save 
return_ptr + size return_ptr 
powerJ>tr + size power_ptr 
field_size + size field_size 
size_ptr + size size_ptr 
string_ptr + size string_ptr 

equ size power_ptr + size field_size + 
size size_ptr + size string_ptr + 
size denormal_ptr 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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Define constants used 

BCD_DIGITS equ 18 Number of digits in bcd_value 
WORD_SIZE equ 4 
BCD_SIZE equ 10 
MINUS equ 1 Define return values 
NAN equ 4 The exact values chosen 
INFINITY equ 6 here are important. They must 
INDEFINITE equ 3 correspond to the possible return 
PSEUDO_ZERO equ 8 values and be in the same numeric 
INVALID equ -2 order as tested by the program. 
ZERO equ -4 
DENORMAL equ -6 
UN NORMAL equ -8 
NORMAL equ 0 
EXACT equ 2 

Define layout of temporary ~torage area~ 

power_two 
bcd_value 
bcd_byte 
fraction 

equ 
equ 
equ 
equ 

equ 

word ptr [ebp - YORD_SIZE] 
tbyte ptr power_two - BCD_SIZE 
byte ptr bcd_value 
bcd_value 

Allocate stack space for the temPoraries so 
the stack will be big enough 

; 
stack stackseg (local_size+6) : Allocate stack 

: space for locals 
+1 $eject 

Figure 20-6. Floating-Point to ASCII Conversion Routine· (Contd.) 
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code 

const10 

segment public er 
extrn power_table:qword 

Constants used by this function. 

even 
dw 10 

; too big BCD 

Optimize for 16 bits 
Adjustment value for 

Convert the C3,C2,C1,CO encoding from tos_status 
into meaningful bit flags and values. 

status_table db UNNORMAL, NAN, UNNORMAL + MINUS, 
& NAN + MINUS, NORMAL, INFINITY, 
& NORMAL + MINUS, INFINITY + MINUS, 
& ZERO, INVALID, ZERO + MINUS, INVALID, 
& DENORHAL, INVALID, DENORHAL + MINUS, ,INVALID 

floating_to_ascii proc 

call Look at status of ST(O) 

Get descriptor from table 
movzx eax, status_table[eaxl 
cmp al,INVAliD Look for empty ST(O) 
jne not_empty 

ST(O) is empty! Return the status value. 

Remove infinity from stack and exit. 

found_infinity: 
fstp st(O) O~ to leave fstp running 
jmp short exit-proc 

String space is too smalll 
Return invalid code. 

; 
small_string: 

mov al,INVALID 
exit_proc: 

leave ; Restore stack setup 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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pop es 
ret parms_size 

ST(O) is NAN or indefinite. Store the 
value in memory and look at the fraction 
field to separate indefinite from an ordinary NAN. 

NAN_or_indefinite: 
fstp fraction 

test al,MINUS 
fwait 
jz exit_proc 

; Remove value from stack 
for examination 

Look at sign bit 
; Insure store is done 
; Canlt be indefinite if 

mov ebx,OCOOOOOOOH; Match against upper 32 
;bits of fraction 

Compare bits 63-32 
sub ebx, dword ptr fraction + 4 

Bits 31-0 must be zero 
or ebx, dword ptr fraction 
jnz exitJProc 

Set return value for indefinite value 
moval,INDEFINITE 

jmp exit_proc 

Allocate stack space for local va~iables 
and establish parameter addressibility. 

not_empty: 
push es 
enter local_size, 0 

Save working register 
Setup stack addressing 

Check for enough string space 
mov ecx,field_size 
cmp ecx,2 
jl small_string 

dec ecx ; Adjusf for sign character 

See if string is too large for BCD 
cmp ecx,BCD_DIGITS 
jbe size_ok 

Else set maximum string size 
mov ecx,BCD_DIGITS 

size_ok: 
cmp al,INFINITY ; Look for infinity 

Return status value for + or - inf 
jge found_infinity 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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cmp al,NAN ; Look for NAN or INDEFINITE 
jge NAN_or_indefinite 

Set default return values and check that 
the number is normalized. 

fabs ; Use positive value only 
; sign bit in al has true sign of value 

xor edx,edx ; Form 0 constant 
mov edi,denormalJPtr; Zero denormal count 
mov Cedi], dx 
mov ebx,powerJPtr Zero power of ten value 
mov [ebx], dx 
mov dl, al 
and dl, 1 

add dl, EXACT 
cmp al,ZERO 
jae convert_integer 

; Test for zero 
Skip power code if value 

; is zero 
fstp fraction 
fwait 
mov al, bed_byte + 7 
or byte ptr bed byte + 7, 80h 
fld fraction -
fxtract 
test al, 80h 
jnz normal_value 

fld1 
fsub 
ftst 
fstsw ax 
sahf 
jnz set_unnormal_count 

Found a pseudo zero 

fldlg2 ; Develop power of ten estimate 
add dl, PSEUDO_ZERO - EXACT 
fmulp st(2), st 
fxch Get power of ten 
fistp word ptr [ebx] Set power of ten 
jmp convert_integer 

set_unnormal_count: 
fxtract 

fxch 
fchs 
fistp word ptr [edi] 

Get original fraction, 
now normal ized 
Get unnormal count 

Set unnormal count 

Calculate the decimal magnitude associated 
with this number to within one order. This 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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error will always be inevitable due to 
rounding and lost precision. As a result, 
we will deliberately fail to consider the 
lOG10 of the fraction value in calculating 
the order. Since the fraction will always 
be 1 <= F < 2, its lOG10 will not change 
the basic accuracy of the function. To 
get the decimal order of magnitude, simply 
multiply the power of two by lOG10(2) and 
truncate the result to an integer. 

normal_value: 
fstp 

fist 
fldlg2 

fraction ; Save the fraction field 
for later use 

power_two Save power of two 
; Get lOG10(2) 

fmul 
fistp 

; Power_two is now safe to use 
; Form lOG10(of exponent of number) 

word ptr [ebx] ; Any rounding mOde 

Check if the magnitude of the number rules 
out treating it as an integer. 

CX has the maximum number of decimal digits 
allowed. 

fwait ; ~ait for power_ten to be valid 

Get power of ten of value 
movsx si, word ptr [ebx] 

will work here 

sub esi,ecx ; Form scaling factor 
necessary in ax 

ja adjustJesul t Jump if number wit l . not fit 

The number is between 1 and 10**(field_size). 
Test if it is an integer. 

fild power_two Restore original number 
sub dl,NORMAl-EXACT Convert to exact return 

; value 
fld fraction 
fscale ; Form full value, this 

is safe here 
fst st(1) 
frndint 
fcomp 
fstsw ax 
sahf 

Copy value for compare 
Test if its an integer 
Compare values 
Save status 
C3=1 implies it was 

; an integer 
jnz convert_integer 

fstp 
add 

st(O) 
d l, NORMAl;EXACT 

Remove non integer value 
Restore original return value 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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Scale the number to within the range allowed 
by the BCD format.The scaling operation should 
produce a number within one decimal order of 
magnitude of the largest decimal number 
representable within the given string width. 

The scaling power of ten value is in si. 

adjustJesult: 
; Setup for pow10 mov eax,esi 

mov word ptr [ebx] ,ax 

neg eax 

call get_power_10 

fld fraction 
frrul 
mov esi,ecx 

shl esi,3 

fild power_two 
faddp st(2),st 
fscale 

fstp st(1) 

; Set initial power 
of ten return value 
Subtract one for each order of 
magnitude the value is scaled by 
Scaling factor is 
returned as 
exponent and fraction 

; Get fraction 
; Combine fractions 

; Form power of ten of 
the maxinun 

; BCD value to fit in 
the string 

Combine powers of two 

; Form full value, 
exponent was safe 

Remove exponent 

Test the adjusted value against a table 
of exact powers of ten. The combined errors 
of the magnitude estimate and power function 
can result in a value one order of magnitude 
too small or too large to fit correctly in 
the BCD field. To handle this problem, pretest 
the adjusted value, if it is too small or 
large, then adjust it by ten and adjust the 
power of ten value. 

Compare against exact power entry. Use the next 
entry since cx has been decremented by one 

fcam power_table[esi]+type power_table 
fstsw ax ; No wait is necessary 
sahf ; If C3 = CO = 0 then 
jb test_far_small too big 

fidiv 
and 
inc 
jmp 

test_far_small: 
fcam 

const10 Else adjust value 
dl,not EXACT Remove exact flag 
word ptr [ebx] Adjust power of ten value 
short in_range Convert the value to a BCD 

; integer 

power_table [esi] Test relative size 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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ary 

sahf 

jc 
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ax 

inJange 

No wait is necess 

, If CO = 0 then 
st(O) >= lower bound 

; Convert the value 
to a 

filTl.ll const10 
dec word ptr [ebx] 

; BCD integer 

Adjust value into range 
Adjust power of ten value 

inJange: 

, 

frndint ; Form integer value 

Assert: 0 <= TOS <= 999,999,999,999,999,999 
The lOS number will be exactly representable 

in 18 digit BCD format. 

convert_integer: 
fbstp bcd_value ; Store as BCD format number 

While the store BCD runs, setup registers 
for the conversion to ASCII. 

mov 
mov 
mov 

esi,BCD_SIZE·2 
cX,Of04h 
'ebx,1 

Initial BCD index value 
Set shift count and mask 
Set initial size of ASCII 

; field for sign 
mov edi,string-ptr; Get aclclress of start of 

; ASCII string 
mov ax,ds Copy ds to es 
mov 
cld 
mov 
test 
jz 

es,ax 

al, '+' 
dl,MINUS 
positiveJesult 

mov al,'·' 
positiveJesul t: 

stosb 

; Set autoincrement mode 
; Clear sign field 

Look for negative value 

; Bump string pointer 
past sign 

and dl,not MINUS Turn off sign bit 
fwait ; Wait for fbstp to finish 

Register usage: 
ah: 
al: 
dx: 
ch: 
cl: 
bx: 
esi: 
di: 
ds,es: 

BCD byte value in use 
ASCII character value 
Return value 
BCD mask = Ofh 
BCD shift count = 4 
ASCII string field width 
BCD field index 
ASCII string field pointer 
ASCII string segment base 

Remove leading zeroes from the number. 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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skip_leading_zeroes: 
mov ah,bcd_byte[esil 
mov al,ah 
shr al,cl 
and al,Ofh 

; Get BCD byte 
Copy value 
Get high order digit 
Set zero flag 

jnz enter_odd ; Exit loop if leading 
non zero found 

mov 
and 
jnz 

al,ah 
al,Ofh 
enter_even 

Get BCD byte again 
Get low order digit 
Exit loop if non zero 

digit found 

dec 
jns 

esi 
skip_leading_zeroes 

The significand was all zeroes. 

mov al,IO I 
stosb 
inc ebx 
jmp short exit_with_value 

Decrement BCD index 

Set initial zero 

; Bump string length 

Now expand the BCD string into digit 
per byte values 0-9. 

; 
digit_loop: 

mov 
mov 
shr 

enter_odd: 

ah, bcd_byte [esil 
al,ah 
al,cl 

Get BCD byte 

Get high order digit 

add al,IO' Convert to ASCII 
stosb 

mov 
and 
inc 

enter_even: 
add 
stosb 
inc 
dec 
jns 

al,ah 
al,Ofh 
ebx 

al,IOI 

ebx 
esi 
digit_loop 

; Put digit into ASCII 
string area 

Get low order digit 

Bump field size counter 

Convert to ASCII 
Put digit into ASCII area 

Bump field size counter 
; Go to next BCD byte 

Conversion complete. Set the string 
size and remainder. 

mov 
mov 
mov 
jmp 

edi,size_ptr 
word ptr [edil,bx 
eax,edx 
exitj)roc 

endp 
code 

Set return value 

ends 
end 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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+1 Stitle(Calculate the value of 10**ax) 

stack 

code 

This subroutine wi II calculate the 
value of 10**eax. For values of 
o <= eax < 19, the resul t will exact. 
All regi sters are transparent 
and the value is returned on the TOS 
as two m.nbers, exponent in SH 1) and 
fraction in SHO). The exponent value 
can be larger than the largest 
exponent of an extended real format 
nlJllber. Three stack entries are used. 

name get _powe r _10 
publ ic get_power _10,power _table' 

stackseg 8 

segment publ i c er 

Use exact values from 1.0 to 1e18. 

power_table 
even 
dq 

; Optimize 16 bit access 
1.0, 1e1, 1e2, 1e3 

cmp 
ja 

dq 1e4, 1e5, 1e6, 1e7 

dq 1e8, 1e9, 1e10, 1e11 

dq 1e12, 1e13, 1e14, 1e15 

dq 1e16, 1e17, 1e18 

eax,18 
out_of _range 

Test for 0 <= ax < 19 

fld power_table[eax*81; Get exact value 
fxtract ; Separate power 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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; and fraction 
ret OK to leave fxtract running 

Calculate the value using the 
exponentiate instruction. lhe following 
relations are used: 

10**x = 2**(log2(10)*x) 
2**(I+F) = 2**1 *,2**F 

if st(1) = I and st(O) = 2**F then 
fscale produces 2**(I+F) 

fldl2t 105 = LOG2(10) 
enter 4,0 

save power of 10 value, P 
mov [ebp'4],eax 

code 

10S,X = LOG2(10)*P = LOG2(10**P) 
fimul dword ptr [ebp'4] 
fld1 Set 105 = '1.0 
fchs 
fld st(1) 

frndint 

fxch st(2) 

fsub st,st(2) 

Copy power value 
in base two 
105 = I: -inf < I <= X 
where I is an integer 
Rounding mode does 
not matter 
105 = X, 51(1) = -1.0 

51(2) = I 
10S,F = X-I: 
-1.0 < 105 <= 1.0 

; Restore orignal rounding control 
pop eax 
f2xm1 lOS = 2**(F) - 1.0 
leave 
fsubr 
ret 

endp 

ends 
end 

Restore stack 
Form 2**(f) 
OK to leave fsubr running 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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+1 $title(Determine TOS register contents) 

stack 

code 

code 

This subroutine will return a value 
from 0-15 in eax corresponding 

to the contents of FPU TOS. All 
registers are transparent and no 

errors are possible. The return 
value corresponds to c3,c2,c1,cO 

of FXAM instruction. 

name tos_status 
public tos_status 

stackseg 6 

segment public er 

fxam 
fstsw 
mov 
and 
shr 
or 
mov 
ret 

proc 

ax ; Get 
al~ah 
eax,4007h . 
ah, 3 
al,ah 
ah,O . 

endp' 

ends 
end 

; Get status of TOS register 
current status 

Put bit 10-8 into bits 2-0 
Mask out bits c3,c2,c1,cO 
Put bit c3 into bit 11 
Put c3 into bit 3 
Clear return value 

Figure 20-6. Floating-Point to ASCII Conversion Routine (Contd.) 
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20.3.3 Special Instructions 

The functions demonstrate the operation of several numeric instructions, different data 
types, and precision control. Shown are instructions for automatic conversion to BCD, 
calculating the value of 10 raised to an integer value, establishing and maintaining con­
currency, data synchronization, and use of directed rounding on the FPU. 

Without the extended precision data type and built-in exponential function, the double 
precision accuracy of this function could not be attained with the size and speed of the 
shown example. 

The function relies on the numeric BCD data type for conversion from binary floating­
point to decimal. It is not difficult to unpack the BCD digits into separate ASCII deci­
mal digits. The major work involves scaling the floating-point value to the comparatively 
limited range of .BCD values. To print a 9-digit result requires accurately scaling the 
given value to an integer between 108 and 109

• For example, the number + 0.123456789 
requires a scaling factor of 109 to produce the value + 123456789.0, which can be stored 
in 9 BCD digits. The scale factor must be an exact power of 10 to avoid changing any of 
the printed digit values. 

These routines should exactly convert all values exactly representable in decimal in the 
field size given. Integer values that fit in the given string size are not be scaled, but 
directly stored into the BCD form. Noninteger values exactly representable in decimal 
within the string size limits are also exactly converted. For example, 0.125 is exactly 
representable in binary or decimal. To convert this floating-point value to decimal, the 
scaling factor is 1000, resulting in 125. When scaling a value, the function must keep 
track of where the decimal point lies in the final decimal value. 

20.3.4 Description of Operation 

Converting a floating-point number to decimal ASCII takes three major steps: identify­
ing the magnitude of the number, scaling it for the BCD data type, and converting the 
BCD data type to a decimal ASCII string. 

Identifying the magnitude of the result requires finding the value X such that the num­
ber is represented by I x lOx, where 1.0 s I < 10.0. Scaling the number requires 
multiplying it by a scaling factor lOS, so that the result is an integer requiring no more 
decimal· digits than provided for in the ASCII string. 

Once scaled, the numeric rounding modes and BCD conversion put the number in a 
form easy to convert to decimal ASCII by host software. 

Implementing each of these three steps requires attention to detail. To begin with, not 
all floating-point values have a numeric meaning. Values such as infinity, indefinite, or 
NaN may be encountered by the conversion routine. The conversion routine should 
recognize these values and identify them uniquely. 
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Special cases of numeric values also exist. Denormals have numeric values, but should be 
recognized because they indicate that precision was lost during some earlier calculations. 

Once it has been determined that the number has a numeric value, and it is normalized 
(setting appropriate denormal flags, if necessary, to indicate this to the calling program), 
the value must be scaled to the BCD range. ' 

20.3.5 Scaling the Value 

To scale the number, its magnitude must be determined. It is sufficient to calculate the 
magnitude to an accuracy of 1 unit, or within a factor of 10 of the required value. After 
scaling the number, a check is made to see if the result falls in the'range expected. If not, 
the result can be adjusted one decimal order of magnitude up or down. The adjustment 
test after the scaling is necessary due to inevitable inaccuracies in the scaling value. 

Because the magnitude estimate for the scale factor need only be close, a fast technique 
is used. The magnitude is estimated by multiplying the power of 2, the unbiased floating­
point exponent, associated with the number by IOg102. Rounding the result to an integer 
produces an estimate of sufficient accuracy. Ignoring the fraction value can introduce a 
maximum error of 0.32 in the result. 

Using the magnitude of the value and size of the number string, the scaling factor can be 
calculated. Calculating the scaling factor is the most inaccurate operation of the conver­
sion process. The relation lOx = 2(X*log21O) is used for this function. The exponentiate 
instruction F2XM1 is used. 

Due to restrictions on the range of values allowed by the F2XM1 instruction, the rower 
of 2 value is split into integer and fraction components. The relation 2(1 + F) = 2 X 2F 
allows using the FSCALE instruction to recombine the 2F value, calculated through 
F2XM1, and the 21 part. 

20.3.5.1 INACCURACY IN SCALING 

The inaccuracy in calculating the scale factor arises because of the trailing zeros placed 
into the fraction value of the power of two when stripping off the integer valued bits. For 
each integer valued bit in the power of 2 value separated from the fraction bits, one bit 
of precision is .lost in the fraction field due to the zero fill occurring in the least signifi­
cant bits. 

Up to 14 bits may be lost in the. fraction because the largest allowed floating point 
exponent value is 214 -1. These bits directly reduce the accuracy of the calculated scale 
factor, thereby reducing the accuracy of the scaled value. For numbers in the range of 
10±3o, a maximum of 8 bits of precision are lost in the scaling process. . 
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20.3.5.2 AVOIDING UNDERFLOW AND OVERFLOW 

The fraction and exponent fields of the number are separated to avoid underflow and 
overflow in calculatinj5 the scaling values. For example, to scale 10- 4932 to 108 requires a 
scaling factor of 1049 ,which cannot be represented by the i486 processor. 

By separating the exponent and fraction, the scaling operation involves adding the expo­
nents separate from multiplying the fractions. The exponent arithmetic involves small 
integers, all easily represented by the i486 processor. 

20.3.5.3 FINAL ADJUSTMENTS 

It is possible that the power function (GeLPoweL10) could produce a scaling value such 
that it forms a scaled result lar~er than the ASCII field could allow. For example, scaling 
9.9999999999999999 x 104 00 by 1.00000000000000010 x 10 -4883 . produces 
1.00000000000000009 x 1018

• The scale factor is within the accuracy of the FPU and the 
result is within the conversion accuracy, but it cannot be represented in BCD format. 
This is why there is a post-scaling test on the magnitude of the result. The result can be 
multiplied or divided by 10, depending on whether the result was too small or too large, 
respectively. 

20.3.6 Output Format 

For maximum flexibility in output formats, the position of the decimal point is indicated 
by a binary integer called the power value. If the power value is zero, then the decimal 
point is assumed to be at the right of the rightmost digit. Power values greater than zero 
indicate how many trailing zeros are not shown. For each unit below zero, move the 
decimal point to the left in the string. 

The last step of the conversion is storing the result in BCD and indicating where the 
decimal point lies. The BCD string is then unpacked into ASCII decimal characters. The 
ASCII sign is set corresponding to the sign of the original value. 

20.4 TRIGONOMETRIC CALCULATION EXAMPLES 

In this example, the kinematics of a robot arm is modeled with the 4 x 4 homogeneous 
transformation matrices proposed by Denavit and Hartenberg1

,2. The translational and 
rotational relationships between adjacent links are described with these matrices using 
the D-H matrix method. For each link, there is a 4 x 4 homogeneous transformation 

1. J. Denavit and R.S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices," 
J. Applied Mechanics, June 1955, pp. 215·221. 

2. C.S. George Lee, "Robert Arm Kinematics, Dynamics, and Control," IEEE Computer, Dec. 1982. 
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matrix that represents the link's coordinate system (Lj) at the joint (Jj) with respect to 
the previous link's coordinate system (J j _ l' Lj -1). The following four geometric quanti­
ties completely describe the motion of any rigid joint/link pair (J j, Lj), as Figure 20-7 
illustrates. 

OJ The angular displacement of the Xj axis from the Xj_l axis by rotating around the 
Zj_l axis (anticlockwise). 

d j The distance from the origin of the (i_1)th coordinate system along the Zj_l axis 
to the Xj axis. 

aj The distance of the origin of the ith coordinate system from the Zj_l axis along 
the - Xj axis. 

(Xj The angular displacement of the Zj axis from the Zj_l about the Xj axis 
(anticlockwise ). 

X,-t 

240486i103 

Figure 20-7. Relationships Between Adjacent Joints 
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The D-H transformation matrix A~-l for adjacent coordinate frames (from jointi_1 to 
jointi is calculated as follows: I 

A:- 1 = Tz•d x Tz•6 X Tx•u x Tx•a 

where: 

Tz•d represents a translation along the Zi-l axis 

TZ •6 represents a rotation of angle ° about the Zi-l axis 

Tx•u represents a translation along the Xi axis 

T x.a represents a rotation of angle (X about the Xi axis 

- COS (Xj SIN OJ 
COS (Xi COS 0i 
SIN (Xi 
o 

SIN (Xj SIN OJ 
- SIN (Xj COS OJ 
COS (Xi 
o 

COS OJ 
SIN OJ 
di 
1 

The composite homogeneous matrix T which represents the position and orientation of 
the joint/link pair with respect to the base system is obtained by successively multiplying 
the D-H transformation matrices for adjacent coordinate frames. 

This example in Figure 20-8 illustrates how the transformation process can be accom­
plished using the floating-point capabilities of the i486 processor. The program consists 
of two major procedures. The first procedure TRANSPROC is used to calculate the 
elements in each D-H matrix, A~-l' The second procedure MATRIXMUL_PROC finds 
the product of two successive D~H matrices. 
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Name ROT_MATRIX_CAL 
This example illustrates the use 
of the i486 floating point 
instructions, in particular, the 
FSINCOS function which gives both 
the SIN and COS values. 
The program calculates the 
composite matrix for base to end· 
effector transformation. 

Only the kinematics is considered in 
this example. 

If the composite matrix mentioned above 
is given by: 
T1n = A1 x A2 x ••• x An 
T1n is found by successively ,calling 
trans-proc and matrixmul_pro until 
all matrices have been exhausted. 

trans-proc calculates entries in each 
A(A1, ••• ,An) while matrixmul_proc 
performs the matrix multiplication for 
Ai and Ai+1. matrixmul-proc in turn 
calls matrix_row and matrix_elem to 
do the multiplication. 

; Define stack space 

trans_stack stackseg 400 

Define the -inatrix 'structure for 
4X4 transformational matrices 

a_matrix struc 
a11 dq 1 
a12 dq 1 
a13 dq 1 
a14 dq 1 
a21 dq 1 
a22 dq 1 
a23 dq 1 
a24 dq 1 
a31 dq Oh 
a32 dq 1 
a33 dq ? 
a34 dq ? 
a41 dq Oh 
a42 dq Oh 
a43 dq Oh 
844 dq 1h 

Figure 20-8. Robot Arm Kinematics Example 
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; Assume One joint in the storage 
; allocation and hence for 

two sets of parameters; however, 
more joints are possible 

alp_deg struc 
alpha_deg1 dd ? 
alpha_deg2 dd ? 

alp_deg ends 

tht deg struc 
- theta deg1 dd ? 

theta:deg2 dd ? 
tht_deg ends 

A_array struc 
A1 cIq ? 
A2 cIq ? 

A_array ends 

O_array struc 
01 cIq ? 
02 cIq ? 

O_array ends 

trans_data is the data segment 

Amx 

Bmx 

Tmx 

ALPHA_OEG 

THETA_OEG 

A_VECTOR 

O_VECTOR 

ZERO 
d180 

segment .rw publ i c 

a_matrix<> 
a_matrix<> 

a_matrix<> 

alp_deg<> 

tht_deg<> 

A_array<> 

O_array<> 

dd 
dd 

NUM_JOINT equ 
NUM_ROW equ 
NUM_COL equ 
REVERSE db 

trans_data ends 

0 
180 

1 
4 
4 
1h 

assume ds:trans_data, es:trans_data 

Figure 20-8. Robot Arm Kinematics Example (Contd.) 

20-27 



NUMERIC PROGRAMMING EXAMPLES 

trans_code contains the procedures 
for calculating matrix elements and 
matrix multiplications 

trans_code segment er public 
trans-proc proc far 

Calculate alpha and theta in radians 
from their values in degrees 

fldpi 
fdfv d180 

Duplicate pi/180 
fld st 

fmul qword ptr AlPHA_DEG[ecx*81 
fxch st(1) 
fmul qword ptr THETA_DEG[ecx*81 

theta(radians) in ST and 
alpha(radians) in ST(1) 

Calculate matrix elements 
a11 = cos theta 
a12 = . cos alpha * sin thet 
a13 = sin alpha * sin theta 
a14 = A * cos theta 
a21 = sin theta 
a22 = cos alpha * cos theta 
a23 = ·sin alpha * cos theta 
a24 = A * sin theta 
a32 = sin alpha 
a33 = cos alpha 
a34 = 0 
a31 = a41 = a42 = a43 = 0.0 
a44 =1 

ebx contains the offset for the matrix 

fsfncos iCOS theta in ST 
isin theta in ST(1) 

fld st iduplicate cos theta 
fst [ebxl.a11 iCOS theta in a11 
fmul qword ptr A_VECTOR[ecx*81 
fstp [ebxl.a14 iA * cos thetain a14 
fxch st(1) isin theta in ST 
fst [ebxl.a21 isin theta in a21 
fld st iduplicate sin theta 
fmul qword ptr A_VECTOR[ecx*81 
fstp [ebxl.a24 iA * sin theta in a24 
fld st(2) ialpha in ST 
fsfncos iCOS alpha in ST 

Figure 20-8. Robot Arm Kinematics Example (Contd.) 

20·28 



NUMERIC PROGRAMMING EXAMPLES 

fst 
fxch 
fst 
fld 

flllJl 
fstp 
flllJl 
fchs 
fstp 
fld 

flllJl 
fstp 
flllJl 

[ebx].a33 
st(1) 
[ebx].a32 
ST(2) 

st,st(1) 
[ebx] .a13 
st,st(3) 

[ebx].a23 
st(2) 

st,st(1) 
[ebx].a22 
st,st(1) 

isin alpha in ST(1) 
isin theta in ST(2) 
iCOS theta in ST(3) 
iCOS alpha in a33 
isin alpha in ST 
isin alpha in a32 
isin theta in ST 
isin alpha in ST(1) 
isin alpha * sin theta 
istored in a13 
iCOS theta * sin alpha 
i'cOS theta * sin alpha 
istored in a23 
iCOS theta in ST 
iCOS alpha in ST(1) 
isin theta in ST(2) 
iCOS theta in ST(3) 
iCOS theta * cos alpha 
istored in a22 
iCOS alpha * sin theta 

To take advantage of parallel operations 
between the IU and FPU 

push eax i save eax 

also move 0 into a34 in a faster way 
mov eax, dword ptr D_VECTOR[ecx*8] 
mov dword ptr [ebx + 88], eax 
mov eax, dword ptr D_VECTOR[ecx*8 + 4] 
mov dword ptr [ebx + 92], eax 
pop eax i restore eax 
fchs i'COS alpha * sin theta 
fstp [ebx].a12 istored in a12 

iand all nonzero elements 
ihave been calculated 

ret 

trans-proc endp 

matrix_elem proc far 

This procedure calculate the dot product 
of the ith row of the first matrix and 
the jth column of the second matrix: 

Tij where Tij = sum of Aik x Bkj over k 

parameters passed from the calling 
matrixJow: 
ESI = (i'1)*8 
EDI = (j'1)*8 
local register, EBP = (k'1)*8 

routine, 

Figure 20-8. Robot Arm Kinematics Example (Contd.) 
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push ebp save ebp 
push ecx ecx to be used as a t~ reg 
mov ecx, esi; save it for later indexing 

locating the element in the first matrix, A 
imul ecx, NUM_COL ecx contains offset due 

to preceding rows; the 
offset is from the 
beginning of the matrix 

xor ebp, ebp; clear ebp, which will be 
used a t~' reg to index( k) 
across the ith row of the first 
matrix as well as down the jth 
column of the second matrix 

clear Tij for accumulating Aik*Bkj 
mov dword ptr [edx] [edi],ebp 
mov dword ptr [edx] [edi+4], ebp 

push ecx save on stack: esi * nurn_col 
the offset of the beginnging 
of the ith row from the 
beginning of the A matrix 

add ecx, ebp ; get to the kth column entry 
of the ith row of the A matrix 

load Aik into FPU 
fld qword ptr [eax] [ecx] 

locating Bkj 
mov ecx, ebp 
imul ecx, NUH_ROW ; ecx contains the offset 

add ecx, edi 

of the beginning of the 
kth row from the 
beginning of the B matrix 
get to the jth column 

of the kth row of the B 
; matrix 

fmul qword ptr [ebx] [ecx]; Aik * Bkj 
pop ecx esi * nurn_col 

push ecx 
in ecx again 
also at top of program 
stack 

add to the result in the output matrix,Tij 
add ecx, edi 

accumulating the surn of Aik * Bkj 
fadd qword ptr [edx] [ecx] 
fstp qword ptr [edx] [ecx] 
increment k by 1, i.e., ebp by 8 
add ebp, 8 

Figure 20-8. Robot Arm Kinematics Example (Contd~) 
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Has k reached the width of the matrix yet? 
cmp ebp, NUH_COl*8 
jl NXT_k 

Restore registers 
pop ecx clear esi*num_col from stack 
pop ecx restore ecx 
pop ebp restore ebp 
ret 

matrix_row proc far 

xor edi, edi 
scan across a row 

NXT_COl: 
call 
add 
cmp 
jl 
ret 

matrix_elem 
edi, 8 
edi, NUH_COl*8 
NXT_COl 

matrixJow endp 

matrixmul-proc proc far 

This procedure does the matrix 
multiplication by calling matrix_row 
to calculate entries in each row 

The matrix multiplication is . 
performed in the following manner, 

Tij = Aik x Bkj 
where i and j denote the row and column 
respectively and k is the index for 
scanning across the ith row of the 
first matrix and the jth column of the 
second matrix. 

mov ebp, esp 
moy edx, dword ptr [ebp+4] 
moy ebx, dword ptr [ebp + 8] 
moy eax, dword ptr [ebp = 12] 

setup esf and edi 
edi points to the column 
esi points to the row 

xor esi, esi ; clear esi 

NXT_ROW: 
call matrix_row 

;use base pointer for indexing 
;offset Tmx in edx 
;offset Bmx in ebx 
;offset Amx in eax 

Figure 20-8. Robot Arm Kinematics Example (Contd.) 

20-31 



NUMERIC PROGRAMMING EXAMPLES 

add esi, 8 
cql esi, NUM_R0W*8 
jl NXT_ROW 
ret 12 ;pop off matrix pointers 

matrixmulJProc endp 

.*************************************** , 

Main program 

; ; 
;*************************************** 

main_code segment er 

START: 

mov esp, stacks tart trans_stack 
save all registers 

pushad 

ECX denotes the number of joints 
where no of matrices = NUM_JOINT +, 
Find the first matrix( from the base' 
of the system to the first joint) 
and call it Bmx 
xor ecx, ecx 
mov ebx, offset Bmx 
call transJProc 
inc ecx 

1st matrix 

is Bmx 

NXT_MATRIX: 
From the 2nd matrix and on, it 
will be stored in Amx. 
The result from the first ma'trix multo 
is stored in Tmx but will be accessed 
as Bmx in the next multiplication~ 
As a matter of fact, the roles of Bmx 
and Tmx alternate in successive 
multiplications. This is achieved by 
reversing the order of the Bmx and Tmx 
pointers being passed onto the program 
stack. Thus, this is invisible to the 
matrix multiplication procedure. 
REVERSE serves as the indicator; 
REVERSE = 0 means that the result 

is to placed in Tmx. 

Figure 20-8. Robot Arm Kinematics Example (Contd.) 
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mov ebx, offset Amx ;find Amx 
call trans-proc 
inc ecx 
xor REVERSE, 1h 
jnz Bmx_as_Tmx 

no reversing. Bmx as the second input 
matrix while Tmx as the output matrix. 
push offset Amx 
push offset Bmx 
push offset Tmx 
jq:l CONTI NUE 

reversing. Tmx as the second input 
matrix while Bmx as the output matrix. 

Bmx_as_Tmx: 
push 
push 
push 

CONTINUE: 
call 
cq:l 
j le 

offset Amx 
offset Tmx 
offset Bmx 

;reversing the 
;pointers passed 

matrixrrul-proc 
ecx, NUM_JOINT 
NXT_MATRIX 

if REVERSE = 1 then the final answer 
will be in Bmx otherwise, in Tmx. 

popad 

end START, ds:trans_data, ss:trans_stack 

Figure 20-8. Robot Arm Kinematics Example (Contd.) 
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CHAPTER 21 
EXECUTING 80286 AND 

386™ DX OR SX CPU PROGRAMS 

In general, programs written for protected mode on an 80286 processor run without 
modification on the i486 ™ processor. The features of the 80286 processor are an object­
code compatible subset of those of the i486 processor. The Default bit in segmen.t de­
scriptors indicates whether the processor is to treat a code, data, or stack segment as an 
80286 or 386 ™ / i486 CPU segment. 

To software, the features of the 386 DX or SX processors are virtually identical to the 
i486 processor. For the most part, the differences are in the underlying hardware 
implementation. 

The segment descriptors used by the 80286 processor are supported by thei486 proces­
sor if the Intel®-reserved word (highest word) of the descriptor is clear. On the i486 
processor, this word includes the upper bits of the base address and 'the segment limit. 

The segment descriptors for data segments, code segments, local descriptor tables (there 
are no descriptors for global descriptor tables), and task gates are the same for the 
80286, 386, and i486 processors. Other 80286 CPU descriptors (TSS segment, call gate, 
interrupt gate, and trap gate) are supported by the i486 processor. The i486 processor 
also has descriptors for TSS segments, call gates, interrupt gates, and trap gates which 
support the 32-bit architecture of the i486 processor. Both kinds of descriptors can be 
used in the same system. 

For those segment descriptors common to both the 80286 and i486 processors, clear bits 
in the reserved word cause the i486 processor to interpret these descriptors exactly as an 
80286 processor does; for example: . 

Base Address - The upper eight bits of the 32-bit base address are clear, which limits 
base addresses to 24 bits. . 

Limit- The upper four bits of the limit field are clear, restricting the value of the limit 
field to 64K bytes.' . 

Granularity bit-The Granularitybit is clear, indicating the value of the 16-bit limit is 
interpreted in units of 1 byte .. 

Big bit - In a data-segment descriptor, the B bit is clear, indicating the segment is no 
larger than 64 Kbytes. 

Default bit - In an code-segment descriptor, the D bit is clear, indicating 16-bit address­
ing and operands are the default. In a stack-segment descriptor, the D bit is clear, 
indicating use of the SP register .(instead of the ESP register) and a 64K byte maximum 
segment limit. 
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For formats of these descriptors and documentation of their use see the iAPX 286 Pro­
grammer's Reference Manual. 

21.1 TWO WAYS TO RUN 80286 CPU TASKS 

When porting 80286 ,programs to the i486, processor, there are two approaches, to 
consider: 

1. Porting an entire 80286 software system to the i486 processor, complete with the old 
operating system, loader, and system builder. 

In this case, all tasks will have, 80286 TSSs. The i486 processor is being used as if it 
were a faster version of the 80286 processor. 

2. Porting selected 80286 applications to run in an i486 CPU processor environment 
, with an i486 CPU operating system, loader, and system builder. 

In this case, the TSSs used to represent 80286 tasks should be changed to i486 CPU 
TSSs. It is possible to mix 80286 and i486 CPU TSSs, but the benefits are small and 
the problems are great. All tasks in an i486 CPU software system should have i486 
CPU TSSs. It is not 'necessary to change the 80286 object modules themselves; TSSs 
are usually constructed by the operating system, by the loader, or by the system 
builder. See Chapter 24 for more discussion of the interface between 16-bit and 
32-bit code. 

21.2 DIFFERENCES FROM 80286 CPU 

The few differences between the 80286 a'nd i486 processors affect operating syst~ms 
more than' application programs. 

21.2.1 Wraparound of 80286 Processor 24-Bit Physical' Address Space ' 

With the 80286, processor, any base and offset combination which a~dresses beyond 
16 megabytes wraps around to the first megabyte of the address space. With the i486 
processor, because it has a greater physical address space, any such address maps to the 
17th megabyte. In the unlikely event that any software depends on address wraparound, 
the same effect can be simulated on the i486 processor by using paging to map the first 
64K bytes past the top of the 16-megabyte address space to the bottom 64K bytes of the 
segment. 

21.2.2 Reserved Word of Segment Descriptor 

Because the i486 processor uses the contents, of: the reserved word of 80286 segment 
descriptors, 80286 programs which place values in this word may not rim correctly on the 
i486 processor. 
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21.2.3 New Segment Descriptor Type Codes. 

Operating-system code which manages space in descriptor tables often uses an invalid 
value in the access-rights field of descriptor-table entries to identify unused entries. 
Access rights values of 80H and OOH remain invalid for both the 80286 and i486 proces­
sors. Other values which were invalid on the 80286 processor may be valid on the i486 
processor because uses for these bits are defined for the i486 processor. 

21.2.4 Restricted Semantics of LOCK Prefix 

The 80286 processor performs the bus lock function differently than the i486 processor. 
Programs which use forms of memory locking specific to the 80286 processor may not 
run properly when run on the i486 processor. 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following i486 instructions when they modify memory. An invalid-opcode exception 
results from using the LOCK prefix before any other instruction, or with these instruc­
tions when no write operation is made to memory (i.e., when the destination· operand is 
in a register). 

• Bit test and change: the· BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined· by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 configurations lock the entire physical memory space. 

On the 80286 processor, the LOCK prefix is sensitive to IOPL; if CPL is less privileged 
than the IOPL, a general protection exception is generated. On the 386 DX and i486 
processors, no check against IOPL is performed. . 

21.2.5 Additional Exceptions 

The 386 and i486 processors have new exceptions which can occur even in systems de-
signed for the 80286 processor. . 

• Exception #6 - invalid opcode 

This exception can result from improper use of the LOCK instruction prefix. 

• Exception #14-page fault 

This exception may occur in an 80286 program if the operating system enables paging. 
Paging can be used in a system with 80286 tasks if all tasks use the same page direc­
tory. Because there is no place in an 80286 TSS to store the PDBR register, switching 
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to an 80286 task does not change the value of the PDBR register; Tasks ported from 
the 80286 processor should be given i486 CPU TSSs so they can make full use of 
paging. 

21.3 DIFFERENCES FROM 386™ CPU 

Very few differences exist between the programming models of the 386 DX or SX and 
i486 processors. The i486 processor defines new bits in the EFLAGS, CRO,' and· CR3 
registers, and in entries in the first- and second-level page tables. On the 386 processors, 
these bits were reselVed, so the new architectural features should' not be a compatibility 
issue. '. 

21.3.1 New Flag r ' 

The AC flag (bit position 18), in conjunction with the AM bit, in the CRO register, 
controls alignment checking. ' 

21.3.2 New Exception 

The alignment-check exception (exception vector 17) reports unaligned ,memory refer-
ences when alignment checking is being performed. ' . 

21.3.3 New Instructions 

There are three new application instructions: 

~., the BSW AP instruction 

• the XADD instruction 

• the CMPXCHG instruction 

There are three new system instructions, used for managing the cache and TLB: 

• the INVD instruction 

• the WBINVD instruction 

• the INVLPG instruction 

The form of the MOV instruction used to access the test registers has changed. New'test 
registers have beeri defined for the cache~ and the model of the TLB accessed through 
the test registers has changed. 
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21.3.4 New Control Register Bits 

Five new bits have been defined in the CRO register: 

• the NE bit 

• the WP bit 

• the AM bit 

• the NW bit 

• the CD bit 

Two new bits have been defined in the CR3 register: 

• the PCD bit 

• the PWT bit 

21.3.5 New Page-Table Entry Bits 

Two bits have been defined in page table entries for controlling caching of pages: 

• the PCD bit 

• the PWT bit 

21.3.6 Changes in Segment Descriptor Loads· 

On the 386 processors, loading a segment descriptor would always cause a locked read 
and write to set the Accessed bit of the descriptor. On the i486 processor, the locked 
read and write occur only if the bit is not already set. 
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CHAPTER 22 
REAL-ADDRESS MODE 

The real-address mode of the i486 ™ processor runs programs written for the 8086, 8088, 
80186, or 80188 processors, or for the real-address mode of an 80286 or 386™ processor. 

The architecture of the i486 processor in this mode is almost identical to that of the 
8086, 8088, 80186, and 80188 processors. To a programmer, an i486 processor in real­
address mode appears as a high-speed 8086 processor with extensions to the instruction 
set and registers. The principal features of this architecture are defined in Chapters 2 
and 3. 

This chapter discusses certain additional topics which complete the system programmer's 
view of the i486 processor in real-address mode: 

• Address formation. 

• Extensions to registers and instructions. 

• Interrupt and exception handling. 

• Entering and leaving real-address mode. 

• Real-address mode exceptions. 

• Differences from 8086 processor. 

• Differences from 80286 processor in real-address mode. 

• Differences from 386 processors in real-address mode. 

• Processor detection code 

22.1 ADDRESS TRANSLATION 

In real-address mode, thei486 processor does not interpret 8086 selectors by referring to 
descriptors; instead, it forms linear addresses as an 8086 processor would. It shifts the 
selector left by four bits to form a 20-bit base address. The effective address is extended 
with four clear bits in the upper bit positions and added to the base address to create a 
linear address, as shown in Figure 22-1. 

Because of the possibility of a carry, the resulting linear address may have as many as 21 
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 
to 10FFEFH (1 megabyte plus approximately 64K bytes) of the linear address space. 
Because paging is not available in real-address mode, the linear address is used as the 
physical address. 

Unlike the 8086 and 80286 processors, but like the 386 processors, the i486 processor 
can generate 32-bit effective addresses using an address override prefix; however in 
real-address mode, the value of a 32-bit address may not exceed 65,535 without causing 
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Figure 22-1. 8086 Address Translation 
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an exception. For full compatibility with 80286 real-address mode, pseudo-protection 
faults (interrupt 12 or 13 with no error code) occur if a'n effective address is generated 
outside the range 0 through 65,535. 

22.2 REGISTERS AND INSTRUCTIONS 

The register set available in real-address mode includes all· the registers defined for the 
8086 processor plus the new registers introduced with the 386 processor and 387™ co­
processor: FS, OS, debug registers, control registers, test registers, and floating-point 
unit registers. New instructions which explicitly operate on the segment registers FS and 
OS are available, and the new segment-override prefixes can be used to cause instruc­
tions to use the FS and OS registers for address calculations. 

The instruction codes which generate invalid-opcode exceptions include instructions 
from protected mode which move or test i486 CPU segment selectors and segment de­
scriptors, i.e., the VERR, VERW, LAR, LSL, LTR, STR, LLDT, and SLDTinstruc­
tions. Programs executing in real-address mode are able to take advantage of the new 
application-oriented instructions added to the architecture with the introduction of the 
80186,' 80188, 80286, 386 DX, SX and i486 proc~ssors: 

• New instructions introduced on the 80186, 80188, and 80286 processors. 

PUSH immediate data 

. Push all and pop all (PUSHA and POP A) 

,Multiply immedi~te data 

Shift and rotate by immediate count 

String I/O 

. ENTER and LEAVE instructions 

BOUND instruction 
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• New instructions introduced on the 386 DX processor. 

LSS, LFS, LGS instructions 

Long-displacement conditional jumps 

Single-bit instructions 

Bit scan instructions 

Double-shift instructions 

Byte set on condition instruction 

Move with sign/zero extension 

Generalized multiply instruction 

MOV to and from control registers 

MOV to and from test registers 

MOV to and from debug registers 

• New instructions introduced on the i48~ processor. 

BSW AP. instruction 

XADD instruction 

CMPXCHG instruction 

INVD instruction 

WBINVD instruction 

INVLPG instruction 

22.3 INTERRUPT AND EXCEPTION HANDLING. 

Interrupts and exceptions in i486 CPU real-address mode work much as they do on an 
8086 processor. Interrupts and exceptions call interrupt procedures through an interrupt 
table. The processor, scales the interrupt or exception identifier by four to obtain an 
index into the interrupt table. The entries of the interrupt table are far pointers to the 
entry points of interrupt or exception handler procedures. When an interrupt occurs, the 
processor pushes the current values of the CS and IP registers onto the stack~ disables 
interrupts, clears the TF flag, and transfers control to the location specified in the inter­
rupt table. An IRET instruction at the end of the handler procedure reverses these steps 
before returning control to the interrupted procedure. Exceptions do not return error 
codes in real-address mode. 

The primary difference in the interrupt handling of the i486 processor compared to the 
8086 processor is the location and size of the interrupt table depend on the contents of 
the IDTR register. Ordinarily, this fact is not apparent to programmers, because, after 
reset initialization, the IDTR register contains a base address of 0 and a limit of 3FFH, 
which is compatible with the 8086 processor. However, the LIDT instruction can be used 
in real-address mode to change the base and limit values in the IDTR register. See 
Chapter 9 for details on the IDTR' register, and the LIDT and SIDT instructions. If an 
interrupt occurs and its entry in the interrupt table is beyond the limit stored in the 
IDTR register, a double-fault exception is generated. 
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22.4 ENTERING AND LEAVING REAL-ADDRESS MODE 

Real-address mode is in effect after reset initialization. Even if the system is going to run 
in protected mode, the start-up program rUlls in real-address mode while preparing to 
switch to protected mode. 

22.4.1 Switching to Protected Mode 

The only way to leave real-address mode is to switch to protected mode. The processor 
enters protected mode when a MOV to CRO instruction sets the PE (protection enable) 
bit in the CRO register. (For compatibility with the 80286 processor, the LMSW instruc­
tion also may be used to set the PE bit.) 

See Chapter 10 "Initialization" for other aspects of switching to protected mode. 

22.5 SWITCHING BACK TO REAL-ADDRESS 'MODE 

The processor re-enters real-address mode if software clears the PE bit in the CRO 
register with a MOV CRO instruction (for compatibility ~ith the 80286 processor, the 
LMSW instruction can set the PE bit, but cannot clear it). A procedure which re-enters 
real-address mode should proceed as follows: 

1. If paging is enabled, perform the following sequence: 

• Transfer control to linear addresses which have an identity mapping; i.e., linear 
addresses equal physical addresses. 

• Clear the PG bit in the CRO register. 

• Move a 0 into the CR3 register .to flush the TLB .. 

2. Transfer control to a segment which has a limit of 64K (OFFFFH). This loads the CS 
register with the segment limit it needs to . have in real mode. . . 

3. Load 'segment registers S'S, DS, ES, FS, and GS with a selector for a descriptor 
con~aining the following values, which are appropriate for real mode: . i. Limit == 64K (OFFFFH) 

• Byte gram.ilar . (G = 0) 

• Expand up (E = 0) 

• Writable (W = 1) 

.' Present (P = 1) 

• Base = any value 
; : Note that if the segment registers are not reloaded, execution continues using the 

descriptors loaded during protected mode. ' 

4. Di~able interrupts. A CLI instruction disables INTR .interrupts. NMI interrupts can 
be disabled. wit,h external circuitry. : 

5. Clear the PE bit in the CRO register. 
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6. Jump to the real mode program using a far JMP instruction. This flushes the instruc­
tion queue and puts appropriate values in the access rights of the CS register. 

7. Use the LIDT instruction to load the base and limit of the real-mode interrupt 
vector table. 

8. Enable interrupts . 

. 9. Load the segment registers as needed by the real-mode code. 

22.6 REAL-ADDRESS MODE EXCEPTIONS 

The i486 processor reports some exceptions differently when executing in real-address 
mode than when executing in protected mode. Table 22-1 details the real-address-mode 
exceptions. 

22.7 DIFFERENCES FROM 8086 CPU 

,In general, the i486 processor in real-address mode will correctly run ROM-based soft­
ware designed for the 8086, 8088, 80186, and 80188 processors. Following is a list of the 
minor differences between program execution on the 8086 and i486 processors. 

1. Instruction clock counts. 

The i486 processor takes fewer clocks for most instructions than the 8086 processor. 
The areas most likely to be affected are: 

• Delays required byl/O devices between I/O operations. 

• Assumed delays with 8086 processor operating in parallel with an 8087. 

2. Divide-error exceptions point to the DIV instruction. 

Divide-error exceptions on the i486 processor always leave the saved CS:IP value 
pointing to the instruction which failed. On the 8086 processor, the CS:IP value 
points to the next instruction. 

3. Undefined 8086 processor opcodes. 

Opcodes which were not ,defined for the 8086 'processor generate an invalid-opcode 
exception or execute one of the new instructions introduced with the 80286,.386 DX 
or i486 processors. 

4. Value written by PUSH SP. 

The i486 processor pushes a different value on the stack for a PUSH SP instruction 
than the 8086 p'rocessor. The i486 processor pushes the value of the SP register 
before it is decremented as part of the push operation; the 8086 processor pushes 
the value of the SP register after it is decremented. If the value pushed is important, 
replace PUSH SP instructions with the following three instructions: 

PUSH BP 
MOV BP, SP 
XCHGBP, [BP] 

This code functions as the 8086 processor PUSH SP instruction on the i486 
processor. 
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Table 22-1. Exceptions and Interrupts 

Does the Return Address 

Description Vector 
Source of the Point to the 

Exception Instruction Which Caused 
the Exception? 

Divide Error 0 DIV and IDIV instructions yes 
Debug 1 any *1 

Breakpoint 3 INT instruction no 
Overflow 4 INTO instruction no 
Bounds Check 5 BOUND instruction yes 
Invalid Opcode 6 reserved opcodes and yes 

improper use of LOCK prefix 
Device not 7 ESC or WAIT instructions yes 
available 
Double Fault 8 any yes 
Reserved 9 
Invalid Task State 10 JMP, CALL, IRET yes 
Segment instructions, interrupts and 

exceptions 
Segment not 11 any instruction which yes 
present changes segments 
Stack Exception 12 stack operation crosses yes 

address limit 
Protection 13 operand crosses address yes 

limit, instruction crosses 
address limit, or instruction 
exceeds 1 ~ bytes 

Page Fault 14 any instruction that yes 
references memory 

Reserved 15 
Floating-Point Error 16 ESC or WAIT instructions yes2 

Software Interrupt o to 255 INT n instructions no 

1. Some debug exceptions point to the faulting instruction, others point to the following instruction. The 
exception handler can test the DR6 register to determine which has occurred. 

2. Floating-point errors are reported on the first ESC or WAIT instruction after the ESC instruction which 
generated the error. 

5. Shift or rotate by more than 31 bits. 

The i486 processor masks all shift and rotate counts to the lowest five bits. This 
MOD 32 operation limits the count to a maximum of 31 bits, which limits the 
amount of time that interrupt response. may be delayed while the instruction is 
executing. 

6. Redundant prefixes. 

The i486 processor sets a limit of 15 bytes on instruction length. The only way to 
violate this limit is by putting redundant prefixes before an instruction. A general­
protection exception is generated if the limit on instruction length is violated. The 
8086 processor has no instruction length limit. 
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7. Operand crossing offset 0 or 65,535. 

On the 8086 processor, an attempt to access a memory operand which crosses offset 
65,535 (e.g., MOY a word to offset 65,535) or offset 0 (e.g., PUSH a word when SP 
= 1) causes the offset to wrap around modulo 65,536. The i486 processor generates 
an exception in these cases: a general-protection exception if the, segment is a data 
segment (i.e. if the CS, DS, ES, FS, or GS register is being used to address the 
segment) or a stack exception if the segment is a stack segment (i.e., if the SS 
register is being used). " 

8. Sequential execution across offset 65,535. 

On the 8086 processor, if sequential execution of instructions proceeds past offset 
65,535, the processor fetches the next instruction byte from offset 0 of the same 
segment. On the i486 processor, the processor generates a general-protection excep­
tion in such a case. 

'9. LOCK is restricted to certain instructions. 

The LOCK prefix and its output signal should only be used to prevent other bus 
masters from interrupting a data movement operation. The LOCK prefix only may 
be used with the following i486 CPU instructions when they modify memory. An 
invalid-opcode exception results from using LOCK before any other instruction, or 
with these instructions when no write operation is made to memory. 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

10. Single-stepping external interrupt handlers. 

The priority of the i486 CPU single-step exception is different from the 8086 pro­
cessor. The change prevents an external interrupt handler from being single-stepped 
if the interrupt occurs while a program is being single-stepped. The i486 CPU single­
step exception has higher priority than any external interrupt. The i486 processor 
still may single-step through an interrupt handler called by the INT instructions or 
by an exception. 

11. IDlY exceptions for quotients of 80H or 8000H. 

The i486 processor can generate the largest negative number as a quotient for the 
IDlY instruction. The 8086 processor generates a divide-error exception instead. 

12. Flags in stack. 

The setting of the flags stored by the PUSHF instruction, by interrupts, and by 
exceptions is different from that stored by the 8086 processor in bit positions 12 
through 15. On the 8086 processor these bits are set, but in the i486 CPU real­
address mode, bit 15 is always clear, and bits 14 through 12, have the last value 
loaded into them. 
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13. NMI interrupting NMI handlers. 

After an NMI interrupt is recognized by the i486 processor, the NMI interrupt is 
masked until an IRET instruction is executed. 

14. Floating-point errors call the floating-point error exception. 

Floating-point exceptions on the i486 processor call the floating-point ertor excep­
tion handler. If an 8086 processor uses another exception for the 8087 interrupt, 
both exception vectors should call the floating-point error exception handler. The 
i486 processor has signals which, with the addition of external logic, support user­
defined error reporting for emulation of the interrupt mechanism· used in many 
personal computers. 

·15. Numeric exception handlers should allow prefixes. 

On the i486 processor, the value of the CS and IP registers saved for floating-point 
exceptions points at any prefixes which come before the ESC instruction. On the 
8086 processor, the saved CS:IP points to the ESC instruction. 

16. Floating-Point Unit does not use interrupt controller. 

The floating-point error signal to the i486 processor does not pass through an inter­
rupt controller (an INT signal from 8087 coprocessor does). Some instructions in a 
floating-point error exception handler may need to be deleted if they use the inter­
rupt controller. The i486 processor has signals which, with the addition of external 
logic, support user-defined error reporting for emulation of the interrupt mechanism 
used in many personal computers. 

17. Seven new interrupt vectors. 

The i486 processor adds seven exceptions which are generated on an 8086 processor 
only by program bugs. Exception handlers should be added which treat these excep­
tions as invalid operations. This additional software does not significantly· affect the 
existing 8086 processor software, because these interrupts do not occur normally. 
These interrupt identifiers should not already have been used by the 8086 processor 
software, because they are reserved by Intel®. Table 22-2 describes the new i486 
processor exceptions. 

18. The denormal exception of the i486 FPU is handled differently than on the 8087 
math coprocessor. See Section 16.2.4 for more details. 

19 .. One megabyte wraparound. 

The address space of the i486 processor may no·t wraparound at 1 megabyte in 
real-address mode. An external pin A20M# forces wraparound if enabled. On mem­
bers of the 8086 family, it possible to specify addresses greater than 1 megabyte. For 
example, with a selector value OFFFFH and an offset of OFFFFH, the effective 
address would be 10FFEFH (1 megabyte + 65519 bytes). The 8086 processor,.which 
can form addresses up to 20 bits long, truncates the uppermost bit, which "wraps" 
this address to OFFEFH. However, the i486 processor does not truncate this bit if 
A20M # is not enabled. 
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Table 22-2. New i486 ™ CPU Exceptions 

Vector Description 

5 A BOUND instruction was executed with a register value outside the limit 
values. 

6 A reserved opcode was encountered, or a LOCK prefix was used properly. 

7 The EM bit in the CRO register was set when an ESC instruction executed, 
or the TS bit was set when a WAIT instruction was executed. 

8 A vector indexes to an entry in the lOT which is beyond the segment limit 
for the lOT. This can only occur if the default limit has been changed. 

12 A stack operation crossed the address limit. 

13 An operation (other than a stack operation) exceeds the base or bounds of 
, a segment, instruction execution is crossing the address limit (OFFFFH), or 
an instruction exceeds 15 bytes. 

17 Alignment-check. Cannot occur without setting previously reserved bits. 

20. Response to bus hold. 

Unlike the 8086 and 80286 processors, but like the 386 processors, the i486 proces­
sor responds to requests for control of the bus from other potential bus masters, 
such as DMA controllers, between transfers of parts of an unaligned operand, such 
as two words which form a doubleword. Unlike the 386 processors, the i486 proces­
sor responds to bus hold during reset initialization. 

21. Interrupt vector table limit. 

The LIDT instruction can be used to set a limit on the size. of the interrupt vector 
table. Shutdown occurs if an interrupt or exception attempts to read a vector beyond 
the limit. (The 8086 processor does not have a shutdown mode.) , 

22. If a stack operation wraps around the address limit, shutdown occurs. (The 8086 
processor does not have a shutdown mode.) 

22.8 DIFFERENCES FROM 80286 CPU IN REAL-ADDRESS MODE 

The few differences which exist between i486 CPU real-address mode and 80286 CPU 
real-address mode are not likely to affect any existing 80286 CPU programs except pos­
sibly the system initialization procedures. 

22.8.1 Bus Lock 

The 80286 processor implements the bus lock function differently than the i486 proces­
sor. Programs which use forms of memory locking specific to the 80286 processor may 
not run properly if transported to a specific application of the i486 processor. 
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The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement' operation. The LOCK prefix only may be 'used with 
the following i486 CPU instruetions when they modify memory. An invalid-opcode ex­
ception results from using the LOCK prefix before any other instruction, or with these 
instructions when no write operation is made to memory (i.e., when the destination 
operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK, prefix is 
needed for the XCHG instruction). 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 CPU configurations lock the entire physical memory spate. < 

22.8.2 Location of First Instruction 

The starting location is OFFFFFFFOH (16 bytes from end of the 32-bit address space) on 
the i486 processor rather than OFFFFFOH (16 bytes from end of the 24-bit address 
space) as on the 80286 processor. Many 80286 ROM initialization programs will work 
correctly in this new environment. Others can be made to work correctly with external 
hardware to interpret the signals on the address signals A31-2~' 

22.8.3 Initial Values of General Registers 

On the i486 processor, certain general registers may contain different values after reset 
initialization than on the 80286 processor. This should not cause compatibility problems, 
because the contents of 8086 registers after reset initialization are undefined. If self-test 
is requested during the reset sequence and errors are detected in the i486 processor, the 
EAX register will contain a non-zero value. The EDX register contains the component 
and revision identifier. See Chapter 10 for more information. 

22.8.4 Bus Hold 

Unlike the 8086 and 80286 processors, the 386 and i486 processors respond to requests 
for control of the bus from other potential bus masters, such as DMA controllers, be­
tween transfers of parts of an unaligned operand, such as two words which form a 
doubleword. 
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22.8.5 Math Coprocessor Differences 

The i486 FPU denormal exception works differently than on the 80287 math coproces-
sor. See Section 16.2.4 for more details. . 

The MP bit of MSW should always be set. An ET bit has been added to MSW which 
should be set. Exception 9 cannot occur on i486 microprocessors. 

22.9 DIFFERENCES FROM 386™ DX CPU IN REAL-ADDRESS MODE 

The instructions and architectural features which are new with the i486 processor can be 
accessed in real-address mode. This should not affect most software, because the new 
opcodes previously generated the invalid-opcode exception. The new flag and register 
bits were previously. reserved, so there should be no software which uses them 
·improperly. . 

Caching can be enabled in real-address mode. For maximum performance, initialization 
software must enable caching. 

22.10 PROCESSOR DETECTION CODE 

The following code sequence (see Figure 22-2) can be used to distinguish between 8086, 
80286 and 386 processors. This code is intended for application programs executing in 
real-address mode. 

22-11 



REAL-ADDRESS MODE 

i 's~386( TM) proc near 

Returns the processor type in the AX register. 

pushf 
pop bx 
and bx,Offfh 
push bx 
popf 
pushf 
pop "ax 

and ax,OfOOOh 
cmp ax,OfOOOh 
jz is_8086 

or bx,OfOOOh 
push bx 
popf 
pushf 
pop ax 

and'ax,OfOOOh 
jz is_80286 

is 80386: 
- mov ax,386h 

jmp done 
is 80286: 

- mov ax,286h 
jmp done 

is 8086: 
- mov ax,86h 

done: 
popf 
ret 

is 386 endp 

save FLAG register 
store FLAGs in BX 

;' clear bits 12-15 
store on stack 

" pop word into the FLAG regist~r 
store FLAGs on stack 
recover FLAG word 

if bits 12-15 are set, then the 
processor is an 8086 

try to set FLAG bits 12-15' 
store on stack 
pop word into the FLAG register 
store FLAGs on stack 
recover FLAG word 

'if bits ,12-15 are cleared, then 
the processor is an 80286 

else the processor is a 386 OX CPU 
set the 386 OX CPU indicator 

set the 80286 indicator 

set the 8086 indicator 

recover FLAG register 

Figure 22-2. Real-Address Detection Code 
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CHAPTER 23 
VIRTUAL-SOS6 MODE 

The i486™ processor supports execution of one or more 8086, 8088, 80186, or 80188 
programs in an i486 protected-mode environment. An 8086 program runs in this envi­
ronment as part of a virtual-8086 task. Virtual-8086 tasks take advantage of the hard­
ware support of multitasking offered by the protected mode. Not only can there be 
multiple virtual-8086 tasks, each one running an 8086 program, but virtual-8086 tasks can 
run in multitasking with other i486 tasks. ' 

The purpose of a virtual-8086 task is to form a "virtual machine" for running programs 
written for the 8086 processor. A complete virtual machine consists of i486 hardware and 
system software. The emulation of an 8086 processor'is the result of software using 
hardware in the following ways: 

• The hardware provides a virtual set of registers (through the TSS), a virtual memory 
space (the first megabyte of the linear address space of the task), and directly exe­
cutes all instructions which deal with these registers and with this address space. 

• The software controls the external interfaces of the'virtual machine (I/O, interrupts, 
and exceptions) in a manner consistent with the larger environment in which it runs. 
In the case of I/O, software can choose either to emulate I/O instructions or to let the 
hardware execute them directly without software intervention. 

Software which supports virtual 8086 machines is, called a virtual-8086 monitor. 

23.1 EXECUTING 8086 CPU CODE 

The processor runs in virtual-8086 mode when the YM (virtual machine) bit in the 
EFLAGS register is set. The processor tests this flag under two general conditions: 

1. When loading segment registers, to know whether to use 8086-style address 
translation. 

2. When decoding instructions, to determine which instructions are sensitive to IOPL, 
and which instructions are not supported (as in real mode); 

23.1.1 Registers and Instructions 

The register set available in virtual-8086 mode includes all the registers defined for the 
8086. processor plus the new registers introduced by the i486 processor: FS, GS, debug 
registers, control registers, and test registers. New instructions which explicitly operate 
on: the segment registers FS and GS are available, and the new segment-override pre­
fixes can be used to cause instructions to use the FS and GS registers for address calcu­
lations. Instructions can use 32-bit operands through the use of the operand size prefix. 
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Programs running as virtual-8086 . tasks can take advantage of the new application­
oriented instructions added to the architecture by the introduction of the 80186, 80188, 
80286, 386™ DX, SX and i486 processors: 

• New instructions introduced on the 80186, 80188, and 80286 processors. 

PUSH immediate data 

Push all and pop all (PUSHA and POPA) 

Multiply immediate data 

Shift and rotate by immediate count 

String I/O 

ENTER and LEAVE instructions 

BOUND instruction 

• New instructions introduced on the 386 DX and SX processors. 

LSS,. ~FS, LGS instructions. 

Long-displaceme!1t conditional jumps 

Single-bit instructions 

Bit scan instructions 

Double-shift instructions 

Byte set on condition instruction 

Move with sign/zero extension 

Generalized multiply instruction 

MOV to and from control registers 

. MOV to and from test registers 

MOV to and from debug registers 

• New instructions introduced on the i486 processor. 

BSW AP instruction 

XADD instruction 

CMPXCHG instruction 

23.1.2 Address Translation 

In virtual-8086 mode, the i486 processor does not interpret 8086 selectors by referring to 
descriptors; instead, it forms linear addresses as an 8086 processor would. It shifts the 
selector left by four bits to form a 20-bit base address. The effective address is extended 
with four clear bits in the upper bit positions and added to the base address to create a: 
linear address, as shown in Figure 23-1. 
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LINEAR 
ADDRESS 
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19 3 0 

1 16·BIT SEGMENT SELECTOR \ 0 0 001 
19 15 0 

10 0 0 0\ 16·BIT EFFECTIVE ADDRESS 1 

~ 0 

1 xxxxxxxxxxxxxxxxxxxxxi 

Figure 23-1. 8086 Address Translation 

240486i105 

Because of the possibility of a carry, the resulting linear address may have as many as 21 
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 
to 10FFEFH (1 megabyte plus approximately 64K bytes) of the task's linear address 
space. 

Virtual-8086 tasks generate 32-bit linear addresses. While an 8086 program only can use 
the lowest 21 bits of a linear address, the linear address can be mapped using paging to 
any 32-bit physical address. 

Unlike the 8086 and 80286 processors, but like the 386 processors, the i486 processor 
can generate 32-bit effective addresses using an address override prefix; however in 
virtual-8086 mode, the value of a 32-bit address may not exceed 65,535 without causing 
an exception. For full compatibility with 80286 real-address mode, pseudo-protection 
faults (interrupt 12 or 13 with no error code) occur if an effective address is generated 
outside the range 0 through 65,535. . 

23.2 STRUCTURE OF A VIRTUAL-BOB6 TASK 

A virtual-8086 task consists of the 8086 program to be run and the' i486 CPU "native 
mode" code which serves as 'the virtual-machine monitor. The task must be represented 
by an i486 CPU TSS (not an 80286 TSS). The processor enters virtual-8086 mode to run 
the 8086 program and returns to protected mode to run the monitor or other i486 CPU 
tasks. 

To run in virtual-8086 mode, an existing 8086 processor program needs the following: 

• A virtual-8086 monitor. 

• Operating-system services. 

The virtual-8086 monitor is i486 CPU protected-mode code which. runs at privilege-level 
o (most privileged). The monitor mostly consists of initialization and exception-handling 
procedures. As with any other i486 CPU program, code-segment descriptors for the 
monitor must exist in the GDT or in the task's LDT. The linear addresses above 
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10FFEFH are available for the virtual-8086 monitor, the operating system, and other 
system software. The monitor also may need data-segment descriptors so it can examine 
the interrupt vector table or other parts of the 8086 program in the first megabyte of the 
address space. 

In general, there are two options for implementing the 8086 operating system: 

1. The 8086 operating system may run as part of the 8086 program. This approach is 
desirable for either of the following reasons: 

• The 8086 application code modifies the operating system. 

• There is not sufficient development time to reimplement the 8086 operating sys­
tem as an i486 CPU operating system. 

2. The 8086 operating system may be implemented or emulated in the virtual-8086 
monitor. This approach is desirable for any of the following reasons: 

• Operating system functions can be more easily coordinated among several virtual-
8086 tasks. ' 

• The functions of the 8086 operating system can be easily emulated by calls to the 
i486 CPU operating system. 

Note that the approach chosen for implementing the 8086 processor operating system 
may have different virtual-8086 tasks using different 8086 operating systems. 

23.2.1 Paging for Virtual-SOS6 Tasks 

Paging is not necessary for a single virtual-8086 task, but paging is useful or necessary for 
any of the following reasons: ' 

• Creating mUltiple virtual-8086 tasks. Each task must map the lower megabyte of lin­
ear addresses to different physical locations. 

• Emulating the address wraparound which occurs at 1 megabyte. With members of the 
8086 family, it is possible to specify addresses larger than 1 megabyte. For example, 
with a selector value of OFFFFH and an offset of OFFFFH, the effective address 
would be 10FFEFH (1 megabyte plus 65519 bytes). The 8086 processor, which can 
form addresses only up to 20 bits long, truncates the high-order bit, thereby 
"wrapping" this address to OFFEFH. The i486 processor, however, does not truncate 
such an address. If any 8086 processor programs depend on address wraparound, the 
same effect can be achieved in a virtual-8086 task by mapping linear addresses be­
tween 100000H and llOOOOH and linear addresses between 0 and 10000H to the same 
physical addresses. 

• Creating a virtual address space larger than the physical address space. 

• Sharing 8086 operating system or ROM code which is common 'to several 8086 pro-
grams running in multitasking. ' 

• Redirecting or trapping references to memory-mapped I/O devices. 
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23.2.2 Protection within a Virtual-SOS6 Task 

Protection is not enforced between the segments of an 8086 program. To protect the 
system software running in a virtual-8086 task from the 8086 application program, soft­
ware designers may follow either of these approaches: 

• Reserve the first megabyte (plus 64K bytes) of each task's linear address space for the 
8086 processor program. An 8086 processor task cannot generate addresses outside 
this range. 

• Use the U/S bit of page-table entries to protect the virtual-machine monitor and 
other system software in each virtual-8086 task's space. When the processor is in 
virtual-8086 mode, the CPL ~s 3 (least privileged). Therefore, an 8086 processor pro­
gram has only user privileges. If the pages of the virtual-machine monitor have super­
visor privilege, they cannot be accessed by the 8086 program. 

23.3 ENTERING AND LEAVING VIRTUAL-SOS6 Mode 

Figure 23-2 summarizes the ways to enter and leave an 8086 program. Virtual-8086 
mode is entered by setting the VM flag. There are two ways to do this: 

1. A task switch to an i486 processor task loads the image of the EFLAGS register 
from the new TSS. The TSS of the new task must be an i486 CPU TSS, not an 80286 
TSS, because the 80286 TSS does not load the high word of the EFLAGS register, 
which contains the VM flag. A set VM flag in the new contents of the EFLAGS 
register indicates that the new task is executing 8086 instructions; therefore, while 
loading the segment registers from the TSS, the i486 processor forms base addresses 
in the 8086 style. 

2. An IRET instruction from a procedure of an i486 CPU task loads the EFLAGS 
register from the stack. A set VM flag indicates the procedure to which control is 
being returned to be an 8086 procedure. The CPL at the time the IRET instruction 
is executed must be 0, otherwise the processor does not change the state of the VM 
flag. 

MODE TRANSITION DIAGRAM 

TASK SWITCH J INITIAL'I 

I OR IRET I ENTRY 

INTERRUPT, EXCEPTION 
V86 MONITOR 

8086 PROGRAM (PROTECTED 
(V86 MODE) IRET MODE) 

I TASK 
SWITCH OTHER 1486 CPU TASKS 

TASK I 
SWITCH 

(PROTECTED MODE) 

TASK SWITCH TASK SWITCH 
240486il06 

Figure 23-2. Entering and Leaving Virtual-SOS6 Mode 
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When a task switch is used to enter virtual-8086 mode, the segment registers are loaded 
from a TSS. But when an IRET instruction is used to set the VM flag, the segment 
registers keep the contents loaded during protected mode. Software should then reload 
these registers with. segment selectors appropriate for virtual-8086 mode. 

The processor leaves virtual~8086 mode when an interrupt or exception occurs. There 
are two cases:· 

1. The interrupt. or exception causes a task switch. A task switch from a virtual-8086 
, task to any other task loads the EFLAGS register from the TSS of the new task. If 

the new TSS is an i486 TSS and the VM flag in the new contents of the EFLAGS 
register is clear or if the new TSS is an 80286 TSS, the processor ,clears the VM flag 
of the EFLAGS register, loads the segment registers from the new TSS using i486 
CPU-style address formation, and begins executing the instructions of the new task 
in i486 CPU protected mode. 

2. The interrupt or exception calls a privilege-level 0 procedure (inost privileged). The 
processor stores the current contents of the EFLAGS register on the stack, then 
clears the VM flag. The interrupt or exception handler, therefore, runs as "native" 
i486 CPU protected-mode code. If an interrupt or exception calls a procedure, in a 
conforming segment or in a segment at a privilege level other than 0 (most privi­
leged), the processor generates a general-protection exception;, the error code is the 
selector of the code segment to which a call was attempted. 

System software does not change the state of the VM flag directly, but instead changes 
states ih the image of the, EFLAGS register stored on the stack or in the TSS. The 
virtual-8086 monitor sets the VMflag in the' EFLAGS image on the stack or in the TSS 
when first creating a virtual-8086 task. Exception and interrupt handlers can examine the 
VM flag on the stack If the interrupted procedure was running in virtual-8086 mode, the 
handler may need to call the virtual-8086 monitor. . 

23.3.1 Transitions Through Task Switches 

A task switch to or from a virtual-8086 task may come from any of three causes: 

1. An interrupt which calls a task gate. 

2. An action of the scheduler of the i486 CPU operating system. 

3. Executing an IRET instruction when the NT flag is set. 

In any of these cases, the processor changes the VM flag in the EFLAGS register ac­
'cording to the image in the new TSS. If the new TSS is an 80286 TSS, the upper word of 
the EFLAGS register is not in the TSS; the processor clears the 'VM flag in this case; 
The processor updates the VM flag prior to loading the segment registers from their 
images in the new TSS. The new setting of the VM flag determines whether the proces­
sor interprets the new segment-register images as 8086 selectors or 80286 andi486 CPU 
selectors. 
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23.3.2 Transitions Through Trap Gates and Interrupt Gates 

The i486 processor leaves virtual-8086 mode as the result of an exception or interrupt 
which calls a trap or interrupt gate. The exception or interrupt handler retu'rns to the 
8086 program by executing an IRET instruction. 

Because it was designed to run on an 8086 processor, an 8086 program in a virtual-8086 
task will have an 8086-style interrupt table, which starts at linear address O. However, the 
i486 processor does not use this table directly. For all exceptions and interrupts which 
occur virtual-8086 mode, the processor calls handlers through the IDT. The IDT entry 
for an interrupt or exception in a virtual-8086 task must contain either: 

• A task gate. 

• An i486 CPU trap gate (descriptor type 14) or i486 CPU interrupt gate (descriptor 
type 15), which must point to a nonconforming, privilege-level 0 (most privileged), 
code segment. 

Interrupts and exceptions which call i486 CPU trap or interrupt gates use privilege-level 
O. The contents of the segment registers are stored on the stack for this privilege level. 
Figure.23-3 shows the format of this stack after an exception or interrupt which occurs 
while a virtual-8086 task is running an 8086 program. 

After the processor saves the 8086 segment registers on the stack for privilege level 0, it 
clears the segment registers before running the handler procedure. This lets the inter­
rupt handler safely save and restore the DS, ES, FS, and GS registers as though they 
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Figure 23-3. Privilege Level 0 Stack After Interrupt in Virtual-BOBS Mode 
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were i486 CPU selectors. Interrupt handlers, which may be called in the context of either 
a regular task or a virtual-8086 task, can use the same code sequences for saving and 
restoring the registers for any task. Clearing these registers before execution of the 
IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures 
which expect values in the segment registers or which return values in the segment 
registers must use the register images saved on the stack for privilege level O. Interrupt 
handlers which need to know whether the interrupt occurred in virtual-8086 mode can 
examine the VM flag in the stored contents of the EFLAGS register. 

An interrupt handler passes control to the virtual-8086 monitor if the VM flag is set in 
the EFLAGS image stored on the stack and the interrupt or exception is one which the 
monitor needs to handle. The virtual-8086 monitor may either: 

• Handle the interrupt within the virtual-8086 monitor. 

• Call the 8086 program's interrupt handler. 

Sending an interrupt or exception back to the 8086 program involves the following steps: 

1. Use the 8086 interrupt vector to locate the appropriate handler procedure. 

2. Store the state of the 8086 program on the privilege-level 3 stack (least privileged). 

3. Change the return link on the privilege-level 0 stack (most privileged) to point to the 
privilege-level 3 handler procedure. 

4. Execute an IRET instruction to pass control to the handler. 

5. When the IRET instruction from the privilege-level 3 handler again calls the virtual-
8086 monitor, restore the return link on the privilege-level 0 stack to point to the 
original, interrupted, privilege-level 3 procedure. 

6. Execute an IRET instruction to pass control back to the interrupted procedure . 

. 23.4 ADDITIONAL SENSITIVE INSTRUCTIONS 

When the i486 processor is running in virtual-8086 mode, the PUSHF, POPF, INT nand 
IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS instructions, 
which are sensitive to IOPL in protected mode, are not sensitive in virtual-8086 mode. 
Following is a complete list of instructions which are sensitive in virtual-8086 mode: 

CLI 
STI 
PUSHF 
POPF 
INTn 

,IRET 

- Clear Interrupt-Enable Flag 
- Set Interrupt-Enable Flag 
- Push Flags 
- Pop Flags 
- Software Interrupt 
- Interrupt Return 

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an 
attempt to use the instructions listed above will trigger a general-protection exception. 
These instructions are sensitive to the IOPL to give the virtual-8086 monitor a chance to 
emulate the facilities they affect. 
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23.4.1 Emulating 8086 Operating System Calls 

The INT n instruction is sensitive to IOPL so a virtual-8086 monitor can intercept calls 
to the 8086 operating system. Many 8086 operating systems are called by pushing param­
eters onto the stack, then executing an INT n instruction. If the IOPL is less than 3, 
INT n instructions are intercepted by the virtual-8086 monitor. The virtual-8086 monitor 
then can emulate the function of the 8086 operating system or send the interrupt back to 
the 8086 operating system. 

23.4.2 Emulating the Interrupt-Enable Flag 

When the i486 processor is running an 8086 program in a virtual-8086 task, the PUSHF, 
POPF, and IRET instructions are sensitive to the IOPL. This lets the virtual-8086 mon­
itor protect the interrupt-enable flag (IF). Other instructions which affect the IF flag 
(such as the STI and eLI instructions) are sensitive to the IOPL in both 8086 and i486 
CPU programs. 

Many 8086 programs written for non-multitasking systems set and clear the IF flag to 
control interrupts. This may cause problems in a multitasking environment. If the 10PL 
is less than 3, all instructions which change or test the IF flag generate an exception. The 
virtual-8086 monitor then can control the IF flag in a manner compatible with the i486 
CPU environment and transparent to 8086 programs. 

23.5 VI RTUAL I/O 

Many 8086 programs written for non-multitasking systems directly access I/O ports. This 
may cause problems in a multitasking environment. If more than one program accesses 
the saine port, they may interfere with each other. Most multitasking systems require 
application programs to access I/O ports through the operating system. This results in 
simplified, centralized control. 

The i486 processor provides I/O protection for creating I/O which is compatible with the 
i486 CPU environment and transparent to 8086 programs. Designers may take any of 
several possible approaches to protecting I/O ports: 

• . Protect the I/O address space and generate exceptions for all attempts to perform I/O 
directly. 

• Let the 8086 processor program perform I/O directly. 

• Generate exceptions on attempts to access specific I/O ports. 

• Generate exceptions on attempts to access specific memory-mapped I/O ports. 

The method of controlling access to I/O ports depends upon whether they are 1/0-
mapped or memory-mapped. 
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23.5.1 I/O-Mapped I/O 

The I/O address space in virtual-8086 mode differs from protected mode only because 
the 10PL is not checked. Only the I/O permission bit map is checked when virtual-8086 
tasks access the I/O address space. 

The I/O permission bit map can be used to generate exceptions on attempts to access 
specific I/O addresses. The I/O permission bit map of each virtual-8086 task determines 
which I/O addresses generate exceptions for that task. Because each task may have a 
different I/O permission bit map, the addresses which generate exceptions for one task 
may be different from the addresses for another task. See Chapter 8 for more informa-
tion about the I/O permission bit map. .. 

23.5.2 Memory-Mapped I/O 

In systems which use memory-mapped I/O, the paging facilities of the i486 processor can 
be used generate exceptions for attempts to access I/O ports. The virtual-8086 monitor 
may use paging to control memory-mapped I/O in these ways: 

• Map part of the linear address space of each task which needs to perform I/O to the 
physical address space where I/O ports are placed. By putting the I/O ports at differ­
ent addresses (in different pages), the paging mechanism can enforce isolation be­
tween tasks. 

• Map part of the linear address space to pages which are not-present. This generates 
an exception whenever a task attempts to perform I/O to those pages. System soft­
ware then can interpret the I/O operation being attempted. 

Software emulation of the I/O space may require too much operating system interven­
tion under some conditions. In these cases, it may be possible to generate an exception 
for only the first. attempt to access I/O. The, system software then may determine 
whether a program can be given exclusive control of I/O temporarily, the protection of 
the I/O space may be lifted, and the program allowed to run at full speed. 

23.5.3 SpeCial I/O Buffers 

Buffers of intelligenfcontrollers (for example, a bit-mapped frame buffer) also can be 
emulated using page mapping. The linear space for the buffer can be mapped to a 
different physical space for each virtual-8086 task. The virtual-8086 monitor then can 
control which virtual buffer to copy onto the real buffer in the physical address space. 

23.6 DIFFERENCES FROM 8086 CPU 

In general, virtual-8086 mode will run software written for the 8086, 8088, 80186, and 
80188 processors. The following list shows the minor differences between the 8086 pro­
cessor and the virtual-8086 mode of the i486 processor. 
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1. Instruction clock counts. 

The i486 processor takes fewer clocks for most instructions than the 8086 processor. 
The areas most likely to be affected are: 

• Delays required by I/O devices between I/O operations. 

• Assumed delays with 8086 processor operating in parallel with an 8087. 

2. Divide exceptions point to the DIV instruction. 

Divide exceptions on the i486 processor always leave the·saved CS:IP value pointing 
to the instruction which failed. On the 8086 processor, the CS:IP v~lue points to the 
next instruction. 

3. Undefined 8086 processor opcodes. 

Opcodes which were not defined for the 8086 processor generate an invalid-opcode 
or execute as one of the new instructions defined for the i486 processor. 

4. Value written by PUSH SP. 

The i486 processor pushes a different value on the stack for PUSH SP than the 8086 
processor. The i486 processor pushes the value inthe SP register before it is decre­
mented as part of the push operation; the 8086 processor pushes the value of the SP 
register after it is decremented. If the pushed value is important, replace PUSH SP 
instructions with the following three instructions: 
PUSH BP 
nov BP, SP 
XCHG BP, [BP] 

This code functions as the 8086 PUSH SP instruction on the i486 processor. 

5: Shift or rotate by more than 31 bits . 

. The i486' processor masks all shift and rotate counts to the lowest five bits. This 
limits the count to a maximum of 31 bit positions, thereby limiting the time that 
interrupt response is delayed while the instruction executes. 

6. Redundant prefixes. 

The i486 processor limits instructions to 15 bytes; The only way to violate this limit is 
with redundant prefixes before an instruction. A general-protection exception is 
generated if the limit on instruction length is violated. The 8086 processor has no 
instruction length limit. 

7. Operand crossing offset 0 or 65,535. 

On the 8086 processor, an attempt to access a' memory operand which crosses offset 
65,535 (e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when the 
contents of the SP register are 1) causes the offset to wrap around modulo 65,536. 
The i486 processor generates an exception in these cases, a general-protection ex­
ception if the segment is a data segment (i.e., if the CS, DS, ES, FS, or GS register 
is being used to address the segment), or a stack exception if the segment is a stack 
segment (i.e., if the SS register is being used). 
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8. Sequential execution across offset 65,535. 

On the 8086 processor, if sequential execution of instructions proceeds past offset 
65,535, the processor fetches the next instruction byte from offset O. of the same 
segment. On the i486 processor, the processor generates a general-protection 
exception. 

9. LOCK is restricted to certain instructions. 

The LOCK prefix and its output signal should only be used to prevent other bus 
masters from interrupting a data movement operation. The LOCK prefix only may 
be used with the following i486 CPU instnictions when they mO,dify memory: An 
invalid-opcode exception results from using LOCK before any other instruction, or 
with these instructions when no write operation is made to memory.· 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB,AND, OR, and 
XOR instructions. . 

10. Single-stepping external interrupt handlers .. 

The priority of the i486 processor single-step exception is different· from that of the 
8086 processor. This change prevents an external interrupt handler from being 
single-stepped if the interrupt occurs while a program is being single-stepp~d. The 
i486 processor single-step exception has higher priority than any external interrupt. 
The i486 processor will still single-step through an interrupt handler called by the 
INT instruction or by an exception. 

11. IDlY exceptions for quotients of 80H or 8000H. 

The i486 processor can generate the largest negative number as a quotient from the 
IDlY instruction. The 8086 processor generates a divide-error exception instead. 

12. Flags in stack. 

The contents of the EFLAGS register stored by the PUSHF instruction, by inter­
rupts, and by exceptions is different from that stored by the 8086 processor in bit 
positions 12 through 15. On the 8086 processor these bits arestored as though they 
were set, but in virtual-8086 mode bit 15 is always clear, and bits 14 through 12 have 
the last value loaded into them. 

13. NMI interrupting NMI handlers .. 

After an NMI interrupt is accepted by the i486 processor, the NMI interrupt is 
masked until an IRET instruction is executed. 

14. Floating-point errors ~all the floating-point-error exception . 

. Floating-point exceptions on the i486 processor call· the floating-point error .excep­
tion handler. If an 8086 processor uses another exception for the 8087 interrupt, 
both exception .vectors should call the floating-point error exception handler. The 
i486 processor has signals which, with the addition of external· logic, support user­
,defined error reporting for emulation of the interrupt mechanism used in many 
personal computers. 

23-12 



VIRTUAL-SOSG MODE 

15. Numeric exception handlers should allow prefixes. 

On the i486 processor, the value of the CS and IP registers saved for floating-point 
exceptions points at any prefixes which come before the ESC instruction. On the 
8086 processor, the saved CS:IP points to the ESC instruction. . 

16. Floating-Point Unit does not use interrupt controller. 

The floating-point error signal to the i486 processor does not pass through an inter­
rupt controller (an INT signal from 8087 coprocessor does). Some instructions in a 
coprocessor-error exception handler may need to be deleted if they use the interrupt 
controller. The i486 processor has signals which, with the addition of external logic, 
support user-defined error reporting for emulation of the interrupt mechanism used 
in many personal computers. 

17. Response to bus hold. 

Unlike the 8086 and 80286 processors, the i486 processor responds to requests for 
control of the bus from other potential bus masters, such as DMA controllers, be­
tween transfers of parts of an unaligned operand, such as two words which form a 
doubleword. 

18. CPL is 3 in virtual-8086 mode. 

The 8086 processor does not support protection, so it has no CPL. Virtual-8086 
mode uses a CPL of 3, which prevents the execution of privileged instructions. 
These are: 

• LIDT instruction 

• 'LGDT instruction 

• LMSW instruction 

• special forms of the MOV instruction for loading and storing the control registers 

• CL TS instruction 

• HL T instruction 

• INVD instruction 

• WBINVD instruction 

• INVLPG instruction 

These instructions may be executed while the processor is in real-address mode 
following reset initialization. They allow system data structures, such as descriptor 
tables, to be set up before entering protected mode. Virtual-8086 mode is entered 
from protected mode, so it has no need for these instructions. 

19. Denormal exception handling is different. See Section' 16.2.4. 

23.7 DIFFERENCES FROM 80286 CPU IN REAL~ADDRESS MODE 

The differences between virtual-8086 mode and 80286 real-address mode affect the in­
terface between applications and the operating system. The application runs at privilege 
level 3 (user mode), so all attempts to use privilege-protected instructions and architec­
tural features generate calls to the virtual-machine monitor. The monitor examines these 
calls and emulates them. 
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23.7.1 Privilege Level 

Programs running in virtual-8086 mode have a privilege level of 3 (user mode), which 
prevents the execution of privileged instructions. These are: 

• LIDT instruction 

• LGDT instruction 

• LMSW instruction 

• special forms of the MOV instruction for loading and storing the control registers 

• CL TS instruction 

• HL T instruction 

• INVD instruction 

• WBINVD instruction 

• INVLPG instruction 

Virtual-8086 mode is entered from protected mode, so it has no need for these instruc­
tions. These instructions can be executed in real-address mode. , . 

23.7.2 Bus Lock 

The 80286 processor implements the bus lock function differently than the 386 DX and 
i486 processors. This fact mayor may not be apparent to 8086 programs, depending on 
how the virtual-8086 monitor handles the LOCK prefix. Instructions with the LOCK 
prefix are. sensitive to the IOPL; software designers can. choose to emulate its function. 
If, however, 8086 programs are allowed to execute LOCK directly, programs which use 
forms of memory locking specific to the 8086 processor may not run properly when run 
on the i486 processor. 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following i486 CPU instructions when they modify memory. An invalid-opcode ex­
ception results from using the LOCK prefix before any other instruction, or with. these 
instructions when no write operation is made to memory (Le., when the destination 
operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG, XADD, and CMPXCHG instructions (no LOCK prefix is 
needed for the XCHG instruction). 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. . 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 configurations lock the entire physical memory space. 
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Unlike the 8086 and 80286 processors, the 386 and i486 processors respond to requests 
for control of the bus from other potential bus masters, such as DMA controllers, be­
tween transfers of parts of an unaligned operand, such as two words which form a 
doubleword. 

23.8 DIFFERENCES FROM 386™ DX AND SX CPUs 

Real-address mode and virtual-8086 mode are implemented in the same way on the i486 
processor as on the 386 processors. For maximum performance, programs ported to the 
i486 processor should be run with the cache enabled. 
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CHAPTER 24 
MIXING 16-81T AND 32-81T CODE 

The i486 ™ processor running in protected mode, like the 386 ™ processors is a complete 
32-bit architecture, but it supports programs written for the 16-bit architecture of earlier 
Intel® processors. There are three levels of this support: 

1. Running 8086 and 80286 code with complete compatibility. 

2. Mixing 16-bit modules with 32-bit modules. 

3. Mixing 16-bit and 32-bit addresses and data within one module. 

The first level is discussed in Chapter 21, Chapter 22, and Chapter 23. This chapter 
shows how 16-bit and 32-bit modules can cooperate with one another, and how one 
module can use both 16-bit and32-bit operands and addressing. 

The i486 processor functions most efficiently when it is possible to distinguish between 
pure 16-bit modules and pure 32-bit modules. A pure 16-bit module has these 
characteristics: 

• All segments occupy 64K bytes or less. 

• Data items are either 8 bits or 16 bits wide. 

• Pointers to code and data have 16-bit offsets. 

• Control is transferred only among 16-bit segments. 

A pure 32-bit module has these characteristics: 

• Segments may occupy more than 64K bytes (0 bytes to 4 gigabytes). 

• Data items are either 8 bits or 32 bits wide. 

• Pointers to code and data have 32-bit offsets. 

• Control is transferred only among 32-bit segments. 

A program written for 16-bit processor would be pure 16-bit code. A new program 
written for the protected mode of the i486 processor would be pure 32-bit· code. As 
applications move from 16-bit processors to the 32-bit i486 processor, there will be cases 
where 16-bit and 32-bit code will need to be mixed. Reasons for mixing code are: 

• Modules will be converted one-by-one from 16-bit environments to 32-bit 
environments. 

• Older, 16-bit compilers a.nd software-development tools will be used in the new 32-bit 
operating environment until new 32-bit tools are available. . 

• The source code of 16-bit modules is not available for modification. 

• The specific data structures used by a given module are fixed at 16-bit word size. 

• The native word size of the source language is 16 bits. 
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24.1 USING 16-BIT AND 32-BIT ENVIRONMENTS 

The features of the architecture which permit the i486 processor to mix 16-bit and 32-bit 
address and operand size include: 

• The D-bit (default bit) of code-segment descript~rs, which determines the default 
choice of operand-size and address-size for the instructions. of a code segment. (In 
real-address mode and virtual-8086 mode, which do not use descriptors, the default is 
16 bits.) A code segment whose D-bit is set is a 32-bit segment; a code segment whose 
D-bit is clear is a 16-bit segment. The D-bit eliminates the need to put the operand 
size and address size in instructions when all instructions use operands and effective 
addresses of the sa,me size. 

• Instruction prefixes to override the default choice of operand size and address size 
(available in protected mode as well as in real-address mode and virtual-8086 mode). 

• Separaie 32-bii and 16-bii gaies for iniersegmeni coniroi transfers (inciuding can 
gates, interrupt gates, and trap gates). The operand size for the control transfer is 
determined by the type of gate, not by the D-bit or prefix of the transfer instruction. 

• Registers which can be used both for 16-bit and 32-bii operands and effective-address 
calculations. 

• The B bit (Big bit) of data-segment descriptors, which specifies the size of stack 
pointer (the 32-bit ESP register or the 16-bit SP register) used by the processor for 
implicit stack references. 

24.2 MIXING 16-BIT AND 32~BIT OPERATIONS 

The i486 processor has two instruction prefixes which allow mixing of 32-bit and 16-bit 
operations within one segment: 

• The operand-size prefix (66H) 

• The address-size prefix (67H) 

These prefixes reverse the default size selected by the Default bit. For example, the 
processor can interpret the MOV mem, reg instruction in any of four ways: 

• In a 32-bit segment: 

1. Moves 32 bits from a 32-bit register to memory using a 32-bit ~ffective address. 

2. If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address; 

. 3. If preceded by an address-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address. 

4. If prec,eded by both an address-size prefix and an operand-size prefix, moves 
16 bits from a 16-bit register to memory using a 16~bit effective address. 

• In a 16-bit segment: 

1. Moves 16 bits from a 16-bit register to memory using a 16-bit effective address. 

2. If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address. . . 
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3. If preceded by an address-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address. 

4. If preceded by both an address-size prefix and an operand-size prefix, moves 
32 bits from a 32-bit register to memory using a 32-bit effective address. 

These examples show that any instruction can generate any combination of operand size 
and address size regardless of whether the instruction is in a 16- or 32-bit segment. The 
choice of the 16- or 32-bit default for a code segment is based upon these criteria: 

1. The need to address instructions or data in segments which are larger than 
64K bytes. 

2. The predominant size of operands. 

3. The addressing modes desired. 

The Default bit should be given a setting which allows the predominant size of operands 
to be accessed without operand-size prefixes. 

24.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS 

Because the choice of operand size and address size is specified in code segments and 
their descriptors, data segments can be shared freely among both 16-bit and 32-bit code 
segments. The only limitation is imposed by pointers with 16-bit offsets, which only can 
point to the first 64K bytes of a segment. When a data segment with more than 64K 
bytes is to be shared among 16- and 32-bit segments, the data which is to be accessed by 
the 16-bit segments must be located within the first 64K bytes. 

A stack which spans les~ than 64K bytes can be shared by both 16- and 32-bit code 
segments. This class of stacks includes: 

• Stacks in expand-up segments with the Granularity and Big bits clear. 

• Stacks in expand-down segments with the Granularity and Big bits clear. 

• Stacks in expand-up segments with the Granularity bit set and the Big bit clear, in 
which the stack is contained completely within the lower 64K bytes. (Offsets greater 
than OFFFFH can be used for data, other than the stack, which is not shared.) 

The B-bit of a stack segment cannot, in general, be used to change the size of stack used 
by a 16-bit code segment. The size of stack pointer used by the processor for implicit 
stack references is controlled by the B-bit of the data-segment· descriptor for the stack. 
Implicit references are those caused by interrupts, exceptions, and instructions such as 
the PUSH, POP, CALL, and RET instructions. Although it seems like the B bit could be 
used to increase the stack segment for 16-bit programs beyond 64K bytes, this may not 
be done. The B-bit does not control explicit stack references, such as accesses to param­
eters or local variables. A 16-bit code segment can use a "big" stack only if the code is 
modified so that all explicit references to the stack are preceded by the address-size 
prefix, causing those references to use 32-bit addressing. 
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In big, expand-down segments (the Granularity, Big, and Expand-down bits set), all 
offsets are greater than 64K, therefore 16-bit code cannot use this kind of stack segment 
unless the code segment is modified to use 32-bit addressing. (See Chapter 6 for more 
information about the G, B, and E bits.) 

24.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE 
SEGMENTS 

When transferring control among procedures in 16-bit and 32-bit code segments, pro­
grammers must be aware of three points: 

• Addressing limitations imposed by pointers with 16-bit offsets. 

• Matching of operand-size attribute in effect for the CALL/RET instruction pair and 
the Interrupt/IRET pair for managing the stack correctly. 

• Translation of parameters, especially pointer parameters. 

Clearly, 16-bit effective addresses cannot be used to address data or code located beyond 
OFFFFH in a 32-bit segment, nor can large 32-bit parameters be squeezed into a 16-bit 
word; however, except for these obvious limits, most interface problems between 16-bit 
and 32-bit modules can be solved. Some solutions involve inserting interface code be-
tween modules. . 

24.4.1 Size of Code-Segment Pointer 

For control-transfer instructions which use a pointer to identify the next instruction (i.e., 
those which do not use gates), the size of the offset portion of the pointer is determined 
by the operand-size attribute. The implications of the use of two different sizes of code­
segment pointer are: 

• A JMP, CALL, or RET instruction from a 32~bit segment to a 16-bit segment is 
always possible using a 32-bit operand size. 

• A JMP, CALL, or RET instruction from a 16-bit segment ·using a 16-bit operand size 
cannot address a destination in a 32-bit segment if the address of the destination is 
greater than OFFFFH. 

An interface procedure 'can provide a mechanism for transfers from 16-bit segments to 
destinations in 32-bit segments beyond 64K. The requirements for this kind of interface 
procedure are discussed later in this chapter. 

24.4.2 Stack Management for Control Transfers 

Because stack management is different for 16-bit CALL and RET instructions than for 
32-bit CALL and RET instructions, the operand size of the RET instruction must match 
the CALL instruction. (See Figure 24-1. A 16-bit CALL instruction pushes the contents 
of the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. 
The matching'RET instruction also must use a 16-bit operand size to pop these 16-bit 
values from the stack into the 16-bit registers. A 32-bit CALL instruction pushes the 
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contents of the 32-bit EIP register and (for interlevel calls) the 32-bit ESP register. The 
matching RET instruction also must use a 32-bit operand size to pop these 32-bit values 
from the stack into the 32-bit registers. If the two parts of a CALL/RET instruction pair 
do not have matching operand sizes, the stack will not be managed correctly and the 
values of the instruction pointer and stack pointer will not be restored to correct values. 

When the CALL instruction and its matching RET instruction are in segments which 
haveD bits with the same values (i.e., both have 32-bit defaults or both have 16-bit 
defaults), the default settings may be used. When the CALL instruction and its matching 
RET instruction are in segments which have different D-bit values, an operand size 
prefix must be used. . 

There are three ways for a 16-bit procedure to make a 32-bit call: 

1. Use a 16-bit call to a 32-bit interface procedure. The interface procedure uses a 
32-bit call to the intended destination. 

2. Make the call through a 32:-bit call gate. 

3. Modify the 16-bit procedure, inserting an operand-size prefix before the. call, to 
change it to a 32-bit call. 
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Likewise, there are three ways to cause a 32-bit procedure to make a 16-bit call: 

1. Use a 32-bit call to a 32-bit interface procedure. The interface procedure uses a 
16-bit call to the intended destination. 

2. Make the call through a 16-bit call gate. 

3. Modify the 32-bit procedure, inserting an operand-size prefix before the call, 
thereby changing it to a 16-bit call. (Be certain that the return offset does not exceed 
OFFFFH.) 

Programmers can use any of the preceding methods to make a CALL instruction in a 
16-bit segment match the corresponding RET instruction in a 32-bit segment, or to make 
a CALL instruction in a 32-bit segment match the corresponding RET instruction in a 
16-bit segment. 

24.4.2.1 CONTROLLING THE OPERAND SIZE FOR A CALL 

The operand-size attribute in effect for the CALL· instruction is specified by the D bit 
for the segment containing the destination and by any operand-size instruction prefix. 

When the selector of the pointer referenced by a CALL instruction selects a gate de­
scriptor, the type of call is determined by the type of call gate. A call through an 80286 
call gate (descriptor type 4) has a 16-bit operand-size attribute; a call through a 386/i486 
CPU call gate (descriptor type 12) has a 32-bit operand-size attribute. The offset to the 
destination is taken from the gate descriptor; therefore, even a 16-bit procedure can call 
a procedure located more than 64K bytes from the base of a 32-bit segment, because a 
32-bit call gate contains a 32-bit offset. " 

An unmodified 16-bit code segment which has run successfully on an 8086 processor or 
in real-mode on an 80286 processor will have a D-bit which is clear and will not use 
operand-size override prefixes; therefore, it will use 16-bit versions of the CALL instruc­
tion. The only modification needed to make a 16-bit procedure produce" a 32:..bit call is to 
relink the call to a 386/i486 CPU call gate. 

24.4.2.2 CHANGING SIZE OF A CALL 

When adding 32-bit gates to 16-bit procedures, it is important to consider the number of 
parameters. The count field of the gate descriptor specifies the size of the parameter 
string to copy from the current stack to the stack of the more privileged procedure. The 
count field of a 16-bit gate specifies the number of words to be copied, whereas the count 
field of a 32-bit gate specifies the number of doublewords to be copied; therefore, the 
16-bit procedure must use an even number of words as parameters. 

24.4.3 Interrupt Control Transfers 

With a control transfer caused by an exception or interrupt, a gate is used. The operand­
size: attribute for the interrupt is determined by the. gate descriptor in the interrupt 
descriptor table (IDT). 
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A 386/i486 CPU interrupt or trap gate (descriptor type 14 or 15) to a 32-bit interrupt 
handler can be used to interrupt either 32-bit or 16-bit procedures. However, sometimes 
it is not practical to permit an interrupt or exception to call a 16-bit handler when 32-bit 
code is running, because a 16-bit interrupt procedure has a return offset of only 16 bits 
saved on its stack. If the 32-bit procedure is running at an address beyond OFFFFH, the 
16-bit interrupt procedure cannot provide the return address. 

24.4.4 Parameter Translation 

When segment offsets or pointers (which contain segment offsets) are passed as param­
eters between 16-bit and 32-bit procedures, some translation is required. If a 32-bit 
procedure passes a pointer to data located beyond 64K to a 16-bit procedure, the 16-bit 
procedure cannot use it. Except for this limitation, interface code can perform any for­
mat conversion between 32-bit and 16-bit pointers which may be needed. 

Parameters passed by value between 32-bit and 16-bit code also may require translation 
between 32-bit and 16-bit formats. The form of the translation is application-dependent. 

24.4.5 The Interface Procedure 

Placing interface code between 32-bit and 16-bit procedures can be the solution to sev­
eral interface problems: 

• Allowing procedures in 16-bit segments to call procedures with offsets greater than 
OFFFFH in 32-bit segments. 

• Matching operand size between CALL and RET instructions. 

• Translating parameters ( data). 

The interface code is simplified where these restrictions are followed. 

• Interface code resides in a code segment whose D-bit is set, which indicates a default 
operand size of 32-bits. 

• All procedures which may be called by 16-bit procedures have offsets which are not 
greater than OFFFFH. 

• All return addresses saved by 16-bit procedures also have offsets not greater than 
OFFFFH. 

The interface code becomes more complex if any of these restrictions are violated. For 
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond 
OFFFFH, the interface code will have to provide the offset to the entry point. The 
mapping between 16- and 32-bit addresses only is performed automatically when a call 
gate is used, because the descriptor for a call gate contains a 32-bit address. When a call 
gate is not used, the descriptor must provide the 32-bit address. 
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The interface· code calls procedures in other segments. There may be two kinds of 
interface: 

• Where 16-bit procedures call 32-bit procedures. The interface code is called by 16-bit 
CALL)nstructions and uses the operand-size prefix before RET instructions for per­
forming a 16-bit RET instruction. Calls to 32-bitsegments are 32-bit CALL instruc:' 
tions (by default, because the D-bit is set), and the 32-bit code returns with 32-bit 
RET instructions. 

• Where 32-bit procedures call 16-bit procedures. The interface code is called by 32-bit 
CALL instructions, and returns with 32-bit RET instructions (by default, because the 
D-bit is set). CALL instructions to 16-bit procedures use the operand-size prefix; 
16-bit procedures return with 16-bit RET instructions. 

24-8 



Compatibility with the 387™, 25 
80287 and 8087 Math 
Coprocessors 





CHAPTER 25 
COMPATIBILITY WITH THE 387™, 

80287 AND 8087 MATH COPROCESSORS 

This chapter addresses the issues that must be faced when transporting numerical soft­
ware to the i486™ processor from one of its predecessor systems. To software, the i486 
processor looks very much like a 386 ™ CPU/38TM math coprocessor system. Software 
which runs on a 386 CPU/387 NPX system, whether it was originally created for the 386 
CPU/387 or was transported from an 80286/80287 or 8086/8087 system, will run with at 
most minor modifications on the i486 processor. To transport code directly from an 
80286/80287 or 8086/8087 system to the i486 processor, certain additional issues must be 
addressed. Separate sections of this chapter are devoted to the differences between the 
i486 processor and each of its predecessors. 

25.1 DIFFERENCES FROM 386™ CPU/387™ NPX SYSTEMS 

This section summarizes those differences between the 386 CPU/387 NPX system and 
the i486 processor which may affect numerical software. 

1. Control Register Bits: 

The ET (Extention Type) bit of the CRO control register is used in the 386 processor 
to indicate whether the math coprocessor in the system is an 80287 (ET= 0) or a 387 
DX (ET= 1). This bit is not used by i486 processor hardware. On reset, the ET bit is 
initialized to O. 

The NE (Numeric Exception) bit of the CRO register is used in the i486 processor to 
determine whether unmasked floating-point exceptions are reported internally via 
interrupt vector 16 (NE = 1) or through external interrupt (NE = 0). On reset, the 
NE bit is initialized to 0, so software using the automatic internal error-reporting 
mechanism must set this bit to 1. 

As on the 80286 and 386 processors, the MP (Monitor coProcessor) bit of the CRO 
control register determines whether WAIT instructions trap when the context of the 
FPU is different from that of the currently-executing task. If MP = 1 and TS = 1, 
then a WAIT instruction will cause a Device Not Available fault (interrupt vector 
7). The MP bit is used on the 80286 and 386 microprocessors to support the use of a 
WAIT instruction to wait on a device other than a numeric coprocessor. The device 
reports its status through the BUSY # pin~ Since the i486 processor does not have 
such a pin, the MP bit has no relevant use, and should be set to 1 for normal 
operation. 

2. Initialization and RESET: 

Upon hardware RESET, the floating-point registers will remain unchanged unless 
the Built-In Self-Test (BIST) is requested. When the BIST is requested, hardware 
RESET has almost the same effect as the FINIT instruction; the only difference is 
that FINIT leaves the stack registers unchanged, while hardware RESET with BIST 
resets them to O. 
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Upon hardware RESET or FINIT, the 387 math coprocessor signals an error con­
dition. The i486 processor, like the 80287 coprocessor, does not. 

On the i486 processor, the FINIT instruction clears the error pointers (data and 
instruction). 

3. Exceptions: 

On the i486 processor, an undefined ESC opcode will cause an Illegal Opcode ex­
ception (interrupt vector 6). Undefined ESC opcodes, like legal ESC opcodes, cause 
a Device Not Available exception (interrupt vector 7) when either the TS or the EM 
bit of CRO is set. The i486 processor does not check for floating-point error condi­
tions on encountering an undefined ESC opcode. 

A misaligned data operand will cause an alignment exception (interrupt vector 17)· 
in level 3 software, except for the stack portion of an FSA VE/FRSTOR operation. 

On the i486 processor, a WAIT instruction will sometimes be executed as Nap. This 
happens when the WAIT precedes an instruction which itself waits anywhere in the 
course of its execution. In such a case, the report of a numeric exception may come 
one instruction later on the i486 processor than on a 386 CPU/387 NPX system. 

On the i486 processor, when the first half of an operand to be written is inside a 
page or segment and the second half is outside, a memory fault can cause the first 
half to be stored without the second. In such cases, 386 CPU/387 NPX systems store 
nothing. 

On the i486 processor, when a segment fault occurs in the middle· of an FLDENV 
operation, it can happen that part of the environment is loaded and part not. In 
such cases, the FPU control word is left with a value of 007F H. 

Interrupt 9 does not occur in the i486 processor. In cases where the 387 would cause 
interrupt 9, the i486 processor simply aborts the instruction. Some care is necessary, 
however. Memory faults (especially page faults), if they occur inFLDENV or FR­
STaR while the operating system· is performing a task switch, can cause the 
floating-point environment to be lost. Intel strongly recommends that the floating­
point save area be the same page as the TSS. 

4. Transcendental Instructions: 

On the i486 processor, transcendental instructions can be aborted at certain check­
points during execution if an INTR· is pending. Transcendental instructions should 
therefore be used only in an environment where INTRs are not expected to come as 
close as 200 clocks apart. 

25.2 DIFFERENCES FROM 80286/80287 SYSTEMS 

This section summarizes the differences between i486 processor and 386 CPU/387 math 
coprocessor systems on the one hand, and 80286/80287 and 8086/8087 systems on the 
other, and analyzes the impact of these differences on software that must be transported 
from an 80286/80287 system to the i486 processor. Any migration directly from the 8086/ 
8087 must also take into account the additional issues addressed in Section 25.3. 
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25.2.1 Data Types and Exception Handling 

Difference Description Reason 
Issue 

Impact on for the 1486™ CPU/387™ NPX 80287/8087 Software Difference Behavior Behavior 

NaN The i486™ CPU/38TM The 80287/8087 Uninitialized IEEE Stan-
NPX distinguishes be- only generates memory loca- dard 754 
tween signaling NaNs one kind of NaN tions that contain compatibility. 
and quiet NaNs. The (the equivalent of ONaNs should 

, i486 CPU/387 NPX a quiet NaN) but be changed to 
only generates quiet raises an invalid- SNaNs to cause 
NaNs. An invalid- operation excep- the i486 CPU/ 
operation exception is tion upon 387 NPX to fault 
raised only upon en- encountering any when uninitial-
countering a signaling kind of NaN. ized memory 10-
NaN (except for cations are 
FCOM, FIST, and referenced. 
FBSTP which also 
raise IE for quiet 
NaNs). 

Pseudozero, The i486 CPU/387 The 80287/8087 None. Thei486 IEEE Stan-
Pseudo-NaN, NPX neither generates defines and sup- CPU/387 OX dard 754 
Pseudoinfinity, not supports these for- ports special does not gener- compatibility . 
and Unnormal mats; it raises an handling for ate these for-
Formats invalid-operation ex- these formats. mats, and 

ception whenever it therefore will not 
encounters them in an encounter them 
arithmetic operation. unless a pro-

grammer deliber-
ately enters 
them. 

Tag Word Bits The encoding in the The encoding for The exception IEEE Stan-
for Unsupported tag word for the un- pseudo-zero and handler may dard 754 
Data Formats supported data for- unnormal is need to be compatibility. 

mats mentioned in "valid" (type 00); changed if pro-
Section 25.2.1 is the others are grammers use 
"special data" (type "special data" such data types. 
10). (type 10). 

Invalid-Operat.ion No invalid-operation Upon encounter- None. Software Upgrade, to 
Exception exception is raised ing a denormal on the i486 CPU/ eliminate 

upon encountering a in FSORT, FDIV, 387 NPX will exception. 
denormal in FSORT, or FPREM or continue to exe-
FDIV, or FPREM or upon conversion cute in cases 
upon conversion to to BCD or to in- where the 80287/ 
BCD or to integer. The teger, the invalid- 8087 would trap. 
operation proceeds by operation 
first normalizing the exception is 
value. raised. 
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Difference Description Reason 
Issue Impact on for the 1486™ CPU/38TM NPX 80287/8087 Software Difference Behavior Behavior 

Denormal The denormal excep- The denormal The exception Performance 
Exception tion is raised in tran- exception is not handler needs to enhance-

scendental instructions raised in tran- be changed only ment for nor-
and FXTRACT. scendental in- if it gives special mal case. 

structions and treatment to dif-
FXTRACT. ferent opcodes. 

Overflow Overflow exception Overflow excep- Overflow excep- IEEE Stan-
Exception masked. tion masked. tion masked. dard 754 

If the rounding mode The 80287/8087 Under the most compatibility . 

is set to chop (toward does not signal common round-
zero), the result is the the overflow ex- ing modes, no 
most positive or more ception when the impact. If round-
negative number. masked ing is toward 

response is not zero (chop), a 
infinity; I.e., it program on the 
signals overflow i486 CPU/387 
only when the NPX produces 
rounding control under overflow 
is not set to conditions a re-
round to zero. If suit that is differ-
rounding is set ent in the least 
to chop (toward significant bit of 
zero), the result the significand, 
is positive or compared to the 
negative infinity. result on the 

80287. 

Overflow exception not Overflow excep- Overflow excep-
masked. tion not masked. tion not masked. 

The precision excep- . The precision If the result is 
tion is flagged. When exception is not stored on the 
the result is stored in flagged and the stack, a program 
the stack, the signifi- signficand is not on the i486 CPU! 
cand is rounded ac- rounded. 387 NPX pro-
cording to the duces a different 
precision control (PC) result under 
bit of the control word overflow condi- . 
or according to the tions than on the 
opcode. 80287/8087. The 

difference is ap-
parent only to 
the exception 
handler. 
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DIfference DescrIption Reason 
Issue 1486™ CPU/38T"; NPX 

Impact on 
for the 80287/8087 Software DIfference BehavIor BehavIor 

Underflow Conditions for under- Conditions for Underflow excep- IEEE Stan-
Exception flow. underflow. tior) masked. dard 754 

Two related When the underflow When the under- No impact. The compatibility. 

events contribute exception is masked, flow exception is underflow excep-
to underflow: the underflow excep- masked and tion occurs less 

1. The creation tion is signaled when rounding is to- often when' 

tiny result. A both the result is tiny ward zero, the rounding is to-

tiny number, and denormalization underflow excep- ward zero. 

because it is results in a loss of tion flag is raised Underflowexcep-
so. small, may . accuracy. on, tininess, re-. tion not masked. 

Response to gardless of loss cause some 
of accuracy. A program on 

other underflow. 
exception Response to 

the i486 CPU/ 
When the underflow 387 NPX pro-

later (such as exception is unmasked underflow. duces a different 
overflow upon and the instruction is When the under- result during un-
division). supposed to store the flow exception is derflow condi-

2. Loss of result on the stack, the not masked and tions than on the 
accuracy significand is rounded the destination is 80287/8087 if the 
during the to the appropriate pre- the stack, the result is stored 
denormalization cision (according to .' signficand is not on the stack. The 
of a tiny the precision control rounded but difference is only 
number. (PC) bit of the control rather is left as in the least sig-

Which of these word, for those instruc- is. nificant bit of the 

events triggers' tions controlled· by PC, significand and is 

the underflow otherwise. to extended apparent only to 

exception precision). the exception 

depends on handler. 

whether the 
underflow 
exception is 
masked. 

Exception There is no difference When the denor- None, but some Operational 
Precedence in the precedence of mal exception is unneeded nor- improvement. 

the denormal excep- not masked, it malization of de-
tion, whether it be takes normal operands 
masked or not. precedence over is prevented on 

all other the i486 
exceptions. CPU/387 NPX. 
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25.2.2 Tag, Status, and Control Words 

Difference Description Reason 
Issue Impact on for the i486T~ CPU/387™ NPX 80287/8087 Software 

Difference Behavior Behavior 

Bits C3-CO After FINIT, incomplete After FINIT, in- None. Upgrade, to pro-
of Status FPREM, and hardware complete FPREM, vide consistent 
Word reset, these bits are and hardware state after reset. 

set to zero. reset, the 80287/ 
8087 leaves 
these bits intact 
(they contain the 
prior value). 

Bit C2 of Bit 1 0 (C2) serves as This bit is unde- None. Programs Upgrade to allow 
Status an incomplete bit for fined for FPTAN. don't check C2 fast checking of 
Word FPTAN. after FPTAN. operand range. 

Infinity Only affine closure is Both affine and Software that re- IEEE Standard 
Control supported. Bit 12 re- projective clo- quires projective 754 compatibility. 

mains programmable sures are sup- infinity arithmetic 
but has no effect on ported. After may give different 
operation. RESET, the de- results. 

fault value in the 
control word is 
projective. 

Status When an invalid- When an invalid- None. Existing Upgrade and per-
Word Bit 6 operation exception operation excep- exception han- formance 
for Stack occurs due to stack tion occurs due dlers need not improvement. 
Fault overflow or underflow, to stack overflow change, but may 

not only is bit 0 (IE) of or underflow, only be upgraded to 
the status word set, bit 0 (IE) of the take advantage of 
but also bit 6 is set to status word is the additional in-
indicate a stack fault set. Bit 6 is formation. Newly 
and bit 9 (C1) speci- RESERVED. written handlers. 
fies overflow or under- will be more ef-
flow. Bit 6 is called SF fective. 
and serves to distin-
guish invalid excep-
tions caused by stack 
overflow/underflow 
from those caused by 
numeric operations. 
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Difference Description Reason 
Issue 

Impact on for the 1486™ CPU/387™ NPX 80287/8087 Software Difference Behavior Behavior 

Tag Word When loading the tag The correspond- Software may not Performance 
word with an FLDENV ing tag is operate correctly improvement. 
or FRSTOR instruction, checked before if it uses FLDENV 
the only interpretations each register ac- or FRSTOR to 
of tag values are cess to determine change tags to 
empty (value 11) and the class of oper- values {other than 
nonempty (values 00, and in the regis- empty) that are 
01, and 10). Subse- ter; the tag is different from ac-
quent operations on a updated after ev- tual register 
nonempty register al- ery change to a contents. 
ways examine the register so that 
value in the register, the tag always 
not the value in its tag. reflects the most 
The FSTENV and recent status of 
FSAVE instructions the register. Pro-
examine the non empty grammers can 
registers and put the load a tag with a 
correct values in the value that dis-
tags before storing the agrees with the 
tag word. contents of a reg-

ister (for example, 
the register con-
tains valid con-
tents, but the tag 
says special; the 
80287/8087, in 
this case, honors 
the tag and does 
not examine the 
register). 

25.2.3 Instruction Set 

Difference Description Reason 
Issue 

Impact on for the 1486™ CPU/387™ NPX 80287/8087 Software Difference Behavior Behavior 

FBSTP, FDIV, Operation on denormal Operation on The exception IEEE Standard 
FIST{P), operand is supported. denormal oper- handler for un- 754 compatibil-
FPREM, An underflow excep- and raises derflow may re- ity. 
FSQRT tion can occur. invalid-operation quire change 

exception. Un- only if it gives 
derflow is not different treat-
possible. ment to different 

opcodes. Possi-
bly fewer invalid-
operation 
exceptions will 
occur. 
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Difference Description Reason 
Issue Impact on 

for the 1486™ CPUI387™ NPX 80287/8087 Software· 
Difference Behavior Behavior 

FSCALE The range of the scal- The range of the Different result ' Upgrade. 
ing operand is not re- scaling operand when 0 < 1 

stricted. If 0 < 1 ST(1) is restricted. If 0 ST(1) 1 < 1. 
1 < 1, the scaling fac- < 1 ST(1) 1 < 1, 
tor is zero; therefore, the result is un-
ST(O) remains defined and· no 
unchanged. If the exception is 
rounded result is not signaled. 
exact or if· there was a 
loss of accuracy 
(masked underflow), 
the precision excep-
tion is signaled. 

FPREM1 Performs partial re- Does not exist. . None. IEEE Standard 
mainder according to 754 compatibility 
IEEE Standard 754 " and upgrade. 
standard. 

FPREM Bits CO, C3, C1 of the The quotient bits None. Software ' Upgrade. 
status word, correctly are incorrect that works 
reflect the three low- when performing around the bug 
order bits of the quo- a reduction of should not be 
tient. 64N+M when N affected. 

~ 1 and M=1 
or M=2. 

FUCOM, Perform unordered Do not exist. None. IEEE Standard 
FUCOMP, compare according to 754 compatibil-
FUCOMPP IEEE Standard 754 ity. 

standard. 

FPTAN Range of operand is Range of oper- None. Upgrade. 
much less restricted (I and is restricted 
ST(O) 1 < 263); (I ST(O) 1 < 'TTl 
reduces operand inter- 4); operand 
nally using an internal must be 
'TT/4 constant that is reduced to 
more accurate. range using 

FPREM. 

After a stack overflow After a stack IEEE Standard 
when the invalid- overflow when 754 compatibil-
operation exception is the invalid- ity. 
masked, both ST and operation excep-
ST(1) contain quiet tion is masked, I 

NaNs. the original op-
erand remains 
unchanged, but 
is pushed to 
ST(1). 
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Difference Description Reason 
Issue Impact on for the 1486™ CPU/387'M NPX 80287/8087 Software Difference Behavior Behavior 

FSIN, FCaS, Perform three common Do not exist. None. Upgrade. 
FSINCaS trigonometric 

functions. 

FPATAN Range of operands is 1 ST(O) 1 must be None. Upgrade. 
unrestricted. smaller than 

1 ST(1) I· 

F2XM1 Wider range of oper- The supported None. Upgrade. 
and (-1 sST(O)s + 1). operand range 

is OsST(O)sO.5. 

FLD Does not report denor- Reports denor- None. Upgrade. 
extended-real mal exception because mal exception. 

the instruction is not 
arithmetic. 

FXTRACT If the operand is zero, If the operand is None. Software IEEE 754 rec-
the zero-divide excep- zero, ST(1) is usually ommen dation to 
tion is reported and zero and no ex- bypasses zero fully support the 
ST(1) is - 00. If the ception is re- and 00. 10gb function. 
operand is + 00, no ported. If the 
exception is reported. operand is + 00 , 

the invalid-
operation excep-
tion is reported. 

FLD constant Rounding control is in Rounding con- Results are the IEEE 754 
effect. trol is not in ef- same as for the recommendations. 

fect. 80287/8087 
when rounding 
control is set to 
round to zero, 
round to - 00 , 

and (in the case 
of FLDL2T) 
round to near-
est. Results are 
different by one 
in the least sig-
nificant bit of the 
significand in 
round to + 00 

and round to 
nearest 
(excluding 
FLDL2T). FLD1 
and FLDZ are 
always the 
same. 
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• +_I® In'tJI COMPATIBILITY WITH THE 387™, 80287 AND 8087 MATH COPROCESSORS 

Difference Description 
Impact on Reason 

Issue for the 1486'M CPU/387'M NPX 80287/8087 Software , Difference Behavior " Behavior 

FLD Loading a denormal Loading a de- If the next in- IEEE Standard 
single/double causes the number to normal causes struction is FX- 754 compatibil-
precision be converted to ex- the number to TRACT or ity. 

tended precision (be- be converted to FXAM, the i486 
cause it is put on the an unnormal. CPU/387 NPX 
stack). will give a differ-

ent result than 
the 80287/8087. 

FLD When loading a signal- Does not raise The exception IEEE Standard 
single/double ing NaN, raises invalid an exception handler needs 754 compatibil-
precision exception. when loading a to be updated to ity .. 

signaling NaN. handle this ' " 

condition. 

FSETPM Treated as FNOP (no Informs the None. The i486/386 
operation). 80287 that the 'CPU handles all 

system is in pro- addressing and 
tected mode. exception-

pointer informa-
tion, whether in 
protected mode 
or not. 

FXAM Encountering an May generate None. 'Upgrade, to pro-
empty register will not these combina- vide repeatable 
generate combinations tions, among results. 
of C3-CO equal to others. 
1101 or 1111. 

All May generate different Round-up bit of None. Upgrade, to sig-
Transcendental : results in round-up bit status word is nal rounding 
Instructions of status word. undefined for status. 

these 
instructions. 

25.3 DIFFERENCES FROM 8086/8087 SYSTEMS 

The i486 processor operating in real-address mode will execute 8087 programs without 
major modification. However, because of differences in the handling of numeric excep­
tions between the i486 processor and the 8087 NPX, exception-handling routines may 
need to be changed. This section provides details showing how 8087 programs can be 
ported to the i486 processor. 

1. The 8087 requires an interrupt controller (8259A) to interrupt the CPU when an 
unmasked exception occurs. Therefore, any interrupt-con troller-oriented instruc­
tions in numeric exception handlers for the 8087 should be deleted. 
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2. The 8087 instructions FENI/FNENI and FDISI/FNDISI perform no useful function 
in the i486 processor. If the i486 processor encounters one of these opcodes in its 
instruction stream, the instruction will effectively be ignored - none of the i486 pro­
cessor internal states will be updated. While 8087 code containing these instructions 
may be executed on the i486 processor, it is unlikely that the exception-handling 
routines containing these instructions will be completely portable. 

3. In real mode and protected mode (not including virtual 8086 mode), interrupt vector 
16 must point to the numeric exception handling routine. In virtual 8086 mode, the 
V86 monitor can be programmed to accommodate a different location of the inter­
rupt vector for numeric exceptions. 

4. The ESC instruction address saved in the i486 processor includes any leading pre­
fixes before the ESC opcode. The corresponding address saved in the 8086/8087 
does not include leading prefixes. 

5. In protected mode (not including virtual 8086 mode), the format of the i486 proces­
sor saved instruction and address pointers is different than for the 8087. The instruc­
tion opcode is not saved in protected mode - exception handlers will have to retrieve 
the opcode from memory if needed. 

6. Interrupt 7 will occur in the i486 processor when executing ESC instructions with 
either TS (task switched) or EM (emulation) of the MSW set (TS = 1 or EM = 1). If 
TS is set, then a WAIT instruction will also cause interrupt 7. An exception handler 
should be included in i486 processor code to handle these situations. 

7. Interrupt 13 will occur if the starting address of a numeric operand falls outside a 
segment's size. An exception handler should be included to report these program­
ming errors. 

8. Except for the FPU control instructions, all of the i486 processor numeric instruc­
tions are automatically synchronized - the processor automatically waits until all op­
erands have been transferred before executing the next ESC instruction. No explicit 
WAIT instructions are required to assure this synchronization. For the 8087 used 
with 8086 and 8088 processors, explicit WAITs are required before each numeric 
instruction to ensure synchronization. Although 8087 programs having explicit 
WAIT instructions will execute perfectly on the i486 processor without reassembly, 
these WAIT instructions are unnecessary. 

9. Since the i486 processor does not require WAIT instructions before each numeric 
instruction, the ASM386/486 assembler does not automatically generate these 
WAIT instructions. The ASM86 assembler, however, automatically precedes every 
ESC instruction with a WAIT instruction. Although numeric routines generated 
using the ASM86 assembler will generally execute correctly on the i486 processor, 
reassembly using ASM386/486 may result in a more compact code image and faster 
execution. 

The control instructions for the i486 FPU can be coded using either a WAIT or 
No-WAIT form of mnemonic. The WAIT forms of these instructions cause 
ASM386/486 to precede the ESC instruction with a WAIT instruction, in the iden­
tical manner as does ASM86. 

10. The address of a memory operand stored by FSAVE or FSTENV is undefined if the 
previous ESC instruction did not refer to memory. 

25-11 



• +_I® In-e- COMPATIBILITY WITH THE 387™, 80287 AND 8087 MATH COPROCESSORS 

11. Because the i486 processor automatically normalizes denormal numbers when pos­
sible, an 8087 program that uses the denormalexception solely to normalize denor­
mal operands can run on an i486 processor by masking thedenormal exception. The 
8087 denormal exception handler would not be used by the i486 processor in this 
case. A numerics program runs faster when the i486 processor performs normaliza­
tion of denormal operands. 
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CHAPTER 26 
INSTRUCTION SET 

This chapter presents instructions for the i486 ™ processor in alphabetical order. For 
each instruction, the forms are given for each operand combination, including object 
code produced, operands required, execution time, and a description. For each instruc­
tion, there is an operational description and a summary of exceptions generated. 

26.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES 

When executing an instruction, the i486 processor can address memory using either 16 
or 32-bit addresses. Consequently, each instruction that uses memory addresses has as­
sociated with it an address-size attribute of either 16 or 32 bits. The use of 16-bit ad­
dresses implies both the use of 16-bit displacements in instructions and the generation of 
16-bit address offsets (segment relative addresses) as the result of the effective address 
calculations. 32-bit addresses imply the use of 32-bit displacements and the generation of 
32-bit address offsets. Similarly, an instruction that accesses words (16 bits) or double­
words (32 bits) has an operand-size attribute of either 16 or 32 bits. 

The attributes are determined by a combination of defaults, instruction prefixes, and 
(for programs executing in protected mode) size-specification bits in segment 
descriptors. 

26.1.1 Default Segment Attribute 

For progrqms running in protected mode, the D bit in executable-segment descriptors 
specifies the default attribute for both address size and operand size. These default 
attributes apply to the execution of all instructions in the segment. A clear D bit sets the 
default address size and operand size to 16 bits; a set D bit, to 32 bits. 

Programs that execute in real mode or virtual-8086 mode have 16-bit addresses and 
operands by default. 

26.1.2 Operand-Size and Address-Size Instruction Prefixes 

The internal encoding of an instruction can include two byte-long prefixes: the address­
size prefix, 67H, and the operand-size prefix, 66H. (A later section, "Instruction 
Format," shows the position of the prefixes in an instruction's encoding.) These prefixes 
override the default segment attributes for the instruction that follows. Table 26-1 shows 
the effect of each possible combination of defaults and overrides. 
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Table 26-1. Effective Size AHributes 

Segment Default D = ... 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N V V N N V V 

Address-Size Prefix 67H N V N V N V N Y 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16 

V = Yes, this instruction prefix is present 
N = No, this instruction prefix is not present 

26.1.3 Address-Size Attribute for Stack 

Instructions that use the stack implicitly (for example: POP EAX) also have a stack 
address-size attribute of either 16 or 32 bits. Instructions with a stack address-size 
attribute of 16 use the 16-bit SP stack pointer register; instructions with a stack address­
size attribute of 32 bits use the 32-bitESP register to form the address of the top of the 
stack. 

The stack address-size attribute is controlled by the B bit of the data-segment descriptor 
in the SS register. A value of zero in the B bit selects a stack address-size attribute of 16; 
a value of one selects a stack address-size attribute of 32. 

26.2 INSTRUCTION FORMAT 

All instruction encodings are subsets of the general instruction format shown in 
Figure 26-1. Instructions consist of optional instruction prefixes, one or two primary 
opcode bytes, possibly an address specifier consisting of the ModR/M byte and the SIB 
(Scale Index Base) byte, a displacement, if required, and an immediate data field, if 
required. . 

INSTRUCTION. I ADDRESS· I OPERAND· I SEGMENT 
PREFIX SIZE PREFIX SIZE PREFIX OVERRIDE 

o OR 1 0 OR 1 0 OR 1 0 OR 1 
~---------------------------

NUMBER OF BYTES 

OPCODE I MODR/M I SIB I DISPLACEMENT I IMMEDIATE 

1 OR 2 o OR 1 0 OR 1 0,1,2 OR 4 0,1,2 OR 4 

~--~--~-----------------NUMBER OF BYTES 

240486i109 

Figure 26-1. i486™ Processor Instruction Format 
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Smaller encoding fields can be defined within the primary opcode or opcodes. These 
fields define the direction of the operation, the size of the displacements, the register 
encoding, or sign extension; encoding fields vary depending on the class of operation. 

Most instructions that can refer to an operand in memory have an addressing form byte 
following the primary opcode byte(s). This byte, called the ModR/M byte, specifies the 
address form to be used. Certain encodings of the ModR/M byte indicate a second 
addressing byte, the SIB (Scale Index Base) byte, which follows the ModR/M byte and is 
required to fully specify the addressing form. 

Addressing forms can include a displacement immediately following either the ModR/M 
or SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits. 

If the instruction specifies an immediate operand, the immediate operand always follows 
any displacement bytes. The immediate operand, if specified, is always the last field of 
the instruction. 

The following are the allowable instruction prefix codes: 

F3H REP prefix (used only with string instructions) 
F3H REPE/REPZ prefix (used only with string instructions) 
F2H REPNE/REPNZ prefix (used only with string instructions) 
FOH LOCK prefix 

The following are the segment override prefixes: 

2EH CS segment override prefix 
36H SS segment override prefix 
3EH DS segment override prefix 
26H ES segment override prefix 
64H FS segment override prefix 
65H GS segment override prefix 
66H Operand-size override 
67H Address-size override 

26.2.1 ModR/M and SIB Bytes 

The ModR/M and SIB bytes follow the opcode byte(s) in many of the i486 processor 
instructions. They contain the following information: 

• The indexing type or register number to be used in the instruction 

• The register to be used, or more information to select the instruction 

• The base, index, and scale information 

The ModR/M byte contains three fields of information: 

• The mod field, which occupies the two most significant bits of the byte, combines with 
the rim field to form 32 possible values: eight registers and 24 indexing modes. 
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• The reg field, which occupies the next three· bits following the mod field, specifies 
either a register number or three more bits of opcode information. The meaning of 
the reg field is determined by the first (opcode) byte of the instruction. 

• . The rim field, which occupies the three least significant bits of the byte, can specify a 
register· as the location of an operand, or can form part of the addressing-mode 
encoding in combination with the mod field as described above. 

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte. 
The presence of the SIB byte is indicated by certain encodings of the ModR/M byte. The 
SIB byte then includes the following fields: 

• The ss field, which occupies the two most significant bits of the byte, specifies the 
scale factor. 

• The index field, which occupies the next three bits following the ss field and specifies 
the register number of the index register. 

• The base field, which occupies the three least significant bits of the byte, specifies the 
register number of the base register. 

Figure 26-2 shows the formats of the ModR/M and SIB bytes. 

The values and the corresponding addressing forms of the ModR/M and SIB bytes are 
shown in Tables 26-2, 26-3, and 26-4. The 16-bit addressing forms specified by the 
ModR/M byte are in Table 26-2. The 32-bit addressing forms specified by the ModR/M 
byte are in Table 26-3. Table 26-4 shows the 32-bit addressing forms specified by the SIB 
byte. 

MODR/M BYTE 

7 6 5 4 3 2 0 

MOD I REG/OPCODE I RIM 

SIB (SCALE INDEX BASE) ByrE 

7 6 5 4 3 2 0 

SS INDEX BASE 

240486i110 

Figure 26-2. ModR/M and SIB Byte Formats 
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Table 26·2. 16·Bit Addressing Forms with the ModR/M Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(/r) AX CX OX BX SP BP SI 01 

. r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI 
Idigit (Opcode) 0 1 2 3 4 5 6 7 
REG =, 000 001 010 011 100 101 110 111 

Effective Mod RIM Mod RIM Values in Hexadecimal Address 

[BX+SI] 000 00 08 10 18 20 28 30 38 
[BX+OI] 001 01 09 11 19 21 29 31 39 
[BP+SI] 010 02 OA 12 1A 22 2A 32 3A 
[BP+OI] 00 011 03 OB 13 1B 23 2B 33 3B 
[SI] 100 04 OC 14 1C 24 2C 34 3C 
[01] 101 05 00 15 10 25 20 35 3D 
disp16 110 06 OE 16 1E 26 2E 36 3E 
[BX] 111 07 OF 17 1F 27 2F 37 3F 

[BX + SI] + disp8 000 40 48 50 .58 60 68 70 78 
[BX + 01] + disp8 001 41 49 51 59 61 69 71 79 
[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A 
[BP + 01] + disp8 01 011 43 4B 53 5B 63 6B 73 7B 
[SI] + disp8, 100 44 4C 54 5C 64 6C 74 7C 
[01] +disp8 101 45 40 55 50 65 60 75 70 

. [BP] + disp8 110 46 4E 56 5E 66 6E 76 7E 
[BX] +disp8 111 47 4F 57 5F 67 6F 77 7F 

[BX+SI] +disp16 000 80 88 90 98 AO A8 BO B8 
[BX + 01] + disp16 001 81 89 91 99 A1 A9 B1 B9 
[BX + SI] + disp16 010 82 8A 92 9A A2 AA B2 BA 
[BX + 01] + disp16 10 011 83 8B 93 9B A3 AB B3 BB 
[SI] + disp16 100 84 8C 94 9C A4 AC B4 BC 
[01] + disp16 101 85 80 95 90 A5 AD B5 BO 
[BP] + disp16 110 86 8E 96 9E A6 AE B6 BE 
[BX] +disp16 111 87 8F 97 9F A7 AF B7 BF 

EAX/AX/AL 000 CO C8 DO 08 EO E8 FO F8 
ECX/CX/CL 001 C1 C9 01 09 EO E9 F1 F9 
EOX/OX/OL 010 C2 CA 02 OA E2 EA F2 FA 
EBX/BX/BL 11 011 C3 'CB 03 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 DC E4 EC F4 FC 
EBP/BP/CH 101 C5 CD 05 DO E5 ED F5 FO 
ESI/SI/OH 110 C6 CE 06 DE E6 EE F6 FE 
EOI/OI/BH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added 
to the index. disp16 denotes a 16-bit displacement following the ModR/M byte, to be added to the 
index. Default segment register is SS for the effective addresses containing a BP index, OS for 
other effective addresses. 
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Table 26-3. 32-Bit Addressing Forms with the ModR/M Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(1r) AX CX OX BX SP BP SI 01 
r32(1r) EAX ECX EOX EBX ESP EBP ESI EOI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective Mod R/M ModR/M Values in Hexadecimal Address 

[EAX] 000 00 08 10 18 20 28 30 38 
[ECX] 001 01 09 11 19 21 29 31 39 
[EOX] 010 02 OA 12 1A 22 2A 32 3A 
[EBX] 00 011 03 OB 13 1B 23 2B 33 ,3B 
[--][ --] 100 04 OC 14 1C 24 2C 34 3C 
disp32 101 05 00 15 10 25 20 35 30 
[ESI] 110 06 OE 16 1E 26 2E 36 3E 
[EDI] 111 07 OF 17 1F 27 2F 37 3F 

disp8[EAX] 000 40 48 50 58 60 68 70 78 
disp8[ECX] 001 41 49 51 59 61 69 71 . 79 
disp8[EOX] 010 42 4A 52 5A 62 6A 72 7A 
disp8[EPX]; 01 011 43 4B 53 5B 63 6B 73 7B 

. disp8[--][--] 100 44 4C 54 5C 64 6C 74 7C 
disp8[ebp] 101 45 40 55 50 65 60 75 70' 
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E 
disp8[EOI] 111 47 4F 57 5F 67 6F 77 7F 

disp32[EAX] 000 80 88 90 98 AO A8 BO B8 
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9 
disp32[EOX] 010 82 8A 92 9A A2 M B2 BA 
disp32[EBX] 10 011 83 8B 93 9B A3 AB B3 BB 
disp32[--][--] 100 84 8C 94 9C A4 AC B4 BC 
disp32[EBP] 101 85 80 95 90 A5 AO B5 BO 
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE 
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF 

EAX/AX/AL 000 CO C8 00 08 EO E8 FO F8 
ECX/CX/CL 001 C1 C9 01 09 E1 E9 F1 F9 
EOX/DX/OL 010 C2 CA 02 DA E2 EA F2 FA 
EBX/BX/BL 11 011 C3 CB 03 OB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 OC E4 EC F4 FC 
EBP/BP/CH 101 C5 CO 05 00 E5 EO F5 FO 
ESI/SI/OH 110 C6 CE 06 OE E6 EE F6 FE 
EDI/DI/BH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: [--][--] means a SIB follows the ModR/M byte. dlsp8 denotes an 8-bit displacement following the 
SIB byte, to be sign-extended and added to the index. dlsp32 denotes a 32-bit displacement 
following the ModR/M byute, to be added to the index. 
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Table 26-4. 32-Bit Addressing Forms with the SIB Byte 

r32 EAX ECX EOX EBX ESP [*] ESI EOI 
Base = 0 1 2 3 4 5 6 7 
Base = 000 001 010 011 100 101 110 111 

Scaled Index SS Index ModR/M Values in Hexadecimal 

[EAX] 000 00 01 02 03 04 05 06 07 
[ECX] 001 08 09 OA OB OC 00 OE OF 
[EOX] 010 10 11 12 13 14 15 16 17 
[EBX] 00 011 18 19 1A 1B 1C 10 1E 1F 
none 100 20 21 22 23 24 25 26 27 
[EBP] 101 28 29 2A 2B 2C 20 2E 2F 
[ESI] " 110 30 31 32 33 34 35 36 37 
[EOI] 111 38 39 3A 3B 3C 30 3E 3F 

[EAX*2] 000 40 41 42 43 44 45 46 47 
[ECX*2] 001 48 49 4A 4B 4C 40 4E 4F 
[ECX*2] 010 50 51 52 53 54 55 56 57 
[EBX*2] 01 011 58 59 5A 5B 5C 50 5E 5F 
none 100 60 61 62 63 64 65 66 67 
[EBP*2] 101 68 69 6A 6B 6C 60 6E 6F 
[ESI*2] 110 70 71 72 73 74 75 76 77 
[EOI*2] 111 78 79 7A 7B 7C 70 7E 7F 

[EAX*4] 000 80 81 82 83 84 85 86 87 
[ECX*4] 001 88 89 8A 8B 8C 80 8E 8F 
[EOX*4] 010 90 91 92 93 94 95 96 97 
[EBX*4] 10 011 98 89 9A 9B 9C 90 9E 9F 
none 100 AO A1 A2 A3 A4 A5 A6 A7 
[EBP*4] 101 A8 A9 AA AB AC AO AE AF 
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7 
[EOI*4] 111 B8 B9 BA BB BC BO BE BF 

[EAX*8] 000 CO C1 C2 C3 C4 C5 C6 C7 
[ECX*8] 001 C8 C9 CA CB CC CO CE CF 
[EOX*8] 010 00 01 02 03 04 05 06 07 
[EBX*8] 11 011 08 09 OA OB OC 00 OE OF 
none 100 EO E1 E2 E3 E4 E5 E6 E7 
[EBP*8] 101 E8 E9 EA EB EC EO EE EF 
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7 
[EOI*8] 111 F8" F9 FA FB FC FO FE FF 

NOTES: [*] means a disp32 with no base if MOO is 00, [ESP] otherwise. This provides the following 
addressing modes: 
disp32[index] 
disp8[EBP] [index] 
disp32 [EBP] [index] 

(MOO=OO) 
(MOO=01) 
(MOO=10) 
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26.2.2 How to Read the Instruction Set Pages 

The following is an example of the· format used for each i486 processor instruction 
description in this chapter: 

CMC -Complement Carry Flag 

Opcode 

F5 

Instruction 

CMC 

Clocks 

2 

Description 

Complement carry flag 

The above table is followed by paragraphs labelled "Operation," "Description," "Flags 
Affected," "Protected Mode Exceptions," "Real Address Mode Exceptions," and, 
optionally, "Notes." The following sections explain the notational conventions and 
abbreviations used in these paragraphs of the instruction descriptions. 

26.2.2.1 OPCODECOLUMN 

The "Opcode" column gives the complete object code produced for each form of the 
. instruction. When possible, the codes are given as hexadecimal bytes, in the same order 
in which they appear in memory. Definitions of entries other than hexadecimal bytes are 
as follows: 

Idigit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses 
only the rim (register or memory) operand. The reg field contains the digit that provides 
an extension to the instruction's opcode. ' 

Ir: indicates that the ModR/M byte of the instruction contains both a register operand 
and an rim operand. 

cb, cw, cd, cp: a I-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the 
opcode that is used to specify a code offset and possibly a new value for the code 
segment register. 

ib, iw, id: a I-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction 
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines 
if the operand is a signed value. All words and doublewords are given with the low-order 
byte first. 
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+ rb, + nv, + rd: a register code, from 0 through 7, added to the hexadecimal byte given 
at the left of the plus sign to form a single opcode byte. The codes are-

rb rw rd 
AL 0 AX 0 EAX 0 
CL 1 CX 1 ECX 1 
DL 2 DX 2 EDX = 2 
BL 3 BX 3 EBX 3 

rb rw rd 
AH 4 SP 4 ESP 4 
CH 5 BP 5 EBP 5 
DH 6 SI 6 ESI 6 
BH 7 DI 7 EDI 7 

+ i: used in floating-point instructions when one of the operands is ST(i) from the FPU 
register stack. The number i (which can range from 0 to 7) is added to the hexadecimal 
byte given at the left of the plus sign to form a single opcode byte. ' 

26.2.2.2 INSTRUCTION COLUMN 

The "Instruction" column gives the syntax of the instruction statement as it would 
appear in an ASM386 program. The following is a list of the symbols used to represent 
operands in the instruction statements: 

re18: a relative address in the range from 128 bytes before the end of the instruction to 
127 bytes after the end of the instruction. 

re116, re132: a relative address within the same code segment as the instruction assem­
bled. re116 applies to instructions with an operand-size attribute of 16 bits; re132 applies 
to instructions with an operand-size attribute of 32 bits. 

ptrI6:16, ptrI6:32: a far pointer, typically in a code segment different from that of the 
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The 
value to the left of the colon is a 16-bit selector or value destined for the code segment 
register. The value to the right corresponds to the offset within the destination segment. 
ptr16:16 is used when the instruction's operand-size attribute is 16 bits; ptr16:32 is used 
with the 32-bit attribute. 

r8: one of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH. 

r16: one of the ~ord registers AX, CX, DX, BX, SP,BP, SI, or DI. 

r32: one of the doubleword registers EAX, ECX, ED X, EBX, ESP, EBP, ESI, or EDI. 

imm8: an immediate byte value. imm8 is a signed' number between - 128 and + 127 
inclusive. For instructions in which imm8 is combined with a word or doubleword oper­
and, the immediate value is sign-extended to form a word or doubleword. The upper 
byte of the word is filled with the topmost bit of the immediate value. 
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imm16: an immediate word value used for instructions whose operand-size attribute is 
16 bits. This is a number between - 32768 and + 32767 inclusive. 

imm32: an immediate doubleword value used for instructions whose operand-size at­
tribute is 32-bits. It allows the use of a number between + 2147483647 and - 2147483648 
inclusive. 

rimS: a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL, 
AH, BH, CH, DH), or a byte from memory. 

r/m16: a word register or memory operand used for instructions whose operand-size 
attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, D~. The 
contents of memory are found at the address provided by the effective address 
computation. 

f/m32: a doubleword register 'or memory operand used for 'instructions whose operand­
size attribute is 32-bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, 
EBP, ESI, EDI. The contents of memory are found at the address provided by the 
effective address computation. . 

mS: a memory byte addressed by DS:SI or ES:DI (used only by string in,structions). 

m16: a memory word addressed by DS:SI or ES:DI (used only bystring instructions). 

m32: a memory doubleword addressed by DS:SI or ES:DI (used only' by string 
instructions ). 

m16:16, m16:32:, a memory operand contai~ing a far pointer composed of two numbers. 
The number to the left of the colon corresponds to the pointer's segment selector. The 
number to the right corresponds to its offset. 

m16&32, m16&16, m32&32:' a memory operand consisting of data item pairs whose sizes 
are indicated on the left and the right side of the ampersand. All memory, addressing 
modesare allowed.,m16&16 andm32&32 operands are used by the BOUND instruction 
to provide an operand containing an upper and lower bounds for array indices. m16&32 
is used by LIDT and LGDT to provide a word with which to load: the limit field, and a 
doubleword with which to load the base field of the corresponding Global and Interrupt 
Descriptor Table Registers. 

moffsS, moffs16, moffs32: (memory offset)' a simple memory variable of type BYTE, 
WORD, or DWORD used by some variants of the MOV instruction. The actual address 
is given by a simple offset relative to the segment base. No ModRIM byte. is used in the 
instruction. The number shown with moffs indicates its size, which is determined by the 
address-size attribute of the, instruction. 

Sreg: a segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, 
DS=3, FS=4, and GS=5. 
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m32real, m64real, m80real: (respectively) single-, double-, and extended-real floating­
point operands in memory. 

m16int, m32int, m64int: (respectively) word-, short-, and long-integer floating-point op­
erands in memory. 

mNbyte: N-byte floating-point operand in memory. 

ST or ST(O): Top element of the FPU register stack. 

ST(i): ith element from the top of the FPU register stack. (i = 0 .. 7) 

26.2.2.3 CLOCKS COLUMN 

The "Clocks" column gives the approximate number of clock 'cycles the instruction takes 
to execute. The clock count calculations makes the following assumptions: 

• Data and instruction accesses hit in the cache. 

• The target of a jump instruction is in the cache. 

• No invalidate cycles contend with the instruction for use of the cache. 

• Page translation hits in the TLB . 

• ' , Memory operands are aligned. 

• Effective address calculations use one base register and no index register, and the 
base register is not the destination register of the preceding instruction. 

• Displacement and immediate. are not used together. 

• No exceptions are detected during execution. 

• There are no write-buffer delays. 

For a discussion of the performance penalties incurred when these conditions do not 
hold, see Appendix E. 

, The following symbols are used in the clock count specifications: 

• n, which represents a number of repe,titions. 

• m, which represents the number of components in the next instruction executed, 
where the entire displacement (if any) counts as one component, the entire immedi­
ate data (if any) counts as one component, and every other byte of the instruction and 
prefix(es) each counts as 'one component. 

,. pm =, . a clock count that applies when the instruction executes in Protected Mode. 
pm = is not given when the clock counts are the same for Protected and Real Address 
Modes. 
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When an exception occurs during the execution of an· instruction and the exception 
handler is in another task, the instruction execution time is increased by the number of 
clocks to effect a task switch. This parameter depends on several factors: 

• The type of TSS used to represent the new task (i486 CPU TSS or 80286 TSS). 

• Whether the current task is in V86 mode. 

• Whether the new task is in V86 mode. 

• Whether accesses hit in the cache. 

• Whether a task gate on an interrupt/trap gate is used. 

Table 26-5 summarizes the task switch times for exceptions, assuming cache hits and the 
use of task gates. For full details, see Appendix E. 

26.2.2.4 DESCRIPTION COLUMN 

The "Description" column following the "Clocks" column briefly explains the various 
forms of the instruction. The "Operation" and "Description" sections contain more 
details of the instruction's operation. 

26.2.2.5 OPERATION 

The "Operation" section contains an algorithmic description of the instruction which 
uses a notation similar to the Algol or Pascal language. The algorithms are composed of 
the following elements: 

Comments are enclosed within the symbol pairs "(*" and "*)". 

Compound statements are enclosed between the keywords of the "if' statement (IF, 
THEN, ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement 
(CASE ... OF, ESAC). 

A register name implies the contents of the register. A register name enclosed in brack­
ets implies the contents of the location whose address is contained in that register. For 
example, ES:[DI] indicates the contents of the location whose ES segment relative ad­
dress is in register DI. [SI] indicates the contents of the address contained in register SI 
relative to SI's default segment (DS) or overridden segment. 

Table 26-5. Task Switch Times for Exceptions 

New Task 
I 

Old Task 
to 1486™ CPU TSS to 80286 TSS to VM TSS 

VM/i486 CPU/80286 TSS 199 180 177 
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Brackets also used for memory operands, where they mean that the contents of the 
memory location is a segment-relative offset. For example, [SRC] indicates that the 
contents of the source operand is a segment-relative offset. 

A ~ B; indicates that the value of B is assigned to A. 

The symbols =, < >, ~, and :5 are relational operators used to compare two values, 
meaning equal, not equal, greater or equal, less or equal, respectively. A relational ex­
pression such as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE. 

The following identifiers are used in the algorithmic descriptions: 

• OperandSize represents the operand-size attribute of the instruction, which is either 
16 or 32 bits. AddressSize represents the address-size attribute, which is either 16 or 
32 bits. For example, 
IF instruction = CMPSW 
THEN OperandSize ~ 16; 
ELSE 

FI; 

IF instruction = CMPSD 
THEN OperandSize ~ 32; 
FI; 

indicates that the operand-size attribute depends on the form of the CMPS instruc­
tion used. Refer to the explanation of address-size and operand-size attributes at the 
beginning of this chapter for general guidelines on how these attributes are 
determined. 

• StackAddrSize represents the stack address-size attribute associated with the instruc­
tion, which has a value of 16 or 32 bits, as explained earlier in the chapter. 

• SRC represents the source operand. When there are two operands, SRC is the one on 
the right. 

• DEST represents the destination operand. When there are two operands, DEST is 
the one on the left. 

• LeftSRC, RightSRC distinguishes between two operands when both are source 
operands. 

• . eSP represents either the SP register or the ESP register depending on the setting of 
theB-bit for the current stack segment. . 

The following functions are used in the algorithmic descriptions: 

• Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding 
the uppermost bits as needed. 

• Addr(operand) returns the effective address of the operand (the result of the effec­
tive address calculation prior to adding the segment base). 

• ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the 
instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10 
converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the 
value passed to ZeroExtend and the operand-size attribute are the same size, 
Zero Extend returns the value unaltered. 
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• SignExtend(value) returns a value sign-extended to the operand-size attribute of the 
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the 
value -10 converts the byte from F6H to a doubleword with hexadecimal value 
FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are 
the same size, SignExtend returns the value unaltered., 

• Push(value) pushes a value onto the stack. The number of bytes pushed is deter­
mined by the operand-size attribute of the instruction. The action of Push is as 
follows: 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

SP ~ SP - 2; 
SS:[SP] ~ value; (* 2 bytes assigned starting at 

byte address in SP *) 
ELSE (* OperandSize = 32 *) 

FI; 

SP ~ SP - 4; 
SS: [SP] ~ value; (* 4 bytes assigned starting at 

byte address in SP *) 

ELSE (* StackAddrSize = 32 *) 
IF OperandSize' = 16 
THEN 

FI; 

ESP ~ ESP- 2; 
SS: [ESP] ~ value; (* 2 bytes assigned starting at 

byte address in ESP*) 
ELSE (* OperandSize = 32 *) 

FI; 

ESP ~ ESP - 4; 
SS: [ESP] ~ value; (* 4 bytes assigned starting at 

byte address in ESP*) 

• Pop (value) removes the value from the top of the stack and returns it. The statement 
EAX ~ pope ); assigns to EAX the 32-bit value that Pop took from the top of the 
stack: Pop will return either a word or a d6ubleword depending on the operand-size 
attribute. The action of Pop is as follows: 
IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

ret val ~ SS:[SP]; (* 2-byte value *) 
SP ~ SP + 2; 

ELSE (* OperandSize = 32 *) 
ret val ~ SS:[SP]; (* 4-byte value *) 
SP ~ SP + 4; , 

FI; 
ELSE (* StackAddrSize = 32 *) 
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IF OperandSize = 16 
THEN 

ret val ~ SS: [ESP]; (* 2 bytes value *) 
ESP ~ ESP + 2; 

ELSE (* OperandSize = 32 *) 

FI; 

ret val ~ SS: [ESP]; (* 4 bytes value *) 
ESP ~ ESP + 4; . 

RETURN(ret val); (*returns a word or doubleword*) 

Pop ST is used on floating-point instruction pages to mean pop the FPU register stack. 

• Bit[BitBase, BitOffset] returns the address of a bit within a bit string, which is a 
sequence of bits in memory or a register. Bits are numbered from low-order to high­
order within registers and within memory bytes. In memory, the two bytes of a word 
are stored with the low-order byte at the lower address. 

If the base operand is a register, the offset can be in the range 0 .. 31. This offset 
addresses a bit within the indicated register. An example, 'BIT[EAX, 21]' is illus­
trated in Figure 26-3. 

If BitBase is a memory address, BitOffset can range from - 2 gigabits to 2 gigabits. 
The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase 
+ (BitOffset DIV 8)), where DIV is signed division with rounding towards negative 
infinity, and MOD returns a positive number. This is illustrated in Figure 26-4. 

• I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O 
permission bitmap and other factors. This function is defined as follows: 
IF TSS type is 80286 THEN RETURN FALSE; FI; 
Ptr ~ [TSS + 66]; (* fetch bitmap pointer *) 
BitStringAddr ~ SHR (I-O-Address, 3) + Ptr; . 
MaskShift ~ I-O-Address AND 7; 
CASE width OF: 

BYTE: nBitMask ~ 1; 
WORD: nBitMask ~ 3; 
DWORD: nBitMask ~ 15; 

31 21 

. I I I 
t BITOFFSET = 21 

Figure 26-3. Bit Offset for BIT[EAX, 21] 
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BIT INDEXING (POSITIVE OFFSET) 

76543 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 ~ 

I I ' I 
BITBASE + 1 I BITBASE I BITBASE - 1 

L-OFFSET = - 13-----.J 

BIT INDEXING (NEGATIVE OFFSET) , 

7.6 54 3 2,1 0 7 6 5 4 3 2 1 0 7 6 5,4 3 2 1 0 

I I I 
BITBASE I BITBASE - ·1 .'" I ,'BITBASE ~ 2 

LOFFS'ET = -11-.1 ' 

Figure 26-4. Memory Bit Indexing 

ESAC; 
mask ~ SHL (nBitMask, MaskShift); 
CheckString ~ [BitStringAddr] AND mask; 
IF CheckString = 0 . 
THEN RETURN (TRUE); 
ELSE RETURN (FALSE); 
FI; 

, • Switch-Tasks is the task switching function described 'in Chapter 7. 

26.2.2.6 DESCRIPTION 

240486i112 

The "Description" section contains further explanation of the instruction's operation. 

26.2.2.7 FLAGS AFFECTED 

The "Flags Affected" section lists the flags that are affected by the instruction, as 
,:;: .~,{e.llows: 

.11'\"'" '\,' 
~\~\Irrik~~::~;t; If a flag is always c1eare.d or a~ways set ~y th.e instru.ction, the value. is given (0 or 1) 
~~:~',{,,,' after the flag name. ArIthmetic and logIcal mstructIons usually assIgn values to the 

status flags in the uniform manner described in Appendix C. Nonconventional assign­
ments are described in the "Openltion" seCtion. 

• The values of flags listed as "undefined" may be changed by the instruction in an 
indeterminate manner. 

All flags not listed are unchanged by the instruction. 
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The floating-point instruction pages have a section called "FPU Flags Affected," which 
tells how each instruction can affect the four condition code bits of the FPU status word. 
These pages also have a section called "Numeric Exceptions," which lists the exception 
flags of the FPU status word that each instruction can set. 

26.2.2.8 PROTECTED MODE EXCEPTIONS 

This section lists the exceptions that can occur when the instruction is executed in 
protected mode. The exception names are a pound sign (#) followed by two letters and 
an optional error code in parentheses. For example, #GP(O) denotes a general protec­
tion exception with an error code of O. Table 26-6 associates each two-letter name with 
the corresponding interrupt number. 

Chapter 9 describes the exceptions and the i486 processor state upon entry to the 
exception. 

Application programmers should consult the documentation provided with their operat­
ing systems to determine the actions taken when exceptions occur. 

26.2.2.9 REAL ADDRESS MODE EXCEPTIONS 

Because less error checking is performed by the i486 processor in Real Address Mode, 
this mode has fewer exception conditions. Refer to Chapter 22 for further information 
on these exceptions. 

26.2.2.10 VIRTUAL-8086 MODE EXCEPTIONS 

Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086 
Mode exceptions are similar to those for the 8086 processor, but there are some differ­
ences. Refer to Chapter 23 for details. 

Table 26-6. Exceptions 

Mnemonic Interrupt Description 

#UD 6 Invalid opcode 

#NM 7 Device not available 

#DF 8 Doubel fault 

#TS Invalid TSS 
.. 

10 .. I 

; . 

#NP 11 Segment or gate not present 
>1 . 

#SS 12 Stack fault 

#GP 13 General protection fault 

#PF 14 Page fault 

#MF 16 Floating-point error 

#AC 17 Alignment check 
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AAA - ASCII Adjust after Addition 

Opcode 

37 

Operation 

Instruction 

AAA 

Clocks' 

3 

IF ((AL'AND OFH) > '9) OR (AF = 1) 
THEN . 

AL ~ (AL + 6) AND OFH; 
AH'~ AH + 1; 
AF ~ 1; 
CF ~ 1; 

ELSE 
CF~O; 

AF~O; 

FI; 

Description 

Description 

ASCII adjust AL after. addition 

Execute the AAA instruction only following an ADD instruction that leaves a byte result 
in the AL register. The lower nibbles of the operands of the ADD instruction should ,be 
in the range 0 through 9 (BCD digits). In this case, the AAA'instruction adjusts the AI­
register to contain the correct decimal digit result. If the addition produced a decimal 
carry, the AH register is incremented, and the CF and AF flags are set. If there was no 
decimal carry, the CF and AF flags are cleared and the AH register is unchanged.' In 
either case, the AL register is left with its top nibble set to O. To convert the AL register 
to an ASCII result, follow the AAA instruction with ORAL, 30H. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the OF, SF, ZF, aqd PF flags are undefined 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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AAD - ASCII Adjust AX before Division 

Opcode 

05 OA 

Operation 

Instruction 

AAO 

AL ~ AH * 10 + AL; 
AH~O; 

Description 

Clocks 

14 

Description 

ASCII adjust AX before division 

The AAD instruction is used to prepare two unpacked BCD digits (the least-significant 
digit in the AL register, the most-significant digit in theAH' register) for a division 
operation that will yield an unpacked result. This is accomplished by setting the AL 
register to AL + (10 * AH), and then clearing the AH register. The AX register is then 
equal to the binary equivalent of the original unpacked two-digit number.: 

Flags Affected 

The SF, ZF, and PF flags are set according to,the result; the OF, AF, and CF flags are 
undefined 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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AAM - ASCII Adjust AX after Multiply 

Opcode 

D4 OA 

Instruction 

AAM 

Operation 

AH .(,- AL / 10; 
AL .(,- AL MOD 10; 

Description 

Clocks 

15 

Description 

ASCII adjust AX after multiply 

Execute the AAM instruction only after executing a MUL instruction between two un­
packed BCD digits that leaves the result in the AX register. Because the result is less 
than 100, it is contained entirely in the AL register. The AAM instruction unpacks the 
AL result by dividing AL by 10, leaving the quotient (most~significant digit) in the AH 
register and the remainder (least-significant digit) in the AL register. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are 
undefined 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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AAS - ASCII Adjust AL after Subtraction 

Opcode 

3F 

Operation 

Instruction 

AAS 

Clocks 

3 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL ~ AL - 6; 
AL ~ AL AND OFH; 
AH ~ AH - 1; 
AF ~ 1; 
CF~ 1; 

ELSE 
CF~O; 

AF~O; 

FI; 

Description 

Description 

ASCII adjust AL after subtraction 

Execute the AAS instruction only after a SUB instruction that leaves the byte res'ult in 
the AL register. The lower nibbles of the operands of the SUB instruction must have 
been in the range 0 through 9 (BCD digits). In this case, the AAS instruction adjusts the 
AL register so it contains' the correct decimal digit result. If the subtraction produced a 
decimal carry, the' AH register is decremented, and the CF and AF flags are set. If no 
decimal carry' occurred, the CF and AF flags are cleared, and the AH register is un­
changed. In either case, the AL register is left with its top nibble set to O. To convert tI:te 
AL result to an ASCII result, follow the AAS instruction with OR AL, 30H. ' 

Flags Affected 

The AF and CF ,flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the OF, SF,' ZF, and PF flags are undefined 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 
,', , , 

None 
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ADC - Add with Carry 

Opcode 

14 ib 
15 iw 
15 id 
80 /2 ib 
81 /2 iw 
81 /2 id 
83 /2 ib 
83 /2 ib 

10 /r 
11 /r 
11 /r 
12 /r 
13 /r 
13 /r 

Instruction Clocks 

ADC AL,immB 1 
ADC AX,imm16 1 
ADC EAX,imm32 1 
ADC rlmB,immB 1/3 
ADC rlm16,imm16 1/3 
ADC rlm32,imm32 1/3 
ADC rlm16,immB 1/3 
ADC rlm32,immB 1/3 

ADC rlmB,rB 1/3 
ADC rlm16,r16 1/3 
ADC rlm32,r32 1/3 
ADC rB,rlmB 1/2 
ADC r16,rlm16 1/2 
ADC r32,rlm32 1/2 

Operation 

DEST ~ DEST + SRC + CF; 

Description 

INSTRUCTION SET 

Description 

Add with carry immediate byte to AL' 
Add with carry. immediate word to AX 
Add with carry immediate dword to EAX 
Add with carry immediate byte to rim byte 
Add with carry immediate word to rim word 
Add with CF immediate dword to rim dword 
Add with CF sign-extended immediate byte to rim word 
Add with CF sign-extended immediate byte into rim 
dword 
Add with carry byte register to rim byte 
Add with carry word register to rim word 
Add with CF dword register to rim dword 
Add with carry rim byte to byte register 
Add with carry rim word to word register 
Add with CF rim dword to dword register 

The ADC instruction performs an integer addition of the two operands bEST and SRC 
and the carry flag, CF .. The result of the addition is assigned to the first operand 
(DEST), and the flags are set accordingly. The ADC instruction is usually executed as 
part of a multi-byte or multi-word addition operation. When an immediate byte value is 
added to a word or doubl~word operand, the immediate value is first sign-extended to 
the size of the word or doubleword operand. 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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ADD-Add 

Opcode 

04 ib 
05 iw 
05 id 
80 /0 ib 
81 /0 iw 
81 /0 id 
83 /0 ib 
83 /0 ib 
00 /r 
01 /r 
01 /r 
02 /r 
03 /r 
03 /r 

Operation 

Instruction 

ADD AL,imm8 
ADDAX,imm16 
ADD EAX,imm32 
ADD r/m8,imm8 
ADD r/m16,imm16 
ADD r/m32,imm32 
ADD r/m16,imm8 
ADD r/m32,imm8 
ADD r/m8,r8 
ADD r/m16,r16 
ADD r/m32,r32 
ADD r8,r/m8 
ADD r16,r/m16 
ADD r32,r/m32 

DEST ~ DEST + SRC; 

Description 

INSTRUCTION SET 

Clocks 

1 
1 
1 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/2 
1/2 
1/2 

Description 

Add immediate byte to AL 
Add immediate word to AX 
Add immediate dword to EAX 
Add immediate byte to r/m byte 
Add immediate word to r/m word 
Add immediate dword to r/m dword 
Add sign-extended immediate byte to r/m word 
Add sign-extended immediate byte to r/m dword 
Add byte register to r/m byte 
Add word register to r/m word 
Add dword register to r/m dword 
Add r/m byte to byte register 
Add r/m word to word register 
Add r/m dword to dword register 

The ADD instruction performs an integer addition of the two operands (DEST and 
SRC). The result of the addition is assigned to the first operand (DEST), and the flags 
are set accordingly. 

When an immediate byte is added to a word or doubleword operand, the immediate 
value is sign-extended to the size of the word or doubleword operand. 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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AND-Logical AND 

Opcode 

24 ib 
25 iw 
25 id 
80 /4 ib 
81 /4 iw 
81 /4 id 
83 /4 ib 
83 /4 ib 
20/r 
21 /r 
21 /r 
22 /r 
23 /r 
23 /r 

Operation 

Instruction 

AND AL,immB 
AND AX,imm16 
AND EAX,imm32 
AND rlmB,immB 
AND rlm16,imm16 
AND rlm32,imm32 
AND rlm16,immB 
AND rlm32,immB 
AND rlmB,rB 
AND rlm16,r16 
AND rlm32,r32 
AND rB,rlmB 
AND r16,rlm16 
AND r32,rlm32 

DEST ~ DEST AND SRC; 
CF~O; 

OF~O; 

Description 

Clocks .. 

1 " 
1 
1 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/2 
1/2 
1/2 

Description 

AND immediate byte to AL 
AND immediate word to AX 
AND immediate dword to EAX 
AND immediate byte to rim byte 
AND immediate word to rim word 
AND immediate dword to rim dword 
AND sign-extended immediate byte with rim word 
AND sign-extended immediate byte with rlmdword 
AND byte register to rim byte 
AND word register to rim word 
AND dword register to rim dword 
AND rim byte to byte register 
AND rim word to word register 
AND rim dword to dword register 

Each bit of the result of the AND instruction is a 1 if both corresponding bits of the 
operands are 1; otherwise, it becomes a O. 

Flags Affected 

The CF and OF flags are cleared; the PF, SF, and ZF flags are set according to the 
result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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ARPL - Adjust RPL Field of Selector 

Opcode 

63 /r 

Operation 

Instruction 

ARPL rlm16,r16 

Clocks 

9/9 

IF RPL bits(O,1) of DEST < RPL bits(O,1) of SRC 
THEN 

ZF ~ 1; 
RPL bits(O,1) of DEST ~ RPL bits(O,1) of SRC; 

ELSE 
ZF~O; 

FI; 

Description 

Description 

Adjust RPL of rim 16 to not less than RPL of r16 

The ARPL instruction has two operands. The first operand is a 16-bit memory variable 
or word register that contains the value of a selector. The second operand is a word 
register. If the RPL field ("requested privilege level" - bottom two bits) of the first 
operand is less than the RPL field of the second operand, the ZF flag is set and the RPL 
field of the first operand is increased to match the second operand. Otherwise, the ZF 
flag is cleared and no change is made to the first operand. 

The ARPL instruction appears in operating system software, not in application pro­
grams. It is used to guarantee that a selector parameter to a subroutine does not request 
more privilege than the caller is allowed. The second operand of the ARPL instruction is 
normally a register that contains the CS selector value of the caller. 

Flags Affected 

The ZF flag is set if the RPL field of the first operand is less than that of the second 
operand 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 6; the ARPL instruction is not recognized in Real Address Mode 
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Virtual 8086 Mode Exceptions 

Same excep'tions as in Real Address Mode; #PF(f~11.1It-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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BOUND-Check Array Index Against Bounds 

Opcode 

621r 
62 Ir 

Operation 

Instruction Clocks 

BOUND r16,m16&16 7 
BOUND r32,m32&32 7 

Description 

Check if r16 is within bounds (passes test) 
Check if r32 is within bounds (passes test) 

IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8]) 
(* Under lower bound or over upper bound *) 

THEN Interrupt 5; 
FI; 

Description 

The BOUND instruction ensures that a signed array index is within the limits specified 
by a block of memory consisting of an upper and a lower bound. Each bound uses one 
word when the operand-size attribute is 16 bits and a doubleword when the operand-size 
attribute is 32 bits. The first operand (a register) must be greater than or equal to the 
first bound in memory (lower bound), and less than or equal to the second bound in 
memory (upper bound) plus the number of bytes occupied for the operand size. If the 
register is not within bounds, an Interrupt 5 occurs; the return EIP points to the 
BOUND instruction. 

The bounds limit data structure is usually placed just before the array itself, making the 
limits addressable via a constant offset from the beginning of the array. 

Flags Affected 

None 

Protected Mode Exceptions 

Interrupt 5 if the bounds test fails, as described above; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3 

The second operand must be a memory operand, not a register. If the BOUND instruc­
tion is executed with a ModR/M byte representing a register as the second operand, 
#UD occurs. 

Real Address Mode Exceptions. 

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie 
outside of the effective address space from 0 to OFFFFH; Interrupt 6 if the second 
operand is a register 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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BSF - Bit Scan Forward 

Opcode 

OF BC 
OF BC 

Notes 

Instruction 

BSF r16,rlm16 
BSF r32,rlm32 

Clocks 

6-42/7-43 
6-42/7-43 

n is the number of leading zero bits. 

Operation 

IF rim = 0 
THEN 
ZF~ 1; 
register ~ UNDEFINED; 

ELSE 
temp ~ 0; 
ZF~O; 

WHILE BIT[rlm, temp = 0] 
DO 

temp ~ temp + 1; 
register ~ temp; 

00; 
FI; 

Description 

Description 

Bit scan forward on rim word 
Bit scan forward on rim dword 

The BSF instruction scans the bits in the second word or doubleword operand starting 
with bit O. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the 
destination register is loaded with the bit index of the first set bit. 

Flags Affected 

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; # AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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eSR - Bit Scan Reverse 

Opcode 

OF BO 
OF BO 

Operation 

IF rim = 0 
THEN 

ZF ~ 1; 

Instruction 

BSR r16,rlm16 
BSR r32,rlm32 

register ~ UNDEFINED; 
ELSE 

temp ~ OperandSize - 1; 
ZF~O; 

WHILE BIT[rlm, temp] = 0 
DO 

temp ~ temp - 1; 
register ~ temp; 

00; 
FI; 

Description 

Clocks 

6-103/7-104 
6-103/7-104 

Description 

Bit scan reverse on rim word 
Bit scan reverse on rim dword 

The BSR instruction scans the bits in the second word or doubleword operand from the 
most significant bit to the least significant bit. The ZF flag is set if all the bits are 0; 
otherwise, the ZF flag is cleared and the destination register is loaded with the bit index 
of the first set bit found when scanning in the reverse direction. 

Flags Affected 

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault;' #AC for 
unaligned memory reference if the current privilege level is 3 
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BSWAP-Byte Swap 

Opcode 

OF C8/r 

Instruction 

BSWAP r32 

Clocks Description 

Operation 

TEMP ~ r32 
r32(7 .. 0) ~ TEMP(31 .. 24) 
r32(15 .. 8) ~ TEMP(23 .. 16) 
r32(23 .. 16) ~ TEMP(15 .. 8) 
r32(31 .. 24) ~ TEMP(7 .. 0) 

Description 

Swap bytes to convert little/big endian data in a 
32·bit register to big/little endian form. 

The BSWAP instruction reverses the byte order of a 32-bit register, converting a value in 
littlelbig endian form to big/little endian form. When BSWAP is used with 16-bit oper-
and size, the result left in the destination register is undefined. . 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

Notes 

BSWAP is not supported on 386 processors. See Section 3.11 to use BSWAP compatible 
with 386 processors. 
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BT -Bit Test 

Opcode 

OF A3 
OF A3 
OF BAI 
OF BA/4 ib 

Operation 

Instruction 

BT r/m16,r16 
BT r/m32,r32 
BT r/m16,immB 
BT r/m32,immB 

CF ~ BIT[LeftSRC, RightSRC]; 

Description 

Clocks 

3/8 
3/8 
3/3· 
3/3 

Description 

Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 

The BT instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag. 

Flags Affected 

The CF flag contains the value of the selected bit 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 
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displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high-order 27 to 29 bits are 
shifted and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIV 16)) 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. 'Instead, use the MOV instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 
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BTC ~ Bit Test and Complement 

Opcode Instruction Clocks 

OF BB BTC r/m16,r16 6/13 
OF BB BTC r/m32,r32 6/13 
OF BA /7 ib BTC rim 16,immB 6/8 
OF BA /7 ib BTC r/m32,immB 6/8 

Operation 

CF ~ BIT[LeftSRC, RightSRC]; 

Description 

Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 

BIT[LeftSRC, RightSRC] ~ NOT BIT[LeftSRC, RightSRC]; 

Description 

The BTC instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag and then complements the bit. 

Flags Affected 

The CF flag contains the complement of the selected bit 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 
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displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the imll}ediate bit offset field, and the high-order 27 to 29 bits are 
shifted and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIV 16)) 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOV instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 

26-39 



INSTRUCTION SET 

BTR-'Bit Test and Reset 

Opcode 

OF B3 
OF B3 
OF BA /6 ib ' 
OF BA /6 ib 

Operation 

Instruction 

BTR r/m16,r16 
BTR r/m32,r32 
BTR rim 16,immB 
BTR r/m32,immB 

CF ~ BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] ~ 0; 

Description 

Clocks 

6/13 
6/13 
6/8 
6/8 

Description 

Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 

The BTR instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag and then stores 0 in the bit. 

Flags Affected 

The CF flag contains the value of the selected bit 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 (or 15) are supported by using the immediate bit offset field in combination with 
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the displacement field of the memory operand. The low-order 3 to 5 bits of the imme­
diate bit offset are stored in the immediate bit offset field, and the high-order 27 to 29 
bits are shifted and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + 4 * (BitOffset DIV 32) 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + 2 * (BitOffset DIV 16) 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOV instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 
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BTS - Bit Test and Set 

Opcode 

OF AB 
OF AB 
OF BA/S ib 
OF BA /5 ib 

Operation 

Instruction 

BTS r/m16,r16 
BTS r/m32,r32 
BTS r/m16,imm8 
BTS r/m32,imm8 

CF ~ BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] ~ 1; 

Description 

Clocks 

6/13 
6/13 
6/8 
6/8 

Description 

Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 

The BTS instruction saves the value of the bit indicated by· the base (first operand) and 
the bit offset (second operand) into the CF flag'and thell: stores 1 in the bit. 

• , t • ' '. 

Flags Affected 

The CF flag contains the value of the selected bit 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 
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displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high order 27 to 29 bits are 
~hifted and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the processor may access four bytes starting from the 
memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 

,for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIV 16)) 

for a 16-bit operand size. It may do this even when only a single byte needs to be 
accessed in order to get at the given bit. You must therefore be careful to avoid refer­
encing areas of memory close to address space holes. In particular, avoid references to 
memory-mapped I/O registers. Instead, use the MOV instructions to load from or store 
to these addresses, and use the register form of these instructions to manipulate th~ 
data. . 
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CALL - Call Procedure 

Opcode 

E8 cw 
FF /2 
9A cd 
9A cd 
9A cd 
9A cd 
9A cd 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 
E8 cd 
FF /2 
9A cp 
9A cp 
9A cp 
9A cp 
9A cp 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 

Instruction 

CALL rel16 
CALL rlm16 
CALL ptr16: 16 
CALL ptr16: 16 
CALL ptr16: 16 
CALL ptr16: 16 
CALL ptr16: 16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL rel32 
CALL rlm32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptr32:32 
CALL ptr16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 

Clocks 

3 
5/5 
18,pm==20 
pm==35 
pm==69 
pm== 77+ 4x 
pm==37+ts 
17,pm==20 
pm==35 
pm==69 
pm==77+4x 
pm==37+ts 
3 
5/5 
18,pm==20 
pm==35 
pm==69 
pm==77+4x 
pm==37+ts 
17,pm==20 
pm==35 
pm==69 
pm==77+4x 
pm==37+ts 

NOTE: Values of ts are given by the following table: 

Old Task 
to i486™ CPU TSS 

VM/i486 CPU/80286 TSS 

Operation 

IF rel16 or rel32 type of call 
THEN (* near relative call *) 

IF OperandSize = 16 
THEN 

Push(IP); 

199 

EIP ~ (EIP + rel16) AND OOOOFFFFH; 
ELSE (* OperandSize = 32 *) 

Push(EIP); 

FI; 

EIP ~ EIP + re132; 
FI; 

IF r/m16 or r/m32 type of call 
THEN (* near absolute call *) 

IF OperandSize = 16 
THEN 

Push(IP); 
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Description 

Call near, displacement relative to next instruction 
Call near, register indirecVmemory indirect 
Call intersegment, to full pointer given 
Call gate, same privilege 
Call gate, more privilege, no parameters 

, Call gate, more privilege, x parameters 
Call to task 
Call intersegment, address at rim dword 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
C~~~~ , , 
Call near, displacement relative to next instruction 
Call near, indirect . 
Call intersegment, to full pointer, given 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call intersegment, address at rim dword 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 

New Task 

to 80286 TSS to VM TSS 
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FI; 

EIP ~ [r/m16] AND OOOOFFFFH; 
ELSE (* OperandSize = 32 *) 

Push(EIP); 
EIP ~ [r/m32]; 

FI; 

INSTRUCTION SET 

IF (PE = 0 OR (PE = 1 AND VM = 1)) 
(* real mode or virtual 8086 mode *) 

AND instruction = far CALL 
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) 

THEN 
IF OperandSize = 16 
THEN 

Push(CS); 
Push(IP); (* address of next instruction; 16 bits *) 

ELSE 
Push (CS); (* padded with 16 high-order bits *) 
Push(EIP); (* address of next instruction; 32 bits *) . 

FI; . 

IF operand type is m16:16 or m16:32 
THEN (* indirect far call *) 

IF OperandSize = 16 
THEN 

CS:IP ~ [m16:16]; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ [m16:32]; 

FI; 
FI; 
IF operand type is ptr16:16 or ptr16:32 
THEN (* direct far call *) 

IF OperandSize = 16 
THEN 

CS:IP ~ ptr16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ ptr16:32; 

FI; 
FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far CALL 

THEN 
If indirect, then check access of EA doubleword; 

#GP(O) if limit violation; 
New CS selector must not be null else #GP(O); 
Check that new CS selector index is within its 
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descriptor table limits; else #GP(new CS selector); 
Examine AR byte of selected descriptor for various legal values; 

depending on value: 
go to CONFORMING-CODE-SEGMENT; 
go to NONCONFORMING-CODE-SEGMENT; 
go to CALL-GATE; 
go to TASK-GATE; 
go to TASK-STATE-SEGMENT; 

ELSE #GP(code segment selector); 
FI; 

CONFORMING-CODE-SEGMENT: 
DPL must be :5 CPL ELSE #GP(code segment selector); 
Segment must be present ELSE #NP(code segment selector); 
Stack must be big enough for return address ELSE #SS(O); 
Instruction pointer must be in code segment limit ELSE #GP(O); 
Load code segment descriptor into CS register; 
Load CS with new code segment selector; 
Load EIP with zero-extend(new offset); 
IF OperandSize = 16 THEN EIP ~ EIP AND OOOOFFFFH; FI; 

NONCONFORMING-CODE-SEGMENT: 
RPL must be :5 CPL ELSE #GP(code segment selector) 
DPL must be = CPL ELSE #GP(code segment selector) 
Segment must be present ELSE #NP(code segment selector) 
Stack must be big enough for return address ELSE #SS(O) 
Instruction pointer must be in code segment limit ELSE #GP(O) 
Load code segment descriptor into CS register 
Load CS with new code segment selector 
Set RPL of CS to CPL 
Load EIP with zero-extend(new offset); 
IF OperandSize = 16 THEN EIP ~ EIP AND OOOOFFFFH; FI; 

CALL-GATE: 
Call gate DPL must be ~ CPL ELSE #GP(call gate selector) 
Call gate DPL must be ~ RPL ELSE #GP(call gate selector) 
Call gate must be present ELSE #NP(call gate selector) 
Examine code segment selector in call gate descriptor: 

Selector must not be null ELSE #GP(O) 
Selector must be within its descriptor table 

limits ELSE #GP(code segment selector) 
AR byte of selected descriptor must indicate code 

segment ELSE #GP(code segment selector) 
DPL of selected descriptor must be :5 CPL ELSE 

#GP(code segment selector) 
IF non-conforming code segment AND DPL < CPL 
THEN go to MORE-PRIVILEGE 
ELSE go to SAME-PRIVILEGE 
FI; 
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MORE-PRIVILEGE: 
Get new SS selector for new privilege level from TSS 

Check selector and descriptor for new SS: 
Selector must not be null ELSE #TS(O) 
Selector index must be within its descriptor 

table limits ELSE #TS(SS selector) 
Selector's RPL must equal DPL of code segment 

ELSE #TS(SS selector) 
Stack segment DPL must equal DPL of code 

segment ELSE #TS(SS selector) 
Descriptor must indicate writable data segment 

ELSE #TS(SS selector) 
Segment present ELSE #SS(SS selector) 

IF OperandSize = 32 
THEN 

New stack must have room for parameters plus 16 bytes 
ELSE #SS(SS selector) 

EIP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:EIP value from gate 

ELSE 
New stack must have room for parameters plus 8 bytes 

ELSE #SS(SS selector) 
IP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:IP value from gate 

FI; 
Load CS descriptor 
Load SS descriptor 
Push long pointer of old stack onto new stack 
Get word count from call gate, mask to 5 bits 
Copy parameters from old stack onto new stack 
Push return address onto new stack 
Set CPL to stack segment DPL 
Set RPL of CS to CPL 

SAME-PRIVILEGE: 
IF OperandSize = 32 
THEN 

Stack must have room for 6-byte return address (padded to 8 bytes) 
ELSE #SS(O) 

EIP must be within code segment limit ELSE #GP(O) 
Load CS:EIP from gate 

ELSE 
Stack must have room for 4-byte return address ELSE #SS(O) 
IP must be within code segment limit ELSE #GP(O) 
Load CS:IP from gate 

FI; 
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Push return address onto stack 
Load code segment descriptor into CS register 
Set RPL of CS to CPL 

TASK-GATE: 
Task gate DPL must be ~ CPL ELSE #TS(gate selector) 
Task gate DPL must be ~ RPL ELSE #TS(gate selector) 
Task Gate must be present ELSE #NP(gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #TS(TSS selector) 
Index must be within GDT limits ELSE #TS(TSS selector) . 
TSS descriptor AR byte must specify non busy TSS 

ELSE #TS(TSS selector) 
Task State Segment must be pr~sent ELSE #NP(TSS selector) 

SWITCH-TASKS (with nesting) toTSS 
IP must be in code segment limit ELSE #TS(O) 

TASK-STATE-SEGMENT: 
TSS DPL must be ~ CPL else #TS(TSS selector) 
TSS DPL must be ~ RPL ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify available TSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 
SWITCH-TASKS (with nesting) to TSS 
IP must be in code segment limit ELSE #TS(O) 

Description 

The CALL instruction causes the procedure named in the operand to' be executed. 
When the procedure is complete (a return instruction is executed within the procedure), 
execution continues at the instruction that follows the CALL instruction. 

The action of the different forms of the instruction are described below. 

Near calls are those with destinations of type rlm16, rlm32, re116, rel32; changing or saving 
the segment register value is not necessary. The CALL rel16 and CALL {e132 forms add 
a signed offset to the address of the instruction following the CALL instruction to de­
termine the destination. The rel16 form is used when the instruction1s operand-size at­
tribute is 16 bits; rel32 is used when the operand-size attribute is 32 bits. The result is 
stored in the 32-bit EIP register. With re116, the upper 16 bits of the EIP register are 
cleared, resulting in an offset whose value does not exceed 16 bits. CALL' rlm16 and 
CALL rlm32 specify a register or memory location from which the absolute segment 
offset is fetched. The offset fetched from rim is 32 bits for an operand-size attribute of 32 
(rlm32), or 16 bits for an operand-size of 16 (rlm16). The offset of the '.instruction follow­
ing the CALL instruction is pushed onto the stack. It will be popped by a near RET 
instruction within the procedure. The CS register is not changed by this form of CALL. 
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The far calls, CALL ptr16:16 and CALL ptr16:32, use a four-byte or six-byte operand as 
a long pointer to the procedure called. The CALL m16:16 and m16:32 forms fetch the 
long pointer from the memory location specified (indirection). In Real Address Mode or 
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits 
for the EIP register (depending on the operand-size attribute). These forms of the in­
struction push both the CS and IP or EIP registers as a return address. 

In Protected Mode, both long pointer forms consult the AR byte in the descriptor in­
dexed by the selector part of the long pointer. Depending on the value of the AR byte, 
the call will perform one of the following types of control transfers: 

• A far call to the same protection level 

• An inter-protection level far call . 

• A task switch 

For more information on Protected Mode control transfers, refer to Chapter 6 and 
Chapter 7. 

Flags Affected 

All flags are affected if a task switch occurs; no flags are affected if a task switch does 
not occur 

Protected Mode Exceptions 

For far calls: #GP, #NP, #SS, and #TS, as indicated in'the "Operation" section 

For near direct calls: #GP(O) if procedure location is beyond the code segment limits; 
#SS(O) if pushing the return address exceeds the bounds of the stack segment; # PF 
(fault-code) for a page fault; #AC for unaligned memory reference if the current privi­
lege level is 3 

For a near indirect call: #GP(O) for an illegal memory operand effective address in the 
CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#GP(O) if the indirect offset obtained is beyond the code segment limits; #PF(fault­
code) for a page fault; # AC for unaligned memory reference if the current privilege 
level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH ' 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Notes 

Any far call from a 32-bit code segment to a 16-bit ,code segment should be made from 
the first 64K' bytes of the 32-bit code segment, because the operand-size attribute of the 
instruction is set to 16, allowing only a 16-bit return address offset to be saved. 
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CBW/CWDE-Convert Byte to Word/Convert Word to 
Doubleword 

Opcode 

98 
98 

Operation 

Instruction 

CBW 
CWDE 

Clocks 

3 
3 

IF OperandSize = 16 (* instruction = CBW *) 
THEN AX ~ SignExtend(AL); 
ELSE (* OperandSize = 32, instruction = CWDE *) 

EAX ~ SignExtend(AX); 
FI; 

Description 

Description 

AX +- sign-extend of AL 
EAX +- sign-extend of AX 

The CBW instruction converts the signed byte in the AL register to a signed word in the 
AX register by extending the most significant bit of the AL register (the sign bit) into all 
of the bits of the AH register. The CWDE instruction converts the signed word in the 
AX register to a doubleword in the EAX register by extending the most significant Obit of 
the AX register into the two most significant bytes of the EAX register. Note that the 
CWDE instruction is different from the CWD instruction. The· CWD instruction uses 
the DX:AX register pair rather than the EAX register as a destination. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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CLC - Clear Carry Flag 

Opcode 

FB 

Operation 

CF +- 0; 

Description 

Instruction 

CLC 

Clocks 

2 

Description 

Clear carry flag 

The CLC instruction clears the CF flag. It does not affect other flags or registers. 

Flags Affected 

The CF flag is cleared 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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CLD - Clear Direction Flag 

Opcode 

FC 

Operation 

DF~O; 

Description 

Instruction 

CLD 

Clocks 

2 

Description 

Clear direction flag; 51 and 01 will increment 
during string instructions 

The CLD instruction clears the direction flag. No other flags or registers are affected. 
After a CLD instru'ction is executed, string operations will increment the index registers 
(SI and/or DI) that they use. ' 

Flags Affected 

The D F flag is cleared 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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CLI- Clear Interrupt Flag 

Opcode 

FA 

Operation 

IF ~ 0; 

Description 

Instruction 

CLI 

Clocks 

5 

Description 

Clear interrupt flag; interrupts disabled 

The CLI instruction clears the IF flag if the current privilege level is at least as privileged 
as 10PL. No other flags are affected. External interrupts are not recognized at the end 
of the CLI instruction or from that point on until the IF flag is set. 

Flags Affected 

The IF flag is cleared 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater (has less privilege) than the I/O privilege 
level in the flags register. The I/O privilege level specifies the least privileged level at 
which I/O can be performed. 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O) as for Protected Mode 
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CL TS - Clear Task-Switched Flag in CRO 

Opcode 

OF 06 

Operation 

Instruction 

CLTS 

TS Flag in CRO ~ 0; 

Description 

Clocks 

7 

Description 

Clear task-switched flag 

The CLTS instruction clears the task-switched (TS) flag in the CRO register. This flag is 
set by the processor every time a task switch occurs. The TS flag is used to manage 
processor extensions as follows: 

• Every execution of an ESC instruction is trapped if the TS flag is set. 

• Execution of a WAIT instruction is trapped if the MP flag and the TS flag are both 
set. 

Thus, if a task switch was made after an ESC instruction was begun, the floating-point 
unit's context may need to be saved before a new ESC instruction can be issued. The 
fault handler saves the context and clears the TS flag. 

The CL TS instruction appears in operating system software, not in application pro­
grams. It is a privileged instruction that can only be executed at privilege level O. 

Flags Affected 

The TS flag is cleared (the TS flag is in the CRO register, not the flags register) 

Protected Mode Exceptions 

#GP(O) if the CLTS instruction is executed with a current privilege level other than 0 

Real Address Mode Exceptions 

None (valid in Real Address Mode to allow initialization for Protected Mode) 

Virtual 8086 Mode Exceptions 

None 
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CMC - Complement Carry Flag 

Opcode 

F5 

Operation 

Instruction 

CMC 

CF ~ NOT CF; 

Description 

Clocks 

2 

Description 

Complement carry flag 

The CMC instruction reverses the setting of the CF flag. No other flags are affected. 

Flags Affected 

The CF flag contains the complement of its original value 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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CMP - Compare Two Operands 

Opcode Instruction Clocks 

3C ib CMPAL,immB 1 
3D iw CMP AX,imm16 1 
3D id CMP EAX,imm32 1 
80 /7 ib CMP r/mB,immB 1/2 
81 /7 iw CMP r/m16,imm16 1/2 
81 /7 id CMP r/m32,imm32 1/2 
83 /7 ib CMP r/m16,immB 1/2 
83 /7 ib CMP r/m32,immB 1/2 

38 /r CMP r/mB,rB 1/2 
39 /r CMP r/m16,r16 1/2 
39 /r CMP r/m32,r32 1/2 
3A /r CMP rB,r/mB 1/2 
38 /r CMP r16,r/m16 1/2 
38/r CMP r32,r/m32 1/2 

Operation 

LeftSRC - SignExtend(RightSRC); 

Description 

Compare immediate byte to AL 
Compare immediate word to AX 
Compare immediate dword to EAX 
Compare immediate byte to r/m byte 
Compare immediate word to r/m word 
Compare immediate dword to r/m dword 
Compare sign extended immediate byte to r/m word 
Compare sign extended immediate byte to r/m 
dword 
Compare byte register to r/m byte 
Compare word register to r/m word 
Compare dword register to r/m dword 
Compare r/m byte to byte register 
Compare r/m word to word register 
Compare r/m dword to dword register 

(* CMP does not store a result; its purpose is to set the flags *) 

Description 

The CMP instruction subtracts the second operand from the first but, unlike the SUB 
instruction, does not store the result; only the flags are changed. The CMP instruction is 
typically used in conjunction with conditional jumps and the SETcc instruction. (Refer to 
Appendix D for the list of signed and unsigned flag tests provided.) If an operand 
greater than one byte is compared to an immediate byte, the byte value is first 
sign-extended. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; # AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a'pagefault; #AC for 
unaligned memory reference if the current privilege level is 3 
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CMPS/CMPSB/CMPSW /CMPSD - Compare String Operands 

Opcode Instruction Clocks 

A6 CMPS mB,mB 8 

A7 CMPS m16,m16 8 

A7 CMPS m32,m32 8 

A6 CMPSB 8 
A7 CMPSW 8 
A7 CMPSO 8 

Operation 

IF (instruction = CMPSO) OR 
(instruction has operands of type OWORO) 

THEN OperandSize ~ 32; 
ELSE OperandSize ~ 16; 
FI; 
IF AddressSize = 16 
THEN 

use SI for source-index and 01 for destination-index 
ELSE (* AddressSize = 32 *) 

Description 

comUare bytes ES:[(E)OI) (second operand) 
with (E)SI) (first operand) 
comUare words ES:[(E)OI) (second operand) 
with (E)SI) (first operand) 
comUare dwords ES:[(E)OI) (second operand) 
with (E)SI) (first operand) 
Compare bytes ES:[(E)OI) with OS:[SI) 
Compare words ES:[(E)D1) with DS:[SI) 
Compare dwords ES:[(E)OI) with OS:[SI) 

use ESI for source-index and EOI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

[source-index] - [destination-index]; (* byte comparison *) 
IF OF = 0 THEN IncOec ~ 1 ELSE IncOec ~ -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[source-index] - [destination-index]; (* word comparison *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ - 2; FI; 

ELSE (* OperandSize = 32 *) 
[source-index] - [destination-index]; (* dword comparison *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ - 4; FI; 

FI; 
FI; 
source-index = source-index + IncOec; 
destination-index = destination-index + IncOec; 

Description 

The CMPS instruction compares the byte, word, or doubleword pointed to by the 
source-index register with the byte, word, or doubleword pointed to by the destination­
index register. 
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If the address-size attribute of this instruction is 16 bits, the SI and DI registers will be 
used for source- and destination-index registers; otherwise the ESI and EDI registers 
will be used.' Load the correct index values into the Sl and DI (or ESI and EDI) registers 
before executing the CMPS instruction. 

The comparison is done by subtracting the operand indexed by the destination-index 
register from the operand indexed by the source-index register. 

Note that the direction of subtraction for the CMPS instruction is [SI] - [DI] or [ESI] 
- [EDI]. The left operand (SI or ESI) is the source and the right operand (DI or EDI) 
is the destination. This is the reverse of the usual Intel convention in which the left 
operand is the destination and the right operand is the source. 

The result of the subtraction is not stored; only the flags reflect the change. The types of 
the operands determine whether bytes, words, or doublewords are compared. For the 
first operand (SI or ESI), the DS register is used, unless a segment override byte is 
present. The second operand (DI or EDI) must be addressable from theES register; no 
segment override is possible. 

After the comparison is made, both the source-index register and destination-index reg­
ister are automatically advanced. If the DF flag is 0 (a CLD instruction was executed), 
the registers increment; if the DF flag is 1 (an STD instruction was executed), ,the 
registers decrement. The registers increment or decrement by 1 if a byte is compared, by 
2 if a word is compared, or by 4 if a doubleword is compared. 

The CMPSB, CMPSW and CMPSD instructions are synonyms for the' byte, word, and 
doubleword CMPS instructions, respectively. 

The CMPS instruction can be preceded by the' REPE or REPNE prefix for block com­
parison of CX or ECX bytes, words, or doublewords. Refer to the description of the 
REP instruction for more information on this operation. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

26-61 



INSTRUCTION SET 

CMPXCHG - Compare and Exchange 

Opcode Instruction 

OF A61r CMPXCHG rlmB,rB 

OF A71r CMPXCHG 
r/m16,r16 

OF A71r CMPXCHG 
r/m32,r32 

Operation 

IF accumulator = DEST 
ZF ~ 1 
DEST ~ SRC 

ELSE 
ZF~O 

accumulator ~ DEST 

Description 

Clocks 

6/7 if comparison is 
successful; 6/10 if 
comparison fails 
6/7 if comparison is 
successful; 6/10 if 
comparison fails 
6/7 if comparison is 
successful; 6/10 if 
comparison fails 

Description 

Compare AL with rIm byte. If equal, set ZF and 
load byte reg into rIm byte. Else, clear ZF and 
load rIm byte into AL. 
Compare AX with rIm word. If equal, set ZF and 
load word reg into rIm word. Else, clear ZF and 
load rIm word into AX. 
Compare EAX with rIm dword. If equal, set ZF 
and load dword reg into rIm dword. Else, clear 
ZF and load rIm dword into EAX. 

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX register) with 
DEST. If they are equal, SRC is loaded into DEST. Otherwise, DEST is loaded into the 
accumulator. 

Flags Affected 

The CF, PF, AF, SF, and OF flags are affected as if a CMP instruction had been 
executed with DEST and the accumulator as operands. The ZF flag is set if the destina­
tion operand and the accumulator are equal; otherwise it is cleared. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF (fault code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH. 
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Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3. 

Notes 

This instruction can be used with a LOCK prefix. In order to simplify interface to the 
processor's bus, the destination operand receives a write cycle without regard to the 
result of the comparison. DEST is written back if the comparison fails, and SRC is 
written into the destination otherwise. (The processor never produces a locked read 
without also producing a locked write.) This instruction is not supported on 386 proces­
sors. See Section 3.11 to use CMPXCHG compatible with 386 processors. 
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CWD/CDQ - Convert Word to Doubleword/Convert Doubleword 
to Quadword 

Opcode 

99 
99 

Operation 

Instruction 

CWO 
coa 

Clocks 

3 
3 

IF OperandSize = 16 (* CWO instruction *) 
THEN 

IF AX < 0 THEN OX ~ OFFFFH; ELSE OX ~ 0; FI; 
ELSE (* OperandSize = 32, coa instruction *) 

Description 

OX:AX +- sign-extend of AX 
EOX:EAX +- sign-extend of EAX 

IF EAX < 0 THEN EOX ~ OFFFFFFFFH; ELSE EOX ~ 0; FI; 
FI; 

Description 

The CWD instruction converts the signed word in the AX register to a signed double­
word in the DX:AX register pair by extending the most significant bit of the AX register 
into all the bits of the DX register. The CDQ instruction converts the signed doubleword 
in the EAX register to a signed 64-bit integer in the register pair EDX:EAX by extend­
ing the most significant bit of the EAX register (the sign bit) into all the bits of the EDX 
register. Note that the CWD instruction is different from the CWDE instruction. The 
CWDE instruction uses the EAX register as a destination, instead of the DX:AX regis­
ter pair. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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DAA - Decimal Adjust AL after Addition 

Opcode 

27 

Operation 

Instruction 

OM 

Clocks 

2 

IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN 

AL ~ AL + 6; 
AF~ 1; 

ELSE 
AF~O; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL ~ AL + 60H; 
CF~ 1; 

ELSE CF ~ 0; 
FI; 

Description 

Description 

Decimal adjust AL after addition 

Execute the DAA instruction only after executing an ADD instruction that leaves a 
two-BCD-digit byte result in the AL register. The ADD operands should consist of two 
packed BCD digits. The DAA instruction adjusts the AL register to contain the correct 
two-digit packed decimal result. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there'is no decimal 
carry; the SF, ZF, PF, and CF flags are set according to the result. 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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DAS - Decimal Adjust AL after Subtraction 

Opcode 

2F 

Operation 

Instruction 

DAS 

Clocks 

2 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL ~ AL - 6; 
AF ~ 1; 

ELSE 
AF~ 0; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL ~ AL - 60H; 
CF~ 1; 

ELSE CF ~ 0; 
FI; 

Description 

Description 

Decimal adjust AL after subtraction 

Execute the DAS instruction only after a subtraction instruction that leaves a two-BCD­
digit byte result in· the AL register. The operands should consist of two packed BCD 
digits. The DAS instruction adjusts the AL register to contain the correct packed two­
digit decimal result. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry,' cleared if there is no decimal 
carry; the SF, ZF, and PF flags are set according to the result. 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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DEC - Decrement by 1 

Opcode Instruction 

FE 11 DEC r/m8 
FF 11 DEC r/m16 

DEC r/m32 
48+rw DEC r16 
48+rw DEC r32 

Operation 

DEST +- DEST - 1; 

Description 

Clocks 

1/3 
1/3 
1/3 
1 
1 

Description 

Decrement rIm byte by 1 
Decrement rIm word by 1 
Decrement rIm dword by 1 
Decrement word register by 1 
Decrement dword register by 1 

The DEC instruction subtracts 1 from the operand. The DEC instruction does not 
change the CF flag. To affect the CF flag, use the SUB instruction with an immediate 
operand of 1. ' 

Flags Affected 

The OF, SF, ZF, AF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address' in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 . 

, Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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DIV - Unsigned Divide 

Opcode Instruction 

F6/6 DIV AL,rlmB 

F7/6 DIV AX,rlm16 

F7/6 DIV EAX,rlm32 

Operation 

temp ~ dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient ~ temp; 

Clocks 

16/16 

24/24 

40/40 

remainder ~ dividend MOD (rim); 
FI; 

Description 

Unsigned divide AX by rim byte (AL=Quo, 
AH = Rem) 
Unsigned divide DX:AX by rim word (AX = Quo, 
DX=Rem) 
Unsigned divide EDX:EAX by rim dword 
(EAX = Quo, EDX = Rem) 

Note: Divisions are unsigned. The divisor is given by the rim operand. The dividend, 
quotient, and remainder use implicit registers. Refer to the table under "Description." 

Description 

The DIV instruction performs an unsigned division. The dividend is implicit; only the 
divisor is given as an operand. The remainder is always less than the divisor. The type of 
the divisor determines which registers to use as follows: 

Size Divisor Quotient Remainder Dividend 

byte AX rlmB AL AH 
word, OX:AX rim 16 AX OX 
dword EOX:EAX rlm32 EAX EOX 

Flags Affected 

The OF, SF, ZF, AF, PF, CF flags are undefined. 

Protected Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (AL, AX, or 
EAX), or if the divisor is 0; #GP(O) for an illegal memory operand effective address in 
the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault; #AC for unaligned memory reference if the current 
privilege level is 3 
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Real Address Mode Exceptions 

Interrupt 0 if the quotient is too big to fit in the designated register (AL, AX, or EAX), 
or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the 
effective address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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ENTER - Make Stack Frame for Procedure Parameters 

Opcode 

C8 iwOO 
C8 iw01 
C8 iwib 

Operation 

Instruction 

ENTER imm16,O 
ENTER imm 16, 1 
ENTER imm 16,immB 

level ~ level MOD 32 

Clocks 

14 
17 
17+3n 

Description 

Make procedure stack frame 
. Make stack frame for procedure parameters 
Make stack frame for procedure parameters 

IF OperandSize = 16 THEN Push(SP) ELSE Push (ESP) FI; 
(* Save stack pointer *) 

frame-ptr ~ eSP 
IF level> 0 
THEN (* level is rightmost parameter *) 

FOR i ~ 1 TO level - 1 
DO 

IF OperandSize = 16 
THEN 

SP ~ SP - 2; 
Push[SP] 

ELSE (* OperandSize = 32 *) 
ESP ~ ESP - 4; 
Push[ESP); 

FI; 
00; 
Push(frame-ptr) 

FI; 
IF OperandSize = 16 THEN SP ~ frame-ptr ELSE ESP ~ frame-ptr; FI; 
IF StackAddrSize = 16 
THEN SP ~ SP - First operand; 
ELSE ESP ~ ESP - ZeroExtend(First operand); 
FI; 

Description 

The ENTER instruction creates the stack frame required by most block-structured high­
level languages. The first operand specifies the number of bytes of dynamic storage 
allocated on the stack for the routine being entered. The second operand gives the 
lexical nesting level (0 to 31) of the routine within the high-level language source code. It 
determines the number of stack frame pointers copied into the new stack frame from the 
preceding frame. The BP register (or EBP, if the operand-size attribute is 32 bits) is the 
current stack frame pointer. 

If the operand-size attribute is 16 bits, the processor uses the BP register as the frame 
pointer and the SP register as the stack pointer. If the operand-size attribute is 32 bits, 
the processor uses the EBP register for the frame pointer and the ESP register for the 
stack pointer. 
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If the second operand is 0, the ENTER instruction pushes the frame pointer (BP or EBP 
register) onto the stack; the ENTER instruction then subtracts the first operand from 
the stack pointer and sets the frame pointer to the current stack-pointer value. 

I . 

For example, a procedure with 12 bytes of local variables would have an ENTER 12,0 
instruction at its entry point and a LEAVE instruction before every RET instruction. 
The 12 local bytes would be addressed as negative offsets from the frame pointer. 

Flags Affected 

None 

Protected Mode Exceptions 

#SS(O) if the SP or ESP value would exceed the stack limit at any point during instruc­
tion execution; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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F2XM1-Computer 2x-1 

Opcode 

D9 FO 

Operation 

ST ~ (2ST -1); 

Description 

Instruction 

F2XM1 

Clock~ 
242 (140-279) 

Concurrent Execution 

2 

Description 

Replace ST with (2ST - 1) 

F2XMl replaces the contents of ST with (2ST 
- I). ST must lie in the range -1 < ST < 

1. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, D, I, IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

If the operand is outside the acceptable range, the result of F2XMl is undefined. 

The F2XMl instruction is designed to produce a very accurate result even when the 
operand is close to zero. Larger errors are incurred for operands with magnitudes very 
close to 1. 

Values other than 2 can be exponentiated using the formula 
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The instructions FLDL2T and FLDL2E load the constants log210 and log2e, respec­
tively. FYL2X can be used to calculate y x log2x for arbitrary positive x. 
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FABS-Absolute Value 

Opcode 

09 E1 

Operation 

Instruction 

FABS 

sign bit of ST ~ 0 

Description 

Clocks 

3 

Description 

Replace ST with its absolute value. 

The absolute value instruction clears the sign bit of ST. This operation leaves a positive 
value unchanged, or replaces a negative value with a positive value of equal magnitude. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 

Notes 

The invalid-operation exception is raised only on stack underflow, even if the operand is 
signalling NaN or is in an unsupported format. 
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FADD/FADDP/FIADD - Add 

Opcode Instruction Clocks Concurrent Execution Description 

D8/0 FADD m32 real 10 (8-20) 7 (5-17) Add m32real to ST. 
DC /0 FADD m64real 10 (8-20) 7 (5-17) Add m64real to ST. 
D8 CO+i FADD ST, ST(i) 10 (8-20) 7 (5-17) Add ST(i) to ST. 
DC CO+i FADD ST(i), ST 10 (8-20) 7 (5-17) Add ST to ST(i). 
DE CO+i FADDP ST(i), ST 10 (8-20) 7 (5-17) Add ST to ST(i) and pop ST. 
DE C1 FADD 10 (8-20) 7 (5-17) Add ST to ST(1) and pop ST. 
DA /0 FIADD m32int 22.5 (19-32) 7 (5-17) Add m32int to ST. 
DE /0 FIADD m 16int 24 (20-35) 7 (5-17) Add m 16int to ST] 

Operation 

DEST ~ DEST + SRC; 
If instruction = FADDP THEN pop ST FI; 

Description 

The addition instructions add the source and destination operands and return the sum to 
the destination. The operand at the stack top can be doubled by coding: 

FAOO ST, ST(O) 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, 0, I, IS 

Protected Mode Exceptions 

#OP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or OS 
segments; #SS(O) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 
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Virtual 8086 Mode Exceptions 

Same exceptions a~ in Real Address Mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

.If the source operand is in memory, it is automatically converted to the extended-real 
format. 
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FBLD - Load Binary Coded Decimal 

Opcode 

08 /4 

Operation 

Instruction Clocks 

FBLO mBO dec 75 (70-103) 

Decrement FPU stack-top pointer; 
ST(O) ~ SRC; 

Description 

Concurrent Execution 

7.7 (2-8) 

Description 

Push mBOdec onto the FPU stack. 

FBLD converts the BCD source operand into extended-real format, and pushes it onto 
the FPU stack. See Figure 15-10 for BCD data layout. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

IS 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would like outside the effective address space 
from 0 to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

The source is loaded without rounding error. The sign of the source is preserved, includ­
ing the case where the value is negative zero. 
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The packed decimal digits are assumed to be in the range 0-9. The instruction does not 
check for invalid digits (A-FH), and the result of attempting to load an invalid encoding 
is undefined. . . 

ST(7) must' be empty to avoid causing an invalid-operation exception. 
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FBSTP - Store Binary Coded Decimal and Pop 

Opcode 

OF /6 

Operation 

Instruction 

FBSTP m80dec 

DEST +- ST(O): 
pop ST FI; 

Description 

Clocks Description 

175 (172-176) Store ST in m80dec and pop ST. 

FBSTP converts the value in ST into a packed decimal integer, stores the result at the 
destination in memory, and pops ST. Non-integral values are first rounded according to 
the RC field of the control word. See Figure 15-10 for BCD data layout. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, I, IS 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF (fault-code) for a page fault; #NM if either EM or TS 
in CRO is set; # AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would like outside the effective address space 
from 0 to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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FCHS - Change Sign 

Opcode 

D9 EO 

Operation 

Instruction 

FCHS 

Clocks 

6 

sign bit of 8T ~ NOT (sign bit of 8T) 

Description 

Description 

Replace ST with a value of opposite sign. 

The change sign instruction inverts the sign bit of ST. This operation replaces a positive 
value with a negative value of equal magnitude, or vice-versa. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM,orTS inCRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

The invalid-operation exception is raised only on stack underflow, even if the operand is 
a signalling NaN or is in an unsupported format. 
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FCLEX/FNCLEX - Clear Exceptions 

Opcode 

9B DB E2 

DB E2 

Operation 

Instruction 

FCLEX 

FNCLEX 

SW[0 .. 7] ~ 0; 
SW[15] ~ 0; 

Description 

Clocks 

7 + at least 3 for 
FWAIT 
7 

Description 

Clear floating-point exception flags after 
checking for floating-point error conditions. 
Clear floating-point exception flags without 
checking for floating-point error conditions. 

FCLEX clears the exception flags, the exception status flag, and the busy flag of the 
FPU status word. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 

Notes 

FCLEX checks for unmasked floating-point error conditions before clearing the excep­
tion flags; FNCLEX does not. 
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FCOM/FCOMP/FCOMPP - Compare Real 

Opcode Instruction . Clocks 

08/2 FCOM m32real 4 
DC /2 FCOM m64real 4 
08 OO+i FCOM ST(i)· 4 
08 01 FCOM 4 
08/3 FCOMP m32real 4 
DC /3 FCOMP m64real 4 
08 08+i FCOMP ST(i) 4 
08 09 FCOMP 4 
DE 09 FCOMPP 5 

Operation 

CASE (relation of operands) OF 
Not comparable: C3, C2, CO ~ 111; 
ST > SRC: C3, C2, CO ~ 000; 
ST < SRC: C3, C2, CO ~ 001 ; 
ST = SRC: C3, C2, CO ~ 100; 

IF instruction = FCOMP THEN pop ST; FI; 
IF instruction = FCOMPP THEN pop ST; pop ST; FI; 

FPU Flags 

Co 
C1 

C2 

C3 

Description 

Description 

Compare ST with m32real. . 
Compare ST with m64real. 
Compare ST with ST(i). 
Compare ST with ST(1). 
Compare ST with m32real and pop ST. 
Compare ST with m64real and pop ST. 
Compare ST with ST(i) and pop ST. 
Compare ST with ST(1) and pop ST. 
Compare ST with ST(1) and pop ST twice. 

EFlags 

CF 
(none) 

PF 
ZF 

The compare real instructions compare the stack top to the source, which can be a 
register or a single- or double-real memory operand. If no operand is encoded, ST is 
compared to ST(I). Following the instruction, the condition codes reflect the relation 
between ST and the source operand. 

FPU Flags Affected 

Cl as described in Table 15-1;· CO, C2, C3 as specified above 

Numeric Exceptions 

D, I, IS 
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Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or. GS 
segments; #SS(O) for an illegal address in the SS segment; #PF (fault-code) for a page 
fault; #NM if either EM or TS in CRO is set;.#AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set ' 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF (fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

If either operand is a NaN o~ is in an undefined format, or if a stack fault occurs, the 
invalid-operation exception is raised, and the condition bits are set to "unordered." 

The sign of zero is ignored, so that - 0.0 = - + 0.0. 
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Opcode 

09 FF 

Operation 

Instruction 

FeOS 

IF operand is in range 
THEN 

C2~O; 

ST ~ cos(ST); 
ELSE 

C2 ~ 1; 
FI; 

Description 

INSTRUCTION SET 

Clocks 

241 (193-279) 

Concurrent Execution 

2 

Description 

Replace ST with its cosine 

The cosine instruction replaces the conte'nts of ST with cos(ST). ST, expressed in radi-
ans, must lie in the range 181 < 263. ' 

FPU Flags Affected 

Cl, C2 as described in Table 15-1; CO, C3 undefined 

Numeric Exceptions 

P, U, D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 
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Notes 

If the operand is outside" the acce"ptable range, the C2 flag is set, and ST remains un­
changed. It is the programmer's responsibility to reduce the operand to an absolute 
value smaller than 263 by subtracting an appropriate integer multiple of 21T. See Section 
17.5 for a discussion of the proper value touse for 1T in performing such reductions. 

The i486 CPU checks for interrupts while performing this instruction. It will be aborted 
to service an interrupt. 
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FDECSTP - Decrement Stack-Top Pointer 

Opcode 

D9 F6 

O~eration 

Instruction 

FDECSTP 

IF TOP=O 
THEN TOP ~ 7; 
ELSE TOP ~ TOP-1; 
FI; 

Description 

Clocks 

3 

Description . 

Decrement top-of-stack pointer for FPU register 
stack. 

FDECSTP subtracts one (without carry) from the three-bit TOP field of the FPU status 
word. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

The effect of FDECSTP is to rotate the stack. If does not alter register tags or contents, 
nor does it transfer data. 
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FDIV /FDIVP /FI DIV - Divide 

Opcode Instruction Clocks Concurrent Execution 

08/6 FDIV m32real 73 70 
DC /6 FDIV m64real 73 70 
08 FO+i FDIV ST, ST(i) 73 70 
DC F8+i FDIV ST(i), ST 73 70 
DE F8+i FDIVP ST(i), ST 73 70 
DE F9 FDIV 73 70 
DA /6 FIDIV m32int 73 70 
DE /6 FIDIV m16int 73 70 

Operation 

DEST ~ ST + Other Operand; 
IF instruction = FDIVP THEN pop ST FI; 

Description 

Description 

Divide ST by m32real. 
Divide ST by m64real. 
Divide ST by ST(i) 
Replace ST(i) with ST + ST(i) 
Replace ST(i) with ST .;- ST(i); pop ST. 
Replace ST(1) with ST .;- ST(1); pop ST. 
Divide ST by m32int. 
Divide ST by m 16int. 

The division instructions divide the stack top by the other operand and return the quo­
tient to the destination. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, Z, D, I, IS 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

26-87 



INSTRUCTION SET 

Notes 

If the source operand'is in memory, it is automatically converted to'the extended-real 
format. 

The performance of the division instructions depends on the PC (Precision Control) 
field of the FPU control word. If PC specifies a precision of 53 bits, the division instruc­
tions will execute in 62 clocks. If the specified precision is 24 bits, the division instruc­
tions will take only.35' clocks. . 
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FDIVR/FDIVPR/FIDIVR - Reverse Divide 

Opcode Instruction Clocks Concurrent Execution 

DS /7 FDIVR m32real 73 70 
DC /7 FDIVR m64real 73 70 
DS FS+i FDIVR ST, ST(i) 73 70 
DC FO+i FDIVR ST(i), ST 73 70 
DE FO+i FDIVRP ST(i), ST 73 70 
DE F1 FDIVR 73 70 
DA /7 FIDIVR m32int 73 70 
DE /7 FIDIVR m16int 73 70 

Operation 

DEST ~ Other Operand + ST; 
IF instruction = FDIVRP THEN pop ST FI; 

Description 

Description 

Replaces ST with m32real + ST. 
Replace ST with m64real + ST. 
Replace ST by ST(i) + ST. 
Divide ST(i) by ST. 
Divide ST(i) by ST and pop ST. 
Divide ST(1) by ST and pop ST. 
Replace ST with m32int + ST. 
Replace ST with m16int + ST. 

The division instructions divide the other operand by the stack top and return the quo­
tient to the destination. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, Z, D, I, IS 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in eRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Notes 

If the source operand is in memory, it.is automatically converted to the extended-real 
format. . . 

The perf~rmance of the reverse division instructions depends on the PC (Precision Con~ 
trol) field of the FPU control word. If PC specifies a precision of 53 bits, the reverse 
division instructions will execute in 62 c1ocks~ If the specified precision is 24 bits, the 
reverse division instructions will take only 35 clocks. 
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FFREE - Free Floating-Point Register 

Opcode 

DD CO+i 

Instruction 

FFREE ST(i) 

Operation 

TAG(i) ~ 11 B; 

Description 

Clocks 

3 

FFREE tags the destination register as empty. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

#NM if either- EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or ts in ~RO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 

Notes 

Description 

Tag ST(i) as empty. 

FFREE does not affect the contents of the destination register. The floating-point stack­
top pointer (TOP) is also unaffected. 
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FICOM/FICOMP - Compare Integer 

Opcode Instruction Clocks Concurrent Execution 

DE /2 FICOM m16real 18 (16-20) 
DA /2 FICOMm32real 16.5 (15-17) 
DE /3 FICOMP m16int 18 (16-20) 
DA /3 FICOMP m32int 16.5 (15-17) 

Operation 

CASE (relation of operands) OF 
Not comparable: C3, C2, CO ~ 111; 
ST > SRC: C3, C2, CO ~ 000; 
ST < SRC: C3, C2, CO ~ 001 ; 
ST = SRC: C3, C2, CO ~ 100; 

IF instruction = FICOMP THEN pop ST; FI; 

FPU Flags 

Co 
C, 
C2 

C3 

Description 

Description 

Compare ST with m16int. 
Compare ST with m32int. 
Compare ST with m16int and pop ST. 
Compare ST with m32int and pop ST. 

EFlags 

CF 
(none) 

PF 
: 

ZF 

The compare integer instructions compare the stack top to the source. Following the 
instruction, the condition codes reflect the relation between ST and the source operand. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 as specified above 

Numeric Exceptions 

D, I, IS 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 
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Real Address Mode Exceptions 

Interupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO, is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

The memory operand is converted to extended-real format before the comparison is 
performed. 

If either operand is a NaN or is in an undefined format, or if a stack fault occurs, the 
invalid-operation exception is raised, and the condition bits are set to ~'unordered." 
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FILD - Load Integer 

Opcode Instruction Clocks 

DF /0 FILD m16int 14.5 (13-16) 
DB /0 FILD m32int 11.5 (9-12) 
DF /5 FILD m64int 16.8 (10-18) 

Operation 

Decrement FPU stack-top pointer; 
ST(O) ~ SRC; 

Description 

Concurrent Execution 

4 
4 (2-4) 
7.8 (2-8) 

Description 

Push m 16int onto the FPU stack.' ' 
Push m32int onto the FPU stack. 
Pu~h m64int onto the FPU stack. 

FILD converts the source signed integer operand into extended-real format, and pushes 
it onto the FPU stack. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

IS 

Protected Mode Exceptions 

#OP(O) for an illegal memory operand effectivfe address in the CS, DS, ES, FS, or OS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) fora page 
fault; # NM if either EM or TS in CRO is set; # AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege' level is 3 
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Notes 

The source is loaded without rounding error. 

ST(7) must be empty to avoid causing an invalid-operation exception. 
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FI NCSTP -Increment Stack-Top Pointer 

Opcode 

09 F7 

Operation 

Instruction 

FINCSTP 

IF TOP =7 
THEN TOP ~ 0; 
ELSE TOP ~ TOP + 1; 
FI; 

Description 

Clocks 

3 

Description 

Increment top-ot-stack pointer tor FPU register 
stack. 

FINCSTP adds one (without carry) to the three-bit TOP field of the FPU status word. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM is either EM or TS in CRO is set 

Notes 

The effect of FINCSTP is to rotate the stack. It does not alter register tags or contents, 
nor does it transfer data. It is not equivalent to popping the stack, because it does not set 
the tag of the old stack-top to empty. 
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FINIT/FNINIT -Initialize Floating-Point Unit 

Opcode 

DB E3 

DB/E3 

Operation 

Instruction 

FINIT 

FNINIT 

CW ~ 037FH; 
SW~O; 

TW ~ FFFFH; 
FEA ~ 0; FDS ~ 0; 

Clocks 

17+at least 3 for 
FWAIT 
17 

(* Control word *) 
(* Status word *) 
(* T a9 word *) 
(* Data painter *) 

Description 

Initialize FPU after checking for unmasked 
floating-point error condition. 
Initialize FPU without checking for unmasked 
floating-point error condition: 

FIP ~ 0; FOP ~ 0; FCS ~ 0; (* Instruction pointer *) 

Description 

The initialization instructions set the FPU into a known state, unaffected by any previ­
ous activity. 

The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit 
prevision). The status word is cleared (no exception flags set, stack register RO = stack­
top). The stack registers are all tagged as empty. The error pointers (both instruction and 
data) are cleared. 

FPU Flags Affected 

CO, Cl, C2, C3 cleared 

Numeric Exceptions 

None 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 
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Notes 

FINIT checks for unmasked floating-point error conditions before performing the .ini­
tialization; FNINIT does not. 

FINIT and FNINIT leave the FPU in the same state as that which results from a hard­
ware RESET signal with Built-In Self-Test. 

On the i486 processor, unlike the 387 math coprocessor, FINIT and FNINIT clear the 
error pointers. 

26-98 



INSTRUCTION SET 

FIST /FISTP - Store Integer 

Opcode Instruction Clocks 

DF /2 FIST m16int 33.4 (29-34) 
DB /2 FIST m32int 32.4 (28-34) 
DF /3 FISTP m16int 33.4 (29-34) 
DB /3 FISTP m32int 33.4 (29-34) 
DF /7 FISTP m64int 33.4 (29-34) 

Operation 

DEST ~ ST(O); 
IF instruction = FISTP THEN pop ST FI; 

Description 

Description 

Store ST in m16int. 
Store ST in m32int. 
Store ST in m16int and pop ST. 
Store ST in m32int and pop ST. 
Store ST in m64int and pop ST. 

FIST converts the value in ST into a signed integer according to the RC field of the 
control word and transfers the result to the destination. ST remains unchanged. FIST 
accepts word and short integer destinations; FISTP accepts these and long integers as 
well. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, I, IS 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; # AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Notes 

Negative zero is stored with the same encoding (00 .. 00) as positive zero. 

If the value is too large to represent as an integer, an I exception is raised. The masked 
response is to write the most negative integer to memory. 
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FLO - Local Real 

Opcode 

D9/0 
DD /0 
DB /5 
D9 CO+i 

Operation 

Instruction 

FLD m32real 
FLD m64real 
FLD mBOreal 
FLD ST(i) 

Clocks 

3 
3 
6 
4 

Decrement FPU stack-top pointer; 
ST(O) ~ SAC; 

Description 

Description 

Push m32real onto the FPU stack. 
Push m64real onto the FPU stack. 
Push mBOreal onto the FPU stack. 
Push ST(i) onto the FPU stack. 

FLD pushes the source operand onto the FPU stack. If the source is a register, the 
register number used is that before the stack-top pointer is decremented. In particular, 
coding 

FLD ST(O) 

duplicates the stack top. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

D, I, IS 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) 'for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

If the source operand is in single- or double-real format, it is automatically converted to 
the extended-real format. Loading an extended-real operand does not require conver­
sion, so the I and D exceptions will not occur in this case. 

ST(7) must be empty to avoid causing an invalid-operation exception. 
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FLD1 /FLDL2T /FLDL2E/ 
FLDPI/FLDLG2/FLDLN2/FLDZ - Load Constant' 

Opcode Instruction Clocks 

09 E8 FL01 4 
09 E9 FLOL2T 8 
09 EA FLOL2E 8 
09 EB FLOPI 8 
09 EC FLOLG2 8 
09 ED FLOLN2 8 
09 EE FLOZ 4 

Operation 

Decrement FPU stack-top pointer; 
ST(O) ~ CONSTANT; 

Description 

Concurrent Execution Description 

Push + 1.0 onto the FPU Stack. 
2 Push 109210 onto the FPU Stack. 
2 Push 1092e onto the FPU Stack. 
2 Push 'T1' onto the FPU Stack. 
2 Push 109102 onto the FPU Stack. 
2 Push 10ge2 onto the FPU Stack. 

Push + 0.0 onto the FPU Stack. 

Each of the constant instructions pushes a commonly-used (in extended-real format) 
onto the FPU stack. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

ST(7) must be empty to avoid an invalid exception. 
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An internal 66-bit constant is used and rounded to external-real format (as specified by 
the RC bit of the control words). The precision exception, is not raised. 
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FLDCW - Load Control Word 

Opcode, 

09/5 

Operation 

CW~ SRC; 

Description 

Instruction 

FNLOCW m2byte 

Clocks 

4 

Description 

Load FPU control word from m2byte. 

FLDCW replaces the current value of the FPU control word with the value contained in 
the specified memory word. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined 

Numeric Exceptions 

None, except for unmasking an existing exception 

Protected Mode Exceptions 

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or OS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

FLDCW is typically used to establish or change the FPU's mode of operation. 
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In an exception bit in the status word is set, loading a new control word that unmasks 
th~t exception will result in a floating-point error condition. When changing modes, the 
recommended procedure is to clear any pending exceptions before loading the new con­
,trol word. 
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FLDENV - Load FPU Environment 

Opcode 

09/4 

Operation 

Instruction 

FLOENV m14/ 
28byte 

FPU environment ~ SRC; 

Description 

Clocks 

44 real or virtual/34 
protected 

Description 

Load FPU environment from m 14byte or 
m28byte. 

FLDENV reloads the FPU environment from the memory area defined by the source 
operand. This data should have been written by previous FSTENV or FNSTENV in­
struction. 

The FPU environment consists of the FPU control word, status word, tag word, and 
error pointers (both data and instruction). The environment layout in memory depends 
on both the operand size and the current operating mode of the processor. The USE 
attribute of the current code segment determines the operand size: the 14-byte operand 
applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment. 
Figures 15-5 ;through 15-8 show the environment layouts for both operand sizes in both 
real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) 
FLDENV should be executed in the same operating mode as the corresponding FS­
TENV or FNSTENV. 

FPU Flags Affected 

CO, C1, C2, C3 as loaded 

Numeric Exceptions 

None, except for loading an unmasked exception 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 
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Virtual 8086 Mode Exceptions 

Same exceptions as in ReaI"Address Mode; #PF(fault code) for a' page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

If the environment image contains an unmasked exception, loading it will result in a 
floating-point error condition. 
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FMUL/FMULP/FIMUL- Multiply 

Opcode . Instruction Clocks Concurrent Execution Description 

08 /1 FMUL m32real 11 8 Multiply ST by m32real. 
DC /1 FMUL m64real 14 11 Multiply ST by m64real. 
08 C8+i FMUL ST, ST(i) 16 13 Multiply ST by ST(i) 
DC C8+i FMUL ST(i), ST 16 13 Multiply ST(i) by ST. 
DE C8+i FMULP ST(i), ST 16 13 Multiply ST(i) by ST and pop ST. 
DE C9 FMUL 16 13 Multiply ST(1) by ST and pop ST. 
DA /1 FIMUL m32int 23.5 (22-24) 8 Multiply ST by m32int. 
DE /1 FIMUL m16int 25 (23-27) 8 Multiply ST by m16int. 

Operation 

DEST ~ DEST x SRC; 
IF instruction = FMULP THEN pop ST FI; 

Description 

The multiplication instructions multiply the destination operand by the source operand 
and return the product to the destination. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, 0, I, I 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Notes 

If the source operand is in memory, it is automatically converted to the. extend'ed-real 
format. 
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FNOP - No Operation 

Opcode 

09 DO 

Description 

Instruction 

FNOP 

Clocks 

3 

Description 

No operation is performed. 

FNOP performs no operation. It affects nothing except instruction pointers. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 
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FPATAN - Partial Arctangent 

Opcode Instruction Clocks Concurrent Execution Description 

D9 F3 FPATAN . 289 (218-303) 5 (2-17) Replace ST(1) with arctan(ST(1) + Sn 

Operation 

ST(1) ~ arctan(ST(1) + ST); 
pop ST; 

Description 

and pop ST. . 

The partial arctangent instruction computes the arctangent of ST(1) +, ST, and returns 
the computed value, expressed in radians, to ST(1). It then pops ST. The result has the 
same sign as the operand from ST(1), and a magnitude less than 'iT. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in eRO is set 

Notes 

There is no restriction on the range of arguments that FPATAN can accept. 

The fact that FPATAN takes two arguments and computes the arctangent of their ratio 
simplifies the calculation of other trigonometric functions. For instance, arcsin(x) (which 
is the arctangent of x + \1(1- x2» can be computed using the following sequence of 
operations: Push x onto the FPU stack; compute \1(1- x2

) and push the resulting value 
onto the stack; execute FP AT AN . 
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The i486 CPU checks for interrupts while performing this instruction. It will abort this 
instruction to serve an interrupt. 
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FPREM ..... Partial Remainder 

Opcode 

D9 F8 

Operation 

Instruction Clocks 

FPREM 84 (70-138) 

Concurrent Execution 

2 (2-8) 

EXPDIF ~ exponent(8T) - exponent(8T(1)); 
IF EXPDIF < 64 
THEN 

Description 

Replace ST with the remainder obtained on 
dividing ST by ST(1). 

a ~ integer obtained by chopping 8T + 8T(1) toward zero; 
8T ~ 8T - (8T(1) x a); 
C2 ~O; 
CO, C1, C3 ~ three least-significant bits of a; (* a2, a1, aD *) 

EL8E 
C2 ~ 1; 
N ~ a number between 32 and 63; 
aa ~ integer obtained by chopping (8T + 8T(1)) + 2EXPDIF-N 

toward zero; 
8T ~ 8T - (8T(1) x aa x 2EXPDIF-N; 

FI; 

Description 

The partial remainder instruction computes the remainder obtained on dividing ST by 
ST(1), and leaves the result in ST. The sign of the remainder is the same as the sign of 
the original dividend in ST. The magnitude of the remainder is less than that of the 
modulus. 

FPU Flags Affected 

CO, C1, C2, C3 as described in Table 15-1 

Numeric Exceptions 

U, D, I, IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 
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Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

FPREM produces an exact result; the precision (inexact) exception does not occur and 
the rounding control has no effect. ' 

The FPREM instruction is not the remainder operation specified in IEEE Std 754. To 
get that remainder, the FPREMI instruction should be used. FPREM is' supported for 
compatibility with the 8087 and 80287 math coprocessors. 

FPREM works by iterative subtraction, and can reduce the exponent of ST by no more 
than 63 in one execution. If FPREM succeeds in producing a remainder that is less.than 
the modulus, the function is complete and the C2 flag is cleared. Otherwise, C2 is set, 
and the result in ST is called the partial remainder. The exponent of the partial remain­
der is less than the exponent of the original dividend by at least 32. Software can re­
execute the instruction (using the partial remainder in ST as the dividend) until C2 is 
cleared. A higher-priority interrupting routine that needs the FPU can force a context 
switch between the instructions in the remainder loop. 

An important use of FPREM is to reduce the arguments of periodic functions. When 
reduction is complete, FPREM provides the three least-significant bits of the quotient in 
flags C3, Cl, and CO. This is important in argument reduction for the tangent function 
(using a modulus of 'T1'/4), because it locates the original angle in the correct one of eight 
sectors of the unit circle. 
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FPREM1 - Partial Remainder 

Opcode 

09 F5 

Operation 

Instruction Clocks 

FPREM1 94.5 (72-167) 

Concurrent Execution 

5.5 (2-18) 

EXPDIF +- exponent(Sn - exponent(ST(1»; 
IF EXPDIF < 64 
THEN 

Description 

Replace ST with the remainder obtained on 
dividing ST by ST(l). 

o +- integer obtained by chopping ST + ST(1) toward zero; 
ST +- ST - (ST(1) x 0); 
C2 +- 0; 
CO, C1, C3 +- three least-significant bits of 0; (* 02, 01, 00 *) 

ELSE 
C2 +- 1; 
N +- a number between 32 and 63; 
00 +- integer nearest to (ST + ST(1» + 2EXPDIF-N; 
ST +- ST - (ST(1) x 00 x 2EXPDIF-N; 

FI; 

Description. 

The partial remainder instruction computes the remainder obtained on dividing ST by 
ST(1), and leaves the result in ST. The magnitude of the remainder is less than half the 
magnitude of the modulus. 

FPU Flags Affected 

CO, C1, C2, C3 as described in Table 15-1 

Numeric Exceptions 

U, D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

26-116 



INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 

Notes 

FPREMl produces an exact result; the precision (inexact) exception does not occur and 
the rounding control has no effect. 

The FPREMl instruction is the remainder operation specified in IEEE Std 754. It dif­
fers from FPREM in the way it rounds the quotient of ST and ST(l). 

FPREMl works by iterative subtraction, and can reduce the exponent of ST by no more 
than 63 in one execution. If FPREMl succeeds in producing a remainder that is less 
than one half the modulus, the function is complete and the C2 flag is cleared. Other­
wise, C2 is set, and the result in ST is called the partial remainder. The exponent of the 
partial remainder is less than the exponent of the original dividend by at least 32. Soft­
ware can re-execute the instruction (using the partial remainder in ST as the dividend) 
until C2 is cleared. A higher-priority interrupting routine that needs the FPU can force 
a context switch between the instructions in the remainder loop. 

An important use of FPREMl is to reduce the arguments of periodic functions. When 
reduction is complete, FPREMl provides the three least-significant bits of the quotient 
in flags C3, Cl, and CO. This is important in argument reduction for the tangent function 
(using a modulus of 1T/4), because it locates the original angle in the correct one of eight 
sectors of the unit circle. 
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FPTAN - Partial Tangent 

Opcode Instruction Clocks Concurrent Execution Description 

D9 F2 FPTAN 244 (200-273) 70 Replace ST with its tangent and push 1 
onto the FPU stack. 

Operation 

IF operand is in range 
THEN 

C2~0; 

ST ~ tan(ST); 
Decrement stack-top pointer; 
ST ~ 1.0; 

ELSE 
C2 ~ 1; 

FI; 

Description 

The partial tangent instruction replaces the contents of ST- with tan(ST), and then 
pushes 1.0 onto the FPU stack. ST, expressed in radians, must lie in'the range I 0 I < 263. 

FPU Flags Affected 

Cl, C2 as described in Table 15-1; CO, C3 undefined 

Numeric Exceptions 

P, U, D, I, IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 
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Notes 

It the operand is outside the acceptable range, the C2 flag is set, and ST remains un­
changed. It is the proJrammer's responsibility to reduce the operand to an absolute 
value smaller than 2 by subtracting an appropriate integer multiple of 2'IT. See 
Section 17.5 for a discussion of the proper value to use for 'IT in performing such reduc­
tions. 

The fact that FPTAN pushes 1.0 onto the FPU stack after computing tan(ST) maintains 
compatibility with the 8087 and 80287 math coprocessors, and simplifies the calculation 
of other trigonometric functions. For instance, the cotangent (which is the reciprocal of 
the tangent) can be computed by executing FDIVR after FPTAN. 

ST(7) must be empty to avoid an invalid-operation exception. 

The i486 CPU periodically checks for interrupts while performing this instruction. It will 
be aborted to service an interrupt. 
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FRNDINT - Round to Integer 

Opcode 

09 Fe 

Operation 

Instruction 

FRNOINT 

ST ~ rounded ST; 

Description 

Clocks Concurrent Execution 

29.1 (21-30) 7.4 (2-8) 
; 

Description 

Round. ST to an integer. 

The round to integer instruction rounds the value in ST to an integer according to .the 
RC field of the FPU control word. . 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 
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FRSTOR - Restore FPU State 

Opcode 

DB /4 

Operation 

, Instruction 

FRSTOR m94/ 
10Bbyte 

FPU state +- SRC; 

Description 

Clocks 

131 real or virtual/120 
protected 

Description 

Load FPU state from m94byte or m 10Bbyte. 

FRSTOR reloads the FPU state (environment and register stack) from the memory area 
defined by the source operand. This data should have been written by a previous 
FSA VE or FNSA VE instruction. 

The FPU environment consists of the FPU control word, status word, tag word, and 
error pointers (both data and instruction). The environment layout in memory depends 
on both the operand size and the current operating mode of the processor. The USE 
attribute of the current code segment determines the operand size: the 14-byte operand 
applies to a USE16 segment, and the 28-byte operand applies to a USE32 segment. 
Figures 15-5 through 15-8 show the environment layouts for both operand sizes in both 
real mode and protected mode. (In virtual-8086 mode, the real mode layout is used.) 
The stack registers, beginning with ST and ending with ST(7), are in the 80 bytes that 
immediately follow the environment image. FRSTOR should be executed in the same 
operating mode as the corresponding FSA VE or FNSA VE. 

FPU Flags Affected 

CO, C1, C2, C3 as loaded 

Numeric Exceptions 

None, except for loading an unmasked exception 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 
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Virtual 8086 Mode Exceptions 

Saine exceptions as in RealAddress Mode; #PF(fault,code)for a page fault; #AC for 
unaligned. memory reference if the current privilege level is 3 

Notes 

If the state image contains an unmasked exception, loading it will result in a floating­
point error condition. 
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FSAVE/FNSAVE - Store FPU State 

Opcode 

98 DO 16 

DO 16 

Operation 

. Instruction 

FSAVE m94/108byte 

FNSAVE m94/ 
108byte 

DEST ~ FPU state; 

,Clocks 

154 real or virtual/143 
protected; + at least 3 
for FWAIT 
154 real or virtual/143 
protected 

initialize FPU; (* Equivalent to FNINIT *) 

Description 

Description 

Store FPU state to m94byte or m108byte after 
checking for unmasked tloating-point error 
condition. Then re-initialize the FPU. 
Store FPU environment to m94byte or m108byte 
without checking for unmasked floating-point 
error condition. Then re-initialize the FPU. 

The save instr~ctions write the current FPU state (environment and register stack) to 
the specified destination, and then re-initialize the FPU. The environment consists of 
the FPU control word, status word, tag word, and error pointers (both data and 
instruction). . 

The state layout in memory depends on both the operand size and the current operating 
mode of the processor. The USE attribute of the current code segment determines the 
operand size: the 94-byte operand applies to USE16 segment, and the 108-byte operand 
applies to a USE32 segment. Figures 15-5 through 15-8 show the environment layouts for 
both operand sizes in both real mode and protected mode. (In virtual-8086 mode, the 
real mode layout is used.) The stack registers, beginning with ST and ending with ST(7), 
are stored in the 80 bytes that immediately follow the environment image. 

FPU Flags Affected 

CO, C1, C2, C3 cleared 

Numeric Exceptions 

None 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3 
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Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would "lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(faultcode) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

FSA VE and FNSA VE do not store the FPU state until all FPU activity is complete. 
Thus, the saved image reflects the state of the FPU after any previously decoded instruc­
tion has been executed. 

If a program is to read from the memory image of the state following a save instruction, 
i~ must issue an FW AIT iristru~tion to ensure that the storage is complete. 

The save instructions are typically used when an operating system needs to perform a 
context switch, or an exception handler needs to use the FPU, or an application program 
wants to pass a "clean" FPU to a subroutine. 
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FSCALE - Scale 

Opcode 

D9 FD 

Operation 

Instruction 

FSCALE 

ST ~ ST x 2ST(1); 

Description 

INSTRUCTION SET 

Clocks Concurrent Execution Description 

31 (30-32) 2 Scale ST by ST(1). 

The scale instruction interprets the value in ST(I) as an integer, and adds this integer to 
the exponent of ST. Thus, FSCALE provides rapid multiplication or division by integral 
powers of 2. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 

Notes 

FSCALE can be used as an inverse to FXTRACT. Since FSCALE does not pop the 
exponent part, however, FSCALE must be followed by FSTP ST(I) in order to com­
pletely undo the effect of a preceding FXTRACT. 

There is no limit on the range of the scale factor in ST(I). If the value is not integral, 
FSCALE uses the nearest integer smaller in magnitude; i.e., it chops the value toward O. 
If the resulting integer is zero, the value in ST is not changed. 
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FSIN-Sine 

Opcode 

09 FE 

Operation 

Instruction 

FSIN 

IF operand is in range 
THEN 

C2~O; 

ST ~ sin(ST); 
ELSE 

C2 ~ 1; 
FI: 

Description 

INSTRUCTION SET 

Clocks Concurrent Execution Description 

241 (193-279) 2 Replace ST with its sine. 

The sine instruction replaces the contents of ST with sin(ST). ST, expressed in radians, 
must lie in the range I e I < 263

• 

FPU Flags Affected 

Cl, C2 as described in Table 15-1; CO, C3 undefined 

Numeric Exceptions 

P, U, D, I, IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 
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Notes 

If the operand is outside the acceptable range, the C2 flag is set, and ST remains un­
changed. It is the pr~rammer's responsibility to reduce the operand to an absolute 
value smaller than 2by subtracting an appropriate integer mUltiple of 21T. See 
Section 17.5 for a discussion of the proper value to use for 1T in performing such reduc­
tions. 

The i486 CPU periodically checks for interrupts while performing this instruction. It will 
be aborted to service an interrupt. 
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FSINCOS-Sine and Cosine 

Opcode 

D9 FB 

Instruction Clo'cks Concurrent Execution Description 

FSINCOS ,'291 (243-329) 2 Compute the sine and cosine of ST; , 
replace ST with the sine, and then . 
push the cosine onto the FPU stack .. 

Operation, 

IF operand is in range 
THEN 

C2~O; 

TEMP ~ cos(ST); 
ST ~ sin(ST); 
Decrement FPU stack-top pointer; 
ST ~ TEMP; 

ELSE 
C2 ~ 1; 

FI: 

Description 

FSINCOS computes both sin(ST) and cos(ST), replaces ST with the sine and then 
pushes the cosine onto the FPU stack. ST, expressed in radians, must lie in the range 
I e I < 263

, . 

FPU Flags Affected 

Cl, C2 as described in Table 15-1; CO, C3 undefined 

Numeric Exceptions 

P, U, D, I, IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 
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Notes 

If the operand is outside the acceptable range, the C2 flag is set, and ST remains un­
changed. It is the programmer's responsibility to reduce the operand to an absolute 
value smaller than 263 by subtracting an appropriate integer multiple of 2".. See Section 
17.5 for a discussion of the proper value to use for". in performing such reductions. 

It is faster to execute FSINCOS than to execute both FSIN and FCOS. 

The i486 CPU periodically checks for interrupts while performing this instruction. It will 
be aborted to service an interrupt. 
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FSQRT - Square Root 

Opcode 

09 FA 

Operation 

Instruction 

FSQRT 

ST ~ square root of ST; 

Description 

Clocks Concurrent Execution 

85.5 (83-87) ,70 

Description . 

Replace ST with its square root. 

The square root instruction replaces the value in ST with its square root. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in eRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

The square root of - 0 is - O. 
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FST /FSTP - Store Real 

Opcode Instruction Clocks 

D9/2 FST m32real 7 
DD /2 FST m64real 8 
DD DO+i FST ST(i) 3 
D9/3 FSTP m32real 7 
DD /3 FSTP m64real 8 

-DB /7 FSTP mBOreal 6 
DD D8+i FSTP ST(i) 3 

Operation 

DEST ~ ST(O); 
IF instruction = FSTP THEN pop ST FI; 

Description 

Description 

Copy ST to m32real . 
Copy ST to m64real. 
Copy ST to ST(i). 
Copy ST to m32real and pop ST. 
Copy ST to m64real and pop ST. 
Copy ST to mBOreal and pop ST. 
Copy ST to ST(i) and pop ST. 

FST copies the current value in the ST register to the destination, which can be another 
register or a single- or double-real memory operand. FSTP copies and then pops ST; it 
accepts extended-real memory operands as well as the types accepted by FST . . 
If the source is a register, the register number used is that before the stack is popped. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

Register or extended-real destinations: IS 
Single- or double-real destinations: P, U, 0, D, I, IS 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

If the destination is single- or double-real, the significand is rounded to the width of the 
destination according to the RC field of the control word, and the exponent is converted 
to the width and bias of the destination format. The over/underflow condition is checked 
for as well. 

If ST contains zero, ± 00, or a NaN, then the significand is not rounded, but chopped 
(on the right) to fit the destination. Nor is the exponent converted; it too is chopped on 
the right. These operations preserve the value's identity as 00 or NaN (exponent all 
ones). 

The invalid-operation exception is not raised when the destination is a nonempty stack 
element. 
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FSTCW /FNSTCW - Store Control Word 

Opcode 

98 09 /7 

Instruction 

FSTCW m2byte 

09/7 , FNSTCW m2byte 

Operation 

DEST ~ CW; 

Description 

Clocks 

3 + at least 3 for 
FWAIT 
3 

Description 

Store FPU control word to m2byte after checking 
for unmasked floating-point error condition. 
Store FPU control word to m2byte without 
checking for unmasked floating-point error 
condition. 

FSTCW and FNSTCW write the current value of the FPU control word to the specified 
destination. 

FPU Flags Affected 

CO, C1, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
eRO is set; # AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 
" , , 

FSTCW checks for unmasked floating-point "error conditions before storing the control 
word; FNSTCW does ,nqt. 
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FSTENV /FNSTENV - Store FPU Environment 

Opcode 

9B 09 /6 

09/6 

Operation 

Instruction Clocks 

FSTENV m14/28byte 67 real or virtual/56 
protected; + at least 3 
for FWAIT 

FNSTENV m 14/ 67 real or virtual/56 
28byte protected; 

DEST ~ FPU environment; 
CW[O .. 5] ~ 1111118; 

Description 

Description 

Store FPU environment to m14byte or m28byte 
after checking for unmasked floating-point error 
condition. Then mask all floating-point 
exceptions. 
Store FPU environment to m14byte or m28byte 
without checking for unmasked floating-point 
error condition. Then mask all floating-point 
exceptions. 

The store environment instructions write the current FPU environment to the specified 
destination, and then mask all floating-point exceptions. The FPU environment consists 
of the FPU control word, status word, tag word, and error pointer (both data and 
instruction) . 

The environment layout in memory depends on both the operand size and the current 
operating mode of the processor. The USE attribute of the current code segment deter­
mines the operand size: the 14-byte operand applies toa USE16 segment, and the 
28-byte operand applies to a USE32 segment. Figures 15-5 through 15-8 show the envi­
ronment layouts for both. operand sizes in both real mode and protected mode. (In 
virtual-8086 mode, the real.mode layout is used.) 

FPU Flags Affected 

CO, C1, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

#GP(O) if the destination is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3 
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Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

FSTENV and FNSTENV do not store the environment until all FPU activity is com­
plete. Thus, the saved environment reflects the state of the FPU after any previously 
decoded instruction has been executed. 

The store environment instructions are often used by exception handlers because they 
provide access to the FPU error pointers. The environment is typically saved onto the 
memory stack. After saving the environment, FSTENV and FNSTENV sets all the ex­
ception masks in the FPU control word. This prevents floating-point errors from inter-
rupting the exception handler. . 

FSTENV checks for unmasked floating-point error conditions before storing the FPU 
environment; FNSTENV does not. 
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FSTSW /FNSTSW - Store Status Word 

Opcode Instruction Clocks . Description 

98 OF /7 FSTSW m2byte . 3 + at least 3 for Store FPU status word to mbyte after checking 
FWAIT for unmasked floating-point error condition. 

98 OF EO FSTSW 3 + at least 3 for Store FPU status word to AX register after 
FWAIT checking for unmasked floating-point error 

condition. 
OF /7 FNSTSW m2byte 3 Store FPU status word to m2byte without 

checking for unmasked floating-point error 
condition. 

OF EO FNSTSW AX 3 Store FPU status word to AX register without 
checking for unmasked floating-point error 
condition. 

Operation 

DEST ~ SW; 

Description 

FSTSW and FNSTSW write the current value of the F~U status word. to the specified 
destination, which can be either a two-byte location in memory or the AX register. 

FPU Flags Affected 

CO, C1, C2, C3 undefined 

Numeric Exceptions 

None 

Protected Mode Exceptions 

#OP(O) if the destination is in a nonwritable segment; #OP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or OS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in 
CRO is set; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Notes 

FSTSW checks for unmasked floating-point error conditions before storing the status 
word; FNSTSW does not. ' 

FSTSW and FNSTSW are used primarily in conditional branching (after a comparison, 
FPREM, FPREMl, or FXAM instruction). They can also be used to invoke exception 
handlers (by polling the exception bits) in environments that do not use interrupts. 

When FNSTSW AX is executed, the AX register is updated before the i486 processor 
executes any further instructions. The status stored is that from the completion of the. 
prior ESC instruction. 
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FSUB/FSUBP/FISUB - Subtract 

Opcode Instruction Clocks Concurrent Execution Description 

08/4 FSUB m32real 10 (8-20) 7 (5-17) Subtract m32real from ST. 
DC /4 FSUB m64real 10 (8-20) 7 (5-17) Subtract m64real from ST. 
08 EO+i FSUB ST, ST(i) 10 (8-20) 7 (5-17) Subtract ST(i) from ST. 
DC E8+i FSUB ST(i), ST 10 (8-20) 7 (5-17) Replace ST(i) with ST - ST(i). 
DE E8+.i . FSUBP ST(i), ST 10 (8-20) 7 (5-17) , Replace ST(i) with ST - ST(i); pop ST. 
DE E9 FSUB 10 (8-20) 7 (5-17) Replace ST(1) with ST -ST(1); pop ST. 
DA /4 FISUB m32int 22.5 (19-32) 7 (5-17) Subtract m32int from ST. 
DE /4 FISUBm16int 24 (20-35) 7 (5-17) Subtract m16intfrom ST. 

Operation 

DE8T ~ 8T - Other Operand; 
IF instruction = F8UBP THEN pop 8T FI; 

Description 

The subtraction instructions subtract the other operand from the stack top and return 
the difference to the destination. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, D, I, IS 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #NM if either EM or TS in CRO is set; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Notes 

If the source operand, is' in memory, it is automatically converted to the, extended-real 
format. 
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FSUBR/FSUBPR/FISUBR - Reverse Subtract 

Opcode· . Instruction Clocks Concurrent Execution Description 

08/5 FSUBR m32rea/ 10 (8-20) 7 (5-17) Replace ST with m32rea/ - ST. 
DC /5 FSUBR m64rea/ 10 (8-20) 7 (5-17) Replace ST with m64rea/ - ST. 
08 E8+i FSUBR ST, ST(i) 10 (8-20) 7 (5-17) Replace ST with ST(i) - ST. 
DC EO+i FSUBR ST(i), ST 10 (8-20) 7 (5-17) Subtract ST from ST(i). 
DE EO+i FSUBRP ST(i), ST 10 (8-20) 7 (5-17) Subtract ST from ST(i) and pop ST. 
DE E1 FSUBR 10 (8-20) 7 (5-17) Subtract ST from ST(1) and pop ST. 
DA /5 FISUBR m32int 22.5 (19-32) 7 (5-17) Replace ST with m32int - ST. 
DE /5 FISUBR m16int 24 (20-35) 7 (5-17) Replace ST with m16int - ST. 

Operation 

DEST ~ Other Operand - ST; 
IF instruction = FSUBRP THEN pop ST FI; 

Description 

The reverse subtraction instructions subtract the stack top from the other operand and 
return the difference to the destination. 

FPU Flags Affected 

C1 as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, D, I, IS 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; # NM if either EM or TS in CRO is set; # AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH; Interrupt 7 if either EM or TS in eRO is set 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Notes 

If the source operand is in memory, it is automatically converted to the extended-real 
format. 
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FTST-TEST 

Opcode' 

D9 E4 

Operation 

Instruction 

FTST 

CASE (relation of operands) OF 

Clocks 

4 

Not comparable: C3, C2, CO +- 111; 
ST > SRC: C3, C2, CO +- 000; 
ST < SRC: C3, C2, CO +- 001 ; 
ST = SRC: C3, C2, CO +- 100; 

FPU Flags 

Co 

C1 

C2 

C3 

Description 

Concurrent Execution Description 

Compare ST with 0.0. 

EFlags 

CF 

(none) 

PF 

ZF 

The test instruction compares the stack top to 0.0. Following the instruction, the condi­
tion codes reflect the result of the comparison. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 as specified above 

Numeric Exceptions 

D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 
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Notes 

If ST contains a NaN or an object of undefined format, or if a stack fault occurs, the 
invalid-operation exception is raised, and the condition bits are set to "unordered." 

The sign of zero is ignored, so that - 0.0 = - + 0.0. 
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FUCOM/FUCOMP/FUCOMPP - Unordered Compare Real 

Opc~de ' 

DD EO+i 
DD E1 
DD E8+i 
DD E9 
DA E9 

Operation 

'Instruction 

FUCOM ST(i) 
FUCOM 
FUCOMP ST(i) 
FUCOMP 
FUCOMPP 

Clocks 

4 
4 
4 
4 
5 

CASE (relation of operands) OF 

Concurrent Execution 

Not comparable: C3, C2, CO +- 111; 
ST > SRC: C3, C2, CO +- 000; 
ST < SRC: C3, C2, CO +- 001 ; 
ST = SRC: C3, C2, CO +- 100; 

IF instruction = FUCOMP THEN pop ST; FI; 
IF instruction = FUCOMPP THEN pop ST; pop ST; FI; 

FPU Flags 

Co 

C1 

C2 

C3 

Description 

Description 

Compare ST with ST(i). 
Compare ST with ST(1). 

, Compare ST lNith ST(i) arid pop ST. 
Compare ST with ST(1) and pop ST. 
Compare ST with ST(1) and pop ST twice. 

EFlags 

CF 

(none) 

PF 

ZF 

The unordered compare real instructions compare the stack top to the source, which 
must be a register. If no operand is encoded, ST is compared to ST(I). Following the 
instruction, the condition codes reflect the relation between ST and the source operand. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 as specified above 

Numeric Exceptions 

D, I, IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 
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Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 

Notes 

If either operand is an SNaN or is in an undefined format, or if a stack fault occurs, .the 
invalid-operation exception is raised, and the condition bits are set to "unordered." 

If either operand is a QNaN, the condition bits are set to "unordered." Unlike the 
ordinary compare instructions (FCOM, etc.), the unordered compare instructions do not 
raise the invalid-operation exception on account of a QNaN operand. 

The sign of zero is ignored, so that - 0.0 = - + 0.0. 

26·145 



INSTRUCTION··SET 

FWAIT-Wait 
Opcode 

98 

Description 

Instruction 

FWAIT 

Clocks 

(1-3) 

Description 

Alias for WAIT. 

FW AIT causes the processor to check for pending unmasked numeric exceptions before 
proceding. " ' 

FPU Flags Affected 

CO, Cl, C2, C3 undefined, 

Numeric Exceptions '.1 

None 

Protected Mode Exceptions 

# NM if both MP and TS in CRO are set 

Real Address Mode Exceptions 

Interrupt 7 if both MP and TS in CRO are set 

Virtual 8086 Mode Exceptions 

# NM if both MP and TS in CRO are set 

Notes 

As its opcode shows, FWAIT is not actually an ESC instruction, but an alternate mne­
monic for WAIT. 

Coding FW AIT after an ESC instruction ensures that any unmasked floating-point ex­
ceptions the instruction may cause are handled before the processor has a chance to 
modify the instruction's results. 

Information about when to use FWAIT is given in Chapter 18, in the section on "Con­
curren t Processing." 
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FXAM - Examine 

Opcode 

D9 E5 

Operation 

Instruction 

FXAM 

Clocks 

8 

C1 ~ sign bit of ST; (* 0 for positive, 1 for negative *) 

CASE (type of object in ST) OF 
Unsupported: C3, C2, CO ~ 000; 
NaN: C3, C2, CO ~ 001 ; 
Normal: C3, C2, CO ~ 010; 
Infinity: C3, C2, CO ~ 011; 
Zero: C3, C2, CO ~ 100; 
Empty: C3, C2, CO ~ 101; 
Denormal: C3, C2, CO ~ 110; 

FPU Flags 

Co 
C1 

C2 

C3 

Description 

Description 

Report the type of object in the ST register. 

EFlags 

CF 
(none) 

PF 
ZF 

The examine instruction reports the type of object contained in the ST register by setting 
the FPU Flags. 

FPU Flags Affected 

CO, Cl, C2, C3 as shown above. 

Numeric Exceptions 

None 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 
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Virtual 8086 Mode Exceptions 

# NM if either EM or TS in eRO is set 
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FXCH - Exchange Register Contents 

Opcode Instruction 

09CB+i 'FXCH ST(i) 
09 C9 FXCH 

Operation 

TEMP ~ ST; 
ST ~ DEST; 
DEST ~ TEMP; 

Description 

Clocks· 

'4 
4 

Description 

Exchange thecontents of ST and ST(i), 
Exchange the contents of ST and ST(1). 

FXCH swaps the contents of the destination and stack-top registers. If the destination is 
not coded explicitly, ST(l) is used. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

#NM if either EM or TS in CRO is set 

26-149 



INSTRUCTION SET 

Notes 

Many numeric instructions operate only on the stack top; FXCH' provides a simple 
means for using these instructions on lower stack elements. For example, the following 
sequence takes the, square root of the third register form the top (assuming that ST is 
nonempty): 

FXCH ST(3) 
FSQRT 
FXCH ST(3) 
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FXTRACT - Extract Exponent and Significand 

Opcode Instruction Clocks 

D9 F4 FXTRACT 19 (16-20) 

Operation 

TEMP ~ significand of ST; 
ST ~ exponent of ST; 
Decrement FPU stack-top pointer; 
ST ~ TEMP; 

Description 

Concurrent Execution Description 

4 (2-4) Separate ST into its exponent and 
significand; replace ST with the exponent 
and then push the significand onto the 
FPU stack. 

FXTRACT splits the value in ST into its exponent and significand. The exponent re­
places the original operand on the stack and the significand is pushed onto the stack. 
Following execution of FXTRACT, ST (the new stack top) contains the value of the 
original significand expressed as areal number: its sign is the same as the operand's, its 
exponent is 0 true (16,383 or 3FFFH biased), and its significand is identical to the 
original operand's. ST(I) contains the value of the original operand's true (unbiased) 
exponent expressed as a real number. 

To illustrate the operation of FXTRACT, assume tha~ ST contains a number whose .true 
exponent is + 4 (i.e., its exponent field contains 4003H). After executing FXTRACT, 
ST( 1) will contain the real number + 4.0; its sign will be positive, its exponent field will 
contain 4001H ( + 2 true) and its significand field will contain 1.:l00 ... 00B. In other words; 
the value in ST(I) will be 1.0 x 22 = 4. If ST contains an operand whose true exponent 
is -7 (i.e., its exponent field contains 3FF8H), then FXTRACT will return an "ex­
ponent" of -7.0; after the instruction executes, ST(I)'s sign and exponent fields will 
contain COOIH (negative sign, true exponent of 2), and its significand will be 
1.:l1100 ... 00B. In other words, the value in ST(I) will be -1.75 x 22= -7.0. In both 
cases, following FXTRACT, ST's sign and significand fields will be the same as the 
original operand's, and its exponent field will contain 3FFFH (0 true). 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

Z, D, I, IS 
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Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address, Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set, 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

FXTRACT (extract exponent and significand) performs a superset of the IEEE­
recommended 10gb (x ) function. 

If the original operand is zero, FXTRACT leaves - 00 in ST(l) (the exponent) while ST 
is assigned the value zero with a sign equal to that of the original operand. The zero,:, 
divide exception is raised in this case, as well. 

ST(7) must be empty to avoid the invalid-operation exception. 

FXTRACT is useful for power and range scaling operations. Both FXTRACT and the 
base 2 exponential instruction F2XMl are needed to perform a general power opera­
tion. Converting numbers in extended-real format to decimal representations (e.g., for 
printing or displaying) requires not only FBSTP but also FXTRACT to allow scaling that 
does not overflow the' range of the extended format. FXTRACT can also be useful for 
debugging, because it allows the exponent and significarid parts of a real number'to be 
examined separately;' 
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FYL2X - Compute y x I092X 

Opcode 

D9 F1 

Instruction 

FYL2X 

Operation 

Clocks Concurrent Execution 

311 (196-329) 13 

8T(1) ~ 8T(1) x 10928T; 
pop ST; 

Description 

Description 

Replace ST(1) with ST(1) x I092ST andpop ST. , 

FYL2X computes the base-2 logarithm of ST, multiplies the logarithm by ST(I), and 
returns the resulting value to ST(I). It then pops ST. The operand in ST cannot be 
negative. 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, 0, Z, D, I, IS 

Protected Mode Exceptions 

#NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

If the operand in ST is negative, the invalid-operation exception is raised. 

The FYL2X instruction is designed with a built-in multiplication to optimize the calcu­
lation of logarithms with arbitrary positive base: 
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The instructions FLDL2T and FLDL2E load the constants log210 and log2e, 
respectively. 

The i486 CPU periodically checks interrupts while executing this instruction. It will be 
aborted to service an interrupt. 
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FYL2XP1-Compute y X I092(X +1) 

Opcode Instruction' Clocks 

D9 F9 FYL2XP1 313 (171-326) 

Operation 

ST(1) +- ST(1) x 1092(ST + 1.0); 
pop ST; 

Description 

Concurrent Execution Description 

13 Replace ST(1) with ST(1) x I092(ST + 1.0) 
and pop ST. 

FYL2XPI computes the base-2 logarithm of (ST + 1.0), multiplies the logarithm by 
ST(I), and returns the resulting value to ST(I). It then pops ST. The operand in ST 
must be in the range 

- (1 - (y'2/2)) =5 ST =5 y'2 -1 

FPU Flags Affected 

Cl as described in Table 15-1; CO, C2, C3 undefined 

Numeric Exceptions 

P, U, D, I, IS 

Protected Mode Exceptions 

# NM if either EM or TS in CRO is set 

Real Address Mode Exceptions 

Interrupt 7 if either EM or TS in CRO is set 

Virtual 8086 Mode Exceptions 

# NM if either EM or TS in CRO is set 

Notes 

If the operand in ST is outside the acceptable range, the result of FYL2XPI is 
undefined. 
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The FYL2XPl instruction provides improved accuracy. over FYL2X when computing the 
logarithms of numbers very close to. 1. When E is small, more significant digits can be 
retained by providing E as an argument to FYL2XPl than by providing 1 + E as an argu­
ment to FYL2X. 

The i486 CPU periodically checks for interrupts while executing this instruction. It will 
be aborted to service an interrupt. 
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HLT -Halt 

Opcode 

F4 

Instruction 

HLT 

Operation 

Enter Halt state; 

Description 

Clocks 

4 

Description 

Halt 

The HLT instruction stops instruction execution and places the processor in a HALT 
state. An enabled interrupt, NMI, or a reset will resume execution. If an. interrupt (in­
cluding NMI) is used to resume execution after a HLT instruction, the saved CS:IP (or 
CS:EIP) value points to the instruction following the HL T instruction. 

Flags Affected 

None 

Protected Mode Exceptions 

The HL T instruction is a privileged instruction; #GP(O) if the current privilege level is 
not 0 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O); the HLT instruction is a pri~ileged instruction 
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IDIV - Signed Divide 

Opcode 

F6/7 
F7/7 

F7/7 

Operation 

Instruction 

IDIV rlmB 
IDIV AX,rlm16 

IDIV EAX,rlm32 

temp ~ dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient ~ temp; 

Clocks 

19/20 
27/28 

43/44 

remainder ~ dividend MOD (rim); 
FI; 

Description 

Signed divide AX by rim byte (AL = Quo, AH = Rem) 
Signed divide DX:AX by EA word (AX = Quo, 
DX=Rem) 
Signed divide EDX:EAX by DWORD byte 
(EAX = Quo, EDX = Rem) 

Notes: Divisions are signed. The divisor is given by the rim operand. The dividend, 
quotient, and remainder use implicit registers. Refer to the table under "Description." 

Description 

The IDIV instruction performs a signed division. The dividend, quotient, and remainder 
are implicitly allocated to fixed registers. Only the divisor is given as an explicit ,rim 
operand. The type of the divisor determines which registers to use as follows: 

Size Divisor Quotient Remainder Dividend 

byte rlmB AL AH AX 
word rim 16 AX OX OX:AX 
dword rlm32 EAX EOX EOX:EAX 

If the resulting quotient is too large to fit in the destination, or if the division is 0, an 
Interrupt 0 is generated. Nonintegral quotients are truncated toward O. The remainder 
has the same sign as the dividend and the absolute value of the remainder is always less 
than the absolute value of the divisor. 

Flags Affected 

The OF, SF, ZF, AF, PF, CF flags are undefined. 

26-158 



INSTRUCTION SET 

Protected Mode Exceptions 

Interrupt 0 if 'the quotient is too large to fit in the designated register (AL or AX), or if 
the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault; #AC for unaligned memory reference if th.e current privilege 
level is 3 

Real Address Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if 
the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective 
address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions ,as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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1M U L - Signed Multiply 

Opcode Instruction Clocks Description 

F6/5 IMULr/mB 13-18/13-18 AX- AL * rim byte 
F7/5 IMUL r/m16 13-26/13-26 DX:AX - AX * rim word 
F7/5 IMUL r/m32 12-42/13-42 EDX:EAX - EAX * rim dword 
OF AF /r IMUL r16,r/m16 13-26/13-26 word register - word register * rim word 
OF AF /r IMUL r32,r/m32 13-42/13-42 dword register - dword register * rim dword 
6B /r ib IMUL r16,r/m16,immB 13-26/13-26 word register - r/m16 * Sign-extended 

immediate byte 
6B /r ib IMUL r32,r/m32,immB 13-42/13-42 dword register - r/m32 * Sign-extended 

immediate byte . 
6B /r ib IMUL r16,immB 13-26 word register - word register * sign-extended 

. immediate byte. . .: 
6B /r ib IMUL r32,immB 13-42 dword register - dword register * sign-extended 

immediate byte 
69 /r iw IMUL r16,r/ 

m 16,imm16 
13-26/13-26 word register - rim 16 * immediate word 

69 /r id IMUL r32.r/ 13-42/13-42 dword register - r/m32 * immediate dword 
m32,imm32 

69 /r iw IMUL r16,imm16 13-26/13-26 word register - r/m16 * immediate word 
69 /r id IMUL r32,imm32 13-42/13-42 dword register - r/m32 * immediate dword 

NOTES: The i486 processor uses an early-out multiply algorithm. The actual number of clocks depends on the position of 
the most significant bit in the optimizing multiplier. The optimization occurs for positive and negative values. 
Because of the early-out algorithm, clock counts given are minimum to maximum. To calculate the actual clocks, 
use the following formula: 

Actual clock = if m < > 0 then max(ceiling(log2 1 m 13) + 6 clocks 
Actual clock = if m = 0 then 9 clocks 
(where m is the multiplier) 

Add three clocks if the multiplier is a memory operand. 

Operation 

result ~ multiplicand * multiplier; 

Description 

The IMUL instruction performs signed multiplication. Some forms of the instruction use 
implicit register operands. The operand combinations for all forms of the instruction are 
shown in the "Description" column above. 

The IMUL instruction clears the OF and CF flags under the following conditions: 

Instruction Form Condition for Clearing CF and OF 

r/mB AL = sign-extend of AL to 16 bits 
r/m16 AX = Sign-extend of AX to 32 bits 
r/m32 EDX: EAX = sign-extend of EAX to 32 bits 
r16,r/m16 Result exactly fits within r16 
r/32,r/m32 Result exactly fits within r32 
r16,r/m 16,imm 16 Result exactly fits within r16 
r32,r/m32,imm32 Result exactly fits within r32 
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Flags Affected 

The OF and CF flags as described in the table in the "Description" section above; the 
SF, ZF, AF, and PF flags are undefined 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exeptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

When using the accumulator forms (IMUL rlmB, IMUL rim 16, or IMUL rlm32) , the 
result of the multiplication is available even if the overflow flag is set because the result 
is twice the size of the multiplicand and multiplier. This is large enough to handle any 
possible result. 
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IN -Input from Port 

Opcode Instruction 

E4 ib IN AL,immB 

E5 ib IN AX,immB 

E5 ib IN EAX,immB 

EC IN AL,OX 

ED IN AX,OX 

ED IN EAX,OX 

NOTES: *If CPL ::;;Ie IOPL 
**If CPL 2! IOPL 

Operation 

Clocks 

14,pm=B*/ 
2B**,vm=27 
14,pm=B*/ 
2B**,vm=27 
14,pm=B*/ 
2B**,vm=27 
14,pm:=B*/ 
2B**,vm=27 
14,pm=B*/ 
2B**,vm=27 
14,pm=B*/ 
2B**,vm=27 

IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL)) 

Description 

Input byte from immediate port into AL 

Input word from immediate port into AX 

Input dword from immediate port into EAx 

Input byte from port OX into AL 

Input word from port OX into AX 

Input dword from port OX into EAX 

THEN (* Virtual 8086 mode, or protected mode with CPL > IOPL *) 
IF NOT I-O-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
DEST ~ [SRC); (* Reads from I/O address space *) 

Description 

The IN instruction transfers a data byte or data word from the port numbered by the 
second operand into the register (AL, AX, or EAX) specified by the first operand. 
Access any port from 0 to 65535 by placing the port number in the DX register and using 
an IN instruction with the DX register as the second parameter. These I/O instructions 
can be shortened by using an 8-bit port I/O in the instruction. The upper eight bits of the 
port address will be 0 when 8-bit port I/O is used. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is larger (has less privilege) than the I/O privilege 
level and any of the' corresponding I/O permission bits in TSS equals 1 

Real Address Mode Exceptions 

None 
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Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1 
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INC -Increment by 1 

Opcode 

FE /0 
FF /0 
FF /6 
40+ rw 
40+ rd 

Operation 

Instruction 

INC rlmB 
INC rlm16 
INC rlm32 
INC r16 
INC r32 

DEST ~ DEST + 1; 

Description 

Clocks 

1/3 
1/3 
1/3 
1 
1 

Description 

Increment rim byte by 1 
Increment rim word by 1 
Increment rim dword by 1 
Increment word register by 1 
Increment dword register by 1 

The INC instruction adds 1 to the operand. It does not change the CF flag. To affect the 
CF flag, use the ADD instruction with a second operand of 1. 

Flags Affected 

The OF, SF, ZF, AF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the operand is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level ~s 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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INS/INSB/INSW/INSD -Input from Port to String 

Opcode Instruction 

6C INS r/mB,OX 

60 INS r/m16,OX 

60 INS r/m32,OX 

6C INSB 

60 INSW 

60 INSO 

NOTES: *If CPL s IOPL 
**If CPL > IOPL 

Operation. 

IF AddressSize = 16 
THEN use 01 for dest-index; 
ELSE (* AddressSize = 32 *) 

use EOI for dest-index; 
FI; 

Clocks 

17,pm= 10*/ 
32**,VM=30 
17,pm= 10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 
17,pm= 10*/ 
32**,VM=30 
17,pm= 10*/ 
32**,VM=30 
17,pm= 10*/ 
32**,VM=30 

IF (PE = 1) ANO ((VM = 1) OR (CPL > 10PL)) 

Description 

Input byte from port OX into ES:(E)OI 

Input word from port OX into ES:(E)OI 

Input dword from port OX into ES:(E)OI 

Input byte from port OX into ES:(E)OI 

Input word from port OX into ES:(E)OI 

Input dword from port OX into ES:(E)OI 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-O-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

ES:[dest-index] ~ [OX]; (* Reads byte at OX from 1/0 address space *) 
IF OF = a THEN IncOec ~ 1 ELSE IncOec ~ -1; FI; 

FI; 
IF OperandSize = 16 
THEN 

ES:[dest-index] ~ [OX]; (* Reads word at OX from I/O address space *) 
IF OF = a THEN IncOec ~ 2 ELSE IncOec ~ - 2; FI; 

FI; 
IF OperandSize = 32 
THEN 

ES:[dest-index] ~ [OX]; (* Reads dword at OX from 1/0 address space *) 
IF OF = a THEN IncOec ~ 4 ELSE IncOec ~ - 4; FI; 

FI; 
dest-index ~ dest-index + IncOec; 

Description 

The INS instruction transfers data from the input port numbered by the DX register to 
the memory byte or word at ES:dest-index. The memory operand must be addressable 
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from the ES register; no segment override is possible. The destination register is the DI 
register if the address-size attribute of the instruction is 16 bits, or the EDI register if the 
address-size attribute is 32 bits. . 

The INS instruction does not allow the specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load the correct value 
into the DX register before executing the INS instruction. 

)'he destination address is determined by the contents of the destination index register. 
Load the correct index into the destination index register before executing the INS 
instruction. ' 

After the transfer is made, the DI or EDI register advances automatically. If the DF flag 
is 0 (a CLD instruction was executed), the DI or EDI register increments; if the DF flag 
is 1 (an STD instruction was executed), the DI or EDI register decrements. The DI 
register increments or decrements by 1 if a byte is input, by 2 if a word is input, or by 4 
if a doubleword is input. ' 

The INSB, INSW and INSD instructions are synonyms of the byte, word, and double­
word INS instructions. The INS instruction can be preceded by the REP prefix for block 
input of CX bytes or words. Refer to the REP instruction for details of this operation. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is numerically greater than the I/O privilege level 
and any of the corresponding I/O permission bits in TSS equals 1; #GP(O) if the desti­
nation is in a nonwritable segment; #GP(O) for an illegal memory operand effective 
address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS 
segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the 
current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege 
level is 3 

26-166 



INSTRUCTION SET 

INT/INTO-Call to Interrupt Procedure 

Opcode 

CC 
CC 
CC 
CC 
CC 
CD ib 
CD ib 
CD ib 
CD ib 
CD ib 
CE 
CE 
CE 
CE 
CE 

Instruction 

INT3 
INT3 
INT3 
INT3 
INT3 
INT immB 
INT immB 
INT immB 
INT immB 
INT immB 
INTO 
INTO 
INTO 
INTO 
INTO 

Clocks 

26 
44 
71 

, 82 

37+TS 
30 
44 
71 
86 
37+TS 
Pass: 28, Fail: 3 
46 
73 
84 
39+TS 

NOTE: Approximate values of ts are given by the following table: 

Old Task 
to 1486™ CPU TSS 

VM/i486 CPU/80286 TSS 199 

Operation 

Description 

Interrupt 3-trap to debugger 
Interrupt 3-Protected Mode, same privilege 
Interrupt 3 - Protected Mode, more privilege 
Interrupt 3-from V86 mode to PL 0 
Interrupt 3-Protected Mode, via task gate 
Interrupt numbered by immediate byte 
Interrupt- Protected Mode, same privilege 
Interrupt-Protected Mode, more privilege 
Interrupt-from V86 mode to PL 0 
Interrupt-Protected Mode, via task gate 
Interrupt 4-if overflow flag is 1 
Interrupt 4-Protected Mode, same privilege 
Interrupt 4-Protected Mode, more privilege 
Interrupt 4-from V86 mode to PL 0 
Interrupt 4-Protected Mode, via task gate 

New Task 

to 80286 TSS to VM TSS 

'180 177 

NOTE: The following operational description applies not only to the above instructions 
but also to external interrupts and exceptions. 

IF PE = 0 
THEN GOTO REAL-ADDRESS-MODE; 
pELSE GOTO PROTECTED-MODE; 
FI; 

REAL-ADDRESS-MODE: 
Push (FLAGS); 
IF ~ 0; (* Clear interrupt flag *) 
TF ~ 0; (* Clear trap flag '*) 
Push(CS); 
Push(IP); 
(* No error codes are pushed *) 
CS ~ IDT[lnterrupt number * 4].selector; 
IP ~ IDT[lnterrupt number * 4].offset; 

PROTECTED-MODE: 
Interrupt vector must be within IDT table limits, 

else #GP(vector number * 8 + 2 + EXT); 
Descriptor AR byte must indicate interrupt gate, trap 'gate, or task gate, 

else #GP(vector number * 8 + 2 + EXT); 
IF software interrupt (* i.e. caused by INT n, INT 3, or INTO *) 
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THEN 
IF gate descriptor DPL < CPL 
THEN #GP(vector number * 8 + 2 + EXT); 
FI; 

FI; 
Gate must be present, else #NP(vector number * 8 + 2 + EXT); 
IF trap gate OR interrupt gate 
THEN GOTO TRAP-GATE-OR-INTERRUPT-GATE; 
ELSE GOTO TASK-GATE; 
FI; 

TRAP-GATE-OR-INTERRUPT-GATE: 
Examine CS selector and descriptor given in the gate descriptor; 
Selector must be non-nUll, else #GP (EXT); 
Selector must be within its descriptor table limits 

ELSE #GP(selector + EXT); 
Descriptor AR byte must indicate code segment 

ELSE #GP(selector + EXT); 
Segment must be present, else #NP(selector+ EXT); 

IF code segment is non-conforming AND DPL < CPL 
THEN GOTO INTERRUPT-TO-INNER-PRIVILEGE; 
ELSE 

IF code segment is conforming OR code segment DPL = CPL 
THEN GOTO INTERRUPT-TO-SAME-PRIVILEGE-LEVEL; 
ELSE #GP(CS selector + EXT); 
FI; 

FI; 

INTERRUPT-TO-INNER-PRIVILEGE: 
Check selector and descriptor for new stack in current TSS; 

Selector must be non-null, else #TS(EXT); 
Selector index must be within its descriptor table limits 

ELSE #TS(SS selector + EXT); 
Selector's RPL must equal DPL of code segment, else #TS(SS 

selector + EXT); 
Stack segment DPL must equal DPL of code segment, else#TS(SS . 

selector + EXT); 
Descriptor must indicate writable data segment, else #TS(SS 

selector + EXT); 
Segment must be present, else #SS(SS selector + EXT); 

IF 32-bit gate 
THEN New stack must have room for 20 bytes else #SS(O) 
ELSE New stack must have room for 10 bytes else #SS(O) 
FI; 
Instruction pointer must be within CS segment boundaries else #GP(O); 
Load new SS and eSP value. from TSS; 
IF 32-bit gate 
THEN CS:EIP ~ selector:offset from gate; 
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ELSE CS:IP ~ selector:offset from gate; 
FI; 
Load CS descriptor into invisible portion of CS register; 
Load SS descriptor into invisible portion of SS register; 
IF 32-bit gate 
THEN 

Push (long pointer to old stack) (* 3 words padded to 4 *); 
Push (EFLAGS); 
Push (long pointer to return location) (* 3 words padded to 4*); 

ELSE 
Push (long pointer to old stack) (* 2 words *); 
Push (FLAGS); 
Push (long pointer to return location) (* 2 words *); 

FI; 
Set CPL to new code segment OPL; 
Set RPL of CS to CPL; 
IF interrupt gate THEN IF ~ 0 (* interrupt flag to 0 (disabled) *);FI; 
TF~O; 

NT~O; 

INTERRUPT-FROM-V86-MOOE: 
TempEFlags ~ EFLAGS; 
VM~O; 

TF~O; 

IF service through Interrupt Gate THEN IF ~ 0; 
TempSS ~ SS; 
TempESP ~ ESP; 
SS ~ TSS.SSO; (* Change to level 0 stack segment *) 
ESP ~ TSS.ESPO; (* Change to level 0 stack pointer *) 
Push(GS); (* padded to two words *) 
Push(FS); (* padded to two words *) 
Push(OS); (* padded to two words *) 
Push(ES); (* padded to two words *) 
GS ;100; 
FS~O; 

OS~O; 

ES ~O; 
Push(TempSS); (* padded to two words *) 
Push(TempESP); 
Push(TempEFlags); 
Push(CS); (* padded to two words *) 
Push(EIP); 
CS:EIP ~ selector:offset from interrupt gate; 
(* Starts execution of new routine in Protected Mode *) 

INTERRUPT-TO-SAME-PRIVILEGE-LEVEL:· 
·IF 32-bit gate 
THEN Current stack limits must allow pushing 10 bytes,else #SS(O); 
ELSE Current stack limits must allow pushing 6 bytes, else #SS(O); 
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FI; 
IF interrupt was caused by exception with error code 
THEN Stack limits must allow push of two'more bytes; 
ELSE #SS(O); 
FI; 
Instruction pointer must be in CS limit, else #GP(O); 
IF 32-bit gate 
THEN 

Push (EFLAGS); 
Push (long pointer to return location); (* 3 words padded to 4 *) 
CS:EIP ~ selector:offset from gate; 

ELSE (* 16-bit gate *) 
Push (FLAGS); 
Push (long pointer to return location); (* 2 words *) 
CS:IP ~ selector:offset from gate; 

FI; 
Load CS descriptor into invisible portion of CS register; 
Set the RPL field of CS to CPL; 
Push (error code); (* if any *) 
IF interrupt gate THEN IF ~ 0; FI; 
TF~O; 

NT~O; 

TASK-GATE: 
Examine selector to TSS, given in task gate descriptor; 

Must specify global in the local/global bit, else #TS(TSS selector); 
Index must be within GOT limits, else #TS(TSS selector); 
AR byte must specify available TSS (bottom bits 00001), 

else #TS(TSS selector; 
TSS must be present, else #NP(TSS selector); 

SWITCH-TASKS with nesting to TSS; 
IF interrupt was caused by fault with error code 
THEN 

Stack limits must allow push of two more bytes, else #SS(O); 
Push error code onto stack; 

FI; 
Instruction pointer must be in CS limit, else #GP(O); 

Description 

The INT n instruction generates via software a call to an interrupt handler. The imme­
diate operand, from 0 to 255, gives the index number into the Interrupt Descriptor Table 
(IDT) of the interrupt routine to be called. In Protected Mode, the IDT consists of an 
array of eight-byte descriptors; the descriptor for the interrupt invoked must indicate an 
interrupt, trap, or task gate. In Real Address Mode, the IDT is an array of four byte­
long pointers. In Protected and' Real' Address Modes, the base linear address of the IDT 
is defined by the contents of the IDTR. 
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The INTO conditional software instruction is identical to the INT n interrupt instruction 
except that the interrupt number is implicitly 4, and the interrupt is made only if the 
i486 processor overflow flag is set. 

The first 32 interrupts are reserved by Intel for system use. Some of these interrupts are 
use for internally generated exceptions. 

The INT n instruction generally behaves like a far call except that the flags register is 
pushed onto the stack before the return address. Interrupt procedures return via the 
IRET instruction, which pops the flags and return address from the stack. 

In Real Address Mode, the INT n instruction pushes the flags, the CS register, and the 
return IP onto the stack, in that order, then jumps to the long pointer indexed by the 
interrupt number. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP, #NP, #SS, and #TS as indicated under "Operation" above 

Real Address Mode Exceptions 

None; if the SP or ESP register is 1, 3, or 5 before executing the INT or INTO instruc­
tion, the i486 processor will shut down due to insufficient stack space 

Virtual 8086 Mode Exceptions 

#GP(O) fault if IOPL is less than 3, for the INT n instruction only, to permit emulation; 
Interrupt 3 (OCCH) generates a breakpoint exception; the INTO instruction generates 
an overflow exception if the OF flag is set 
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INVD -Invalidate Cache 

Opcode 

OF 08 

Operation 

Instruction 

INVD 

FLUSH INTERNAL CACHE 

Clocks 

4 

SIGNAL EXTERNAL CACHE TO FLUSH 

Description 

Description 

Invalidate Entire Cache 

The internal cache is flushed, and a special-function bus cycle is issued which indicates 
that external caches should also be flushed. Data held in write-back external caches is 
discarded. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

Notes 

This instruction is implementation-dependent; its function may be implemented differ­
ently on future Intel processors. 

It is the responsibility of hardware to respond to the external cache flush indication. 

This instruction is not supported on 386 processors. See Section 3.11 for information on 
using this instruction compatible with 386 processors. See WBINVD description to write 
back dirty data to memory. 

See Section 12.2 on disabling the cache. 
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INVLPG -Invalidate TLB Entry 

Opcode 

OF 01/7 

Operation 

Instruction 

INVLPG m 

INVALIDATE TLB ENTRY 

Description 

Clocks 

12 for hit 

Description 

Invalidate TLB Entry 

The INVLPG instruction is used to invalidate a single entry in the TLB, the cache used 
for page table entries. If the TLB contains a valid entry which maps the address of the 
memory operand, that TLB entry is marked invalid. 

Flags Affected 

None 

Protected Mode Exceptions 

An invalid-opcode exception is generated when used. with a register operand. 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

An invalid-opcode exception is generated when used with a register operand. 

Notes 

This instruction is implementation-dependent; its function may be implemented differ­
ently on future Intel processors. 

This instruction is not supported on 386 processors. See Section 3.11 for information on 
using this instruction compatible with 386 processors. 

See Section 12.2 on disabling the cache. 
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IRET/IRETD-Interrupt Return 

Opcode 

CF 
CF 
CF 
CF 
CF 
CF 
CF 

Instruction 

IRET 
IRET 
IRET 
IRETO 
IRETO 
IRETO 
IRETO 

Clocks 

15 . 
36 
TS+32 
15 
36 
15 
TS+32 

NOTE: Values of ts are given by the following table: 

Old Task 
to i486™ CPU TSS 

VM/i486 CPU/80286 TSS 199 

Operation 

IF PE = 0 
THEN (* Real-address mode *) 

IF OperandSize = 32 (* Instruction = IRETD *) 
THEN EIP ~ Pop(); 
ELSE (* Instruction = IRET *) 

IP ~ Pop(); 
FI; 
CS ~ Pop(); 
IF OperandSize = 32 (* Instruction = IRETD *) 
THEN EFLAGS ~ Pop(); 
ELSE (* Instruction = IRET *) 

FLAGS ~ Pop(); . 
FI; 

ELSE (* Protected mode *) 
IF VM = 1 
THEN #GP(O); 
ELSE 

IF NT = 1 
THEN GOTO TASK-RETURN; 
ELSE 

IF VM = 1 in flags image on stack 
THEN GO TO STACK-RETURN-TO-V86; 
ELSE GOTO STACK-RETURN; 
FI; 

FI; 
FI; 

Description 

Interrupt return (far return and pop flags) 
.Interrupt return to lesser privilege 
Interrupt return, different task (NT = 1) 
Interrupt return (far return and pop flags) 
Interrupt return to lesser privilege 
Interrupt return to V86 mode 
Interrupt return, different task (NT = 1) 

New Task 

to 80286 TSS to VM TSS 

180 177 

FI;STACK-RETURN-TO-V86: (* Interrupted procedure was in V86 mode *) 
IF top 36 bytes of stack not within limits 
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THEN #SS(O); 
FI; 
IF instruction pointer not within code segment limit THEN #GP(O); 
FI; 

EFLAGS ~ SS: [ESP + 8]; (* Sets VM in interrupted routine *) 
EIP ~ Pop(); 
CS ~ Pop(); (* CS behaves as in 8086, due to VM = 1 *) 
throwaway ~ Pop(); (* pop away EFLAGS already read *) 
TempESP ~ Pop(); 
TempSS ~ Pop(); 
ES ~ Pop(); (* pop 2 words; throwaway high-order word *) 
OS ~ Pop(); (* pop 2 words; throw away high~order word *) 
FS ~ Pop(); (* pop 2 words; throwaway high-order word *) 
GS ~ Pop(); (* pop 2 words; throwaway high-order word *) 

SS:ESP ~ TempSS:TempESP; 

(* Resume execution in Virtual 8086 mode *) 

TASK-RETURN: 
Examine Back Link Selector in TSS addressed by the current task 

register: 
Must specify global in the local/global bit, else #TS(new TSS selector); 
Index must be within GOT limits, else #TS(new TSS selector); 
AR byte must specify TSS, else #TS(new TSS selector); 
New TSS must be busy, else #TS(new TSS selector); 
TSS must be present, else #NP(new TSS selector); 

SWITCH-TASKS without nesting to TSS specified by back link selector; 
Mark the task just abandoned as NOT BUSY; 
Instruction pointer must be within code segment limit ELSE #GP(O); . 

STACK-RETURN: 
IF OperandSize=32 
THEN Third word on stack must be within stack limits, else #SS(O); 
ELSE Second word on stack must be within stack limits, else· #SS(O); 
FI; 
Return CS selector RPL must be ~ CPL, else #GP(Return selector); 
IF return selector RPL = CPL 
THEN GOTO RETURN-SAME-LEVEL; 
ELSE GOTO RETURN-OUTER-LEVEL; 
FI; 

RETURN-SAME-LEVEL: 
IF OperandSize = 32 
THEN 

Top 12 bytes on stack must be within limits, else #SS(O); 
Return CS selector (at eSP+4) must be non-null, else #GP(O); 

ELSE 
Top 6 bytes on stack must be within limits, else #SS(O); 
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Return CS selector (at eSP + 2) must be non-null, else #GP(O); 
FI; 
Selector index must be within its descriptor table limits,else .#GP 

(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be s; CPL, else #GP(Return selector); 
Segment must be present, else #NP(Return selector); . 
Instruction pointer must be within code segment boundaries,else #GP(O); 
FI; . 

IF OperandSize = 32 
THEN 

Load CS:EIP from stack; 
Load CS-register with new code segment descriptor; . 
Load EFLAGS with third doubleword from stack; 
Increment eSP by 12; 

ELSE 
Load CS-register with new code segment descriptor; 
Load FLAGS with third word on stac~; 
Increment eSP by 6; 

FI; 

RETURN-OUTER-LEVEL: 
IF OperandSize = 32 
THEN Top 20 bytes on stack must be within limits, else #SS(O); 
ELSE Top 10 bytes on stack must be' within limits, else #SS(O); 
FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-nUll, else #GP(O); 
Selector index must be within its descriptor table limits; . 

ELSE #GP(Returnselector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CS selector RPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be > CPL; 
ELSE #GP(Return selector); 
FI; 
Segment must be present, else #NP(Return selector); 

Examine return SS selector and associated descriptor: 
Selector must be non-nUll, else #GP(O); 
Selector index must be within its descriptor table limits 
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ELSE #GP(SS selector); 
Selector RPL'must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
AR byte must indicate a writable data segment, else #GP(SS selector); 
Stack segment OPL must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
SS must be present, else #NP(SS selector); 

Instruction pointer must be within code segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN 

Load CS:EIP from stack; 
Load EFLAGS with values at (eSP+8); 

ELSE 
Load CS:IP from stack; 
Load FLAGS with values at (eSP+4); 

FI; 
Load SS:eSP from stack; 
Set CPL to the RPL of the return CS selector; 
Load the CS register with the CS descriptor; 
Load the SS register with the SS descriptor; 
FOR each of ES, FS, GS, and OS 
DO; 

IF the current value of the register is not valid for the outer level; 
THEN zero the register and clear the valid flag; 
FI; 
To be valid, the register setting must satisfy the following properties: 

Selector index must be within descriptor table limits; 
AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, 
THEN OPL must be > CPL, or OPL must be < RPL; 

00; 

Description 

In Real Address Mode, the IRET instruction pops the instruction pointer, the CS reg­
ister, and the flags register from the stack and resumes the interrupted routine. 

In Protected Mode, the action of the IRET instruction depends on the setting of the 
nested task flag (NT) bit in the flag register. When the new flag image is popped from 
the stack, the IOPL bits in the flag register are changed only when CPL equals O. 

If the NT flag is cleared, the IRET instruction returns from an interrupt procedure 
without a task switch. The code returned to must be equally or less privileged than the 
interrupt routine (as indicated by the RPL bits of the CS selector popped from the 
stack). If the destination code is less privileged, the IRET instruction also pops the stack 
pointer and SS from the stack. 
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If the NT flag is set, the IRET instruction reverses the operation of a'CALL or INT that 
caused a task switch. The updated state of the task executing the IRETinstruction is 
saved in its task state segment. If the task is reentered later, the code that follows the 
IRET instruction is executed .. 

Flags Affected 

All flags are affected; the flags register is popped from stack 

Protected Mode Exceptions 

#GP, #NP, or #SS, as indicated under "Operation" above 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand being popped lies beyond address OFFFFH·. 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation 

26-178 



INSTRUCTION SET 

Jcc - Jump if Condition is Met 

Opcode Instruction Clocks Description 
77 cb JA relB 3,1 Jump short if above (CF = 0 and ZF = 0) 

73 cb JAE relB 3,1 Jump short if above or equal (CF = 0) 

72 cb JB relB 3,1 Jump short if below (CF = 1) 

76 cb JBE relB 3,1 Jump short if below or equal (CF = 1 or ZF = 1) 

72 cb JC relB 3,1 Jump short if carry (CF = 1) 

E3 cb JCXZ relB 8,5 Jump short if CX register is 0 

E3 cb JECXZ relB 8,5 Jump short if ECX register is 0 

74 cb JE relB 3,1 Jump short if equal (ZF = 1) 

74 cb JZ relB 3,1 Jump short if 0 (ZF = 1) 

7F cb JG relB 3,1 Jump short if greater (ZF = 0 and SF = OF) 

70 cb JGE rel8 3,1 Jump short if greater or equal (SF = OF) 

7C cb JL relB 3,1 Jump short if less (SF < > OF) 

7E cb JLE rel8 3,1 Jump short if less or equal (ZF = 1 or 
SF< >OF) 

76 cb JNA rel8 3,1 Jump short if not above (CF = 1 or ZF = 1) 

72 cb JNAE relB 3,1 Jump short if not above or equal (CF = 1) 

73 cb JNB relB . 3,1 Jump short if not below (CF = 0) 

77 cb JNBE rel8 3,1 Jump short if not below or equal (CF = 0 and 
ZF=O) 

73 cb JNC relB 3,1 Jump short if not carry (CF = 0) 

75 cb JNE rel8 3,1 Jump short if not equal (ZF = 0) 

7E cb JNG relB 3,1 Jump short if not greater (ZF = 1 or SF < > OF) 

7C cb JNGE rel8 3,1 Jump short if not greater or equal (SF < > OF) 

70 cb JNL relB 3,1 Jump short if not less (SF = OF) 

7F cb JNLE rel8 3,1 Jump short if not lessor equal (ZF = 0 and 
SF=OF) 

71 cb JNO rel8 3,1 Jump short if not overflow (OF = 0) 

7B cb JNP rel8 3,1 Jump short if not parity (PF = 0) 

79 cb JNS relB 3,1 Jump short if not sign (SF = 0) 

75 cb JNZ rel8 3,1 Jump short if not zero (ZF = 0) 

70 cb JO rel8 3,1 Jump short if overflow (OF = 1) 

7A cb JP rel8 3,1 Jump short if parity. (PF = 1) 

7A cb JPE relB 3,1 Jump short if parity even (PF = 1) 

7B cb JPO rel8 3,1 Jump short if parity odd (PF = 0) 

78 cb JS relB 3,1 Jump short if sign (SF = 1) 

74 cb JZ rel8 3,1 Jump short if zero (ZF = 1) 

OF 87 cw/cd JA re116/32 3,1 Jump near if above (CF = 0 and ZF = 0) 

OF 83 cw/cd JAE re116/32 3,1 Jump near if above or equal (CF = 0) 

OF 82 cw/cd JB re116/32 3,1 Jump near if below (CF = 1) 

OF 86 cw/cd JBEre116/32 3,1 Jump near if below or equal (CF = 1 or ZF = 1) 

OF 82 cw/cd JC re116/32 3,1 Jump near if ~arry (CF = 1) 

OF 84 cw/cd JE re116/32 3,1 Jump near if equal (ZF= 1) 

OF 84 cw/cd JZ re116/32 3,1 Jump near if 0 (ZF = 1) 

OF 8F cw/cd JG re116/32 3,1 Jump near if greater (ZF = 0 and SF = OF) 

OF 80 cw/cd ~GE re116/32 3,1 Jump near if greater or equal (SF = OF) 

OF 8C cw/cd JL re116/32 3,1 ,Jump near if less (SF < > OF) 
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Opcode Instruction Clocks Desc'rlptlon 

OF 8E cw/cd JLE ,e116/32 3,1 Jump near if less or equal (ZF = 1 or 
SF< >OF) 

OF 86 cw/cd JNA ,e116/32 3,1 Jump near if not above (CF = 1 or ZF = 1) 

OF 82 cw/cd JNAE ,e116/32 3,1 Jump near if not above or equal (CF = 1) 

OF 83 cw/cd JN8 ,e116/32 3,1 Jump near if not below (CF = 0) 

OF 87 cw/cd JN8E ,e116/32 3,1 Jump near if not below ,or equal (CF = 0 and 
ZF=O) 

OF 83 cw/cd JNC ,e116/32 3,1 Jump near if not carry (CF = 0) 

OF 85 cw/cd JNE ,e116/32 3,1 Jump near if not equal (ZF = 0) 

OF 8E cw/cd JNG ,e116/32 3,1 Jump near if not greater (ZF = 1 or SF < > OF) 

OF 8C cw/cd JNGE ,e116/32 3,1 Jump near if not greater or equal (SF < > OF) 

OF 80 cw/cd JNL ,e116/32 3,1 Jump near if not less (SF = OF) 

OF 8F cw/cd JNLE ,e116/32 3,1 Jump near if not less or equal (ZF = 0 and 
SF=OF) 

OF 81 cw/cd JNO ,e116/32 3,1 Jump near if not overflow (OF = 0) 

OF 88 cw/cd JNP ,e116/32 3,1 Jump near if not parity (PF = 0) 

OF 89 cw/cd JNS ,e116/32 3,1 Jump near if not sign (SF = 0) 

OF 85 cw/cd JNZ ,e116/32 3,1 Jump near if not zero (ZF = 0) 

OF 80 cw/cd JO ,e116/32 3,1 Jump near if overflow (OF = 1) 

OF 8A cw/cd JP ,e116/32 3,1 Jump near if parity (PF=1) 

OF 8A cw/cd JPE ,e116/32 3,1 Jump near if parity even' (PF = 1) 

OF 88 cw/cd JPO ,e116/32 3,1 Jump near if parity odd (PF = 0) 

OF 88 cw/cd JS ,e116/32 3,1 Jump near if sign (SF = 1) 

OF 84 cw/cd JZ ,e116/32 3,1 Jump near if 0 (ZF = 1) 

NOTES: The first clock count is for the true condition (branch taken); the second clock count is for the false condition 
(branch not taken). ,e116/32 indicates that these instructions map to two; one with a 16-bit relative displacement, 
the other with a 32-bit relative displacement, depending on the operand-size attribute of the instruction. 

Operation 

IF condition 
THEN 

EIP ~ EIP + SignExtend(reIB/16/32); 
IF OperandSize = 16 
THEN EIP ~ EIP AND OOOOFFFFH; 
FI; 

FI; 

Description 

Conditional jumps (except the JCXZ instruction) test the flags which have been set by a 
previous instruction. The conditions for each mnemonic are given in parentheses after 
each description above. The terms "less" and "greater" are used for' comparisons of 
signed integers; "above" and "below" are used for unsigned integers. 

If the given condition is true, a jump is made to the location provided as the operand. 
Instruction coding is most efficient when the target for the conditional jump is in the 
current code segment and within - 128 to + 127 bytes of the next instruction's first byte. 
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The Jump can also target - 32768 thru + 32767 (segment size attribute 16) or - 231 thru 
+ 23 -1 (segment size attribute 32) relative to the next instruction's first byte. When the 
target for the conditional jump is in a different segment, use the opposite case of the 
jump instruction (Le., the JE and JNE instructions), and then access the target with an 
unconditional far jump to the other segment. For example, you cannot code-

JZ FAR LABEL; 

You must instead code-

JNZ BEYOND; 
JMP FARLABEL; 

BEYOND: 

Because there can be several ways to interpret a particular state of the flags, ASM386 
provides more than one mnemonic for most of the conditional jump opcodes. For exam­
ple, if you compared two characters in AX and want to jump if they are equal, use the JE 
instruction; or, if you ANDed the AX register with a bit field mask and only want to 
jump if the result is 0, use the JZ instruction, a synonym for the JE instruction. 

The JCXZ instruction differs from other conditional jumps because it tests the contents 
of the CX or ECX register for 0, not the flags. The JCXZ instruction is useful at the 
beginning of a conditional loop that terminates with a conditional loop instruction (such 
as LOOPNE TARGET LABEL. The JCXZ instruction prevents entering the loop with 
the CX or ECX register equal to zero, which would cause the loop to execute 64K or 
32G times instead of zero times. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the offset jumped to is beyond the limits of the code segment 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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Notes 

The JCXZ, instruction takies longer to execute than a two-instruction sequence which 
compares the count register to zero and jumps if the count is zero. 

All branches are converted into 16-byte code fetches regardless of jump address or 
cacheability. 
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JMP-Jump 

Opcode Instruction 

EB cb JMP rel8 
E9 cw JMP rel16 

FF /4 JMP rlm16 
EA cd JMP ptr16:16 
EA cd JMP ptr16:16 
EA cd JMP ptr16:16 
EA cd JMP ptr16:16 
FF /5 JMP m16:16 
FF /5 JMP m16:16 
FF /5 JMP m16:16 
FF /5 JMP m16:16 
E9 cd JMP rel32 

FF /4 JMP rlm32 
EA cp JMP ptr16:32 
EA cp JMP ptr16:32 
EA cp JMP ptr16:32 
EA cp JMP ptr16:32 
FF /5 JMP m16:32 
FF /5 JMP m16:32 
FF /5 JMP m16:32 
FF /5 JMP m16:32 

Clocks 

3 
3 

5/5 
17pm= 19 
32 
42+TS 
43+TS 
13,pm=18 
31 
41+TS 
42+TS 
3 

5/5 
13,pm=18 
31 
42+TS 
43+TS 
13,pm= 18 
31 
41+TS 
42+TS 

NOTE: Values of ts are given by the following table: 

Old Task 
to 1486™ CPUTSS 

VM/i486 CPU/80286 TSS 

Operation 

IF instruction = relative JMP 
(* i.e. operand is re/B, re/16, or re/32 *) 

THEN 
EIP ~ EIP + re/B/16/32; 
IF OperandSize = 16 
THEN EIP ~ EIP AND OOOOFFFFH; 
FI; 

FI; 

IF instruction = near indirect JMP 
(* i.e. operand is r/m16 or r/m32 *) 

THEN 
IF OperandSize = 16 
THEN 

EIP ~ [r/m16 AND OOOOFFFFH; 

199 
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Description 

Jump short 
Jump near, displacement relative to next instruc­
tion 
Jump near indirect 
Jump intersegment, 4-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump rlm16:16 indirect and intersegment 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump near, displacement relative to next instruc­
tion 
Jump near, indirect 
Jump intersegment, 6-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate . 
Jump intersegment, address at rim dword 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 

New Task 

to 80286 TSS to VM TSS 
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ELSE (* OperandSize = 32 *) 
EIP ~ [r/m32; 

FI; 
FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or V86 mode *) 
AND instruction == far JMP 
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) 

THEN GOTO REAL-OR-V86-MODE; 
IF operand type = m16:16 or m16:32 
THEN (* indirect *) 

IF OperandSize = 16 
THEN 

CS:IP ~ [m16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* Operand Size = 32 *) 
CS:EIP ~ [m16:32; 

FI; 
FI; 
IF operand type = ptr16:16 or ptr16:32 
THEN 

IF OperandSize = 16 
THEN 

CS:IP ~ ptr16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE(* OperandSize = 32 *) 
CS:EIP ~ ptr16:32; 

FI; 
FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far JMP 

THEN 
IF operand type = m16:16 or m16:32 
THEN (* indirect *) 

check access of EA dword; 
#GP(O) or #SS(O) IF limit violation; 

FI; 
Destination selector is not null ELSE #GP(O) 
Destination selector index is within its descriptor table limits ELSE #GP(selector) 
Depending on AR byte of destination descriptor: 

GOTO CONFORMING-CODE-SEGMENT; 
GOTO NONCONFORMING-CODE-SEGMENT; 
GOTO CALL-GATE; 
GOTO TASK-GATE; 
GOTO TASK-STATE-SEGMENT; 

ELSE #GP(selector); (* illegal AR byte in descriptor *) 
FI; 
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CONFORMING-CODE-SEGMENT: 
Descriptor DPL must be :5 CPL ELSE #GP(selector); 
Segment must be present ELSE #NP(selector); 
Instruction pointer must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pointer; 
ELSE Load CS:IP from destination pointer; 
FI; 
Load CS register with new segment descriptor; 

NONCONFORMING-CODE-SEGMENT: 
RPL of destination selector must be :5 CPL ELSE #GP(selector); 
Descriptor DPL must be = CPL ELSE #GP(selector); 
Segment must be present ELSE # NP(selector); 
Instruction pointer must be within cOde-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pointer; 
ELSE Load CS:IP from destination pointer; 
FI; 
Load CS register with new segment descriptor; 
Set RPL field of CS register to CPL; 

CALL-GATE: 
Descriptor DPL must be ;::= CPL ELSE #GP(gate selector); 
Descriptor DPL must be ;::= 'gate selector RPL ELSE #Gp(gate selector); 
Gate must be present ELSE #NP(gate selector); 
Examine selector to code segment given in call gate descriptor: 

Selector must not be null ELSE #GP(O); 
Selector must be within its descriptor table limits ELSE 

#GP(CS selector); 
Descriptor AR byte must indicate code segment 

ELSE #GP(CS selector); 
IF non-conforming 
THEN code-segment descriptor, DPL must = CPL 
ELSE #GP(CS selector); 
FI; 
IF conforming 
THEN code-segment descriptor DPL must be :5 CPL; 
ELSE #GP(CS selector); 
Code segment must be present ELSE #NP(CS selector); 
Instruction pointer must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 ' 
THEN Load CS:EIP from call gate; 
ELSE Load CS:IP from call gate; 
FI; 

Load CS register with new code-segment descriptor; 
Set'RPL of CS to CPL 

TASK-GATE: 
Gate descriptor DPL must be ;::= CPL ELSE #Gp(gate selector); 
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Gate descriptor DPL must be ~ gate selector RPL ELSE #Gp(gate selector); 
Task Gate must be present ELSE #Np(gate selector); 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #GP(TSS selector); 
Index must be within GDT limits ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001); 

ELSE #GP(TSS selector); 
Task State Segment must be present ELSE #NP(TSS selector); 

SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP(O); 

TASK-STATE-SEGMENT: 
TSS DPL must be ~ CPL ELSE #GP(TSS selector); 
TSS DPL must be ~ TSS selector RPL ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001) 

ELSE #GP(TSS selector); 
Task State Segment must be present ELSE #NP(TSS selector); 
SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP(O); 

Description 

The JMP instruction transfers control to a different point in the instruction stream 
without recording return information. . 

The action of the various forms of the instruction are shown below. 

Jumps with destinations of type r/m16, r/m32, re/16, and re/32are near jumps and do not 
involve changing the segment register value. 

The JMP re/16 and JMP re/32 forms of the instruction add an offset to the address of the 
instruction following the JMP to determine the destination. The re/16 form is used when 
the instruction's operand-size attribute is 16 bits (segment size attribute 16 only); re/32 is 
used when the operand-size attribute is 32 bits (segment size attribute 32 only). The 
result is stored in the 32-bit EIP register. With re/16, the upper 16 bits of the EIP register 
are cleared, which results in an offset whose value does not exceed 16 bits. 

The JMP rim 16 and JMP r/m32 forms specify a register or memory location from which 
the absolute offset from the procedure is fetched. The offset fetched from rim is 32 bits 
for an operand-size attribute of 32 bits (r/m32), or 16 bits for an operand-size attribute of 
16 bits (r/m16). 

The JMP ptr16: 16 and ptr16:32 forms of the instruction use a four-byte or six-byte oper­
and as a long pointer to the destination. The JMP m16:16 and m16:32 forms fetch the 
long pointer from the memory location specified (indirection). In Real Address Mode or 
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits 
for the EIP register (depending on the operand-size attribute). In Protected Mode, both 
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long pointer forms consult the Access Rights (AR) byte in the descriptor indexed by the 
selector part of the long pointer. Depending on the value of the AR byte, the jump will 
perform one of the following types of control transfers: 

• A jump to a code segment at the same privilege level 

• A task switch 

For more information on protected mode control transfers, refer to Chapter 6 and 
Chapter 7. 

Flags Affected 

All if a task switch takes place; none if no task switch occurs 

Protected Mode Exceptions 

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above. 

Near direct jumps: #GP(O) if procedure location is beyond the code segment limits; 
# AC for unaligned memory reference if the current privilege level is 3 

Near indirect jumps: #GP(O) for an illegal memory operand effective address in the CS, 
DS, ES, FS, or GS segments: #SS(O) for an illegal address in the SS segment; #GP if the 
indirect offset obtained is beyond the code segment limits; #PF(fault-code) for a page 
fault; # AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would be outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as under Real Address Mode; #PF(fault-code) for a page fault; #AC 
for unaligned memory reference if the current privilege level is 3 

Notes 

All branches are converted into 16-byte code fetches regardless of jump address or 
cache ability. 
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LAHF - Load Flags into AH Register 

Opcode 

9F 

Operation 

Instruction 

LAHF 

AH ~ SF:ZF:xx:AF:xx:PF:xx:CF; 

Description 

Clocks 

3 

Description 

Load: AH = flags SF ZFxx AF xx PF xx CF 

The LAHF instruction transfers the low byte of the flags word to the AH register. . The 
bits, from MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indeterminate, 
parity, indeterminate, and carry. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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LAR - Load Access Rights Byte 

Opcode 

OF 02/r 
OF 02/r 

Description 

Instruction 

LAR r16,r/m16 
LAR r32,r/m32 ' 

Clocks 

11/11 
11/11 

Description 

r16 - r/m16 masked by FFOO 
r32 - r/m32 masked by OOFxFFOO 

The LAR instruction stores a marked form of the second doubleword of the descriptor 
for the source selector if the selector is visible at the current privilege level (modified by 
the selector's RPL) and is a valid descriptor type within the descriptor limits. The des­
tination register is loaded with the high-order doubleword df the descriptor masked by 
OOFxFFOO, and the ZF flag is set. The x indicates that the four bits corresponding to the 
upper four bits of the limit are undefined in the value loaded by the LAR instruction. If 
the selector is invisible or of the wrong type, the ZF flag is cleared. 

If the 32-bit operand size is specified, the entire 32-bit value is loaded into the 32-bit 
destination register. If the 16-bit operand size is specified, the lower 16-bits of this value 
are stored in the 16-bit destination register. 

All code and data segment descriptors are valid for the LAR instruction. 

The valid special segment and gate descriptor types for the LAR instruction are given in 
the following table: 

Type Name Valid/Invalid 

0 Invalid Invalid 
1 Available 80286 TSS Valid 
2 LDT Valid 
3 Busy 80286 TSS Valid 
4 80286 call gate Valid 
5 80286/i486 ™ task gate Valid 
6 80286 trap gate Valid 
7 80286 interrupt gate Valid 
8 Invalid Invalid 
9 Available i486 TSS Valid 
A Invalid Invalid 
B Busy i486 TSS Valid 
C i486 call gate Valid 
D Invalid Invalid 
E i486 trap gate Valid 
F i486 interrupt gate Valid 

Flags Affected 

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the 
ZF flag is cleared. 
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Protected Mode Exceptions 

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or OS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 6; the LAR instruction is unrecognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real. Address Mode 
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LEA - Load Effective Address 

Opcode Instruction Clocks 

80 /, LEA ,16,m 
80 /, LEA ,32,m 
80 /, LEA ,16,m 
80 /, LEA ,32,m 

Operation 

IF OperandSize = 16 AND AddressSize = 16 
THEN ,16 ~ Addr{m); 
ELSE 

IF OperandSize = 16 AND AddressSize = 32 
THEN 

Description 

Store effective address for m in register ,16 
Store effective address for m in register ,32 
Store effective address for m in register ,16 
Store effective address for m in register ,32 

,16 ~ Truncate_to_16bits{Addr{m»; 
ELSE 

(* 32-bit address * 

IF OperandSize = 32 AND AddressSize = 16 
THEN 

,32 ~ Truncate_to_16bits(Addr{m»; 
ELSE 

IF OperandSize = 32 AND AddressSize = 32 
THEN ,32 ~ Addr(m); 
FI; 

FI; 
FI; 

FI; 

Description 

The LEA instruction calculates the effective address (offset part) and stores it in the 
specified register. The operand-size attribute of the instruction (represented by Oper­
andSize in the algorithm under "Operation" above) is determined by the chosen regis­
ter. The address-size attribute (represented by AddressSize) is determined by the USE 
attribute of the segment containing the second operand. The address-size and operand­
size attributes affect the action performed by the LEA instruction, as follows: 

Operand Size Address Size Action Performed 

16 16 16-bit effective address is calculated and stored in requested 
16-bit register destination. 

16 32 32-bit effective address is calculated. The lower 16 bits of the ad-
dress are stored in the requested 16·bit register destination. 

32 16 16·bit effective address is calculated. The 16·bit address is zero· 
extended and stored in the requested 32·bit register destination. 

32 32 32·bit effective address is calculated and stored in the requested 
32·bit register destination. 
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Flags Affected ":", 

None 

Protected Mode Exceptions 

# UD if the second operand is a· register 

Real Address Mode Exceptions 

Interrupt 6 if the second operand is a register 

. Virtual 8086 Mode Exceptions 

Same exceptions as in Real Addres.s Mod,e 

'I'; " 
'. :,' 

, ',' ~ 
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LEAVE -.High Level Procedure Exit 

Opcode 

C9 
C9 

Operation 

Instruction 

LEAVE 
LEAVE 

IF StackAddrSize = 16 
THEN 

SP ~ BP; 
ELSE (* StackAddrSize = 32 *) 

ESP ~ EBP; 
FI; 
IF OperandSize = 16 
THEN 

BP ~ Pop(); 
ELSE (* OperandSize = 32 *) 

EBP ~ Pop(); 
FI; 

Description 

Clocks 

5 
5 

Description 

Set SP to BP, then pop BP 
Set ESP to EBP, then pop EBP 

The LEAVE instruction reverses the actions of the ENTER instruction. By copying the 
frame pointer to the stack pointer, the LEAVE instruction releases the stack space used 
by a procedure for its local variables. The old frame pointer is popped into the BP or 
EBP register, restoring the caller's frame. A subsequent RET nn instruction removes any 
arguments pushed onto the stack of the exiting procedure. 

Flags Affected 

None 

Protected Mode Exceptions 

#SS(O) if the BP register does not point to a location within the limits' of the current 
stack segment 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 
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LGDT/LIDT - Load Global/Interrupt Descriptor Table Register' 

Opcode 

OF 01 /2 
OF 01 /3 

Operation 

Instruction 

LGOT m16&32 
LlOT m16&32 

IF instruction = LlDT 
THEN 

IF OperandSize = 16 

Clocks 

11 
11 

Description 

Load minto GOTR 
Load minto IOTR 

THEN IDTR.Limit:Base ~ m16:24 (* 24 bits of base loaded *) 
ELSE IDTR.LimitBase ~ m16:32 
FI; 

ELSE (* instruction = LGDT *) 
IF OperandSize = 16 
THEN GDTR.Limit:Base ~ m16:24 (* 24 bits of base loaded *) 
ELSE GDTR.LimitBase ~ m16:32; 
FI; 

FI; 

Description 

The LGDT and LIDT instructions load a linear base address and limit value from a 
six-byte data operand in memory into the GDTR or IDTR, respectively. If a 16-bit 
operand is used with the LGDT or LIDT instruction, the register is loaded with a 16-bit 
limit and a 24-bit base, and the high-order eight bits of the six-byte data operand are not 
used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base is loaded; the high-order 
eight bits of the six-byte operand are used as high-order base address bits. ' 

The SGDT and SIDT instructions always store into all 48 bits of the six-byte data oper­
and. With the 80286 processor, the upper eight bits are undefined after the SGDT or 
SIDT instruction is executed. With the 386 DX or i486 processors, the upper eight bits 
are written with the high-order eight address bits, for both a 16-bit ope~and and a 32~bit 
operand. If the LGDT or LIDT instruction is used with a 16-bit operand to' load the 
register stored by the SGDT or SIDT instruction, the upper eight bits are stored as 
zeros. 

The LGDT and LIDT instructions appear in operating system software; they are. not 
used in application programs. They are the only instructions that directly load a linear 
address (Le., not a segment relative address) in Protected Mode. . , 

Flags Affected 

None 
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Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #UD if the source operand is a register; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of th,e effective address space 
from 0 to OFFFFH; Interrupt 6 if the source operand is a register 

Note: These instructions are valid in Real Address Mode to allow power-up initialization 
for Protected Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 
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LGS/LSS/LDS/LES/LFS - Load Full Pointer 

Opcode Instruction Clocks 

C51r LOS r16,m16:16 6/12 
C51r LOS r32,m 16:32 6/12 
OF 821r LSS r16,m16:16 6/12 
OF 821r LSS r32,m16:32 6/12 
C41r LES r16,m16:16 6/12 
C41r LES r32,m16:32 6/12 
OF 841r LFS r16,m16:16 6/12 
OF 841r LFS r32,m16:32 6/12 
OF 851r LGS r16,m16:16 6/12 
OF 851r LGS r32,m16:32 6/12 

Operation 

CASE instruction OF 
LSS: Sreg is SS; (* Load SS register *) 
LOS: Sreg is OS; (* Load OS register *) 
LES: Sreg is ES; (* Load ES register *) 
LFS: Sreg is FS; (* Load FS register *) 
LGS: Sreg is OS; (* Load GS register *) 

ESAC; 
IF (OperandSize = 16) 
THEN 

r16 ~ [Effective Address 1; (* 16-bit transfer *) 
Sreg ~ [Effective Address + 2]; (* 16-bit transfer *) 

Description 

Load OS:r16 with pointer from memory 
Load OS:r32 with pointer from memory 
Load SS:r16 with pointer from memory 
Load SS:r32 with pointer from memory 
Load ES:r16 with pointer from memory 
Load ES:r32 with pointer from memory 
Load FS:r16 with pointer from memory 
Load FS:r32 with pointer from memory 
Load GS:r16 with pointer from memory 
Load GS:r32 with pointer from memory 

(* In Protected Mode, load the descriptor into the segment register *) 
ELSE (* OperandSize = 32 *) 

r32 ~ [Effective Address]; (* 32-bit transfer *) 
Sreg ~ [Effective Address + 4]; (* 16-bit transfer *) 
(* In Protected Mode, load the descriptor into the segment register *) 

FI; 

Description 

The LOS, LSS, LDS, LES, and LFS instructions read a full pointer from memory and 
store it in the selected segment register:register pair. The full pointer loads 16 bits into 
the segment register SS, DS, ES, FS, or OS. The other register loads 32 bits if the 
operand-size attribute is 32 bits, or loads 16 bits if the operand-size attribute is 16 bits. 
The other 16- or 32-bit register to be loaded is determined by the r16 or r32 register 
operand specified. 

When an assignment is made to one of the segment registers, the descriptor is also 
loaded into the segment register. The data for the register is obtained from the descrip­
tor table entry for the selector given. 
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A null selector (values 0000-0003) can be loaded into OS, ES,' FS, .0rGS registers with;' 
out causing a protection exception. (Any subsequent reference to a segment whose cor­
responding segment register. is loaded with a . null selector to address. memory causes a 
#GP(O) exception. No memory reference to the segment occurs.) 

The following is a listing of the Protected Mode checks and actipns taken. in the loading 
of a segment register: 

IF SS is loaded: 
IF selector is null THEN #GP(O); FI; 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) ; 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS with selector; 
Load SS with descriptor; 

IF OS, ES, FS, or GS is loaded with non-null selector: 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) ; 
AR byte must indicate data or readable code segment ELSE 

#GP(selector) ; 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte; 
ELSE #GP(selector); 
Segment must be marked present ELSE #NP(selector); 

Load segment register with selector and RPL bits; 
Load segment register with descriptor; 

IF OS, ES, FS or GS is loaded with a null selector: 
Load segment register with selector; 
Clear descriptor valid bit; 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; the second operand must be 
a memory operand, not a register; #GP(O) if a null selector is loaded into SS; #PF(fault­
code) for a page fault; #AC for unaligned memory reference if the current privilege 
level is 3 
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Real Address Mode Exceptions 

The second operand rhust be a memory operand, not a register; Interrupt ·13 if any part 
of the operand would lie outside of the effective address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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LLDT - Load Local Descriptor Table Register 

Opcode 

OF 00/2 

Operation 

Instruction 

LLOT r/m16 

LOTA ~ SAC; 

Description 

Clocks 

11/11 

. Description 

Load selector r/m16 into LOTR 

The LLDT instruction loads the Local Descriptor Table register (LDTR). The word 
operand (memory or register) to the LLDT instruction should contain a selector to the 
Global Descriptor Table (GDT). The GDT entry should be a Local Descriptor Table. If 
so, then the LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS, 
GS, and CS are not affected. The LDT field in the task state segment does not change. 

The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor refer­
ences (except by the LAR, VERR, VERW or LSL instructions) cause a #GP fault. 

The LLDT instruction is used in operating system software; it is not used in application 
programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #GP(selector) if the selector operand does 
not point into the Global Descriptor Table, or if the entry in the GDT is not a Local 
Descriptor Table; #NP(selector) if the LDT descriptor is not present; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) 
for an illegal address in the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 6; the LLDT instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode (because the instruction is not recognized, it 
will not execute or perform a memory reference) 
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Note 

The operand-size attribute has no effect on this instruction. 
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LMSW - Load Machine Status Word 

Opcode 

OF 01 /6 

Operation 

Instruction 

LMSW r/m16 

Clocks 

13/13 

Description 

Load r/m16 in machine status word 

MSW ~ rim 16; (* 16 bits is stored in the machine status word *) 

Description. 

The LMSW instruction loads the machine status word (part of the CRO register) from 
the source operand. This instruction can be used to switch to Protected Mode; if so, it 
must be followed by an intra segment jump to flush the instruction queue. The LMSW 
instruction will not switch back to Real Address Mode. 

The LMSW instruction is used only in operating system software. It is not used in appli­
cation programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#OP(O) if the current privilege level is not 0; #OP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or OS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

The operand-size attribute has no effect on this instruction. This instruction is provided 
for compatibility with the 80286 processor; programs for the i486 processor should use 
the MOV CRO, ... instruction instead. The LMSW instruction· does not affect the PO or 
ET bits, and it cannot be used to clear the PE bit. 

26-201 



INSTRUCTION SET 

LOCK - Assert LOCK# Signal Prefix 

Opcode 

FO 

Description 

Instruction 

LOCK 

Clocks Description 

Assert LOCK# signal for the next instruction 

. . . 

The LOCK prefix causes the LOCK# signal of the i486 processor to be asserted during 
execution of the instruction that follows it. In a multiprocessor environment, this. signal 
can be used to ensure that the i486 processor has exclusive use of any shared memory 
while LOCK# is asserted. The read-modify-write sequence typically used to. implement 
test.;and-set on the i486 processor is the BTS instruction. 

I 

The LOCK prefix functions only with the following instructions: 

BTS, BTR, BTC 
XCHG 
XCHG 
ADD, OR, ADC, SBB, AND, SUB, XOR 
NOT, NEG, INC, DEC 

mem, reg/imm 
reg, mem 
mem, reg 
mem, reg/imm 
mem 

An undefined opcode trap will be generated if a LOCK prefix is used with any instruc­
tion not listed above. 

The XCHG instruction always asserts LOCK# regardless of the presence or absence of 
the LOCK prefix. 

The integrity of the LOCK prefix is not affected by the alignment of the memory field. 
Memory locking is observed for arbitrarily misaligned fields. 

Flags Affected 

None 

Protected Mode Exceptions 

# UD if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; other exceptions can be generated by the subsequent (locked) instruction 

Real Address Mode Exceptions 

Interrupt 6 if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; exceptions can still be generated by the subsequent (locked) instruction 
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Virtual 8086 Mode Exceptions 

#UD if the LOCK prefix is used with an' instruction not listed in the "Description" 
section above; exceptions can still be generated by the subsequent (locked) instruction. 
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LODS/LODSB/LODSW/LODSD-Load String Operand' 

Opcode Instruction 

AC LODS mB 
AD LODS m16 
AD LODS m32 
AC LODSB 
AD LODSW 
AD LODSD 

Operation 

AddressSize = 16 
THEN use SI for source-index 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 
IF byte type of instruction 
THEN 

Clocks 

5 
5 
5 
5 
5 
5 

AL ~ [source-index]; (* byte load *) 

Description 

Load byte [(E)SI] into AL 
Load word [(E)SI] into AX 
Load dword [(E)SI] into EAX 
Load byte DS:[(E)SI] into AL 
Load word DS:[(E)SI] into AX 
Load dword DS:[(E)SI] into EAX 

IF OF = 0 THEN IncOec ~ 1 ELSE IncOec ~ -1; FI; 
ELSE 

IF OperandSize = 16 
THEN 

AX ~ [source-index]; (* word load *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ - 2; FI; 

ELSE (* OperandSize = 32 *) 
EAX ~ [source-index]; (* dword load *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ -4; FI; 

FI; 
FI; 
source-index ~ source-index + IncOec 

Description 

The LODS instruction loads the AL, AX, or EAX register with the memory byte, word, 
or doubleword at the location pointed to by the source-index register. After the transfer 
is made, the source-index register is automatically advanced. If the DF flag is 0 (the 
CLD instruction was executed), the source index increments; if the DF flag is 1 (the 
STD instruction was executed), it decrements. The increment or decrement is 1 if a byte 
is loaded, 2 if a word is loaded, or 4 if a doubleword is loaded. 

If the address-size attribute for this instruction is 16 bits, the SI register is used for the 
source-index register; otherwise the address-size attribute is 32 bits, and the ESI register 
is used. The address of the source data is determined solely by the contents of the ESI or 
SI register. Load the correct index value into the SI register before executing the LODS 
instruction. The LODSB, LODSW, and LODSD instructions are synonyms for the byte, 
word, and doubleword LODS instructions. 
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The LaDS instruction can be preceded by the REP prefix; however, the LODS instruc­
tion is used more typically within a LOOP construct, because further processing of the 
data moved into the EAX, AX, or AL register is usually necessary. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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LOOP/LOOPcond - Loop Control with CX Counter 

Opcode Instruction . Clocks Description 

E2 cb LOOP refS 2,6 DEC count; jump short if count < > 0 
E1 cb LOOPE refS 9,6 DEC count; jump short if count < > 0 and 

ZF=1 
E1 cb LOOPZ refS 9,6 DEC count; jump short if count < > 0 and 

ZF=1 
EO cb LOOPNE refS 9,6 DEC count; jump short if count < > 0 and 

ZF=O 
EO cb LOOPNZ refS 9,6 DEC count; jump short if count < > 0 and 

ZF=O 

Operation 

IF AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI; 
CountReg ~ CountReg - 1; 

IF instruction < > LOOP 
THEN 

IF (instruction = LOOPE) OR (instruction = LOOPZ) 
THEN BranchCond ~ (ZF = 1) AND (CountReg < > 0); 
FI; 
IF (instruction = LOOPNE) OR (instruction = LOOPNZ) 
THEN BranchCond ~ (ZF = 0) AND (CountReg < > 0); 
FI; 

FI; 

IF BranchCond 
THEN 

IF OperandSize = 16 
THEN 

IP ~ IP + SignExtend(re/8); 
ELSE (* OperandSize = 32 *) 

EIP ~ EIP + SignExtend(re/8); 
FI; 

FI; 

Description 

The LOOP instruction decrements the count register without changing any of the flags. 
Conditions are then checked for the form of the LOOP instruction being used. If the 
conditions are met, a short jump is made to the label given by the operand to the LOOP 
instruction. If the address-size attribute is 16 bits, the CX register is used as the count 
register; otherwise the ECX register is used. The operand of the LOOP instruction must 
be in the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of the 
instruction. 
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The LOOP instructions provide iteration control and combine loop index management 
with conditional branching. Use the LOOP instruction by loading an unsigned iteration 
count into the count register, then code the LOOP instruction at the end of a series of 
instructions to be iterated. The destination of the LOOP instruction is a label that points 
to the beginning of the iteration. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the offset jumped to is beyond the limits of the current code segment 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

Notes 

The unconditional LOOP instruction takes longer to execute than a two-instruction se­
quence which decrements the count register and jumps if the count does not equal zero. 

All branches are converted into 16-byte code fetches regardless of jump address or 
cacheability. 
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LSL- Load Segment Limit 

Opcode Instruction 

OF 03/r LSL r16,r/m16 

OF 03/r LSL r32,r/m32 

OF 03/r LSL r16,r/m16 

OF 03/r LSL r32,r/m32 

Description 

Clocks' . 

10/10 

10/10 

10/10 

10/10 

Description 

Load: r16 +- segment limit, selectorr/m16 (byte 
granular)" . " ' , ' . , 
Load: r32 ~ segment limit, selector r/m32 (byte 
granular) 
Load: r16 ~ segment limit, selector r/m16 (page 
granular) 
Load: r32 ~ segment limit, selector r/m32 (page 
granular) 

The LSL instruction loads a register with an unscrambled segment limit, and sets the ZF 
flag, provided that the source selector is visible at the current privilege level and RPL, 
within the descriptor table, and that the descriptor is a type ~ccepted by the LSL instruc­
tion. Otherwise, the ZF flag is cleared, and the destination' register is unchanged. The 
segment limit is loaded as a byte granular value. If the descriptor has a page granular 
segment limit, the LSL instruction will translate it to a byte limit before loading it in the 
destination register (shift left 12 the 20-bit "raw" limit from descriptor, then OR wi,th 
OOOOOFFFH). .' . " ~. i'" 

The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 16-bit 
destination register. 

Code and data segment descriptors are valid for the LSL instruction. 

The valid special segment and gate descriptor types for the LSL instruction are given in 
the following table: 

Type Name Valid/Invalid 

0 Invalid Invalid 
1 Available 80286 TSS Valid 
2 LDT Valid 
3 Busy 80286 TSS Valid 
4 80286 call gate Invalid 
5 80286/i486 task gate Invalid 
6 80286 trap gate Invalid 
7 80286 interrupt gate Invalid 
8 Invalid Valid 
9 Available i486 TSS Valid 
A Invalid Invalid 
B Busy i486 TSS Valid 
C i486 call gate Invalid 
D Invalid Invalid 
E i486 trap gate Invalid 
F i486 interrupt gate Invalid 

Flags Affected 

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the 
ZF flag is cleared 
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Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 6; the LSL instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the 
current privilege level is 3 
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L TR - Load Task Register 

Opcode 

OF 00/3 

Description 

Instruction 

LTR r/m16 

Clocks 

20/20 

Description 

Load EA word· into task register 

The L TR instruction loads the task register from the source register or mem.ory lqcation 
specified by the operand. The loaded TSS' is marked busy. A task switch does not occur. 

The LTR instruction is used only in operating system software; it is not used in applica­
tion programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #GP(O) if the current privi­
lege level is not 0; #GP(selector) if the object named by the source selector is not a TSS 
or is already busy; #NP(selector) if the TSS is marked "not present"; #PF(fault-code) 
for a page fault 

Real Address Mode Exceptions 

Interrupt 6; the LTR instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

Notes 

The operand-size attribute has no effect on this instruction. 

26-210 



INSTRUCTION SET 

MOV - Move Data 

Opcode Instruction Clocks Description 

88 Ir MOV r/mB,rB 1 Move byte register to r/m byte 
89 Ir MOV r/m16,r16 1 Move word register to r/m word 
89 Ir MOV r/m32,r32 1 Move dword register to r/m dword 
8A Ir MOV rB,r/mB 1 Move r/m byte to byte register 
88 Ir MOV r16,r/m16 1 Move r/m word to word register 
88 Ir MOV r32,r/m32 1 Move r/m dword to dword register 
8C Ir MOV r/m16,Sreg 3/3 Move segment register to r/m word 
8E Ir MOV Sreg,r/m16 3/9 Move r/m word to segment register 
AO MOV AL,moffsB 1 Move byte at (seg:offseO to AL 
A1 MOV AX,moffs16 1 Move word at (seg:offseO to AX 
A1 MOV EAX,moffs32 1 Move dword at (seg:offseO to EAX 
A2 MOV moffsB,AL 1 Move AL to (seg:offseO 
A3 MOV moffs16,AX 1 Move AX to (seg:offseO 
A3 MOV moffs32,EAX 1 Move EAX to (seg:offseO 
80+ rb MOV regB,immB 1 Move immediate byte to register 
88+ rw MOV reg16,imm16 1 Move immediate word to register 
88+ rd MOV reg32,imm32 1 Move immediate dword to register 
C6 MOV r/mB,immB 1 Move immediate byte to r/m byte 
C7 MOV r/m16,imm16 1 Move immediate word to r/m word 
C7 MOV r/m32,imm32 1 Move immediate dword to r/m dword 

NOTES: moffs8, moffs16, and moffs32 all consist of a simple offset relative to the segment base. The 8,16, 
and 32 refer to the size of the data. The address-size attribute of the instruction determines the 
size of the offset, either 16 or 32 bits. 

Operation 

DEST ~ SRC; 

Description 

The MOV instruction copies the second operand to the first operand. 

If the destination operand is a segment register (DS, ES, SS,. etc.), then data from a 
descriptor is also loade9 into the register. The data for the register is obtained from the 
descriptor table entry Jor the selector given., A null selector (values 0000-0003) can be 
lo~ded into ~he DS and ES registers without causing an exception; however, use of the 
DS or ES register causes a #GP(O) exception, and no memory reference occurs. 

A MOV into SS instruction inhibits all interrupts until after the execution of the next 
instruction (which is presumably a MOV into ESP instruction). 

Loading a segment register under Protected Mode results in special checks and actions, 
as described in the following listing: 

IF SS is loaded; 
THEN 

IF selectOr is null THEN #GP(O); , 
FI; " , 

Selector index must be within its descriptor table limits else #GP(selector); 
Selector's RPL must equal CPL else #GP(selector); 
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AR byte must indicate a writable data segment else #GP(selector); 
OPL in the AR byte must equal CPL else #GP(selector); 
Segment must be marked present else #SS(selector); 
Load SS with selector; 
Load SS with descriptor. 

FI; 
IF OS, ES, FS or GS is loaded with non-null selector; 
THEN 

Selector index must be within its descriptor table limits 
else #GP(selector); 

AR byte must indicate data or readable code segment else #GP(selector); 
IF data or nonconforming code segment 
THEN both the RPL and the CPL must be less than or equal to OPL in AR byte; 
ELSE #GP(selector); 
FI; 
Segment must be marked present else #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

FI; 
IF OS, ES, FS or GS is loaded with a null selector; 
THEN 

Load segment register with selector; 
Clear descriptor valid bit; 

FI; 

Flags Affected 

None 

Protected Mode Exceptions 

#GP, #SS, and #NP if a segment register is being loaded; otherwise, #GP(O) if the 
destination is in a nonwritable segment; #GP(O) for an illegal memory operand effective 
address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS 
segment; #PF(fault-code) fora page fault; #AC for unaligned memory reference if the 
current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #ACfor 
unaligned memory reference if the current privilege level is 3 
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MOV - Move to/from Special Registers 

Opcode Instruction Clocks 

OF 22/r MOV CRO,r32 16 
OF 20lr MaV r32,CRO/CR2/CR3 4 
OF 22/r MaV CR2/CR3,r32 , 4 
OF21 Ir . MaV r32,DRO' - 3 10 
OF 21 Ir MaV r32,DR6/DR7 10 
OF 23/r MaV DRO - 3,r32 11 
OF 23/r MaV DR6/DR7,r32 11 
OF 241r MaV r32,TR4{TR5{TR6{TR7 4 
OF 261r MaV TR4{TR5{TR6{TR7,r32 4 
of 24/r MaV r32, TR3 3 
OF 261r MaV TR3,r32 6 

Operation 

DEST ~ SRC; 

Description 

Description 

Move (register) to (control register) 
Move (control register) to (register) 
Move (register) to (control register) 
Move (debug register) to (register) 

, Move (debug register) to (register) 
Move (register) to (debug register) 
Move (register) to (debug register) 
Move (test register) to (register) 
Move (register) to (test register) 
Move (test register3) to (register) 
Move (registers) to (test register3) 

The above forms of the MOY instruction store or load the following special registers in 
or from a general purpose register: 

• Control registers CRO, CR2, and CR3 

• Debug Registers DRO, DRl, DR2, DR3, DR6, and DR7 

• Test Registers TR3, TR4, TR5, TR6 and TR 7 

Thirty-two bit operands are always used with these instructions, regardless of the 
operand-size attribute. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are undefined 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O) if instruction execution is attempted 
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Notes 

The instructions must be executed at privilege level 0 or in real-address mode; otherwise, 
a protection exception will be raised. 

The reg field within the ModR/M byte specifies w~ich of the special registers in each 
category is involved. The two bits in the mod field are always 11. The rim field specifies 
the general register involved. 

Always set undefined or reserved bits to the value previously read. 
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MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to 
String 

Opcode 

A4 
A5 
A5 
A4 
A5 
A5 

Operation 

Instruction 

MOVS mB,mB 
MOVS m16,m16 
MOVS m32,m32 
MOVSB 
MOVSW 
MOVSO 

Clocks 

7 
7 
7 
7 
7 
7 

Description 

Move byte [(E)SI] to ES:[(E)OI] 
Move word [(E)SI] to ES:[(E)OI] 
Move dword [(E)SI] to ES:[(E)OI] 
Move byte OS:[(E)SI] to ES:[(E)OI] 
Move word OS:[(E)SI] to ES:[(E)DI] 
Move dword DS:[(E)SI] to ES:[(E)DI] 

IF (instruction = MOVSO) OR (instruction has doubleword operands) 
THEN OperandSize +- 32; 
ELSE OperandSize +- 16; 
IF AddressSize = 16 
THEN use SI for source-index and 01 for destination-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index and EOI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

[destination-index] +- [source-index]; (* byte assignment *) 
IF OF = 0 THEN IncOec +- 1 ELSE IncOec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[destination-index] +- [source-index]; (* word assignment *) 
IFOF = 0 THEN IncOec +- 2 ELSE IncOec +- -2; FI; 

ELSE (* Operand Size = 32 *) 
[destination-index] +- [source-index]; (* doubleword assignment *) 
IF OF = 0 THEN IncOec +- 4 ELSE IncOec +- - 4; FI; 

FI; . 

FI; 
source-index +- source-index + IncOec; 
destination-index +- destination-index + IncOec; 

Description 

The MOVS instruction copies the byte or word at [(E)SI] to the byte or word at 
ES:[(E)DI]. The destination operand must be addressable from the ES register; no seg­
ment override is possible for the destination. A segment override can be used for the 
source operand; the default is the DS register. 

The addresses of the source and destination are determined solely by the contents of the 
(E)SI and (E)DI registers. Load the correct index values into the (E)SI and (E)DI 
registers before executing the MOVS instruction. The MOVSB, MOVSW, and MOVSD 
instructions are synonyms for the byte, word, and doubleword MOVS instructions. 
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After the data is moved, both the (E)SI and (E)DI registers are advanced automatically. 
If the DF flag is 0 (the CLD instruction was executed), the registers are incremented; if 
the DF flag is 1 (the STD instruction was executed), the registers are decremented. The 
registers are incremented or decremented by 1 if a byte was moved, 2 if a word was 
moved, or 4 if a doubleword was moved. 

The MOVS instruction can be preceded by the REP prefix for block movement of CX 
bytes or words. Refer to the REP instruction for details of this operation. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH . 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode;#PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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MOVSX - Move with Sign-Extend 

Opcode 

OF BE Ir 
OF BE Ir 
OF BF Ir 

Operation 

Instruction 

MOVSX r16,r/mB 
MOVSX r32,r/mB 
MOVSX r32,r/m16 

DEST ~ SignExtend(SRC); 

Description 

Clocks 

3/3 
3/3 
3/3 

Description 

Move byte to word with sign-extend 
Move byte to dword, sign-extend 
Move word to dword, sign-extend 

The MOVSX instruction reads the contents of the effective address or register as a byte 
or a word, sign-extends the value to the operand-size attribute of the instruction (16 or 
32 bits), and stores the result in the destination register. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(O) for an illegal address ,in the SS segment; #PF(fault-code) for a page 
fault; # AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

26-217 



INSTRUCTION SET 

MOVZX - Move with Zero-Extend 

·Opcode 

OF 861r 
OF 861r 
,oF 871r 

Operation 

Instruction 

MOVZX r16,r/mB 
MOVZX r32,r/mB 
MOVZX r32,r/m16 

DEST ~ ZeroExtend(SRC): 

Description 

Clocks 

3/3 
3/3 . 
3/3 

Description 

Move byte to word with zero-extend 
Move byte to dword, zero-extend 
Move word to dword. zero-extend 

The MOVZX instruction reads the contents of the effective address or register as a byte 
or a word, zero extends the value to the operand-size attribute of the instruction (16 or 
32 bits), and stores the result in the destination register. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or as 
segments; #SS(O) for an jIlegal address in theSS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory, reference if the· current privilege level is3 

Real Address Mode Exceptions 

Interrupt ·13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH . 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a.page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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MUL- Unsigned Multiplication of AL or AX 

Opcode 

F6/4 
F7/4 
F7/4 

Instruction 

MUL AL,rlm8 
MUL AX,rlm16 
MUL EAX,rlm32 

Clocks 

13/18,13/18 
13/26,13/26 
13/42,13/42 

Description 

Unsigned multiply (AX .- AL * rim byte) 
Unsigned multiply (OX:AX .- AX * rim word) 
Unsigned multiply (EOX:EAX.- EAX * rim 
dword) 

NOTES: The i486 processor uses an early-out multiply algorithm. The actual number of clocks depends on 
the position of the most significant bit in the optimizing multiplier, shown underlined above. The 
optimization occurs for positive and negative multiplier values. Because of the early-out algorithm, 
clock counts given are minimum to maximum. To calculate the actual clocks, use the following 
formula: 

Actual clock = if m < > 0 then max(ceiling(log2 1 m I ), 3) + 6 clocks; 
Actual clock = if m = 0 then 9 clocks 

where m is the multiplier. 

Operation 

IF byte-size operation 
THEN AX ~ AL * r/mB 
ELSE (* word or doubleword operation *) 

IF OperandSize = 16 
THEN DX:AX ~ AX * r/m16 
ELSE (* OperandSize = 32 *) 

EDX:EAX ~ EAX * r/m32 
FI; 

FI; 

Description 

The MUL instruction performs unsigned multiplication. Its actions depend on the size of 
its operand, as follows: 

• A byte operand is multiplied by the AL value; the result is left in the AX register. 
The CF and OF flags are cleared if the AH value is 0; otherwise, they are set. 

• A word operand is multiplied by the AX value; the result is left in the DX:AX 
register pair. The DX register contains the high-order 16 bits of the product. The CF 
and OF flags are cleared if the DX value is 0; otherwise, they are set. 

• A doubleword operand is multiplied by the EAX value and the result is left in the 
EDX:EAX register. The EDX register contains the high-order 32 bits of the product. 
The CF and OF flags are cleared if the EDX value is 0; otherwise, they are set. 

Flags Affected 

The OF and CF flags are cleared if the upper half of the result is 0; otherwise they are 
set; the SF, ZF, AF, PF, and CF flags are undefined 
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Protected Mode Exceptions 

#G P(O) for ani'llegal memory openlnd effective address in the CS, DS~ ES, FS, o~. OS 
segments; #SS(O) for an illegal address in the SS segment; # PP( fault-code) for a page 
fault; #AC forunali~nedmemory r~ference if the current privilege le~elis 3 

Real Address Mode ,Exceptions 

Interrupt 13 if any part of the operand ·would lie outside 'of the effective address space 
from 0 toOFFFFH . 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

I, 
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NEG - Two's Complement Negation 

Opcode 

F6/3 
F73 
F7/3 

Operation 

Instruction 

NEG rlmB 
NEG rlm16 
NEG rlm32 

Clocks 

1/3 
1/3 
1/3 

IF rim = 0 THEN CF ~ 0 ELSE CF ~ 1; FI; 
rlm~ - rim 

Description 

Description 

Two's complement negate rim byte 
Two's complement negate rim word 
Two's complement negate rim dword 

The NEG instruction replaces the value of a register or memory operand with its two's 
complement. The operand is subtracted from zero, and the result is placed in the 
operand. 

The CF flag is set, unless the operand is zero, in which case· the CF flag is cleared. 

Flags Affected 

The CF flag is set unless the operand is zero, in which case· the CF flag is cleared; the 
OF, SF, ZF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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NOP - No Operation 

Opcode 

90 

Instruction Clocks Description 

No operation NOP 

Description 

The NOP instruction performs no operation. The NOP instruction is a one-byte instruc­
tion that takes up space but affects none of the machine context except the (E)IP 
register. . 

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E) AX instruction. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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NOT - One's Complement Negation 

Opcode 

F6/2 
F7/2 
F7/2 

Operation 

Instruction 

NOT rlmB 
NOT rlm16 
NOT rlm32 

rIm ~ NOT rim; 

Description 

Clocks 

1/3 
1/3 
1/3 

Description 

Reverse each bit of rim byte 
Reverse each bit of rim word 
Reverse each bit of rim dword 

The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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OR - Logical Inclusive OR 

Opcode 

DC ib 
00 iw 
00 id 
80 /1 ib 
81 /1 iw 
81 /1 id 
83 /1 ib 
83 /1 ib 

08 /r 
09 /r 
09 /r 
OA /r 
DB /r 
DB /r 

Operation 

Instruction 

ORAL,immB 
OR AX,imm16 
OR EAX,imm32 
OR rlmB,immB 
OR rlm16,imm16 
OR rlm32,imm32 
OR rlm16,immB 
OR rlm32,immB 

OR rlmB,rB 
OR rlm16,r16 
OR rlm32,r32 
OR rB,rlmB 
OR r16,rlm16 
OR r32,rlm32 

DEST ~ DEST OR SRC; 
CF~O; 

OF~O 

Description 

Clocks 

1 
1 
1 
1/3 
1/3 
1/3 
1/3 
1/3 

1/3 
1/3 
1/3 
1/2 
1/2 
1/2 

Description 

OR immediate byte to AL 
OR immediate word to AX 
OR immediate dword to EAX 
OR immediate byte to rim byte 
OR immediate word to rim word 
OR immediate dword to rim dword 
OR sign-extended immediate byte with rim word' 
OR sign-extended immediate byte with rim 
dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 

The OR instruction computes the inclusive OR of its two operands and places the result 
in the first operand. Each bit of the result is 0 if both corresponding bits of the operands 
are 0; otherwise, each bit is 1. 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result; the AF flag is undefined 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH ' 
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Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; tlPF(fault-code) for a 'page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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OUT - Output to Port 

Opcode Instruction .' 

E6 ib OUT immB,AL 

E7 ib OUT immB,AX 

E7 ib OUT immB,EAX 

EE OUT OX,AL 

EF OUT OX,AX 

EF OUT OX,EAX 

NOTES: *If CPL $ IOPL 
**If CPL > IOPL 

Operation 

Clocks 

16,pm=11*/ 
31 **,VM =29 
16,pm=11*/ 
31 **,VM =29 
16,pm=11*/ 
31**,VM=29 
16,pm= 10*/ 
30**,VM=29 
16,pm= 10*/ 
30**,VM=29 
16,pm= 10*/ 
30**,VM=29 

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL)) 

Description 

Output byte AL to immediate port number 

Output word AL to immediate port number 

Output dword AL to immediate port number 

Output byte AL to port number in OX 

Output word AL to port number in OX 

Output dword AL to port number in OX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-O-Permission (DEST, width(DEST)) 
THEN #GP(O); 
FI; 

FI; 
[DEST] ~ SRC; (* I/O address space used *) 

Description 

The OUT instruction transfers a data byte or data word from the register (AL, AX, or 
EAX) given as the second operand to the output port numbered by the first operand. 
Output to any port from 0 to 65535 is performed by placing the port number in the DX 
register and then using an OUT instruction with the DX register as the first operand. If 
the instruction contains an eight-bit port ID, that value is zero-extended to 16 bits. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is higher (has less privilege) than the I/O privilege 
level and any of the corresponding I/O permission bits in the TSS equals 1 

Real Address Mode Exceptions 

None 
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Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in the TSS equals 1 
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OUTS/OUTSB/OUTSW /OUTSO - Output String'to Port 

Opcode Instruction 

6E OUTS OX,r/mB 

6F OUTS OX,r/m16 

6F OUTS OX,r/m32 

6E OUTSB 

6F OUTSW 

6F OUTSO 

NOTES: *If CPL :5 IOPL 
**If CPL > IOPL 

Operation 

IF AddressSize = 16 
THEN use SI for source-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 

Clocks 

17,pm= 10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 
17,pm=10*/ 
32**,VM=30 

IF (PE = 1) ANO ((VM = 1) OR (CPL > 10PL)) 

Description 

Output byte [(E)SI) to port in OX 

Output word [(E)SI) to port in OX 

Output dword [(E)SI) to port in OX 

Output byte OS:[(E)SI) to port in OX 

Output word OS:[(E)SI) to port in OX 

Output dword OS:[(E)SI) to port in OX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-O-Permission (DEST, width(DEST)) 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

[OX] ~ [source-index]; (* Write byte at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 1 ELSE IncOec ~ -1; FI; 

FI; 
IF OperandSize = 16 
THEN 

[OX] ~ [source-index]; (* Write word at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ - 2; FI; 

FI; 
IF OperandSize = 32 
THEN 

[OX] ~ [source-index]; (* Write dword at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ - 4; FI; 
FI; 

FI; 
source-index ~ source-index + IncOec; 
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Description 

The OUTS instruction transfers data from the memory byte, word, or doubleword at the 
source-index register to the output port addressed by the DX register. If the address-size 
attribute for this instruction is 16 bits, the SI register is used for the source-index regis­
ter; otherwise, the address-size attribute is 32 bits, and the ESI register is used for the 
source-index register. 

The OUTS instruction does not allow specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load the correct value 
into the DX register before executing the OUTS instruction. 

The address of the source data is determined by the contents of source-index register. 
Load the correct index value into the SI or ESI register before executing the OUTS 
instruction. 

After the transfer, source-index register is advanced automatically. If the DF flag is 0 
(the CLD instruction was executed), the source-index register is incremented; if the DF 
flag is 1 (the STD instruction was executed), it is decremented. The amount of the 
increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a doubleword 
is output. 

The OUTSB, OUTSW, and OUTSD instructions are synonyms for the byte, word, and 
doubleword OUTS instructions. The OUTS instruction can be preceded by the REP 
prefix for block output of CX bytes or words. Refer to the REP instruction for details on 
this operation. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater than the I/O privilege level and any of the 
corresponding I/O permission bits in TSS equals 1; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, or ES segments; #SS(O) for an illegal address in the 
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if 
the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault; # AC for unaligned memory reference if the current privilegt? 
level is 3 
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POP - POp a Word from the Stack 

Opcode 

8F /0 
8F /0 
58+ rw 
58+ rd 
1F 
07 
17 
OF A1 
OF A9 

Operation 

Instruction 

POP m16 
pOP m32 
POP r16 
POP r32 
POP os 
POP ES 
pOP SS 
POP FS 
POPGS 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

Clocks 

6 
6 
4 
4 
3 
3 
3 
3 
3 

DEST ~ (SS:SP); (* copy a word *) 
SP ~ SP + 2; 

ELSE (* OperandSize = 32 *) 
DEST ~ (SS:SP); (* copy a dword *) 
SP ~ SP + 4; 

FI; 

ELSE (* StackAddrSize = 32 * ) 
IF OperandSize = 16 
THEN 

DEST ~ (SS:ESP); (* copy a word *) 
ESP ~ ESP + 2; 

ELSE (* OperandSize = 32 *) 
DEST ~ (SS:ESP); (* copy a dword *) 
ESP ~ ESP + 4; 

FI; 
FI; 

Description 

Description 

Pop top of stack into memory word 
Pop top of stack into memory dword 
Pop top of stack into word register 
Pop top of stack into dword register 
Pop top of stack into OS 
Pop top of stack into ES 
Pop top of stack into SS 
Pop top of stack into FS 
Pop top of stack into GS 

The POP instruction replaces the previous contents of the memory, the register, or the 
segment register operand with the word on the top of the i486 processor stack, ad­
dressed by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attribute of 
32 bits). The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by 4 
for an operand-size of 32 bits. It then points to the new top of stack. 

The POP CS instruction is not an i486 processor instruction. Popping from the stack into 
the CS register is accomplished with a RET instruction. 
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If the destination operand is a segment register (DS, ,ES, FS, GS, orSS), the value 
popped must be a selector. In protected mode, loading the selector initiates automatic 
loading of the descriptor information associated with that selector into the hidden part 
of the segment register; loading also initiates validation of both the selector and the 
descriptor information. 

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without 
causing a protection exception. An attempt to reference a segment whose corresponding 
segment register is loaded with a null value causes a #GP(O) exception. No memory 
reference occurs. The saved value of the segment register is null. 

A POP SS instruction inhibits all interrupts, including NMI, until after execution of the 
next instruction. This allows sequential execution of POP SS and POP eSP instructions 
without danger of having an invalid stack during an interrupt. However, use of the LSS 
instruction is the preferred method of loading the SS and eSP registers. 

Loading a segment register while in protected mode results in special checks and actions, 
as described in the following listing: 

IF SS is loaded: 
IF selector is null THEN #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) ; 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS register with selector; 
Load SS register with descriptor; 

IF OS, ES, FS or GS is loaded with non-null selector: 
AR byte must indicate data or readable code segment ELSE 

#GP(selector) ; 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte 
ELSE #GP(selector); 
FI; 
Segment must be marked present ELSE #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

IF DS, ES, FS, orGS is loaded with a null selector: 
Load segment register with selector 
Clear valid bit in invisible portion of register 

Flags Affected 

None 
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Protected Mode Exceptions 

#GP, #SS, and #NP if a segment register is being loaded; #SS(O) if the current top of 
stack is not within the stack segment; #GP(O) if the result is in a nonwritable segment; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

Back-to-back PUSH/POP instruction sequences are allowed without incurring an addi­
tional clock. 
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POPA/POPAD-Pop all General Registers 

Opcode 

61 
61 

Operation 

Instruction 

POPA 
POPAO 

Clocks 

9 
9 

IF OperandSize = 16 (* instruction = POPA *) 
THEN ' 

01 ~PopO; 
SI ~ PopO; 
BP ~ PopO; 
throwaway ~ Pop 0; (* Skip SP *) 
BX ~ PopO; 
ox ~ PopO; 
CX ~ PopO; 
AX ~ PopO; 

ELSE (* OperandSize = 32, instruction = POPAO *) 
EOI ~ PopO; 
ESI ~ PopO; 
EBP ~ PopO; 
throwaway ~ Pop 0; (* Skip ESP *) 
EBX ~ PopO; 
EOX ~ PopO; 
ECX ~ PopO; 
EAX ~ PopO; 

FI; 

Description 

Description 

Pop 01, SI, BP, BX, OX, CX, and AX 
Pop EOI, ESI, EBP, EOX, ECX, and EAX 

The POP A instruction pops the eight 16-bit general registers. However, the SP value is 
discarded instead of loaded into the SP register. The POP A instruction reverses a pre­
vious PUSHA instruction, restoring the general registers to their values before the 
PUSHA instruction was executed. The first register popped is the DI register. 

The POP AD instruction pops the eight 32-bit general registers. The ESP value is dis­
carded instead of loaded into the ESP register. The POP AD instruction reverses the 
previous PUSHAD instruction, restoring the general registers to their values before the 
PUSHAD instruction was executed. The first register popped is the EDI register. 

Flags Affected 

None 
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Protected Mode Exceptions 

#SS(O) if the starting or ending stack address is not within the stack segment; 
#PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-:-address mode; #PF(fault-code) for a page fault 
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POPF/POPFD - POp Stack into FLAGS or EFLAGSRegister 

Opcode 

90 
90 

Operation 

Instruction 

POPF 
POPFO 

Flags +- Pop(); 

Description 

Clocks 

9,pm=6 
9,pm=6 

Description 

Pop top of stack FLAGS 
Pop top of stack into EFLAGS 

The POPF and POPFD instructions pop the word or doublewbrd on the top of the stack 
and store the value in the flags register. If the operand-size attribute of the instruction is 
16 bits, then a word is popped and the value is stored in the FLAGS register. If the 
operand-size attribute is 32 bits, then a doubleword is popped and the value is stored in 
the EFLAGS register. 

Refer to Chapter 2 and Chapter 4 for information about the FLAGS and EFLAGS 
registers. Note that bits 16 and 17 of the EFLAGS register, called the VM and RF flags, 
respectively, are not affected by the POPF or POPFD instruction. 

The I/O privilege level is altered only when executing at privilege level O. The interrupt 
flag is altered only when executing at a level at least as privileged as the I/O privilege 
level. (Real-address mode is equivalent to privilege level 0.) If a POPF instruction is 
executed with insufficient privilege, an exception does not occur, but the privileged bits 
do not change. 

Flags Affected 

All flags except the VM and RF flags 

Protected Mode Exceptions 

#SS(O) if the top of stack is not within the stack segment 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation 
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PUSH - Push Operand onto the Stack 

Opcode 

FF 16 
FF 16 
50+ Ir 
50+ Ir 
6A 
68 
68 
OE 
16 
1E 
06 
OF AO 
OF A8 

Operation 

Instruction 

PUSH m16 
PUSH m32 
PUSH r16 
PUSH r32 
PUSH immB 
PUSH imm16 
PUSH imm32 
PUSH CS 
PUSH SS 
PUSH OS 
PUSH ES 
PUSH FS 
PUSH GS 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 THEN 
SP ~ SP - 2; 

Clocks 

4 
4 
1 
1 
1 
1 
1 
3 
3 
3 
3 
3 
3 

(SS:SP) ~ (SOURCE); (* word assignment *) 
ELSE 

SP ~ SP - 4; 
(SS:SP) ~ (SOURCE); (* dword assignment *) 

FI; 
ELSE (* StackAddrSize = 32 *) 

IF OperandSize = 16 
THEN 

ESP ~ ESP - 2; 
(SS:ESP) ~ (SOURCE); (* word assignment *) 

ELSE 
ESP ~ ESP - 4; 
(SS:ESP) ~ (SOURCE); (* dword assignment *) 

FI; 
FI; 

Description 

Description 

Push memory word 
Push memory dword 
Push register word 
Push register dword 
Push immediate byte 
Push immediate word 
Push immediate dword 
Push CS 
Push SS 
Push OS 
Push ES 
Push FS 
Push GS 

The PUSH instruction decrements the stack pointer by 2 if the operand-size attribute of 
the instruction is 16 bits; otherwise, it decrements the stack pointer by 4. The PUSH 
instruction then places the operand on the new top of stack, which is pointed to by the 
stack pointer. 

The PUSH ESP instruction pushes the value of the ESP register as it existed before the 
instruction. This differs from the 8086, where the PUSH SP instruction pushes the new 
value (decremented by 2). 
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Flags Affected 

None 

Protected Mode Exceptions 

#SS(O) if the new value of the SP or ESP register is outside the stack segment limit; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

None; if the SP or ESP register is 1, the processor shuts down due to a lack of stack 
space 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

When used with an operand in memory, the PUSH instruction takes longer to execute 
than a two-instruction sequence which moves the operand through a register. 

Back-to-back PUSH/pOP instruction sequences are allowed without incurring. an addi­
tional clock. 
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PUSHA/PUSHAD - Push all General Registers 

Opcode 

60 
60 

Operation 

Instruction 

PUSHA 
PUSHAO 

Clocks 

11 
11 

IF Operand Size = 16 (* PUSHA instruction *) 
THEN 

Temp +- (SP); 
Push (AX); 
Push(CX); 
Push(DX); 
Push(BX); 
Push(Temp); 
Push(BP); 
Push(SI); 
Push(DI); 

ELSE (* OperandSize = 32, PUSHAD instruction *) 
Temp +- (ESP); 
Push(EAX); 
Push(ECX); 
Push(EDX); 
Push(EBX); 
Push(Temp) ; 
Push(EBP); 
Push(ESI); 
Push(EDI); 

FI; 

Description 

Description 

Push AX, CX, OX, BX, original SP, BP, SI, and 01 
Push EAX, ECX, EOX, EBX, original ESP, EBP, 
ESI, and EOI 

The PUSHA and PUSHAD instructions save the 16-bit or 32-bit general registers, re­
spectively, on the i486 processor stack. The PUSHA instruction decrements the stack 
pointer (SP) by 16 to hold the eight word values. The PUSHAD instruction decrements 
the stack pointer (ESP) by 32 to hold the eight doubleword values. Because the registers 
are pushed onto the stack in the order in which they were given, they appear in the 16 or 
32 new stack bytes in reverse order. The last register pushed is the DI or EDI register. 

Flags Affected 

None 
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RCL/RCR/ROL/ROR- - Rotate 

Opcode 

00/2 
02 /2 
CO /2 ib 
01 /2 
03/2 
C1 /2 ib 
01 /2 
03 /2 
C1 /2 ib 
00 /3 
02 /3 
CO /3 ib 
01 /3 
03 /3 
C1 /3 ib 
01 /3 
03/3 
C1 /3 ib 
00/0 
02 /0 
CO /0 ib 
01 /0 
03 /0 
C1 /0 ib 
01 /0 
03 /0 
C1 /0 ib 
00 /1 
02 /1 
CO /1 ib 
01 /1 
03 /1 
C1 /1 ib 
01 /1 
03 /1 
C1 /1 ib 

Operation 

Instruction 

RCL rlmB,1 
RCL rlmB,CL 
RCL rlmB,immB 
RCL rlm16,1 
RCL rlm16,CL 
RCL rlm16,immB 
RCL rlm32,1 
RCL rlm32,CL 
RCL rlm32,immB 
RCR rlmB,1 
RCR rlmB,CL 
RCR rlmB,immB 
RCR rlm16,1 
RCR rlm16,CL 
RCR rlm16,immB 
RCR rlm32,1 
RCR rlm32,CL 
RCR rlm32,immB 
RDL rlmB,1 
RDL rlmB,CL 
RDL rlmB,immB 
RDL rlm16,1 
RDL rlm16,CL 
RDL rlm16,immB 
RDL rlm32,1 
RDL rlm32,CL 
RDL rlm32,immB 
RDR rlmB,1 
RDR rlmB,CL 
RDR rlmB,immB 
RDR rlm16,1 
RDR rlm16,CL 
RDR rlm16,immB 
RDR rlm32,1 
RDR rlm32,CL 
RDR rlm32,immB 

(* ROL - Rotate Left *) 
temp ~ COUNT; 
WHILE (temp < > 0) 
DO 

Clocks 

3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
8-30/9-31 
8-30/9-31 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 
3/4 
3/4 
2/4 

tmpcf ~ high-order bit of (rim); 
rim ~ rim * 2 + (tmpcf); 
temp ~ temp - 1; 

00; 
IF COUNT = 1 
THEN 

IF high-order bit of rim < > CF 
THEN OF ~ 1; 
ELSE OF ~ 0; 
FI; 

ELSE OF ~ undefined; 
FI; 

26-242 

Description 

Rotate 9 bits (CF,rlm byte) left once 
Rotate 9 bits (CF,r(m byte) left CL times 
Rotate 9 bits (CF,rlm byte) left immB times 
Rotate 17 bits (CF, rim word) left once 
Rotate 17 bits (CF,rlm word) left CL times 
Rotate 17 bits (CF,rlm word) left immB times 
Rotate 33 bits (CF,rlm dword) left once 
Rotate 33 bits (CF,rlm dword) left CL times 
Rotate 33 bits (CF,rlm dword) leftimmB times 
Rotate 9 bits (CF,rlm byte) right once ' 
Rotate 9 bits (CF,rlm byte) right CL times ' 
Rotate 9 bits (CF,rlm byte) right immB times 
Rotate 17 bits (CF,rlm word) right once 
Rotate 17 bits (CF,rlm word) right CL times 
Rotate 17 bits (CF, rim word) right immB times 
Rotate 33 bits (CF,rlm dword) right once ' 
Rotate 33 bits (CF,rlm dword) right CL times 
Rotate 33 bits (CF,rlm dword) right immB times 
Rotate 8 bits rlin byte left onc'e ' 
Rotate 8 bits rim byte left CL times ' 
Rotate 8 bits rim byte left immB times 

. Rotate 16 bits' rim word left once 
Rotate 16 bits rim word left CL times 
Rotate 16 bits rim word left immB times 
Rotate 32 bits rim dword left once 
Rotate 32 bits rim dword left CL times 
Rotate 32 bits rim dword left immB times 
Rotate 8 bits rim byte right once 
Rotate 8 bits rim byte right CL times 
Rotate 8 bits rim word right immB times 
Rotate 16 bits rim word right once 
Rotate 16 bits rim word right CL times 
Rotate 16 bits rim word right immB times 
Rotate 32 bits rim dword right once 
Rotate 32 bits rim dword right CL times 
Rotate 32 bits rim dword right immB times 



(* ROR - Rotate Right *) 
temp ~ COUNT; 
WHILE (temp < > 0) 
DO 

tmpcf ~ low-order bit of (rim); 

INSTRUCTION SET 

rim ~ rim / 2 + (tmpcf * 2Widlh(r/m»); 

temp ~ temp - 1; 
DO; 
IF COUNT = 1 
THEN 

IF (high-order bit of rim) < > (bit next to high~order bit of rim) 
THEN OF ~ 1; 
ELSE OF ~ 0; 
FI; 

ELSE OF ~ undefined; 
FI; 

Description 

Each rotate instruction shifts the bits of the register or memory operand given. The left 
rotate instructions shift all the bits upward, except for the top bit, which is returned to 
the bottom. The right rotate instructions do the reverse: the bits shift downward until the 
bottom bit arrives at the top. 

For the RCL and RCR instructions, the CF flag is part of the rotated quantity. The RCL 
instruction shifts the CF flag into the bottom bit and shifts the top bit into the CF flag; 
the RCR instruction shifts the CF flag into the top bit and shifts the bottom bit into the 
CF flag. For the ROL and ROR instructions, the original value of the CF flag is not a 
part of the result, but the CF flag receives a copy of the bit that was shifted from one end 
to the other. 

The rotate is repeated the number of times indicated by the second operand, which is 
either an immediate number or the contents of the CL register. To reduce the maximum 
instruction execution time, the i486 processor does not allow rotation counts greater 
than 31. If a rotation count greater than 31 is attempted, only the bottom five bits of the 
rotation are used. The 8086 does not mask rotation counts. The i486 processor in Virtual 
8086 Mode does mask rotation counts. 

The OF flag is defined only for the single-rotate forms of the instructions (second oper­
and is a 1). It is undefined in all other cases. For left shifts/rotates, the CF bit after the 
shift is XORed with the high-order result bit. For right shifts/rotates, the high-order two 
bits of the result are XORed to get the OF flag. 

Flags Affected 

The OF flag is affected only for single-bit rotates; the OF flag is undefined for multi-bit 
rotates; the CF flag contains the value of the bit shifted into it; the SF, ZF, AF, and PF 
flags are not affected 
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Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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REP/REPE/REPZ/REPNE/REPNZ- Repeat Following String 
Operation 

Opcode Instruction Clocks Description 

F36C REP INS r/mB, OX 16+8(E)CX, Input (E)CX bytes from port OX into ES:[(E)OI] 
pm= 10+8(EJCX*1/ 
30+8(E)CX* , 
VM=29+8(E)CX 

F360 REP INS r/m16,OX 16+8(E)CX, Input (E)CX words from port OX into ES:[(E)OI] 
pm= 10+8(EJCX*1/ 
30 + 8(E)CX* , 
VM = 29 + 8(E)CX 

F360 REP INS r/m32,OX 16+8(E)CX, Input (E)CX dwords from pot OX into ES:[(E)OI] 
pm= 10+8(EJCX*1/ 
30+8(E)CX* , 
VM=29+8(E)CX 

F3 A4 REP MOVS mB,mB 5*3,13*4,12 +3(E)CX*5 Move (E)CX bytes from [(E)SI] to ES:[(E)OI] 
F3 A5 REP MOVS m16,m16 5*3,13*4,12 + 3(E)CX*5 Move (E)CX words from [(E)SI] to ES:[(E)OI] 
F3 A5 REP MOVS m32,m32 5*3,13*4,12+3(E)CX*5 Move (E)CX dwords from [(E)SI] to ES:[(E)OI] 
F36E REP OUTS OX,r/mB 17+5(E)CX, Output (E)CX bytes from [(E)SI] to port OX 

pm= 11 +5(EJCX*1/ 
31 +5(E)CX* 
vm = 30 + 5(E)CX 

F3 6F REP OUTS OX,r/m16 17+5(E)CX, Output (E)CX words from [(E)SI] to port OX 
pm= 11 +5(EJCX*1/ 
31 +5(E)CX* 
vm=30+5(E)CX 

F36F REP OUTS OX,r/m32 17+5(E)CX, Output (E)CX dwords from [(E)SI]to port OX 
pm= 11 +5(EJCX*1/ 
31 +5(E)CX* 

REP LODS mB 
vm=30+5(E)CX 

F2 AC 5*3,7 + 4(E)CX*6 Load (E)CX bytes from [(E)SI] to AL 
F2 AO REP LOOS m16 5*3,7 +4(E)CX*6 Load (E)CX words from [(E)SI] to AX 
F2 AO REP LOOS m32 5*3,7 + 4(E)CX*6 Load (E)CX dwords from [(E)SI] to EAX 
F3 AA REP STOS mB 5*3,7 + 4(E)CX*6 Fill (E)CX bytes at ES:[(E)OI] with AL 
F3 AS REP STOS m16 5*3,7 + 4(E)CX*6 Fill (E)CX words at ES:[(E)OI] with AX 
F3 AS REP STOS m32 5*3,7 + 4(E)CX*6 Fill (E)CX dwords at ES:[(E)OI] with EAX 
F3 A6 REPE CMPS mB,mB 5*3,7 + 7(E)CX*6 Find non matching bytes in ES:[(E)DI] and [(E)SI] 
F3 A7 REPE CMPS m16,m16 5*3,7 + 7(E)CX*6 Find nonmatching words in ES:[(E)DI] and [(E)SI] 
F3 A7 • . REPE CMPS m32,m32 5*3,7 + 7(E)CX*6 Find nonmatching dwords in ES:[(E)OI] and [(E)SI] 
F3 AE REPE SCAS mB 5*3,7 + 5(E)CX~6 Find non-AL byte starting at ES:[(E)OI] 
F3 AF REPE SCAS m 16 5*3,7+5(E)CX*6 Find non-AX word starting at ES:[(E)OI] 
F3 AF REPE SCAS m32 5*3,7 +5(E)CX*6 Find non-EAX dword starting at ES:[(E)OI] 
F2 A6 REPNE CMPS mB,mB 5*3,7 + 7(E)CX*6 Find matching bytes in ES:[(E)OI] and [(E)SI] 
F2 A7 REPNE CMPS m16,m16 5*3,7 + 7(E)CX*6 Find matching words in ES:[(E)OI] and [(E)SI] 
F2 A7 REPNE CMPS m32,m32 5*3,7 + 7(E)CX*6 Find matching dwords in ES:[(E)OI] and [(E)SI] 
F2 AE REPNE SCAS mB, 5*3,7 + 5(E)CX*6 Find AL, starting at ES:[(E)OI] 
F2 AF REPNE SCAS m16 5*3,7 + 5(E)CX*6 Find AX, starting at ES:[(E)OI] 
F2 AF REPNE SCAS m32 5*3,7 + 5(E)CX*6 Find EAX, starting at ES:[(E)OI] 

NOTES: *1 If ePL ::s; IOPL 
*2 If ePL > IOPL 
*3 (E) eX=Q 
*4 (E) ex =1 
*5 (E) ex > 1 
*6 (E) ex > Q 

Operation 

IF AddressSize = 16 
THEN use'CX for CountReg; 
ELSE (* AddressSize = 32 *) use ECX for CountReg; 
FI; 
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WHILE CountReg < > 0 
DO 

service pending interrupts (if any); 
perform primitive string instruction; 
CountReg ~ CountReg - 1; 

INSTRUCTION SET 

IF primitive operation is CMPB, CMPW, SCAB, or SCAW 
THEN 

IF (instruction is REP/REPE/REPZ) AND (ZF = 1) 
THEN exit WHILE loop 
ELSE 

IF (instruction is REPNZ or REPNE) AND (ZF = 0) 
THEN exit WHILE loop; 
FI; 

FI; 
FI; 

00; 

Description 

The REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefixes 
are applied to string operation. Each prefix causes the string instruction that follows to 
be repeated the number of times indicated in the count register or (for the REPE and 
REPNE prefixes) until the indicated condition in the ZF flag is no longer met. 

Synonymous forms of the REPE and REPNE prefixes are the REPZ and REPNZ pre-
fixes, respectively. . 

The REP prefixes apply only to one string instruction at a time. To repeat a block of 
instructions, use the LOOP instruction or another looping construct. 

The precise action for each iteration is as follows: 

1. If the address-size attribute is 16 bits, use the CX register for the count register; if 
the address-size attribute is 32 bits, use the ECX register for the count register. 

2. Check the CX register. If it is zero, exit the iteration, and move to the next 
instruction. 

3. Acknowledge any pending interrupts. 

4. Perform the string operation once. 

5. Decrement the CX or ECX register by one; no flags are modified. 

6. Check the ZF flag if the string operation is a SCAS or CMPS instruction. If the 
repeat condition does not hold, exit the iteration and move to the next instruction. 
Exit the iteration if the prefix is REPE and the ZF flag is 0 (the last comparison was 
not equal), or if the prefix is REPNE and the ZF flag is one (the last comparison 
was equal). 

7. Return to step 1 for the next iteration. 
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Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if the 
ZF flag fails the repeat condition. These two cases can be distinguished by using either 
the JCXZ instruction, or by using the conditional jumps that test the ZF ·flag (the JZ, 
JNZ, and JNE instructions). 

Flags Affected 

The ZF flag is affected by the REP CMPS and REP SCAS as described above 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

Notes 

Not all 110 ports can handle the rate at which the REP INS and REP OUTS instructions 
execute. 

The repeat prefix is ignored when it is used with a non-string instruction. 
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RET - Return from Procedure 

Opcode 

C3 
CB 
CB 
C2 iw 
CA iw 
CA iw 

Operation 

Instruction 

RET 
RET 
RET 
RET imm16 
RET imm16 
RET imm16 

IF instruction = near RET 
THEN; 

IF OperandSize = 16 
THEN 

IP ~ Pop(); 
EIP ~ EIP AND OOOOFFFFH; 

ELSE (* OperandSize = 32 *) 
EIP ~ Pop(); 

FI; 

Clocks 

5 
13,pm=18 
13,pm=33 
5 
14,pm=17 
14,pm=~3 

Description 

Return (near) to caller 
Return (far) to caller, same privilege 
Return (far), lesser privilege, switch stacks 
Return (near), pop imm16 bytes of parameters 
Return (far), same privilege, pop imm16 bytes 
Return (far), lesser privilege, pop imm16 bytes 

IF instruction has immediate operand THEN eSP ~ eSP + imm16; FI; 
FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) . 
(* real mode or virtual 8086 mode *) 
AND instruction = far RET 

THEN; 
IF OperandSize = 16 
THEN 

IP ~ Pop(); 
EIP ~ EIP AND OOOOFFFFH; 
CS ~ Pop(); (* 16-bit pop *) 

ELSE (* OperandSize = 32 *) 
EIP ~ PopO; 
CS ~ PopO; (* 32-bit pop, high-order 16-bits discarded *) 

FI; 
IF instruction has immediate operand THEN eSP ~ eSP + imm16; FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far RET 

THEN 
IF OperandSize = 32 
THEN Third word on stack must be within stack limits else #88(0); 
ELSE Second word on stack must be within stack limits else #SS(O); 
FI; 
Return selector RPL must be ~ CPL ELSE #GP(return selector) 
IF return selector RPL = CPL 
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THEN GOTO SAME-LEVEL; 
ELSE GOTO OUTER-PRIVILEGE-LEVEL; 
FI; 

FI; 

SAME-LEVEL: 
Return selector must be non-null ELSE #GP(O) 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) , 
Descriptor AR byte must indicate code segment ELSE #GP(selector) 
IF non-conforming " 
THEN code segment DPL must equal CPL; 
ELSE #GP(selector); , 
FI; 
IF conforming . 
THEN code segment DPL must be =::; CPL; 
ELSE #GP(selector); 
FI; 
Code segment must be present ELSE #NP(selector); 
Top word on stack must be within stack limits ELSE #SS(O); 
IP must be in code segment limit ELSE #GP(O); 
IF OperandSize = 32 ' 
THEN 

Load CS:EIP from stack 
Load CS register with descriptor 
Increment eSP by 8 plus the immediate offset if it exists 

ELSE (* OperandSize = 16 *) 
Load CS: I P from stack 
Load CS register with descriptor 
Increment eSP by 4 plus the immediate offset if it"exists 

FI; .. 

OUTER-PRIVILEGE-LEVEL: 
IF OperandSize = 32 , 
THEN Top (16 + immediate). bytes on stack must be within stack limits 

ELSE #SS(O); ".., . 
ELSE Top (8 + immediate) bytes 'on stack must be. within, stack limits ELSE 

#SS(O); . . . 

FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector); 
IF non-conforming 
THEN code segment DPL must equal return selector RPL 
ELSE #GP(selector); 
FI; 
IF conforming 
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THEN code segment DPL must be ~ return selector RPL; 
ELSE #GP(selector); 
FI; 
Segment must be present ELSE #NP(selector) 

Examine return SS selector and associated descriptor: 
Selector must be non-nUll ELSE #GP(O); 
Selector index must be within its descriptor table limits 

ELSE #GP(selector); 
Selector RPL must equal the RPL of the return CS selector ELSE 

#GP(selector) ; 
Descriptor AR byte must indicate a writable data segment ELSE 

#GP(selector); 
Descriptor DPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Segment must be present ELSE #NP(selector); 

IP must be in code segment limit ELSE #GP(O);, 
Set CPL to the RPL of the return CS selector; 
IF Operand Mode = 32 
THEN 

Load CS:EIP from stack; 
Set CS RPL to CPL; 
Increment eSP by 8 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

ELSE (* Operand Mode = 16 *) 
Load CS:IP from stack; 
Set CS RPL to CPL; 
Increment eSP by 4 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

FI; 
Load the CS register with the return CS descriptor; 
Load the SS register with the return SS descriptor; 
For each of ES, FS, GS, and DS 
DO 

IF the current register setting is not valid for the outer level, 
set the register to null (selector ~ AR ~ 0); 

To be valid, the register setting must satisfy the following properties: 

OD; 

Selector index must be within descriptor table limits; 
Descriptor AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, THEN 

DPL must be ;::: CPL, or DPL must be ;::: RPL; 
FI; 

Description 

The RET instruction transfers control to a return address located on the stack. The 
address is usually placed on the stack by a CALL instruction, and the return is made to 
the instruction that follows the CALL instruction. 
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The optional numeric parameter to the RET instruction gives the number of stack bytes 
(Op~randMode = 16) or words (OperandMode = 32) to be released after the return ad­
dress is popped. These items are typically used as input parameters to the procedure 
called. 

For the intrasegment (near) return, the address on the stack is a segment offset, which is 
popped into the instruction pointer. The CS register is unchanged. For the intersegment 
(far) return, the address on the stack is a long pointer. The offset is popped first, fol­
lowed by the selector. 

In real mode, the CS and IP registers are loaded directly. In Protected Mode, an inter­
segment return causes the processor to check the descriptor addressed by the return 
selector. The AR byte of the descriptor must indicate a code segment of equal or lesser 
privilege (or greater or equal numeric value) than the current privilege level. Returns to 
a lesser privilege level cause the stack to be reloaded from the value saved beyond the 
parameter block. 

The DS, ES, FS, and OS segment registers can be cleared by the RET instruction during 
an interlevel transfer. If these registers refer to segments that cannot be used by the new 
privilege level, they are cleared to prevent unauthorized access from the new privilege 
level. 

Flags Affected 

None 

Protected Mode Exceptions 

#OP, #NP, or #SS, as described under "Operation" above; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would be outside the effective address space from 
o to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 
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SAHF-Store AH into Flags 

Opcode 

9E 

Operation 

Instruction 

SAHF 

SF:ZF:xx:AF:xx:PF:xx:CF ~ AH; 

Description 

Clocks 

2 

Description 

Store AH into flags SF ZF xx AF xx PF xx CF 

The SAHF instruction loads the SF, ZF~ AF, PF, and CF flags with values from the AH 
register, from bits 7, 6, 4, 2, and 0, respectively. 

Flags Affected 

The SF, ZF, AF, PF, and CFflags are loaded with values form the AH register 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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SAL/SAR/SHL/SHR - Shift Instructions 

Opcode Instruction Clocks Description 

DO /4 SAL rlmB,1 3/4 Multiply rim byte by 2, once 
02/4 SAL rlmB,CL 3/4 Multiply rim byte by 2, CL times 
CO /4 ib SAL rlmB,immB 2/4 Multiply rim byte by 2, immB times 
01 /4 SAL rlm16,1 3/4 Multiply rim word by 2, once 
03/4 SAL rlm16,CL 3/4 Multiply rim word by 2, CL times 
C1 /4 ib SAL rlm16,immB 2/4 Multiply rim word by 2, immB times 
01 /4 SAL rlm32,1 3/4 Multiply rim dword by 2, once 
03/4 SAL rlm32,CL 3/4 Multiply rim dword by 2, CL times 
C1 /4 ib SAL rlm32,immB 2/4 Multiply rim dword by 2, immB times 
00/7 SAR rlmB,1 3/4 Signed divide' rim byte by 2, once 
02/7 SAR rlmB,CL 3/4 Signed divide' rim byte by 2, CL times 
CO /7 ib SAR rlmB,immB 2/4 Signed divide' rim byte by 2, immB times 
01 /7 SAR rlm16,1 3/4 Signed divide' rim word by 2, once 
03/7 SAR rlm16,CL 3/4 Signed divide' rim word by 2, CL times 
C1 /7 ib SAR rlm16,immB 2/4 Signed divide' rim word by 2, immB times 
01 /7 SAR rlm32,1 3/4 Signed divide' rim dword by 2, once 
03/7 SAR rlm32,CL 3/4 Signed divide' rim dword by 2, CL times 
C1 /7 ib SAR rlm32,immB 2/4 Signed divide' rim dword by 2, immB times 
00/4 SHL rlmB,1 3/4 Multiply rim byte by 2, once 
02/4 SHL rlmB,CL 3/4 Multiply rim byte by 2, CL times 
CO /4 ib SHL rlmB,immB 2/4 Multiply rim byte by 2, immB times 
01 /4 SHL rlm16,1 3/4 Multiply rim word by 2, once 
03/4 SHL rlm16,CL 3/4 Multiply rim word by 2, CL times 
C1 /4 ib SHL rlm16,immB 2/4 Multiply rim word by 2, immB times 
01 /4 SHL rlm32,1 3/4 Multiply rim dword by 2, once 
03/4 SHL rlm32,CL 3/4 Multiply rim dword by 2, CL times 
C1 /4 ib SHL rlm32,immB 2/4 Multiply rim dword by 2, immB times 
00/5 SHR rlmB,1 3/4 Unsigned divide rim byte by 2, once 
02/5 SHR rlmB,CL 3/4 Unsigned divide rim byte by 2, CL times 
CO /5 ib SHR rlmB,immB 2/4 Unsigned divide rim byte by 2, immB times 
01 /5 SHR rlm16,1 3/4 Unsigned divide rim word by 2, once 
03 /5 SHR rlm16,CL 3/4 Unsigned divide rim word by 2, CL times 
C1 /5 ib SHR rlm16,immB 2/4 Unsigned divide rim word by 2, immB times 
01 /5 SHR rlm32,1 3/4 Unsigned divide rim dword by 2, once 
03/5 SHR rlm32,CL 3/4 Unsigned divide rim dword by 2, CL times 
C1 /5 ib SHR rlm32,immB 2/4 Unsigned divide rim dword by 2, immB times 

Not the same division as IDIV; rounding is toward negative infinity. 

Operation 

(* COUNT is the second parameter *) 
(temp) ~ COUNT; 
WHILE (temp < > 0) 
DO 

IF instruction is SAL or SHL 
THEN CF ~ high-order bit of rim; 
FI; 
IF instruction is SAR or SHR 
THEN CF ~ low-order bit of rim; 
FI; 
IF instruction = SAL or SHL 
THEN rim ~ rim * 2; 
FI; 
IF instruction = SAR 
THEN rim ~ rim /2 (*Signed divide, rounding toward negative infinity*); 

26-253 



INSTRUCTION SET 

FI; 
IF instruction = SHR 
THEN rim ~ rim / 2; (* Unsigned· divide *); 
FI; 
temp ~ temp - 1; 

00; 
(* Determine overflow for the various instructions *) 
IF COUNT = 1 
THEN 

IF instruction is SAL or SHL 
THEN OF ~ high-order bit of rim < > (CF); 
FI; 
IF instruction is SAR 
THEN OF ~ 0; 
FI; 
IF instruction is SHR 
THEN OF ~ high-order bit of operand; 
FI; 

ELSE OF ~ undefined; 
FI; 

Description 

The SAL instruction (or its synonym, SHL) shifts the bits of the operand upward. The 
high-order bit is shifted into the ~F flag, and the low-order bit is cleared. 

The SAR and SHR instructions shift the bits of the operand downward: The low-orde~ 
bit is shifted into the CF flag. The effect is to divide the operand by two. The SAR 
instruction performs a signed divide with rounding toward negative infinity (not the 
same as the IDIV instruction); the high-order bit remains the same. The SHR instruc­
tion performs an unsigned divide; the high-order bit is cleared. 

The shift is repeated the number of times indicated by the second operand, which is 
either an immediate number or the contents of the CL register. To reduce the maximum 
execution time, the i486 processor does not allow shift counts greater than 31: If a shift 
count greater than 31 is attempted, only the bottom five bits of the shift count are used. 
(The 8086 uses all eight bits of the shift count.) 

The OF flag is affected only if the single-shift forms of the instructions are used. For left 
shifts, the OF flag is cleared if the high bit of the answer is the same as the result of the 
CF flag (i.e., the top two bits of the original operand were the same); the OF flag is set 
if they are different. For the SAR instruction, the OF flag is cleared for all, single shifts. 
For the SHR instruction, the OF flag is set to the high-order bit of the original operand. 

Flags Affected 

The OF flag is affected for single shifts; the OF flag is undefined for multiple shifts; the 
CF, ZF, PF, and SF flags are set according to the result 

26-254 



INSTRUCTION SET 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, OS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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see -Integer Subtraction with Borrow 

Opcode Instruction Clocks 

1C ib 
1D iw 
10 id 
80 13 ib 
81 13 iw 
81 13 id 
83 13 ib 
83 13 ib 
18 Ir 
19 Ir 
19 Ir 
1A Ir 
1 B Ir 
1 B Ir 

SBB AL,immB 1 
SBB AX,imm16 " 1 
SBB EAX,imm32 1 
SBB r/mB,immB 1/3 
SBB r/m16,imm16 1/3 
SBB r/m32,imm32 1/3 
SBB r/m16,immB 1/3 
SBB r/m32,immB 1/3 
SBB r/mB,rB 1/3 
SBB r/m16,r16 1/3 
SBB r/m32,r32 1/3 
SBB rB,r/mB 1/2 
SBB r16,r/m16 1/2 
SBB r32,r/m32 1/2 

Operation 

Description 

Subtract with borrow immediate byte from AL 
Subtract with borrow immediate word from AX 
Subtract with borrow immediate dword from EAX 
Subtract with borrow immediate byte from r/m byte 
Subtract with borrow immediate word from r/m word 
Subtract with borrow immediate dword from r/m.dword 
Subtract with borrow sign-extended immediate byte from r/m word 
Subtract with borrow sign-extended immediate byte from r/m dword 
Subtract with borrow byte register from r/m byte 
Subtract with borrow word register from r/m word 
Subtract with borrow dword register from rim dword 
Subtract with borrow byte register from r/m byte 
Subtract with borrow word register from r/m word 
Subtract with borrow dword register from r/m dword . 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - (SignExtend(SRC) + CF) 
ELSE DEST ~ DEST - (SRC + CF); 

Description 

The SBB instruction adds the second operand (SRC) to the CF flag and subtracts the 
result from the first operand (DEST). The result of the subtraction is assigned to the 
first operand (DEST), and the flags are set accordingly. 

When an immediate byte value is subtracted from a word operand, the immediate value 
is first sign-extended. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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SCAS/SCASB/SCASW /SCASO - Compare String Data 

Opcode Instruction Clocks 

AE SCAS mB 6 
AF SCAS m16 6 
AF SCAS m32 6 
AE SCASB 6 
AF SCASW 6 
AF SCASO 6 

Operation 

IF AddressSize = 16 
THEN use 01 for dest-index; 
ELSE (* AddressSize = 32 *) use EOI for dest-index; 
FI; 
IF byte type of instruction 
THEN 

Description 

Compare bytes AL-ES:[OIJ, update (E)OI 
Compare words AX-ES:[OIJ, update (E)OI 
Compare dwords EAX-ES:[OIJ, update (E)OI 
Compare bytes AL-ES:[OIJ, update (E)OI 
Compare words AX-ES:[OIJ, update (E)OI 
Compare dwords EAX-ES:[OIJ, update (E)OI 

AL - [dest-index); (* Compare byte in AL and dest *) 
IF OF = 0 THEN IndOec ~ 1 ELSE IncOec ~ -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

AX - [dest-index); (* compare word in AL and dest *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ - 2; FI; 

ELSE (* OperandSize = 32 *) 
EAX - [dest-index);(* compare dword in EAX & dest *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ - 4; FI; 

FI; 
FI; 
dest-index = dest-index + IncOec 

Description 

The SeAS instruction subtracts the memory byte or word at the destination register 
from the AL, AX or EAX register. The result is discarded; only the flags are set. The 
operand must be addressable from the ES segment; no segment override is possible. 

If the address-size attribute for this instruction is 16 bits, the DI register is used as the 
destination register; otherwise, the address-size attribute is 32 bits and the EDI register 
is used. 

The address of the memory data being compared is determined solely by the contents of 
the destination register, not by the operand to the SeAS instruction. The operand vali­
dates ES segment addressability and determines the data type. Load the correct index 
value into the DI or ED! register before executing the SeAS instruction. 
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After the comparison is made, the destination register is automatically updated. If the 
direction flag is 0 (the CLD instruction was executed), the destination register is incre­
mented; if the direction flag is 1 (the STD instruction was executed), it is decremented. 
The increments or. decrements are by 1 if bytes are compared, by 2 if words are com­
pared, or by 4 if doublewords are compared. 

The SCASB, SCASW, and SCASD instructions are synonyms for the byte, word and 
doubleword SCAS instructions that don't require operands. They are simpler to code, 
but provide no type or segment checking. 

The SCAS instruction can be preceded by the REPE or REPNE prefix for a block 
search of ex or ECX bytes or words. Refer to the REP instruction for further details. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH ' 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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SETcc - Byte Set on Condition 

Opcode Instruction Clocks 

OF 97 SETA rlmB 4/3 
OF 93 SETAE rlmB 4/3 
OF 92 SETB rlmB 4/3 
OF 96 SETBE rlmB 4/3 
OF 92 SETC rlmB 4/3 
OF 94 SETE rlmB 4/3 
OF 9F SETG rlmB 4/3 
OF 9D SETGE rlmB 4/3 
OF 9C SETL rlmB 4/3 
OF 9E SETLE rlmB 4/3 
OF 96 SETNA rlmB 4/3 
OF 92 . SETNAE rlmB 4/3 
OF 93 SETNB rlmB 4/3 
OF 97 SETNBE rlmB 4/3 

OF 93 SETNC rlmB 4/3 
OF 95 SETNE rlmB 4/3 
OF 9E SETNG rlmB 4/3 
OF 9C SETNGE rlmB 4/3 
OF 9D SETNL rlmB 4/3 
OF 9F SETNLE rlmB 4/3 
OF 91 SETNO rlmB 4/3 
OF 9B SETNP rlmB 4/3 
OF 99 SETNS rlmB 4/3 
OF 95 SETNZ rlmB 4/3 
OF 90 SETO rlmB 4/3 
OF 9A SETP rlmB 4/3 
OF 9A SETPE rlmB 4/3 
OF 9B SETPO rlmB 4/3 
OF 98 SETS rlmB 4/3 
OF 94 SETZ rlmB 4/3 

Operation 

IF condition THEN rlmB <:- 1 ELSE rlmB <:- 0; FI; 

Description 

Description 

Set byte if above (CF = 0 and ZF = 0) 
Set byte if above or eq ual (CF = 0) 
Set byte if below (CF = 1) 
Set byte if below or equal (CF = 1 or (ZF = 1) 
Set if carry (CF = 1) 
Set byte if equal (ZF = 1) 
Set byte if greater (ZF = 0 or SF = OF) 
Set byte if greater or equal (SF = OF) 
Set byte if less (SF < > OF) 
Set byte if less or equal (ZF = 1 or SF < > OF) 
Set byte if not above (CF = 1) 
Set byte if not above or equal (CF = 1) 
Set byte if not below (CF = 0) 
Set byte if not below or equal (CF = 0 and 
ZF=O) 
Set byte if not carry (CF = 0) 
Set byte if not equal (ZF = 0) 
Set byte if not greater (ZF = 1 or SF < > OF) 
Set if not greater or equal (SF < > OF) 
Set byte if not less (SF = OF) 
Set byte if not less or equal (ZF = 0 and SF = OF) 
Set byte if not overflow (OF = 0) 
Set byte if not parity (PF = 0) 

, Set byte if not sign (SF = 0) 
Set byte if not zero (ZF = 0) 
Set byte if overflow (OF = 1) 
Set byte if parity (PF = 1) 
Set byte if parity even (PF = 1) 
Set byte if parity odd (PF = 0) 
Set byte if sign (SF = 1) 
Set byte if zero (ZF = 1 ) 

The SETcc instruction stores a byte at the destination specified by the effective address 
or register if the condition is met, or a 0 byte if the condition is not met. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a non-writable segment; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3 
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Real Address Mode Exceptions 

Interrupt 13 if any' part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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SGDT/SIDT -Store Global/Interrupt Descriptor Table Register 

Opcode 

OF 01 /0 
OF 01 /1 

Operation· 

Instruction 

SGOT m 
SIOTm 

Clocks 

10 
10 

DEST +- 48·bit BASE/LIMIT register contents; 

Description 

Description 

Store GOTR to m 
Store IOTR to m 

The SGDT and SIDT instructions copy the contents of the descriptor table register to 
the six bytes of memory indicated by the operand. The LIMIT field of the register is 
assigned to the first word at the effective address. If the operand-size attribute is 32 bits, 
the next three bytes are assigned the BASE field of the register, and the fourth byte is 
written with zero. The last byte is undefined. Otherwise, if the operand-size attribute is 
16 bits, the next four bytes are assigned the 32-bit BASE field of the register. 

The SGDT and SIDT instructions are used only in operating system software; they are 
not used in application programs. 

Flags Affected 

None 

Protected Mode Exceptions 

Interrupt 6 if the destination operand is a register; #GP(O) if the destination is In a 
nonwritable segment; #GP(O) for an illegal memory operand effective address in the CS, 
DS, ES, FS; or GS segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault; # AC for unaligned memory reference if the current privilege 
level is 3 

Real Address Mode Exceptions 

Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the oper­
and would lie outside of the effective address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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Compatibility Note 

The 16-bit forms of the SODT and SrDT instructions are compatible with the 80286 
processor, if the value in the upper eight bits is not referenced. The 80286 processor 
stores l's in these upper bits, whereas the 386 DX and i486 processors store D's if the 
operand-size attribute is 16 bits. These bits were specified as undefined by the SGDT 
and SrDT instructions in the iAPX 286 Programmer's Reference Manual. . 
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SHLD - Double Precision Shift Left 

Opcode Instruction Clocks 

OF A4 SHLD r/m16,r16,imm8 2/3 
OF A4 , SHLD r/m32,r32,imm8 2/3 
OF A5 SHLD r/m16,r16,CL 3/4 
OF A5 SHLD r/m32,r32,CL 3/4 

Operation 

Description 

r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 
r/m16 gets SHL of r/m16 concatenated with r16 

, r/m32 gets SHL of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the instruction, either an 
immediate byte or the byte in register CL *) 
ShiftAmt ~ count MOD 32; 
inBits ~ register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt ~ OperandSize 
THEN (* Bad parameters *) 

rim ~ UNDEFINED; 
CF, OF, SF, ZF, AF, PF ~ UNDEFINED; 

ELSE (* Perform the shift *) 
CF ~ BIT[Base, Operand Size - ShiftAmt]; 

(* Last bit shifted out on exit *) 
FOR i ~ OperandSize - 1 DOWNTO ShiftAmt 
DO 

BIT[Base, i] ~ BIT [Base, i - ShiftAmt]; 
OF; 
FOR i ~ ShiftAmt - 1 DOWNTO 0 
DO 

BIT[Base, i] ~ BIT[inBits, i - ShiftAmt + OperandSize]; 
00; 
Set SF, ZF, PF (rim); 

(* SF, ZF, PF are set according to the value of the result *) 
AF ~ UNDEFINED; 

FI; 
FI; 

Description 

The SHLD instruction shifts the first operand provided by the rim field to the left as 
many bits as specified by the count operand. The second operand (r16 or r32) provides 
the bits to shift in from the right (starting with bit 0). The result is stored back into the 
rim operand. The register remains unaltered. 

The count operand is provided by either an immediate byte or the contents of the CL 
register. These operands are taken MODULO 32 to provide a number between 0 and 31 
by which to shift. Because the bits to shift are provided by the specified registers, the 
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operation is useful for multiprecision shifts (64 bits or more). The SF, ZF and PF flags 
are set according to the value of the result. The CF flag is set to the value of the last bit 
shifted out. The OF and AF flags are left undefined. 

Flags Affected 

The SF, ZF, andPF, flags are set according to the result; the CF flag is set to the value 
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign 
change occurred, otherwise it is cleared; after a shift of more than one bit position, the 
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which 
does not affect any flags. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH . 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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SHRD - Double Precision Shift Right 

Opcode Instruction Clocks 

OF AC SHRD r/m16,r16,imm8 2/3 
OF AC SHRD r/m32,r32,imm8 2/3 
OF AD SHRD r/m16,r16,CL 3/4 
OF AD SHRD r/m32,r32,CL 3/4 

Operation 

Description 

r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 
rim 16 gets SHR of rim 16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the instruction, either an 
immediate byte or the byte in register CL *) 

ShiftAmt ~ count MOD 32; 
inBits ~ register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt ;::: OperandSize 
THEN (* Bad parameters *) 

rim ~ UNDEFINED; 
CF, OF, SF, ZF, AF, PF ~ UNDEFINED; 

ELSE (* Perform the shift *) 
CF ~ BIT[rlm, ShiftAmt - 1]; (* last bit shifted out on exit *) 
FOR i ~ 0 TO OperandSize - 1 - ShiftAmt 
DO 

BIT[rlm, i] ~ BIT[rlm, i - ShiftAmt]; 
00; 
FOR i ~ OperandSize - ShiftAmt TO OperandSize - 1 
DO 

BIT[rlm,i] ~ BIT[inBits,i+ShiftAmt - OperandSize]; 
00; 
Set SF, ZF, PF (rim); 

(* SF, ZF, PF are set according to the value of the result *) 
Set SF, ZF, PF (rim); 
AF ~UNDEFINED; 

FI; 
FI; 

Description 

The SHRD instruction shifts the first operand provided by the rim field to the right as 
many bits as specified by the count operand. The second operand (r16 or r32) provides 
the bits to shift in from the left (starting with bit 31). The result is stored back into the 
rim operand. The register remains unaltered. 

The count operand is provided by either an immediate byte or the contents of the CL 
register. These operands are taken MODULO 32 to provide a number between 0 and 31 
by which to shift. Because the bits to shift are provided by the specified register, the 

26-266 



INSTRUCTION SET 

operation is useful for multi-precision shifts (64 bits or more). The SF, ZF and PF flags 
are set according to the value of the result. The CF flag is set to the value of the last bit 
shifted out. The OF and AF flags are left undefined. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result; the CF flag is set to the value 
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign 
change occurred, otherwise it is cleared; after a shift of more than one bit position, the 
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which 
does not affect any flags. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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SLOT - Store Local Descriptor Table Register 

Opcode 

OF 00/0 

Instruction 

SLDT r/m16 

Operation 

r/m16 ~ LOlR; 

Description 

Clocks 

2/3 

Description 

Store LDTR to EA word 

The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the two­
byte register or memory location indicated by the effective address operand. This regis­
ter is a selector that points into the Global Descriptor Table. 

The SLDT instruction is used only in operating system software. It is not used in appli­
cation programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 6; the SLDT instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

The operand-size attribute has no effect on the operation of the instruction. 
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SMSW - Store Machine Status Word 

Opcode 

OF 01 /4 

Instruction 

SMSW r/m16 

Operation 

r/m16~ MSW; 

Description 

Clocks 

2/3 

Description 

Store machine status word to EA word 

The SMSW instruction stores the machine status word (part of the CRO register) in the 
two-byte register or memory location indicated by the effective address operand. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, OS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

Notes 

This instruction is provided for compatibility with the 80286 processor; programs for the 
i486 processor should use the MOV ... , CRO instruction. 
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STC - Set Carry Flag 

Opcode 

F9 

Operation 

CF ~ 1; 

Description 

Instruction 

STC 

Clocks 

2 

The STC instruction sets the CF flag. 

Flags Affected 

The CF flag is set 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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STO - Set Direction Flag 

Opcode 

FD 

Operation 

DF~ 1; 

Description 

Instruction 

SrD 

Clocks 

2 

Description 

Set direction flag so, (E)SI and/or (E)DI 
decrement 

The STO instruction sets the direction flag, causing all subsequent string operations to 
decrement the index registers, (E)SI and/or (E)OI, on which they operate. 

Flags Affected 

The OF flag is set 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 
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STI- Set Interrupt Flag 

Opcode 

F13 

Operation 

IF ~ 1 

Description 

Instruction 

STI 

Clocks 

5 

Description 

Set interrupt flag; interrupts enabled at the end 
of the next instruction 

The STI instruction sets the IF flag. The processor then responds to external interrupts 
after executing the next instruction if the next instruction allows the IF flag to remain 
enabled. If external interrupts are disabled and you code the STI instruction followed by 
the RET instruction (such as at the end of a subroutine), the RET instruction is allowed 
to execute before external interrupts are recognized. Also, if external interrupts are 
disabled and you code the STI instruction followed by the CLI instruction, then external 
interrupts are not recognized because the CLI instruction clears the IF flag during its 
execution. 

Flags Affected 

The IF flag is set 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater (has less privilege ) than the I/O privilege 
level ' . , 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

26-272 



INSTRUCTION SET 

STOS/STOSB/STOSW /STOSD - Store String Data 

Opcode Instruction Clocks Description 

AA STOS mB 5 Store AL in byte ES:[(E)DI], update (E)DI 
AB STOS m16 5 Store AX in word ES:[(E)DIJ, update (E)DI 
AB STOS m32 5 Store EAX in dword ES:[(E)DI], update (E)DI 
AA STOSB 5 Store AL in byte ES:[(E)DI], update (E)DI 
AB STOSW 5 Store AX in word ES:[(E)DI], update (E)DI 
AB STOSD 5 Store EAX in dword ES:[(E)DI], update (E)DI 

Operation 

IF AddressSize = 16 
THEN use ES:DI for DestReg 
ELSE (* AddressSize = 32 *) use ES:EDI for DestReg; 
FI; 
IF byte type of instruction 
THEN 

(ES:DestReg) ~ AL; 
IF DF = 0 
THEN DestReg ~ DestReg + 1; 
ELSE DestReg ~ DestReg - 1; 
FI; 

ELSE IF OperandSize = 16 
THEN 

(ES:DestReg) ~ AX; 
IF DF = 0 
THEN DestReg ~ DestReg + 2; 
ELSE DestReg ~ DestReg - 2; 
FI; 

ELSE (* OperandSize = 32 *) 
(ES:DestReg) ~ EAX; 
IF DF = 0 
THEN DestReg ~ DestReg + 4; 
ELSE DestReg ~ DestReg - 4; 
FI; 

FI; 
FI; 

Description 

The STOS instruction transfers the contents of the AL, AX, or EAX register to the 
memory byte or word given by the destination register relative to the ES segment. The 
destination register is the DI register for an address-size attribute of 16 bits or the EDI 
register for an address-size attribute of 32 bits. 

The destination operand must be addressable from the ES register. A segment override 
is not possible. 
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The address of the destination is determined by the contents of the destination register, 
not by the explicit operand of the STOS instruction. This operand is used only to vali­
'date ES segment addressability and to determine the data type. Load the correct index 
value into the destination register before executing the STOS instruction. 

After the transfer is m~d~, the DI register is automatically updated. If the DF flag is 0 
(the CLD instruction was executed), the DI register is incremented; if the DF flag is 1 
(the STD instruction was executed), the DI register is decremented. The DI register is 
incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a 
doubleword is stored. 

The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and 
doubleword STOS instructions, that do not require an operand. They are simpler to use, 
but provide no type or segment checking. 

The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX 
bytes, words, or doublewords. Refer to the REP instruction for further details., 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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STR - Store Task Register 

Opcode 

OF 00/1 

Operation 

Instruction 

STR r/m16 

rim ~ task register; 

Description 

Clocks 

2/3 

Description 

Store task register to EA word 

The contents of the task register are copied to the two-byte register or memory location 
indicated by the effective address operand. 

The STR instruction is used only in operating system software. It is not used in applica­
tion programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment;#GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 6; the STR instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

Notes 

The operand-size attribute has no effect on this instruction. 
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SUB -Integer Subtraction 

Opcode 

2C ib 
2D iw 
2D id 
80 /5 ib 
81 /5 iw 
81 /5 id 
83 /5 ib 
83 /5 ib 
28 /r 
29 /r 
29 /r 
2A /r 
2B /r 
2B /r 

Operation 

Instruction Clocks 

SUB AL,immB 1 
SUB AX,imm16 1 
SUB EAX,imm32 1 
SUB r/mB,immB 1/3 
SUB r/m16,imm16 1/3 
SUB r/m32,imm32 1/3 
SUB r/m16,immB 1/3 
SUB r/m32,immB 1/3 
SUB r/mB,rB 1/3 
SUB r/m16,r16 1/3 
SUB r/m32,r32 1/3 
SUB rB,r/mB 1/2 
SUB r16,r/m16 1/2 
SUB r32,r/m32 1/2 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - SignExtend(SRC); 
ELSE DEST ~ DEST - SRC; 
FI; 

Description 

Description 

Subtract immediate byte from AL 
Subtract immediate word from AX 
Subtract immediate dword from EAX 
Subtract immediate byte from r/m byte 
Subtract immediate word from r/m word 
Subtract immediate dword from r/m dword 
Subtract sign-extended immediate byte from r/m word 
Subtract sign-extended immediate byte from r/m dword 
Subtract byte register from r/m byte 
Subtract word register from r/m word 
Subtract dword register from r/m dword 
Subtract byte register from r/m byte 
Subtract word register from r/m word 
Subtract dword register from r/m dword 

The SUB instruction subtracts the second operand (SRC) from the first operand 
(DEST). The first operand is assigned the result of the subtraction, and the flags are set 
accordingly. 

When an immediate byte value is subtracted from a word operand, the immediate value 
is first sign-extended to the size of the destination operand. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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TEST - Logical Compare 

Opcode Instruction , ·Clocks 

A8 ib TEST AL,immB 1 
A9 iw TEST AX,imm16 1 
A9 id TEST EAX,imm32 1 
F6 /0 ib TEST rlmB,immB 1/2 
F7 /0 iw TEST rlm16,imm16 1/2 
F7 /0 id TEST rlm32,imm32 1/2 
84 /r TEST rlmB,rB 1/2 
85 /r TEST rlm16,r16 1/2 
85 /r TEST rlm32,r32 1/2 

Operation 

DEST : = LeftSRC AND RightSRC; 
CF~O; 

OF~O; 

Description 

Description 

AND immediate byte with AL 
AND immediate word with AX 
AND immediate dword with EAX 
AND immediate byte with rIm byte 
AND immediate word with rIm word 
AND immediate dword with rIm dword 
AND byte register with rIm byte 
AND word register with rIm word 
AND dword register with rIm dword 

The TEST instruction computes the bit-wise logical AND of its two operands. Each bit 
of the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each 
bit is O. The result of the operation is discarded and only the flags are modified. 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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VERR, VERW - Verify a Segment for Reading or Writing 

Opcode Instruction 

OF 00/4 VERR r/m16 
OF 00 /5 VERW rim 16 

Operation 

Clocks 

11/11 
11/11 

IF segment with selector at (rim) is accessible 
with current protection level 
AND ((segment is readable for VERR) OR 

(segment is writable for VERW)) 
THEN ZF +- 1; 
ELSE ZF +- 0; 
FI; 

Description 

Description 

Set ZF = 1 if segment can be read, selector in r/m16 
Set ZF= 1 if segment can be written, selector in r/m16 

The two-byte register or memory operand of the VERR and VERW instructions con­
tains the value of a selector. The VERR and VER W instructions determine whether the 
segment denoted by the selector is reachable from the current privilege level and 
whether the segment is readable (VERR) or writable (VERW). If the segment is acces­
sible, the ZF flag is set; if the segment is not accessible, the ZF flag is cleared. To set the 
ZF flag, the following conditions must be met: 

• The selector must denote a descriptor within the bounds of the table (GDT or LDT); 
the selector must be "defined." 

• The selector must denote the descriptor of a code or data segment (not that of a task 
state segment, LDT, or a gate). 

• For the VERR instruction, the segment must be readable. For the VER W instruc­
tion, the segment must be a writable data segment. 

• If the code segment is readable and conforming, the descriptor privilege level (DPL) 
can be any value for the VERR instruction. Otherwise, the DPL must be greater than 
or equal to (have less or the same privilege as) both the current privilege level and the 
selector's RPL. 

The validation performed is the same as if the segment were loaded into the DS, ES, FS, 
or GS register, and the indicated access (read or write) were performed. The ZF flag 
receives the result of the validation. The selector's value cannot result in a protection 
exception, enabling the software to anticipate possible segment access problems. 

Flags Affected 

The ZF flag is set if the segment is accessible, cleared if it is not 
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Protected Mode Exceptions 

Faults generated by illegal addressing of the memory operand that contains the selector; 
the selector is not loaded into any segment register, and no faults attributable to the 
selector operand are generated 

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or OS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 6; the VERR and VER W instructions are not recognized in· Real Address 
Mode . . 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; # AC for unaligned memory reference if the 
current privilege level is 3 
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WAIT-Wait 
Opcode 

98 

Description 

Instruction 

WAIT 

Clocks 

1-3 

Description 

Causes processor to check for numeric 
exceptions. 

WAIT causes the processor to check for pending unmasked numeric exceptions before 
proceding. 

Flags Affected 

None 

Protected Mode Exceptions 

# NM if both MP and TS in CRO are set 

Real Address Mode Exceptions 

Interrupt 7 if both MP and TS in CRO are set 

Virtual 8086 Mode Exceptions 

# NM if both MP and TS in CRO are set 

Notes 

Coding WAIT after an ESC instruction ensures that any unmasked floating-point excep­
tions the instruction may cause are handled before the processor has a chance to modify 
the instruction's results. 

FWAIT is an alternate mnemonic for WAIT. 

Information about when to use WAIT (FW AIT) is given in Chapter 18, in the section on 
"Concurrent Processing." 
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WBINVD - Write-Back and Invalidate Cache 

Opcode 

OF 09 

Operation 

Instruction 

WBINVD 

FLUSH INTERNAL CACHE 

Clocks 

5 

SIGNAL EXTERNAL CACHE TO WRITE-BACK 
SIGNAL EXTERNAL CACHE TO FLUSH 

Description 

Description 

Write-Back and Invalidate Entire Cache 

The internal cache is flushed, and a special-function bus cycle is issued which indicates 
that external cache should write-back its contents to main memory. Another special­
function bus cycle follows, directing the external cache to flush itself. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

Notes 

This instruction is implementation-dependent; its function may be implemented differ-
ently on future Intel processors. . 

It is the responsibility of hardware to respond to the external cache write-back and flush 
indications. 

This instruction is not supported on 386 processors. See Section 3.11 for information on 
using this instruction compatible with 386 processors. See Section 12.2 on disabling the 
cache. 
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XADD - Exchange and Add 

Opcode 

OF CO/r 

OF C1/r 

OF C1/r 

Operation 

Instruction 

XADD rlmB,rB 

XADD rlm16,r16 

XADD rlm32,r32 

TEMP ~ DEST 
DEST ~ TEMP + SRC 
SRC ~TEMP 

Description 

Clocks 

3/4 

3/4 

3/4 

Description 

Exchange byte register' and rim byte; load sum 
into rim byte. , 
Exchange word register and rIm word; load sum 
into rIm word. 
Exchange dword register and rIm dword; load 
sum into rIm dword. 

The XADD instruction loads DEST into SRC, and then loads the sum of DEST and the 
original value of SRC into DEST. 

Flags Affected 

The CF, PF, AF, SF, ZF, and OF flags are affected as if an ADD instruction had been 
executed. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CRO is 
set; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside the effective address space from 
o to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 

26-283 



INSTRUCTION SET 

Notes 

This instruction can be used with a LOCK prefix. The 386 DX microprocessor does not 
implement this instruction. If this instruction is used, you should provide an equivalent 
code that runs on a 386 DX processor as well. See Section 3.11 for detecting an i486 
processor at runtime.' 
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XCHG - Exchange Register/Memory with Register 

Opcode 

90+ r 
90+ r 
90+ r 
90+ r 
86/r 
86 /r 
87 /r 
87/r 
87/r 
87/r 

Operation 

Instruction 

XCHG AX,r16 
XCHG r16,AX 
XCHG EAX,r32 
XCHG r32,EAX 
XCHG r/mB,rB 
XCHG rB,r/mB 
XCHG r/m16,r16 
XCHG r16,r/m16 
XCHG r/m32,r32 
XCHG r32,r/m32 

temp ~ DEST 
DEST ~ SRC 
SRC ~ temp 

Description 

Clocks 

3 
3 
3 
3 
3/5 
3/5 
3/5 
3/5 
3/5 
3/5 

Description 

Exchange word register with AX 
Exchange word register with AX 
Exchange dword register with EAX 
Exchange dword register with EAX 
Exchange byte register with EA byte 
Exchange byte register with EA byte 
Exchange word register with EA word 
Exchange word register with EA word 
Exchange dword register with EA dword 
Exchange dword register with EA dword 

The XCHG instruction exchanges two operands. The operands can be in either order. If 
a memory operand is involved, the LOCK# signal is asserted for the duration of the 
exchange, regardless of the presence or absence of the LOCK prefix or of the value of 
the IOPL. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if either operand is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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XLA T /X LA T8 - Table Look-up Translation 

Opcode 

07 
07 

Operation 

Instruction 

XLAT rnB 
XLATB 

IF AddressSize = 16 
THEN 

AL ~ (8X + ZeroExtend(AL)) 
ELSE (* AddressSize = 32 *) 

Clocks 

4 
4 

AL ~ (E8X + ZeroExtend (AL)); 
FI; 

Description 

Description 

Set AL to memory byte OS:[(E)BX + unsigned ALl 
Set AL to memory byte OS:[(E)BX + unsigned AL) 

The XLAT instruction changes the AL register from the table index to the table entry. 
The AL register should be the unsigned index into a table addressed by the DS:BX 
register pair (for an address-size attribute of 16 bits) or the DS:EBX register pair (for an 
address-size attribute of 32 bits). 

The operand to the XLAT instruction allows for the possibility of a segment override. 
The XLAT instruction uses the contents of the BX register even if they differ from the 
offset of the operand. The offset of the operand should have been moved into the BX or 
EBX register with a previous instruction. 

The no-operand form, the XLATB instruction, can be used if the BX or EBX table will 
always reside in the DS segment. . 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault; #AC for unaligned memory reference if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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XOR - Logical Exclusive OR 

Opcode 

34 ib 
35 iw 
35 id 
80 /6 ib 
81 /6 iw 
81 /6 id 
83 /6 ib 
83 /6 ib 
30 /r 
31 /r 
31 /r 
32 /r 
33 /r 
33 /r 

Operation 

Instruction . Clocks 

XOR AL,immB 1 
XOR AX,imm 16 1 
XOR EAX,imm32 1 
XOR rlmB,immB 1/3 
XOR rlm16,imm16 1/3 
XOR rlm32,imm32 1/3 
XOR rlm16,immB 1/3 
XOR rlm32,immB 1/3 
XOR rlmB,rB 1/3 
XOR rlm16,r16 1/3 
XOR rlm32,r32 1/3 
XOR rB,rlmB 1/2 
XOR r16,rlm16 1/2 
XOR r32,rlm32 1/2 

DEST ~ LeftSRC XOR RightSRC 
CF~O 

OF~O 

Description 

Description 

Exclusive-OR immediate byte to AL 
Exclusive-OR immediate word to AX 
Exclusive-OR immediate dword to EAX 
Exclusive-OR immediate byte to rim byte 
Exclusive-OR immediate word to rim word 
Exclusive-OR immediate dword to rim dword 
XOR sign-extended immediate byte with rim word 
XOR sign-extended immediate byte with rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
Exclusive-OR dword register to rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
Exclusive-OR dword register to rim dword 

The XOR instruction computes the exclusive OR of the two operands. Each bit of the 
result is 1 if the corresponding bits of the operands are different; each bit is 0 if the 
corresponding bits are the same. The answer replaces the first operand. 

Flags Affected 

The CF and OF flags are cleared; the SF, ZF, and PF flags are set according to the 
result; the AF flag is undefined 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference 
if the current privilege level is 3 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 
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Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for 
unaligned memory reference if the current privilege level is 3 
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APPENDIX A 
OPCODE MAP 

The opcode tables that follow aid in interpreting i486™ processor object code. Use the 
high-order four bits of the opcode as an index to a row of the opcode table; use the 
low-order four bits as an index to a column of the table. If the opcode is OFH, refer to 
the two-byte opcode table and use the second byte of the opcode to index the rows and 
columns of that table. 

A.1 KEY TO ABBREVIATIONS 

Operands are identified by a two-character code of the form Zz. The first character, an 
uppercase letter, specifies the addressing method; the second character, a lowercase 
letter, specifies the type of operand. . 

A.2 CODES FOR ADDRESSING METHOD 

A Direct address; the instruction has no modR/M byte; the address of the operand is 
encoded in the instruction; no base register, index register, or scaling factor can be 
applied; e.g., far JMP (EA). 

C The reg field of the modR/M byte selects a control register; e.g., MOV (OF20, 
OF22). . 

D The reg field of the modR/M byte selects a debug register; e.g., MOV (DF21,OF23). 

E A modR/M byte follows the opcode and speCifies the operand. The operand is 
either a general register or a memory address. If it is a memory address, the ad­
dress is computed from a segment register and any of the following values: a base 
register, an index register, a scaling factor, a displacement. 

F Flags Register. 

G The reg field of the modR/M byte selects a general register; e.g., ADD (00). 

I Immediate data. The value of the operand is encoded in subsequent bytes of the 
instruction .. 

J The instruction contains a relative offset to be added to the instruction pointer 
register; e.g., JMP short, LOOP. 

M The modR/M byte may refer only to memory; e.g., BOUND, LES, LDS, LSS, LFS, 
LGS. 

o The instruction has no modR/M byte; the offset of the operand is coded as a word 
or double word (depending on address size attribute) in the instruction. No base 
register, index register, or scaling factor can be applied; e.g., MOV (AD-A3). 

A-1 



OPCODE MAP 

R The mod field of the modR/M byte may refer only to a general register; e.g., MOV 
(OF20-0F24, OF26). 

S The reg field of the modR/M byte selects a segment register;. e.g., MOV (8C,8E). 

T The reg field of the modR/M byte selects a test register; e.g., MOV (OF24,OF26). 

X Memory addressed by the DS:SI register pair; e.g., MOVS, COMPS, OUTS, 
LODS, SCAS. 

Y Memory addressed by the ES:DI register pair; e.g., MOVS, CMPS, INS, STOS. 

A.3 CODES FOR OPERAND TYPE 

a Two one-word operands in memory or two double-word operands in memory, de­
pending on operand size attribute (used only by BOUND). 

b Byte (regardless of operand size attribute) 

c Byte or word, depending on operand size attribute. 

d Double word (regardless of operand size attribute) , 

p Thirty-two bit or 48-bit pointer, depending on operand size attribute. 

s Six-byte pseudo-descriptor 

v Word or double word, depending on operand size attribute. 

w Word (regardless of operand size attribute) 

A.4 REGISTER CODES 

When an operand is a specific register encoded in the, opcode, the register is identified 
by its name; e.g., AX, CL, or ESt The name of the register indicates whether the 
register is 32-, 16-, or 8-bits wide. A register identifier of the form eXX is used when the 
width of the register depends on the operand size attribute; for example, eAX indicates 
that the AX register is used when the operand size attribute is 16 and the EAX register 
is used when the operand size attribute is 32. 

A-2 



OPCODE MAP 
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One-Byte Opcode Map 

o 2 3 4 5 6 7 

o 
ADD PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv ES ES 

AOC PUSH POP 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv SS SS 

AND SEG OAA 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =ES 2 

XOR SEG AAA 
Eb,Gb EV,Gv Gb,Eb Gb,Ev AL,lb eAX,lv =SS 3 

4 
INC general register 

eAX eCX eOX eBX eSP eBP eSI eOI 

5 
PUSH general register 

eAX eCX eOX eBX eSP eBP eSI eOI 

PUSHA POPA BOUND ARPL SEG SEG Operand Address 
GV,Ma EW,Rw =FS =GS Size Size 6 

7 
Short-displacement jump on condition (Jb) 

JO JNO JB JNB JZ JNZ JBE JNBE 

Immediate Grpl MOVB Grpl .. TEST XCHG 

Eb,lb EV,lv AL,imm8 EV,lb Eb,Gb EV,Gv Eb,Gb EV,Gv 
8 

9 NOP 
XCHG word or double-word register with eAX 

eCX eOX eBX eSP eBP eSI eOI 

MOV MOVSB MOVSW/O CMPSB CMPSW/O 
AL,Ob eAX,Ov Ob,AL OV,eAX Xb,Yb XV,Yv Xb,Yb XV,Yv A 

B 
MOV immediate byte into byte register 

AL CL OL BL AH CH OH BH 

Shift Grp2 RET near LES LOS MOV 

Eb,lb EV,lb Iw GV,Mp GV,Mp Eb,lb EV,lv 
C 

o Shift Grp2 
AAM AAO XLAT 

Eb,1 EV,1 Eb,CL EV,CL 

LOOPNE LOOPE LOOP JCXZ IN OUT 
Jb Jb Jb Jb AI,lb eAX,lb Ib,AL Ib,eAX 

E 

LOCK REPNE REP HLT CMC 
Unary Grp3 

REPE Eb Ev 
F 
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One-Byte Opcode Map 

8 9 A B C o E F 

o 
OR PUSH 2-byte 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv CS escape 

SBB PUSH POP 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv OS OS 

SUB SEG 
=CS DAS 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv 
2 

CMP SEG AAS 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =DS 3 

4 
DEC general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

5 
POP into general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D 
Iv GvEvlv Ib GvEvlb Yb,DX YV,DX DX,Xb DX,Xv 6 

7 
Short-displacement jump on condition (Jb) 

JS JNS JP JNP JL JNL JLE JNLE 

MOV MOV LEA MOV POP 
Eb,Gb EV,Gv Gb,Eb GV,Ev Ew,Sw GV,M SW,Ew Ev 8 

CBW CWO CALL WAIT PUSHF POPF SAHF LAHF Ap Fv Fv 9 

TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D 
AL,lb eAX,lv Yb,AL YV,eAX AL,Xb eAX,Xv AL,Xb eAX,Xv A 

B 
MOV immediate word or double into word or double register 

eAX eCX eDX eBX eSP eBP eSI eDI 

ENTER RET far INT INT LEAVE INTO IRET IW,iB Iw 3 Ib C 

o ESC (Escape to coprocessor instruction set) 

CALL JMP IN OUT 
Jv JV AP Jb AL,DX eAX,DX DX,AL DX,eAX 

E 

CLC STC CLI STI CLD STD INC/DEC INC/DEC 
~ Grp4 GrpS F 
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Two-Byte Opcode Map (first byte is OFH) 

o 2 3 4 5 6 7 

o Grp6 Grp7 LAR lSl ClTS GV,Ew GV,Ew 

MOV MOV MOV MOV MOV MOV 
Cd,Rd Dd,Rd Rd,Cd Rd,Dd Td,Rd Rd,Td 2 

3 

4 

5 

6 

7 

8 
long-displacement jump on condition (Jv) 

JO JNO JB JNB JZ JNZ JBE JNBE 

9 
Byte Set on condition (Eb) 

SETa SETNO SETB SETNB SETZ SETNZ SETBE SETNBE 

PUSH pop BT SHlD SHlD CMPXCHG CMPXCHG 
FS . FS EV,Gv EvGvlb EvGvCl Eb,Gb EV,Gv A 

lSS BTR lFS .lGS MOVZX 

Mp . EV,Gv Mp Mp GV,Eb GV,Ew 
B 

XADD XADD 
Eb,Gb EV,Gv C 

o 

E 

F 
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Two-Byte Opcode Map (fIrst byte Is OFH) 

8 9 . A B C D E F 

o INVD WBINVD 

2 

3 

4 

5 

6 

7 

8 
Long-displacement jump on condition (Jv) 

JS JNS JP JNP JL JNL JLE JNLE 

9 SETS SETNS SETP SETNP SETL . SETNL SETLE SETNLE 

PUSH POP BTS SHRD SHRD IMUL 
GS GS EV,Gv EvGvlb EvGvCL GV,Ev A 

Grp-8 BTC BSF BSR MOVSX 
EV,lb EV,Gv GV,Ev GV,Ev GV,Eb GV,Ew 

B 

BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP 
EAX ECX EDX EBX ESP EBP ESI EDI C 

D 

E 

F 
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Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

000 001 010 011 . 100 101 110 111 

ADD OR ADC SBB AND SUB XOR CMP 

2 ROL ROR RCL RCR SHL SHR SHL SAR 

TEST TEST NOT NEG MUL IMUL DIV IDIV 
Ib/lv Ib/lv AUeAX AUeAX AUeAX AUeAX 3 

INC DEC 
Eb Eb 4 

INC IDEC CALL CALL JMP JMP PUSH 
Ev Ev Ev eP Ev Ep Ev 5 

Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

000 001 010 011 100 101 110 111 

6 SLDT STR LLDT LTR VERR VERW 
Ew Ew Ew Ew Ew Ew 

SGDT SIDT LGDT LlDT SMSW LMSW 
Ms Ms Ms Ms Ew Ew 7 

a BT BTS BTR BTC 
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APPENDIX B 
FLAG CROSS·REFERENCE 

8.1 KEY TO CODES 

T instruction tests flag 
M instruction modifies flag (either sets or resets depending on operands) 
o instruction resets flag 
1 instruction sets flag 

instruction's effect on flag is undefined 
R instruction restores prior value of flag 
blank instruction does not affect flag 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

AM - - - TM - M 
AAD - M M - M -
AAM - M M - M -
AAS - - - TM - M 
ADC M M M M M TM 
ADD M M M M M M 
AND 0 M M - M 0 
ARPl M 
BOUND 
BSF/BSR - - M - - -
BSWAP 
BT /BTS/BTR/BTC - - - - - M 
CAll 
CBW 
ClC 0 
ClD 0 
CLI 0 
ClTS 
CMC M 
CMP M M M M M M 
CMPS M M M M M M T 
CMPXCHG M M M M M M 
CWO 
DAA - M M TM M TM 
DAS - M ·M TM M TM 
DEC M M M M M 
DIV - - - - - -
ENTER 
ESC 
HlT 
IDIV - - - - - -
IMUl M - - - - M 
IN 
INC M M M M M 
INS T 
INT 0 0 
INTO T 0 0 
INVD 
INVlPG 
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Instruction OF .SF ZF AF PF CF TF IF OF NT RF 

IRET R R R R R R R R R T 
Jcond T T T T T 
JCXZ 
JMP 
LAHF 

: 

LAR M 
LDS/LES/LSS/LFS/LGS 
LEA 
LEAVE 
LGDT/LiDT/LLDT/LMSW 
LOCK 
LODS T 
LOOP 
LOOPE/LOOPNE T 
LSL M .. 

LTR 
MOV 
MOVcontrol, debug - - - - - -
MOVS T 
MOVSX/MOVZX 
MUL M - - - -' M 
NEG M M. M ·M M M 
NOP 
NOT. 
OR 0 M M ....: M 0 
OUT 
OUTS T 
POP/POPA 
POPF R R R R R R R R R R 
PUSH/PUSHNPUSHF 
RCURCR 1 M TM 
RCURCR count - TM 
REP/REPE/REPNE 
RET 
ROUROR 1 M M 
ROUROR count - M 
SAHF R R R R R 
SAUSAR/SHUSHR 1 M M M - M M 
SAUSAR/SHUSHR count - M M - M M 
SBB M M M M. M TM 
SCAS M M M ,M M M T 
SET cond ' T T T T T 
SGDT/SIDT/SLDT/SMSW 
SHLD/SHRD . - M M - ·M M 
STC. 1 
STD 1 
STI 1 

., 

STOS , T 
STR 
SUB M M M M M M 
TEST 0 M M - M 0 
VERRNERRW ·M 
WAIT 
WBINVD 
XADD M M M M M M 
XCHG 
XLAT 
XOR 0 M M - M 0 
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APPENDIX C 
STATUS FLAG SUMMARY 

C.1 . STATUS FLAGS' FUNCTIONS 

Bit Name I Function 

0 CF Carry Flag - Set on high-order bit carry or borrow; cleared otherwise. 

2 PF Parity Flag - Set if low-order eight bits of result contain an even number 
of 1 bits; cleared <;>therwise. 

4 AF " Adjust Flag - Set on carry from or borrow to the low order four bits of 
AL; cleared otherwise. Used for decimal arithmetic. 

6 ZF Zero Flag - Set if result is zero; cleared otherwise. 

7 SF Sign Flag - Set equal to high-order bit of result (0 is positive, 1 if 
negative). 

, 

11 OF Overflow Flag - Set if result is too large a positive number or too small a 
negative number (excluding sign-bit) to fit in destination operand; 
cleared otherwise. 

C.2 KEY TO CODES 

T instruction tests flag 

M instruction modifies flag 
(either sets or resets depending on operands) 

o instruction resets flag 

instruction's effect on flag is undefined 

blank instruction does not affect flag 

Instruction OF SF ZF AF PF CF 

AM - - - TM - M 
AAS - - - TM - M 

AAD - M M - M -
AAM - M M - M -

DAA - M M TM M TM 
DAS - M M TM M TM 

ADC M M M M M TM 
ADD M M M M M M 
XADD M M M M M M 
SBB M M M M M TM 
SUB M M M M M M 
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Instruction OF SF ZF . AF PF CF 

CMP M M M M M M 
CMPS M M M M M M 
CMPXCHG M M M M M M 
SCAS M M M M M M 
NEG M M M M M M 

DEC M M M M M 
INC M M M M M 

IMUL M - - - - M 
MUL M - - - - M 

RCURCR 1 M TM 
RCURCR coLint - TM 
ROUROR 1 M M 
ROUROR count - M 
SAUSAR/SHUSHR 1 M M M - M M 
SAUSAR/SHUSHR count - M M - M M 

SHLD/SHRD - M M - M M 
BSF/BSR - - M - - -
BT /BTS/BTR/BTC - - - - - M 

AND 0 M M - M 0 
OR 0 M M - M 0 
TEST 0 M M - M 0 
XOR 0 M M - M 0 
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APPENDIX D 
CONDITION CODES 

Note: The terms "above" and "below" refer to the relation between two unsigned values 
(neither the SF flag nor the OF flag is tested). The terms "greater" and "less" refer to 
the relation between two signed values (the SF and OF flags are tested). 

0.1 DEFINITION OF CONDITIONS 

(For conditional instructions Jcond, and SETcond) 

Mnemonic Meaning 
Instruction 

Condition Tested 
Subcode 

0 Overflow 0000 OF = 1 

NO No overflow 0001 OF = 0 

B Below 
0010 CF = 1 

NAE Neither above nor equal 

NB Not below 
0011 CF = 0 

AE Above or equal 

E Equal 
0100 ZF = 1 

Z Zero 

NE Not equal 
0101 ZF = 0 

NZ Not zero 

BE Below or equal 
0110 (CF or ZF) = 1 

NA Not above 

NBE Neither below nor equal 
0111 (CF or ZF) = 0 

A Above 

S Sign 1000 SF = 1 

NS No sign 1001 SF = 0 

P Parity 
1010 PF = 1 

PE Parity even 

NP No parity 
1011 PF = 0 

PO Parity odd 

L Less 
1100 (SF xor OF) = 1 

NGE Neither greater nor equal 

NL Not less 
1101 (SF xor OF) = 0 

GE Greater or equal 

LE Less or equal 
1110 ((SF xor OF) or ZF) = 1 

NG Not greater 

NLE Neither less nor equal 
1111 ((SF xor OF) or ZF) = 0 

G Greater 
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INSTRUCTION FORMAT AND TIMING 

This appendix is an excerpt from the i486™ Processor Data Sheet. 
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INSTRUCTION FORMAT AND TIMING 

10.1 i486TM Microprocessor 
Instruction E~coding and Clock 
Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Tables 10.1 
through 10.3 by the processor clock period (e.g., 
40 ns for a 25 MHz 486 microprocessor). 

For more detailed information on the encodings of 
instructions, refer to Section 10.2 Instruction Encod­
ings. Section 10.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

INSTRUCTION CLOCK COUNT ASSUMPTIONS 

The 486 microprocessor instruction clock count ta­
bles give clock counts assuming data and instruction 
accesses hit in the cache. A separate penalty col­
umn defines clocks to add if a data access misses in 
the cache. The combined instruction and data cache 
hit rate is over 90%. 

A cache miss will force the 486 microprocessor to 
run an external bus cycle. The 486 microprocessor 
32-bit burst bus is defined as r- b -w. 

Where: 

r = The number of clocks in the first cycle of a 
burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of clocks for the second and sub­
sequent cycles in a burst read. 

w = The number of clocks for a write. 

The fastest bus the 486 microprocessor can support 
is 2 -1 - 2 assuming 0 wait states. The clock counts 
in the cache miss penalty column assume a 2 -1 - 2 
bus. For slower busses add r-2 clocks to the cache 
miss penalty for the first dword accessed. Other fac­
tors also affect instruction clock counts. 

Instruction Clock Count Assumptions 

1. The external bus is available for reads or writes at 
all times. Else add clocks to reads until the bus is 
available. 

2. Accesses are aligned. Add three clocks to each 
misaligned access. 

3. Cache fills complete before subsequent accesses 
to the same line. If a read misses the cache dur­
ing a cache fill due to a previous read or pre-fetch, 
the read must wait for the cache fill to complete. If 
a read or write accesses a cache line still being 
filled, it must wait for the fill to complete. 

4. If an effective address is calculated, the base 
register is not the destination register of the pre­
ceding instruction. If the base register is the des­
tination register of the preceding instruction add 
1 to the clock counts shown. Back-to-back 
PUSH and POP instructions are not affected by 
this rule. 

5. An effective address calculation uses one base 
register and does not use an index register. 
However, if the effective address calculation 
uses an index register, 1 clock may be added to 
the clock count shown. 

6. The target of a jump is in the cache. If not, add r 
clocks for accessing the destination instruction 
of a jump. If the destination instruction is not 
completely contained in the first dword read, add 
a maximum of 3b clocks. If the destination in­
struction is not completely contained in the first 
16 byte burst, add a maximum of another r+ 3b 
clocks. 

7. If no write buffer delay, w clocks are added only 
in the case in which all write buffers are full. Typi­
cally, this case rarely occurs. 

8. Displacement and immediate not used together. 
If displacement and immediate used together, 1 
clock may be added to the clock count shown. 

9. No invalidate cycles. Add a delay of 1 clock for 
each invalidate cycle if the invalidate cycle con­
tends for the internal cache/external bus when 
the 486 CPU needs to use it. 

10. Page translation hits in TLB. A TLB miss will add 
13, 21 or 28 clocks to the instruction depending 
on whether the Accessed and/or Dirty bit in nei­
ther, one or both of the page entries needs to be 
set in memory. This assumes that neither page 
entry is in the data cache and a page fault does 
not occur on the address translation. 

11. No exceptions are detected during instruction 
execution. Refer to Interrupt Clock Counts Table 
for extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data 
items (i.e. task switch, paPA, etc.) and miss the 
cache are assumed to start the first access on a 
16-byte boundary. If not, an extra cache line fill 
may be necessary which may add up to (r+ 3b) 
clocks to the cache miss penalty. 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.1486TM Microprocessor Integer Clock Count Summary 

INSTRUCTION FORMAT Cac:heHlt Penalty If Noles 
Cacl1eMI5s 

INTEGER OPERATIONS 

MOY = Move: 

reg110reg2 1000100W 111 re!p reg21 1 

reg2toreg1 1000101w 111 reg1 re92 1 1 

memory to reg 1000101w 1 mod re~ rim 1 1 2 

reg to memory 1000100w 1 mod reg rim 1 1 

Immediate to reg 1100011 w 111000 reg 1 immediate data 1 

or 1011w re!! 1 Immediate data 1 

immediate to Memory 1100011w 1 mod 00 0 rim 1 displacement 
immediate 

1 

Memory to Accumulator 1010000w 1 fun displacement 1 2 

Accumulator to Memory 1010001w I full displacemenf 1 

MOYSXlMOYZX ~ MovewUIl SlgnlZero Extension 

reg2toreg1 1 00001111 1 1011 z11 w 111 reg1 reg21 3 

memory to reg 1 00001111 1 1011 z11 w 1 mod re!! rim 1 3 2 

z Instruction 

0 MOVZX 
1 MOV5X 

PUSH = Push 

reg 1 111 1 1111 111 110 re!!! 4 

or 101010 reg 1 1 

memory 1 1111 1111 1 mod 110 rIm I 4 1 1 

immediate 1 01101050 !lmmediate data 1 

PUSHA = Push All I 01100000 I 11 

POP=- Pop 

reg I 10001111 111 000 re!!! 4 1 

or 101011 re!!1 1 2 

memory 1 10001111 1 mod 000 rIm! 5 2 1 

POPA = Pop All I 01100001 I 9 7115 16/32 

XCHG = ExChange 

reg1 with reg2 I 1000011w 111 reg1 re92! 3 2 

Accumulator with reg 110010 regl 3 2 

Memory with reg 1 1000011w 1 mod re!:! rim I 5 2 

NOP = NoOperaUon I 10010000 I 1 

LEA .. Load EA to Register I 10001101 1 mod reg rim I 
no Index register 1 
with Index register 2 
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INSTRUCTiON FORMAT AND TIMING 

Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If Notes 
Cache Miss 

INTEGER OPERATIONS (Continued) 

Instrucllon TTl 

ADD = Add 000 

ADC = Add with Carry 010 
AND = Logical AND 100 

OR = Logical OR 001 
SUB = Subtract 101 
SBB = Subtract with Borrow 011 
XOR = Logical Exclusive OR 110 

reg 1 loreg2 I OOTTTOOw 11 reg1 reg21 1 

reg2 to reg 1 I OOTTTOlw 11 regl reg21 1 

memory to register I OOTTTOlw mod reg rim I 2 2 

register to memory I OOTTTOOw mod reg rIm I 3 6/2 u/L 

immediate to register I 100000sw 11 TTT reg I Immediate register .1 

immediate to accumulator I OOTT T lOw I immediat~data 1 

immediate 10 memory I 100000sw I mod TTT rim I immediate data 3 6/2 U/L 

Instrucllon TTl 

INC = Increment 000 
DEC = Decrement 001 

reg I l111111w 111 TTT regl 1 

or 101 TTT regl 1 

memory I lllllllw 1 mod TTT rim I 3 6/2 U/L 

Instrucllon TTl 

NOT = Logical Complement 010 
NEG = Negate 011 

reg I 1111011w 111 TTT reg I 1 

memory I 1111011w ImodTTT rim I 3 6/2 U/L 

CMP - Compare 

reg 1 with reg2 I 0011100w 11 regl reg21 1 

reg2 with regl I 0011101 w 11 regl reg21 1 

memory with register I 0011100w mod reg rim I 2 2 

register with memory I 0011101 w mod reg rim I 2 2 

immediate with register I 100000sw 11 111 reg I immediate data 1 

immediate with aec. I 0011110w immediate data 1 

Immediate with memory I 100000sw mod 111 rim I Immediate data 2 2 

TEST = Logical Compare 

reg 1 and reg2 I 1000010w 11 regl reg21 1 

memory and register I 1000010w mod reg rim I 2 2 

Immediate and register I 1111011w 11 000 reg I Immediate data 1 

Immediate and acc. I 1010100w Immediate data 1 

immediate and memory I 1111011w mod 000 rIm I Immediate data 2 2 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If Notes 
Cache Miss 

INTEGER OPERATIONS (Continued) 

MUL = Multiply (unsigned) 

ace. with register I 1111011w 111 100 reg 1 

Muiliplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 
Oword 13/42 MN/MX,3 

ace. with memory I 1111011w I mod 100 rIm 1 

Multiplier-Byte 13/18 1 MN/MX,3 
Word 13/26 1 MN/MX,3 
Oword 13/42 1 MN/MX,3 

IMUL ... Integer MulUply (signed) 

ace. with register I 1111011w 111 101 reg 1 

Muillplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Oword 13/42 MN/MX,3 

ace. with memory I 1111011w I mod 101 rIm 1 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Oword 13/42 MN/MX,3 

reg1 with reg2 I 00001111 I 10101111 111 reg1 reg21 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Oword 13/42 MN/MX,3 

register wlth memory I 00001111 I 10101111 I mod reI! rIm 1 

Multiplier-Byte 13/18 1 MN/MX,3 
Word 13/26 1 MN/MX,3 
Oword 13/42 1 MN/MX,3 

reg1 with Imm. to reg2 I 011010s1 111 reg1 reg21 immediate data 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Oword 13/42 MN/MX,3 

memo with Imm. to reg. I 01101051 I mod reg rIm 1 Immediate data 

Multiplier-Byte 13/18 2 MN/MX,3 
Word 13/26 2 MN/MX,3 
Oword 13/42 2 MN/MX,3 

DIY = DlYlde(unsigned) 

ace. by register I 1111011w 111 110 reg 1 

Divisor-Byte 16 
Word 24 
Oword 40 

ace. by memory I 1111011w I mod 110 rIm 1 

Divisor -Byte 16 
Word 24 
Oword 40 

IDlY = Integer Divide (signed) 

ace. by register I 1111011 w 111 111 regl 

Divisor -Byte 19 
Word 27 
Oword 43 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.1486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT CacheHlt 
Penalty If 

Notes 
Cache Miss 

INTEGER OPERATIONS (Conlinued) 

ace. by memory I 1111011w 1 mod 111 rIm 1 

Divisor -Byt e 20 

Word 28 

Dword 44 

CBW = Convert Byte to Word I 10011000 I 3 

CWO = Convert Word to Dword I 10011001 I 3 

Instruction TTT 

ROL = Rotate Left 000 
ROR = Rotate Right 001 

RCL = Rotate through Carry Lelt 010 
RCR = Rotate through Carry Right 011 
SHUSAL = ShHt Logicai/Ari1hmelicLelt 100 

SHR = ShHt Logical Right 101 

SAR = Shilt Arithmetic Right 111 

Not Through Carry (ROL, ROR, SAL, SAR, SH L, and SHR) 

regby1 I 1101000w 11 TTT reg 1 3 

memory by 1 I 1101000w mod TTT rIm 1 4 6 

regbyCL I 1101001w 11 TTT reg 1 3 

memorybyCL I 1101001w mod TTT rIm 1 4 6 

reg by immediate count I 1100000w 11 TTT reg 1 immediate 8-bit data 2 

mem by immediate count I 1100000w mod TTT rim 1 immediale6-bltdala 4 6 

Through Carry (RCL and RCR) 

regby1 I 1101000w 111 TTT re\11 3 

memory by 1 I 1101000w mod TTT rim 1 4 6 

regbyCL I 1101001w 11 TTT regl 8/30 MN/MX,4 

memorybyCL I 1101001w mod TTT rim 1 9/31 MN/MX,5 

reg by immediate count I 1100000w 11 TTT reg 1 immediate 8-bi1 data 8/30 MN/MX,4 

mem by immediate count I 1100000w mod TTT rIm Ilmmediate8-bitdata 9/31 MN/MX,5 

Instruction TTT 

SHLD = ShHt Lelt Double 100 
SHRD = Shitt Ri\1ht Double 101 

register with Immediate 00001111 10TTT100 111 reg2 reg1 Ilmm 8-bit data 2 

memory by Immediate 00001111 10TTT100 I mod reg rIm 1 imm 8-bit data 3 6 

register by CL 00001111 10TTT101 111 reg2 reg11 3 

memorybyCL 00001111 10TTT101 I mod re\! rIm 1 4 5 

BSWAP = Byte Swap 00001111 11001 reg 1 1 

XADD = Exchange and Add 

reg1,reg2 I 00001111 1110000 Ow 111 reg2 reg11 3 

memory, reg I 00001111 11100000w I mod reg rim 1 4 6/2 U/L 

CMPXCHG = Compare and Exchange 

reg1,Ieg2 I 00001111 11011000w 111 re\!2 reg11 6 

memory,reg I 00001111 11011000w 1 mod reg rIm 1 7/10 2 6 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT CaeheHlt Penalty If Notes 
CaeheMls! 

CONTROL TRANSFER (within segment) 

NOTE: Times are jump taken/not taken 

Jeee = Jump on eee 

8-blt displacement I 0111 t" n I 8-bltdlsp. 1 3/1 TINT. 23 

lull displacement I 00001111 I 1000lltn 1 lull displacement 3/1 T/NT.23 

NOTE: Times are jump taken/not taken 

SETeecc = Set Byte on ecce (TImes are ecce trueltalse) 

reg I 00001111 I 100111tn 111 000 regl 4/3 

memory I 00001111 I 1001tttn I mod 000 r/ml 3/4 

Mnemonic 
Condition tUn 

eeee 

0 OverflOW 0000 
NO No Overflow 0001 
BINAE BelowlNot Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
E/Z Equal/Zero 0100 
NEINZ Not EquailNot Zero 0101 
BEINA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/Above 0111 
S Sign 1000 

NS Not Sign 1001 
PIPE Parily/Par~y Even 1010 
NP/PO Not parity/Par~y Odd 1011 
UNGE Less ThanlNot Greater or Equal 1100 
NUGE Not Less Than/Greata' or Equal 1101 
LEING Loss Than or Equal/Greater Than 1110 
NLE/G Not Less Than or Equal/Greater Than 1111 

LOOP ~ LOOP CX Times 11100010 8-bItdISP. 1 716 UNL.23 

LOOPZ/LOOPE = Loop with 11100001 8-blt dlsp. I 9/6 UNL.23 
Zero/Equal 

LOOPNZ/LOOPNE = Loopwhlle 11100000 8-bltdlsp. 1 9/6 UNL.23 
Not Zero 

JCXZ = Jump on CX Zero 11100011 8-bil dlsp. 1 8/5 TINT. 23 

JECXZ = Jump on ECX Zero 11100011 8-blt disp. I 8/5 TINT. 23 

(Address Size Prefix Differentiates JCXZ lor JECXZ) 

JMP = Unconditional Jump (within segment) 

Short I 11101011 I 8-bit disp. 1 3 7.23 

Direct I 11101001 I full displacement 3 7.23 

Register Indirect I 11111111 111 100 reg 1 5 7.23 

Memory Indirect I 11111111 I mod 100 rIm I 5 5 7 

CALL ~ Call (within segment) 

Direct I 11101000 I full displacement 3 7.23 

Register Indirect I 11111111 111 010 reg 1 5 7.23 

Memory Indirect I 11111111 I mod 010 rIm 1 5 5 7 

RET = Return from CALL (within segment) 

I 11000011 I 5 5 

Adding Immediate to SP I 11000010 I 16-bit disp. I 5 5 
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INSTRUCTION FORMAT AND TIMING 

Table 1 O.1.1486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
penalty If 

Notes 
Cache MIss 

CONTROL TRANSFER (within segment) (Continued) 

ENTER = Enter Procedure I 11001000 116-b~ disp., 8-bitlev~ 
Level = 0 14 
Level = 1 17 
Level(L) > 1 17+3L 8 

LEA VE = Leave Procedure I 11001001 I 5 1 

MULTIPLE-SEGMENT INSTRUCTIONS 

MOY = Move 

reg. to segment reg. I 10001110 111 sre!i13 regl 3/9 0/3 RV/P, 9 

memory to segment reg. I 10001110 I mod sreg3 rIm I 3/9 2/5 RV/P,9 

segment reg. to reg. I 10001100 111 sreg3 reg I 3 

segment reg. to memory I 10001100 I mod sreg3 rIm I 3 

PUSH = Push 

segment reg. I 00 0 sreg21 1 0 I 3 
(ES, CS, SS, or OS) 

segment reg. (FS or GS) I 00001111 110 sreg3000 I 3 

POP = Pop 

segment reg. 00 0 sreg21 1 1 3/9 2/5 RV/P, 9 
(ES, SS, or OS) 

segment reg. (FS or GS) 00001111 10 sreg30 0 1 I 3/9 2/5 RV/P,9 

LOS = Load Pointer to OS 11000101 mod reg rIm I 6/12 7110 RV/P,9 

LES = Load Pointer to ES 11000100 mod reg rIm I 6/12 7110 RV/P,9 

LFS =;= Load Pointer to FS 00001111 10110100 I mod reg rIm I 6/12 7/10 RV/P,9 

LGS = Load Pointer to GS 00001111 10110101 I mod reg rIm I 6/12 7/10 RV/P,9 

LSS = Load Pointer to SS 00001111 10110010 I mod reg rIm I 6/12 7110 RV/P,9 

CALL = Call 

Direct intersegmenl I 10011010 I unsigned lull ollset, selector 18 2 R,7,22 

to same level 20 3 P,9 
thru Gate to same level 35 6 P,9 
to inner level, no parameters 69 17 P,9 
10 inner level, x parameter (d) words 77+4X 17+n P,11,9 
toTSS' 37+TS 3 P,10,9 
thruTask Gate 38+TS 3 P,10,9 

Indirect intersegment I 11111111 I mod 011 rIm I 17 8 R,7 

to same level 20 10 P,9 
thru Gate to same level 35 13 P,9 
to inner level, no parameters 69 24 P,9 
10 inner level, x parameter (d) words 77+4X 24+n P,11,9 
toTSS 37+TS 10 P,10,9 
thruTask Gate 38+TS 10 P,10,9 

RET = Return from CALL 

intersegmenl I 11001011 I 13 8 R,7 

to same level 17 9 P,9 
10 outer level 35 12 P,9 

intersegmenl adding I 11001010 I 16-bitdisp. I 
imm.toSP 

14 8 R,7 
to same level 18 9 P,9 
to outer level 36 12 P,9 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.1486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT CacheHII 
Penalty If 

Notes 
Cache Miss 

MULTIPLE-SEGMENT INSTRUCTIONS (Continued) 

JMP = Uncondillonal Jump 

Direct intersegment I 11101010 I unsigned lull ollset, selector 17 ,2 R, 7, 22 

to same level 19 3 P,9 

thru Call Gate to same level 32 6 P,9 

thruTSS 42+TS 3 P, 10, 9 

thruTask Gate 43+TS 3 P, 10, 9 

Indirect Intersogment I 11111111 I mod 101 rIm I 13 9 R,7,9 

to same level 18 10 P,9 

thru Call Gate to same level 31 13 P,9 

thruTSS 41+TS 10 P,10,9 

thruTask Gate 42+TS 10 P, 10,9 

BIT MANIPULATION 

BT = Test bit 

register, immediate I 0000 1111 I 10111010 111 100 reg I imm. 8-bit data 3 

memory, immediate I 00001111 I 101110 1 a I mod 100 rIm I imm. 8-bit data 3 1 

regl,reg2 ' I 0000 1111 1101000 11 111 reg2 'regll 3 

memory, reg I 00001111 I 10100011 I mod reg rIm I 8 2 

Instrucllon TIT 

BTS = Test Bit and Set 101 
BTR = Test Bit and Reset 110 
BTC = TeS1 Bit and Compliment 111 

regiS1er, immediate 
I I 00001111 I 10111010 111 TTT reg I imm. a-bit data 6 

memory, immediate I 00001111 I 10111010 I mod TTT rIm I imm.a·bitdata a 210 u/L 

regl, reg2 100001111 I 10TTTOll 111 reg2 reg 1 I 6 

memory, reg I 0000 1111 I 10TTTOll I mod reg rIm I 13 3/1 u/L 

BSF = Scan BII Forward 

regl,reg2 I 00001111 I 10111100 111 reg2 regll 6/42 MN/MX,12 

memory, reg I 00001111 I 10111100 I mod reg rIm I 7143 2 MN/MX,13 

BSR = Scan Bit Reverse 

regl,reg2 I 00001111 I 10111101 111 reg2 regll 61103 MN/MX,14 

memory, reg I 00001111 I 10111101 I mod reg rIm I 71104 1 MN/MX, 15 

STRING INSTRUCTIONS 

CMPS = Compare Byte Word I 1010011w I a 6 16 

LODS = Load Byte/Word I 1010110w I 5 2 

to AUAX/EAX 

MOVS = Move Byte/Word I 1010010w I 7 2 16 

SeAS = Scan BytelWord I 1010111w I 6 2 

STOS = Store Byte/Word I 1010101w I 5 

IromAUAX/EX 

XLAT = Translate String I 11010111 I 4 2 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If Notes 
Cache Miss 

REPEATED STRING INSTRUCTIONS 

Repealed by Counl in CX or ECX (C = Count in CX or ECX) 

REPE CMPS = Compare SIring I 11110011 I 1010011w I 
(Find Non-Malch) 
C=O 5 
C>O 7+7c 16,17 

REPNE CMPS = Compare SIring I 11110010 I 1010011w I 
(Find Malch) 
C=O 5 
C>O 7+7c 16,17 

REP LODS = Load String I 11110010 I 1010110w I 
C=O 5 
C>O 7+4c 16,18 

REP MOVS = Move SIring I 11110010 I 1010010w I 
C=O 5 
C= 1 13 1 16 
C>1 12+3c 16,19 

REPE SCAS = Scan String I 11110011 I 1010111w I 
(Find Non-AUAX/EAX) 
C=O 5 
C>O 7+50 20 

REPNESCAS = Scan String I 11110010 I 1010111w I 
(Find AU AX/EAX) 
c=O 5 
C>O 7+50 20 

REP STOS = Slore SIring I 11110010 I 1010101w I 
C=O 5 
C>O 7+4c 

FLAG CONTROL 

CLC = Clear Carry Flag I 11111000 2 

STC = Set Carry Flag I 11111001 2 

CMC = Complement Carry Flag I 11110101 2 

CLD = Clear Direction Flag I 11111100 2 

STD = Set Direction Flag I 11111101 2 

CLI = Clear Interrupt I 11111010 5 
Enable Flag 

STI = Set Interrupt I 11111011 I 5 
Enable Flag 

LAHF = Load AH Into Flag I 10011111 I 3 

SAHF = Store AH Into Flags I 10011110 I 2 

PUSHF = Push Flags I 10011100 I 4/3 AVIP 

POPF = Pop Flags I 10011101 I 9/6 AVIP 

DECIMAL ARITHMETIC 

AAA = ASCII Adjust for Add I 00110111 I 3 

AAS = ASCII Adjust for I 00111111 I 3 

Subtract 

AAM = ASCII Adjust tor I 11010100 I 00001010 I 15 

MUltiply 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT CacheHIt 
Penalty If Notes 

Cache Miss 

DECIMAL ARITHMETIC (Continued) 

AAD = ASCII Adjust for I 11010101 I 00001010 I 14 

Divide 

DAA = Decimal Adjustfor Add I 00100111 I 2 

DAS = Decimal Adjust for Subtract I 00101111 I 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT = Halt I 11110100 I 4 

MOV = MoveTo and From Control/DebuglTest Registers 

CRO from register I 00001111 I 00100010 111 000 reg 1 17 2 

CR2/CR3 from register I 00001111 00100010 1,1 ee e reg 1 4 

Reg from CRO-3 I 00001111 00100000 111 cce reg I 4 

ORO-3 from register 1 00001111 00100011 11 ccc re91 10 

OR6-7 from regiS1er I 00001111 00100011 11 ccc reg 1 10 

Register from OR6-7 I 00001111 00100001 11 ece re91 9 

Register from ORO-3 I 00001111 00100001 11 eee reg I 9 

TR3 from register I 00001111 00100110 11 011 re91 4 

TR4-71rom regiS1er I 00001111 00100110 11 cee reg 1 4 

Register from TR3 I 00001111 00100100 11 011 r091 3 

Rogisterfrom TR4-7 I 00001111 00100100 11 cee regl 4 

CLTS = Clear Task Switched Flag I 00001111 00000110 7 2 

INVD = Invalidate Data Cache I 00001111 00001000 4 

WBINVD = Write-Back and Invalidate I 00001111 00001001 I 5 
Data Cache 

INVLPG = InvalldateTLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 111 rIm I 12/11 H/NH 

PREFIXBYTES 

Address Size Prenx I 01100111 I 1 

LOCK = Bus Lock Prenx I 11110000 I 1 

Operand Size Prenx I 01100110 I 1 

Segment Override Prenx 

CS: 00101110 I 1 

OS: 00111110 I 1 

ES: 00100110 I 1 

FS: 01100100 I 1 

GS: 01100101 I 1 

SS: I 00110110 I 1 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT CacheHlt 
Penalty If Notes 

Cache Miss 

PROTECTION CONTROL 

ARPL = Adjust Requested Privilege Level 

From register I 01100011 111 re21 re22 1 9 

From memory I 01100011 I mod reg rIm 1 9 

LAR = Load Access Rights 

From register I 00001111 I 00000010 111 re21 re22 1 11 3 

From memory I 00001111 I 00000010 I mod reH rIm 1 11 5 

LGDT = Load Global Descriptor 

Table register I 00001111 I 00000001 I mod 010 rIm 1 12 5 

LIDT = Load Interrupt Descriptor 

Table register I 00001111 I 00000001 I mod 011 rIm I 12 5 

LLDT = Load Local Descriptor 

Table register from reg. I 00001111 I 00000000 111 010 reg 1 11 3 

Table register from memo I 00001111 I 00000000 I mod 010 rIm I 11 6 

LMSW = Load Machine Status Word 

From regiSler I 00001111 I 00000001 111 110 reg 1 13 

From memory I 00001111 I 00000001 I mod 110 rIm I 13 1 

LSL = Load Segment Umlt 

From regiSlcr I 00001111 I 00000011 111 regl reg21 10 3 

From memory I 00001111 I 00000011 I mod reg rIm 1 10 6 

L TR = Load Task Register 

From RegiSler I 00001111 I 00000000 111 001 reg 1 20 

From Memory I 00001111 I 00000000 I mod 001 rIm 1 20 

SGDT = Store Global Descriptor Table 

I 00001111 1 00000001 I mod 000 rIm 1 10 

SIDT = Store Interrupt Descriptor Table 

I 00001111 I 00000001 I mod 001 rIm 1 10 

SLDT = Store Local Descriptor Table 

ToregiSler I 00001111 I 00000000 111 000 reg 1 2 

To memory I 00001111 I 00000000 I mod 000 rIm 1 3 

SMSW = Store Machine Status Word 

ToreglSler I 00001111 I 00000001 111 100 reg\ 2 

To memory I 00001111 I 00000001 I mod 100 rIm 1 3 

STR = Store Task Register 

ToregiSler I 00001111 I 00000000 111 001 reg 1 2 

To memory I 00001111 I 00000000 I mod 001 rIm 1 3 

VERR = Verify Read Access 

Register I 00001111 I 00000000 111 100 rIm 1 11 3 

Memory I 00001111 I 00000000 Imod 100 rIm 1 11 7 

VERW = Verify Write Access 

To register I 00001111 I 00000000 111 101 regl 11 3 

To memory I 00001111 I 00000000 I mod 101 rIm 1 11 7 
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INSTRUCTION FORMAT AND TIMING 

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
penalty If 

Notes Cache Miss 

INTERRUPT INSTRUCTIONS 

INT n = Interrupt Type n I 11001101 I type I INT+4/0 AV/P,21 

INT 3 = Interrupt Type 3 I 11001100 I INT+O 21 

INTO = Interrupt 41f I 11001110 I 
Overftow Flag Set 
Taken INT+2 21 
Not Taken 3 21 

BOUND = Interrupt 51f Detect I 01100010 I mod reg rIm I 
Value Out Range 

II in range 7 7 21 

" oul 01 range INT+24 7 21 

IRET = Interrupt Return I 11001111 I 
Real ModeNirtuai Mode 15 8 

Protected Mode 
To same level 20 11 9 

To OU1er level 36 19 9 

Tonestedlask(EFLAG5.NT = 1) T5+32 4 9,10 

External Interrupt INT+11 21 

NMI = Non-Maskable Interrupt INT+3 21 

page Fault INT+24 21 

VM86 ExcepUons 
eLI INT+8 21 

5TI INTH 21 

INTn INT+9 

PUSHF INT+9 21 

POPF INT+8 21 

IRET INT+9 

IN 

RxedPort INT+50. 21 

Variable Port INT+51 21 

OUT 

RxedPort INT+50 21 

Variable Port INT+51 21 
INS INT+50 21 

OUTS INT+50 21 
REP INS INT+51 21 

REPOUTS INT+51 21 

Task Switch Clock Counts Table 

Method 
Value forTS 

Cache Hit Miss Penalty 

VM/486CPU/286 TSS To 486 CPU TSS 162 55 
VM/486 CPU/286 TSS To 286 TSS 143 31 
VM/486 CPU/286 TSS To VM TSS 140 37 
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Interrupt Clock Counts Table 

Method 

Real Mode 

Protected Mode 
Interrupt/Trap gate, same level 
Interrupt/Trap gate, different level 
Task Gate 

Virtual Mode 
Interrupt/Trap gate, different level 
Task gate 

Abbreviations 
16/32 
U/L 
MN/MX 
LlNL· 
RV/P 
R 
P 
T/NT 
H/NH 

NOTES: 

Definition 
16/32 bit modes 
unlocked/locked 
minimum/maximum 
loop/no loop 
real and virtual mode/protected mode 
real mode 
protected mode 
taken/not taken 
hit/no hit 

Cache Hit 

26 

44 
71 

37 + TS 

82 
37 + TS 

Value for INT 

Miss Penalty 

2 

6 
17 
3 

17 
3 

1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks = 10 + max(log2(lml),n) 

m = multiplier value (min clocks for m =0) 
n = 3/5 for ±m 

4. Clocks = {quotient(countloperand length»)·7 + 9 
= 8 if count ~ operand length (8/16/32) 

5. Clocks = {quotient(countloperand length»·7 + 9 
= 9 if count ~ operand length (8/16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

Notes 

9 
9 

9,10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets. 
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed descriptor load. 
10. Refer to task switch clock counts table for value of TS. 
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes. 
For notes 12-13: (b == 0-3, non-zero byte number); 

(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks = 8+4 (b+1) + 30+1) + 3(n+1) 
= 6 if second operand = 0 

13. Clocks = 9+4(b+1) + 3(i+1) + 3(n+1) 
= 7 if second operand = 0 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 + 3(32 - n) 

6 if second operand = 0 
15. Clocks = 8 + 3(32-n) 

7 if second operand = 0 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add 4 clocks for every 16 bytes moved. 

(1 clock for the first operation and 3 for the second) 
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned. 

(2 clocks each for first and second operations) 
21. Refer to interrupt clock counts table for value of INT 
22. Clock count includes one clock for using both displacement and immediate. 
23. Refer to assumption 6 in the case of a cache miss. 
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Table 10.2.1486TM Microprocessor 1/0 Instructions Clock Count Summary 

Real Protected Protected Virtuailltl INSTRUCTION FORMAT 
Mode 

Mode Mode 
Mode Notes 

(CPL-S:IOPL) (CPL>IOPL) 

I/O INSTRUCTIONS 

IN = Input from: 

Fixed Port 1111001 Ow I port number I 14 9 29 27 

Variable Port 1111011 Ow I 14 8 28 27 

OUT - Output to: 

FIxed Port 11110011 w port number I 16 11 31 29 

VarlabloPort 11110111 w 16 10 30 29 

INS - InputByte/Word 10110110W 17 10 32 30 
from DXPort 

OUTS" OutputByte/Word 10110111W 17 10 32 30 1 
to DX Port 

rEPINS-In ... S .... 111110010 011011 Ow I 16+8c 10+80 30+80 29+80 2 

REP OUTS .. Output String 111110010 011 0111w I 17+50 11+50 31+50 30+50 3 

NOTES: 
1. Two clock cache miss penalty in all cases. 
2. c = count in CX or ECX. 
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 
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,Table 10.3.1486TM Microprocessor Floating Point Clock Count Summary 

Cache Hit 
Concurrent 

Penalty If 
Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss. Avg(Lower Notes 
Range ••• Range ••• 

Upper Range) Upper Range) 

DATA TRANSFER 

FLD = Real Load to ST(O) 

32-1>11 memory , 111011 0011 m~ 000 rIm 1 lH-I>/disp. I 3 2 

64-1>11 memory 111011 1011 mod 000 rIm 1 lH-I>/disp. I 3 3 

80-1>11 memory 111 011 0111 mod 101 rIm 1 s-l-l>/disp. I 6 4 

ST(i) 111 011 001111000 STO) I 4 

FILD = Integer Load to ST(O) 

16-1>11 memory 111011 1111 mod 000 rIm 1 lH-I>/disp. I 14.5(13-16) 2 4 

32-1>11 memory 111011 0111mod 000 rIm 1 lH-I>/disp. I 11.5(9-12) 2 4(2-4) 

64-1>11 memory 111 011 1111mod 101 rIm 1 lH-I>/disp. I 16.8(10-18) 3 7.8(2-8) 

FBLD = BCD Load to ST(O) 1110'11 111 1 mod 100 rIm 1 lH-I>/disp. I 75(70-103) 4 7.7(2-8) 

FST = Store Real from ST(O) 

32-1>il memory 111011 0011 mod 010 rIm 1 lH-I>/disp. I 7 1 

64-1>11 memory 111011 1 01 1 mod 010 rIm 1 s-l-l>/disp. I 8 2 

ST(i} 111 011 101111010 ST(i} I 3 

FSTP '" Store Real from ST(O) and Pop 

32-1>11 memory 111011 0111 mod 011 rIm 1 lH-I>/disp. I 7 1 

64-1>11 memory 111011 1011 mod 011 rIm 1 ~-b/dlsp. I 8 2 

80-1>11 memory 111011 011 1 mod 111 rIm 1 lH-b/disp. I 6 

ST(I} 111011 101111001 ST(OI 3 

FIST = Store Integer from ST(O) 

16-b11 memory 111011 1111 mod 010 rIm 1 lH-b/disp. I 33.4(29-34) 

32-1>11 memory 111011 011 1 mod 010 rIm 1 lH-b/disp. I 32.4(28-34) 

FISTP = Store Integer from ST(O) and POP 

16-1>11 memory 11011 111 1 mod 011 rIm 1 s-l-b/disp. I 33.4(29-34) 

32-1>11 memory 11011 011 1 mod 011 rIm 1 ~-b/disp. I 33.4(29-34) 

64-b11 memory 11011 1111 mod 111 rIm 1 s-I-b/disp. I 33.4(29-34) 

FBSTP - Store BCD from 11011 1111 mod 110 rIm 1 ~-b/disp. I 175(172-176) 
ST(O) and Pop 

FXCH .. ExchangeST(O) and ST(I} 11011 001111001 ST(OI 4 

COMPARISON INSTRUCTIONS 

FCOM = Compare ST(O) with Real 

32-1>11 memory 111011 0001 mod 010 rIm I s-l-b/disp. I 4 2 1 

64-1>11 memory 111011 1001 mod 010 rIm 1 lH-I>/disp. I 4 3 1 

ST(i) 111011 000111010 ST(OI 4 1 

FCOMP .. Compare ST(O) with Real and POP 

32-1>11 memory 111011 000 I mod 011 rIm 1 lH-I>/disp. I 4 2 1 

64-bl1memory 111011 1001 mod 011 rIm 1 lH-I>/disp. I 4 3 1 

ST(i) 111011 000111011 ST(OI 4 1 

E-16 



INSTRUCTION FORMAT AND TIMING 

Table 10.3.1486TM Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Penalty If 
Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg (Lower Noles 
Range ••• Range ••• 

Upper Range) Upper Range) 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP = Compare ST(O) with 111011 110 111 01 10011 5 1 
ST(I) and POP TWice 

FICO .. = Compare ST(O) with Inleger 

16-bil memory 111011 110 I mod 010 rIm I s-I-b/disp. I 18(16-20) 2 1 

32-bil memory 111011 a 1 a I mod 010 rIm I s-l-b/disp. I 16.5(15-17) 2 1 

FICOMP = Compare ST(O) with Inleger 

16-bil memory 111011 110 I mod all rlml s-l-b/disp. I 18(16-20) 2 1 

32-bil memory 111011 010 mod all rIm I s-l-b/disp. I 16.5(15-17) 2 1 

FTST = Compare ST(O) with 0.0 111011 001 1110 01001 4 1 

Fuca .. = Unordered compare 111011 101 11100 ST(OI 4 1 
ST(O) with ST(I) 

FUCOMP = Unordered compare 111011 101 11101 ST(ol 4 1 
ST(O)wllh ST(I) and Pop 

FUCOMPP = Unordered compare 111011 101 11101 10011 5 1 
ST(O) with ST(I) and Pop Twice 

FXAM = Examine ST(O) 111011 00111110 01011 8 

CONSTANTS 

FlOZ = Load + 0.0 Inlo ST(O) 111011 00111110 11101 4 

FlO1 = Load + 1.0 Inlo ST(O) 111011 00111110 10001 4 

FlOPI = Load W" Inlo ST(O) 111011 00111110 10111 8 2 

FlOL2T = Load log2C10) Inlo ST(O) 111011 00111110 10011 8 2 

FlOL2E = Load log2Ce) Into ST{O) 111011 00111110 10101 8 2 

FlOLG2 = Load 10910(2) Inlo ST(O) 111011 00111110 1100 I 8 2 

FlOLN2 = Load loge(2) Inlo ST(O) 111011 00111110 11011 8 2 

ARITHMETIC 

FADD = Add Real with ST{O) 

ST(O) - ST(O) + 32-bil memory 111011 000 I mod 000 rIm I s-l-b/disp. I 10(8-20) 2 7(5-17) 

ST(O) - ST(O) + 64-bil memory 111011 100lmod 000 rIm I s-I-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) - ST(O) + ST(O 111011 doolll000 ST(ol 10(8-20) 7(5-17) 

FADDP = Add real with ST(O) and 111011 110 111 000 ST(ill 10(8-20) 7(5-17) 
Pop (ST(I) - ST(O) + ST(I)) 

FSUB = Subtract real from ST{O) 

ST(O) - ST(O) - 32-bil memory 111011 000 I mod 100 rIm I s-I-b/disp. I 10(8-20) 2 7{5-17) 

ST(O) - ST(O) - 64-bil memory 111011 100lmod 100 rIm I s-I-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) - ST(O) - STro 111011 dOO 11110 1 ST(i) I 10(8-20) 7(5-17) 

FSUBP = Subtract real from ST{O) 111011 110 11110 1 ST(ill 10{8-20) 7(5-17) 
and Pop (ST(I) - ST(O) - ST{I» 
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Table'10 3 i486TM Microprocessor Floating Point Clock Count Summary (Continued) .. 
Cache Hit 

Concurrent 
Execution 

Penalty If 
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 

Range ••• Range ••• 
Upper Range) Upper Range) 

AR ITH METIC (Continued) 

FSUBR = Subtractreal reversed (Subtract ST(O) from real) 

ST(O) - 32·bit memory - ST(O) 111011 000 I mod 101 rIm I s-i-b/disp. I 10(8-20) 2 7(5-17) 

ST(O) - 64-bit memory - ST(O) 111011 100 I mod 101 rIm I s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) - ST(O - ST(O) 111011 doollll00 ST(O I 10(8-20) 7(5-17) 

FSUBRP = Subtract real reversed 111 011 110111100 ST(OI 10(8-20) 7(5-17) 
and Pop (ST(I) - ST(I) - ST(O)) 

FMUL = MulUplyreal with ST(O) 

ST(O) - ST(O) x 32-bit memory 111 011 000 I mod 001 rIm I s-i-b/disp. I 11 2 8 

ST(O) - ST(O) x 64-bit memory 111011 100 I mod 001 rIm I s.J-b/disp. I 14 3 11 

ST(d) - ST(O) X ST(O 111011 dooll1001 ST(O I 16 13 

FMULP = Multiply ST(O) with ST(I) 111011 110111001 ST(O I 16 13 
and Pop (ST(I) - ST(O) X ST(I)) 

FDIV = DlvldeST(O) by Real 

ST(O) - ST(0)/32-bit memory 111011 000 I mod 110 rIm I s.J-b/disp. I 73 2 70 3 

ST(O) - ST(0)/64-bit memory 111011 100 I mod 100 rIm I s+b/disp. I 73 3 70 3 

ST(d) - ST(O)/ST(i) 111011 dOO 111111 ST(O I 73 70 3 

FDIVP = Divide ST(O) by ST(I) and 111011 110111111 ST(O I 73 70 3 
Pop (ST(I) - ST(O)/ST(I» 

FDIVR = Divide real reversed (Real/ST(O)) 

ST(O) - 32-bit memory/ST(O) 111011 000 I mod 111 rIm I s-i-b/disp. I 73 2 70 3 

ST(O) - 64-bit memory/ST(O) 111011 100lmod 111 rIm I s-i-b/disp. I 73 3 70 3 

ST(d) - ST(O/ST(O) 111011 dOO 111110 ST(Q I 73 70 3 

FDIVRP = Divide real reversed and 111011 110111110 ST(Q I 73 70 3 
Pop (ST(I) - ST(I)/ST(O» 

FIADD = Add Integer to ST(O) 

ST(O) - ST(O) + 16-bit memory 111011 110 I mod 000 rIm I s-i-b/disp. I 24(20-35) '2 7(5-17) 

ST(O) - ST(O) + 32-bit memory 111011 010 I mod 000 rIm I s-i-b/disp. I 22.5(19-32) 2 7(5-17) 

FISUB = Subtract Integer from ST(O) 

ST(O) - ST(O) - 16-bit memory 111011 110 I mod 100' rIm I s.J-b/disp. I 24(20-35) 2 7(5-17) 

ST(O) - ST(O) - 32-bit memory 111011 010 I mod 100 rIm I s-i-b/disp. I 22.5(19-32) 2 7(5-17) 

FISUBR = Integer Subtract Reversed 

ST(O) - 16-bit memory - ST(O) 111011 110 I mod 101 .r/m I s-i-b/disp. I 24(20-35) 2 7(5-17) 

ST(O) - 32-bit memory - ST(O) 111011 010 I mod 101 rIm I s.J-b/disp. I 22.5(19-32) 2 7(5-17) 

FIMUL = Multiply Integer with ST(O) 

ST(O) - ST(O) X 16-bit memory 111011 110lmod 001 rIm I s-i-b/disp. I 25(23-27) 2 8 

ST(O) - ST(O) X 32-bit memory 111011 ololmod 001 rIm I s.J-b/disp. I 23.5(22-24) 2 8 

FIDIV = Integer Divide 

ST(O) - ST(0)/16-blt memory 111011 110lmod 110 rIm I s-i-b/dlsp. I 87(85-89) 2 70 3 

ST(O) - ST(0)/32-blt memory 111011 0101 mod 110 rIm I s-i-b/dlsp. I 85.5(84-86) 2 70 3 
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Table 10.3.1486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit 
Concurrent 
Execution 

Penalty If 
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 

Range ••• Range ••• 
Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FIDIVR = Integer Divide Reversed 

ST(O) -16-bit memory/ST(O) 111011 11 olmod 111 r/ml s-i-b/disp. I 87(85-89) 2 70 3 

ST(O) - 32-bit memory/ST(O) 111011 010 I mod 111 rIm I s-l-b/disp. I 85.5(84-86) 2 70 3 

FSQRT = Square Root 111011 00111111 10101 85.5(83-87) 70 

FSCALE = Scale ST(O) by ST(l) 111011 00111111 11011 31(30-32) 2 

FXTRACT .. Extract components 111011 OOdllll 01001 19(16-20) 4(2-4) 

ofST(O) 

FPREM = Partial Reminder 111011 00111111 10001 84(70-138) 2(2-8) 

FPREM 1 = ParUal Reminder (IEEE) 111011 00111111 01011 94.5(72-167) 5.5(2-18) 

FRNDINT = Round ST(O) to Integer 111011 00111111 11001 29.1(21-30) 7.4(2-8) 

FABS = Absolute value of ST(O) 111011 00111110 00011 3 

FCHS = Change sign of ST(O) 111011 00111110 0000 I 6 

TRANSCENDENTAL 

FCOS = COsine of ST(O) 111011 00111111 11111 241(193-279) 2 6,7 

FPTAN = ParUal tangent of ST(O) 111011 00111111 00101 244(200-273) 70 6,7 

FPATAN = Partial arctangent 111011 00111111 00111 289(218-303) 5(2-17) 6 

FSIN = Sine of ST(O) 111011 00111111 11101 241 (193-279) 2 6,7 

FSINCOS = Sine and COsine of ST(O) 111011 00t/1111 1011 I 291 (243-329) 2 6,7 

F2XM 1 = 2ST(O) - 1 111011 00111111 0000 I 242(140-279) 2 6 

fYL2X = ST(l) x log2CST(O)) 111011 OOt/llll 00011 311(196-329) 13 6 

FYL2XPl = ST(1) X log2CST(O) + 1.0) 111 01 1 00111111 10011 313(171-326) 13 6 

PROCESSOR CONTROL 

FINIT = InlUallzeFPU 111011 01111110 0011 I 17 4 

FSTSW AX = Store status word 111011 11111110 0000 I 3 5 
IntoAX 

FSTSW = Store status word 111011 1011 mod 111 r/ml s-l-b/disp. I 3 5 
Into memory 

FLDCW = Load control word 111011 0011 mod 101 rIm I s-l-b/disp. I 4 2 

FSTCW = Store control word 111011 0011 mod 111 rIm I s-l-b/disp. I 3 5 

FCLEX = Clear excepUons 111011 01111110 00101 7 4 

FSTENV = Store environment 111011 0011 mod 110 rIm I s-l-b/disp. I 
Real and Virtual modes 16-bit Address 67 4 
Real and Virtual modes 32-bit Address 67 4 
Protected mode 16-bit Address 56 4 
Protected mode 32-bit Address 56 4 

FLDENV .. Load environment 111011 0011 mod 100 rIm I s-l-b/disp. I 
Real and Virtual modes 16-bit Address 44 2 
Real and Virtual modes 32-bit Address 44 2 
Protected mode 16-b1t Address 34 2 
Protected mode 32-bit Address 34 2 
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Table 10 3 i486TM Microprocessor Floating Point Clock Count Summary (Continued) .. 
Concurrent 

Cache Hit 
Execution 

Penalty If 
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 

Range ••• Range ••• 
Upper Range) Upper Range) 

PROCESSOR CONTROL (Conlinued) 

FSA VE = Save state 111011 1011 mod 110 rIm 1 ~-b/disp. I 
Real and Virtual modes 16-bit Address 154 4 
Real and Vir1ual modes 32-bit Address 154 4 
Protected mode 16-bit Address 143 4 
Protected mode 32-bit Address 143 4 

FRSTOR = Restore state 111 011 1011 mod 100 rIm 1 s~-bl I 
Real and Virtual modes 16-bit Address 131 23 
Real and Virtual modes 32-bit Address 131 27 
Protected mode 16-bit Address 120 23 
Protected mode 32-bit Address 120 27 

FINCSTP = Increment Stack Pointer 111011 00111111 01111 3 

FDECSTP = Decrement Stack Pointer 11 1 01 1 00111111 01101 3 

FFREE = Free ST(I) 111011 101111000 ST(QI 3 

FNOP = No operations 111011 00111101 00001 3 

WArr = Walt until FPUready I 10011011 I 
(Minimum/Maximum) 1/3 

NOTES: 
1. If operand is 0 clock counts = 27. 
2. If operand is 0 clock counts = 28. .. . 
3.lf CW.PC indicates 24 bit preCision then subtract 38 clocks. 

If CW.PC indicates 53 bit precision then subtract 11 clocks.. . 
4. If there is a numeric error pending from a previous instruction add 17 clocks .. 
5.1f there is a numeric error pending from a previous instruction add 18 cloCks.. . 
6. The INT pin is polled several times while this instruction is executing to assure short Interrupt latency. 
7.lf ABS(operand) is greater than 1T'14 then add n clocks. Where n= (operand/(1T'14». . 

encodings of the mod rIm byte indicate a second 
10.2 Instruction Encoding addressing byte, the scale-index-base byte, follows 

the mod rIm byte to fully specify the addressing 
10.2.1 OVERVIEW mode. 

All instruction encodings are subsets of the general 
instruction format shown in Figure 10.1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rIm" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rIm 
byte, specifies the address mode to be used. Certain 

Addre~sing modes can include a displacement i~­
mediately following the mod rIm byte, or scaled In­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate .operand, 
the immediate operand follows any disp.'acement 
bytes. The immediate operand; if specified, is always 
the last field of the instruction. 

Figure 10.1 illustrates several of the fields !hat can· 
appear in an instruction, such as the mod .flel~ and 
the rIm field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 10.4 is a complete list of all fields ap­
pearing in the 486 Microprocessor instructi~n set. 
Further ahead, following Table 10.4, are detailed ta­
bles for each field. 
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ITT T T T T TTl T T T T T T TTl mod T T T rim I ss index base Id32116181 none data32 I 16 181 none 

! o 7 01~\.76 5} 2 0 I\. I \. ) 
V T T 

opcode "mod rim" "s·i·b" address immediate 
(one or two bytes) , byte byte 

I 
displacement data 

(T represents an v (4, 2, 1 bytes (4,2, 1 bytes 
opcode bit.) register and address or none) or none) 

mode specifier 

Figure 10.1. General Instruction Format 

Table 10.4. Fields within 1486TM Microprocessor Instructions 

Field Name Description Number of Bits 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or. 32 Bits 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign· Extended 1 
reg General Register Specifier 3 
mod rIm Address Mode Specifier (Effective Address can be'a General Register) 2 for mod; 

3 for rim 
ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, DS, ES 2 
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

NOTE: 
Tables 10.1-10.3 show encoding of individual instructions. 

10.2.2 32-BIT EXTENSIONS OF THE 
INSTRUCTION SET 

With the 486 Microprocessor, the 8086/801861 
80286 instruction set is extended in two orthogonal 
directions: 32·bit forms of all 16·bit instructions are 
added to support the 32·bit data types, and 32·bit 
addressing modes are made available for all instruc­
tions referencing memory. This orthogonal instruc­
tion set extension is accomplished having a Default 
(D) bit in the code segment descriptor, and by hav­
ing 2 prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the D bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a D value of 0 is assumed internally by the 486 
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Microprocessor when operating in those modes (for 
16·bit default sizes compatible with the 80861 
80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op· 
code bytes and affect only the instruction they pre· 
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32·bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc· 
tion to 16·bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32·bit effective address computa· 
tions. 
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These 32-bit extensions are available in all 486 Mi­
croprocessor modes, including the, Real Address 
Mode or the Virtual 8086 Mode. In these modes the 
default is always 16 bits, so prefixes are needed to 
specify 32-bit operands or addresses. For instruc­
tions with more than one prefix, the .order of prefixes 
is unimportant 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

10.2.3 ENCODING OF INTEGER 
INSTRUCTION FIELDS, 

Within: the instruction are several fields indicating. 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

10.2.3.1 En~odlng of Operand Length (w) Field 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wFleld During 16-BIt During 32-Blt 

Data Operations Data OperatIons 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

10.2.3.2 Encoding of the General 
RegIster (reg) Field 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. ' 
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Encoding of reg Field When w Field 
is not Present In Instruction 

RegIster Selected Register Selected 
reg Field During 16-Blt During 32~Blt 

Data Operations Data Operations 

000 AX EAX 
001 CX ECX 
010 OX ,EOX 
011, BX EBX 
100 SP ESP 
101 BP EBP 
110 SI ESI 
111 01 EOI 

Encoding of reg Field When w Field 
Is Present In Instruction 

Register Specified by reg Field 
During i6-Blt Data Operations: 

Function of w Field 
reg 

(when w = 0) (when w = 1) 

000 AL AX 
001 CL . CX 
010 OL OX 
011 BL BX 
100 AH SP 
101 CH BP 
110 OH SI 
111. ' BH 01 

RegIster Specified by reg Field 
During 32-8it Data Operations 

Function of w Field 
reg 

(when w = 0) (when w = 1) 

- 000 AL EAX 
001 ' CL ECX 
010 OL EOX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 , OH ESI 
111 BH EOI 
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10.2.3.3 Encoding of the Segment 
Register (sreg) Field 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 486 Microprocessor FS and 
GS segment registers to be specified. 

2·Bit sreg2 Field 

2·Bit 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 DS 

3·Bit sreg3 Field 

3·Blt 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 . GS 
110 do not use 
111 do not use 

10.2.3.4 Encoding of Address Mode 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determned, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rIm" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rIm" byte has rIm = 100 and mod = 00, 01 or 10. 
When the sib byte is present, the 32-bit addressing 

, mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rIm" byte, 
also contains three bits (shown as TTT in Figure 
10.1) sometimes used as an extension of the pri­
mary opcode. The three bits, however, may also be 
used as a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rIm" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 

. "mod rIm" byte is interpreted as a 32-bit addressing 
mode specifier. 

E-23 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of 16·blt Address Mode with "mod rIm" Byte 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+SI] 10000 OS:[BX+SI+d16] 
00001 OS:[BX+ 01] 10001 OS:[BX+01+d16] 
00010 SS:[BP+SI] 10010 SS:[BP+ SI+ d16] 
00011 SS:[BP+ 01] 10011 SS:[BP+ 01+ d16] 
00100 OS:[SI] 10100 OS:[SI+d16] 
00101 OS:[OI] 10101 OS:[01+d16] 
00110 OS:d16 10110 SS:[BP+d16] 
00111 OS:[BX] 10111 OS:[BX + d16] 

01000 OS:[BX+SI+d8] 11000 register-see below 
01001 OS: [BX + 01 + d8] 11 001 register-see below 
01010 SS:[BP+ SI+ dB] 11 010 register-see below 
01 011 SS:[BP+ OI+dB] 11 011 register-see below 
01 100 OS:[SI+ d8] 11 100 register-see below 
01101 OS:[01+d8] 11101 . register-see below 
01110 SS:[BP+d8] 11110 register-see below 
01111 OS:[BX+d8] 11 111 register-see below 

Register Specified by rIm Register Specified by rIm 
During 16·Bit Data Operations During 32·Bit Data Operations 

mod rIm Function of w Field 
mod rIm Function of w Field 

(whenw=O) (whcm w = 1) . (when w=O) (when w = 1) 

11000 AL AX 11000 AL EAX 
11 001 CL CX 11 001 CL ECX 
11 010 OL OX 11010 OL EOX 
11 011 BL BX 11 011 BL EBX 
11 100 AH SP 11100 AH ESP 
11101 CH BP 11101 CH EBP 
11110 OH SI 11110 OH ESt 
11 111 BH 01 11111 BH EOI 

E-24 



INSTRUCTION FORMAT AND TIMING 

Encoding of 32·bit Address Mode with "mod rIm" byte (no. "s·l·b" byte present): 

mod rIm Effective Address mod rim Effective Address 

00000 OS:[EAX] 10000 OS:[EAX+ d32] 
00001 OS:[ECX] 10001 DS: [ECX + d32] 
00010 OS:[EOX] 10010 OS:[EOX+d32] 
00011 OS:[EBX] 10011 OS:[EBX+ d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 OS:d32 10101 SS:[EBP+ d32] 
00110 OS:[ESI] 10110 DS:[ESI+ d32] 
00111 DS:[EDI] 10111 DS:[EDI+ d32] 

01000 DS:[EAX+ d8] . 11 000 register-see below 
01001 DS:[ECX+ d8] 11 001 register-see below 
01010 OS:[EOX+d8] 11 010 register-see below 
01 011 OS:[EBX+ d8] 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS:[EBP+ d8] 11 101 register-see below 
01110 DS:[ESI+ d8] 11110 register-see below 
01 111 DS:[EDI+ d8] 11 111 register-see below 

Register Specified by reg or rIm Register Specified by reg or rIm 
during 16-8it Data Operations: during 32-8it Data Operations: 

mod rIm Function of w field 
mod rIm FUnction of w field 

(when w=O) (when w= 1) (when w=O) (when w= 1) 

11 000 AL AX 11 000 AL EAX 
11 001 CL CX 11 001 CL ECX 
11 010 DL OX 11 010 OL EOX 
11 011 BL BX 11 011 BL EBX 
11100 AH SP 11 100 AH ESP 
11101 CH BP 11 101 CH EBP 
11 110 OH SI 11 110 OH ESI 
11 111 BH 01 11 111 BH EOI 
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Encoding of 32·blt Address Mode ("mod rIm" byte and "s·l·b" byte present): 

mod base Effective Address 

00000 OS: [EAX + (scaled index)] 
00001 OS: [ECX + (scaled index)] 
00010 OS:[EOX + (scaled index)] 
00011 OS: [EBX + (scaled index)] 
00100 SS:[ESP+ (scaled index)] 
00101 OS: [d32 + (scaled index)] 
00110 OS:[ESI+ (scaled index)] 
00111 OS: [EOI + (scaled index)] 

01000 OS: [EAX + (scaled index) + d8] 
01001 OS: [ECX + (scaled index) + d8] 
01010 OS:[EOX+ (scaled index) + d8] 
01 011 OS:[EBX+ (scaled index) + d8] 
01100 SS: [ESP+ (scaled index) + d8] 
01101 SS:[EBP+ (scaled index)+d8] 
01110 OS:[ESI+ (scaled index) + d8] 
01111 OS: [EOI + (scaled index) + d8] 

10000 OS: [EAX + (scaled index) + d32] 
10001 OS: [ECX + (scaled index) + d32] 
10010 OS: [EOX + (scaled index) + d32] 
10011 OS: [EBX -+ (scaled index) + d32] 
10100 SS:[ESP+ (scaled index) + d32] 
10101 SS:[EBP+ (scaled index)+d32] 
10110 OS:[ESI+ (scaled index)+ d32] 
10111 OS: [EOI + (scaled index) + d32] 

NOTE: 
Mod field in "mod rIm" byte; ss, index, base fields in 
"s-i-b" byte. 

5S Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

Index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 no index reg*" 
101 EBP 
110 ESI 
111 EOI 

"IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
55 field MUST equal 00. If index is 100 and 5S does not 
equal 00, the effective address is undefined. 
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10.2.3.5 Encoding of Operation 
Direction (d) Field 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

10.2.3.6 Encoding of Sign-Extend (s) Field 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on 
s Immediate 

Data8 

0 None 

1 Sign-Extend Data8 to Fill 
16-Bit or 32-Bit Destination 

10.2.3.7 Encoding of Conditional 
Test (tUn) Field 

Effect on 
Immediate 
Data 16/32 

None 

None 

For the conditional instructions (conditional jumps 
and set on condition), tun is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and ttt giving the condition to test. 

E-2? 

Mnemonic Condition 

0 Overflow 
NO No Overflow 
BINAE Below/Not Above or Equal 
NB/AE Not Below/Above or Equal 
E/Z Equal/Zero 
NE/NZ Not Equal/Not Zero 
BEINA Below or EquallNot Above 
NBE/A Not Below or Eq uall Above 
S Sign 
NS Not Sign 
PIPE Parity/Parity Even 
NP/PO Not Parity/Parity Odd 
LlNGE Less Than/Not Greater or Equal 
NLIGE Not Less Than/Greater or Equal 
LEING Less Than or Equal/Greater Than 
NLE/G Not Less or Equal/Greater Than 

10.2.3.8 Encoding of Control or Debug 
or Test Register (eee) Field 

tUn 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eee Code Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eee Code Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR? 

Do not use any other encoding 

When Interpreted as Test Register Field 

eee Code Reg Name 

011 TR3 
100 TR4 
101 TR5 
110 TR6 
111 TR? 

Do not use any other encoding 
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Instruction 

l' 

2 

3 

4 

5 

11011 

11011 

11011 

11011 

11011 

15-11 

First Byte 

OPA 

MF 

d P 

0 0 

0 1 

10 9 

1 

OPA 

OPA 

1 

1 

8 

10.2.4 ENCODING OF FLOATING POINT 
INSTRUCTION FIELDS 

mod 

mod 

1 

1 

1 

7 

Instructions for the FPU assume one of the five 
forms shown in the following table. In all cases, in­
structions are at least two bytes long and begin with 
the bit pattern 11011 B. 

OP = Instruction opcode, possible split into two 
fields OPA and OPB . 

MF = Memory Format 
00-32-bit real 
01-32-bit integer 
1 0-54-bit real 
11-16-bit integer 

P = Pop 
O-Do not pop stack 
1-Pop stack after operation 

d = Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

1 

1 

1 

6 

Optional 

Second Byte Fields 

1 I OPB rIm s-i-b. 

OPB rIm s-i-b 

OPB ST(i) 

1 1 OP 

1 I OP 

5 4 3 2 1 0 

R XOR d = O-Destination (op) Source 
R XOR d = 1-Source (op) Destination 

ST(i) = Register stack element i 
000 = Stack top 
001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

I disp 

I' disp 

mod (Mode field) and rIm (Register/Memory specifi­
er) have the same interpretation as the correspond­
ing fields of the integer instructions. 

s-i-b (Scale Index Base) byte and disp (displace­
ment) are optionally present in instructions that have 
mod and rIm fields. Their presence depends on the 
values of mod and rIm, as for integer instructions. 
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APPENDIX F 
NUMERIC EXCEPTION SUMMARY· 

The following table lists the instruction mnemonics in alphabetical order. For each mne­
monic, it summarizes the exceptions that the instruction· may cause. When writing nu­
meric programs that may be used in an environment that employs numerics exception 
handlers, assembly-language programmers should be aware of the possible exceptions 
for each instruction in order to determine the need for exception synchronization. 
Chapter 18 explains the need for exception synchronization. 

Mnemonic Instruction IS I 0 Z 0 U P 

F2XM1 2X-1 Y ,Y Y Y Y 
FABS Absolute value Y 
FADD(P) Add real Y Y Y Y Y Y 
FBLD BCD load Y 
FBSTP BCD store and pop Y Y Y 
FCHS Change sign Y 
FCLEX Clear exceptions 
FCOM(P)(P) Compare real Y Y Y 
FCOS Cosine Y Y Y Y Y 
FDECSTP Decrement stack pointer 
FDIV(R)(P) Divide real Y Y Y Y Y Y Y 
FFREE Free register 
FIADD Integer add Y Y Y Y Y Y 
FICOM(P) Integer compare Y Y Y 
FIDIV Integer divide Y Y Y Y Y Y 
FIDIVR Integer divide reversed Y Y Y Y Y Y Y 
FILD Integer load Y 
FIMUL Integer multiply Y Y Y Y Y Y 
FINCSTP Increment stack pointer 
FINIT Initialize processor 
FIST(P) Integer store Y Y Y 
FISUB(R) Integer subtract Y Y Y Y Y Y 
FLD extended or stack Load real Y 
FLD single or double Load real Y Y Y 
FLD1 Load + 1.0 Y 
FLDCW Load Control word Y Y Y Y Y Y Y 
FLDENV Load environment Y Y Y Y Y Y Y 
FLDL2E Load log2e Y 
FLDL2T Load log21 0 Y 
FLDLG2 Load log102 Y 
FLDLN2 Load 10ge2 Y 
FLDPI Load 'IT Y 
FLDZ Load + 0.0 Y 
FMUL(P) Multiply real Y Y Y Y Y Y 
FNOP No operation 
FPATAN Partial arctangent Y Y Y Y Y 
FPREM Partial remainder Y Y Y Y 
FPREM1 IEEE partial remainder Y Y Y Y 
FPTAN Partial tangent Y Y Y Y Y 
FRNDINT Round to integer Y Y Y Y 
FRSTOR Restore state Y Y Y Y Y Y Y 
FSAVE Save state 
FSCALE Scale Y Y Y Y Y Y 

F-1 



NUMERIC EXCEPTION SUMMARY 

Mnemonic Instruction IS I 0 Z 0 U P 

FSIN Sine Y Y Y Y Y 
FSINCOS Sine and cosine Y Y Y Y Y 
FSQRT Square root Y Y Y Y 
FST(P) stack or Store real Y 
extended 
FST(P) single or double Store real Y Y Y Y Y Y 
FSTCW Store control word 
FSTENV Store environment 
FSTSW (AX) Store status word 
FSUB(R)(P) Subtract real Y Y Y Y Y Y 
FTST Test Y Y Y 
FUCOM (P) (P) Unordered compare real Y Y Y 
FWAIT CPU Wait 
FXAM Examine 
FXCH Exchange registers Y 
FXTRACT Extract Y Y Y Y 
FYL2X Y·log2X Y Y Y Y Y Y Y 
FYL2XP1 y. log2(X + 1) Y Y Y Y Y 

IS - Invalid operand due to stack overflow/underflow 
I - Invalid operand due to other cause 
o - Denormal operand 
Z - Zero-divide 
o - Overflow 
U - Underflow 
P - Inexact result (precision) 
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APPENDIX G 
CODE OPTIMIZATION 

The i486 ™ processor is binary-compatible with the 386 ™ OX and SX processors. Only 
three new application-level instructions have been added, which are useful in special 
situations. Any existing 8086/8088, 80286 and 386 processor applications will be able to 
execute on the i486 processor immediately without any modification or recompilation. 
Any compiler that currently generates code for the 386 processor family will also gener­
ate code that will run on the i486 processor without any m'odifications. 

However, there are certain code-optimization techniques which will make applications 
execute faster on the i486 processor with only minor or no change to their performance 
on the 386 OX or SX processor, except possibly for code size differences. These tech­
niques have to do with instruction sequence selection and instruction scheduling to take 
advantage of the internal pipelined execution units of the i486 processor and the large 
on-chip cache. 

G.1 ADDRESSING MODES 

Like the 386 processors, the i486 processor needs an additional clock cycle to generate 
an effective address when an index register is used. Therefore, if only one indexing 
component is used (i.e., not both a base register and an index register), and scaling is not 
necessary, then it is faster to use the register as a base rather than an index. For 
example: 

mov eax, [esil 
mov eax, [esi*l 

use esi as base 
use esi as index, 1 clock penalty 

If both base and index are used, or if scale indexing is necessary, then it is faster to use 
the combined addressing mode, even though it will take an additional clock cycle to 
execute. 

When a register is used as the base component, an additional clock cycle is used if that 
register is the destination of the immediately preceding instruction (assuming all instruc­
tions are already in the prefetch queue). So to get the best performance, the two instruc­
tions should be separated by at least one other instruction. For example: 

add esi, eax 
mov eax, [esil 

esi is destination register 
esi is base, 1 clock penalty 

There are other hidden or implicit usages of destination and base registers, primarily the 
stack pointer register ESP. The ESP register is the implicit base of all PUSH/POP/RET 
instructions and it is the implicit destination for the CALL/ENTER/LEA VE/RET/ 
PUSH/POP instruction. Therefore a LEAVE instruction followed immediately by a 
RET instruction will use one additional clock. But if the LEAVE and RET are rear­
ranged so that they are separated by another instruction, then no such penalty is en­
tailed. (See other recommendations regarding the LEAVE instruction.) 
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It is not necessary to separate back-to-back PUSH/POP instructions. The i486 processor 
will allow this sequence without incurring an additional clock. 

All ~uch instruction rearrangements of the instructions will not affect the performance of 
386 processors. 

The i486 processor will also take an additional clock to execute an instruction that has 
both an immediate data field and a memory offset field. For example: 

mov dword p~r foo, 1234h 
mov dword ptr baz, 1234h 
mov [ebp-2"" 1 , 1234h 

both immediate and memory offset 

When it is necessary to use constants, it would still be more efficient to use immediate 
data instead of loading the constant into a register first. But if the same immediate data 
is used more than once, then it would be faster to load the constant in a register and 
then use the register multiple times. This optimization will not affect the performance of 
386 processors. The followirig sequence is faster than the one above, if all instructions 
are in the prefetch queue, and because the instructions are shorter, it will actually make 
it easier to prefetch: 

mov eax, 1234h 
mov dword ptr foo, eax 
mov dword ptr baz, eax 
mov [ebp-2""l, eax 

G.2 PREFETCH UNIT 

The i486 processor prefetch unit will access the on-chip cache to fill the prefetch queue 
whenever the cache is idle, and there is enough room in the queue for another cache line 
(16 bytes). If the prefetch queue becomes empty, it can take up to three additional 
clocks to start the next instruction. The prefetch queue is 32 bytes in size (2 cache lines). 

Because data accesses always have priority over prefetch requests, keeping the cache 
busy with data access can lock out the prefetch unit. 

Therefore it is important to arrange the instructions so that the memory bus is not used 
continuously by a series of memory reference instructioris. The instructions should be 
rearranged so that there is a non-memory referencing instruction (such as a register/ 
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register instruction) at least two clocks before the prefetch queue becomes exhausted. 
This will allow the prefetch unit to transfer a cache line into the queue. For example: 

Instruction Length 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

mov mem, 1234567h 10 bytes 

add reg, reg 2 bytes 

If the prefetch queue started out full, then by the third MOV instruction, there is 
enough room for another cache line in the queue, but because the memory bus is con­
tinuously being used, there is no time for the transfer from the cache to the prefetch 
queue. If a non-memory instruction is not inserted before or after the third MOV in­
struction, the queue will be exhausted by the fourth MOV instruction. In this case, the 
instructions should be rearranged so the ADD instruction is before or after the third 
MOV instruction, to allow the cache to transfer another instruction line to the prefetch 
unit. 

No such rearrangements of the instructions will affect the performance of the 386 DX 
processor. 

G.3 CACHE AND CODE ALIGNMENT 

On the 386 DX processor, the destination of any JUMP/CALL/RET instructions should 
be aligned on a O-mod-4 address, this helps the instruction prefetch unit in filling the 
prefetch queue as quickly as possible, since fetches are done 4-bytes at a time on aligned 
boundaries. On the i486 processor, because of the on-chip cache, any instruction fetch 
will fetch 16 bytes to fill a cache line. Therefore better performance can be obtained by 
aligning JUMP/CALL/RET destinations at O-mod-16 addresses. 

However, aligning at O-mod-16 will cause the code to grow bigger, and the tradeoff 
between execution speed and code size is important. 

Therefore, it is recommended that only the function entry address (i.e., destination of 
CALL instructions) be aligned on a O-mod-16 address; while all labels (i.e., destination 
of JUMP instructions) will continue to be aligned on O-mod-4 addresses. 

On the i486 processor, it takes up to five additional clocks to start execution of an 
instruction if it is split across two 16-byte cache lines. For example, if a CALL instruction 
ends at address OxOOOOOOOE and the next instruction is a multiple-byte instruction, then 
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upon return from the CALL, the processor must take five additional clocks to fill the 
prefetch queue if the target instruction is not already in the cache. Even if the target 
instruction is already in the cache, it will take an additional 2 clocks to transfer it into 
the prefetch unit. . 

So if the compiler knows the alignment of the destination, then it will be faster to insert 
a filler instruction so that the multiple-byte instruction starts on an aligned address. This 
can be done either by rearranging the instructions or actually inserting a Nap 
instruction. 

Such instruction alignments will also improve the performance on the 386 processors. 

G.4 NOP INSTRUCTIONS 

Sometimes programs need filler between instructions to align them. On the 386 and i486 
processors, there is a one-byte Nap instruction which is really an exchange EAX with 
EAX. 

Other lengths can be executed in a single clock. The table below lists some. 

1-byte inc reg will modify register and flags 
2-bytes mov reg, reg true NOP 
3-bytes lea reg, 0[regJ true NOP, use 8-bit displacement 
5-bytes mov eax, 0 will modify eax register 
5-bytes add eax, 0 will modify flags 
b-bytes lea reg, 0[eaxJ true NOP, use 32-bit displacement 

Additionally, many of the 386/i486 processor instructions have several forms and lengths, 
using different-sized immediate data or different-sized memory offsets. Also some in­
structions have shorter forms if the destination register is EAX/AX/AL. 

Not all instructions with different forms will execute in the same clocks. An example 
where different forms will execute in different clocks is the PUSH/POP REG instruc­
tions, if they are coded in the one-byte form, they will execute in one clock, but if coded 
in the 2-byte form, they will execute in 4 clocks. 

The Nap replacement instructions will also execute faster than the XCHG instruction 
on 386 processors. Using different forms of the same instruction will not affect perfor­
mance on the 386 processor. 
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G.S INTEGER INSTRUCTIONS 

The i486 processor can execute most of the frequently-used instructions (such as register 
load/store, register ALU operations, etc.) in one clock. However, unlike the 386 proces­
sor, some of the memory operations now take more clocks than the corresponding reg­
ister instructions. For example, the PUSH MEM instruction: 

Instruction 386'" OX CPU Clocks 1486 ™ CPU Clocks 

mov reg, mem 4 1 

push reg 2 1 

push mem 5 4 

So for the i486 processor, loading a value from memory into a register first and then 
pushing that register will result in a net saving of 2 clocks; but for the 386 DX processor, 
the same instruction sequence will result in a net loss of one clock. However, in order to 
load the value into a register on the i486 processor, an empty register must be found; if 
the action of loading the value will destroy a value in a register that may be re-used later, 
then the saving may be negated by the loss of the re-usable value. 

Another example is the LEAVE instruction: 

Instruction 386 ™ OX CPU Clocks 1486™ CPU Clocks 

mov esp, ebp 2 1 

pop ebp 4 1 + 1 (esp. penalty) 

leave 4 5 

Again, for the i486 processor, doing the MOV/POP sequence will result in a net saving 
of 2 clocks over the LEAVE instruction; while on the 386 DX processor, the LEAVE 
instruction is both faster and shorter. However, because the first MOV instruction uses 
ESP as the destination register, and the POP instruction also implicitly uses the ESP 
register as a base (as mentioned above), this sequence will result in a one clock penalty 
unless the two instructions are separated by another instruction. If it is possible to rear­
range the instructions so the MOV/POP instructions are separated by a useful instruc­
tion, then the net savings over a LEAVE instruction is 3 clocks on the i486 processor. 

Because the i486 processor can operate with operands in registers faster than out of 
memory Gust like most other architectures), it is important to have good register alloca­
tion and value tracking optimizations in any compiler. On the other hand, there is no 
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savings in loading up every value before using it, as in a RISe architecture. The i486 
processor can perform reg, mem type ALU operations as fast as load/op/store sequences. 
For example, for the assignment 

meml = meml + mem2 

the following instruction sequences could be used, with varying total clock counts on the 
386 DX and SX processor, but identical clock counts on the i486 processor: 

Instruction 386 ™ OX CPU Clocks 1486™CPU Clocks 

mov eax, mem1 4 1 

mov ebx, mem2 4 1 

add eax, ebx 2 1 

mov mem1, eax 2 1 

mov eax, mem1 4 1 

add eax, mem2 6 2 

mov mem 1, eax 2 1 

moveax, mem1 4 1 

add mem2, eax 7 3 

The MOVZX is another example where the i486 processor can execute faster using 
simple instructions, if the destination is a register that is also byte addressable. For 
example, loading a byte value: 

Instruction 386™ ox CPU Clocks i486™ CPU Clocks 

movzx eax, mem 1 6 3 + 1 (OFh prefix) 

xor eax, eax 2 1 

movb ai, mem1 4 1 

So for the i486 processor, clearing the register first and then loading the byte value may 
result in a net saving of two clocks (depending on whether the prefix decode clock can be 
overlapped with the previous instruction, see Section 0.8 on Prefix opcodes), while there 
is no difference in performance on the 386 DX processor. 

G.6 CONDITION CODES 

In some high level languages, it is sometimes necessary to convert the result of a boolean 
condition (e.g., equality, greater-than or less-than, etc.) into a true or false (i.e., 0/1) 
value. The 386 and i486 processors normally maintain the results of comparisons in the 
flags register, so in order to convert the result of a comparison into a true/false value, it 
is necessary to convert the flags settings into an integer value. 
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The 386 and i486 processors have a set of SETcc instructions which will do such conver-:­
sions, however, the SETcc instructions take 3 or 4 clocks to execute on the i486 proces­
sor depending on whether the condition being tested for is true or false. Specifically 
while comparing unsigned vatues for greater-than or less-than, there is an optional se­
quence to use. For example, if "x" and "y" are both unsigned values, and "x" is loaded 
into register eax and "y" is loaded in register ecx, then the code for "(x < y)" could be 
generated in several ways: 

Instruction 386™ OX CPU Clocks 1486 ™ CPU Clocks 

cmp eax, ecx 2 1 
mov eax,O 2 1 
jnb L1 7+m/3 3/1 
mov eax,1 2 1 
L1 : 
cmp eax, ecx 2 1 
setb al 4/5 4/3 
movsx eax, al 3 3 
cmp eax, ecx 2 1 
sbb eax, eax 2 1 
neg eax 2 1 

So using the SBB instruction to capture the flags setting of an unsigned compare gives 
the fastest performance, without breaking the prefetch pipeline because there are no 
jumps involved. Note that although this is specific for the "(x < y)" condition, it is 
possible to transform other tests to this form by either negating the condition or by 
exchanging the operands. ' 

Such condition code instruction replacements will also improve the performance on the 
386 cPUs. 

G.7 STRING INSTRUCTIONS 

Like the 386 DX processor, the i486 processor executes string instructions slower than 
the load/store instructions. For example, the tODS instruction: 

Instruction 386™ OX CPU Clocks i486 ™ CPU Clocks 

mov eax, [esi] 4 1 

add esi, 4 2 1 

lads 5 4 

The LODS instruction does more than the individual MOY instruction, it also updates 
the ESI register. However, if it is not necessary to have the register updated, then the 
MOY instruction will result in a net saving of 3 clocks on both the 386 DX and the i486 
processors. The minor tradeoff is that the LODS instruction is shorter than the MOY 
instruction. 
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Also in a non-REPeated usage, individual MOV instructions will always be faster than 
the string MOVS instruction. And even in a REPeated loop, if the loop is small enough, 
it will be faster to use individual load/store instructions than to set up for a REPeated 
MOVS. The tradeoff again is speed vs. code space, with the REP MOVS loop being 
shorter but slower. However, as discussed above, a long sequence of load/store instruc­
tions will prevent the prefetch unit from filling the prefetch queue and slow the proces­
sor, so the recommendation is not to move more than 16 bytes with load/store 
instructions before a· non-memory instruction to allow the prefetch unit to access the 
cache. . 

Similar optimizations can also be made for the STOS and other string instructions. Such 
string instruction replacements will also improve the performance on the 386 processor. 

G.8 FLOATING-POINT INSTRUCTIONS 

As with the 386 processor/387 math coprocessor combination, the floating point unit of 
the processor is a separate execution unit and it operates in parallel with the integer 
unit, even though they are physically, on the same chip. Therefore any instruction se­
quence that allows the two independent units to execute in parallel will be faster. 

Floating point instructions should not be placed one immediately after another. The 
instructions should be rearranged so that two floating point instructions are separated by 
other non-floating point instructions so the two units can execute in parallel. Pay partic­
ular attention to the clock courits of the floating point instruction, so sufficient number 
of integer instructions could be executed without causing the floating point unit to wait 
before the next floating point instruction is issued. Such rearrangements of the instruc­
tions will also improve the performance on the 386 processor/387 math coprocessor, 
however, the clock counts used by the processor is much lower than the clock counts 
used by the 387 math coprocessor for the same floating point instructions. 

As a reminder, any simple arrangements or movement of floating point values should not 
be done via the floating point unit, but rather through the integer unit with integer 
instructions. Also FWAIT's are never required around simple floating point instructions. 

G.g PREFIX OPCODES 

On either processor, all prefix opcodes, including OFh, segment override, operand size/ 
addressing, bus-lock, repeat, etc. require an additional clock to decode. This clock can be 
overlapped with the execution of the previous instruction if it takes more than one clock 
to execute. 

Therefore it will be faster to expand 16-bit operands to a full 32-bits and then operate on 
the 32-bit value instead of using the 66h prefix to operate on 16-bit operands. 

If prefix opcodes must be used, try to rearrange the instructions so that the instruction 
with the prefix is after an instruction that takes multiple clocks to execute. 
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An additional reason for not using 16-bit operands is that if the destination of one 
instruction is a 16-bit register, and the immediately following instruction uses that regis­
ter as a 32-bit operand, then there is a one clock penalty. Again, the two instructions 
should be separated by another instruction to avoid the penalty. 

G.10 OVERLAPPED CLOCKS 

As mentioned above, there are several situations where an instruction will take an extra 
clock to execute, but some of these extra clock penalties can overlap with one another. 
So an instruction that uses multiple features mentioned above will not necessarily have a 
total penalty that is the sum of the individual penalties. 

In particular, the following combinations will overlap: 

• Having an index register and an immediate field with a memory offset field will only 
cost a one clock penalty. 

• Having a prefix opcode and using the result register of the previous instruction as a 
base will only cost a one clock penalty. 

• Having a prefix opcode after a multi-clock instruction will not cost any additional 
clock penalty. 

G.11 MISCELLANEOUS USAGE GUIDELINES 

The instruction set of the 386 processors was designed with certain programming prac­
tices in mind. Many of these practices remain relevant in assembly-language program­
ming for the i486 processor, and may be of interest in compiler design as well. ' 

• Use the EAX register when possible. Many instructions are one byte shorter when 
the EAX register is· used, such as loads and stores to memory when absolute ad­
dresses are used, transfers to other registers using the XCHG instruction, and oper­
ations using immediate operands. 

• Use the D-data segment when possible. Instructions which deal with the D-space are 
one byte shorter than instructions which use the other data segments, because of the 
lack of a segment-override prefix. 

• Emphasize short one-, two-, and three-byte instructions. Because instructions for the 
i486 processor begin and end on byte boundaries, it has been possible to provide 
many instruction encodings which are more compact than those for processors with 
word-aligned instruction sets. An instruction in a word-aligned instruction set must be 
either two or four bytes long (or longer). Byte alignment reduces code size and in­
creases execution speed. 

• Access 16-bit data with the MOVSX and MOVZX instructions. These instructions 
sign-extend and zero-extend word operands to doubleword length. This eliminates the 
need for an extra instruction to initialize the high word. 

• For faster interrupt response, use the NMI interrupt when possible. 
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• In place of using an ENTER instruction at lexical level 0, use a code sequence like: 

PUSH EBP 
·MOV EBP, ESP 

SUB ESP, BYTE_COUNT 

This executes in seven clock cycles, rather than ten. 

The following techniques may be applied as optimizations to enhance the speed of a 
system after its basic functions havebeen implemented: 

• The jump instructions come in two forms: one form has an eight-bit immediate for 
relative jumps in the range from 128 bytes back to 127 bytes forward, the other form 
has a full 32-bit displacement. Many assemblers use the long form in situations where 
the short form can be used. When it is clear that the short form may be used, explic­
itly specify the destination operand as being byte length. This tells the assembler to 
use the short form. If the assembler does not support this function, it will generate an 
error. Note that some assemblers perform this optimization automatically. 

• Use the ESP register to reference the stack in the deepest level of subroutines. Don't 
bother setting up the EBP register and stack frame. 

• For fastest task switching, perform task switching in ·software. This allows a smaller 
processor state to be saved and restored. See Chapter 7 for a discussion of 

. multitasking. 

• Use the LEA instruction for adding registers together. When a base register and 
index register are used with the LEA instruction, the destination is loaded with their 
sum. The contents of the index register may be scaled by 2, 4, or 8. 

• Use the LEA instruction for adding a constant to a register. When a base register and 
a displacement are used with the LEA instruction, the destination is loaded with their 
sum. The LEA instruction can be used with a base register, index register, scale 
factor, and displacement. 

• Use integer move instructions to transfer floating-point data. 

• Use the form of the RET instruction which takes an immediate value for byte-count, 
rather than an ADD ESP instruction. It saves one clock cycle and three bytes on 
every subroutine call . 

.• . When several references are made to a variable addressed with a displacement, load 
the displacement into a register. 

• The PUSH and POP instructions, when used with an operand in memory, take two 
. more clock cycles to execute than an equivalent two-instruction sequence which 

moves the operand through a general register before pushing it on the stack. 

• The LOOP instruction takes two more clock cycles to execute than the equivalent 
decrement and conditional jump instructions. 

• The JECXZ instruction takes one more clock cycle to execute than the equivalent 
compare and conditional jump instructions. 
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Abort - An exception which is completely unrecoverable, such as stack exception during 
an attempt to invoke an exception handler. 

Address - See Logical Address, Linear Address, and Physical Address. 

Address Space-The range of memory locations which may be accessed by an address. 

Address-Size Prefix - An instruction prefix which selects the size of address offsets. Off­
sets may be 16- or 32-bit. The default address size is specified by the D bit in the code 
segment for the instruction. Use of the address-size prefix selects the non-default size. 

Address Translation - The process of mapping addresses from one address space to 
another. Segmentation and paging both perform address translation. 

Base Address - The address of the beginning of a data structure, such as a segment, 
descriptor table, page,. or page table. 

Base Register - A register used for addressing an operand relative to an address held in 
the register. 

Base - (1) A term used in logarithms and exponentials. In both contexts, it is a number 
that is being raised to a power. The two equations (y = log base b of x) and (by = x) are 
the same. (2) A number that defines the representation being used for a string of digits. 
Base 2 is the binary representation; base 10 is the decimal representation; base 16 is the 
hexadecimal representation. In each case, the base is the factor of increased significance 
for each succeeding digit (working up from the bottom). (3) See Base Address. 

BCD - Binary Coded 'Decimal; a format for representing numbers in base 10. One byte is 
used for each digit of the number, with bit positions 0 to 3 specifying the value for the 
digit. The auxiliary carry flag isused to perform BCD arithmetic. The FPU supports a 
packed form of BCD, in which 18 digits and a sign bit are contained in an 80-bit 
operand. 

Bias - A constant that is added to the true exponent of a real number to obtain the 
exponent field of that number's floating-point representation in the FPU. To obtain the 
true exponent, you must subtract the bias from the given exponent. For example, the 
single real format has a bias of 127 whenever the given exponent is nonzero. If the 8-bit 
exponent field contains 10000011 (binary), which is 131 (decimal), the true exponent is 
131-127, or + 4. Also known as an excess representation, in this case excess -127. 

Biased Exponent-The exponent as it appears in a floating-point representation of a 
number. The biased exponent is interpreted as an unsigned, positive number. In the 
above example, 131 is the biased exponent. 
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Binary Coded Decimal- A method of storing numbers that retains a base 10 represen­
tation. Each decimal digit occupies 4 full bits (one hexdecimal digit). The hexadecimal 
values A through F (1010 to 1111) are not used. The i486™ processor supports a packed 
decimal format that consists of 9 bytes of binary coded decimal (18 decimal digits) and 
one sign byte. 

Binary Point-An entity just like a decimal point, except that it exists in floating-point 
binary numbers. Each binary digit to the right of the binary point is multiplied by an 
increasing negative power of two. 

Bit Field - A sequence of up to 32 bits which may start at any bit position of any byte 
address. The i486 processor has instructions for efficient operations on bit fields. 

Bit String- A sequence of up to 232 -1 bits which may start at any bit position of any 
byte address. The i486 processor has instructions for efficient operations on bit strings. 

Breakpoint-An aid to program debugging in which the programmer specifies forms of 
memory access which generate exceptions. The exceptions invoke debugging software. 
The i486 processor supports software and hardware breakpoints. A software breakpoint 
is an instruction inserted into the program being debugged. When the INT 3 instruction 
is executed, a breakpoint occurs. A hardware breakpoint is set up by programming the 
debugging registers. The contents of the debugging registers specify the address, size, 
and type of reference for as many as four breakpoints. Unlike software breakpoints, 
hardware breakpoints can be applied to data. 

Byte-An 8-bit quantity of memory; the smallest unit of memory referenced by an 
address. 

C3-CO - The four "condition code" bits of the FPU status word. These bits are set to 
certain values by the compare, test, examine, and remainder functions of the FPU. 

Cache-A small, fast memory which holds the active parts of a larger, slower memory/ 

Cache Flush - An operation which marks all cache lines as invalid. The i486 processor 
has instructions for flushing internal and external caches. 

Cache Line - The smallest unit of storage which can be allocated in a cache. The inter­
nal cache of the i486 processor has a line size of 128 bits. 

Cache Line Fill- An operation which loads an entire cache line using mUltiple read 
cycles to main memory. 

Cache Miss - A request for access to memory which requires actually reading main 
memory. 

Call Gate - A gate descriptor for invoking a procedure with a CALL or JUMP 
instruction. 
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Characteristic-A term used for some non-Intel® computers, meaning the exponent 
field of a floating-point number. 

Chop - In the FPU, to set one or more low-order bits of a real number to zero, yielding 
the nearest representable number in the direction of zero. 

Code Segment-An address space which contains instructions; an executable segment. 
An instruction-fetch cycle must address a code segment. The type of information held in 
a segment is specified in its segment descriptor. 

Condition Code - The four bits of the FPU status word that indicates the results of the 
compare, test, examine, and remainder functions of the FPU. 

Conforming Segment-A code segment which executes with the RPL of the segment 
selector or the CPL of the calling program, whichever is less privileged. 

Context Switch - See Task Switch. 

Control Word-A 16-bit FPU register that the user can set, to determine the modes of 
computation the FPU will use and the exception interrupts that will be enabled. 

Coprocessor- An extension to the base architecture and instruction set of a processor. 
The 38TM numerics coprocessor is used to add floating-point arithmetic instructions and 
registers to the 386 ™ processor. Coprocessors allow present-day systems to enjoy the 
architectural enhancements which will be available in future processor chips. 

CPL - See Current Privilege Level. 

CPU - Central Processor Unit. See Processor. 

Current Privilege Level (CPL) - The privilege level of the program which is executing. 
Normally, the privilege level is loaded· from a code segment descriptor. It is loaded into 
the CS segment register, where it is visible to software as the two lowest bits of the 
register. When execution is transferred to a conforming code segment, the privilege level 
does not change. In this case, the CPL may be different from the privilege level specified 
in the descriptor (DPL). 

Data Segment-An address space which contains data. As many as four data segments 
may be in use without reloading the segment registers. The type of information held in a 
segment is specified in its segment descriptor. 

Data Structure - An area of memory defined for a particular use by hardware or soft­
ware, such as a page table or task state segment (TSS). 

Debug Registers - A set of registers used to specify as many as four hardware break­
points. Unlike breakpoint instructions, which only can be used for code breakpoints, the 
debug registers can specify breakpoints in either code or data. 
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Denormal-A special form of floating-point number. On the FPU, a denormal is defined 
as a number that has a biased exponent of zero. By providing a significand with leading 
zeros, the range of possible negative exponents can be extended by the number of bits in 
the significand. Each leading zero is a bit of lost accuracy, so the extended exponent 
range is obtained by reducing significance. 

Descriptor Privilege Level (DPL) - The privilege level applied to a segment. The DPL is 
a field in the segment descriptor. 

Descriptor Table - An array of segment descriptors. There are two kinds of descriptor 
tables: the Global Descriptor Table (GDT) and an arbitrary number of Local Descriptor 
Tables (LDTs). 

Device Driver-A procedure or task used to manage a peripheral device, such as a disk 
drive. 

Displacement-A constant used in calculating effective addresses. A displacement mod­
ifies the address independently of any scaled indexing. A displacement often is used to 
access operands which have a fixed relation to some other address, such as a field of a 
record in an array. 

Double Extended - IEEE Std 754 term for the FPU's extended format, with more expo­
nent and significand bits than the double format and an explicit integer bit in the 
significand. 

Double Format-A floating-point format supported by the FPU that consists of a sign, 
an II-bit biased exponent, an implicit integer bit, and a 52-bit significand, a total of 64 
explicit bits. 

Doubleword-A 32-bit quantity of memory. Thei486 processor allows 32-bit double­
words to begin at any byte address, but a performance penalty is taken when a double­
word crosses the boundary between two doublewords in physical memory. 

DPL-See Descriptor Privilege Level. 

Effective Address - The address produced from addressing-mode calculations. A base 
register, scaled index, and displacement may be used in the calculations. 

Environment - The 14 or 28 (depending on addressing mode) bytes of FPU registers 
affected by the FSTENV and FLDENV instructions. It encompasses the entire state of 
the FPU, except for the 8 registers of the FPU stack. Included are the control word, 
status word, tag word, and the instruction, opcode, and operand information provided by 
interrupts. 

ESC Instruction - An instruction encoding used for coprocessor instructions. 
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Exception - A forced call to a procedure or a task which is generated when the processor 
fails to interpret an instruction or when an INT n instruction is executed. Causes of 
exceptions include division by zero, stack overflow, undefined opcodes, and memory­
protection violations. Exceptions are faults, traps, aborts, and software-initiated 
interrupts. 

Exception Pointers - In the FPU, the indication used by exception handlers to identify 
the cause of an exception. This data consists of a pointer to the most recently executed 
ESC instruction and a pointer to the memory operand of this instruction, if it had a 
memory operand of this instruction, if it had a memory operand. An exception handler 
can use the FSTENV and FSA VE instructions to access these pointers. 

Expand-Down Segment-A type of data segment in which the meaning of the segment 
limit is reversed. All other segments accept legal offsets from the base address to the 
base address plus the segment limit. An expand-down segment accepts legal addresses in 
two ranges: from 0 to one byte below the base address, and from one byte past the 
segment limit to the top of the address space. 

Exponent - (1) Any number that indicates the power to which another number is raised. 
(2) The field of a floating-point number that indicates the magnitude of the number. 
This would fall under the above more general definition (I), except that a bias some­
times needs to be subtracted to obtain the correct power. 

Extended Format- The FPU's implementation of the double extended format of IEEE 
Std 754. Extended format is the main floating-point format used by the FPU. It consists 
of a sign, a IS-bit biased exponent, and a significand with an explicit integer bit and 63 
fractional-part bits. 

External Cache - A cache memory provided outside of the processor chip. External 
caches can be added to any kind of processor which has external main memory. The i486 
processor has instructions and page-table entry bits which are used to control external 
caches from software. 

Far Pointer-A reference to memory which includes both a segment selector and an 
offset. Used to access memory when the segment selector has not been loaded into the 
processor, for example when making a procedure call from one segment to another. 

Fault - An exception which is reported at the instruction boundary immediately before 
the instruction which generated the exception. When a fault is generated, enough of the 
state of the processor is restored to permit another attempt to execute the instruction 
which generated the fault. The fault handler is called with a return address which points 
to the faulting instruction, rather than the instruction which follows the faulting instruc­
tion. After the handler fixes the source of the exception, such as a segment or page 
which is not present in memory, the program is restarted. 

Flat Model- A memory organization in which all segments are mapped to the same 
range of linear addresses. This organization removes segmentation from the environ­
ment of application programs to the greatest degree possible. 
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Floating-Point Operand-A representation for a number expressed as a base,a sign, a 
significand, and a signed exponent. The value of the number is' the signed product of its 
significand and the base raised to the power of the exponent. Floating-point representa­
tions are more versatile than integer representations in two ways. First, they include 
fractions. Second, their exponent parts allow a much wider range of magnitude than 
possible with fixed-length integer representations. 

Floating-Point Unit (FPU) - The part of the i486 processor which contains the floating­
point registers and performs the operations required by floating-point instructions. 

FPU - See Floating-Point Unit. 

Flush - See Cache Flush. 

Gate Descriptor-A segment descriptor which can be the destination of a call or jump. A 
gate descriptor can be used to invoke a procedure or task in another privilege level. 
There are four types of gate descriptors: call gates, trap gates, interrupt gates, and task 
gates. 

GDT - See Global Descriptor Table. 

Global Descriptor Table (GDT) - An array of segment descriptors for all programs in a 
system. There is only one GDT in a system. 

Gradual Underflow-A method of handling the floating-point underflow error condition 
that minimizes the loss of accuracy in the result. If there is a denormal number that 
represents the correct result, the denormal is returned. Thus, digits are lost only to the 
extent of denormalization. Most computers return zero when underflow occurs, losing all 
signficant digits. 

Handler-A procedure or task which is called as a result of an exception or interrupt. 

Hit - See Cache Hit. 

IDT - See Interrupt Descriptor Table. 

IEEE Standard 754 - A set of formats and operations which apply to floating-point num­
bers. The formats cover 32-, 64-, and 80-bit operand sizes. The standard was developed 
by the Institute for Electrical and Electronics Engineeers (IEEE). The FPU supports all 
operand sizes covered by the standard. 

Immediate Operand - Data encoded in an instruction. 

Implicit Integer Bit - A part of the significand in the single real and double real floating­
point formats that is not explicitly given. In these formats, the entire given significand is 
considered to be the right of the binary point. A single implicit integer bit to the left of 
the binary point is always one, except in one case. When the exponent is the minimum 
(biased exponent is zero), the implicit integer bit is zero. 
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Indefinite - A special value that is returned by floating-point functions when the inputs 
are such that no other sensible answer is possible. For each floating-point format these 
exits one quiet NaN that is designated as the indefinite value. For binary integer formats, 
the negative number furthest from zero is often considered the indefinite value. For the 
FPU packed decimal format, the indefinite value contains all 1 's in the sign byte and the 
uppermost digits byte. 

Index-A number used to access a table. An index is scaled (multiplied by shifting left) 
to account for the size of the operand. The scaled index is added to the base address of 
the table to get the address of the table entry. 

Inexact - IEEE Std 754 term for the FPU's precision exception. 

Infinity - A floating-point result that has greater magnitude than any integer or any real 
number. It is often useful to consider infinity as another number, subject to special rules 
of arithmetic. All three Intel floating-point formats provide representations for + infinity 
and - infinity. 

Initialization - The process of setting up the programming environment following reset. 
The processor begins execution in real-address mode. A few processor registers have 
defined states following reset, which permit execution to begin. Initial states of the seg­
ment registers allow memory to be accessed, even though no segment selectors have 
been loaded. The DR7 register (debug control register) is clear, so no breakpoint will 
occur during initialization. The real mode program can set up data structures such as 
descriptor tables and page tables, then transfer execution to a program running in pro­
tected mode. 

Instruction Prefetch - Reading instructions into the processor from sequentially higher 
addresses in advance of execution; a. technique for overlapping the execution of 
instructions. 

Instruction Restart - An ability to make a second attempt to execute an instruction 
which generates an exception. Instruction restart is necessary for supporting virtual 
memory. When an application makes reference to a segment or page which is not 
present in memory, the application must be suspended in a way which allows restarting 
after the operating system has brought the segment or page into physical memory. In­
struction restart restores et:lough of the processor state to allow the exception handler to 
be called with a return address pointing to the instruction which generated the excep­
tion, rather than the instruction following it. 

Integer- A number (positive, negative, or zero) that is finite and has no fractional part. 
Integer can also mean the computer representation for such a number: a sequence of 
data bytes interpreted in a standard way. It is perfectly reasonable for integers to be 
represented in a floating-point format; this is what the FPU does whenever an integer is 
pushed onto the FPU stack. 
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Integer Bit - A part of the significand in floating-point formats. In these formats, the 
integer bit is the only part of the significand considered to be to the left of the binary 
point. The integer bit, is always one, except in one case: when the exponent is the mini­
mum (biased exponent is zero), the integer bit is zero. In the extended format the 
integer bit is explicit; in the single format and double format the, integer bit is implicit; 
i.e., is not actually stored in memory. 

Internal Cache - A cache memory on the processor chip. The i486 processor has 8K 
bytes of internal cache memory. ' 

Interrupt-A forced transfer of program control caused by a hardware signal or execu­
tion of the INT n instruction. Interrupt handlers called by software are processed like 
exceptions. 

Interrupt Descriptor Table (IDT) - An array of gate descriptors for invoking the han­
dlers associated with exceptions and interrupts. ,A handler may be invoked by a task gate, 
interrupt gate, or trap gate. 

Interrupt Gate - A gate descriptor used to invoke an interrupt handler. An interrupt 
gate is different from a trap gate only in its effect on the IF flag. An interrupt gate clears 
the flag (disables interrupts) for the duration of the handler. 

Invalid- Unallocated. Invalid cache lines do not cause cache hits. Valid cache lines have 
been loaded with data and may cause cache hits. 

Invalid Operation - The exception condition for the FPU that covers all cases not cov­
ered by other exceptions. Included are FPU stack .overflow and underflow, NaN inputs, 
illegal infinite inputs, out-of-range inputs, and inputs in unsupported formats. 

Label- An identifier used to name places in the source code of a program, so that 
statements can refer to those places. Places named by labels include procedure entry 
points, beginning of blocks of data, and base addresses for descriptor tables. 

LDT - See Local Descriptor Table. 

Linear Address - A 32-bit address into a large, unsegmented address space. If paging is 
enabled, it translates the linear address into a physical address. If paging is not en'abled, 
the linear address is used as the physical address. 

Local Descriptor Table (LDT) - An array of segment descriptors for one program. Each 
program may have its own LDT, a program may share its LDT with another program, or 
a program may have no LDT, in which case, it uses the global descriptor table (GDT). 

Locked Instructions - Instructions which read and write a destination in memory without 
allowing other devices to become bus masters between the read cycle and the write cycle. 
This mechanism is necessary for supporting reliable communications among multiproces­
sors. The mechanism is invoked using the LOCK instruction prefix. Only certain instruc­
tions may be locked, and only when they have destination operands in memory (other 
uses of the LOCK prefix generate an invalid-opcode exception). 

Glossary-8 



GLOSSARY 

Logical Address - The number used by application programs to reference virtual mem­
ory. This number consists of two parts: a segment selector (16 bits) and an offset 
(32 bits). The segment selector is used to specify an independent, protected address 
space (segment). The offset is used as an address within that segment. Segmentation 
translates the logical address into a linear address. 

Long Integer- An integer format supported by the FPU that consists of a 64-bit two's 
complement quantity. 

Long Real- An older term for the FPU's 64-bit double format. 

Main Memory-The large memory, external to the processor, used for holding most 
instruction code and data. Generally built from cost-effective DRAM memory chips. 
May be used with the internal cache of the processor and an optional external cache. 

Mantissa-A term used with some non-Intel computers for the significand of a floating­
point number. 

Masked-A term that can apply to each of the six FPU exceptions I, D, A, 0 U, P. An 
exception is masked if a corresponding bit in the FPU control word is set to one. If an 
exception is masked, the FPU will not generate an interrupt when the exception condi­
tion occurs; it will instead provide its own exception recovery. 

Memory Management-Support for simplified models of memory; a process consisting 
of address translation and protection checks. There are two forms of memory manage­
ment, segmentation and paging. Segmentation provides protected, independent address 
spaces (segments). Paging provides access to data structures larger than the available 
memory space by keeping them partly in memory and partly on disk. 

Microprocessor - See Processor. 

Miss - See Cache Miss. 

Mode-(l) One of the FPU status word fields "rounding control" and "precision con­
trol" which programs can set, sense, save, and restore to control the execution of subse­
quent arithmetic operations. (2) See Real-Address Mode, Protected Mode, Virtual-8086 
Mode, Supervisor'Mode, User Mode. . 

ModRlM Byte - A byte following an instruction opcode which is used to specify instruc­
tion operands. 

MPU -Micro-Processor Unit. See Processor. 

Multiprocessing- Using more than one processor in a system. The i486 processor sup­
ports two kinds of mUltiprocessing: coprocessors, which are special-purpose 
performance-enhancing extensions to the architecture and instruction set, and multiple 
general-purpose processors, such as additional i486 processors. 
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Multisegmented Model- A memory organization in which different segments are 
mapped to different ranges of linear addresses. This organization uses segmentation to 
protect. data structures from damage caused by program errors. For example, the stack 
can be kept from growing into memory occupied by instruction code. 

Multitasking- Timesharing a processor among several programs, executing some num­
ber of instructions from each. The i486 processor has instructions and data structures 
which support multitasking. 

NaN -An abbreviation for "Not a Number"; a floating-point quantity that does not 
represent any numeric or infinite quantity. NaN's should be returned by functions that 
encounter serious errors. If created during a sequence of calculations, they are transmit­
ted to the final answer and can contain information about where the error occurred. 

Near Pointer-A reference to memory without a segment selector; an offset. Used to 
access memory when the segment selector has already been loaded into the processor, 
for example when one procedure calls another within the same segment. . 

Normal- The representation of a number in a floating-point format in which the signif­
icand has an integer bit one (either explicit or implicit). 

Normalize - Convert a denormal floating-point representation of a number to a normal 
represen ta tion. 

Offset - A 16- or 32-bit number which specifies a memory location relative to the base 
address of a segment. A program's code segment descriptor specifies whether 16- or 
32-bit offsets are the default. An address-size prefix specifies use of the non-default size. 

Operand - Data in a register or in memory which an instruction reads or writes (or 
both). 

Operand-Size Prefix - An instruction prefix which selects the sizes of integer operands. 
Operands may be 8- and 16-bit, or they may be 8- and 32-bit. The default operand size is 
specified by the D bit in the descriptor for the code segment which contains the instruc­
tion. Use of the operand-size prefix selects the non-default size. 

Overflow-A floating-point exception condition in which the correct answer is finite, but 
has magnitude too great to be represented in the destination format. This kind of over~ 
flow (also called numeric overflow) is not to be confused with stack overflow. 

Packed BCD - Packed Binary Coded Decimal; a format for representing numbers in 
base 10. One byte is used for each two digits of the number, with bit positions 0 to 3 
specifying the value for the less significant digit and bit positions 4 to 7 specifying the 
value for the more significant digit. Packed BCD is one of the data types supported by 
the FPU. 

Packed Decimal-An integer format supported by the FPU. A packed decimal number 
is a 10-byte quantity, with nine bytes of 18 binary coded decimal digits and one byte for 
the sign. 
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Page Directory - The first-level page table. The paging hardware of the i486 processor 
uses two levels of page tables, where the physical address produced by the first-level 
page table is the base address of the second-level page table. The use of two levels allows 
the second-level tables to be paged to disk. 

Page Directory Base Register (PDBR) - A processor register which holds the base ad­
dress of the page directory; same as the CR3 register. Because the contents of the PDBR 
register are loaded from the task state segment (TSS) during a task switch, each task can 
have its own page directory, so each can have a different mapping of virtual pages to 
physical pages. 

Page-A 4K-byte block of neighboring memory locations; the unit of memory used by 
paging hardware. 

Page Table - A table which maps part of a linear address to a physical address. The 
paging hardware of the i486 processor uses two levels of page tables, where the physical 
address produced by the first-level page table is the base address of the second-level 
page table. The use of two levels allows the second-level tables to be paged to disk. 

Page Table Entry - A 32-bit data structure in memory used for paging. It includes the 
physical address for a page and the page's protection information. It is set up by oper­
ating system software and accessed by paging hardware. 

Paging - A form of memory management used to simulate a large, unsegmented address 
space using a small, fragmented address space and some disk storage. Paging provides 
access to data structures larger than the available memory space by keeping them partly 
in memory and partly on disk. 

PDBR - See Page Directory Base Register. 

Physical Address - The address which appears on the local bus. The i486 processor has a 
32-bit physical address, which may be used to address as much as 4 gigabytes of memory. 

Physical Memory- The address space on the local bus; the hardware implementation of 
memory. Memory is addressed as 8-bit bytes, but it is implemented as 32-bit double­
words which start at addresses which are multiples of four (addresses which are clear in 
their two least significant bits). The i486 processor may have up to 4 gigabytes of physical 
memory. 

Precision - The effective number of bits in the significand of the floating-point represen­
tation of a number. 

Precision Control- An option, programmed through the FPU control word, that allows 
all FPU arithmetic to be performed with reduced precision. Because no speed advantage 
results from this option, its only use is for strict compatibility with IEEE Std 754 and 
with other computer systems. 
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Precision Exception - An FPU exception condition that results when a calculation does 
not return an exact answer. This exception is usually masked and ignored; it is used only 
in extremely critical applications, when the user must know if the results are exact. The 
precision exceptions is called inexact in IEEE Std 754. 

Privilege Level- A protection parameter applied to segments and segment selectors. 
There are four privilege levels, ranging from 0 (most privileged) to 3 (least privileged). 
Level 0 is used for critical system software, such as the operating system. Level 3 is used 
for application programs. Some system software, such as device drivers, may be put in 
intermediate levels 1 and 2. 

Processor- The part of a computer system which executes instructions; also called mi­
croprocessor, CPU, or MPU. 

Protected Mode - An execution mode in which the full 32-bit architecture of the proces­
sor is available. 

Protection - A mechanism which can be used to protect the operating system and appli­
cations from programming errors in applications. Protection can be used to define the 
address spaces accessible to a program, the kind of memory references which may be 
made to those address spaces, and the privilege level required for access. Any violation 
of these protections generates a general-protection exception. Protection can be applied 
to segments or pages. 

Pseudo-Descriptor- A 48-bit memory operand accessed when a descriptor table base 
register is loaded or stored. 

Pseudozero - One of a set of special values of the extended real format. The set consists 
of numbers with a zero significand and an exponent that is neither all zeros nor all ones. 
Pseudozeros are not created by the FPU but are handled correctly when encountered as 
operands. 

Quadword - A 64-bit operand. The CDQ instruction can be used to convert a double­
word to a quadword. A quadword held in the EDX and EAX registers may be the 
dividend used with a doubleword divisor. 

Quiet NaN -A floating-point NaN in which the most significant bit of the fractional part 
of the significand is one. By convention, these NaN's can undergo certain operations 
without causing an exception. 

Re-entrant - Allowing a program to call itself; recursive. For certain kinds of problems, 
such as operations performed on hierarchical data structures, procedures which call 
themselves are simple and efficient solutions. On the i486 processor, procedures may be 
re-entrant, however tasks are not. A task may not call itself because it has only one task 
state segment (TSS) for storing the processor state. Procedures store the processor state 
on the stack, so they may be re-entrant to an arbitrary number of levels. 
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Real-Address Mode-An execution mode which provides an emulation of the architec­
ture of an 8086 processor; also called "real mode." In this mode the i486 processor 
appears as a fast 8086 processor. The architectural extensions for protection and multi­
tasking are not available in this mode. Following reset initialization, the i486 processor 
begins execution in real mode. 

Real- Any finite value (negative, positive, or zero) that can be represented by a (pos­
sibly infinite) decimal expansion. Reals can be represented as the points of a line 
marked off like a ruler. The term can also refer to a floating-point number that repre­
sents a real value. 

Requested Privilege Level (RPL) - The privilege level applied to a segment selector. If 
the RPL is less privileged than the current privilege level (CPL), access to a segment 
takes place at the RPL level. This keeps privileged software from being used by an 
application to interfere with the operating system or other applications. For example, a 
privileged program which loads memory from disk should not be permitted to overwrite 
the operating system as a result of a call from an application: With RPL, the attempt to 
access the memory space of the operating system takes place with the privleges of the 
application. 

Reset - See Initialization. 

RPL - See Requested Privilege Level. 

Segment-An independent, protected address space. A program may have as many as 
16,383 segments, each of which can be up to 4 gigabytes in size. 

Segment Descriptor- A 64-bit data structure in memory used for segmentation. It in­
cludes the base address for a segment, its size (limit), its type, and protection informa­
tion. It is set up by operating system software and accessed by segmentation hardware. 

Segment-Override Prefix-An instruction prefix which overrides the default segment 
selection. There are six segment-override prefixes, one each for the CS, SS, DS, ES, FS, 
and OS segments. 

Segment Selector-A 16-bit number used to specify an address space (segment). Bit 
position 3 to 15 are used as an index into a descriptor table. Bit position 2 specifies 
whether the global descriptor table (ODT) or local descriptor table (LDT) is used. Bit 
positions 0 and 1 are the requested privilege level (RPL), which may lower the priority of 
access, as an additional protection check. 

Segmentation - A form of memory management used to provide multiple independent, 
protected address spaces. Segmentation aids program debugging by reporting program­
ming errors when they first occur, rather than when their effects become apparent. 
Segmentation makes programs provided to the end-user more reliable by limiting the 
damage which can be caused by undetected errors. Segmentation increases the address 
space available to. a program by providing up to 16,383 segments, each of which can be 
up to 4 gigabytes in size. 
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Set-Associative - A form of cache organization in which the location of a data block in 
main memory constrains, but does not completely determine, its location in the cache. 
Set-associative organization is a compromise between direct-mapped organization, in 
which data from a given address in main memory has only one possible cache location, 
and fully-associative organization, in which data from anywhere in main memory can be 
put anywhere in the cache. An "n-way set-associative" cache allows data from a given 
address in main memory to be cached in any of n locations. Both the Translation Looka­
side Buffer (TLB) and the integral cache of the i486 processor have a four-way set­
associative organization. 

Short Integer-An integer format supported by the FPU that consists of a 32-bit two's 
complement quantity. Short integer is not the shortest FPU integer format-the 16-bit 
word integer is. 

Short Real- An older term for the FPU's 32-bit single format. 

SIB Byte - A byte following an instruction opcode and modR/M bytes which is used to 
specify a scale factor, index, and base register. 

Sign Extension - Conversion of data to a larger format, where empty bit positions are 
filled with the value of the sign. This form of conversion preserves the value of signed 
integers. See Zero Extension. 

Signaling NaN -A floating-point NaN that causes an invalid-operation exception when­
ever it enters into a calculation or comparison, even an unordered comparison. 

Significand - The part of a floating-point number that consists of the most significant 
nonzero bits of the number, if the number were written out in an unlimited binary 
format. The significand is composed of an integer bit and a fraction. The integer bit is 
implicit in the single format and double format. The significand is considered to have a 
binary point after the integer bit; the binary point is then moved according to the value 
of the exponent. 

Single Extended - A floating-point format, required by the IEEE'Std 754, that provides 
greater precision than single; it also provides an explicit integer bit in the significand. 
The FPU's extended format meets the single extended requirement as well as the double 
extended requirement. 

Single Format-A floating-point format supported by the FPU, which consists of a sign, 
an 8-bit biased exponent, an implicit integer bit, and a 23-bit significand - a total of 32 
explicit bits. 

Stack Fault - A special case of the invalid-operation exception which is indicated by a 
one in the SF bit of the status word. This condition usually results from stack underflow 
or overflow in the FPU. 

Stack Frame -The space used on the stack by a procedure. The stack frame includes 
parameters, return addresses, saved registers, temporary storage, and any other stack 
space the procedure uses. . 
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Stack Segment-A data segment which is used to hold a stack. A stack segment may be 
expand-down, which allows the segment to be resized toward lower address. The type of 
information held in a segment is specified in its segment descriptor. 

Status Word-A 16-bit FPU register that can be manually set, but which is usually 
controlled by side effects to FPU instructions. It contains condition codes, the FPU stack 
pointer, busy and interrupt bits, and exception flags. 

String - A sequence of bytes, word, or doublewords which may start at any byte address 
in memory. The i486 processor has instructions for efficient operations on strings. 

Supervisor Mode - The privilege level applied to operating system pages. Paging only 
recognizes two privilege levels: supervisor mode and user mode. A program executing 
from a segment at privilege level 0, 1, 2 is in supervisor mode. 

Table - An array of records in memory having equal size. 

Tag Word-A 16-bit FPU register that it automatically maintained by the FPU. For each 
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives 
information about what kind of number. 

Tag Word-A 16-bit FPU register that it automatically maintained by the FPU. For each 
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives 
information about what kind of number. 

Tag - The part of a cache line which holds the address information used to determine if 
a memory operation is a hit or a miss on that cache line. 

Task Register- A register which holds a segment selector for the current task. The 
selector references a task state segment (TSS). Like the segment registers, the TR reg­
ister has a visible part and an invisible part. The visible part holds the segment selector, 
and the invisible part holds information cached from the segment descriptor for the TSS. 

Task State Segment (TSS) - A segment used to store the processor state during a task 
switch. If a separate I/O address space is used, the TSS holds permission bits which 
control access to the I/O space. Operating systems may define additional structures 
which exist in the TSS. 

Task Switch-A transfer of execution between tasks; a context switch. Unlike the proce­
dure calls, which save only the contents of the general registers, a task switch saves most 
of the processor state. For example, the registers used for address translation are re­
loaded, so that each task can have a different logical-to-physical address mapping. 

Task-A program running, or waiting to run, in a multitasking system. 

Temporary Real- An older term for the FPU's 80-bit extended format. 

Tiny-Of or pertaining to a floating-point number that is so close to zero that its expo­
nent is smaller than smallest exponent that can be represented in the destination format. 
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TLB - See Translation Lookaside Buffer. 

Top - The three-bit field of the status word that indicates which FPU register is, the 
current top of stack. 

Transcendental- One of a class of functions for which polynomial formulas are always 
appropriate, never exact for more than isolated values. The FPU supports trigonometric, 
exponential, and logarithmic functions; all are transcendental. 

Translation Lookaside ButTer (TLB) - The on-chip cache for page table entries. In typ­
ical systems, about 99% of the references to page table entries can be satisfied by infor-
mation in the TLB. ' 

Trap - An exception which is reported at the instruction boundary immediately follow­
ing the instruction which generated the exception. 

Trap Gate - A gate descriptor used to invoke an exception handler. A trap gate is dif­
ferent from an interrupt gate only in its effect on the IF flag. Unlike an interrupt gate, 
which clears the flag (disables interrupts) for the duration of the handler, a trap gate 
leaves the flag unchanged. 

TSS - See Task State Segment. 

Two's Complement - A method of representing integers. If the uppermost bit is zero, the 
number is considered positive, with the value given by the rest of the bit~. If the ~pper­
most bit is one, the number is negative, with the value obtained by subtracting (2b1t 

count) 

from all the given bits. For example, the 8-bit number 11111100 is -4, obtained by 
subtracting 28 from 252. ' , ' 

, . 

Unbiased Exponen~-The true value that tells how far and in which direction to move 
the binary point of the significand of a floating-point number. For example, if a single­
format exponent is 131, we subtract the Bias 127 to obtain the unbiased exponent + 4. 
Thus, the real number being represented is the significand with the binary point shifted 
4 bits to the right. ' 

Underflow-An exception condition in which the correct answer is nonzero, but has a 
magnitude too small to be represented as a normal number in the destination floating­
point format. IEEE Std 754 specifies that an attempt be made to represent the number 
as a denormal. This de normalization may result in a loss of significant bits from .the 
significand. This kind of underflow (also called numeric overflow) is not be confused 
with stack overflow. 

Unmasked-A term that can apply to each of the six FPU exceptions: I, D, Z, 0, U, P. 
An exception is unmasked if a corresponding bit in the FPU control word is set to zero. 
If an exception is unmasked, the FPU will generate an interrupt whent he exception 
condition occurs. You can provide an interrupt routine that customizes your exception 
recovery. 
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Unnormal- An extended real representation in which the explicit integer bit of the 
significand is zero and the exponent is nonzero. Unnormal values are not supported by 
the FPU. This includes several formats that are recognized by the 8087 and 287 copro­
cessors; they cause the invalid-operation exception when encountered as operands. 

Unsupported Format-Any number representation that is not recognized by the FPU. 
This includes several formats that are recognized by the 8087 and 287 coprocessors; 
namely: pseudo-NaN, pseudoinfinity, and unnormal. . 

USE16-An assembly language directive for specifying 16-bit code and data segments. 

USE32-An assembly language directive for specifying 32-bit code and data segments. 

User Mode - The privilege level applied to application pages. Paging only recognizes two 
privilege levels: supervisor mode and user mode. A program executing from a segment at 
privilege level 3 is in user mode. 

V86 Mode - See Virtu a 1-8086 Mode. 

Valid-Allocated. Valid cache lines have been loaded with data and may cause cache 
hits. Invalid cache lines do not cause cache hits. 

Vector-A number used to identify the source of an exception or interrupt. A vector is 
used to index into the IDT table for a gate descriptor. The gate descriptor is used to call 
the handler for the exception or interrupt. 

Virtual Memory- The memory model for application programs; a simplified organiza­
tion for memory supported by memory management hardware and operating system 
software. On the i486 processor, virtual memory is supported by segmentation and pag­
ing. Segmentation is a mechanism for providing mUltiple independent, protected address 
spaces. Paging is a mechanism for providing access to data structures larger than physical 
memory by keeping them partly in memory and partly on disk. 

Virtual-8086 Mode - An execution mode which provides an emulation of the architec­
ture of an 8086 processor. Unlike real-address mode, virtual-8086 mode is compatible 
with multitasking; a protected mode operating system may be used to run a mix of 
protected mode and virtual-8086 mode tasks. 

Word - A 16-bit quantity of memory. The i486 processor allows 16-bit words to begin at 
any byte address, but a performance penalty is taken when a word crosses the boundary 
between two doublewords in physical memory. 

Word Integer-An integer format supported by the i486 processor that consists of a 
16-bit two's complement quantity. 

Write-Back-A form of caching in which memory writes load only the cache memory. 
Data propagates to main memory when a write-back operation is invoked. 
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Write-Through - A form of caching in which memory writes load both the cache memory 
and main memory. 

Zero Divide - An exception condition in which floating-point inputs are finite, but the 
correct answer, even with an unlimited exponent, has infinite magnitude. 

Zero Extension - Conversion of data to a larger format, where empty bit positions are 
filled with zero. This form of conversion preserves the value of unsigned integers. See 
Sign Extension. 
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AAA (ASCII adjust AL after addition), 
flag cross-reference, B-1 
instruction description, 3-10 
instruction format and timing, E-lO 
instruction specification, 26-18 
one-byte opcode map, A-4 
status flag summary, C-l 

AAD (ASCII adjust AX before division),· 
flag cross-reference, B-1 
instruction description, 3-11 
instruction format and timing, E-ll 
instruction specification, 26-19 
one-byte opcode map, A-4 
status flag summary, C-l 

AAM (ASCII adjust AX after multiplication), 
flag cross-reference, B-1 
instruction description, 3-11 
instruction format and timing, E-lO 
instruction specification, 26-20 
one-byte opcode map, A-4 
status flag summary, C-l 

AAS (ASCII adjust AL after subtraction), 
flag cross-reference, B-1 
instruction description, 3-11 
instruction format and timing, E-lO 
instruction specification, 26-21 
one-byte opcode map, A-4, A-5 
status flag summary, C-l 

aborts, 
exception conditions, 9-13 
exception description, 9-2 
exception processor-detected, 9-1 

absolute address, and JMP instruction, 3-24 
AC flag (alignment check mode - bit 18), 

system flag description, 4-2 
accessed bit, 

page table entries, 5-21 
segment register loading, 3-39 

ADC (add integers with carry), 
flag cross-reference, B-1 
instruction description, 3-7 
instruction specifIcation, 26-22 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-l 

ADD (add integers), 
flag cross-reference, B-1 
instruction description, 3-7 . 
instruction specifIcation, 26-24 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-l 

address-size prefix, instruction format, 2-16 
addressable domain, restrictions to, 6-23 
addressing-mode, 

FPU architecture, 19-1 
instruction specifier, 2-16 

AF (auxiliary carry flag), status flag, 2-14 
AH (8-bit general register), 

and AAA instruction, 3-10 
and AAD instruction, 3-11 
and AAM instruction, 3-11 
and AAS instruction, 3-11 
register description, 2-8 

AHOLD input, and self test, 10-1 
AL (8-bit general re~ister), 

and AAA instructIOn, 3-10 
and AAD instruction, 3-11 
and AAM instruction, 3-11 
and AAS instruction, 3-11 
and binary arithmetic instructions, 3-6 
and CBW instruction, 3-6 
and CMPXCHG instruction, 3-43 
and DAA instruction, 3-10 
and DIV instruction, 3-9 
and immediate operands, 2-18 
and LODS instruction, 3-30 
and MOV instruction, 3-2 
and MUL instruction, 3-8 
and SCAS instruction, 3-29 
and STOS instruction, 3-30 
and XLATB instruction, 3-42 
register description, 2-8 

alignment, 
and LOCK prefix, 13-2 
and pseudo-locking, 13-3 
of data type addresses, 2-4 

alignment-check exception, 
and AC flag, 4-2 
and i486 processor, 2-24 

alignment-check fault, Interrupt 17 (alignment 
check), 9-23 

AM bit (alignment mask-bit 18), system 
control flag, 4-7 

ANaN indefinite, and stack exception, 16-20 
AND (logical and), 

flag cross-reference, B-1 
instruction description, 3-12 
instruction specifIcation, 26-26 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-2 

architecture, i486 Floating Point Unit (FPU), 
15-1 

arithmetic instructions, 
and EFLAGS register, 2-13 
and immediate operands, 2-18 
and nonarithmentic instructions, 16-2 

ARPL (adjust RPL field of selector), 
flag cross-reference, B-1 
instruction format and timing, E-12 
instruction specification, 26-27 
one-byte opcode map, A-4 
pointer integrity, 6-22 
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ASM386/486 assembler, 
and FPU numeric applications, 18-4 
and FPU register addressing modes, 15-1 
and i486 Floating Point Unit (FPU), 14-6 

automatic exception handling, numeric 
exceptions, 16-18 

automatic locking, and LOCK#, 13-3 
A VL field, I/O addressing, 8-1 
AX (16-bit general register), 

and CMPXCHG instruction, 3-43 
and CWD instruction, 3-4 
and CWDE instruction, 3-6 
and DIV instruction, 3-9 
and MUL instruction, 3-8 
and SCAS instruction, 3-29 
and STOS instruction, 3-30 
register description, 2-8 

B bit, and Intel 8087 compatibility, 15-2 
base, 

effective-address computation, 2-22 
segment descriptors, 5-10 

base address, . 
and effective address, 2-21 
and segment descriptor, 2-2 
and segment descriptors, 5-10 
and segmented address space, 2-3 

BCD (binary coded decimal), data type, 2-6 
benign exceptions, and Interrupt 8 (double 

fault), 9-16 
BH (8-bit general register), register description, 

2-8 
bidirectional port, and input/output, 8-1 
binary arithmetic instructions, and application 

programming, 3-6 ' 
binary integers, FPU data type, 15-11 . 
bit block,transfer, and double-shift instructions, 

3-19 
bit field, data type, 2-6 
bit string, data type, 2-6 
BL (8-bit general register), register description, 

2-8 
block I/O instructions, 

INS (input string from port), 8-5 
OUTS (output string from port), 8-6 

block-structured language, 
instructions, 3-30 
lexical level, 3-32 

Boolean expressions, and byte-set-on-condition 
instructions, 3-22 

BOUND (check array index against bounds), 
flag cross-reference, B-1 
general description, 3-27 
instruction format and timing,' E-13 
instruction specification, 26-29 
one-byte opcode map, A-4 

bounds-check exception, and i486 processor, 
2-23 . 

bounds-check fault, Interrupt 5 (bounds check), 
9-15 

BP (16-bit general register), register 
description, 2-8 

breakpoint exception, 
debugging support, 11-1 
and i486 processor, 2-23 

breakpoint mstruction, debugging support, 11-1 
breakpoint trap, Interrupt 3 (breakpoint 

instruction), 9-14, 11-9 
breakpoints, and debug registers, 4-8, 11-5 . 
BSF (bit scan forward), 

flag cross-reference, B-1 
instruction description, 3-12 
instruction format and timing, E-9 
instruction specification, 26-31 
status flag summary, C-2 
two-byte opcode map, A-7 

BSR (bit scan reverse) .. 
flag cross-reference, B-1 
instruction description, 3-12 
instruction format and timing, E-9 
instruction specification, 26-33 
status flag summary, C-2 
two-byte opcode map, A-7 

BSW AP (byte swap), 
flag cross-reference, B-1 
instruction description, 3-43 
instruction format and timing, E-6 
instruction specification, 26-35 
two-byte opcode map, A-7 

BT (bit test), 
flag cross-reference, B-1 
instruction description, 3-12 
instruction format and timing, E-9 
instruction specification, 26-36 
modR/M byte opcodes, A.;8 
status flag summary, C-3 
two-byte opcode map, A-6 

BTC (bit test and complement), 
flag cross-reference, B-1 
instruction description, 3-12 ' 
instruction specification, 26-38 
status flag summary, C-3 
two-byte opcode map, A-7 

BTR (bit test and reset), 
flag cross-reference, B-1 
instruction description,· 3-12 
instruction specification, 26-40 
modR/M byte opcodes, A-8 
status flag summary, C-3 
two-byte opcode map, A-6 

BTS (bit test and set), 
flag cross-reference, B-1 
instruction description, 3-12 
instruction specifIcation, 26-42 
modR/M byte opcodes, A-8 
status flag summary, C-3 
two-byte opcode map, A-7 

bus masters, 
and LOCK prefix, 13-2 
and processor communication, 13-1 
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busy bit, 
and re-entrant task switching, 7-12 
and TSS descriptor, 7-3 

BX (16-bit general register), register 
description, 2-8 

byte, data type, 2-3 

C programs, and FPU numeric applications, 
18-1 

C-386/486, and FPU numeric applications, 18-1 
cache, 

associative memories and tag, 12-1 
consistency and multiprocessing systems, 

13-1 
consistency and mUltiprocessor systems, 12-1 
control bits and page table entries, 5-22 
disabling bits and internal cache, 12-2 
external cache, 12-1 
hit and associative memory tag, 12-1 
initialization testing, 10-10 
internal cache, 12-1 
line fill and cache lines, 12-2 
lines and internal cache, 12-1 
miss and associative memory tag, 12-1 
structure, 10-10 
test operations, 10-13 
test registers, 10-12 

cache management, 
instructions (system programming), 4-9 
INVD (invalIdate cache), 12-3 
PCD bits (page-level cache disable), 12-4 
WBINVD (write-back and invalidate cache), 

12-3 
caching, 

and I/O data, 8-4 
and pae;e-Ievel management, 12-3 
and wnte-back, 12-2 
and write-through, 12-2 
enable and initialize, 10-4 

CALL (call procedure), 
flag cross-reference, B-1 
e;eneral description, 3-24 
Instruction format and timing, E-7, E-8 
instruction specification, 26-44 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 

call gates, and control transfers, 6-11 
carry flag instructions, and CF flag, 3-37 
CBW (convert byte to word), 

flag cross-reference, B-1 
instruction description, 3-6 
instruction format and timing, E-6 
instruction specification, 26-51 
one-byte opcode map, A-4, A-5 

CD bit (cache disable - bit 30), system control 
flag, 4-6 

CDQ (convert doubleword to quadword), 
instruction description, 3-4 
instruction specification, 26-64 

CF (carry flag), status flag, 2-14 

CF flag, 
and binary arithmetic instructions, 3-6 
and carry flag instructions, 3-37 
and DEC instruction, 3-6 
and INC instruction, 3-6 

CH (8-bit general register), register description, 
2-8 

CL (8-bit general register), 
and shift instructions, 3-13 
register description, 2-8 

CLC (clear carry flag), 
flag cross-reference, B-1 
instruction format and timing, E-lO 
instruction specification, 26-52 
one-byte opcode map, A-5 

CLD (clear direction flag), 
flag cross-reference, B-1 
instruction format and timing, E-lO 
instruction specification, 26-53 
one-byte opcode map, A-5 

CLI (clear interrupt-enable flag), 
and INTR interrupts, 9-3 
flag cross-reference, B-1 
instruction format and timing, E-lO 
instruction specification, 26-54 
one-byte opcode map, A-5 
sensitive instructions, 8-6 

CLTS (clear task-switched flag in CRO), 
flag cross-reference, B-1 
instruction format and timing, E-ll 
instruction specification, 26-55 
privileged instruction, 6-19 
two-byte opcode map, A-6 

CMC (complement carry flag), 
flag cross-reference, B-1 
instruction format and timing, E-lO 
instruction specification, 26-56 
one-byte opcode map, A-4 

CMP (compare two operands), 
flag cross-reference, B-1 
instruction description, 3-8 
instruction format and timing, E-4 
instruction specification, 26-57 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

CMPS (compare strings), 
flag cross-reference, B-1 
instruction description, 3-29 
instruction format and timing, E-9 
instruction specification, 26-59 
status flag summary, C-2 

CMPSB (compare bytes), 
instruction specification, 26-59 
one-byte opcode map, A-4 

CMPSD (compare doublewords), 
instruction specification, 26-59 
one-byte opcode map, A-4 

CMPSW (compare words), 
instruction specification, 26-59 
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one-byte opcode map, A-4 
CMPXCHO (compare and exchange), 

flag cross-reference, B-1 
instruction description, 3-43 
instruction format and timing, E-6 
instruction specification, 26-62 
status flag summary, C-2 
two-byte opcode map, A-6 

code segments, 
and CS register, 2-11 
and data access, 6-8 
and segment descriptors, 5-13 

comparison instructions, floating-point 
instructions, 17-4 

compatibility, 
i486 Floating Point Unit (FPU), 14-1 
initialization, 10-1 
Intel 386/387 DX processor differences, 25-1 
Intel 80286/80287 processor differences, 25-2 
Intel 8086/8087 processor differences, 25-10 

concurrent processing, IU and FPU, 18-12 
condition codes, and EFLAOS register, 2-13 
conditional branching example, numeric 

programming, 20-1 
conforming segment, and control transfer 

restrictions, 6-9 , 
constant instructions, floating-point 

instructions, 17-6 
contributory exceptions, and Interrupt 8 

(double fault), 9-16 
control instructions, floating-point 

instructions, 17-6 
control registers, of i486 processor, 2-8 
control transfers, 

and call gates, 6-11 
and gate descriptors, 6-11 
instructions and application programming, 

3-23 
restrictions to, 6-9 

coprocessor-not-availableexception, and EM 
control flag, 4-7 

coprocessor-segment overrun abort, Interrupt 9 
(Intel reserved), 9-17 

copy-on-write strategy, and user-mode write 
protect, 6-24 

CPL (current privilege level), 
and control transfer restrictions, 6-9 
and CS segment register, 6-6 
and data access restrictions, 6-7 

CRO (system control register), 
and AC flag, 4-2 
and paging, 2-2, 5-2 
and PO bit, 5-18 
register description, 4-5 

CR1 (system control register), register descrip-
tion 4-5 . 

CR2 (sy~tem control register), register descrip­
tion, 4-5 

CR3 (system control register), 
and page frame address, 5-18 

and page-directory register (PDBR), 4-6 
register description, 4-5 

CS (segment register), 
and code segment, 2-11 
and CPL (current privilege level), 6-6 
and far control transfer instructions, 3-40 
register description, 2-10 

CWD (convert word to doubleword), 
flag cross-reference, B-1 
instruction description, 3-4 
instruction format and timing, E-6 
instruction specification, 26-64 
one-byte opcode map, A-4, A-5 ' 

CWDE (convert word to doubleword 
extended), 

instruction description, 3-6 
instruction specification, 26-51 

CX (16-bit general register), register descrip­
tion, 2-8 

D bit, segment descriptors, 5-12 
DAA (decimal adjust AL after addition), 

flag cross-reference, B-1 
instruction description, 3-10 
instruction format and timing, E-11 
instruction specification, 26-65 
one-byte opcode map, A-4 
status flag summary, C-1 

DAS (decimal adjust AL after subtraction), 
flag cross-reference, B-1 ' 
instruction description, 3-10 
instruction format and timing, E-11 
instruction specification, 26-66 
one-byte opcode map, A-4, A-5 
status flag summary, C-1 

data access, 
code segments shared data, 6-8 
restrictions to, 6-7 

data bus, and doubleword transfers, 2-6 
data movement instructions, 

and application programming, 3-1 
and LOCK prefix, 13-2 

data segment, 
and DS register, 2-11 
and ES register, 2-11 
and FS register, 2-11 
and OS register, 2-11 
and segment descriptor, 5-13 
descriptor and writable bit, 6-3 

data transfer instructions,' floating-point 
instructions, 17-2 

data type, 
BCD, 2-6 
bit field, 2-6 
bit string, 2-6 
byte, 2-3 
doubleword, 2-4 
far pointer, 2-6 
floating-point, 2-6 
integer, 2-6 
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near pointer, 2-6 
ordinal, 2-6 
packed BCD, 2-6 
string, 2-6 
word,2-3 

data type encoding, and unsupported formats, 
16-13 

data types and formats, i486 Floating Point 
Processor (FPU), 15-9 

data-breakpoint trap, Interrupt 1 (debug excep­
tions), 9-14, 11-6 

debug address registers (DRO-DR3), 
debugging support, 11-1 
for breakpoint linear address, 11-2 

debug control register (DR7), 
debugging support, 11-1 
for breakpoint memory access, 11-2 

debug exception, 
and i486 processor, 2-23 
and RF flag, 4-3, 9-4 
and TF flag, 4-3 

debug interrupt vector, debugging support, 11-1 
debug status register (DR6), 

conditions sampled, 11-4 
debugging support, 11-1 

debugging, 
i486 processor facilities, 11-1 
instructions for system programming, 4-9 

DEC (decrement by one), 
and CF flag, 3-6 
flag cross-reference, B-1 
instruction description, 3-8 
instruction specification, 26-67 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

decimal arithmetic instructions, and application 
programming, 3-10 

decimal integers, FPU data type, 15-12 
default segment, assignment of, 2-19 
defining data, ASM386/486, 18-4 
demand-paged virtual memory, and paging, 5-2 
denormal real numbers, FPU data formats, 

16-1 
denormal-operand exception, 

denormal operand, 16-22 
numeric exceptions, 16-17 
pseudodenormal numbers, 16-13 

descriptor table addressing, instructions 
(system programming), 4-9 

descriptor table base registers, 
GDTR register, 5-16 
IDTR register, 5-16 
segment descriptors, 5-16 

descriptor validation, 
VERR (verify for read), 6-21 
VERW (verify for. write), 6-21 

destination operand, 
for binary arithmentic instructions, 3-6 
for floating-point instructions, 17-1 

for two-operand instructions, 2-17 
device drivers, and privilege levels, 6-6 
device-not-available fault, 

and i486 processor, 2-23 
Interrupt 7 (device not available), 9-15 

DF (direction flag), 
direction flag control instructions, 3-37 
EFLAGS register, 2-13 

DH (8-bit general register), register descrip­
tIOn, 2-8 

DI (16-bit general register), register descrip­
tion, 2-8 

direct load instructions,' and segment registers, 
5-7 

directed rounding, FPU rounding control, 
15-16 

direction flag control instructions, and DF flag, 
3-37 

dirty bits, and page table entries, 5-21 
displacement, 

effective address, 2-21 
instruction format, 2-16 

display, stack frame pointer set, 3-30 
DIV (unsigned divide), 

flag cross-reference, B-1 . 
general description and flags, 3-9 
instruction format and timing, E-5 
instruction specification, 26-68 
modR/M byte opcodes, A-8 

divide-by-zero, numeric exceptions, 16-17 
divide-error exception, and i486 processor, 2-23 
divide-error fault, Interrupt 0 (dIvide error), 

9-14 
division by zero, and zero-divide exception, 

16-21 
DL (8-bit general register), register description, 

2-8 
double real, numeric data type, 14-6 
double-shift instructions, 

and bit block transfer, 3-19 
and string insertion/extraction, 3-19 

doubleword, 
data type, 2-4 
databus transfers; 2-6 

DPL (descriptor privilege level), 
and control transfer restrictions, 6-9 
and data access restrictions, 6-7 
and segment descriptors, 6-6 
and segment privilege level, 5-14 

DS (segment register), 
and application program, 2-12 
and data segment, 2-11 
register description, 2-10 

DX (16-bit general register), 
and CWD instruction, 3-4 
register description, 2-8 

dynamic storage, and ENTER instruction, 3-30 

E bit (expansion direction bit), and segment 
descriptor, 6-4 
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EAX (32-bit general register), 
and binary arithmetic instructions, 3-6 
and CDO instruction, 3-4 
and CMPXCHG instruction, 3-43 
and CWDE instruction, 3-6 
and DIV instruction, 3-9 
and immediate operands, 2-18 
and IMUL instruction, 3-8 
and LODS instruction, 3-30 
and MOV instruction, 3-2 
and MUL instruction, 3-8 
and PUSHA instruction, 3-3 
and SCAS instruction, 3-29 
and STOS instruction, 3-30 
register description, 2-8 

EBP (32-bit general register), 
and ENTER instruction, 3-31 
and LEAVE instruction, 3-35 
and PUSHA instruction, 3-3 
register description, 2-8 

EBX (32-bit general register), 
and LEA instruction, 3-41 
and PUSHA instruction, 3-3 
and XLA TB instruction, 3-42 
register description, 2-8 

ECX (32-bit general register), 
and JECXZ instruction, 3-26 
and loop instructions, 3-25 
and LOOPE instruction, 3-26 
and LOOPNE instruction, 3-26 
and LOOPNZ instruction, 3-26 
and LOOPZ instruction, 3-26 
and MOVS instruction, 3-29 
and PUSHA instruction, 3-3 
and three-operand instructions, 2-18 
register description, 2-8 

EDI (32-bit general register), 
and LEA instruction,· 3-41 
and MOVS instruction, 3-29 
and PUSHA instruction, 3-3 
and STOS instruction, 3-30 
for string destination operand, 3-29 
register description, 2-8 

EDX (32-bit general register), 
and CDO instruction, 3-4 
and IMUL instruction, 3-8 
and PUSHA instruction, 3-3 
register description, 2-8 

effective address, components of, 2-21 
EFLAGS register, 

AC flag (alignment check mode-bit 18),4-2 
and arithmetic instructions, 2-13 
and condition codes, 2-13 
and conditional transfer instructions, 3-24 
and DF (direction flag), 2-13 
and flag control instructions, 3-35 
and I/O protection, 8-6 
and IRET instruction, 3-24 
and mode bits, 2-13 
and string instructions, 2-13 

and system programming, 4-2 
as register operand, 2-19 
IF flag (interrupt-enable flag - bit 9), 4-3 
IOPL flag (I/O privilege level- bits 12 

and 13),4-3 
NT flag (nested task-bit 14),4-3 
RF flag (resume flag-bit 16),4-3 
TF flag (trap flag - bit 8), 4-3 
VM flag (virtual-8086 mode - bit 17), 4-3 

EIP register, 
and CALL instruction, 3-24 
and conditional jump instructions, 3-25 
and current code segment, 2-14 
and instruction prefetching, 2-15 
and RET instruction, 3-24 

EM bit (emulate coprocessor), numerics 
environment configuration, 19- 2 

EM (emulation - bit 2), system control flag, 4-7 
ENTER (make stack frame for procedure), 

flag cross-reference, B-1 
~eneral description, 3-30 
Instruction format and timing, E-8 
instruction specification, 26-70 
one-byte opcode map, A-5 

ERROR#, and NE control flag, 4-7 
error codes, 

and exception handler, 9-13 
summary of, 9-24 

ES register, 
and application program, 2-12 
and data segment, 2-11 
segment register, 2-10 

ESCAPE instructions, and i486 Floating Point 
Unit (FPU), 14-5 

ESI (32-bit general register), 
and LEA instruction, 3-41 
and LODS instruction, 3-30 
and MOVS instruction, 3-29 
and PUSHA instruction, 3-3 
for string source operand, 3-29 
register description, 2-8 

ESP (32-bit general register), 
and ENTER instruction, 3-31 
and LEAVE instruction, 3-35 
and POP instruction, 3-3 
and POP A instruction, 3-4 
and PUSH instruction, 3-2 
and PUSHA instruction, 3-3 
and RET instruction, 3-24 
register description, 2-8 

ET (extension type - bit 4), system control flag, 
4-7 

exact arithmetic, and i486 Floating Point Unit 
(FPU), 14-4 

exception handling example, numeric 
programming, 20-1 

exception vector, identifying number, 9-1 
exceptions, 

alignment-check exception, 2-24 
and instruction prefetching, 2-15 
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and instruction restart, 9-2 
and page mapping, 2-2 
and task switching, 7-1 
and trap gates, 6-11 . 
bounds-check exception, 2-23 
breakpoint exception, 2-23 
conditions causing, 9-13 
debug exception, 2-23 
description of, 2-23 
device-not-available exception, 2-23 
divide-error exception, 2-23 
for basic programming model, 2-23 
FPU simultaneous response, 19-4 
in real-address mode, 22-2, 22-5 
overflow exception, 2-23 
processing priority, 9-5, 16-26 
processor-detected, 9-1 
programmed software interrupts, 9-1 
summary of, 9-24 
synchronization, 18-13, 18-14 

executable-segment descriptor, readable bit, 
6-3 

explicit operand, 
description of, 2-17 
in memory, 2-19 

extended format, and i486 Floating Point Unit 
(FPU),14-6 

extended real, numeric data type, 3-38, 14-6 
external bus, and I/O instruction execution, 8-1 
external cache, 

i486 processor, 12-1 
and write-back cache, 12-2 
and write-through cache, 12-2 

F2XMl (computer 2x-l), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-72 
numeric exception summary, F-l 

FABS (absolute value), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-74 
numeric exception summary, F-l 

FADD (add), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-75 
numeric exception summary,. F-l 

FADDP (add), 
instruction format and timing, E-17 
instruction specification, 26-75 
numeric exception summary, F-l 

Far CALL, general description., 3-40 
far form, RET (return from procedure), 6-17 
far pointer, data type, 2-6 
Far RET, general description, 3-40 
far transfer, and uncondItional transfer instruc­

tions, 3-23 
faults, 

exception conditions, 9-13 
exception description, 9-2 
processor-detected exception, 9-1 

FBLD (load binary coded decimal), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-77 
numeric exception summary, F-l 

FBSTP (store binary coded decimal and pop), 
conditIOn code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-79 
numeric exception summary, F-l 

FCHS (change sign), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-80 
numeric exception summary, F-l 

FCLEX (clear exceptions), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-81 
numeric exception summary, F-l 

FCOM (compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-82 
numeric exception summary, F-l 

FCOMP (compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-16 . 
instruction specification, 26-82 
numeric exception summary,.F-l 

FCOMPP (compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-82 
numeric exception summary, F-l 

FCOS (cosine), 
condition code interpretation, 15-4 . 
instruction format and timing, E~ 19 
instruction specification, 26-84 
numeric exception summary, F-l 

FDECSTP (decrement stack-top pointer), 
instruction format and timing, E-20 
instruction specification, 26-86 
numeric exception summary, F-l 

FDIV (divide), 
condItion code interpretation, 15-4 
instruction format and timing, E-18 
instruction specification, 26-87 
numeric exception-summary, F-l 

FDIVP (divide), 
instruction format and timing, E-18 
instruction specification, 26-87 
numeric exception summary, F-l 

FDIVPR (reverse divide), 
instruction format and timing, E-18 
instruction specification, 26-89 
numeric exception summary, F-l 
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FDIVR (reverse divide), 
condition code interpretation, 15-4 
instruction format and timing, E-18 
instruction specification, 26-89 
numeric exception summary, F-1 

FERR#, 
and NE control flag, 4-7 
and software exception handling, 16-19 

FFREE (free floating-point register), 
instruction format and timing, E-20 
instruction specification, 26-91 
numeric exception summary, F-1 

FIADD (add), 
instruction format and timing, E-18 
instruction specification, 26-75 
numeric exception summary, F-1 

FICOM (compare integer), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-92 
numeric exception summary, F-1 

FICOMP (compare integer), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-92 
numeric exception summary, F-1 

FIDIV (divide), 
instruction format and timing, E-18 
instruction specification, 26-87 
numeric exception summary, F-1 

FIDIVR (reverse divide), 
instructlon format and timing, E-19 
instruction specification, 26-89 
numeric exception summary, F-1 

FILD (load integer), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-94 
numeric exception summary, F-1 

FIMUL (multiply), 
instruction format and timing, E-18 
instruction specification, 26-109 
numeric exception summary, F-1 

FINCSTP (increment stack-top pointer), 
condition code interpretation, 15-4 
instruction format and timing, E-20 
instruction specification, 26-96 
numeric exception summary, F-1 

FINIT (initialize floating-point unit), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-97 
numeric exception summary, F-1 

FIST (store integer), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-99 
numeric exception summary, F-1 

FISTP (store integer), 
instruction format 'and timing, E-16 

INDEX 

instruction specification, 26-99 
numeric exception summary, F-1 

FISUB (subtract), 
instruction format and timing, E-18 
instruction specification, 26-138 
numeric exception summary, F-1 

FISUBR (reverse subtract), 
instruction format and timing, E-18 
instruction specification, 26-140 
numeric exception summary, F-1 

flag control instructions, and application 
programming, 3-35 

flat address space, memory organization model, 
2-2, 2-3 

flat model, 
and segmentation, 5-3 
segment/page translation, 5-23 

flat model mitialization, segmentation, 10-5 
FLD1 (load constant), 

instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLD (local real), 
condition code interpretation, 15-4 
instruction format and timing, E-16 

, instruction specification, 26-101 
numeric exception summary, F-1 

FLDCW (load control word), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-105 
numeric exception summary, F-1 

FLDENV (load FPU environment), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-107 
numeric exception summary, F-1 

FLDL2E (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 . 

FLDL2T (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDLG2 (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDLN2 (load constant), 
instruction format and timing, E-17 
instruction specification; 26-103 
numeric exception summary, F-1 

FLDPI (load constant), 
instruction format and timing, E-17· 
instruction specification, 26-103 
numeric exception summary, F-1 

FLDZ (load constant), 
instruction format and timing, E-17 
instruction specification, 26-103 
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numeric exception summary, F-l 
floating-point, data type, 2-6 
floating-point instructIOns, 

comparison instructions, 17-4 
constant instructions, 17-6 
control instructions, 17-6 
data transfer instructions, 17-2 
destination operands, 17-1 
nontranscendental instructions, 17-2 
source operands, 17-1 
transcendental instructions, 17-4 

floating-point numerics, instructions (system 
programming), 4-9 

floatmg-point to ASCII conversion example, 
numeric programming, 20-7 

floating-point-error fault, Interrupt 16 
(floating-point error), 9-23 

FMUL (multiply), 
condition code interpretation, 15-4 
instruction format and timing, E-18 
instruction specification, 26-109 
numeric exception summary, F-l 

FMULP (multiply), 
instruction format and timing, E-18 
instruction specification, 26-109 
numeric exception summary, F-l 

FNCLEX (clear exceptions), instruction 
specification, 26-81 

FNINIT (initialize floating point unit), and 
FPU initialization, 19-2 

FNINIT (initialize floating-point unit), instruc­
tion specification, 26-97 

FNOP (no operation), 
instruction format and timing, E-20 
instruction specification, 26-111 
numeric exception summary, F-l 

FNSA VE (store FPU state), instruction 
specification, 26-123 

FNSTCW (store control word), instruction 
specification, 26-133 

FNSTENV (store FPU environment), instruc­
tion specification, 26-134 

FNSTSW (store status word), instruction 
specification, 26-136 

forking, See copy-on-write strategy 
FPATAN (partial arctangent), 

condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-112 
numeric exception summary, F-l 

FPREMI (partial remainder), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-116 
numeric exception summary, F-l 

FPREM (partial remainder), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-114 
numeric exception summary, F-l 

FPTAN (partial tangent), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-118 
numeric exception summary, F-1 

FPU control word, and numerical exception 
masking, 15-5 

FPU data formats, 
and other entities, 16-1 
and special numeric values, 16-1 

FPU data type, 
binary integers, 15-11 
decimal integers, 15-12 
real numbers, 15-12 

FPU register addressing modes, and 
ASM386/486 assembler, 15-1 

FPU register stack, and numeric registers, 15-1 
FPU status word, and Integer Unit, 15-2 
FPU tag word, and numeric registers, 15-6 
FRNDINT (round to integer), 

condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-120 
numeric exception summary, F-l 

FRSTOR (restore FPU state), 
condition code interpretation, 15-4 
instruction format and timing, E-20 
instruction specification, 26-121 
numeric exception summary, F-l 

FS register, 
and application program, 2-12 
and data segment, 2-11 
segment register, 2-10 

FSA VE (store FPU state), 
condition code interpretation, 15-4 
instruction format and timing, E-20 
instruction specification, 26-123 

FSCALE (scale), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-125 
numeric exception summary, F-l 

FSIN (sine), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-126 
numeric exception summary, F-2 

FSINCOS (sine and cosine), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-128 
numeric exception summary, F-2 

FSQRT (square root), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-130 
numeric exc~tion summary, F-2 

FST (store real, 
condition co e interpretation, 15-4 
instruction format and timing, E-16 
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instruction specification, 26-131 
numeric exception summary, F-2 

FSTCW (store control word), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-133 
numeric exception summary, F-2 

FSTENV (store FPU environment), 
condition code interpretation, 15-4 
instruction format and timing; E-19 
instruction specification, 26-134 
numeric exception summary, F-2 

FSTP (store real), 
condition code interpretation, 15-4 
instruction format and timing, E-16 
instruction specification, 26-131 
numeric exception summary, F-2 

FSTSW (store status word), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-136 
numeric exception summary, F-2 

FSUB (subtract), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-138 
numeric exception summary, F-2 

FSUBP (subtract), 
instruction format and timing, E-17 
instruction specification, 26-138 
numeric exception summary, F-2 

FSUBPR (reverse subtract), 
instruction format and timing, E-18 
instruction specification, 26-140 
numeric exception summary, F-2 

FSUBR ( reverse subtract), 
condition code interpretation, 15-4 
instruction format and timing, E-18 
instruction specification, 26-140 
numeric exception summary, F-2 

FTST (test), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-142 
numeric exception summary, F-2 

FUCOM (unordered compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-144 
numeric exception summary, F-2 

FUCOMP (unordered compare real), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-144 
numeric exception summary, F-2 . 

FUCOMPP (unordered compare real), 
condition code interpretatIOn, 15-4 
instruction format and timing, E-17 
instruction specification, 26-144 
numeric exception summary, F-2 

INDEX 

FWAIT (wait), 
instruction specification, 26-146 
numeric exception summary, F-2 

FXAM (examine real), 
condition code interpretation, 15-4 
instruction format and timing, E-17 
instruction specification, 26-147 
numeric exception summary, F-2 

FXCH (exchange register contents), 
condition code interpretation, 15-4 
instruction specification, 26-149 
numeric exception summary,. F-2 

FXTRACT (extract exponent and significand), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-151 
numeric exception summary, F-2 

FYL2X (compute y x log2x), 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, ·26-153 
numeric exception summary, F-2 

FYL2XP1 (compute y x log2 (x + 1», 
condition code interpretation, 15-4 
instruction format and timing, E-19 
instruction specification, 26-155 
numeric exception summary, F-2 

G bit (granularity bit), and segment descriptor, 
6-4 

gate descriptors, and control transfers 
protection, 6-11 

GDTR (global descriptor table register), 
descriptor table base registers, 5-16 
register description, 4-4 ' 

general registers, 
and IMUL instruction, 3-8 
and POPA instruction, 3-4 
and PUSHA instruction, 3-3 
as register operand, 2-19 
of i486 processor, 2-8 

general-detect fault, Interrupt 1 (debug 
exceptions), 9-14, 11-8 

general-protection exception, 
and multi-segment model, 5-5 
and privilege levels, 6-5 
and protected flat model, 5-4 

global descriptor table (GDT), 
segment descriptor tables, 5-15 
segment translation, 5-5 

gradual underflow, and denormal values, 16-4 
granularity bit, 

and TSS descriptor, 7-4 
segment descriptors, 5-10 

GS register, 
and application program, 2-12 
and data segment, 2-11 
segment register, 2-10 

handler, for exceptions and interrupts, 9-1 
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high word, for doubleword data type, 2-4 
high-level languages, and FPU numeric 

applications, 18-1 
HLT (halt), 

flag cross-reference, B-1 
instruction format and timing, E-11 
instruction specification, 26-157 
instructions (system programming), 4-11 
one-byte opcode map, A-4 
privileged Instruction, 6-19 

i486 Floating Point Processor (FPU), 
applications, 14-4 
architecture, 15-1 
concurrent processing, 18-12 
data types and formats, 15-9 
history of, 14-1 
i486 processor, 14-1 
infinity operands, 16-8 
initialization, 19-2 
Intel 387 DX emulation, 19-3 
NaN (not-a-number) operands, 16-8 
number system, 15-9 
numerics environment configuration, 19-2 
performance, 14-1 
precision control, 15-16 
programming interface, 14-5 
rounding control, 15-15 
system programming, 19-1 
zero operands, 16-6 

i486 Integer Unit (IU), 
concurrent processing, 18-12 
operation with FPU, 14-2 

i486 processor, 
control re~isters, 2-8, 4-5 
debug registers, 4-8 
debugging facilities, 11-1 
external cache, 12-1 
features, 1-1 gate descriptors, 6-11 
~eneral registers, 2-8 
1486 Floating Point Processor (FPU), 14-1 
I/O instructions, 8-4 
initialization, 10-1 
input/output, 8-1 
internal cache, 12-1 
memory-management registers, 4-4 
mixing 16~bit and 32 bit code, 24-1 
multitasking mechanism, 7-1 
operating modes, 1-2 
operating status, 2-13 
real-address mode, 22-1 
segment registers, 2-8 
status registers, 2-8 
system flags, 4-2 
system instructions, 4-9 
system registers, 4-1 
task linking, 7-11 
task switching, 7-7 
test registers, 4-8 
virtual-8086 mode, 23-1 

INDEX 

I/O address space, 
and 10PL flag, 4-3 
and physical memory, 8-2 
i486 processor, 8-1 

I/O instructions, 
and i486 processor, 8-4 
and I/O privilege level, 8-6 

I/O operations, and sensitive instructions, 6-19 
I/O permission bit map, and TSS (task state 

segment),8-7 
I/O port, for operand selection, 2-17 
I/O privilege level, 

and I/O instruction access, 8-6 
and 10PL flag, 4-3 

IDEC (decrement by one), modR/M byte 
opcodes, A-8 

IDIV (signed divide), 
flag cross-reference, B-1 
instruction description, 3-10 
instruction format and timing, E-5 
instruction specification, 26-158 
modR/M byte opcodes, A-8 

IDT (interrupt descriptor table), 
exception/interrupt vectors, 9-5 
interrupt gates, 9-7 
LIDT (load IDT register), 9-7 
task gates, 9-7 
trap gates, 9-7 
types of, 9-7 

IDTR (interrupt descriptor table register), 
descriptor table base registers, 5-16 
register description, 4-5 

IEEE Standard 754, and unsupported formats, 
16-13 

IEEE Standard 854, 
and i486 Floating Point Processor (FPU), 

14-1 
and invalid arithmetic operation, 16-21 
and standard underflow/overflow exception 

handler, 16-27 
IF flag (interrupt-enable flag - bit 9), 

mask INTR interru{lts, 9-3 
system flag descriptIOn, .4-3 

IGNNE#, 
and NE control flag, 4-7 
and software exception handling, 16-20 

immediate operand, instruction format, 2-16 
implicit operand, description of, 2-17 
implied load instructions, and segment 

registers, 5-7 
IMUL (signed multiply), 

flag cross-reference, B-1 
~eneral description and flags, 3-8 
Instruction format and timing, E-5 
instruction specification, 26-160 
modR/M byte opcodes, A-8 
one-byte opcode map, A-5 
status flag summary, C-2 
two-byte opcode map, A-7 

IN (input from port), 
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flag cross-reference, B-1 
instruction format and timing, E-15 
instruction specification, 26-162 
one-byte opcode map, A-4, A-5 
register I/O instructions, 8-5 
sensitive instructions, 8-6 

INC (increment by one), 
and CF flag, 3-6 ' 
flag cross-reference, B-1 
instruction description, 3-7 
instruction specification, 26-164 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

inconsistent stack pointer,. and page fault, 9-23 
indefinite value, and numeric data type, 16-12 
index component, 

and segment selectors, 5-9 
for effective address, 2-21 

inexact exception, 
and inexact (precision), 16-26 
and underflow exception, 16-26 

inexact result (precision), 
and inexact exception, 16-26 
numeric exceptions, 16-18 

infinity operands, and i486 Floating Point 
Processor (FPU), 16-8 

initialization, 
and i486 processor, 10-1 
i486 Floating Point Processor (FPU), 19-2 

inner protection rings, and stack switching, 6-15 
input port, and input/output, 8-1 
input/output, 

and i486 processor, 8-1 
instructions (system programming), 4-9 

INS (input from port to string), 
block I/O instructions, 8-5 
flag cross-reference, B-1 
instruction format and timing, E-15 
instruction specification, 26-165 
sensitive instructions, 8-6 

INSB (input from port to string), 
instruction specification, 26-165 
one-byte opcode map, A-4, A-5 

INSD (input from port to string), 
instruction specification, 26-165 
one-byte opcode map, A-4, A-5 

instruction, 
and default segment selection, 2-19 
and operand selection, 2-17 
first initialization execution, 10-4 

instruction address breakpoint fault, Interrupt 
1 (debug exceptions), 9-14 

instruction format, ' 
addressing-mode specifier, 2-16 
and opcode, 2-16 
and prefix, 2-16 
and register specifier, 2-16 
displacement, 2-16 
for basic programming model, 2-15 

immediate operand, 2-16 
SIB (scale, index, base) byte, 2-16 

instruction prefetching, 
and EIP register, 2-15 
and exception generation, 2-15 
and parity checking, 2-15 
and PLOCK#, 13-1 
and pseudo-locking, 13-4 

instruction restart, 
and exceptions, 9-2 
and interrupts, 9-2 
and paging, 5-2 ' ':' , 

instruction-breakpoint fault, Interrupt 1 (debug 
exceptions), 11-6 

instructions, in real-address mode, 22-2 
instructions (application programming), 
, binary arithmetic instructions, 3-6 

block-structured language instructions, 3-30 
control transfer instructions, 3-23 
data movement instructions, 3-1 
data registers, 2-12' . ' .' 
decimal arithmetic instructions, 3-10, 
flag control instructions,.3-35 
logical instructions, 3-11 ' . 
miscellaneous instructions, 3-41 
numeric instructions, 3-38 
segment register instructions, 3-39 
string operations, 3-27 

instructions (operating system), 
privileged mstructions, 6-19 
sensitive instructions, 6-19 

instructions (system programming), 
cache management~ 4-9 
debugging, 4-9 
descriptor table addressing, 4-10 
floating-pont numerics,4-9 
HL T instruction, 4-11 
input and output, 4-9 
interrupt control, 4-9 
LOCK instruction, 4-11 
multitasking,4-1O ; 
pointer parameter verification, .4-9 
system control, 4-9 

INSW (input from port to string), ' 
instructIOn specification, 26-165 
one-byte opcode map, A-4, A-5 

INT (call to mterruptprocedure), 
flag cross-reference, B-1 . 
for interrupt generation, 2-24, 
general description, 3-26 
instruction format and timing, E-13 
instruction specification, 26-167 
one-byte opcode map, A-5 

integer, data type description, 2-6 
integer instructions, overview of, 3-1 ", 
Integer Unit, and FPU status word, 15-2 
Intel 386 DX processor, " 

and data breakpoint matching; 11-4 
and Interrupt 9 (Intel reserved); 9-17 
and MP control flag, 4-7 
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processor differences, 21-4 
real-address mode, 22-1 

Intel 386 OX processor programs, and i486 
processor, 21-1 

Intel 387 OX coprocessor, 
and ET control flag, 4-7 
emulation and i486 Floating Point Processor 

(FPU),19-3 
Intel 80186 processor, real-address mode, 22-1 
Intel 80188 processor, real-address mode, 22-1 
Intel 80286 processor, 

LMSW instruction, 4-11 
MP control flag, 4-7 
processor differences, 21-2 
programs and i486 processor, 21-1 
protected mode, 21-1 . 
real-address mode, 22-1 
running tasks, 21-2 
segment descriptors, 21-1 
SMSW instruction, 4-11 
TSS compatibility, 7-2 

Intel 8086 processor, 
real-address mode, 22-1 
virtual-8086 mode, 4-3 

Intel 8087 processor, compatibility and B bit, 
15-2 

Intel 8088 processor; real-address mode, 22-1 
Intel 8259A Programmable Interrupt 

Controller, and interrupt vector, 9-1 
Intel 860 processor, alignment-check exception, 

4-2 
internal cache, 

and cache lines, 12-2 
and write-through cache, 12-2 
i486 processor, 12-1 
operation of, 12-2 
self-modifying code, 12-3 

Interrupt 0 (divide error), divide-error fault, 
9-14 

Interrupt 10 (invalid TSS), invalis-TSS fault, 
9-17 

Interrupt 11 (segment not present), segment­
not-present fault, 9-18 

Interrupt 12 (stack exception), stack fault, 9-19 
Interrupt 13 (general protection), protection 

violations, 9-20 
Interrupt 14 (page fault), page fault, 9-21 
Interrupt 16 (floating-point error), floating­

pOInt-error fault, 9-23 
Interrupt 17 (alignment check), alignment­

check fault, 9-23 
Interrupt 1 (debug exceptions), 

data address breakpOInt trap, 9-14 
data-breakpoint trap, 11-6 
general detect fault, 9-14 
general-detect fault, 11-8 
instruction address breakpoint fault, 9-14 
instruction-breakpoint fault, 11-6 
single-step trap, 9-14, 11-8 
task-switch breakpoint trap, 9-14 

task-switch trap, 11-8 
Interrupt 3 (breakpoint), breakpoint trap, 

9-14, 11-9 
Interrupt 4 (overflow), overflow trap, 9-15 
Interrupt 5 (bounds check), bounds-check fault, 

9-15 
Interrupt 6 (invalid opcode), invalid-opcode 

fault, 9-15 
Interrupt 7 (device not available), device-not-

available fault, 9-15 . 
Interrupt 8 (double fault), multiple faults, 9-16 
Interrupt 9 (Intel reserved), coprocessor­

segment overrun abort, 9-17 
interrupt acknowledge, automatic locking, 13-3 
interrupt control, instructions (system program-

ming),4-9 . 
interrupt gates, 

and Interrupts, 6-11 
lOT descriptors, 9-7 

interrupt procedures, . 
and Interrupt tasks, 9-7 
and stack, 9-9 
flag usage, 9-11 
protection, 9-11 
returning from, 9-9 . 

interrupt requests (INTR interrupts), and IF 
flag, 4-3 

interrupt tasks, 
and Interrupt procedures, 9-7 
and task gate, 9-11 

interrupt vector, 
identifying number, 9-1 
software initialization, 10-3 

interrupts, 
and Instruction restart, 9-2 
and interrupt gates, 6~11 
and task switching, 7-1 
description, 2-23 
enable/disable, 9-3 . 
for basic programming model, 2-23 
in real-address mode, 22-2 
maskable source, 9-1 
processing priorities, 9-5 . 
unmaskable source, 9-1 
with INT instruction, 2-24 

INTO (interrupt on overflow), 
flag cross-reference, B-1 
~eneral description, 3-26 
Instruction' format and timing, E-13 
instruction specification, 26-167 
one-byte opcode map, A-5 ; 

INTR interrupts, and IF flag, 9-3 " 
invalid arithmetic operation, and IEEE 

Standard, 16-21, 854 ' 
invalid operation, .' , 

and numeric exceptions, '16-20 
numeric exceptions, 16-17 

invalid-opcode fault, Interrupt 6 (invalid 
opcode), 9-15 

invalid-operation exception, 
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and NaN (not-a-number) operands, 16-10 
and QNaN real indefinite, 16-11 

invalid-TSS fault, Interrupt 10 (invalid TSS), 
9-17 

INVD (invalidate cache), 
cache management instructions, 12-3 
flag cross-reference, B-1 
instruction format and timing, E-11 
instruction specification, 26-172 
two-byte opcode map, A-7 

INVLPG (invalidate TLB entry), 
flag cross-reference, B-1 
instruction format and timing, E-11 
instruction specification, 26-173 

INDEX 

two-byte opcode map, A-6 
JNBE, 

one-byte opcode map, A-4 
two-byte opcode map, A-6 

JNL, 
one-byte opcode map, A-5 
two-byte opcode map, A-7 

JNLE, 
one-byte opcode map, A-5 
two-byte opcode map, A-7 

JNO, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

JNP, 
IOPL flag (I/O privilege level- bits 12 and 13), 

description, 4-3 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

JNS, system flag 
IRET (interrupt return), 

flag cross-reference, B-2 
general description, 3-24 
instruction format and timing, E-13 
instruction specification, 26-174 
one-byte opcode map, A-5 

IRETD (interrupt return), instruction 
speCIfication, 26-174 ' 

JB, two-byte opcode map, A-6 . 
Jb (short-displacement jump on condition), 

one-byte opcode map, A-4, A-5 
JBE, 

one-byte opcode map, A-4 
two-byte opcode map, A-6 

Jcc Uump if condition is met), 
flag cross-reference, B-2 
instruction format and timing, E-7 
instruction specification, 26-179 . 
status flags, 3-7 

JCXZ, 
flag cross-reference, B-2 
instruction format and timing, E-7 
one-byte opcode map, A-4 

JECXZ Uump if ECX zero), 
~eneral description, 3-26 
Instruction format and timing, E-7 

JL, 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

JLE, 
one-byte opcode map, A-4,A-5 
two-byte opcode map, A-7 

JLNE, one-byte opcode map, A-4 
JMP Uump), ' 

flag cross-reference, B-2 
instruction description, 3-23 
instruction format and timing, E-7, E-9 
instruction specification, 26-183 
modR/M byte opcodes, A-8 
one-byte opcode map, A-5 

JNB, 
one-byte opcode map,A-4 

one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

JNZ, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

JO, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

JP, 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

JS, 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-7 

JV, 
one-byte opcode map, A-5. 
two-byte opcode map, A-6, A-7 

JZ, 
one-byte opcode map, A-4 
two-byte opcode map, A-6 

KEN#, and PCD bit (page-level cache disable), 
12-4 

LAHF (load flags into AH), 
flag cross-reference, B-2 
instruction description, 3-37 
instruction format and timing, E-lO 
instruction specification, 26-188 
one-byte opcode map, A-5 

LAR (load access rights byte), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-189 
pointer validation instructions, 6-20 
two-byte opcode map, A-6 

LDS (load pointer using DS), 
flag cross-reference, B-2 
general description, 3-40 
instruction format and timing, E-8 
instruction specification, 26-196 
one-byte opcode map, A-4 

LDT switching, and task switching, 7-1 
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LDTR (local descriptor table register), register 
description, 4-4 

LEA (load effective address), 
flag cross-reference, B-2 
general description, 3-41 
Instruction format and timing, E-3 
instruction specification, 26-191 
one-byte opcode map, A-4, A-5 

LEAVE (high level procedure exit), 
flag cross-reference, B-2 
general description, 3-35 
Instruction format and timing, E-8 
instruction specification, 26-193 
one-byte opcode map, A-5 

LEN bits, and debug breakpoints, 11-5 
LES (load pointer using ES), 

flag cross-reference, B-2 
general description, 3-40 
instruction format and timing, E-8 
instruction specification, 26-196 
one-byte opcode map, A-4 

lexical level, 
and block-structured languages, 3-32 
and ENTER instruction, 3-30 

LFS (load pointer using FS), 
flag cross-reference, B-2 
general description, 3-40 
Instruction format and timing, E-8 
instruction specification, 26-196 
two-byte opcode map, A-6 

LGDT (load global/IDTR), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-194 
modR/M byte opcodes, A-8 
privileged instruction, 6-19 

LGS (load pointer using GS), 
flag cross-reference, B-2 
general description, 3-41 
Instruction format and timing, E-8 
instruction specification, 26-196 
two-byte opcode map, A-6 

LIDT (load IDT register), 
and IDT (interrupt descriptor table), 9-7 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-194 
modR/M byte opcodes, A-8 
privileged instruction, 6-19 

limit, and segment descriptors, 5-10 
limit checking, segment descriptors, 6-4 
linear address, 

and logical address, 2-1 
and page translation, 5-17, 5-18 
and physical space mapping, 7-13 
and segment translation, 5-5 
and segmentation, 2-2, 5-2 _ 
and task address mapping, 7-13 

LLDT (load LDTR), 
flag cross-reference, B-2 

instruction format and timing, E-12 
instruction specification, 26-199 
modR/M byte opcodes, A-8 
privileged instruction, 6-19 

LMSW (load machine status word), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-201 
Intel 80286 processor, 4-11 
modR/M byte opcodes, A-8 
privileged instruction, 6-19 

local descriptor table (LDT), 
segment descriptor tables, 5-15 
segment translation, 5-5 

LOCK#, 
and automatic locking, 13-3 
and critical memory operations, 13-1 
and LOCK instruction, 4-11 
and LOCK prefix, 13-2 

LOCK (assert LOCK# prefix), 
and CMPXCHG instruction, 3-43 
and XADD instruction, 3-43 
and XCHG instruction, 3-2 
flag cross-reference, B-2 
instruction specification, 26-202 
one-byte opcode map, A-4 

LOCK instruction, 
and LOCK#, 4-11 
instructions (system programming), 4-11 

LOCK prefix, and LOCK#, 13-2 
locked bus cycles, and mUltiprocessing, 13-1 
LODS (load string operand), 

flag cross-reference, B-2 
general description, 3-30 
instruction format and timing, E-9 
instruction specification, 26-204 

LODSB (load string operand), 
instrucion specificatIOn, 26-204 
one-byte opcode map, A-4, A-5 

LODSD (load string operand), 
instrucion specification, 26-204 
one-byte opcode map, A-4, A-5 

LODSW (load string operand), 
instruction specification, 26-204 
one-byte opcode map, A-4, A-5 

logical address, 
and segment translation, 2-2, 5-5 
and segmentation, 5-2 
task address mapping, 7-14 
use of, 2-1 

logical instructions, and application 
programming, 3-11 

long integer, numeric data type, 3-38, 14-6 
LOOP (loop control with CX counter), 

flag cross-reference, B-2 
general description, 3-25 
instruction format and timing, E-7 
instruction specification, 26-206 
one-byte opcode map, A-4 

LOOPE (loop while equal), 
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flag cross-reference, B-2 
general description, 3-26 
instruction format and timing, E-7 
one-byte opcode map, A-4 

LOOPNE (loop while not equal), 
flag cross-reference, B-2 
general description, 3-26 
instruction format and timing; E-7 
one-byte opcode map, A-4 

LOOPNZ (loop while not zero), 
general description, 3-26 
instruction format and timing, E-7 

LOOPZ (loop while zero), 
general description, 3-26 
instruction format and timing, E-7 

low word, for doubleword data type, 2-4 
LSL (load segment limit), 

flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-208 
pointer validation instructions, 6-20 
two-byte opcode map, A-6 

LSS (load pointer using SS), 
flag cross-reference, B-2 
general description, 3-41 
instruction format and timing, E-8 
instruction specification, 26-196 
two-byte opcode map, A-6 

LTR (load task register), 
and task register description, 7-6 
flag· cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-210 
modR/M byte opcodes, A-8 
privileged instruction, 6-19 

M/IO#, 
and I/O address space, 8-2 
and I/O instructions, 8-4 

maskable interrupts, and vector assignment, 
9-1 

memory, 
access types, 2-10 
for operand selection, 2-17 
model choice, 2-2 
model description, 2-1 

memory management, 
and page translation, 5-17 
and paging, 2-1, 5-1 
and segment registers, 5-6 
and segmentation, 2-L 5-1 
and segments, 2-1 
description of, 2~ 1 

memory operand offset, and modR/M byte, 
2-19 ' 

memory reference types, and segment registers, 
5-7 

memory-management registers, 
and system programming, 4-4 
GDTR (global descriptor table register), 4-4 

IDTR (interrupt descriptor table register), 
4-5 

LDTR (local descriptor table register), 4-4 
TR (task register), 4-5 

memory-mapped I/O, and physical memory, 8-3 
miscellaneous instructions, and application 

programming, 3-41 
mixing 16-bit and 32-bit code, i486 processor, 

24-1 
mode bits, and EFLAGS register, 2-13 
modR/M byte, 

and effective-address computation, 2-20 
for memory operand offset, 2-19 

MOV (move data), ,. 
and default segment selection, 2-19 
flag cross-reference, B-2 
instruction description, 3-1 
instruction format and timing, E-3, E-8, E-11 
instruction specification, 26-211, 26-213 
mask exceptions and interrupts, 9-4 
one-byte opcode map, A-4, A .. 5 
two-byte opcode map, A-6 

MOV to/from eRO (move to control register 0), 
privileged instruction, 6-19 

MOV to/from DRn (move to debug register n), 
privileged instruction, 6-19 

MOV to/from TRn (move to test register n), 
privileged instruction, 6- 19 

MOVB (move data), one-byte opcode map, A-4 
MOVS (move data from string to string), 

flag cross-reference, B-2 
general description, 3-29 
instruction format and timing, E-9 
instruction specification, 26-215 

MOVSB (move data from string to string), 
instructIon specification, 26-215 
one-byte opcodemap, A-4 . 

MOVSD (move data from string to string), 
instruction specification, 26-215 
one-byte opcode map, A-4 

MOVSW (move data from string to string), 
instruction specification, 26-215 
one-byte opcode map, A-4 

MOVSX (move with sign extension), 
flag cross-reference, B-2 
general description, 3-6 
instruction format and timing, E-3 
instruction specification, 26-217 
two-byte opcode map, A-7 

MOVZX (move with zero extension), 
flag cross-reference, B-2 
general description, 3-6 
instruction format and timing, E-3 
instruction specification, 26-218 
two-byte opcode map, A-6 

MP bit (monitor coprocessor), numerics 
environment configuration, 19-2 

MP (math present-bit 1), system control flag, 
4-7 

MUL (unsigned multiply), 
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flag cross-reference, B-2 
~eneral description and flags, 3-8 
mstruction format and timing, E-4 
instruction specification, 26-219 
modR/M byte opcodes, A-8 
status flag summary, C-2 

multi-segment model, 
and general-protection exception, 5-5 
and segmentation, 5-4 

multi-segment model initialization, segmenta­
tion, 10-5 

multiple faults, Interrupt 8 ( double fault), 9-16 
multiprocessor systems, 

and cache consistency, 12-1 
and cache consistency, 13-1 
and processor communication, 13-1 

multitasking, 
and i486 processor, 7-1 
and task mitialization, 10-6 
instructions (system programming), 4-10 
segment-level protection, ,6-1 

NaN (not-a-number) operands, 
and i486 Floating Point Processor (FPU), 

16-8 
and invalid-operation exception, 16-10 

NE bit (numeric exception), 
numerics environment configuration, 19-2 
system control flag, 4-7 

near form, RET (return from procedure), 6-17 
near pointer, data type, 2-6 
near transfer, and unconditional transfer 

instructions, 3-23 
NEG (two's complement negation), 

flag cross-reference, B-2 
instruction description, 3-8 
instruction specification, 26-221 
modR/M byte opcodes, A-8 
status flag summary, C-2 

NMI interrupt, 
and assigned vector, 9-1 
and protected mode initialization, 10-4 
and software initialization, 10-3 
mask further NMI interrupts, 9-3 

no-wait, control instructions, 17-8 
non transcendental instructions, floating-point 

instructions, 17-2 
NOP (no operation), 

flag cross-reference, B-2 
instruction description, 3-41 
instruction format and timing, E-6 
instruction specification, 26-222' 

NOT (one's complement negation), 
flag cross-reference, B-2 
instruction description, 3-11 
instruction specifIcation, 26-223 
modR/M byte opcodes, A-8 

NT flag (nested task-bit 14), system flag 
description, 4-3 

null error code, and exception handler, 9-13 

number system, i486 Floating Point Processor 
(FPU),15-9 

numeric data pointers, and exception handlers, 
15-7 

numeric data type, 
and indefinite value, 16-12 
double real, 14-6 
encoding of, 16-12 
extended real, 14-6 
long integer, 14-6 
packed decimal, 14-6 
short integer, 14-6 
single real, 14-6 
word integer, 14-6 

numeric data types, i486 Floating Point 
Processor (FPU), 14-6 

numeric exceptions, 
denormalized operand, 16-17 
divide-by-zero, 16-17 
handling of, 16-18, 19-3 
inexact result (precision), 16-18 
invalid operation, 16-17 
numeric overflow, 16-17 
numeric underflow, 16-18 

numeric instruction pointers, and exception 
handlers, 15-7 

numeric instructions, 
and application programming, 3-38 
i486 Floating Point Processor (FPU), 14-7 

numeric libraries, and, FPU numeric 
applications, 18-1 

numeric overflow, 
and overflow exception, 16-23 
numeric exceptions, 16-17 

numeric programming, 
ASM386/486 examples, 20-1 
conditional branching example, 20-1 
exception handling example, 20-1 
floating-point to ASCII conversion example, 

20-7 
trigonometric calculation, 20-7 

numeric underflow, 
and underflow exception, 16-25 
numeric exceptions, 16-18 

numerical exception masking, and FPU control 
word,15-5 

numerical registers, i486 Floating Point 
Processor (FPU), 15-1 

numerics environment configuration, 
i486 Floating Point Processor (FPU), 19-2 

NW (not write-through - bit 29), system control 
flag, 4-6 

O/U# bit, stack exception, 16-20 
OF flag, and binary arithmetic instructions, 3-6 
OF (overflow flag), status flag, 2-14 . 
offset, 

for memory operand, 2-19 
for segmented address space, 2-3 

opcode, and instruction format, 2-16 
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operand selection, for basic programming 
model,2-17 

operand size, of instruction prefix, 2-16 
operand size prefix, instruction format, 2-16 
operating modes, of i486 processor, 1-2 
operating status, i486 processor, 2-13 
OR (logical inclusive or), 

flag cross-reference, B-2 
instruction description, 3-12 
instruction specification, 26-224 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

ordinal, data type, 2-6 
OUT (output to port), 

flag cross-reference, B-2 
instruction format and timing, E-15 
instruction specification, 26-226 
one-byte opcode map, A-4, A-5 
register I/O instructions, 8-5 
sensitive instructions, 8-6 

output port, and input/output, 8-1 
OUTS (output string); sensitive instructions, 

8-6 
OUTS (output string to port), 

block I/O instructions, 8-6 
flag cross-reference, B-2 
instruction format and timing, E-15 
instruction specification, 26-228 

OUTSB (output string to port), 
instruction specification, 26-228 
one-byte opcode map, A-4, A-5 

OUTSD (output string to port), 
instruction specification, 26-228 
one-byte opcode map, A-4, A-5 

OUTSW (output string to port), 
instruction specification, 26-228 
one-byte opcode map, A-4, A-5 

overflow exception, 
and i486 processor, 2-23 
and numeric overflow, 16-23 

overflow trap, Interrupt 4 (overflow), 9-15 

packed BCD, data type, 2-6 
packed decimal, numeric data type, 14-6 
page, combining protection with segment, 6-25 
page directory, and page translation, 5-17 
page directory register (PDBR), 

and CR3, 4-6 
and CR3 register, 5-18 

page directory update, automatic locking, 
13-3 

page fault, 
and Interrupt 8 (double fault), 9-16 
and page table entries, 5-20 
and page translation, 5-17 
during task switching, 9-22 
Interrupt 14 (page fault), 9-21 
page frame address, 
with inconsistent stack pointer, 9-23 

page level management, caching, 12-3 
page protection, overriding, 6-24 . 
page table update, automatic locking, 13-3 
page tables, 

and combined protection, 6-24 
and page translation, 5-17, 5-18, 5-20 
and protection parameters, 6-23 

page translation, 
and memory management, 5-17 
and physical address, 5-17 
and segment translation, 5-23 
linear address, 5-17 

paging, 
and I/O address space, 8-1' 
and linear address space, 2-2 
and memory management, 2-1, 5-1 
and page-level protection, 6-22 
and PG bit, 5-18 
demand-paged virtual memory, 5-2 
description, 5-2 
exception handling, 2-24 
initialization, 10-6 

parity checking, and instruction pre fetching, 
2-15 

PCD bit (page-level cache disable), 
cache control, 5-22 
cache management bits, 12-4 
system control flag, 4-6 

PE (protection enable - bit 0), 
and protected mode initialization, 10-4 
system control flag, 4-8 

PF (parity flag), status flag, 2-14 
PG (paging-bit 31), 

system control flag, 4-6 
to enable paging, 5-18 

physical address, description, 2-1 ' 
and linear address, 2-1 
and page translation, 5-17 
and PG bit, 5-18 
and segmentation, 5-2 

physical memory, 
and I/O address space, 8-2 
and memory-mapped I/O, 8-3 
description, 2-1 

PL/M-386/486, and FPU numeric applications, 
18-2 

PLOCK#, 
and instruction prefetching, 13-1 
and pseudo-locking, 13-3 

PMUL, one-byte opcode map, A-4 
pointer integrity, . 

and ARPL (adjust requested privilege level), 
6-22 

and RPL (requested privilege level), 6-22 
pointer parameter verification, instructions 

(system programming), 4- 9 
pointer validation instructions, 

and protection, 6-20 
LAR (load access rights), 6-20 
LSL (load segment limit), 6-20 
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POP (pop word from stack), 
flag cross-reference, B-2 
~eneral description, 3-3 
Instruction format and timing, E-3, E-8 
instruction specification, 26-231 
mask exceptIOns and interrupts, 9-4 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-6, A-7 

POPA (pop all general registers), 
flag cross-reference, B-2 
~eneral description, 3-4 
Instruction format and timing, E-3 
instruction specification, 26-234 
one-byte opcode map, A-4 

POPAD (pop all general registers), instruction 
specification, 26-234 

POPF (pop stack into flags), 
flag cross-reference, B-2 
instruction description, 3-38 
instruction format and timing, E-lO 
instruction specification, 26-236 
one-byte opcode map, A-4, A-5 

POPFD (pop stack into flags), instruction 
specification, 26-236 

position-independent code, and segmentation, 
5-1 . 

power-up, 
and RESET signal, 10-1 
and self test, 10-1 

precision control, i486 Floating Point Processor 
(FPU), 15-16 

prefix, and instruction format, 2-16 
present bit, 

and page table entries, 5-20 
and TSS descriptor, 7-4 

privilege levels, segment descriptors, 6-5 
privileged instruction, 

CLTS (clear task-switched flag), 6-19 
HLT (halt processor), 6-19 
LGDT (load GDT register), 6-19 
LIDT (load IDT register), 6-19 
LLDT (load LDT register), 6-19 
LMSW (load machine status word), 6-19 
LTR (load task register), 6-19 
MOV to/from eRO (move to control register 

0), 6-19 
MOV to/from DRn (move to debug register 

n), 6-19 
MOV to/from TRn (move to test register n), 

6-19 
procedure return, and gate descriptors, 6-17 
process synchronization, and XCHG 

instruction, 3-2 
processor communication, and multiprocessing 

systems, 13-1 
processor detection code, to distinguish 

processors, 22-11 
processor state, 

after reset, 10-1 
and TSS (task state segment), 7-2 

programmed exceptions, software interrupts, 
9-1 

protected flat model, and segmentation, 5-4 
protected mode, 

i486 operating mode, 1-2 
initialization switching, 10-4 
Intel 80286 processor, 21-1 
software initialization, 10-5 

protection, 
and control transfer restrictions, 6-9 
and data access restrictions, 6-7 
and gate descriptors, 6-11 
and input/output, 8-6 
and pointer validation instructions, 6-20 
and segment descriptors, 6-2 
page-level protection, 6-22 
segment-level protection, 6-1 

protection mechanism, 
and IOPL flag, 4-3 
and memory organization model, 2-2 
and privilege levels, 6-5 
and read-only acces, 6-24 
read/write access, 6-24 

protection parameters, and page-table entries, 
6-23 

protection violations, Interrupt 13 (general 
protection), 9-20 

pseudo-locking, 
and instruction pre fetching, 13-4 
and multiprocessing, 13-1 
and PLOCK#, 13-3 

pseudodenormal numbers, 
and i486 processor, 16-13 
denormal exception, 16-13 

PUSH (push operand onto stack), 
flag cross-reference, B-2 
instruction description, 3-2 
instruction format and timing, E-3, E-8 
instruction specification, 26-237 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
two-byte opcode map, A-6, A-7 

PUSHA (push all general registers), 
flag cross-reference, B-2 
~eneral description, 3-3 
Instruction format and timing, E-3 
instruction specification, 26-239 
one-byte opcode map, A-4 

PUSHAD (push all general registers), 
instruction specification, 26-239 

PUSHF (push flags onto stack), 
flag cross-reference, B-2 
instruction description, 3-38 
instruction format and timing, E-lO 
instruction specification, 26-241 
one-byte opcode map, A-4, A-5 

PUSHFD (push flags onto stack), instruction 
specification, 26-241 

PWT bit (page-level write-through), 
cache control, 5-22 
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cache management bits, 12-4 
system control flag, 4-6 

QNaN real indefinite, . 
and invalid operation exception, 16-11 
and quiet NaN (not-a-number), 16-11 

quadwords, description, 3-4 
quiet NaN (not-a-number), and QNaN real 

indefinite, 16-11 

RCL (rotate through carry left), 
flag cross-reference, B-2 
instruction description, 3-16 
instruction specifIcation, 26-242 
modR/M byte opcodes, A-8 
status flag summary, C-2 

RCR (rotate through carry right), 
flag cross-reference, B-2 
instruction description, 3-16 
instruction specifIcation, 26-242 
modR/M byte opcodes, A-8 
status flag summary, C-2 

re-entrant code, and tasks, 7-3 
re-entrant procedure, description, 7-1 
re-entrant task switching, and busy bit, 7-12 
read access, and accessed bit, 5-21 
read-only access, and protection mechanism, 

6-24 
read/write access, protection mechanism, 6-24 
read/write bit, and page table entries, 5-22 
readable bit, executable-segment descriptor, 

6-3 
real numbers, FPU data type, 15-12 
real-address mode, 

address translation, 22-1 
entering and leaving, 22-4 
i486 operating mode, 1-2 
i486 processor, 22-1 
Intel 386 DX processor, 22-1 
Intel 386 DX processor differences, 22-9 
Intel 80186 processor, 22-1 
Intel 80188 processor, 22-1 
Intel 80286 processor, 22-1 
Intel 80286 processor differences, 22-9 
Intel 8086 processor, 22-1 
Intel 8086 processor differences, 22-5 
Intel 8088 processor, 22-1 
software initialization, 10-2 . 
switch to protected mode, 22-4 

records and structure declaratives, 
ASM386/486, 18-4 

register I/O instructions, 
IN (input from port), 8-5 
OUT (output from port), 8-5 

register specifier, instruction format, 2-16 
registers, 

and real-address mode, 22-2 
for application programming, 2-8 
for operand selection, 2-17 
for system programming, 4-1 

relative address, and JMP instruction, 3-23 
REP INS, instruction format and timing, E-15 
REP LODS, instruction format and timing, 

E-10 
REP MOYS, instruction format and timing, 

E-lO 
REP OUTS, instruction format and timing, 

E-15 
REP prefix, and MOYS instruction, 3-29 
REP (repeat), 

instruction description, 3-28 
instruction specifIcation, 26-245 . 
one-byte opcode map, A-4 . . 

REP STOS, Instruction format and timing, 
E-lO 

REPE CMPS, instruction format and timing, 
E-lO 

REPE (repeat while equal), 
instruction description, 3-28 
instruction specifIcation, 26-245 
one-byte opcode map, A-4 

REPE SCAS, instruction format and timing, 
E-lO 

repeat, instruction prefix, 2-16 
repeat prefix, instruction format, 2-16 
REPNE CMPS (compare strings), instruction 

format and timing, E-lO 
REPNE (repeat while not equal), 

instruction description, 3-28 
instruction specifIcation, 26-245 
one-byte opcode map, A-4 

REPNE SCAS, instruction format and timing, 
E-lO 

REPNZ (repeat while not zero), 
instruction description, 3-28 
instruction specifIcation, 26-245 

REPZ (repeat while zero), 
instruction description, 3-28 
instruction specification, 26-245 

requester privilege level, segment selectors, 5-9 
reset, and processor state, 10-1 
reset initialization, and RESET signal, 10-1 
RESET signal, and reset initialization, 10-1 
RET (return from procedure), . 

far form description, 6-17 
general description, 3-24 
instruction format and timing, E-7, E-8 
instruction specification, 26-248 
near form description, 6-17 
one-byte opcode map, A-4, A-5 

RFflag (resume flag), 
debugging support, 11-1 
mask debug faults, 9-4 
system flag description, 4-3 

robot arm kinemetics, example, 20-23 
ROL (rotate left), 

flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-242 
modR/M byte opcodes, A-8 
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status flag summary, C-2 
ROR (rotate right), 

flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-242 
modR/M byte opcodes, A-8 
status flag summary, C-2 

round-off errors, and i486 Floating Point 
Processor (FPU), 14-4 

rounding control, i486 Floating Point Processor 
(FPU), 15-15 

RPL (requested privilege level), 
and data access restrictions, 6-7 
and pointer integrity, 6-22 
and segment selectors, 6-6 . 

S bit, segment descriptors, 5-12 
SAHF (store AH into flags), 

instruction description, 3-37 
instruction format and timing, E-lO 
instruction specification, 26-252 
one-byte opcode map, A-4, A-5 

SAL (shift arithmetic left), 
instruction description, 3-13 
instruction specification, 26-253 
status flag summary, C-2 

SAR (shift arithmetic right), 
instruction description, 3-14 
instruction specification, 26-253 
modR/M byte opcodes, A-8 
status flag summary, C-2 

SBB (integer subtraction with borrow), 
flag cross-reference, B-2 
instruction description, 3-7 
instruction specification, 26-256 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-l 

SCAS (compare string data), 
flag cross-reference, B-2 
instruction format and timing, E-9 
instruction specification, 26-258 
status flag summary, C-2 

SCAS (scan string data), instruction 
description, 3-29 

SCASB (compare string data), 
instruction specification, 26-258 
one-byte opcode map, A-4, A-5 

SCASD (compare string data), 
instruction specification, 26-258 
one-byte opcode map, A-4, A-5 

SCASW (scan string data), 
instruction specification, 26-258 
one-byte opcode map, A-4, A-5 

segment, description, 5-1 
segment descriptors, 

and base, 5-10 
and flat model, 5-3 
and granularity bit, 5-10 
and Intel 80286 processor; 21-1 

and limit, 5-10 
and logical address translation, 2-2 
and protection, 6-2 
and S bit, 5-12 
and segment selectors, 5-10, 5-8 
and segment translation, 5-5 
and segment-present bit, 5-14 
and type, 5-12 
and type field, 5-13 
automatic locking, 13-3 
code segments, 5-13 
D bit, 5-12 
data segments, 5-13 
descriptor table base registers, 5-16 . 
DPL (descriptor privilege level), 5-14, 6-6 
segment descriptor tables, 5-15 

segment level protection, 
and PE control flag, 4-8 
segmentation, 6-1 

segment limits, and protected flat model, 5-4 
segment override prefix, instruction format, 

2-16 . 
segment privilege level, DPL (descriptor 

privilege level), 5-14 
segment register instructions, and application 

programming, 3-39 
segment registers, 

and segment selectors, 2-10 
and segment translation, 5-6 
as register operand, 2-19 
of i486 processor, 2-8 

segment selectors, 
and index, 5-9 
and requester privilege level, 5-9 
and RPL (requested privilege level), 6-6 
and segment descriptors, 5-10 
and segment registers, 2-10 
and segment translation, 5-8 
and table indicator bit, 5-9 
for segmented address space, 2-3 

segment translation, 
and page translation, 5-23 
and segment selectors, 5-8 
and segmentation, 5-5 

segment-not-present fault, Interrupt 11 
(segment not present), 9-18 

segment-present bit, segment descriptors, 5-14 
segmentation, 

and combined protection with page, 6-25 
and default assignment, 2-19 
and default selection, 2-20 
and exceptions handling, 2-24 
and explicit memory operands, 2-19 
and flat model, 5-3 
and flat model initialization, 10-5 
and I/O address space, 8-1 
and instruction prefix override, 2-16' 
and linear address, 5-2 
and logical address, 5-2 
and memory management, 2-1, 5-1 
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and memory organization model, 2-2, 2-3 
and model selection, 5-3 
and multi-segment model, 5-4 
and multi-segmented model initialization, 

10-5 
and override prefix for segment selection, 

2-19, 2-20 
and physical address, 5-2 
and position-independent code, 5-1 
and protected flat model, 5-4 
and segment translation, 5-5 
and segment-level protection, 6-1 

self test, and power-up, 10-1 
self-modifying code, internal cache, 12-3 
semaphores, 

and CMPXCHG instruction, 3-43 
and LOCK prefix, 13-2 
and XCHG instruction, 3-2 

sensitive instructions, 
and I/O operations, 6-19 
CLI (clear interrupt-enable flag), 8-6 
IN (input), 8-6 
INS (input string), 8-6 . 
OUT (output), 8-6 
OUTS (output string), 8-6 
STI (set interrupt-enable flag), 8-6 

SETB, two-byte opcode map, A-6 
SETBE, two-byte opcode map, A-6 
SETcc (byte set on condition), 

and status flags, 3-7 
flag cross-reference, B-2 
general description, 3-22 
instruction format and timing, E-7 
instruction specification, 26-260 

SETL, two-byte opcode map, A-7 
SETLE, two-byte opcode map, A-7 
SETNB, two-byte opcode map, A-6 
SETNBE, two-byte opcode map, A-6 
SETNL, two-byte opcode map, A-7 
SETNLE, two-byte opcode map, A-7 
SETNO, two-byte opcode map, A-6 
SETNP, two-byte opcode map, A-7 
SETNS, two-byte opcode map, A-7 
SETNZ, two-byte opcode map, A-6 
SETO, two-byte opcode map, A-6 
SETP, two-byte opcode map, A-7 
SETS, two-byte opcode map, A-7 
SETZ, two-byte opcode map, A-6 
SF flag, and binary arithmetic instructions, 3-6 
SF (sign flag), status flag, 2-14 
SGDT (store global/lDTR), 

flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-262 
modR/M byte opcodes, A-8 

sharing data, using 16-bit and 32-bit 
environments, 24-3 

SHL (shift left), . 
instruction description, 3-13 
instruction specification, 26-253 

modR/M byte opcodes, A-8 
SHLD (shift left double precision), 

flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-264 
status flag summary, C-2 
two-byte opcode map, A~6 

short integer, numeric data type, 14-6 
SHR (shift right), 

instruction description, 3-13 
instruction specification, 26-253 
modR/M byte opcodes, A-8 

SHRD (shift right double precision), 
flag cross-reference, B-2 
instruction description, 3-16 
instruction specification, 26-266 
status flag summary, C-2 
two-byte opcode map, A-7 

SIB (scale/index/base byte), instruction format, 
2-16 . 

SIDT (store global/lDTR), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-262 
modR/M byte opcodes, A-8 

sign extension, description, 3-4 
single real, numeric data type, 14-6 
single-step trap, Interrupt 1 (debug exceptions), 

9-14, 11-8 
size limit, and segment descriptor, 2-2 
SLDT (store LDTR), 

flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-268 
modRiM byte opcodes, A-8 

SMSW instruction, and Intel 80286 processor, 
4-11 

SMSW (store machine status word), 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-269 
modR/M byte opcodes, A-8 

software exception handling, numeric 
exceptions, 16-18 

software initialization, 
and real-address mode, 10-2 
in protected mode, 10-5 , 

software interrupts, programmed exceptions, 
9-1 

source operands, 
floating-point instructions, 17-1 
for binary arithmentic instructions, 3-6 
for two-operand instructions, 2-17 

spawning, See copy-on-write strategy 
special numeric values, FPU data formats, 16-1 
SS register, 

and stack segment, 2-11 
segment register, 2-10 

stack, and interrupt procedures, 9-9 
stack exception, numeric exceptions, 16-20 
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stack fault, Interrupt 12 (stack exception), 9-19 
stack frame, description of, 3-30 
stack frame pointer set, display, 3-30 
stack operatIons, and default segment selection, 

2-19 
stack overflow, stack exception, 16-20 
Stack Pointer (ESP) Register, description of, 

2-12 
stack segment, and SS register, 2-11 
Stack Segment (SS) Register, description of, 

2-12 
stack switching, and gate descriptors, 6-13 
stack underflow, stack excep.tion, 16-20 
Stack-Frame Base Pointer (EBP) Register, 

description of, 2-13 
standard underflow/overflow. exception 

handler, and IEEE Standard, 16-27 
status flags, 

and lcc instruction, 3-7 
and SETcc instruction, 3-7 

status registers, of i486 processor, 2-8 
STC (set carry flag), 

flag cross-reference, B-2 
instruction format and timing, E-lO 
instruction specification, 26-270 
one-byte opcode map, A-5 

STD (set direction flag), 
flag cross-reference, B-2 
instruction format and timing, E-lO 
instruction specification, 26-271 
one-byte opcode map, A-5 

STI (set interrupt flag), 
flag cross-reference, B-2 
instruction format and timing, E-lO 
instruction specification, 26-272 
one-byte opcode map, A-5 

STI (set interrupt-enable flag), 
and INTR interrupts, 9-3 
sensitive instructions, 8-6 

STOS (store string data), 
flag cross-reference, B-2 
general description, 3-30 
instruction format and timing, E-9 
instruction specification, 26-273 

STOSB (store strin~ data), 
instruction specifIcation, 26-273 
one-byte opcode map, A-4, A-5 

STOSD (store string data), 
instruction specification, 26-273 
one-byte opcode map, A-4, A-5 

STOSW (store string data), 
instruction specification, 26-273 
one-byte opcode map, A-4, A-5 

STR (store task register), 
and task register description, 7-6 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-275 
modR/M byte opcodes, A-8 

string, data type, 2-6 

strin~ insertion/extraction, and double-shift 
Instructions, 3-19 

string instructions, and EFLAGS register, 2-13 
string operations, 

and application programming, 3-27 
and default segment selection, 2-19 

SUB (integer subtract), 
flag cross-reference, B-2 
instruction specification, 26-276 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-l 

SUB (subtract integers), instruction 
description, 3-7 

supervisor level, and addressable domain 
restriction, 6-23 

synchronization, exceptions, 18-13, 18-14 
system control, instructions (system 

programming), 4-9 
system control flag, 

AM (alignment mask-bit 18),4-7 
CD (cache disable - bit 30), 4-6 
EM (emulation - bit 2), 4-7 
ET (extension type-bit 4),4-7 
MP (math present-bit 1),4-7 
NE (numeric error-bit 5), 4-7 
PCD (page-level cache disable-CR3 bit 4), 

4-6 
PE (protection enable - bit 0), 4-8 
PG (paging-bit 31), 4-6 
PWT (page-level writes transparent - CR3 

bit 3), 4-6 
TS (task switched-bit3), 4-7 
WP (write protect-bit 16),4-7 

system control flags, and CRO register, 4-5 
system flags, and system programming, 4-2 
system programming, and i486 Floating Point 

Processor (FPU), 19-1 
system tables, 

and protected mode initialization, 10-4 
and software initialization, 10-3 

T bit (trap bit of TSS), 
and BT bit, 11-4 
and debugging support, 11-1 

table indicator bit, segment selectors, 5-9 
tag, and cache associative memories, 12-1 
task, description, 7-1 
task address mapping, logical to physical space, 

7-14 
task address space, descripion, 7-13 
task creation, See copy-an-write strategy 
task gate descriptor, and protected task 

reference, 7-6 
task gates, 

and IDT descriptors, 9-7 
and task switching, 6-11, 7-1 

task linking, 
and i486 processor, 7-11 
and TSS (task state segment), 7-11 
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modification of, 7-13 
task state segment, 

and stack switching, 6-15 
and TSS descriptor, 7-2 
description, 7-1 
descriptors and task switching, 7-1 

task switching, 
and exceptions, 7-1 
and i486 processor, 7-7 
and interrupts, 7-1 
and LDT switching, 7-1 
and page fault, 9-22 
and task gates, 6-11, 7-1 
and task state segment descriptors, 7-1 

task-switch breakpoint trap, Interrupt 1 (debug 
exceptions), 9-14 

task-switch trap, Interrupt 1 (debug 
exceptions), 11-8 

tasks, 
and NT flag, 4-3 
and re-entrant code, 7-3 
initialization, 10-6 

TEST (logical compare), 
flag cross-reference, B-2 
instruction description, 3-23 
instruction format and timing, E-4 
instruction specification, 26-278 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4, A-5 
status flag summary, C-2 

test registers, and translation lookaside buffer 
(TLB),4-8 

TF flag (trap flag), 
debugging support, 11-1 
system flag description, 4-3 

three-operand instructions, 
and ECX register, 2-18 
description of, 2-18 

TLB (translation lookaside buffer), 
initialization testing, 10-6 
structure of, 10-7 
test operations, 10-10 
test registers, 10-8 

top-of-stack (TOS), 
and ESP register, 2-12 
and PUSH instruction, 3-2 

TR4 (test status register), cache test register, 
10-13 

TR6 (test command register), TLB test 
register, 10-8 

TR7 (test data register), TLB test register, 10-9 
TR (task register), 

and current TSS, 7-4 
register description, 4-5 

transcendental instructions, floating-point 
instructions, 17-4 

transferring control, in 16-bit and 32-bit 
environments, 24-3 

translation lookaside buffer (TLB), 
and page translation, 5-18, 5-22 

and test registers, 4-8 
trap gates, 

and exceptions, 6-11 
and IDT descriptors, 9-7 

traps, 
exception conditions, 9-13 
exception description, 9-2 
exception processor-detected, 9-1 

trigonometric calculation, numeric 
programming, 20-7 

TS (task switched- bit3), system control' flag, 
4-7 

TSS Busy bit, automatic locking, 13-3 
TSS (task state segment), 

and I/O rermission bit map, 8-7 
and Inte 80286 processor compatibility, 7-2 
and processor state information, 7-2 
and task linking, 7-11 

two-operand instructions, description of, 2-17 
type, segment descriptors, 5-12 
type checking, 

and protection mechanism, 6-24 
segment descriptors, 6-3 

type field, segment descriptors, 5-13 

underflow exception, 
and denormal values, 16-3 
and inexact exception, 16-26 
and numeric underflow, 16-25 

unordered, comparison instructions, 17-4 
unsegmented model, creation of, 2-10 
unsupported formats, and data type encoding, 

16-13 
user level, and addressable domain restriction, 

6-23 
user mode (privilege level 3), and alignment­

check exception, 4-2 
user mode write protect, and copy-on-write 

strategy, 6-24 
user/supervisor bit, and page table entries, 5-22 

vector, exception/interrupt identification, 9-1 
VERR (verify segment for read), 

descriptor validation, 6-21 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-279 
modR/M byte opcodes, A-8 

VERW (verify segment for write), 
descriptor validation, 6-21 
flag cross-reference, B-2 
instruction format and timing, E-12 
instruction specification, 26-279 
modR/M byte opcodes, A-8 

virtual memory, 
and memory model, 2-1 
description, 5-14 

virtual-8086 mode, 
address translation, 23-2 
and VM flag, 4-3 
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bus lock, 23-14 
entering and leaving, 23-5 
i486 operating mode, 1-2 
i486 processor, 23-1 
I/O rrotection, 8-6 
Inte 386 DX processor differences, 23-15 
Intel 80286 processor differences, 23-13 
Intel 8086 processor differences, 23-10 
Intel 8086 processor programs, 23-1 
paging tasks, 23-4 
registers and instructions, 23-1 
task protection, 23-5 
task structure, 23-3 
virtual I/O, 23-9 

VM flag (virtual-8086 mode - bit 17), system 
flag description, 4-3 

wait, control instructions, 17-8 
WAIT (wait), 

flag cross-reference, B-2 
instruction format and timing, E-20 
instruction specification, 26-281 
one-byte opcode map, A-4, A-5 

WBINVD (write-back and invalidate cache), 
cache management instructions, 12-3 
flag cross-reference, B-2 
instruction format and timing, E-11 
instruction specification, 26-282 
two-byte opcode map, A-7 

word, data type, 2-3 
word integer, numeric data type, 14-6 
WP (write protect-bit 16), system control flag, 

4-7 
writable bit, and data-segment descriptor, 6-3 
write access, 

and accessed bit, 5-21 
and dirty bit, 5-21 

write protection, and user-mode pages, 6-24 
write-back, and caching, 12-2 
write-through, 

and caching, 12-2 
and external cache, 12-2 
and internal cache, 12-2 

XADD (exchange and add), 
flag cross-reference, B-2 
instruction description, 3-43 
instruction format and timing, E-6 
instruction specification, 26-283 
status flag summary, C-1 
two-byte opcode map, A-6 

XCHG (exchange), 
automatic locking, 13-3 
flag cross-reference, B-2 
instruction description, 3-2 
instruction format and timing, E-3 
instruction specification, 26-285 
one-byte opcode map, A-4 

XLAT (table look-up translation), 
flag cross-reference, B-2 
instruction format and timing, E-9 
instruction specification, 26-286 
one-byte opcode map, A-4 

XLATB (table look-up translation), 
instruction description, 3-42 
instruction specification, 26-286 

XOR (logical exclusive or), 
flag cross-reference, B-2 
instruction description, 3-12 
instruction specification, 26-288 
modR/M byte opcodes, A-8 
one-byte opcode map, A-4 
status flag summary, C-2 

zero operands, and i486 Floating Point 
Processor (FPU), 16-6 

zero-divide exception, and division by zero, 
16-21 

ZF flag, and binary arithmetic instructions, 3-6 
ZF (zero flag), status flag, 2-14 
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