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CHAPTER 1
INTRODUCTION TO THE i486™ PROCESSOR

The i1486™ processor offers the highest performance for DOS, OS/2, Windows and
UNIX System V/386 applications. It is 100% binary compatible with 386™ DX and SX
microprocessors. One million transistors integrate cache memory, floating-point hard-
ware and memory management on-chip while retaining binary compatibility with previ-
ous members of the 86 architectural family. Frequently-used instructions execute in one
cycle, resulting in RISC performance levels. An eight-Kbyte unified code and data cache
combined with an 80/106 Mbyte/sec burst bus at 25/33 MHz ensure high system through-
put even with inexpensive DRAME.

New features enhance multiprocessing systems. New instructions speed manipulation of
memory-based semaphores. On-chip hardware ensures cache consistency and provides
hooks for multi-level caching.

The built-in self-test extensively tests on-chip logic, cache memory and the on-chip pag-
ing translation cache. Debug features include breakpoint traps on code execution and
data accesses.

Features of the 1486 processor include:

o Full binary compatibility with 386 DX CPU, 386 SX CPU, 376™ embedded processor,
80286, 8086, and 8088 processors

e Execution unit designed to execute frequently-used instructions in one clock cycle
e 32-bit integer processor for performing arithmetic and logical operations

e Internal floating-point arithmetic unit for supporting the 32-, 64-, and 80-bit formats
specified in IEEE standard 754 (object-code compatible with 387™ DX and 387 SX
math coprocessors)

o Internal 8K-byte cache memory, which provides fast access to recently-used instruc-
tions and data

¢ Bus control signals for maintaining cache consistency in multiprocessor systems

e Segmentation, a form of memory management for creating independent, protected
address spaces

e Paging, a form of memory management which provides access to data structures
larger than the available memory space by keeping them partly in memory and partly
on disk

¢ Restartable instructions that allow a program to be restarted following an exception
(necessary for supporting demand-paged virtual memory)

¢ Pipelined instruction execution overlaps the interpretation of different instructions
¢ Debugging registers for hardware support of instruction and data breakpoints

The 1486 processor is object-code compatible with three other 386 processors:

e 386 DX Processor (32-bit data bus)—A cost-effective form for high-end personal
computers and mid-range workstations.
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e 386 SX Processor (16-bit data bus)—The 386 processor adapted for mid-range per-
sonal computers, which are sensitive to the higher system cost of a 32-bit bus.

e 376 Embedded Processor (16-bit data bus)—A reduced form of the 386 processor
optimized for embedded applications, such as process controllers. The 376 processor
lacks the paging and 8086-compatibility features provided in the i486 processor. The
376 processor is available in a surface-mount plastic package, which provides the
lowest cost and smallest form factor for any implementation of the 386 processor:

The operating mode of the i486 processor determines which instructions and architec-
tural features are accessible. The 1486 processor has three modes for running programs:

e Protected mode uses the native 32-bit instruction set of the processor. In this mode
~ all instructions and architectural features are available.

e Real-address mode (also called “real mode”) emulates the programming environ-
ment of the 8086 processor, with a few extensions (such as the ability to break out of
this mode). Reset initialization places the processor into real mode.

e Virtual-8086 mode (also called “V86 mode”) is another form of 8086 emulation
mode. Unlike real-address mode, virtual-8086 mode is compatible with protection and
memory-management. The processor can enter virtual-8086 mode from protected
mode to run a program written for the 8086 processor, then leave virtual-8086 mode
and re-enter protected mode to continue a program which uses the 32-bit instruction
set.

1.1 ORGANIZATION OF THIS MANUAL

This book presents the architecture of the i486 processor in five parts:
e Part I— Application Programming

e Part II—System Programming

o Part III —Numeric Processing

e Part IV— Compatibility

e Part V—Instruction Set

e Appendices

These divisions are determined by the architecture and by the ways programmers use
this book. The first three parts are explanatory, showing the purpose of architectural
features, developing terminology and concepts, and describing instructions as they relate
to specific purposes or to specific architectural features. The remaining parts are réfer-
ence material for programmers developing software for the 486 processor.

The first four parts cover the operating modes and protection mechanism of the i486
processor. The distinction between application programming and system programming is
related to the protection mechanism of the 486 processor. One purpose of protection is
to prevent applications from interfering with the operating system. For this reason, cer-
tain registers and instructions are inaccessible to application programs. The features
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discussed in Part I and Part III are those which are accessible to applications; the fea-
tures in Part II are available only to programs running with special privileges, or pro-
grams running on systems where the protection mechanism is not used.

The features available to application programs in protected mode and to all programs in
virtual-8086 mode are the same. These features are described in Part I and Part III of
this book. The additional features available to system programs in protected mode are
described in Part II. Part IV describes real-address mode and virtual-8086 mode, as well
as how to run a mix of 16-bit and 32-bit programs.

1.1.1 Part |- Application Programming

This part presents the features used by most application programmers. It does not in-
clude features used in numeric applications, which are discussed in Part III.

Chapter 2 —Basic Programming Model: Introduces the models of memory organization.
Defines the data types. Presents the register set used by applications. Introduces the
stack. Explains string operations. Defines the parts of an instruction. Explains address
calculations. Introduces interrupts and exceptions as they apply to application
programming.

Chapter 3 —Application Instruction Set: Surveys the instructions commonly used for
application programming. Considers instructions in functionally related groups; for ex-
ample, string instructions are considered in one section, while control-transfer instruc-
tions are considered in another. Explains the concepts behind the instructions. Details of
individual instructions are deferred until Part IV, the instruction-set reference.

1.1.2 Part Il - System Programming

This part presents the features used by operating systems, device drivers, debuggers, and
other software which support application programs. Some additional information rele-
vant to systems programming is presented in Part III.

Chapter 4— System Architecture: Describes the features of the i486 processor used by
system programmers. Introduces the registers and data structures of the i486 processor
which are not discussed in Part I or Part III. Introduces the system-oriented instructions
in the context of the registers and data structures they support. References the chapters
in which each register, data structure, and instruction is discussed in more detail.

Chapter 5—Memory Management: Presents details of the data structures, registers, and
instructions which support segmentation. Explains how system designers can choose be-
tween an unsegmented (“flat”) model of memory organization and a model with
segmentation. .

Chapter 6— Protection: Discusses protection as it applies to segments. Explains the im-

plementation of privilege rules, stack switching, pointer validation, user and supervisor
modes. Protection aspects of multitasking are deferred until the following chapter.
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Chapter 7—Multitasking: Explains how the hardware of the i486 processor supports
multitasking with context-switching operations and intertask protection. -

Chapter 8 —Input/Output: Describes the I/O features of the i486 processor, including
I/O instructions, protection as it relates to I/O, and the 1/O permission bit map.

Chapter 9—Exceptions and Interrupts: Explains the basic interrupt mechanisms of the
1486 processor. Shows how interrupts and exceptions relate to protection. Discusses all
possible exceptions, listing causes and including information needed to handle and re-
cover from each exception.

Chapter 10 —Initialization: Defines the condition of the processor after reset initializa-
tion. Explains how to set up registers, flags, and data structures. Shows how to test the
on-chip cache and the translation lookaside buffer. Contains an example of an initializa-
tion program.

Chapter 11—Debugging: Tells how to use the debugging registers of the i486.processor.

Chapter 12— Caching: Explains the general concept of cachmg and the specnﬁc mecha-
nisms used by the internal cache on the i486 processor. ,

Chapter 13 — Multiprocessing: Explains the 1nstruct10ns and flags which support multlple
processors with shared memory.

1.1.3 Part lll—Numeric Processing

This part explains the floating-point arithmetic features of the i486 processor. These
features are an object-code compatible implementation of the features provided by the
387 DX or SX math coprocessor used with the 386 DX or SX processor.

Chapter 14—Introduction to Numeric Applications: Gives an overview of the floating-
point unit and reviews the concepts of numerical computation.

Chapter 15— Architecture of the Numeric Unit: Presents the ﬂoatmg pomt registers and
data types available to both applications and systems programmers.

Chapter 16 — Special Computational Situations: Discusses the special values that can be
represented in the real formats of the i486 processor —denormal numbers, zeros, infini-
ties, NaNs (Not a Number) —as well as the numerical exceptions. This chapter should be
read thoroughly by systems programmers, but can be skimmed by applications program-
mers. Many of these special situations may never arise in applications programs.

Chapter 17 —Floating-Point Instructions: Surveys the instructions commonly used for
numeric processing. Details of individual instructions are deferred until Part V, the
instruction-set reference. :
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Chapter 18— Numeric Applications: Describes the 486 processor’s floating-point arith-
metic facilities. Gives short programming examples in both assembly language and high-
level languages.

Chapter 19— System-Level Considerations: Provides information of interest to systems
software writers.

Chapter 20 —Numeric Programming Examples: Provides detailed examples of assembly-
language numeric programming with the i486 processor, including conditional branching,
conversion between floating-point values and their ASCII representations, and use of
trigonometric functions.

1.1.4 Part IV—-Compatibility

This part explains the features of the architecture which support programs written for
earlier Intel processors. The native mode of execution is an upward-compatible superset
of the environment of the 80286 and 386 DX processors. All three execution modes have
support for 16-bit programming: 16-bit operations can be performed in protected mode
using the operand-size prefix, programs written for the 8086 processor or the real mode
of the 80286 processor can run in real mode on the 386 DX processor, and a virtual
machine monitor can be used to emulate real mode using virtual-8086 mode, even while
multitasking with 32-bit programs. '

Chapter 21— Executing 80286 and 386 DX Processor Programs: Explains the program-
ming differences between the 80286 and .i486 processors, and between the 386 DX and
486 processors.

Chapter 22 —Real-Address Mode: Explains the real mode of the i486 processor. In this
mode, the i486 processor appears as a fast real-mode 80286 or 386 DX processor or a
fast 8086 processor enhanced with additional instructions.

Chapter 23 — Virtual-8086 Mode: Describes how the i486 processor supports execution of
oné or more 8086, 8088, 80186 or 80188 programs 1n an i486 processor protected-mode
environment.

Chapter 24 —Mixing 16-Bit and 32-Bit Code: Explains how the i486 processor can mix
16-bit and 32-bit modules within the same program or task. Any particular module can
use both 16-bit and 32-bit operands and addresses.

Chapter 25— Compatibility with 8087, 80287, and 387 DX Math Coprocessors: Com-
pares the floating-point arithmetic of the 1486 processor with the arithmetic of the nu-
merics coprocessors used with earlier Intel processors.
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1.1.5 Part V—Instruction Set

Parts I, II, and III present the general features of the instruction set as they relate to
specific aspects of the architecture. Part V presents the instructions in alphabetical or-
der, with the detail needed by assembly language programmers and programmers of
debuggers, compilers, operating systems, etc. Instruction descriptions include an algo-
rithmic description of operations, effect of flag settings, effect on flag settings, effect of
operand- and address-size attributes, and exceptions which may be generated.

1.1.6 Appendices

The appendices present tables of encodings and other details in a format designed for
quick reference by programmers.

1.2 RELATED LITERATURE
The following books contain additional material related to Intel processors:

Introduction to the 80386, Order Number 231252

80386 Processor Hardware Reference Manual, Order Number 231732

80386 Processor System Software Writer’s Guide, Order Number 231499

80386 High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory Manage-
ment, Order Number 231630

376 ™ Embedded Processor Programmer’s Reference Manual Order Number 240314
386™ DX Processor Programmer’s Reference Manual, Order Number 230985

386™ SX Processor Programmer’s Reference Manual, Order Number 240331

80387 Programmer’s Reference Manual, Order Number 231917 »
376™ High-Performance 32-Bit Embedded Processor, Order Number 240182 -
386™ SX Microprocessor, Order Number 240187

Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843

The i486™ Microprocessor Hardware Reference Manual is the companion of this book for
use by hardware designers. It contains information which may be useful to programmers
especially system programmers. Order Number 240552

The i486™ Microprocessor Data Sheet contains the latest information regarding device
parameters (voltage levels, bus cycle timing, priority of simultaneous exceptions and
interrupts, etc.). Order Number 240440

The i486™ Microprocessor Product Brief Book describes many related products commonly
used with 1486 CPU Order Number 240459

1.3 NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation
of instructions, and for hexadecimal numbers. A review of this notation makes the man-
ual easier to read. :
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1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bot-
tom of the figure; addresses increase toward the top. Bit positions are numbered from
right to left. The numerical value of a set bit is equal to two raised to the power of the bit
position. The i486 processor is a “little endian” machine; this means the bytes of a word
are numbered starting from the least significant byte. Figure 1-1 illustrates these
conventions.

Numbers are usually expressed in decimal notation (base 10). When hexadecimal
(base 16) numbers are used, they are indicated by an ‘H’ suffix.

1.3.2 Undefined Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved.
When bits are marked as undefined or reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. Software should follow these guidelines in dealing with reserved bits:

e Do not depend on the states of any reserved bits when testing the values of reglsters
which contain such bits. Mask out the reserved bits before testing.

e Do not depend on the states of any reserved bits when storing to memory or to a
register.

e Do not depend on the ablhty to retain information written into any reserved bits.

o . When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously stored from the same
register.

DATA STRUCTURE
31 23 15 7 0 < BIT OFFSET
GREATEST 2
ADDRESS
24
20
16
12
8
UNDEFINED SMALLEST
BYTE3 BYTE2 BYTE1 BYTEO | O ADDRESS

BYTE OFFSET

240486i1

Figure 1-1. Bit and Byte Order

1-7



intel® INTRODUCTION TO THE i486™ PROCESSOR

NOTE

Depending upon the values of reserved register bits will make software dependent upon
the unspecified manner in which the i486 processor handles these bits. Depending

- upon reserved values risks incompatibility with future processors. AVOID ANY SOFT-
'WARE DEPENDENCE UPON THE STATE OF RESERVED 1486 PROCESSOR
REGISTER BITS.”

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for
the 1486 processor is used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3

where:
e A label is an 1dent1f1er which is fo]lowed by a colon.

o A mnemonic is a reserved name for a class of instruction opcodes which have the
same function.

e The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form
of either literals or identifiers for data items. Operand identifiers are either reserved

- names of registers or are assumed to be assigned to data items declared in another
part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right op-
erand is the source and the left operand is the destination. Some assembly languages
put the source and destination in reverse order.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL ‘is the source operand.

1.3.4 Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the char-
acter H. A hexadecimal digit is a character from the set (0, 1, 2, 3,4, 5,6, 7, 8,9, A, B,
C, D, E, F). A leading zero is added if the number would otherwise begin with one of the
digits A-F. For example, OFH is equivalent to the decimal number 15.
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1.3.5 Segmented Addressing

The i486 processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte number is
used to address memory. The memory which can be addressed with this number is called
an address space.

The i486 processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments. For ex-
ample, a program can keep its code (instructions) and stack in separate segments. Code
addresses would always refer to the code space, and stack addresses would always refer
to the stack space. An example of the notation used to show segmented addresses is
shown below.

CS:EIP

This example refers to a byte within the code segment. The byte number is held in the
EIP register.

1.3.6 Exceptions

An exception is an event which occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. There are several different types of
exceptions, and some of these types may provide error codes. An error code reports
additional information about the error. Error codes are produced only for some excep-
tions. An example of the notation used to show an exception and error code is shown
below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code is

zero, as shown below.

#PF(0)
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. CHAPTER 2
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment (except for the
floating-point features) as seen by assembly-language programmers. The chapter intro-
duces the architectural features which directly affect the design and implementation of
application programs. Floating-point applications are described separately in Part III.

The basic programming model consists of these parts:
e Memory organization

o Data types

¢ Registers

o Instruction format

e Operand selection

o [Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers may choose to make I/O instructions available to applications or may choose to
reserve these functions for the operating system. For this reason, the I/O features of the
'1486™ processor are discussed in Part II.

This chapter contains a section for each feature of the archltecture normally visible to
apphcanons : :

21 MEMORY ORGANIZATION

The memory on the bus of an 1486 processor is called physzcal memory. It is organized as
a sequence of 8-bit bytes. Each byte is assngned a unique address, called a physical
address, which ranges from zero to a maximum of 2>2—1 (4 gigabytes). Memory manage-
ment is a hardware mechanism for making reliable and efficient use of memory. When
memory management is used, programs do not directly address physical memory. Pro-
grams address a memory model, called virtual memory.

Memory management consists of segmentation and paging. Segmentatlon is a mecha-
nism for providing multiple, mdependent address spaces. Paging is a mechanism to sup-
port a model of a large address space in RAM using a small amount of RAM and some
disk storage Either or both of these mechanisms may be used. An address issued by a
program is a logical address. Segmentation hardware translates a logical address into an
address for a continuous, unsegmented address space, called a linear address. Paging
hardware translates a linear address into a physical address.

Memory may appear as a single, addressable space like physical memory. Or, it may
appear as one or more independent memory spaces, called segments. Segments can be
assigned specifically for holding a program’s code (instructions), data, or stack. In fact, a
single program may have up to 16,383 segments of different sizes and kinds. Segments
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can be used to increase the reliability of programs and systems. For example, a pro-
gram’s stack can be put into a different segment than its code to prevent the stack from
growing into the code space and overwriting instructions with data.

Whether or not multiple segments are used, logical addresses are translated into linear
‘addresses by treating the address as an offset into a segment. Each segment has a seg-
ment descriptor, which holds its base address and size limit. If the offset does not exceed
the limit, and no other condition exists which would prevent reading the segment, the
offset and base address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if
bit 31 of the CRO register is clear (the CRO register is discussed in Chapter 4). This
register bit controls whether paging is used or not used. If the bit is set, the paging
hardware is used to translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks of 4K bytes, called pages. The logical address space is
mapped into the linear address space, which is mapped into some number of pages. A
page may be in memory or on disk. When a logical address is issued, it is translated into
an address for a page in memory, or an exception is issued. An exception glves the
operating system a chance to read the page from disk and update the page mapping. The
program which generated the exception then can be restarted without generating an
exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers. If paging is used, it is normally invisible to the application
programmer. It only becomes visible when there is an interaction between the applica-
tion program and the paging algorithm used by the operating system. When all of the
pages in memory are used, the operating system uses its paging algorithm to decide
which memory pages should be sent to disk. All paging algorithms (except random algo-
rithms) have some kind of worst-case behavior which may be exercised by some kinds of
application programs

The archltecture of the i486 processor gives designers the freedom to choose a different
memory model for each program, even when more than one program is running at the
same time. The model of memory organization can range between the following
extremes:

o A “flat” address space where the code, stack, and data spaces are mapped to the
same linear addresses. To the greatest extent possible, this eliminates segmentation
by allowing any type of memory reference to access any type of data.

o A segmented address space with separate segments for the code, data, and stack
spaces. As many as 16,383 linear address spaces of up to 4 gigabytes each can be used.

Both models can provide memory protection. Models intermediate between these ex-
tremes also can be chosen. The reasons for choosing a particular memory model and the
manner in which system programmers implement a model are discussed in Part 11—
System Programming:
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2.1.1 Unsegmented or “Flat” Model

The simplest memory model is the flat model. Although there isn’t a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory opera-
tions to refer to the same memory space.

In a flat model, segments may cover the entire 4 gigabyte range of physical addresses, or
they may cover only those addresses which are mapped to physical memory. The advan-
tage of the smaller address space is it provides a minimum level of hardware protection
against software bugs; an exception will occur if any logical address refers to an address
for which no memory. exists.

2.1.2 Segmented Model

In a segmented model of memory organization, the logical address space consxsts of as
many as 16,383 segments of up to 4 gigabytes each, or a total as large as 2*° bytes (64
terabytes). The processor maps this 64 terabyte logical address space onto the physical
address space (up to 4 gigabytes) by the address translation mechanism described in
Chapter 5. Application programmers may ignore the details of this mapping. The advan-
tage of the segmented model is that offsets within each address space are separately
checked and access to each segment can be individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 2-1).

1. A segment selector, which is a 16-bit field which identifies a segment.
2. An offset, which is a 32-bit byte address within a segment.

The processor uses the segment selector to find the linear address of the beginning of
the segment, called the base address. Programs access memory using fixed offsets from
this base address, so an object-code module may be loaded into memory and run without
changing the addresses it uses (dynamic linking). The size of a segment is defined by the
programmer, so a segment can be exactly the size of the module it contains.

2.2 DATA TYPES

Bytes, words, and doublewords are the principal data types (see Figure 2-2). A byte is
eight bits. The bits are numbered 0 through 7, bit 0 being the least significant bit (LSB).

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits.
The bits. of a word are numbered from 0 through 15, bit 0 again being the least signifi-
cant bit. The byte containing bit 0 of the word is called the low byte; the byte containing
bit 15 is called the high byte. On the 1486 processor, the low byte is stored in the byte with
the lower address. The address of the low byte also is the address of the word. The
address of the high byte is used only when the upper half of the word is being accessed
separately from the lower half.
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—
OPERAND -
OFFSET WITHIN SEGMENT i
SEGMENT SELECTOR
15 0
SEGMENT SELECTOR
31 . 0
OFFSET WITHIN SEGMENT
240486i2

Figure 2-1. Segmented Addressing

A doubleword is four bytes occupying any four consecutive addresses. A doubleword
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again
being the least significant bit. The word containing bit 0 of the doubleword is called the
low word; the word containing bit 31 is called the high word. The low word is stored in
the two bytes with the lower addresses. The address of the lowest byte is the address of
the doubleword. The higher addresses are used only when the upper word is being
accessed separately from the lower word, or. when individual bytes are being accessed.
Figure 2-3 illustrates the arrangement of bytes within words and doublewords.

Note that words do not need to be aligned at even-numbered addresses and double-
words do not need to be aligned at addresses evenly divisible by four. This allows maxi-
mum flexibility in data structures (e.g., records containing mixed byte, word, and
doubleword items) and efficiency in memory utilization. Because the i486 processor has
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BYTE

15
[ HIGH BYTE LOW BYTE J WORD
address N + 1 address N
31 15
HIGH WORD ) | LOW WORD DOUBLEWORD
address N+3 address N + 2 address N+ 1 address N
240486i3
Figure 2-2. Fundamental Data Types
DOUBLEWORD AT ADDRESS A
CONTAINS 7AFE0636 7A
FE
WORD AT ADDRESS B CONTAINS FE06
06
I 36
BYTE AT ADDRESS 9 CONTAINS 1F 1F
23
WORD AT ADDRESS 6 CONTAINS 2308 0B
WORD AT ADD‘RESS 2 CONTAINS 74CB 74
cB
WORD AT ADDRESS 1 CONTAINS CB31
31
240486i4

Figure 2-3. Bytes, Words, and Doublewords in Memory
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a 32-bit data bus, communication between processor and memory takes place as double-
word transfers aligned to addresses evenly divisible by four; the processor converts dou-
bleword transfers aligned to other addresses into multiple transfers. These unaligned
operations reduce speed by requiring extra bus cycles. For maximum speed, data struc-
tures (especially stacks) should be designed so, whenever possible, word operands are
aligned to even addresses and doubleword operands are aligned to addresses evenly
divisible by four.

Although bytes, words; and doublewords are the fundamental types of operands, the
processor also supports additional interpretations of these operands. Specnallzed instruc-
tions recogmze the following data types (shown in Figure 2-4): :

Integer: A signed binary number held in a 32-bit doubleword, 16-bit word, or 8-bit
byte. All operations assume a two’s complement representation.. The sign bit is lo-
cated in bit 7 in a byte, bit 15 in a word, and bit 31 in a doubleword. The sign bit is set
for negative integers, clear for positive integers and zero. The value of an 8-bit integer
is from —128 to +127; a 16-bit mteger from —32,768 to +32,767; a 32-bit mteger
from -2 to +2% -1.

Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word,
or 8-bit byte. The value of an 8-bit ordinal is from 0 to 255 a 16 bit ordinal from 0 to
65,535; a 32-bit ordinal from 0 to 2*% — 1.

Near Pointer: A 32-bit logical address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for references
within a segment in a segmented model.

Far Pointer: A 48-bit logical address consisting of a 16- blt segment selector and a
32-bit offset. Far pointers are used in a segmented memory model to access other
segments,

String: A contlguous seqnence of bytes, words, or doublewords. A string may contain
from zero to 2°° — 1 bytes (4 glgabytes)

Bit field: A contiguous sequence of bits. A bit field may begin at any bit position of
any byte and may contain up to 32 bits.

Bit string: A contiguous sequence of bits. A bit string may begin at any bit position of
any byte and may contain up to 2°2 — 1 bits.

BCD: A representatlon of a binary-coded decimal (BCD) digit in the range 0 through
9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit is
stored in each byte. The magnitude of the number is the binary value of the low-order
half-byte; values 0 to 9 are valid and are interpreted as the value of a digit. The
high-order half-byte must be zero during multiplication and division; it may contain
any value during addition and subtractnon

Packed BCD: A representatlon of binary-coded decimal digits, each in the range 0 to
9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to 7
is more significant than the digit in bits 0 to 3. Values 0 to 9 are valid for a digit.

Floating-Point Types: For a discussion of the data types used by floating-point instruc-
tions, see Chapter 15.
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BYTE INTEGER
7-BIT MAGNITUDE
'—BIT SIGN

WORD INTEGER
15-BIT MAGNITUDE
1-BIT SIGN

DOUBLEWORD INTEGER
31-BIT MAGNITUDE !
1-BIT SIGN

BYTE ORDINAL
8-BIT MAGNITUDE

WORD ORDINAL
16-BIT MAGNITUDE

DOUBLEWORD ORDINAL
32.BIT MAGNITUDE

BCD INTEGER
4-BIT DIGIT PER BYTE
4.BIT DIGIT PER BYTE

PACKED BCD INTEGER
4.BIT PER HALF-BYTE
4-BIT PER HALF-BYTE

NEAR POINT
32-BIT OFFSET
4.BIT DIGIT PER BYTE

FAR POINTER
32.BIT OFFSET
16-BIT SELECTOR

BIT FIELD
UP TO 32 BITS

BIT STRING
UP TO 4 GIGABITS

BYTE STRING
UP TO 4 GIGABYTES

240486i5

Figure 2-4. Data Types
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2.3 REGISTERS

The 1486 processor contains sixteen registers which may be used by an application pro-
grammer. As Figure 2-5 shows, these registers may be grouped as:

1. General registers. These eight 32-bit registers are free for use by the programmer. -

2. Segment registers. These registers hold segment selectors associated with different
forms of memory access. For example, there are separate segment registers for ac-
cess to code and stack space. These six registers determine, at any given time, which
segments of memory are currently available.

- 3. Status and control registers. These registers report and allow modification of the
state of the i486 processor. ;

2.3.1 General Registers

The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI,
and EDI. These registers are used to hold operands for logical and arithmetic opera-
tions. They also may be used to hold operands for address calculations (except the ESP
register cannot be used as an index operand). The names of these registers are derived
from the names of the general registers on the 8086 processor, the AX, BX, CX, DX,
‘BP, SP, SI, and DI registers. As Table 2-1 shows, the low 16 bits of the general registers
can be referenced using these names.

Each byte of the 16-bit registers AX, BX, CX, and DX also have other names. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low
bytes).

Table 2-1. Register Names

8-Bit 16-Bit - 32:Bit
AL AX EAX
AH .
BL BX - EBX
BH
CcL cX ‘ ECX
CH
DL DX ‘ EDX
DH
sl ES!
DI EDI
BP EBP
SP ESP
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GENERAL REGISTERS

31 23 15 0
AH AL
DH DL
CH CL
BH BL

. BP

sl

DI

SP

SEGMENT REGISTERS

15 0
cs
ss
DS
ES
FS
' Gs
. STATUS AND CONTROL REGISTERS .
EFLAGS
EIP

16-BIT
AX
DX
ox

BX

32-BIT
EAX -
EDX
ECX

EBX

EBP
ESI'
EDI

ESP

240486i6

Figure 2-5. Application Register Set
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All of the general-purpose registers are available for address calculations and for the
results of most arithmetic and logical operations; however, a few instructions assign
specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. By assigning specific registers for these
functions, the instruction set can be encoded more compactly. The instructions using
specific registers include: double-precision multiply and divide, I/O, strings, translate;
loop, variable shift and rotate, and stack operations.

2.3.2 Segment Registers

Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models is the subject of Part 11—
System Programming.

The segment registers contain 16-bit segment selectors, which index into tables in mem-
ory. The tables hold the base address for each segment, as well as other information
regarding memory access. An unsegmented model is created by mapping each segment
to the same place in physical memory, as shown in Figure 2-6.

At any instant, up to six segments of memory are immediately available. The segment
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments.
Each register is associated with a particular kind of memory access (code, data, or stack).
Each register specifies a segment, from among the segments used by the program, which
is used for its kind of access (see Figure 2-7). Other segments can be used by loading
‘their segment selectors into the segment registers.

DIFFERENT LOGICAL SEGMENTS ONE PHYSICAL ADDRESS SPACE

GS
FS

ES

DS

cs

L]

240486i7

Figure 2-6. An Unsegmented Memory

2-10



intel® BASIC PROGRAMMING MODEL

" DIFFERENT LOGICAL SEGMENTS DIFFERENT ADDRESS SPACE
IN PHYSICAL MEMORY

. cs
ss

DS CODE
Es SEGMENT

FS

STACK
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

240486i8

Figure 2-7. A Segmented Memory

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The i486 processor fetches instructions from
the code segment, using the contents of the EIP register as an offset into the segment.
The CS register is loaded as the result of interrupts, exceptions, and instructions which
transfer control between segments (e.g., the CALL; IRET and JMP instructions).

Before a procedure is called, a region of memory needs to be allocated for a stack. The
'stack is used to hold the return address, parameters passed by the calling routine, and
temporary variables allocated by the procedure. All stack operations use the SS register
to find the stack segment. Unlike the CS register, the SS register can be loaded explic-
itly, which permits application programs to set up stacks.

The DS, ES, FS, and GS registers allow as many as four data segments to be available
‘simultaneously. Four data segments give efficient and secure access to different types of
data structures. For example, separate data segments can be created for the data struc-
tures of the current module, data exported from a higher-level module, a dynamically-
created data structure, and data shared with another program. If a bug causes a program
to run wild, the segmentation mechanism can limit the damage to only those segments
allocated to the program. An operand within a data segment is addressed by specifying
its offset either in an instruction or a general register.

‘Depending on the structure of data (i.e., the way data is partitioned into segments), a
program may require access to more than four data segments. To access additional
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segments, the DS, ES, FS, and GS registers can be loaded by an application program
during execution. The only requirement is to load the appropriate segment register be-
fore accessing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit
offset is added to the segment’s base address. Once a segment is selected (by loading the
segment selector into a segment register), an instruction only needs to specify the offset.
Simple rules define which segment register is used to form an address when only an
offset is specified.

2.3.3 Stack Implementation
Stack operations are supported by three registers:

1. Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a
system is limited only by the maximum number of segments. A stack may be up to 4
gigabytes long, the maximum size of a segment on the 486 processor. One stack is
available at a time — the stack whose segment selector is held in the SS regxster This
is the current stack, often referred to simply as “the” stack. The SS register is used
automatically by the processor for all stack operations.

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack
(TOS) in the current stack segment. It is used by PUSH and POP operations, sub-
routine calls and returns, exceptions, and interrupts. When an item is pushed onto
the stack (see Figure 2-8), the processor decrements the ESP register, then writes

STACK SEGMENT
31 ‘ 0
BOTTOM OF STACK
(INITIAL ESP VALUE)
TOP OF STACK - ESP
PUSHES PUT THE . POPS PUT THE
TOP OF STACK AT TOP OF STACK AT
LOWER ADDRESSES HIGHER ADDRESS
24048619

Figure 2-8. Stacks
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the item at the new TOS. When an item is popped off the stack, the processor
copies it from the TOS, then increments the ESP register. In other words, the stack
grows down in memory toward lesser addresses.

3. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to
access data structures passed on the stack. For example, on entering a subroutine
the stack contains the return address and some number of data structures passed to
the subroutine. The subroutine adds to the stack whenever it needs to create space
for temporary local variables. As a result, the stack pointer moves around as tempo-
rary variables are pushed and popped. If the stack pointer is copied into the base
pointer before anything is pushed on the stack, the base pointer can be used to
reference data structures with fixed offsets. If this is not done, the offset to access a
particular data structure would change whenever a temporary variable is allocated
or de-allocated. '

When the EBP register is used to address memory, .the current stack segment is
selected (i.e., the SS segment). Because the stack segment does not have to be
specified, instruction encoding is more compact. The EBP register also can be used
to address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided which au-
tomatically set up the EBP register for convenient access to variables.

2.3.4 Flags Register

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register
named EFLAGS. Figure 2-9 defines the bits within this register. The flags control cer-
tain operations and indicate the status of the i486 processor.

The flags may be considered in three groups: status flags, control flags, and system flags.
Discussion of the system flags occurs in Part II.

2.3.4.1 STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the
execution of arithmetic instructions. The MOV instruction does not affect these flags.
-Conditional jumps and subroutine calls allow a program to sense the state of the status
flags and respond to them. For example, when the counter controlling a loop is decre-
mented to zero, the state of the ZF flag changes, and this change can be used to sup-
press the conditional jump to the start of the loop.

The status flags are shown in Table 2-2.

2.3.4.2 CONTROL FLAG
The control flag DF of the EFLAGS register controls string instructions.

DF (Direction Flag, bit 10).
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Figure 2-9. EFLAGS Register
Table 2-2. Status Flags
Name Purpose Condition Reported
OF overflow Result exceeds positive or negative limit of number range
SF sign Result is negative (less than zero)
ZF zero Result is zero
AF auxiliary carry Carry out of bit position 3 (used for BCD)
PF parity Low byte of result has even parity (even number of set bits)
CF carry flag Carry out of most significant bit of result

Setting the DF flag causes string instructions to auto-decrement, that is, to process
strings from high addresses to low addresses. Clearing the DF flag causes string instruc-
tions to auto-increment, or to process strings from low addresses to high addresses.

2.3.4.3 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset into the current code segment
for the next instruction to execute. The instruction pointer is not directly available to the
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programmer; it is controlled implicitly by control-transfer instructions (jumps, returns,
etc.), interrupts, and exceptions.

The EIP register is advanced from one- instruction boundary to the next. Because of
instruction prefetching, it is only an approximate indication of the bus activity which
loads instructions into the processor.

The 1486 processor does not fetch single instructions. The processor prefetches aligned
128-bit blocks of instruction code in advance of instruction execution. (An aligned
128-bit block begins at an address which is clear in its low four bits.) These blocks are
fetched without regard to the boundaries between instructions. By the time an instruc-
tion starts to execute, it already has been loaded into the processor and decoded. This is
a performance feature, because it allows instruction execution to be overlapped with
instruction prefetch and decode.

When a jump or call is executed, the processor prefetches the entire aligned block con-
taining the destination address. Instructions which have been prefetched or decoded are
discarded. If a prefetch would generate an exception, such as a prefetch beyond the end
of the code segment, the exception is not reported until the execution of an instruction
containing at least one exception-generating byte. If the instruction is discarded, no
exception is generated.

In real mode prefetching may cause the processor to access addresses not anticipated by
programmers. In protected mode exceptions are correctly reported when these addresses
are executed. There may not be hardware mechanisms which account for real mode
behavior of the processor. For example, if a system does not return the RDY# signal
(the signal which terminates a bus cycle) for bus cycles to unimplemented addresses,
prefetching must be prevented from referencing these addresses. If a system implements
parity checking, prefetching must be prevented from accessing addresses beyond the end
of parity-protected memory. (Alternatively, RDY# can be returned even for bus cycles
to unimplemented addresses, and parity errors can be ignored on prefetches beyond the
end of parity-protected memory.)

Prefetching can be kept from referencing a particular address by placing enough dis-
tance between the address and the last executable byte. For example, to keep prefetch-
ing away from addresses in the block from 10000H to 1000FH, the last executable byte
should be no closer than OFFEEH. This places one free byte followed by one free,
aligned, 128-bit block between the last byte of the last instruction and the address which
must not be referenced. The prefetching behavior of the i486 processor is
implementation-dependent; future Intel® products may have different prefetching
behavior,

2.4 INSTRUCTION FORMAT

The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these oper-
ands. If an operand is located in memory, the instruction also must select, explicitly or
implicitly, the segment which contains the operand.

2-15



intgl” BASIC PROGRAMMING MODEL

An instruction may have various parts and formats. The exact format of instructions is
shown in Appendix B; the parts of an instruction are described below. Of these parts,
only the opcode is always present. The other parts may or may not be present, depending
on the operation involved and the location and type of the operands. The parts of an
instruction, in order of occurrence, are listed below:

o Prefixes: one or more bytes preceding an instruction which modify the operation of
the instruction. The following prefixes can be used by application programs:

1. Segment override—explicitly specifies which segment register an instruction
should use, instead of the default segment register.

2. Address size —switches between 16- and 32-bit addressing. Either size can be the
default; this prefix selects the non-default size.

3. Operand size —switches between 16- and 32-bit data size. Either size can be the
default; this prefix selects the non-default size.

4. Repeat—used with a string mstructnon to cause the instruction to be repeated
for each element of the strmg

¢ Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

* Register specifier: an instruction may specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as the
addressing-mode specifier.

e Addressing-mode specifier: when present, specifies whether an operand is a register
or memory location; if in memory, specifies whether a dlsplacement a base reglster
an index register, and scaling are to be used. :

o SIB (scale, index, base) byte: when the addressing-mode specifier indicates an index
register will be used to calculate the address of an operand, a SIB byte is included in
the instruction to encode the base register, the index register, and a scaling factor.

 Displacement: when the addressing-mode specifier indicates a displacement will be
used to compute the address of an operand, the displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is
used in the common case when the displacement is sufficiently small. The processor
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign.

¢ Immediate operand: when present, directly provides the value of an operand. Imme-
diate operands may be bytes; words, or doublewords. In cases where an 8-bit imme-
diate operand is used with a 16- or 32-bit operand, the processor extends the eight-bit
operand to an integer of the same sign and magnitude in the larger size. In the same
way, a 16-bit operand is extended to 32-bits.

2-16



intel® BASIC PROGRAMMING MODEL

2.5 OPERAND SELECTION

An instruction acts on zero or more operands. An example of a zero-operand instruction
is the NOP instruction (no operation). An operand can be held in any of these places:

e In the instruction itself (an immediate operand).

o In aregister (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP,
or EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the
case of 8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers;
or the EFLAGS register for flag operations). Use of 16-bit register operands requires
use of the 16-bit operand size prefix (a byte with the value 67H preceding the
instruction).

e In memory.

e At an I/O port.

Access to operands is very fast. Register and immediate operands are available on-
chip—the latter because they are prefetched as. part of interpreting the instruction.
Memory operands residing in the on-chip cache can be accessed just as fast.

Of the instructions which have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

Implicit operand: AAn

By definition, AAM (ASCII adjust for multiplication) operates on the contents of
the AX register.

Explicit operand: XCH6 EAX, EBX
The operands to be exchanged are encoded in the instruction with the opcode. -
Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER  (the explicit operand)is copied to the top of the
stack (the implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for exam-
ple, update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions,
such as MOV, ADD, and XOR, generally overwrite one of the two participating oper-
ands with the result. This is the difference between the source operand (the one unaf-
fected by the operation) and the destination operand (the one overwritten by the result).
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For most instructions, one of the two explicitly specified operands —either the source or
the destination —can be either in a register or in memory. The other operand must be in
a register or it must be an immediate source operand. This puts the explicit two-operand
instructions into the following groups: .

¢ Register to register

e Register to memory

e Memory to register

e Immediate to register

e Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data
from memory to memory. Both operands of some string instructions are in memory and

are specified implicitly. Push and pop stack operations allow transfer between memory
operands and the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from the ECX register or supplied as an immediate.

Other three-operand instructions, such as the string instructions when used with a repeat
prefix, take all their operands from registers.

2.5.1 Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of
the operands. Such an operand is called an immediate operand. It may be a byte, word,
or doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the
variable PATTERN.

TEST PATTERN, GFFFFOBFFH

A doubleword of the instruction holds the mask which is used to test the variable
PATTERN. .

INUL €X, MEMWORD, 3
A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one
byte shorter than with the other general registers.
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2.5.2 Register Operands

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX,
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI,
DI, SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL,
or DL).

The 1486 processor has instructions for referencing the segment registers (CS, DS, ES,
SS, FS, and GS). These instructions are used by application programs only if system
designers have chosen a segmented memory model.

The 1486 processor also has instructions for changing the state of individual flags in the
EFLAGS register. Instructions have been provided for setting and clearing flags which
often need to be accessed. The other flags, which are not accessed so often, can be
changed by pushing the contents of the EFLAGS register on the stack, making changes
to it while it’s on the stack, and popping it back into the register.

2.5.3 Memory Operands

Instructions with explicit operands in memory must reference the segment containing
the operand and the offset from the beginning of the segment to the operand. Segments
are specified using a segment-override prefix, which is a byte placed at the beginning of
an instruction. If no segment is specified, simple rules assign the segment by default. The
offset is specified in one of the following ways:

1. Most instructions which access memory contain a byte for specifying the addressing
method of the operand. The byte, called the modR/M byte, comes after the opcode
and specifies whether the operand is in a register or in memory. If the operand is in
memory, the address is calculated from a segment register and any of the following
values: a base register, an index register, a scaling factor, and a displacement. When
an index register is used, the modR/M byte also is followed by another byte to
specify the index register and scaling factor. This form of addressing is the most
flexible.

2. A few instructions use implied address modes:

A MOV instruction with the AL or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of
the MOV instruction allows no base register, index register, or scaling factor to be
used. This form is one byte shorter than the general-purpose form.

String operations address memory in the DS segment using the ESI register, (the
MOVS, CMPS, OUTS, LODS, and SCAS instructions) or using the ES segment and
EDI register (the MOVS, CMPS, INS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the
PUSH, POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF,
POPFD, CALL, RET, IRET, and IRETD instructions, exceptions, and interrupts).
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2.5.3.1 SEGMENT SELECTION

Explicit specification of a segment is optional. If a segment is not specified using a
segment-override prefix, the processor automatically chooses a segment according to the
rules of Table 2-3. (If a flat model of memory organization is used, the rules for selecting
segments are not apparent to application programs.)

Different kinds of memory access have different default segments. Data operands usu-
ally use the main data segment (the DS segment). However, the ESP and EBP registers
are used for addressmg the stack, so when either reglster is used, the stack segment (the
SS segment) is selected. :

Segment-override prefixes are provided for each of the segment registers. Only the fol-
lowing special cases have a default segment selection which is not affected by a segment-
override prefix:

e Destination strings in string instructions use the ES segment
e Destination of a push or source of a pop uses the SS segment

e Instruction fetches use the CS segment

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION

The modR/M byte provides the most flexible form of addressing. Instructions which have
a modR/M byte after the opcode are the most common in the instruction set. For mem-
ory operands specified by a modR/M byte, the offset within the selected segment is the
sum of three components:

e A displacement
o A base register

e An index register (the index register may be multiplied by a factor of 2, 4, or 8)

Table 2-3. Default Segment Selection Rules

Segment Used

Type of Reference Register Used

Default Selection Rule

Instructions Code Segment Automatic with instruction fetch.
CS register
Stack : Stack Segment . “All stack pushes and pops. Any mem-
. SS register ory reference which uses ESP or EBP
as a base register.
Local Data Data Segment ) " All data references except when rela-
DS register’ tive to stack or string destination.
Destination Strings . E-Space Segment Destinatiovn of string instructions.
ES register
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The offset which results from adding these components is called an effective address.
Each of these components may have either a positive or negative value. Figure 2-10
illustrates the full set of possibilities for modR/M addressing.

The displacement component, because it is encoded in the instruction, is useful for
relative addressing by fixed amounts, such as:

e Location of simple scalar operands.

e Beginning of a statically allocated array.

o Offset to a field within a record.

The base and index components have similar functions. Both use the same set of general

registers. Both can be used for addressing which changes during program execution,
such as: . :

e Location of procedure parameters and local variables on the stack.

e The beginning of one record among several occurrences of the same record type or in
an array of records.

o The beginning of one dimension of multiple dimension array.

e The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following
respects:

o The ESP register cannot be used as an index register.

e When the ESP or EBP register is used as the base, the SS segment is the default

selection. In all other cases, the DS segment is the default selection.

The scaling factor permits efficient indexing into an array when the array elements are 2,
4, or 8 bytes. The scaling of the index register is done in hardware at the time the
address is evaluated. This eliminates an extra shift or multiply instruction.

SEGMENT + BASE + (INDEX * SCALE) + DISPLACEMENT

EAX EAX 1
CSs ECX ECX
$S EDX EDX 2 NO DISPLACEMENT
BS b+<EBX L S EBX A, +< 8-BIT DISPLACEMENT
s ESP EBP 4 32-BIT DISPLACEMENT
EBP
GS = ES! 8
EDI EDI

" 240486i11

Figure 2-10. Effective Address Computation
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The base, index, and displacement components may be used in any combination; any of
these components may be null. A scale factor can be used only when an index also is
used. Each possible combination is useful for data structures commonly used by pro-
grammers in high-level languages and assembly language. Suggested uses for some com-
binations of address components are described below.

DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is
used to access a statically allocated scalar operand. A byte word, or doubleword dis-
placement can be used. :

BASE

The offset to the operand is specified indirectly in one of the general registers, as for
“based” variables.

BASE + DISPLACEMENT
A register and a displacement can be used together for two distinct purposes:

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displace-
ment component encodes the offset of the beginning of the array. The register holds
the results of a calculation to determine the offset to a specific element within the
array. ‘

2. Access a field of a record. The base register holds the address of the beginning of
the record, while the displacement is an offset to the field.

An important special case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame created when a sub-
routine is entered. In this case, the EBP register is the best choice for the base reglster,
because it automatically selects the stack segment. This is a compact encoding for this
common function.

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is
2,4, or 8 bytes. The displacement addresses the beginning of the array, the index register
holds the subscript of the desired array element, and the processor automatically con-
verts the subscript into an index by applying the scaling factor.

BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement
holds the address of the beginning of the array) or one of several instances of an array of
records (the displacement is an offset to a field within the record).
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BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the ele-
ments of the array are 2, 4, or 8 bytes in size.

2.6 INTERRUPTS AND EXCEPTIONS
The 1486 processor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events which are responses of the processor to certain
conditions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily sus-

pend the program being run in order to run a program of higher priority. The major

distinction between these two kinds of interrupts is their origin. An exception is always

reproducible by re-executing the program which caused the exception, while an interrupt
-can have a complex, timing-dependent relationship with programs.

Application programmers normally are not concerned with handling exceptions or inter-
rupts. The operating system, monitor, or device driver handles them. More information
on 1nterrupts for system programmers may be found in Chapter 9. Certain kinds of
exceptions, however, are relevant to application programming, and many operating sys-
tems give application programs the opportunity to service these exceptions. However,
the operating system defines the interface between the application program and the
exception mechanism of the 486 processor. Table 2-4 lists the interrupts and exceptions.

¢ A divide-error exception results when the DIV or IDIV instruction is executed with a
zero denominator or when the quotient is too large for the destination operand. (See
Chapter 3 for more information on the DIV and IDIV instructions.)

¢ A debug exception may be sent back to an application program if it results from the
TF (trap) flag.

¢ A breakpoint exception results when an INT3 instruction is executed. This instruction
is used by some debuggers to stop program execution at specific points.

+ An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction.

¢ A bounds-check exception results when the BOUND instruction is executed with an
array index which falls outside the bounds of the array. See Chapter 3 for a discussion
of the BOUND instruction.

o The device-not-available exception occurs whenever the processor encounters an es-
cape instruction and either the TS (task switched) or the EM (emulate coprocessor)
bit of the CRO control register is set.
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Table 2-4. Exceptions and Interrupts

Vector Description
Number - :
0 Divide Error
1 Debugger Call
2 NMI Interrupt
3 Breakpoint
4 INTO-detected Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
8 Double Fault
9 (Intel® reserved. Do not use.
Not used by i486™ CPU.)
10 Invalid Task State Segment
11 : Segment Not Present
12 ‘ Stack Exception
13 General Protection °
14 . : Page Fault )
15 : (Intel reserved. Do not use.)
16 Floating-Point Error
17 . Alignment Check
18-31 : (Intel reserved. Do not use.)
32-255 : Maskable Interrupts

e An alignment-check exception is generated for unaligned memory operations in user
mode (privilege level 3), provided both AM and AC are set. Memory operations at
supervisor mode (privilege levels 0, 1, and 2), or memory operations which default to

" supervisor mode, do not generate this exception.

The INT instruction generates an interrupt whenever it is executed; the processor treats
this interrupt as an exception. Its effects (and the effects of all other exceptions) are
determined by exception handler routines in the application program or the operating
system. The INT instruction itself is discussed in Chapter 3. See Chapter 9 for a more
complete description of exceptions.

Exceptions caused by segmentation and paging are handled differently than interrupts.
Normally, the contents of the program counter (EIP register) aré saved on the stack
when an exception or interrupt is generated. But exceptions resulting from segmentation
and paging restore the contents of some processor registers to their state before interpre-
tation of the instruction began. The saved contents of the program counter address the
instruction which caused the exception rather than the instruction after it. This lets the
operating system fix the exception- generatmg condition and restart the program which
generated the exception. This mechanlsm is completely transparent to the program.

2-24



Application Programming







CHAPTER 3
APPLICATION PROGRAMMING

This chapter is an overview of the integer instructions which programmers can use to
write application software for the i486™ processor. The instructions are grouped by
categories of related functions. (Additional application instructions for operating on
floating-point operands are described in Part III.)

The instructions not discussed in this chapter or Part III normally are used only by
operating-system programmers. Part II describes these system-level instructions.

These instruction descriptions are for the i486 processor in protected mode. The instruc-
tion set in this mode is a 32-bit superset of the instruction set used in Intel® 16-bit
processors. In real-address mode or virtual-8086 mode, the i486 processor appears to
have the architecture of a fast, enhanced 8086 processor with instruction set extensions.
See Chapters 21, 22, 23, 24 and 25 for more information about running the 16-bit in-
struction set. All of the instructions described in this chapter are available in all modes.

The instruction set descriptions in Chapter 26 contain more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which
may be generated.

3.1 DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for movmg bytes, words, or doublewords
between memory and the processor registers. They come in three types:

1. General-purpose data movement instructions.

2. Stack manipulation instructions.

3. Type-conversion instructions.

3.1.1 General-Purpose Data Movement Instructions

MOV (Move) transfers a byte, word, or doubleword from the source operand to the
destination operand. The MOV instruction is useful for transferring data along any of
these paths:

e To a register from memory
¢ To memory from a register
e Between general registers

e Immediate data to a register

o Immediate data to memory
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The MOV instruction cannot move from memory to memory or from a segment register
to a segment register. Memory-to-memory moves can be performed, however, by the
string move instruction MOVS. A special form of the MOV instruction is provided for
transferring data between the AL or EAX registers and a location in memory specified
by a 32-bit offset encoded in the instruction. This form of the instruction does not allow
a segment override, index register, or scaling factor to be used. The encoding of this
form is one byte shorter than the encoding of the general-purpose MOV instruction. A
similar encoding is provided for moving an 8-, 16-, or 32-bit immediate into any of the
general registers.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place
of three MOV instructions. It does not require a temporary location to save the contents
of one operand while the other is being loaded. The XCHG instruction is especially
useful for  implementing ‘semaphores or similar data structures for process
synchronization. ‘

The XCHG instruction can swap two byte operands, two word operands, or two double-
word operands. The operands for the XCHG instruction may be two register operands,
or a register operand and a memory operand. When used with a memory operand,
XCHG automatically activates the LOCK signal. (See Chapter 13 for more information
on bus locking). ,

3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP register), then copies the source oper-
and to the top of stack (see Figure 3-1). The PUSH instruction often is used to place
parameters on the stack before calling a procedure. Inside a procedure, it can be used to
reserve space on the stack for temporary variables. The PUSH instruction operates on

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD

31 0 31 0

«— ESP

DOUBLEWORD j«—ESP

240486i12

Figure 3-1. PUSH Instruction

3-2



intel” APPLICATION PROGRAMMING

memory operands, immediate operands, and register operands (including segment regis-
ters). A special form of the PUSH instruction is available for pushing a 32-bit general
register on the stack. This form has an encoding which is one byte shorter than the
general-purpose form.

PUSHA (Push All Registers) saves the contents of the eight general registers on the
stack (see Figure 3-2). This instruction simplifies procedure calls by reducing the number
of instructions required to save the contents of the general registers. The processor
pushes the general registers on the stack in the following order: EAX, ECX, EDX, EBX,
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the
PUSHA instruction is reversed using the POPA instruction.

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by
the ESP register) to the destination operand, and then increments the ESP register to
point to the new top of stack. See Figure 3-3. POP moves information from the stack to
a general register, segment register, or to memory. A special form of the POP instruction
is available for popping a doubleword from the stack to a general register. This form has
an encoding which is one byte shorter than the general-purpose form.

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION

31 0 31 . 0

l«— ESP

EAX

ECX

EDX

EBX

OLD ESP

EBP

ESI

EDI «— ESP

240486i13

Figure 3-2. PUSHA Instruction
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~ BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD

31 0 31 ]

<—VESP

DOUBLEWORD [«— ESP

+.240486i14

Figure 3-3. POP Instruction -

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the action of
reading the stack (popping). See Figure 3-4.

3.1.3 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit quantities (called quadwords). These instructions are especially
useful for converting signed integers, because they automatically fill the extra bits of the
larger item with the value of the sign bit of the smaller item. This results in an integer of
the same sign and magnitude, but a larger format. This kind of conversion, shown in
Figure 3-5, is called sign extension.

There are two kinds of type conversion instructions:

e The CWD, CDQ, CBW, and CWDE instructions which only operate on data in the
EAX register.

‘e The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word)
double the size of the source operand. The CWD instruction copies the sign (bit 15) of
. the word in the AX register into every bit position in the DX register. The CDQ instruc-
“ tion copies the sign (bit 31) of the doubleword in the EAX register into every bit posi-
tion in the EDX register. The CWD instruction can be used to produce a doubleword
.dividend from a word before a word division, and the CDQ instruction.can be used to
produce a quadword dividend from a doubleword before doubleword division.
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BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION

31 0 31 0

[e— ESP

EAX

ECS

EDX

EBX

IGNORED

EBP

ESI

EDI *— ESP

240486i15

Figure 3-4. POPA Instruction

15 0

BEFORE SIGN
SIN|N|N|N|NIN|N|NININININ|N|IN N| EXTENSION

31 15 0

AFTER SIGN
s|s|s|s|s|s|s|s|s|s|s|s|S|S|S|S|SIN|N|NIN|N|NININ[NIN|N|N|N|NIN] EXTENSION

240486i16

Figure 3-5. Sign Extension
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CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into
every bit position in the AX register.

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in
the AX register into every bit position in the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by using the value of the sign to fill empty positions.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or'
16-bit value to 32-bit value by clearing the empty bit positions.

3.2 BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the 1486 processor operate on numeric data encoded in
binary. Operations include the add, subtract, multiply, and divide as well as increment,
decrement, compare, and change sign (negate). Both signed and unsigned binary inte-
gers are supported. The binary arithmetic instructions may also be used as steps in
arithmetic on decimal integers. Source operands can be immediate values, general reg-
isters, or memory. Destination operands can be general registers or memory (except
when the source operand is in memory). The basic arithmetic instructions have special
forms for using an immediate value as the source operand and the AL or EAX registers
as the destination operand. These forms are one byte shorter than the general-purpose
arithmetic instructions.

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of
result which was produced. The kind of instruction used to test the flags depends on
whether the data is being interpreted as signed or unsigned. The CF flag contains infor-
mation relevant to unsigned integers; the SF and OF flags contain information relevant
to signed integers. The ZF flag is relevant to both signed and unsigned integers; the ZF
flag is set when all bits of the result are clear.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to re-
flect the size of the operation. For example, an 8-bit ADD instruction sets the CF flag if
the sum of the operands exceeds 255 (decimal).

If the integer is unsigned, the CF flag may be tested after one of these arithmetic oper-
ations to determine whether the operation required a carry or borrow to be propagated
to the next stage of the operation. The CF flag is set if a carry occurs (addition instruc-
tions ADD, ADC, AAA, and DAA) or borrow occurs (subtractlon instructions SUB,
SBB, AAS, DAS CMP, and NEG)

The INC and DEC 1nstruct10ns do not change the state of the CF flag. This allows the
‘instructions to be used to update counters used for loop control without changing the
reported state of arithmetic results. To test the arithmetic state of the counter, the ZF
flag can be tested to detect loop termination, or the ADD and SUB instructions can be
used to update the value held by the counter.
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The SF and OF flags support signed integer arithmetic. The SF flag has the value of the
sign bit of the result. The most significant bit (MSB) of the magnitude of a signed
integer is the bit next to the sign—bit 6 of a byte, bit 14 of a word, or bit 30 of a
doubleword. The OF flag is set in either of these cases:

e A carry was generated from the MSB into the sign bit but no carry was generated out
- of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other
words, the result was greater than the greatest positive number which could be rep-
resented in two’s complement form.

e A carry was generated from the sign bit into the MSB but no carry was generated into
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG).
.In other words, the result was smaller than the smallest negative number which could
be represented in two’s complement form. v

These status flags are tested by either kind of conditional instruction: Jcc (jump on
condition cc) or SETcc (byte set on condition).

3.2.1 Addition and Subtraction Instructions

ADD (Add Integers) replaces the destination operand with the sum of the source and
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers with Carry) replaces the destination operand with the sum of the
source and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the
ADC instruction performs the same operation as the ADD instruction. An ADC instruc-
tion is used to propagate carry when adding numbers in stages, for example when using
32-bit ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF
flags are affected.

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the
state of the CF flag. This allows the use of INC instructions to update counters in loops
without disturbing the status flags resulting from an arithmetic operation used for loop
control. The ZF flag can be used to detect when carry would have occurred. Use an
ADD instruction with an immediate value of 1 to perform an increment which updates
the CF flag. A one-byte form of this instruction is available when the operand is a
general register. The OF, SF, ZF, AF, and PF flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is
set. The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF,
ZF, AF, PF, and CF flags are affected.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus 1 if the CF flag is
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB
instruction. An SBB instruction is used to propagate borrow when subtracting numbers
in stages, for example when using 32-bit SUB instructions to subtract one quadword
operand from another. The OF, SF, ZF, AF, PF, and CF flags are affected.
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DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction pre-
serves the state of the CF flag. This allows the use of the DEC instruction to update
counters in loops without disturbing the status flags resulting from an arithmetic opera-
tion used for loop control. Use a SUB instruction with an immediate value of 1 to
perform a decrement which updates the CF flag. A one-byte form of this instruction is
available when the operand is a general register. The OF, SF, ZF, AF, and PF flags are
affected.

3.2.2 Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from the destination operand. It updates
the OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination
operands. A subsequent Jec or SETcc instruction can test the flags.

NEG‘ (Negate) subtracts a signed'integer”operand from zero. The effect of the NEG
instruction is to change the sign of a two’s complement operand while keepmg its mag-
nitude. The OF, SF, ZF, AF, PF, and CF flags are affected.

3.2.3 Multiplication Instructions

The i486 processor has separate multiply instructions for unsigned and signed operands.
The MUL instruction operates on unsigned integers, while the IMUL instruction oper-
ates on signed integers as well as unsigned.

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source
operand and the AL, AX, or EAX register. If the source is a byte, the processor multi-
plies it by the value held in the AL register and returns the double-length result in the
AH and AL registers. If the source operand is a word, the processor multiplies it by the
value held in the AX register and returns the double-length result in the DX and AX
registers. If the source operand is a doubleword, the processor multiplies it by the value
held in the EAX register and.returns the quadword result in the EDX and EAX regis-
ters. The MUL instruction sets the CF and OF flags when the upper half of the result is
non-zero; otherwise, the flags are cleared. The state of the SF, ZF, AF, and PF flags is
undefined.

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL
instruction has three forms:

1. A one-operand form. The o‘perand may be a byte, word, or doubleword located in
memory or in a general register. This instruction uses the EAX and EDX registers
as implicit operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the
other may be in a general register or memory.. The result replaces the general-
register operand.

3. A three-operand form, two are source operands and one is the destmatlon One of
the source operands is an immediate value supplied by the instruction; the second
may be in memory or in a general register. The result is stored in a general register.
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The immediate  operand is a two’s complement signed integer. If the immediate
operand is a byte, the processor automatically sign-extends it to the size of the
second operand before performing the multlplrcatxon

The three forms are similar in most respects:
o The length of the product is calculated to twice the length of the operands.

¢ The CF and OF flags are set when significant bits are carried into the upper half of
the result. The CF and OF flags are cleared when the upper half of the result is the
sign-extension of the lower half. The state of the SF, ZF, AF, and PF flags is
undefined.

However, forms 2 and 3 differ because the product is truncated to the length of the
operands before it is stored in the destination register. Because of this truncation, the
OF flag should be tested to ensure that no significant bits are lost. (For ways to test the
OF flag, see.the JO, INTO, and PUSHF instructions.)

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
operands are signed or unsigned, the lower half of the product is the same. The CF and
OF flags, however, cannot be used to determme if the upper half of the result is
non-zero.

3.2.4 Division Instructions

The 1486 processor has separate division instructions for unsigned and signed operands.
The DIV instruction operates on unsigned integers, while the IDIV instruction operates
on both signed and unsigned integers. In either case, a divide-error exception is gener-
ated if the divisor is zero or if the quotient is too large for the AL, AX, or EAX register.

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX
register by the source operand. The dividend (the accumulator) is twice the size of the
divisor (the source operand); the quotient and remainder have the same size as the
divisor, as shown i in Table 3-1.

Non-integral results are truncated toward 0. The remainder is always smaller than the
divisor. For unsigned byte division, the largest quotient is 255. For unsigned word divi-
sion, the largest quotient is 65, 535 For unsigned doubleword division the largest quo-
tient is 2°2— 1. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined.

Table 3-1. Operands for Division

Opere '?d Size Dividend Quotient Remainder
(Divisor) :
" Byte AX register AL' register AH register
Word DX and AX AX register DX register
Doubleword EDX and EAX EAX register EDX register
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IDIV (Signed Integer Divide) performs a signed division of the-accumulator by the
source operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is +127, and the minimum
negative quotient is —128. For signed word- division, the maximum positive quotient is
+32,767, and the minimum negative quotient is —32 768. For signed doubleword divi-
sion the maximum positive quotient is 232 —1, the minimum negative quotient is —2°'.
Non-integral results are truncated towards 0. The remainder always has the same sign as
the dividend and is less than the divisor in magnitude. The state of the OF, SF, ZF, AF,
PF, and CF flags is undefined. , ‘

3.3 DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic is performed by combining the binary arithmetic instructions (al-
ready discussed in the prior section) with the decimal arithmetic instructions. The deci-
mal arithmetic instructions are used in one of the following ways:

e To adjust the results of a previous binary arlthmetlc operatlon to produce a valid
packed or unpacked decimal result.’

e To adjust the inputs to a subsequent bmary arithmetic operatfon so that the operation
will produce a valid packed or unpacked decimal result. These instructions operate
only on the AL or AH registers. Most use the AF flag.

3.3.1 Packed BCD Adjustment Instructions

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed dec-
imal operands in the AL register. A DAA instruction must follow the addition of two
pairs of packed decimal numbers (one digit in each half-byte) to obtain a pair of valid
packed decimal digits as results, The CF flag is set if a carry occurs. The SF, ZF, AF, PF,
and CF flags are affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid
packed decimal operands in the AL register. A DAS instruction must always follow the
subtraction of one pair of packed decimal numbers (one digit in each half-byte) from
another to obtain a pair of valid packed decimal digits as results. The CF flag is set if a
borrow is needed. The SF, ZF, AF, PF, and CF flags are affected. The state of the OF
flag is undefined.

3.3.2 Unpacked BCD Adjustment Instructions '

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow
“the addition of two unpacked decimal operands in the AL register. The CF flag is set
and the contents of the AH register are incremented if a carry occurs. The AF and CF
-flags are affected. The state of the OF, SF, ZF, and PF flags is undefined. .

3-10



H ®
intel APPLICATION PROGRAMMING

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow
the subtraction of one unpacked decimal operand from another in the AL register, The
CF flag is set and the contents of the AH register are decremented if a borrow is
needed. The AF and CF flags are affected. The state of the OF, SF, ZF, and PF flags is
undefined.

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of
two decimal numbers to produce a valid decimal result. The upper digit is left in the AH
register, the lower digit in the AL register. The SF, ZF, and PF flags are affected. The
state of the AF, OF, and CF flags is undefined.

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers
to prepare for the division of two valid unpacked decimal operands, so that the quotient
produced by the division will be a valid unpacked decimal number. The AH register
should contain the upper digit and the AL register should contain the lower digit. This
instruction adjusts the value and places the result in the AL register. The AH register
will be clear. The SF, ZF, and PF flags are affected. The state of the AF, OF, and CF
flags is undefined.

3.4 LOGICAL INSTRUCTIONS

The logical instructions have two operands. Source operands can be immediate values,
general registers, or memory. Destination operands can be general registers or memory
(except when the source operand is in memory). The logical instructions modify the state
of the flags. Short forms of the instructions are available when the an immediate source
operand is applied to a destination operand in the AL or EAX reglsters The group of
logical instructions includes:

e Boolean operation instructions
o Bit test and modify instructions
e Bit scan instructions

¢ Rotate and shift instructions

e Byte set on condition

3.4.1 Boolean Operation Instructions
‘The logiéal operations are performed by the AND, OR, XOR, and NOT instructions.

NOT (Not) inverts the bits in the specified operand to form a one’s complement of the
operand. The NOT instruction is a unary operation which uses a single operand in a
register or memory. NOT has no effect on the flags.
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The AND, OR, and XOR instructions perform the standard logical operations “and,”
“or,” and “exclusive or.” These instructions can use the following combinations of
operands: ‘

e Two register operands
e A general register operand with a memory operand ‘
e An immediate operand with either a general register operand or a memory operand

The AND OR, and XOR instructions clear the OF and CF flags, leave the AF ﬂag
undefined, and update the SF, ZF, and PF flags.

3.4.2 Bit Test and Modify Instructions

This group of instructions operates on a single bit which can be in memory or in a
general register. The:location of the bit is specified as an offset from the low end of the
operand. The value of the offset either may be given by an immediate byte in the instruc-
tion or may be contained in a general register.

These instructions first assign the value of the selected bit to the CF flag. Then a new

value is assigned to the selected bit, as determined by the operation. The state of the
OF, SF, ZF, AF, and PF flags is undefined. Table 3-2 defines these instructions.

3.4.3 Bit Scan Instructions

These instructions scan a word or doubleword for a set bit and store the bit index (an
integer representing the bit position) of the first set bit into a register. The bit string
being scanned may be in a register or in memory. The ZF flag is set if the entire word is

clear, otherwise the ZF flag is cleared. In the former case, the value of the destination
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined.

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions).

BSR (Bit Scan Reverse) scans high-to-low (from the uppermost bit toward bit 0).

3.4.4 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand.

Table 3-2. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit
BT (Bit Test) CF flag < Selected Bit no effect
BTS (Bit Test and Set) CF flag < Selected Bit Selected Bit « 1
BTR (Bit Test and Reset) CF flag < Selected Bit Selected Bit <~ 0
BTC (Bit Test and Complement) QF flag < Selected Bit Selected Bit < — (Selected Bit)
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These instructions fall into the following classes:
¢ Shift instructions
e Double shift instructions

¢ Rotate instructions

3.4.4.1 SHIFT INSTRUCTIONS

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords.
An arithmetic shift right copies the sign bit into empty bit positions on the upper end of
the operand, while a logical shift right fills clears the empty bit positions. An arithmetic
shift is a fast way to perform a simple calculation. For example, an arithmetic shift right
by one bit position divides an integer by two. A logical shift right divides an unsigned
integer or a positive integer, but a signed negative integer loses its sign bit.

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their
treatment of the bit positions emptied by shifting the contents of the operand. Note that
there is no difference between an arithmetic shift left and a logical shift left. Two names,
SAL and SHL, are supported for this instruction in the assembler.

A count specifies the number of bit positions to shift an operand. Bits can be shifted up
to 31 places. A shift instruction can give the count in any of three ways. One form of shift
instruction always shifts by one bit position. The second form gives the count as an
immediate operand. The third form gives the count as the value contained in the CL
register. This last form allows the count to be a result from a calculation. Only the low
five bits of the CL register are used.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is left with the value of the last bit shifted out of the operand. In a single-bit
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position,
the state of the OF flag is undefined. On a shift of one or more bit positions, the SF, ZF,
PF, and CF flags are affected, and the state of the AF flag is undefined.

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left
by one bit position or by the number of bits specified in the count operand (an immedi-
ate value or a value contained in the CL register). Empty bit positions are cleared. See
Figure 3-6.

SHL (Shift Logical Left) is another name for the SAL instruction. It is supported in the
assembler.

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right
by one bit position or by the number of bits specified in the count operand (an immedi-
ate value or a value contained in the CL register). Empty bit positions are cleared. See
Figure 3-7.
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INITIAL STATE:
OPERAND
| X | [ 10001000100010001000100010001111J

AFTER 1-BIT SHL/SAL INSTRUCTION:

1 00010001000100010001000100011110 j*—— 0

AFTER 10-BIT SHL/SAL INSTRUCTION:

0 "00100010001000100011110000000000 0

240486i17

Figure 3-6. SHL/SAL Instruction

INITIAL STATE:
OPERAND ~ CF

l 10001000100010001000100010001111 . X

AFTER 1-BIT SHR INSTRUCTION:

0o——»] 01000100010001000100010001000111

AFTER 10-8IT SHR INSTRUCTION:

o— 00000000001000100010001000100010 > 0

240486i18

Figure 3-7. SHR Instruction

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand
to the right by one bit position or by the number of bits specified in the count operand
(an immediate value or a value contained in the CL register). The sign of the operand is
préserved by clearmg empty bit positions if the operand is posmve or setting the empty
bits if the operand is negative. See Figure 3-8.
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INITIAL STATE (POSITIVE OPERAND):

OPERAND CF
01000100010001000100010001000111 X

AFTER 1-BIT SAR INSTRUCTION:
00100010001000100010001000100011 - 1

INITIAL STATE (NEGATIVE OPERAND):

OPERAND CF
l110001000100010001000100010000111 X

AFTER 1-BIT SAR INSTRUCTION
11100010001000100010001000100011 » 1

240486i19

Figure 3-8. SAR Instruction

Even though this instruction can be used to divide integers by an integer power of two,
the type of division is not the same as that produced by the IDIV instruction. The
quotient from the IDIV instruction is rounded toward zero, whereas the “quotient” of
the SAR instruction is rounded toward negative infinity. This difference is apparent only
for negative numbers. For example, when the IDIV instruction is used to divide —9 by 4,
the result is —2 with a remainder of — 1. If the SAR instruction is used to shift —9 right
by two bits, the result is —3. The “remainder” of this kind of division is +13; however,
the SAR instruction stores only the high-order bit of the remainder (in the CF flag).

3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS

These instructions provide the basic operations needed to implement operations on long
unaligned bit strings. The double shifts operate either on word or doubleword operands,
as follows: ‘

e Take two word operands and produce a one-word result (32-bit shift).

e Take two doubleword operands and produce a doubleword result (64-bit shift).
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Of the two operands, the source operand must be in a register while the destination
operand may be in a register or in memory. The number of bits to be shifted is specified
either in the CL register or in an immediate byte in the instruction. Bits shifted out of
the source operand fill empty bit positions in the destination operand, which also is
shifted. Only the destination operand is stored.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is set to the value of the last bit shifted out of the destination operand, and the
SF, ZF, and PF flags are affected. On a shift of one bit position, the OF flag is set if the
sign of the operand changed, otherwise it is cleared. For shifts of more than one bit
position, the state of the OF flag is undefined. For shifts of one or more bit positions,
the state of AF flag is undefined.

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The
result is stored back into the destination operand. The source operand is not modified.

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while
filling empty bit positions with bits shifted out of the source operand (see Figure 3-10).
The result is stored back into the destination operand. The source operand is not
modified.

3.4.4.3 ROTATE INSTRUCTIONS

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits
are emptied during a rotation.

Rotate instructions use only the CF and. OF flags. The CF flag may act as an extension
of the operand in two of the rotate instructions, allowing a bit to be isolated and then
tested by a conditional jump instruction (JC or JNC). The CF flag always contains the
value of the last bit rotated out of the operand, even if the instruction does not use the
CF flag as an extension of the operand. The state of the SF, ZF, AF, and PF flags is not
affected. :

‘ 31 : : 0
CF DESTINATION (MEMORY OR REGISTER)

‘ 31 ' ' : 0
SOURCE (REGISTER)

Figure 3-9. SHLD Instruction

240486120
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SOURCE (REGISTER)  ° k

31 0

DESTINATION (MEMORY OR REGISTER) 4}—-@

240486i21

Figure 3-10. SHRD Instruction

In a single-bit rotation, the OF flag is set if the operation changes the uppermost bit
(sign bit) of the destination operand. If the sign bit retains its original value, the OF flag
is cleared. After a rotate of more than one bit position, the value of the OF flag is
undefined.

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one
bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). For each bit position of the rotation, the bit
which exits from the left of the operand returns at the right. See Figure 3-11.

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by
one bit position or by the number of bits specified in the count operand (an immediate
value or a value contained in the CL register). For each bit position of the rotation, the
bit which exits from the right of the operand returns at the left. See Figure 3-12.

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destina-
tion operand left by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on
the upper end of the destination operand. Each bit which exits from the left side of the
operand moves into the CF flag. At the same time, the bit in the CF flag enters the right
side. See Figure 3-13.

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword desti-
nation operand right by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower
.end of the destination operand. Each bit which exits from the right side of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the left side. See
Figure 3-14. "

3-17



APPLICATION PROGRAMMING

31

DESTINATION (MEMORY OR REGISTER)

I._

240486122

Figure 3-11. ROL Instruction

31

DESTINATION (MEMORY OR REGISTER)

240486i23

Figure 3-12. ROR Instruction

31 0
CF DESTINATION (MEMORY OR REGISTER)

240486i24

Figure 3-13. RCL Instruction

31
DESTINATION (MEMORY OR REGISTER) ‘CF

' '240486i25

Figure 3-14. RCR Instruction
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3.4.4.4 FAST “bit blt” USING DOUBLE-SHIFT INSTRUCTIONS

One purpose of the double shift instructions is to implement a bit string move, with
arbitrary misalignment of the bit strings. This is called a “bit blt”” (BIT BLock Transfer).
A simple example is to move a bit string from an arbitrary offset into a doubleword-
aligned byte string. A left-to-right string is moved 32 bits at a time if a double shift is
used inside the move loop.

MOV ESI,ScrAddr
MOV EDI,DestAddr
MOV EBX,Word(nt
MOV CL,Rellffset ; relative offset Dest=Src
MOV EDX,(ESI) 3 load first word of source

ADD  ESI,M4 ; bump source address
BltLoop:
LODS ; new low order part in EAX
SHLD EDX,EAX,CL ; EDX overuritten with aligned stuff
XCHG EDX,EAX ; Swap high and low words
STOS i Urite out next aligned chunk
DEC EBX . ; Decrement loop count

JNZ BltlLoop

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest
possible performance. Without a double shift, the best which can be achieved is 16 bits
per loop iteration by using a 32-bit shift, and replacing the XCHG instruction with a
ROR instruction by 16 to swap the high and low words of registers. A more general loop
than shown above would require some extra masking on the first doubleword moved
(before the main loop), and on the last doubleword moved (after the main loop), but
would have the same 32-bits per loop iteration as the code above.

3.4.4.5 FAST BIT STRING INSERT AND EXTRACT

The double shift instructions also make possible:

o Fast insertion of a bit string from a register into an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the inserted bits

o Fast extraction of a bit string into a register from an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the extracted bits

The following coded examples illustrate bit insertion and extraction under various
conditions:

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e., spans
four bytes or less):

3 Insert a right-justified bit string from a register into
s a bit string in memory. .

; Assumptions:

3 1. The base of the string array is doubleword aligned.
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; 2. The length of the bit string is an immediate value
; and the bit offset is held in a register.

+ The ESI register holds .the right-justified bit string

3 to be inserted.

;3 The EDI register holds the bit offset of the start of the
; substring.

3 The EAX register and ECX are also used.

MoV ECX,EDI ; save original offset

SHR  EDI,3 ; divide offset by & (byte addr)
AND  (CL,7H ; get low three bits of offset
MOV EAX, [EDIlstrg_base ; move string dword into EAX
ROR  EAX,CL ; right justify old bit field
SHRD  EAX,ESI,length ; bring in new bits

ROL  EAX,length ; right justify new bit field
ROL  EAX,CL * 3 bring to final position

MOV [EDIlstrg-_base,EAX ; replace doubleword in memory

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans five
bytes or less):

3 Insert a right-justified bit string from a register into
3 a bit string in memory.

3 Assumptions: o

3 1. The base of the string array is doubleword aligned.
3 2. The length of the bit string is an immediate value
H and the bit offset is held in a register.

; The ESI register holds the right-justified bit string

; to be inserted.

; The EDI register holds the bit offset of the start of the

; substring. ‘ .
3 The EAX, EBX, ECX, and EDI registers also are used.

1

nmov - ECX,EDI ; temp storage for offset

SHR  EDI,S "3 divide offset by 32 (dwords)
SHL  EDI,2 ; multiply by 4 (byte address)
AND  CL,1FH ; get low five bits of offset
MOV EAX,[EDIlstrg_base 5 move low string dword into EAX
Mgy EDX,[EDIlstrg_base+Y ; other string dword into EDX
MOV EBX,EAX ; temp storage for part of string
SHRD  EAX,EDX,CL ; shift by offset within dword
SHRD  EAX,EBX,(CL ; shift by offset within dword
SHRD EAX,ESI,length : 3 bring in new bits

ROL  EAX,length
MoV EBX,EAX

SHLD EAX,EDX,CL
SHLD EDX,EBX,CL

right justify new bit field
temp storage for string

shift by offset within word
shift by offset within word
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MOV (EDIlstrg_base,EAX ; replace duword in memory
MOV {EDIlstrg_base+H,EDX ; replace dword in memory

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e.,
spans four or five bytes):

; Insert right-justified bit string from a register into
i a bit string in memory.

; Assumptions:

i 1. The base of the string array is doubleword aligned.
i 2+ The length of the bit string is 32 bits

H and the bit offset is held in a register.

+ The ESI register holds the 32-bit string to be inserted.

i The EDI register holds the bit offset to the start of the
; substring.

; The EAX, EBX, ECX, and EDI registers also are used.

Moy EDX,EDI 3 save original offset

SHR  EDI,S 3 divide offset by 32 (dwords)
SHL  EDI,2 ; multiply by 4 (byte address)
AND  CL,1FH ; isolate low five bits of offset
Moy EAX,[EDIlstrg-base ; move low string dword into EAX
MoV EDX,IEDI)strg_base+l ;3 other string dword inte EDX

oV EBX,EAX 3 temp storage for part of string
SHRD  EAX,EDX ; shift by offset within dword
SHRD  EDX,EBX ; shift by offset within dword
MOV EAX,ESI s move 32-bit field into position
MOV EBX,EAX s temp storage for part of string
SHLD  EAX,EDX , ; shift by offset within word
SHLD EDX,EBX ; shift by offset within word

MOV [EDI)strg_base,EAX ; replace dword in memory

MOV [(EDI)strg_base,+4,EDX ; replace dword in memory

4. Bit String Extraction from Memory (when the bit string is 1-25 blts long, i.e., spans
four bytes or less):

3 Extract a right-justified bit string into a register from
3 @ bit string in memory.

; Assumptions:

3 1) The base of the string array is doubleword aligned.
3 2) The length of the bit string is an immediate value
3 and the bit offset is held in a register.

; The EAX register hold the right-justified, zero-padded

; bit string that was extracted.

3 The EDI register holds the bit offset of the start of the
; substring.

s The EDI, and ECX registers also are used.
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mov  ECX,EDI ; temp storage for offset

SHR  EDI,3 ; divide offset by.8 (byte addr)
~ AND  CL,7H 3 get low three bits of offset

MOV EAX,[EDI)strg.base ; move string dword into EAX

SHR  EAX,CL ; shift by offset within dword

AND  EAX,mask " -extracted bit field in EAX

5. Bit String Extraction from Memory (when bit string is 1-32 bits long, i. e spans five
bytes or less):

; Extract a right-justified bit string into a register from a
; bit string in memory.

3 Assumptions:

3 1) The base of the string array is doubleword allgned
3 2) The length of the bit string is an innediate

3 value and the bit offset is held in a register.

; The EAX register holds the right-justified, zero-padded

; bit string that was extracted.

;i The EDI register holds the bit offset of the start of the
; substring.

;i The EAX, EBX, and ECX registers also are used.

1 . .
MoV ECX,EDI 3 temp storage for offset

SHR  EDI,S 3 divide offset by 32 (dwords)
SHL  EDI,2 3 multiply by 4 (byte address)
AND  CL,1FH ; get .low five bits of offset in
MOV EAX,(EDIlstrg_base ; move low string dword into EAX
MOV EAX,[EDI)strg_base +4 ; other string dword into EDX
SHRD EAX,EDX,CL ' ; shift right by offset in dword

AND  EAX,mask

extracted bit field in EAX

3.4.5 Byte-Set-On-Condition Instructions

This group of instructions sets a byte to the value of zero or one, depending on any of
the 16 conditions defined by the status flags. The byte may be in a register or in memory.
These instructions are especially useful for implementing Boolean expressmns in high-
level languages such as Pascal.

Some languages represent a logical one as an integer with all bits set. This can be done
by using the SETcc instruction with the mutually. excluswe condmon, then decrementmg
the result.

SETcc (Set Byte on Condition cc) loads the value 1 into a byte if condition cc is true;
clears the byte otherwise. See Appendix D for a definition of the possible conditions.
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3.4.6 Test Instruction

TEST (Test) performs the logical “and” of the two operands, clears the OF and CF
flags, leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can
be tested by conditional control transfer instructions or the byte-set-on-condition in-
structions. The operands may be bytes, words, or doublewords.

The difference between the TEST and AND instructions is the TEST instruction does
not alter the destination operand. The difference between the TEST and BT instructions
is the TEST instruction can test the value of multiple bits in one operation, while the BT
instruction tests a single bit,

3.5 CONTROL TRANSFER INSTRUCTIONS

The i486 processor provides both conditional and unconditional control transfer instruc-
tions to direct the flow of execution. Conditional transfers are executed only for certain
combinations of the state of the flags. Unconditional control transfers are always
executed.

3.5.1 Unconditional Transfer Instructions

The JMP, CALL, RET, INT and IRET instructions transfer execution to a destination
in a code segment. The destination can be within the same code segment (near transfer)
or in a different code segment (far transfer). The forms of these instructions which
transfer execution to other segments are discussed in a later section of this chapter. If
the model of memory organization used in a particular application does not make seg-
ments visible to application programmers, far transfers will not be used.

3.5.1.1 JUMP INSTRUCTION

JMP (Jump) unconditionally transfers execution to the destination. The JMP instruction
is a one-way transfer of execution; it does not save a return address on the stack.

The JMP instruction transfers execution from the current routine to a different routine.
The address of the routine is specified in the instruction, in a register, or in memory. The
location of the address determines whether it is interpreted as a relative address or an
absolute address.

Relative Address. A relative jump uses a displacement (immediate mode constant used
for address calculation) held in the instruction. The displacement is signed and variable-
length (byte or doubleword). The destination address is formed by adding the displace-
‘ment to the address held in the EIP register. The EIP register then contains the address
of the next instruction to be executed.
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Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the
following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register and execution continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register and execution
continues.

3.5.1.2 CALL INSTRUCTIONS

CALL (Call Procedure) transfers execution and saves the address of the instruction
following the CALL instruction for later use by a RET (Return) instruction. CALL
pushes the current contents of the EIP register on the stack. The RET instruction in the
called procedure uses this address to transfer execution back to the calling program.

CALL instructions, like JMP instructions, have relative and absolute forms.
Indirect CALL instructions specify an absolute address in one of the following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register, the return address is pushed on the stack, and execution
continues.

2. The destination address can be a memory operand specrfred using the standard
addressing modes. The operand is copred into the EIP regnster, the return address is
pushed on the stack, and execution continues.

3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS

RET (Return From Procedure) terminates a procedure and transfers execution to the
instruction following the CALL instruction which originally invoked the procedure. The
RET instruction restores the contents of the EIP register which were pushed on the
stack when the procedure was called.

The RET instructions have an optional immediate operand. When present, this constant
is added to the contents of the ESP register, which has the effect of removing any
parameters pushed on the stack before the procedure call.

IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET
instruction differs from the RET instruction in that it also restores the EFLAGS register

from the stack. The contents of the EFLAGS register are stored on the stack when an
interrupt occurs.

3.5.2 Conditional Transfer Instructions

The condltlonal transfer instructions are jumps which transfer execution if the states in
the EFLAGS register match conditions specified in the instruction.
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3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS

Table 3-3 shows the mnemonics for the jump instructions. The instructions listed as pairs
are alternate names for the same instruction. The assembler provides these names for
greater clarity in program listings.

A form of the conditional jump instructions is available which uses a displacement added
to the contents of the EIP register if the specified condition is true. The displacement
may be a byte or doubleword. The displacement is signed; it can be used to jump for-
ward or backward.

3.5.2.2 LOOP INSTRUCTIONS

The loop instructions are conditional jumps which use a value placed in the ECX regis-
ter as a count for the number of times to run a loop. All loop instructions decrement the
contents of the ECX register on each reposition and terminate when zero is reached.
Four of the five loop instructions accept the ZF flag as a condition for terminating the
loop before the count reaches zero.

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements
the contents of the ECX register before testing for the loop-terminating condition. If
contents of the ECX register are non-zero, the program jumps to the destination speci-
fied in the instruction. The LOOP instruction causes the execution of a block of code to
be repeated until the count reaches zero. When zero is reached, execution is transferred

Table 3-3. Conditional Jump Instructions

Unsigned Conditional Jumps

Mnemonic : Flag States Description

JA/JNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/INAE CF=1 below/not above nor equal
JBE/UNA (CF or ZF) =1 below or equal/not above
JC CF=1 carry

JE/JZ ZF =1 " equal/zero

JNC CF=0 not carry

JNE/INZ ‘ ZF=0 not equal/not zero
JNP/JPO PF=0 not parity/parity odd
JP/JPE PF=1 parity/parity even

Signed Conditional Jumps

JG/INLE ((SF xor OF) or-ZF) =0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JU/INGE (SF xor OF) =1 . less/not greater nor equal
JLE/UNG ((SF xor OF) or ZF) =1 less or equal/not greater
JNO OF=0 : not overflow

JNS SF=0 not sign (non-negative)
JOo OF=1 overflow ’
Js SF=1 sign (negative)
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to the instruction immediately following the LOOP instruction. If the value in the ECX

register is zero when the instruction is first called, the count is pre- decremented to
OFFFFFFFFH and the LOOP runs 2 times.

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same
instruction. These instructions are conditional jumps which decrement the contents of
the ECX register before testing for the loop-terminating condition. If the contents of the
ECX register are non-zero and the ZF flag is set, the program jumps to the destination
specified in the instruction. When zero is reached or the ZF flag is clear, execution is
transferred to the instruction immediately following the LOOPE/LOOPZ instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms
for the same instruction. These instructions are conditional jumps which decrement the
contents of the ECX register before testing for the loop-terminating condition. If the
contents of the ECX register are non-zero and the ZF flag is clear, the program jumps to
the destination specified in the instruction. When zero is reached or the ZF flag is set,

execution is transferred to the instruction immediately following the LOOPE/LOOPZ
instruction.

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the
ECX register holds a value of zero. The JECXZ instruction is used in combination with
the LOOP instruction and with the string scan and compare instructions. Because these
mstructlons decrement the contents of the ECX register before testing for zero, a loop
will run 2*? times if the loop is entered with a zero value in the ECX register. The
JECXZ instruction is used to create loops which fall through without executing when the
-initial value is zero. A JECXZ instruction at the beginning of a loop can be used to jump
out of the loop if the count is zero. When used with repeated string scan and compare
instructions, the JECXZ instruction can determine whether the loop termmated due to
the count or due to satisfaction of the scan or compare conditions. v

3.5.3 Software InterrUpts

"The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of
execution to an exception or interrupt handler.

INTn (Software Interrupt) calls the handler specified by an interrupt vector encoded in
. the instruction. The INT instruction may specify any interrupt type. This instruction is
used to support multiple types of software interrupts or to test the operation of interrupt
service routines. The interrupt service routine terminates with an IRET instruction,
which returns execution to the instruction following the INT instruction.

“INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF
flag is set. If the flag'is clear, execution continues without calling the handler. The OF
flag is set by arithmetic, loglcal and string instructions. This instruction supports the use
of software interrupts for handling error conditions, such as arithmetic overflow.
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BOUND (Detect Value Out of Range) compares the signed value held in a general reg-
ister against an upper and lower limit. The handler for the bounds-check exception is
called if the value held in the register is less than the lower bound or greater than the
upper bound. This instruction supports the use of software interrupts for bounds check-
ing, such as checking an array index to make sure it falls within the range defined for the
array.

The BOUND instruction has two operands. The first operand specifies the general reg-
ister being tested. The second operand is the base address of two words or doublewords
at adjacent locations in memory. The lower limit is the word or doubleword with the
lower address; the upper limit has the higher address. The BOUND instruction assumes
that the upper limit and lower limit are in adjacent memory locations. These limit values
cannot be register operands; if they are, an invalid-opcode exception occurs.

The upper and lower limits of an array can reside just before the array itself. This puts
the array bounds at a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra bus
cycles to obtain the effective address of the array bounds.

3.6 STRING OPERATIONS

String operations manipulate large data structures in memory, such as alphanumeric
character strings. See also the section on 1/O for information about the string 1/O in-
structions (also known as block I/O instructions).

The string operations are made by putting string instructions (which execute only one
iteration of an operation) together with other features of the instruction set, such as
repeat prefixes. The string instructions are:

MOVS —Move String
CMPS — Compare string
SCAS —Scan string
LODS —Load string
STOS —Store string

After a string instruction executes, the string source and destination registers point to
the next elements in their strings. These registers automatically increment or decrement
their contents by the number of bytes occupied by each string element. A string element
can be a byte, word, or doubleword. The string registers are:

ESI—Source index register
EDI—Destination index register

String operations can begin at higher addresses and work toward lower ones, or they can
begin at lower addresses and work toward higher ones. The direction is controlled by:

DF —Direction flag
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If the DF flag is clear, the registers are incremented. If the flag is set the registers are
decremented. These instructions set and clear the flag: :

STD —Set direction flag instruction
CLD —Clear direction flag instruction

To operate on more than one element of a string, a repeat prefix must be used, such as:

REP — Repeat while the ECX register not zero
REPE/REPZ —Repeat while the ECX register not zero and the ZF ﬂag isset -
REPNE/REPNZ— Repeat while the ECX register not zero and the ZF flag is clear

Exceptions or interrupts which occur during a string instruction leave the registers in a
state which allows the string instruction to be restarted. The source and destination
registers point to the next string elements, the EIP register points to the string instruc-
tion, and the ECX register has the value it held following the last successful iteration.
All that is necessary to restart the operation is to service the interrupt or fix the source
of the exception, then execute an IRET instruction.

3.6.1 Repeat Prefixes

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated
operation of a string instruction. This form of iteration allows string operations to pro-
ceed much faster than would be possible with a software loop.

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied.

For each repetition of the instruction, the string operation may be suspended by an
exception or interrupt. After the exception or interrupt has been serviced, the string
operation can restart where it left off. This mechanism allows long string operations to
proceed without affecting the interrupt response time of the system.

All three prefixes shown in Table 3-4 cause the instruction to repeat until the ECX
register is decremented to zero, if no other termination condition is satisfied. The repeat
prefixes differ in their other termination condition. The REP prefix has no other termi-
nation condition. The REPE/REPZ and REPNE/REPNZ prefixes are used exclusively
with the SCAS (Scan String) and CMPS (Compare String) instructions. The REPE/
REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates if

Table 3-4. Repeat Instructions

Repeat Prefix Termination Condition 1 Termination Condition 2
REP ECX=0 - . none
REPE/REPZ ECX=0 ZF=0
REPNE/REPNZ ECX=0 ZF=1
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the ZF flag is set. The ZF flag does not require initialization before execution of a
repeated string instruction, because both the SCAS and CMPS instructions-affect the ZF
flag according to the results of the comparisons they make.

3.6.2 Invdexing and Direction Flag Control

Although the general registers are completely interchangeable under most conditions,
the string instructions require the use of two specific registers. The source and destina-
tion strings are in memory addressed by the ESI and EDI registers. The ESI register
points to source operands. By default, the ESI register is used with the DS segment
register. A segment-override prefix allows the ESI register to be used with the CS, SS,
ES, FS, or GS segment registers. The EDI register points to destination operands. It
uses the segment indicated by the ES segment register; no segment override is allowed.
The use of two different segment registers in one instruction permits operations between
strings in different segments.

When ESI and EDI are used in string instructions, they automatically are incremented
or decremented after each iteration. String operations can begin at higher addresses and
work toward lower ones, or they can begin at lower addresses and work toward higher
ones. The direction is controlled by the DF flag. If the flag is clear, the registers are
incremented. If the flag is set, the registers are decremented. The STD and CLD in-
structions set and clear this flag. Programmers should always put a known value in the
DF flag before using a string instruction.

3.6.3 String Instructions

MOVS (Move String) moves the string element addressed by the ESI register to the
location addressed by the EDI register. The MOVSB instruction moves bytes, the
MOVSW instruction moves words, and the MOVSD instruction moves doublewords.
The MOVS instruction, when accompanied by the REP prefix, operates as a memory-
to-memory block transfer. To set up this operation, the program must initialize the ECX,
ESI, and EDI registers. The ECX register specifies the number of elements in the block.

CMPS (Compare Strings) subtracts the destination string element from the source string
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is
cleared. CMPSB compares bytes, CMPSW compares words, and CMPSD compares
doublewords.

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF
flags. The string and the register are not modified. If the values are equal, the ZF flag is
set; otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction
scans words; the SCASD instruction scans doublewords.
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When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS
instructions, the loop which is formed is terminated by the loop counter or the effect the
SCAS or CMPS instruction has on the ZF flag. :

LODS (Load String) places the source string element addressed by the ESI register into
the EAX register for doubleword strings, into the AX register for word strings, or into
the AL register for byte strings. This instruction usually is used in a loop, where other
instructions process each element of the string as they appear in the register.

STOS (Store String) places the source string element from the EAX, AX, or AL register
into the string addressed by the EDI register. This instruction usually is used in a loop,
where it writes to memory the result of processing a string element read from memory
with the LODS instruction. A REP STOS instruction is the fastest way to 1mt1allze a
large block of memory.

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES

These instructions provide machine-language support for implementing block-structured
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify
procedure entry and ¢éxit in compiler-generated code. They support a structure of point-
ers and local variables on the stack called a stack frame.

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of
block-structured languages. In these languages, a procedure has access to its own vari-
ables and some number of other variables defined elsewhere in the program. The scope
of a procedure is the set of variables to which it has access. The rules for scope vary
among languages; they may be based on the nesting of procedures, the division of the
program into separately-compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be
reserved on the stack for dynamic storage in the procedure being entered. Dynamic
storage is the memory allocated for variables created when the procedure is called, also
known as automatic variables. The second parameter is the lexical nesting level (from 0
to 31) of the procedure. The nesting level is the depth of a procedure in the hierarchy of
a block-structured program. The lexical level has no particular relationship to either the
protection privilege level or to the I/O privilege level.

The lexical nesting level determines the number of stack frame pointers to copy into the
new stack frame from the preceding frame. A stack frame pointer is a doubleword used
to access the variables of a procedure. The set of stack frame pointers used by a proce-
dure to access the variables of other procedures is called the display. The first double-
word in' the display is a pointer to the previous stack frame. This pointer is used by a
LEAVE instruction to undo the effect of an ENTER instruction by d1scardmg the cur-
rent stack frame.
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Example: ENTER 2048,3

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two
previous stack frames in the stack frame for this procedure.

After the ENTER instruction creates the display for a procedure, it allocates the
dynamic (automatic) local variables for the procedure by decrementing the contents of
the ESP register by the number of bytes specified in the first parameter. This new value
in the ESP register serves as the initial top-of-stack for all PUSH and POP operations
within the procedure. :

To allow a procedure to address its display, the ENTER instruction leaves the EBP
register pointing to the first doubleword in the display. Because stacks grow down, this is
actually the doubleword with the highest address in the display. Data manipulation
instructions which specify the EBP register as a base register automatically address
locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical
level is 0, the non-nested form is used. The non-nested form pushes the contents of the
EBP register on the stack, copies the contents of the ESP register into the EBP register,
and subtracts the first operand from the contents of the ESP register to allocate dynamic
storage. The non-nested form differs from the nested form in that no stack frame point-
ers are copied. The nested form of the ENTER instruction occurs when the second
parameter (lexical level) is not zero.

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the
number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

The main procedure (in which all other procedures are nested) operates at the highest
lexical level, level 1. The first procedure it calls operates at the next deeper lexical level,
level 2. A level 2 procedure can access the variables of the main program, which are at

Push EBP
Set a temporary value FRAMLPTR =ESP
If LEVEL O then
Repeat LEVEL — 1) times:
EBP :=EBP -4
Push the doubleword pointed to by EBP
End repeat
Push FRAME__PTR
End i
EBP :=FRAME_PTR
ESP :=ESP - STORAGE

Figure 3-15. Formal Definition of the ENTER Instruction
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fixed locations specified by the compiler. In the case of level 1, the ENTER instruction
allocates only the requested dynamic storage on the stack because there is no prevxous
display to copy. -

A procedure which calls another procedure at a lower lexical level gives the called pro-
cedure access to the variables of the caller. The ENTER instruction provides this access
by placing a pointer to the calling procedure’s stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give
access to its variables. In this case, the ENTER instruction copies only that part of the
display from the calling procedure which refers to previously nested procedures operat-
ing at higher lexical levels. The new stack frame does not include the pointer for
addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as.a call to a procedure at the
same lexical level. In this case, each succeeding iteration of the re-entrant procedure can
address only its own variables and the variables of the procedures within which it is
nested. A re-entrant procedure always can address its own variables; it does not require
pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the
ENTER instruction makes certain that procedures access only those variables of hlgher
lexical levels, not those at parallel lexical levels (see Figure 3-16).

Block-structured languages can use the lexical levels defined by ENTER to control ac-
cess to the variables of nested procedures. In the figure, for example, if PROCEDURE
A calls PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C

MAIN (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

PROCEDURE B (LEXICAL LEVEL 3)

PROCEDURE C (LEXICAL LEVEL3)

PROCEDURE D (LEXICAL LEVEL 4) J

240486126

Figure 3-16. Nested Procedures
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will have access to the variables of MAIN and PROCEDURE A, but not those of
PROCEDURE B because they are at the same lexical level. The following defmltlon
dCSCI'leS the access to variables for the nested procedures in the figure.

1. MAIN has variables at fixed locatlons
2. PROCEDURE A can access only the varlables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the variables of PROCEDURE C or PROCE-
DURE D. '

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the vanables of PROCEDURE B or PROCE-
DURE D.

5. PROCEDURE D can 'access the variables of PROCEDURE C, PROCEDURE A,
and MAIN. PROCEDURE D cannot access the variables of PROCEDURE B.

In the following diagram, an ENTER instruction at the beginning of the MAIN program
creates three doublewords of dynamic storage for MAIN, but copies no pointers from
other stack frames (See Figure 3-17). The first doubleword in the display holds a copy of
the last value in the EBP register before the ENTER instruction was executed. The
second doubleword (which, because stacks grow down, is stored at a lower address)
holds a copy of the contents of the EBP register following the ENTER instruction. After
the instruction is executed, the EBP register. points to the first doubleword pushed on
the stack, and the. ESP register pomts to the last doubleword in the stack frame.

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (See
Figure 3-18). The first doubleword is the last value held in MAIN’s EBP register. The
second doubleword is a pointer to MAIN’s stack frame which is copied from the second
doubleword in MAIN’s display. This happens to be another copy of the last value held in
MAIN’s EBP register. PROCEDURE A can access variables in MAIN because MAIN

P
DISPLAY OLD EBP —EB
MAIN'S EBP
DYNAMIC
STORAGE csp

240486127

Figure 3-17. Stack Frame After Entering MAIN
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OLD EBP
MAIN'S EBP
MAIN’S EBP «— EBP
DISPLAY MAIN'S EBP
o ' “PROCEDURE A’S EBP ‘
DYNAMIC
STORAGE :
~— EBP

240486i28

Figure 3-18. Stack Frame After Entering PROCEDURE A -

is at level 1. Therefore the base address for the dynamic storage used in MAIN is the
current address in the EBP register, plus four bytes to account for the saved contents of
MAIN’s EBP register. All dynamic variables for MAIN are at fixed, positive offsets from
this value.

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new
display (See Figure 3-19). The first doubleword holds a copy of the last value in PRO-
CEDURE A’s EBP register. The second and third doublewords are copies of the two
stack frame pointers in PROCEDURE A’s display. PROCEDURE B can access vari-
ables in PROCEDURE A and MAIN by using the stack frame pointers in its display. -

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the
last value in PROCEDURE B’s EBP register. This is used by the LEAVE instruction to
restore PROCEDURE B’s stack frame. The second and third doublewords are copies of
‘the two stack frame pointers in PROCEDURE A'’s display. If PROCEDURE C were at
the next deeper lexical level from PROCEDURE B, a fourth doubleword would be
copied, which would be the stack frame pointer to PROCEDURE B’s local variables.

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCE-
DURE C is not intended to access PROCEDURE B’s variables. This does not mean
that PROCEDURE C is completely isolated from PROCEDURE B; PROCEDURE C
is called by PROCEDURE B, so the pointer to the returning stack frame is a pointer to
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OLD EBP
MAIN’S EBP

MAIN'S EBP
MAIN'’S EBP
PROCEDURE A'S EBP

[ PROCEDURE A'S EBP l«— EBP
DISPLAY MAIN'S EBP
. PROCEDURE A’S EBP
| PROCEDURE B'S EBP
DYNAMIC
STORAGE
«— ESP

240486i29

Figure 3-19. Stack Frame After Entering PROCEDURE B

PROCEDURE B'’s stack frame. In addition, PROCEDURE B can pass parameters to
PROCEDURE C either on the stack or through variables global to both procedures
(i.e., variables in the scope of both procedures).

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The
LEAVE instruction does not have any operands. The LEAVE instruction copies the
contents of the EBP register into the ESP register to release all stack space allocated to
the procedure. Then the LEAVE instruction restores the old value of the EBP register
from the stack. This simultaneously restores the ESP register to its original value. A
subsequent RET instruction then can remove any arguments and the return address
pushed on the stack by the calling program for use by the procedure.

3.8 FLAG CONTROL INSTRUCTIONS

The flag control 1nstruct10ns change the state of bits in the EFLAGS register, as shown
in Table 3-5.
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OLD EBP

MAIN'S EBP

MAIN'S EBP

MAIN’S EBP

PROCEDURE A'S EBP

PROCEDURE A’S EBP

MAIN’S EBP

PROCEDURE A’S EBP

PROCEDURE B’S EBP

PROCEDURE B’S EBP

l<— EBP

DISPLAY

MAIN’S EBP

PROCEDURE A’S EBP

PROCEDURE C'S EBP

L

DYNAMIC
STORAGE

e— ESP

240486i30

" Figure 3-20. Stack Frame After Entering PROCEDURE C

Table 3-5. Flagi Control Instructions

" Effect

Instruction
STC (Set Carry Flag) CF « 1
CLC (Clear Carry Flag) CF<0 ..
CMC (Complement Carry Flag) CF « — (CF)
CLD (Clear Direction Flag) DF « 0
STD (Set Direction Flag) DF <1 '
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3.8.1 Carry and Direction Flag Control Instructions

The carry flag instructions are useful with instructions like the rotate-with-carry instruc-
tions RCL and RCR. They can initialize the carry flag, CF, to a known state before
execution of an instruction which copies the flag into an operand.

The direction flag control instructions set or clear the direction flag, DF, which controls
the direction of string processing. If the DF flag is clear, the processor increments the
string index registers, ESI and EDI, after each iteration of a string instruction. If the DF
flag is set, the processor decrements these index registers.

3.8.2 Flag Transfer Instructions

Though specific instructions exist to alter the CF and DF flags, there is no direct method
of altering the other application-oriented flags. The flag transfer instructions allow a
program to change the state of the other flag bits using the bit manipulation instructions
once these flags have been moved to the stack or the AH register.

The LAHF and SAHF instructions deal with five of the status flags, which are used
primarily by the arithmetic and logical instructions.

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register
bits 7, 6, 4, 2, and 0, respectively (see Figure 3-21). The contents of the remaining bits 5,
3, and 1 are left undefined. The contents of the EFLAGS register remain unchanged.

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively (see Figure 3-21).

The PUSHF and POPF instructions are not only useful for storing the flags in memory
where they can be examined and modified, but also are useful for preserving the state of
the EFLAGS register while executing a subroutine.

THE BIT POSITIONS OF THE FLAGS ARE THE SAME,
WHETHER THEY ARE HELD IN THE EFLAGS REGISTER
OR THE AH REGISTER. BIT POSITIONS SHOWN AS

0 OR 1 ARE INTEL RESERVED. DO NOT USE.

240486i31

Figure 3-21. Low Byte of EFLAGS Register
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PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see
Figure 3-22). The PUSHFD instruction pushes the entire EFLAGS reglster onto the
stack (the RF flag reads as clear, however).

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 14,
11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege
level of the current code segment is 0 (most pr1v1leged) the IOPL bits (bits 13 and 12)
also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected.
The POPFD instruction pops a doubleword into the EFLAGS register, and it can
change the state of the AC bit (bit 18) as well as the bits affected by a POPF instruction.

3.9 NUMERIC INSTRUCTIONS

The 1486 processor includes hardware and instructions for high-precision numeric oper-
ations on a variety of numeric data types, including 80-bit extended real and 64-bit long
integer. Arithmetic, comparison, transcendental, and data transfer instructions are avail-
able. Frequently-used constants are also provided, to enhance the speed of numeric
calculations.

The numeric instructions are embedded in the instruction stream of the i486 processor,
as though they were being executed by a single device having both integer and floating-
point capabilities. But the ﬂoatmg point unit of the i486 CPU actually works in parallel
with the integer unit, resulting in higher performance. ,

Part I1I of this manual, Chapters 14-18, describe the numeric instructions in more detail.

| —»| PUSHFDIPOPFD

= iPUSHFIPOPF
31 15 0
Alv[r]|IN| & [o|p]1 {T]S|Z|o]Alo]Pl4]lC
o{o|o|ofofofofojofofo]o|o|du(Rlol¥| & |FIFIF|EIFIFIOELo|F| |F

BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED.
DO NOT USE.

240486132

Figure 3-22. Flags Used with PUSHF and POPF
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3.10 SEGMENT REGISTER INSTRUCTIONS

There are several distinct types of instructions which use segment registers. They are
grouped together here because, if system designers choose an unsegmented model of
memory organization, none of these instructions are used. The instructions which deal
with segment registers are:

1. Segment-register transfer instructions.

MoV SegReg, ...
Mov ..., SegReg
PUSH SegReg
POP  SegReg

2. Control transfers to another executable segment.

JHP far
CALL far
RET  far

3. Data pointer instructions.

LDS reg, 48-bit memory operand
LES  reg, Y8-bit memory operand
LFS  reg, 4B-bit memory operand -
LGS  reg, Y8-bit memory operand
LSS  reg, 4B8-bit memory operand

4. Note that the folloWing inierrupt-related instructions also are used in unsegmented
systems. Although they can transfer execution between segments when segmentation
is used, this is transparent to the application programmer.

INT n
INTO
BOUND
IRET

3.10.1 Segment-Register Transfer Instructions

Forms of the MOV, POP, and PUSH instructions also are used to load and store seg-
ment registers. These forms operate like the general-register forms, except that one
operand is a segment register. The MOV instruction cannot copy the contents of a
segment register into another segment register.

The POP and MOV instructions cannot place a value in the CS register (code segment);
only the far control-transfer instructions affect the CS register. When the destination is
the SS register (stack segment), interrupts are disabled until after the next instruction.

On the 386™ DX processor, loading a segment register always resulted in locked read
and write cycles to set the Accessed bit. On the i486 processor, locked cycles are gener-
ated only if the Accessed bit is not already set.
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No 16-bit operand size prefix is needed when transferring data between a segment reg-
ister and a 32-bit general register.

3.10.2 Far Control Transfer Instructions

The far control-transfer instructions transfer execution to a destmatxon in another seg-
ment by replacmg the contents of the CS register. The destination is specified by a far
pointer, which is a 16-bit segment selector and a 32-bit offset into the segment. The far
pointer can be an immediate operand or an operand in memory.

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS
registers on the stack.

Far RET. An intersegment RET instruction restores the values of the CS and EIP reg-
isters from the stack.

3.10.3 Data Pointer Instructions

The data pointer instructions load a far pointer into the processor registers. A far
pointer consists of a 16-bit segment selector, which is loaded into a segment register, and
a 32-bit offset into the segment, which is loaded into a general register.

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS
register and a general register. The source operand must be a memory operand, and the
destination operand must be a general register.

Example: LDS ESI, STRING_X

Loads the DS register with the segment selector for the segment addressed by
STRING_X, and loads the offset within the segment to STRING_X into the ESI
register. Specifying the ESI register as the destination operand is a convenient way
to prepare for a string operatlon when the source string is not in the current data
segment.

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the
segment selector is loaded into the ES register rather than the DS register.

Example: LES EDI, DESTINATION_X

Loads the ES register with the segment selector for the segment addressed by DES-
TINATION_X, and loads the offset within the segment to DESTINATION X into
the EDI register.: This instruction is a convenient way to select a destination for
string operanon if the desired locatlon is not in the current E-data segment.

LFS (Load Pomter Using FS) has the same effect as the LDS instruction, except the FS
register receives the segment selector rather than the DS register.
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LGS (Load Pointer Using GS) has the same effect as the LDS instruction, except the GS
register receives the segment selector rather than the DS register.

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS
register receives the segment selector rather than the DS register. This instruction is
especially important, because it allows the two registers which identify the stack (the SS
and ESP registers) to be changed in one uninterruptible operation. Unlike the other
instructions which can load the SS register, interrupts are not inhibited at the end of the
LSS instruction. The other instructions, such as POP SS, turn off interrupts to permlt
the following instruction to load the ESP register without an intervening interrupt. Since
both the SS and ESP registers can be loaded by the LSS instruction, there is no need to
disable or re-enable interrupts.

3.11 MISCELLANEOUS INSTRUCTIONS

The following 1nstruct10ns do not fit in any of the previous categories, but are no less
important.

The BSWAP, XADD, and CMPXCHG instructions are not available on 386 DX or SX
microprocessors. A: 386 CPU can perform the same operations in multiple instructions.
To use these instructions, always include functionally-equivalent code for 386. CPUs. Use
the code in Figure 3-23 to determine whether these instructions can be used. .

3.11.1 Address Calculation Instruction

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory
(rather than its contents) into the destination operand. The source operand must be in
memory, and the destination operand must be a general register. This instruction is
especially useful for initializing the ESI or EDI registers before the execution of string
instructions or initializing the EBX register before an XLAT instruction. The LEA in-
struction can perform any indexing or scaling which may be needed.

Example: LEA EBX, EBCDIC_TABLE

Causes the processor to place the address of the starting location of the table la-
‘beled EBCDIC_TABLE into EBX.

3.11.2 No-Operation Instruction

NOP (No Operation) occupies a byte of code space. When executed, it increments the
EIP register to point at the next instruction, but affects nothing else.
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$title ("Determine CPU id for 386 or 1486 CPUs") '

. name CPU_ID
public.  is386

code segment “er ‘public use32

Identify the current CPU being executed.
Return with EAX=0 for i486 CPU or EAX=1 for 386 CPU.

Xor eax,40000H
push eax

. Flip AC bit in EFLAGS
Copy to EFLAGS

: Leave ESP, EBP, EBX, ESI, and EDI unchanged.
is386 proc near
mov edx, esp ; Save current stack pointer to align it
and esp,not 3 : Align stack to avo;d AC fault
pushfd ; Push EFLAGS
pop eax ; Get EFLAGS value
mov ecx,eax ; Save original EFLAGS

popfd

pushfd ; Get new EFLAGS value

pop eax ;- Put into eax

Xor eax,ecx ; See if AC bit changed

. ; EAX=4000H if 386 CPU, 0 if i486 CPU
- shr eax,18 ; Set EAX=1 if 386 CPU, 0 if i486 CPU
and eax, 1 ; Ignore all other bits

push ecx

popfd ; Restore original EFLAGS register
mov esp, edx ; Restore original stack pointer

ret .

is386 endp

code ends

Figure 3-23. CPU_ID Detection Code

3.11.3 Translate Instruction

XLATB (Translate) replaces the contents of the AL register with a byte read from a
translation table in memory. The contents of the AL register are interpreted as an
unsigned index into this table, with the contents of the EBX register used as the base
address. The XLAT instruction does the same operation and loads its result into the
same register, but it gets the byte operand from memory. This function is used to convert
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character codes from one alphabet into another. For example, an ASCII code could be
used to look up its EBCDIC equivalent.

3.11.4 Byte Swap Instruction

BSWAP (Byte Swap) reverses the byte order in a 32-bit register operand. Bit positions
7..0 are exchanged with 31..24, and bit positions 15..8 are exchanged with 23..16. This
instruction is useful for converting between “big-endian” and “little-endian” data for-
mats. Executing this instruction twice in a row leaves the register in the same value as
before. This instruction also speeds execution of decimal arithmetic by operating on four
digits at a time as shown in Figure 3-24. See introduction for Section 3.11 regarding 386
processors when using BSWAP.

3.11.5 Exchange-and-Add Instruction

XADD (Exchange and Add) takes two operands: a source operand in a register and a
destination operand in a register or memory. The source operand is replaced with the
destination operand, and the destination operand is replaced with the sum of the source
and destination operands. The flags reflect the result of the addition. This instruction
can be combined with LOCK in a multiprocessing system to allow multiple processors to
execute one do loop. See introduction for Section 3.11 regarding 386 processors when
using XADD.

3.11.6 Compare-and-Exchange Instruction

CMPXCHG (Compare and Exchange) takes three operands: a source operand in a reg-
ister, a destination operand in a register or memory, and the accumulator (i.e., the AL,
AX, or EAX register, depending on operand size). If the values in the destination oper-
and and the accumulator are equal, the destination operand is replaced with the source
operand. Otherwise, the original value of the destination operand is loaded into the
accumulator. The flags reflect the result which would have been obtained by subtracting
the destination operand from the accumulator. The ZF flag is set if the values in the
destination operand and the accumulator were equal, otherwise it is cleared.

The CMPXCHG instruction is useful for testing and modifying semaphores. It performs
a check to see if a semaphore is free, and if so mark it allocated else get the id of the
current owner in one uninterruptible operation. In a single processor system, it elimi-
nates the need to switch to level 0 to disable interrupts to execute multiple instructions.
For multiple processor systems, CMPXCHG can be combined with LOCK to perform all
bus cycles atomically. See introduction for Section 3.11 regarding 386 processors when
*using CMPXCHG. :
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$title ('ASCII Add/Subtract With BSWAP’)
name ASCII_arith

code segment er public use32
Add a string of 4 ASCII decimal digits together.
The upper nibble MUST be 3. }
DS: [ESI] points at operand 1
DS: [EBX] points at operand 2
.DS: [EDI] points at the destination

Ne Ve Se Ne Yo e Se

addlo0 proc near

: Perform ASCII add using BSWAP instruction on 1486 CPU.

.
LA

Get low four digits of;first operand
Put into big-endian form
Adjust for addition so carries work

mov eax, [esi] -
bswap eax
add eax,96969696H

mov ecx, [ebx] Get low four digits of second operand
bswap ecx Put into big endian form :
. add eax,ecx Do the add with inter-digit carry
rcr ch,1 Save the carry flag
mov edx, eax Save the value
and eax, OFOFOFOFOH Extract upper nibble
sub edx,eax Zero out upper nibble of each byte
shr eax, 4 Prepare for fixup

and eax, 0AOAQAOAH If non-zero upper nibble then form

10 as adjustment value to lower nibble

Se Se e Se Na e Se Se N Ne N e Ne Se Ve o Ve Ve e

©add eax, edx Form adjusted lower nibble value :
‘ : upper nibbles may be 1 from adjustment.
or eax,30303030H Convert back to ASCII
bswap eax Back to little-endian
mov [edi],eax Set destination
rel ch,1 Restore carry
" ret -

" add10 . endp

. Subtract a string of 4 ASCII decimal digits together.
The upper nibble must be 3.
DS: [ESI] points at operand 1°
DS: [EBX] points at operand 2. [ESI]-[EBX]
DS: [EDI] points at the: destination

Ne Se e Ne we Se v

subl0 * ~ proc near

.
’

H Perform ASCII subtract using BSWAP instruction on i486 CPU.

Figure 3-24, ASCII Arithmetic Using BSWAP (Part 1 of 2)

3-44




APPLICATION PROGRAMMING

mov eax, [esi]
bswap eax
mov ecx, [ebx]
bswap ecx
sub eax,ecx
rer ch,1
mov edx,eax
and eax, 0FOFOFOFOH
sub edx,eax
shr eax, 4
and eax, 0OAOAOAOAH
add eax, edx
or eax,30303030H
bswap eax
mov [edi],eax
rcl ch,1
ret

subl0 endp

code ends
end

Ne Se Ne Se Ne Sa Ne Ve Sa Se e Se Ve e Ve Se Ve e

Get low four digits of first operand
Put into big-endian form

Get low four digits of second operand
Put into big endian form

Do the subtract with inter-digit borrow
Save the carry flag

Save the value

Extract upper nibble, F if borrow happened
Zero out upper nibble of each byte
Prepare for fixup

If non-zero upper nibble then form

10 as adjustment value to lower nibble
Form adjusted lower nibble value

upper nibbles may be 1 from adjustment
Convert back to ASCII

Back to little-endian

Set destination

Restore borrow

Figure 3-24. ASCII Arithmetic Using BSWAP (Part 2 of 2)
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CHAPTER 4
SYSTEM ARCHITECTURE

Many of the architectural features of the i486™ processor are used only by system pro-
grammers. This chapter presents an overview of these features. Application program-
mers may need to read this chapter, and the following chapters which describe the use of
these features, in order to understand the hardware facilities used by system program-
mers to create a reliable and secure environment for application programs. The system-
level architecture also supports powerful debugging features which application
programmers may wish to use during program development.

The system-level features of the architecture include:

Memory Management

Protection "
Multitasking

Input/Output

Exceptions and Interrupts
Initialization - ‘
Coprocessing and Multiprocessing
Debugging o

Cache Management

These features are supported by registers and instructions, all of which are introduced in
the following sections. The purpose of this chapter is not to explain each feature in
detail, but rather to place the remaining chapters of Part II in perspective. When a
tegister or instruction is mentioned, it is accompanied by an explanation or a reference
to a following chapter.

4.1 SYSTEM REGISTERS
The registers intended for use by system programmers fall into these categories:

EFLAGS Register
Memory-Management Registers
Control Registers

Debug Registers

Test Registers

The system registers control the execution environment of application programs. Most
systems restrict access to these facilities by application programs (although systems can
be built where all programs run at the most privileged level, in which case application
programs are allowed to modify these facilities).
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4.1.1 System Flags

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging,
task switching, and the virtual-8086 mode. An application program should ignore these
flags, and should not attempt to change their state. In most systems an attempt to

change the state of a system flag by an apphcanon program results in an exceptlon
These ﬂags are shown in Figure 4-1.

AC (Alignment Check Mode, bit 18)

Setting the AC flag and the AM bit in the CRO register enables alignment checking on
memory references. An alignment-check exception is generated when reference is made
to an unaligned operand, such as a word at an odd byte address or a doubleword at an
address which is not an integral multiple of four. Alignment-check exceptions are gen-
erated only in user mode (privilege level 3). Memory references which default to privi-
lege level 0, such as segment descriptor loads, do not generate this exception even when
caused by a memory reference in user-mode.

The alignment check interrupt can be used to check alignment of data. This is useful
when exchanging data with other processors like i860™ 64-bit microprocessor which
require all data to be aligned. The alignment check interrupt can also be used by inter-
preters to flag some pointers as special by misaligning the pointer. This eliminates over-
head of checking each pointer and only handle the special pointer when used.

111111111 :

31 8765432109876543210
' AlV[R|gl0| B |o|P[t|T]s]Z|o]Alg|P|4]C

ojofofolojofofojojojofojoaluiziots) © EfeielelZIEIO1RIO |1 ]F

ALIGNMENT CHECK (AC)
VIRTUAL 8086 MODE(VM) _|
RESUME FLAG (RF)

NESTED FLAT (NF) !
10 PRIVILEGE LEVEL (oPL) ——
INTERRUPT ENABLE FLAG (IF)

TRAP FLAG (TF)

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.

240486133

Figure 4-1. System Flags
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VM (Virtual-8086 Mode, bit 17)

Setting the VM flag places the processor in virtual-8086 mode, which is an emulation of
the programming environment of an 8086 processor. See Chapter 23 for more
information. :

RF (Resume Flag, bit 16)

The RF flag temporarily disables debug exceptions so that an instruction can be re-
started after a debug exception without immediately causing another debug exception.
When the debugger is entered, this flag allows it to run normally rather than recursively
calling itself until the stack overflows. The RF flag is not affected by the POPF instruc-
tion, but it is affected by the POPFD and IRET instructions. See Chapter 9 and
Chapter 11 for details.

NT (Nested Task, bit 14)

The processor uses the nested task flag to control chaining of interrupted and called
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is affected
by the POPF, POPFD, and IRET instructions. Improper changes to the state of this flag
can generate unexpected exceptions in application programs. See Chapter 7 and
Chapter 9 for more information on nested tasks.

IOPL (I/O Privilege Level, bits 12 and 13)

The I/O privilege level is used by the protection mechanism to control access to the I/O
address space. The privilege level of the code segment currently executing (CPL) and the
IOPL determine whether this field can be modified by the POPF, POPFD, and IRET
instructions. See Chapter 8 for more information.

IF (Interrupt-Enable Flag, bit 9)

Setting the IF flag puts the processor in a mode in which it responds to maskable inter-
rupt requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF
flag has no effect on either exceptions or nonmaskable interrupts (NMI interrupts). The
CPL and IOPL determine whether this field can be modified by the CLI, STI, POPF,
POPFD, and IRET instructions. See Chapter 9 for more details about interrupts.

TF (Trap Flag, bit 8)

Setting the TF flag puts the processor into single-step mode for debugging. In this mode,
the processor generates a debug exception after each instruction, which allows a pro-
gram to be inspected as it executes each instruction. Single-stepping is just one of several
_debugging features of the i486 processor. If an application program sets the TF flag
-using the POPF, POPFD, or IRET instructions, a debug exception is generated. See
Chapter 9 and Chapter 11 for more information.
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4.1.2 Memory-Management Registers

Four registers of the i486 processor specify the location of the data structures which
control segmented memory management, as shown in Figure 4-2. Special instructions are
provided for loading and storing these registers. The GDTR and IDTR registers may be
loaded with instructions which get a six-byte block of data from memory. The LDTR and
TR registers may be loaded with instructions which take a 16-bit segment selector as an
operand. The remaining bytes of these registers are then loaded automatically by the
processor from the descriptor referenced by the operand.

Most systems will proteét» the instructions which load memory-managemént registers
from use by application programs (although a system in which no protection is used is
possible). ~ . .

GDTR Global Descriptor Table Register

i

This register holds the 32-bit base address and 16-bit segment limit for the global de-
scriptor table (GDT). When a reference is made to data in memory, a segment selector
is used to find a segment descriptor in the GDT or LDT. A segment descriptor contains
the base address for a segment. See Chapter 5 for an ‘explanation of segmentation.

LDTR Local Descriptor Table Register -

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit segment
selector for the local descriptor table (LDT). The segment which contains the LDT has
a segment descriptor in the GDT. There is no segment.descriptor for the GDT. When a
reference is made to data in memory, a segment selector is used to-find a segment
descriptor in the GDT or LDT. A segment descriptor contains the base address for a
segment. See Chapter 5 for an explanation of segmentation.

SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS1615 LIMIT 0

GDTR
LDTR

SYSTEM SEGEMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)

A

15 o 7 32.BIT LINEAR BASE ADDRESS  32-BIT SEGMENT LIMIT ATTRIBUTES'

TR SELECTOR
IDTR SELECTOR

240486134

Figure 4-2. Memory Management Registers
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IDTR Interrupt Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit. for the interrupt
descriptor table (IDT). When an interrupt occurs, the interrupt vector is used as an
index to get a gate descriptor from this table. The gate descriptor contains a pointer used
to start up the interrupt handler. See Chapter 9 for details of the interrupt mechanism.

TR Task Reglster

This register holds the 32-bit base address, 16-bit segment limit, descriptor attributes;
and 16-bit segment selector for the task currently being executed. It references a task
state segment (TSS) descriptor in the global descriptor table. See Chapter 7 for a de-
scnptlon of the multitasking features of the 486 processor.

4.1.3 Control Registers

Figure 4-3 shows the format of the control registers CR0, CR1, CR2, and CR3. Most
systems prevent application programs from loading the control registers (although an
unprotected system would allow this) Application programs can read this register to
determine if a numerics coprocessor is present. Forms of the MOV instruction allow the
register to be loaded from or stored in general registers. For example:

NUV EAX, (RO
nav (R3, EBX

The CRO register contains system control flags, which control modes or indicate states
which apply generally to the processor, rather than to the execution of an individual task.
A program should not attempt to change any of the reserved bit positions. Reserved bits
should always be set to the value previously read.

31 23 15 7 3 0
PAGE DIRECTORY BASE REGISTER (PBDR) § TP ‘ CR3
' PAGE FAULT LINEAR ADDRESS CR2
RESERVED CR1
48 ] ] vesemvee[SRToRIAE) o
29 18 16

240486i35

Figure 4-3. Control Registers
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The LMSW instruction can only modify the lower 16 bits of CRO.
PG (Paging, bit 31)

This bit enables paging when set and disables paging when clear. See Chapter 5 for more
information about paging. See Chapter 10 for information on how to enable paging.

When an exception is generated during paging, the CR2 register has the 32-bit linear
address which caused the exception. See Chapter 9 for more information about handling
exceptions generated during paging (page faults).

When paging is used, the CR3 register has the 20 most-significant bits of the address of
the page directory (the first-level page table). The CR3 register is also known as the
page-directory base register (PDBR). Note that the page directory must be aligned to a
page boundary, so the low 12 bits of the register are ignored. Unlike the 386™ DX
processor, the 1486 processor assigns functions to two of these bits. These are:

PCD (Page-Level Cache Disable, bit 4 of CR3) |

The state of this bit is driven on the PCD pin during bus cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PCD pin is used to control caching in an external
cache on a cycle-by-cycle basis.

PWT (Page-Level Writes Transparent, bit 3 of CR3)

The state of this bit is driven on the PWT pin during bus cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PWT pin is used to control write-through in an
external cache on a cycle-by-cycle basis.

CD (Cache Disable, bit 30)

This bit enables the internal cache when clear and disables the cache when set. Cache
misses do not cause cache line fills when the bit is set. Note that cache hits are not
disabled; to completely disable the cache, the cache must be flushed. See Chapter 12 for
information on caching.

NW (Not Write-through, bit 29)

This bit enables write-throughs and cache invalidation cycles when clear and disables
invalidation cycles and write-throughs which hit in the cache when set. See Chapter 12
for information on caching. Disabling write-throughs can allow stale data to appear in
the cache.
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AM (Alignment Mask, bit 18)

This bit allows alignment checking when set and disables alignment checking when clear.
Alignment checking is performed only when the AM bit is set, the AC flag is set, and the
CPL is 3 (user mode).

WP (Write Protect, bit 16)

When set, this bit write-protects user-level pages against supervisor-mode access. When
this bit is clear, read-only user-level pages can be written by a supervisor process. This
feature is useful for implementing the copy-on-write method of creating a new process
(forking) used by some operating systems, such as UNIX.

NE (Numeric Erfor, bit 5)

This bit enables the standard mechanism for reporting floating-point numeric errors
when set. When NE is clear and the IGNNE# input is active, numeric errors are ig-
nored. When the NE bit is clear and the IGNNE# input is inactive, a numeric error
causes the processor to stop and wait for an interrupt. The interrupt is generated by
using the FERR# pin to drive an input to the interrupt controller (the FERR# pin
emulates the ERROR# pin of the 80287 and 387™ DX coprocessors). The NE bit,
IGNNE# pin, and FERR# pin are used with external logic to 1mplement PC-style error
reporting.

ET (Extension Type, bit 4)

This bit is one to indicate support of 387 DX math coprocessor instructions (Intel®
reserved).

TS (Task Switched, bit 3)

The processor sets the TS bit with every task switch and tests it when interpreting
floating-point arithmetic instructions. This bit allows delaying save/restore of numeric
content until the numeric data is actually used. The CLTS instruction will clear this bit.

EM (Emulation, bit 2)

When either the EM and TS bits are set, execution of a WAIT or numeric instruction
generates the coprocessor-not-available exception. EM can be set to cause exception 7
on any WAIT or numeric instruction.

MP (Math Present, bit 1)

- On the 80286 and 386 DX processors, the MP bit controls the function of the WAIT
instruction, which is used to synchronize with a coprocessor. When running programs on
the 1486 processor, this bit should be set.
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PE (Protection Enable, bit 0)

Setting the PE bit enables segment-level protection. See Chapter 6 for more information
about protection. See Chapter 10 and Chapter 22 for information on how to enable

paging.

4.1.4 Debug Registers

The debug registers bring advanced debugging abilities to the 486 processor, including
data breakpoints and the ability to set instruction breakpoints without modifying code
segments (useful in debugging ROM-based software). Only programs executing at the
highest privilege level can access these registers. See Chapter 11 for a complete descrip-
tion of their formats and use. The debug registers are shown in Figure 4-4.

4.1.5 Test Registers

The test registers are not a formal part of the architecture. They are an implementation-
dependent facility provided for testing the translation lookaside buffer (TLB) and the
cache. See Chapter 10 for a complete description of their formats and use. The test
registers are shown in Figure 4-5.

15 7 0

LgNIn;WleNlmzwlLEN RI1W LI(E)NIRO oololo oo g ';; g ‘52‘5 ? 11. g(l). DR7

0000000000000000 ?Igg 000000000 ggfg DR6
: RESERVED DRS
i RESERVED DRA4
=BREAKPOINT 3 LINEAR ADDRESS | DR3
|BREAKPOINT 2 LINEAR ADDRESS | oR2
: BREAKPOINT 1 L:INEAR ADDRESS ' DR1
" BREAKPOINT 0 LINEAR ADDRESS o DRO
t + +

NOTE: 0 MEANS INTEL RESERVED. DO NOT DEFINE.

240486i36

Figure 4-4. Debug Registers
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Figure 4-5. Test Registers
4.2 SYSTEM INSTRUCTIONS
System instructions deal with functions such as:
1. Verification of pointer parameters (see Chapter 6):
Useful to Protected from
Instruction Description Application? Application?
ARPL Adjust RPL No No
LAR Load Access Rights Yes No
LSL Load Segment Limit ‘Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
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2. Addressing descriptor tables (see Chapter 5):

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register Yes No
SLDT Store LDT Register Yes No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
3. Multitasking (see Chapter 7):
- Useful to Protected from
Instruction Description Application? Application?
LTR. Load Task Register No Yes
STR Store Task Register _Yes No
4. Floating-Point Numerics (see Part III): -
Useful to Protected from
Instruction Description Application? Application?
CLTS Clear TS bit in CRO No Yes
ESC Escape Instructions Yes " No
WAIT Wait Until Yes No
Coprocessor Not Busy
5. Input and Output (see Chapter 8):
: . Useful to Protected from
Instruction Description Application? Application?
IN Input Yes Can be
ouT Output Yes Can be
INS Input String Yes Can be
ouTS Output String Yes Can be
6. Interrupt control (see Chapter 9):
. i . Useful to Protected from
Instruction Description . Application? Application?
cL Clear IF flag Can be - i Can'be
STl Store IF flag Can be Can be
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
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7. Debugging (see Chapter 11):

Useful to Protected from
Instruction Description Application? Application?
MoV Load and store debug No Yes
registers
8. Cache Management:
Useful to Protected from
Instruction Description Application? Application?
INVD Invalidate cache, No Yes
no write-back
WBINVD Invalidate cache, No Yes
with write-back
INVLPG Invalidate TLB entry No Yes
9. System Control:
Useful to Protected from
Instruction Description Application? Application?
SMSW Store MSW No No
LMSW Load MSW No Yes
MOV Load And Store Control Register No Yes
HLT Halt Processor No Yes
LOCK Bus Lock No Can Be

The SMSW and LMSW instructions are provided for compatibility with the 80286 pro-
cessor. A program for the i486 processor should not use these instructions. A program
should access the Control Registers using forms of the MOV instruction. The LMSW
instruction does not affect the PG, CD, NW, AM, WP, NE or ET bits, and it cannot be
used to clear the PE bit.

The HLT instruction stops the processor until an enabled interrupt or RESET signal is
received. (Note that the NMI interrupt is always enabled.) A special bus cycle is gener-
ated by the processor to indicate halt mode has been entered. Hardware may respond to
this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initial-
ization may be invoked. Software designers may need to be aware of the response of
hardware to halt mode.

The LOCK instruction prefix is used to invoke a locked (atomic) read-modify-write
operation when modifying a memory operand. The LOCK# signal is asserted and the
processor does not respond to requests for bus control during a locked operation. This
mechanism is used to allow reliable communications between processors in multiproces-
sor systems.

In addition to the chapters mentioned above, detailed information about each of these
instructions can be found in the instruction reference chapter, Chapter 26.
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CHAPTER 5
MEMORY MANAGEMENT

Memory management is a hardware mechanism which lets operating systems create sim-
plified environments for running programs. For example, when several programs are
running at the same time, they must each be given an independent address space. If they
all had to share the same address space, each would have to perform dlfflcu]t and time-
consummg checks to avoid interfering with the others.

Memory management consists of segmentation and paging. Segmentation is used to give
each program several independent, protected address spaces. Paging is used to support
an environment where large address spaces are simulated using a small amount of RAM
and some disk storage. System designers may choose to use either or both of these
mechanisms. When several programs are running at the same time, either mechanism
can be used to protect programs against interference from other programs.

Segmentation allows memory to be completely unstructured and simple, like the memory
model of an 8-bit processor, or highly structured with address translation and protection.
The memory management features apply to units called segments. Each segment is an
independent, protected address space. Access to segments is controlled by data which
describes its size, the privilege level required to access it, the kinds of memory references
which can be made to it (instruction fetch, stack push or pop, read operation, write
operation, etc.), and whether it is present in memory.

Segmentation is used to control memory access, which is useful for catching bugs during
program development and for increasing the reliability of the final product. It also is
used to simplify the linkage of object code modules. There is no reason to write position-
independent code when full use is made of the segmentation mechanism, because all
memory references can be made relative to the base addresses of a module’s code and
data segments. Segmentatlon can be used to create ROM-based software modules, in
which fixed addresses (fixed, in the sense that they cannot be changed) are offsets from
a segment’s base address. Different software systems can have the ROM modules at
different physical addresses because the segmentation mechanism will direct all memory
references to the right place. C :

In a simple memory architecture, all addresses refer to the same address space. This is
the memory model used by 8-bit microprocessors, such as the 8080 processor, where the
logical address is the physical address. The i486™ processor can be used in this way by
mapping all segments into the same address space and keeping paging disabled. This
might be done where an older design is being updated to 32-bit technology without also
adopting the new architectural features.

An application also could make partial use of segmentation.. A frequent cause of soft-
ware failures is the growth of the stack into the instruction code or data of a program.
Segmentation can be used to. prevent this.. The stack can be put in an address space
separate from the address space for either code or data. Stack addresses always would
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refer to the memory in the stack segment, while data addresses always would refer to
memory in the data segment. The stack segment would have a maximum size enforced by
hardware. Any attempt to grow the stack beyond this size would generate an exception.

A complex system of programs may make full use of segmentation. For example, a
system in which programs share data in real time can have precise control of access to
that data. Program bugs appear as exceptions generated when a program makes im-
proper access. This is useful as an aid to debugging during program development; and it
also may be used to trigger error-recovery procedures in systems delivered to the end
user.

Segmentation hardware translates a segmented (logical) address into an address for a
continuous, unsegmented address space, called a linear address. If paging is enabled,
paging hardware translates a linear address into a physical address. If paging is not
enabled, the linear address is used as the physical address. The physical address appears
on the address bus coming out of the processor.

Paging is a mechanism used to simulate a large, unsegmented address space using a
small, fragmented address space and some disk storage. Paging provides access to data
structures larger than the available memory space by keeping them partly in memory and
partly on disk.

Paging is applied to units of 4K bytes called pages. When a program attempts to access a
page which is on disk, the program is interrupted in a special way. Unlike other excep-
tions and interrupts, an exception generated due to address translation restores the
contents of the processor registers to values which allow the exception-generating in-
struction to be re-executed. This special treatment is called instruction restart. It allows
the operating system to read the page from disk, updaté the mapping of linear addresses
to physncal addresses for that page and restart the program. This process is transparent
to the program

If an operating system never sets bit 31 of the CRO register (the PG bit), the paging
mechanism will never be enabled. Linear addresses will be used as physical addresses.
This. might be done where a design using a 16-bit processor is being updated to use a
32-bit processor. An operating system written for a 16-bit processor does not use paging
because the size of its address space is so small (64K bytes) that it is more efficient to
swap entire segments bc;tween RAM and disk, rather than individual pages.

Paging would be enabled for operating systems which can support demand-paged virtual
memory, such as UNIX. Paging is transparent to application software, so an operating
system intended to support application programs written for 16-bit processors may run
those programs with paging enabled. Unlike paging, segmentation is not transparent to
application programs. Programs which use segmentatlon must be run with the segments
they were designed to use.
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5.1 SELECTING A SEGMENTATION MODEL

A model for the segmentation of memory is chosen on the basis of reliability and per-
formance. For example, a system which has several programs sharing data in real time
would get maximum performance from a model which checks memory references in
hardware. This would be a multi-segment model. ‘

At the other extreme, a system which has just one program may get higher performance
from an unsegmented or “flat” model. The elimination of “far” pointers and segment-
override prefixes reduces code size and increases execution speed. Context switching is
faster, because the contents of the segment registers no longer have to be saved or
restored. ‘

Some of the benefits of segmentation also can be provided by paging. For example, data
can be shared by mapping the same pages onto the address space of each program.

5.1.1 Flat Model

The simplest model is the flat model. In this model, all segments are mapped to the
entire physical address space. A segment offset can refer to either.code or data areas. To
the greatest extent possible, this model removes the segmentation mechanism from the
architecture seen by either the system designer or the application programmer. This
might be done for a programming environment like UNIX, which supports paging but
does not support segmentation.

A segment is defined by a segment descriptor. At least two segment descriptors must be
created for a flat model, one for code references and one for data references. Both
descriptors have the same base address value. Whenever memory is accessed, the con-
tents of one of the segment registers are used to select a segment descriptor. The seg-
ment descriptor provides the base address of the segment and its limit, as well as access
control information (see Figure 5-1).

SEGMENT SEGMENT . PHYSICAL

REGISTERS DESCRIPTORS MEMORY
: 4G
cs EPROM
ss

ACCESS| LIMIT
BASE ADDRESS

W/

Ds

DRAM

240486i38

Figure 5-1. Flat Model
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ROM usually is put at the top of the physical address space, because the processor
begins execution at OFFFFFFFOH. RAM is placed at the bottom of the address space
because the initial base address for the DS data segment after reset initialization is 0.

For a flat model, each descriptor has a base address of 0 and a segment limit of 4
gigabytes. By setting the segment limit to 4 gigabytes, the segmentation mechanismis
kept from generating exceptions for memory references which fall outside of a segment.
Exceptions could still be generated by the paging or segmentation protectlon mecha-
nisms, but these also can be removed from the memory model. :

5.1.2 Protected Flat Model

The protected flat model is like the flat model, except the segment limits are set to
include only the range of addresses for which memory actually exists. A general-
protection exception will be generated on any attempt to access unimplemented mem-
ory. This might be used for systems in which the paging mechanism is disabled, because
it provides a minimum level of hardware protection against some kinds of program bugs.

In this model, the segmentation hardware prevents programs from addressing non-
existent memory locations. The consequences of being allowed access to these memory
locations are hardware-dependent. For example, if the processor. does not receive a
READY# signal (the signal used to acknow]edge and terminate a bus cycle) the bus
cycle does not terminate and program execution stops.

Although no program should make an attempt to access these memory locations, an
attempt may occur as a result of program bugs. Without hardware checking of addresses,
it is possible that a bug could suddenly stop program execution. With hardware checking,
programs fail in a controlled way. A diagnostic message can appear and recovery proce-
dures can be attempted.

An example of a protected flat- model is shown in-Figure 5-2. Here, segment descriptors
have been set up to cover only those ranges of memory which exist. A code and a data
segment cover the EPROM and DRAM of physical memory. The code segment limit can
be optionally set to allow access to DRAM area. The data segment limit must be set to
the sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be ad-
dressed just beyond the end of DRAM area.

5.1.3 Multi-Segment Model

The most sophisticated model is the multi-segment model. Here, the full capabilities of
‘the segmentation mechanism are used. Each program is given its own table of segment
descriptors, and its own segments. The segments can be completely private to the pro-
-gram, or they can be shared with specific other programs. Access between programs and
particular segments can be individually controlled.
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SEGMENT SEGMENT PHYSICAL LOGICAL
REGISTERS DESCRIPTORS MEMORY OFFSETS
ACCESS | LIMIT 4G 4G
cs BASE ADDRESS EPROM
M O
Es MEMORY I/
MEMORY 1/0
DRAM
ss
DRAM
DS ACCESS| LIMIT EPROM
BASE ADDRESS ‘ 0 0
240486i39

Figure 5-2. Protected Flat Model

Up to six segments can be ready for immediate use. These are the segments which have
segment selectors loaded in the segment registers. Other segments are accessed by load-
ing their segment selectors into the segment registers (see Figure 5-3).

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents
of one segment by reading beyond the end of another. Every memory operation is
checked against the limit specified for the segment it uses. An attempt to address mem-
ory beyond the end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified in the segment
descriptor. It is the responsibility of the operating system to allocate separate address
ranges to each segment. There may be situations in which it is desirable to have seg-
ments which share the same range of addresses. For example, a system may have both
code and data stored in a ROM. A code segment descriptor would be used when the
ROM is accessed for instruction fetches. A data segment descriptor would be used when
the ROM is accessed as data.

5.2 SEGMENT TRANSLATION

A logical address consists of the 16-bit segment selector for its segment and a 32-bit
offset into the segment. A logical address is translated into a linear address by adding
the offset to the base address of the segment. The base address comes from the segment
descriptor, a data structure in memory which provides the size and location of a segment,
as well as access control information. The segment descriptor comes from one of two
tables, the global descriptor table (GDT) or the local descriptor table (LDT). There is

5-5



intel” MEMORY MANAGEMENT
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Figure 5-3. Multi-Segment Model

one GDT for all programs in the system, and one LDT for each separate program being
run. If the operating system allows, different programs can share the same LDT. The
system also may be set up with no LDTs; all programs will then use the GDT.

Every logical address is associated with a segment (even if the system maps all segments
into the same linear address space). Although a program may have thousands of seg-
" ments, only six may be available for immediate use. These are the six segments whose
segment selectors are loaded in the processor. The segment selector holds information
used to translate the logical address into the corresponding linear address.

Separate segment registers exist in the processor for each kind of memory reference (code
space, stack space, and data spaces). They hold the segment selectors for the segments
currently in use. Access to other segments requires loading a segment register using a
form of the MOV instruction. Up to four data spaces may be available at the same time,
thus providing a total of six segment registers.
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When a segment selector is loaded, the base address, segment limit, and access control
-information also are loaded into the segment register. The processor does not reference
the descriptor tables again until another segment selector is loaded. The information
saved in the processor allows it to translate addresses without making extra bus cycles. In
systems in which multiple processors have access to the same descriptor tables, it is the
responsibility of software to reload the segment registers when the descriptor tables are
modified. If this is not done, an old segment descriptor cached in a segment register
might be used after its memory-resident version has been modified.

The segment selector contains a 13-bit index into one of the descriptor tables. The index
is scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit
base address of the descriptor table. The base address comes from either the global
descriptor table register (GDTR) or the local descriptor table register (LDTR). These
registers hold the linear address of the beginning of the descriptor tables. A bit in the
segment selector specifies which table to use, as shown in Figure 5-4.

The translated address is the linear address, as shown in Figure 5-5. If paging is not
used, it is also the physical address. If paging is used, a second level of address transla-
tion produces the physical address. This translation is described in Section 5.3.

5.2.1 Segment Registers

Each kind of memory reference is associated with a segment register. Code, data, and
stack references each access the segments specified by the contents of their segment
registers. More segments can be made available by loading their segment selectors into
these registers during program execution.

Every segment register has a “visible” part and an “invisible” part, as shown in
Figure 5-6. There are forms of the MOV instruction to load the visible part of these
segment registers. The invisible part is loaded by the processor. »

The operations which load these registers are instructions for application programs (de-
scribed in Chapter 3). There are two kinds of these instructions:

1. Direct load instructions such as the MOV, POP, LDS, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL and JMP
instructions. These instructions change the contents of the CS register as an inciden-
tal part of their function.

When these instructions are used, the visible part of the segment register is loaded with
a segment selector. The processor automatically fetches the base address, limit, type, and
other information from the descriptor table and loads the invisible part of the segment
register. .

Because most instructions refer to segments whose selectors already have been loaded

into segment registers, the processor can add the logical- address offset to the segment
base address with no performance penalty.
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Figure 5-4. TI Bit Selects Descriptor Table

5.2.2 Segment Selectors

A segment selector points to the information which defines a segment, called a segment
descriptor. ‘A ‘program may have more segments than the six whose segment selectors
occupy segment registers. When this is true, the program uses forms of the MOV in-
struction to change the contents of these registers when it needs to access a new

segment.

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a
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" Figure 5-5. Segment Translation
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Figure 5-6. Segment Registers

part of a pointer variable, but the values of selectors are usually assigned or modified by
link editors or linking loaders, not application programs. Figure 5-7 shows the format of
a segment selector.

Index: Selects one of 8192 descriptors in a descriptor.table. The processor multiplies the
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the
base address of the descriptor table (from the GDTR or LDTR register).

Table Indicator bit: Specifies the descriptor table to use. A clear b1t selects the GDT; a
set bit selects the current LDT.

Requester Privilege Level: When this field contains a privilege level having a greater
value (i.e., less privileged) than the program, it overrides the program’s privilege level.
When a program uses a less privileged segment selector, memory accesses take place at
the lesser privilege level. This is used to guard against a security violation in which a less
privileged program uses a more privileged program to access protected data.
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Figure 5-7. Segment Selector

For example, system utilities or device drivers must run with a high level of privilege in
order to access protected facilities such as the control registers of peripheral interfaces.
But they must not interfere with other protected facilities, even if a request to do so is
received from a less privileged program. If a program requested reading a sector of disk
into memory occupied by a more privileged program, such as the operating system, the
RPL can be used to generate a general-protection exception when the less privileged
segment selector is used. This exception occurs even though the program using the seg-
ment selector would have a sufficient privilege level to perform the operation on its own.

Because the first entry of the GDT is not used by the processor, a selector which has an
index of 0 and a table indicator of 0 (i.e., a selector which points to the first entry of the
GDT) is used as a “null selector.” The processor does not generate an exception when a
segment register (other than the CS or-SS registers) is loaded with a null selector. It
does, however, generate an exception when a segment register holding a null selector is
used to access memory. This feature can be used to initialize unused segment registers.

5.2.3 Ségment Descriptors

A segment descriptor is a data structure in memory which provides the processor with
the size and location of a-segment; as well as control and status information. Descriptors
typically are created by compilers, linkers, loaders, or the operating system, but not
application programs. Figure 5-8 illustrates the two general descriptor formats. The sys-
tem segment descriptor is described more fully in Chapter 6. All types of segment de-
scriptors take one of these formats.

i

Base: Defines the location of the segment within the 4 gigabyte physical address space.
The processor puts together the three base address fields to form a single 32-bit value.
Segment base values should be aligned to 16 byte boundaries to allow programs to
maximize performance by aligning code/data on 16 byte boundaries.

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (2'%). When the
bit is clear, the segment limit is interpreted in units of one byte; when set, the segment
limit is interpreted in units of 4K bytes (one page). Note that the twelve least significant
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DESCRIPTORS USED FOR APPLICATION CODE AND DATA SEGMENTS:

2222211111111 11
31 4321098765432100987 0
A D
BASE 31:24 G|D|O|V P| P |S| TYPE BASE 23:16
L L
BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

DESCRIPTORS USED FOR SPECIAL SYSTEM SEGMENTS:

' 222221111111111
k1) 43210987654321009287 0
A D
BASE 31:24 G|bjo|v P E S| TYPE BASE 23:16
L
BASE ADDRESS 15:00 SEGMENT LIMIT 15:00
AVL AVAILABLE FOR USE
BY SYSTEM SOFTWARE
BASE SEGMENT BASE ADDRESS
DESCRIPTOR PRIVILEGE LEVEL
s DESCRIPTOR TYPE
(0 = SYSTEM; 1 = APPLICATION)
G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT
TYPE SEGMENT TYPE
D DEFAULT OPERATION SIZE

(RECOGNIZED IN CODE SEGMENT DESCRIPTORS
ONLY;0 = 16-BIT SEGMENT; 1 = 32-BIT SEGMENT)
240486i45

Figure 5-8. Segment Descriptors

bits of the address are not tested when scaling is used. For example, a limit of 0 with the
Granularity bit set results in valid offsets from 0 to 4095. Also note that only the Limit
field is affected. The base address remains byte granular.

Limit: Defines the size of the segment. The processor puts together the two limit fields
to form a 20-bit value. The processor interprets the limit in one of two ways, dependmg
on the setting of the Granularity bit:

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in
increments of 1 byte.

2. If the Granularity bit is set, the Limit has a value from 4 kllobytes to 4 glgabytes in
increments of 4K bytes.
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For most segments, a logical address may have an offset ranging from 0 to the limit.
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit
field; they may be addressed with any offset except those from 0 to the limit (see the
Type field, below). This is done to allow segments to be created in which increasing the
value held in the Limit field allocates new memory at the bottom of the segment’s
address space, rather than at the top. Expand-down segments are intended to hold
stacks, but it is not necessary to use them. If a stack is going to be put in a segment which
does not need to change size, it can be a normal data segment.

'

S bit: Determines whether a given segment is a system segment or a code or data seg-
ment. If the S bit is set, then the segment is either a code or a data segment. If it is clear,
then the segment is a system segment.

D bit: Indicates the default length for operands and effective addresses. If the D bit is
set, then 32-bit operands and 32-bit effective addressing modes are assumed If it is
clear, then 16-bit operands and addressing modes are assumed

Type: The interpretation of this field depends on whether the segment descriptor is for
an application segment or a system segment. System segments have a slightly different
descriptor format, discussed in Chapter 6. The Type field of a memory descriptor spec-:
ifies the kind of access which may be made to a segment, and its direction of growth (see
Table 5-1). :

Table 5-1. Application Segment Types

Number E w A Descriptor Description
Type :
0 0 0 0 Data Read-Only
1 0 0 1 Data Read-Only, accessed

2 0 1 0 Data Read/Write

3 0 1. 1. . Data Read/Write, accessed

4 1 0 0 Data . Read-Only, expand-down

5 1 0 1 Data Read-Only, expand-down, accessed

6 1 1 0 Data Read/Write, expand-down )

7 1 1 1 Data Read/Write, expand-down, accessed
Number | ¢ | R | a 7| Descriptor Description

Type

8 0o |. o 0 Code Execute-Only

9 0 0 1 Code Execute-Only, accessed

10 0 1 0 Code Execute/Read

11 0] 1 1 Code Execute/Read, accessed

12 1 0 0 Code Execute-Only, conforming

13 1 0 1 Code Execute-Only, conforming, accessed -

14 1 1 0 Code . Execute/Read-Only, conforming

15 1 1 1 Code Execute/Read-Only, conforming, accessed
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For data segments, the three lowest bits of the type field can be interpreted as expand-
down (E), write enable (W), and accessed (A). For code segments, the three lowest bits
of the type field can be interpreted as conformmg (C), read enable (R) and
accessed A).

Data segments can be read-only or read/write. Stack segments are data segments which
must be read/write. Loading the SS register with a segment selector for any other type of
segment generates a general-protection exception. If the stack segment needs to be able
to change size, it can be an expand-down data segment. The meaning of the segment
limit is reversed for an expand-down segment. While an offset in the range from 0 to the
segment limit is valid for other kinds of segments (outside this range a general-
protection exception is generated), in an expand-down segment these offsets are the
ones which generate exceptions. The valid offsets in an expand-down segment are those
which generate exceptions in the other kinds of segments. Expand-up segments must be
addressed by offsets which are equal or less than the segment limit. Offsets into expand-
down segments always must be greater than the segment limit. This interpretation of the
segment limit causes memory space to be allocated at the bottom of the segment when
the segment limit is increased, which is correct for stack segments because they grow
toward lower addresses. If the stack is given a segment which does not change size, it
does not need to be an expand-down segment.

Code segments can be execute-only or execute/read. An execute/read segment might be
used, for example, when constants have been placed with instruction code in a ROM. In
this case, the constants can be read either by using an instruction with a CS override
prefix or by placing a segment selector for the code segment in a segment register for a
data segment.

Code segments can be either conforming or non-conforming. A transfer of execution
into a more privileged conforming segment keeps the current privilege level. A transfer
into a non-conforming segment at a different privilege level results in a general-
protection exception, unless a task gate is used (see Chapter 6 for a discussion of multi-
tasking). System utilities which do not access protected facilities, such as data-conversion
functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decoding, math library)
and some types of exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND
range exceeded) may be loaded in conforming code segments.

The Type field also reports whether the segment has been accessed. Segment descriptors
initially report a segment as having been accessed. If the Type field then is set to a value
for a segment which has not been accessed, the processor restores the value if the seg-
ment is accessed. By clearing and testing the low bit of the Type field, software can
monitor segment usage (the low bit of the Type field also is called the Accessed bit).

For example, a program development system might clear all of the Accessed bits for the
segments of an application. If the application crashes, the states of these bits can be used
to generate a map of all the segments accessed by the application. Unlike the break-
points provided by the debugging mechanism (Chapter 11), the usage information ap-
plies to segments rather than physical addresses.
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The processor may update the Type field when a segment is accessed, even if the access
is a read cycle. If the descriptor tables have been put in ROM, it may be necessary for
hardware to prevent the ROM from being enabled onto the data bus during a write
cycle. It also may be necessary to return the READY# signal to the processor when a
write cycle to ROM occurs, otherwise the cycle does not terminate. These features of the
hardware design are necessary for using ROM-based descriptor tables with the 386™
DX processor, which always sets the Accessed bit when a segment descriptor is loaded.
The 1486 processor, however, only sets the Accessed bit if it is not already set. Writes to
descriptor tables in ROM can be avoided by setting the Accessed bits in every
descriptor.

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used
to control access to the segment, using the protection mechanism described in Chapter 6.

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present
exception when a selector for the descriptor is loaded into a segment register. This is
used to detect access to segments which have become unavailable. A segment can be-
:come unavailable when the system needs to create free memory. Items in memory, such
as character fonts or device drivers, which currently are not being used are de-allocated.
An item is de-allocated by marking the segment “not present” (this is done: by clearing
the Segment-Present bit). The memory occupied by the segment then can be put to
another use. The next time the de-allocated item is needed, the segment-not-present
exception will indicate the segment needs to be loaded into memory. When this kind of
memory management is provided in a manner invisible to application programs, it is
called virtual memory. A system may maintain a total amount of virtual memory far larger
than physical memory by keeping only a few segments present in physical memory at any
one time.

Figure 5-9 shows the format of a descriptor when the Segment-Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to
store its own data, such as information regardmg the whereabouts of the missing
segment ‘

1111111
31 65432109087 0
_ ‘ o |,
AVAILABLE , o| P [7| TYPE AVAILABLE | +4
L
AVAILABLE +0

240486146

Figure 5-9. Segment Descriptor (Segment Not Present)
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5.2.4 Segment Descriptor Tables .

A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables: ‘ '

¢ The global descriptor table (GDT)

¢ The local descriptor tables (LDT)

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable
in length and may contain up to 8192 (2') descriptors. The first descriptor in the GDT
is not used by the processor. A segment selector to this “null descriptor” does not

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE
. b+ 38 ’ . + 38
+ 30 +.30
: +28 + 28
+ 20 + 20
+ 18 + 18
+ 10 + 10
+8 +8
FIRST DESCRIPTOR IN GDT I
IS NOT USED +0 +0
GDTR REGISTER LDTR REGISTER
' : SELECTOR
I LIMIT LIMIT
I BASE ADDRESS r

NOTE: ADDRESSES SHOWN IN HEXADECIMAL

240486i47

Figure 5-10. Descriptor Tables
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generate an exception when loaded into a segment register, but it always generates an
exception when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment
registers can be guaranteed to generate an exception.

5.2.5 Descriptor Table Base Registers

The processor finds the global descriptor table (GDT) and interrupt descriptor table
(IDT) usmg the GDTR and IDTR registers. These registers hold 32-bit base addresses
for tables-in the linear address space.. They also hold 16-bit limit values for the size of
these tables. When the registers are loaded or stored, a 48-bit.“pseudo- -descriptor” i
accessed in memory, as shown in Figure 5-11. The GDT and IDT should be allgned ona
16 byte boundary to maximize performance due to cache line fills.

The limit value is expressed in bytes. As with segments, the limit value is added to the
base address to get the address of the last valid byte. A limit value of 0 results in exactly
one valid byte. Because segment descriptors are always eight bytes, the limit should
always be one less than an integral multiple of eight (i.e., 8N — 1). The LGDT and
‘SGDT instructions read and write the GDTR register; the LIDT and SIDT instructions
read and write the IDTR register. '

A third descriptor table is the local descriptor table (LDT). It is identified using a 16-bit
segment selector held in the LDTR register. The LLDT and SLDT instructions read and
write the segment selector in the LDTR register. The LDTR register also holds the base
address and limit for the LDT, but these are loaded automatically by the processor from
the segment descriptor for the LDT. The LDT should be aligned on a 16 byte boundary
to maximize performance due to cache line fills.

Alignment check faults may be generated by storing a pseudo-descriptor in user mode
(privilege level 3). User-mode programs normally do not store pseudo-descriptors, but
the possibility of generating an alignment check fault in this way can be avoided by
placing the pseudo-descriptor at an odd word address (i.e., an address which is 2 MOD
4). This causes the processor to store an aligned word followed by an aligned
doubleword.

a7 16 15 0
| BASE ADDRESS T B
5 2 1 — 0.

BYTE ORDER IS SHOWN BELOW

240486i48

Figure 5-11. Pseudo-Descriptor Format
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5.3 Page Translation

A linear address is a 32-bit address into a uniform, unsegmented- address space. This
address space may be a large physical address space (i.e., an address space composed of
4 gigabytes of RAM), or paging can be used to simulate thlS address space usmg a small
amount of RAM and some disk storage. When paging is used, a linear address is trans-
lated into its corresponding physical address, or an exception is generated. The excep-
tion gives the operating system a chance to read the page from disk (perhaps sending a
different page out to disk in the process), then restart the instruction which generated
the exceptlon

Paging is different from segmentation through its use of small, fixed-size pages. Unlike
segments, which usually are the same size as the data structures they hold, on the i486
processor, pages are always 4K bytes. If segmentation is the only form of address trans-
lation which is-used, a data structure which is present in physical memory will have all of
its parts in'memory. If paging is used, a data structure may be partly in memory and
partly in disk storage.

The information which maps linear addresses into physical addresses and exceptions is
held in data structures in memory called page tables. As with segmentation, this informa-
tion is cached in processor registers to minimize the number of bus cycles required for
address translation. Unlike segmentation, these processor registers are completely invis-
ible to application programs. (For testing purposes, these registers are visible to pro-
grams running with. maximum privileges; see Chapter 10 for details.)

The paging mechanism treats the 32-bit linear address as having three parts, two 10-bit
indexes into the page tables and a 12-bit offset into the page addressed by the page
tables. Because both the virtual pages in the linear address space and the physical pages
of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12
bits of the address. These 12 bits pass straight through the paging hardware, whether
paging is enabled or not. Note that this is different from segmentation, because segments
can start at any byte address.

The upper 20 bits of the address are used to index into the page tables. If every page in
the linear address space were mapped by a single page table in RAM, 4 megabytes
would be needed. This is not done. Instead, two levels of page tables are used. The top
level page table is called the page directory. It maps the upper 10 bits of the linear
address to the second level of page tables. The second level of page tables maps the
middle 10 bits of the linear address to the base address of a page in physical memory
(called a page frame address). ‘

An exception may be generated based on the contents of the page table or the page
directory. An exception gives the operating system a chance to bring in a page table from
disk storage. By allowing the second-level page tables to be sent to disk, the paging
mechanism can support mapping of the entire linear address space using only a few
pages in memory. :
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The CR3 register holds the page frame address of the page directory. For this reason, it
also is called the page directory base register or PDBR. The upper 10 bits of the linear
address are scaled by four (the number of bytes in a page table entry) and added to the
value in the PDBR register to get the physical address of an entry in the page directory.
Because the page frame address is always clear in its lowest 12 bits, this addition is
performed by concatenation (replacement of the low 12 bits with the scaled index).

When the entry in the page directory is accessed, a number of checks are performed.
Exceptions may be generated if the page is protected or is not present in memory. If no
exception is generated, the upper 20 bits of the page table entry are used as the page
frame address of a second-level page table. The middle 10 bits of the linear address are
scaled by four (again, the size of a page table entry) and concatenated with the page
frame address to get the physical address of an entry in the second-level page table.

Again, access checks are performed, and exceptions may be generated. If no exception
occurs, the upper 20 bits of the second-level page table entry are concatenated with the
lowest 12 bits of the linear address to form the physical address of the operand (data) in
memory.

Although this process may seem complex, it all takes place with very little overhead. The
processor has a cache for page table entries called the translation lookaside buffer
(TLB). The TLB satisfies most requests for reading the page tables. Extra bus cycles
occur only when a new page is accessed. The page size (4K bytes) is large enough so that
very few bus cycles are made to the page tables, compared to the number of bus cycles
made to instructions and data. At the same time, the page size is small enough to make
efficient use of memory. (No matter how small a data structure is, it occupies at least
one page of memory.)

5.3.1 PG Bit Enables Paging

If paging is enabled, a second stage of address translation is used to generate the phys-
ical address from the linear address. If paging is not enabled, the linear address is used
as the physical address. ' S

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is
set by the operating system during software initialization. The PG bit must be set if the
‘operating system is running more than one program in virtual-8086 mode or if demand-
paged virtual memory is used. :
5.3.2 Linear Address

Figure 5-12 shows the format of a linear address. |
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31 22 21 12 1 0

DIRECTORY TABLE OFFSET

240486i49

Figure 5-12. Format of a Linear Address

PAGE FRAME
| oirectory| TaBLE | oOFFsET |

»| OPERAND
PAGE DIRECTORY PAGE TABLE

PG DIR ENTRY

PG TBL ENTRY

Figure 5-13. Page Translation

240486150

Figure 5-13 shows how the processor translates the DIRECTORY, TABLE, and OFF-
SET fields of a linear address into the physical address using two levels of page tables.
The paging mechanism uses the DIRECTORY field as an index into a page directory,
the TABLE field as an index into the page table determined by the page directory, and
the OFFSET field to address an operand within the page specified by the page table.

| 5.3.3 Page Tables

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096
bytes of memory or, at most, 1K 32-bit entries. All pages, including page directories and
page tables, are aligned to 4K-byte boundaries.

Two levels of tables are used to address a page of memory. The top level is called the
page directory. It addresses up to 1K page tables in the second level. A page table in the

. second level addresses up to 1K pages in physical memory. All the tables addressed by
one page directory, therefore, can address 1M or 2%° pages. Because each page contains
4K or 2'2 bytes, the tab]es of one page directory can span the entire linear address space
of the i486 processor (2% x 212 = 232), , .
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The physical address of the current page directory is stored in the CR3 register, also
called the page directory base register (PDBR). Memory management software has the
option of using one page directory for all tasks, one page directory for each task, or some
combination of the two. See Chapter 10 for information on initialization of the CR3
register. See Chapter 7 for how the contents of the CR3 reglster can change for each
task.

5.3.4 Page-Table Entries

Entries in either level of page tables have the same format. Figure 5-14 illustrates this
format.

5.3.4.1 PAGE FRAME ADDRESS

The page frame address is the base address of a page. In a page table entry, the upper
20 bits are used to specify a page frame address, and the lowest 12 bits specify control
and status bits for the page. In a page directory, the page frame address is the address of
a page table. In a second-level page table, the page frame address is the address of a
page containing instructions or data.

5.3.4.2 PRESENT BIT

The Present bit indicates whether the page frame address in a page table entry maps to
a page in physical memory. When set, the page is in memory.

When the Present bit is clear, the page is not in memory, and the rest of the page table
entry is available for the operatmg system, for example, to store information regarding
the whereabouts of the mlssmg page. Figure 5- 15 1llustrates the format of a page table
entry when the Present bit is clear.

31 12 11 0
PP
PAGE FRAME ADDRESS 31..12 avaiL|o o|o|alcwi/ I [P
p|T|slw
P — PRESENT
. RIW — READ/WRITE
uis — USERISUPERVISOR
PWT — PAGE WRITE TRANSPARENT
PCD — PAGE CACHE DISABLE
A — ACCESSED
D — DIRTY
AVAIL, . — AVAILABLE FOR SYSTEMS

PROGRAMMER USE
. NOTE: 0 INDICATES INTEL RESERVED. DO NOT DEFINE.

240486i51

Figure 5-14. Format of a Page Table Entry
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31 10

AVAILABLE 0

240486i52

Figure 5-15. Format of a Page Table Entry for a Not-Present Page

If the Present bit is clear in either level of page tables when an attempt is made to use a
page table entry for address translation, a page-fault exception is generated. In systems
which support demand-paged virtual memory, the following sequence of events then
occurs:

1. The operating system copies the page from disk storage into physical memory.

2. The operating system loads the page frame address into the page table entry and
sets its Present bit. Other bits, such as the R/W bit, may be set, too.

3. Because a copy of the old page table entry may still exist in the translation lookaside
buffer (TLB), the operating system empties it. See Section 5.3.5 for a discussion of
the TLB and how to empty it.

4. The program which caused the exception is then restarted.

Since there is no Present bit in CR3 to indicate when the page directory is not resident
in memory, the page directory pointed to by CR3 should always be present in physical
memory.

5.3.4.3 ACCESSED AND DIRTY BITS

These bits provide data about page usage in both levels of page tables. The Accessed bit
is used to report read or write access to a page or second-level page table. The Dirty bit
is used to report write access to a page.

With the exception of the Dirty bit in a page directory entry, these bits are set by the
hardware; however, the processor does not clear either of these bits. The processor sets
the Accessed bits in both levels of page tables before a read or write operation to a page.
The processor sets the Dirty bit in the second-level page table before a write operation
to an address mapped by that page table entry. The Dirty bit in directory entries is
undefined.

The operating system may use the Accessed bit when it needs to create some free mem-
ory by sending a page or second-level page table to disk storage. By periodically clearing
the Accessed bits in the page tables, it can see which pages have been used recently.
Pages which have not been used are candidates for sending out to disk.
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The operating system may use the Dirty bit when a page is sent back to disk. By clearing
the Dirty bit when the page is brought into memory, the operating system can see if it
has received any write access. If there is a copy of the page on disk and the copy in
memory has not received any writes, there is no need to update disk from memory.

‘See Chapter 13 for how the 1486 processor updates the Accessed and Dlrty b1ts in
multiprocessor systems.

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS

‘The Read/Write and User/Supervisor bits are used for protection checks applied to
pages, which the processor performs at the same time as address translation. See Chap-
ter 6 for more information on protection.

5.3.4.5 PAGE-LEVEL CACHE CONTROL BITS

The PCD and PWT bits are used for page-level cache management. ' Software can control
the caching of individual pages or second-level page tables usmg these bits. See
Chapter 12 for more information on caching.

5.3.5 Translation Lookaside Buffer

The processor stores the most recently used page table entries in an on-chip cache called
"the translation lookaside buffer or TLB. Most paging is performed using the contents of
the TLB. Bus cycles to the page tables are performed only when a new page is used.

The TLB is invisible to application programs, but not to operating systems. Operating-
system programmers must flush the TLB (dispose of its page table entries) when entries
in the page tables are changed. If this is not done, old data which has not received the
changes might get used for address translation. A change to an entry for a page which is
not present in.memory does not require ﬂushmg the TLB, because entries for not-
present pages are not cached.

The TLB is flushed when the CR3 register is loaded. The CR3 reglster can be loaded in
either of two ways: o

"1." Explicit loading using MOV instructions, such as:
v CR3, EAX '

2. Implicit loading by a task switch which changes the contents of the CR3 register.
(See Chapter 7 for more information on task switching.)

 An individual entry in the TLB can be flushed using an INVLPG instruction. This is
useful when the mapping of an individual page is changed.
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5.4 COMBINING SEGMENT AND PAGE TRANSLATION

Figure 5-16 combines Figure 5-5 and Figure 5-13 to summarize both stages of translation
from a logical address to a physical address when paging is enabled. Options available in
both stages of address translation can be used to support several different styles of
memory management.

5.4.1 Flat Model

When the i486 processor is used to run software written without segments, it may be
desirable to remove the segmentation features of the 1486 processor. The i486 processor
does not have a mode bit for disabling segmentation, but the same effect can be achieved
by mapping the stack, code, and data spaces to the same range of linear addresses. The
32-bit offsets used by i486 processor instructions can cover the entire linear address
space.

When paging is used, the segments can be mapped to the entire linear address space. If
more than one program is being run at the same time, the paging mechanism can be
used to give each program a separate address space.

16 0 32 0
LOGICAL
ADDRESS | SELECTOR | OFFSET |

DESCIPTOR TABLE

SEGMENT

DESCRIPTOR]
PAGE FRAME
LINEAR
ADbRESs |DIRECTORY| TABLE | OFFseT |
»| oPERAND
PAGE DIRECTORY PAGE TABLE

PG TBL ENTRY

PG DIR ENTRY —‘

Figure 5-16. Combined Segment and Page Address Translation

240486153
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5.4.2 Segments Spanning Several Pages

The architecture allows segments which are larger the size of a page (4K bytes). For
example, a large data structure may span thousands of pages. If paging were not used,
access to any part of the data structure would require the entire data structure to be
present in physical memory. With paging, only the page containing the part being ac-
cessed needs to be in memory.

5.4.3 Pages Spanning Several Segments

Segments also may be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a 1-byte semaphore, occupies 4K bytes if it is
placed in a page by itself. If many semaphores are used, it is more efficient to pack them
into a single page.

5.4.4 Non-Aligned Page and Segment Boundaries

The architecture does not enforce any correspondence between the boundaries of pages
and segments. A page may contain the end of one segment and the beginning of another.
Likewise, a segment may contain the end of one page and the beginning of another.

5.4.5 Aligned Page and Segment Boundaries

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which may
fit in one page is placed in two pages, there may be twice as much paging overhead to
support access to that segment.

5.4.6 Page-Table Per Segment

An approach to combining paging and segmentation which simplifies memory-
management software is to give each segment its own page table, as shown in
Figure 5-17. This gives the segment a single entry in the page directory which provides
the access control information for paging the segment.
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240486i54

Figure 5-17. Each Segment Can Have Its Own Page Table
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CHAPTER 6
PROTECTION

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks
from interfering with each other. For example, protection can keep one task from over-
writing the instructions or data of another task. '

During program development, the protection mechanism can give a clearer picture of
program bugs. When a program makes an unexpected reference to the wrong memory
space, the protection mechanism can block the event and report its occurrence.

In end-user systems, the protection mechanism can guard against the possibility of soft-
ware failures caused by undetected program bugs. If a program fails, its effects can be
confined to a limited domain. The operating system can be protected against damage, so
diagnostic information can be recorded and automatic recovery may be attempted.

Protection may be applied to segments and pages. Two bits in a processor register define
the privilege level of the program currently running (called the current privilege level or
CPL). The CPL is checked during address translation for segmentation and paging.

Although there is no control register or mode bit for turning off the protection mecha-
nism, the same effect can be achieved by assigning privilege level 0 (the highest level of
privilege) to all segment selectors, segment descriptors, and page table entries.

6.1 SEGMENT-LEVEL PROTECTION

Protection provides the ability to limit the amount of interference a malfunctioning pro-
gram can inflict on other programs and their data. Protection is a valuable aid in soft-
ware development because it allows software tools (operating system, debugger, etc.) to
survive in memory undamaged. When an application program fails, the software is avail-
able to report diagnostic messages, and the debugger is available for post-mortem anal-
ysis of memory and registers. In production, protection can make software more reliable
by giving the system an opportunity to initiate recovery procedures.

Each memory reference is checked to verify that it satisfies the protection checks. All
checks are made before the memory cycle is started; any violation prevents the cycle
from starting and results in an exception. Because checks are performed in parallel with
address translation, there is no performance penalty. There are five protection checks:
Type check

Limit check

Restriction of addressable domain

Restriction of procedure entry points

wook wh =

Restriction of instruction set
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A protection violation results in an exception. See Chapter 9 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

6.2 SEGMENT DESCRIPTORS AND PROTECTION

Figure 6-1 shows the fields of a segment descriptor which are used by the protection
mechanism. Individual bits in the Type field also are referred to by the names of their
functions..

Protection parameters are placed in the descriptor when it is created. In general, appli-
cation programmers do not need to be concerned about protection parameters.

DATA SEGMENT DESCRIPTOR

, 4 21111111111
31 09876543210987 0
‘ . o -
BASE 31:24 umit P [1|o|elw]a] . BAsE23:16 . |+4
19:16 L
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 40

CODE SEGMENT DESCRIPTOR

~ 21111111111 :

81 09876543210987 0
o o
BASE 31:24 Limir p [1]1]c|r|a] BasE23:16 |ia -
19:16 L
SEGMENT BASE 15:00 ~ SEGMENT LIMIT 15:00 +0

A ACCESSED
c CONFORMING
DPL  DESCRIPTOR PRIVILEGE LEVEL
E EXPAND-DOWN
R READABLE
LIMIT  SEGMENT WRITE
w WRITABLE

240486i55

Figure 6-1. Descriptor Fields Used for Protection (Part 1 of 2)
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SYSTEM SEGMENT DESCRIPTOR
21111111111
a1 09876543210887 0
LIMIT D
BASE 31:24 ' p lo| TYPE BASE 23:16 +4
19:16 ;
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0
DPL DESCRIPTOR PRIVILEGE LEVEL
LIMIT SEGMENT LIMIT
240486i55

Figure 6-1. Descriptor Fields Used for Protection (Part 2 of 2)

When a program loads a segment selector into a segment register, the processor loads
both the base address of the segment and the protection information. The invisible part
of each segment register has storage for the base, limit, type, and privilege level. While
this information is resident in the segment register, subsequent protection checks on the
same segment can be performed with no performance penalty.

6.2.1 Type Checking

In addition to the descriptors for application code and data segments, the i486™ proces-
sor has descriptors for system segments and gates. These are data structures used for
managing tasks (Chapter 7) and exceptions and interrupts (Chapter 9). Table 6-1 lists all
the types defined for system segments and gates. Note that not all descriptors define
segments; gate descriptors hold pointers to procedure entry points.

The Type fields of code and data segment descriptors include bits which further define
the purpose of the segment (see Figure 6-1):

o The Writable bit in a data-segment descriptor controls whether programs can write to
the segment.

e The Readable bit in an executable-segment descriptor specifies whether programs
can read from the segment (e.g., to access constants stored in the code space) A
readable, executable segment may be read in two ways:

1. With the CS register, by using a CS override prefix.

2. By loading a selector for the descriptor into a data-segment register (the DS, ES,
FS, or GS registers).
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Table 6-1. System Segment and Gate Types

Type Description
] reserved
1 Available 80286 TSS
2 LDT
3 Busy 80286 TSS
4 Call Gate .
5 Task Gate
6 - - 80286 Interrupt Gate
7 80286 Trap Gate
8 reserved
9 . Available i486™ CPU TSS
10 reserved
1 Busy i486 CPU TSS
12 486 CPU Call Gate
13 reserved
14 i486 CPU Interrupt Gate
15 i486 CPU Task Gate

Type checking can be used to detect programming errors which would attempt to use
segments in ways not intended by the programmer. The processor examines type infor-
mation on two kinds of occasions:

1. When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

o The CS register only can be loaded with a selector for an executable segment.

o Selectors of executable segments which are not readable cannot be loaded into
data-segment registers.

o Only selectors of writable data segments can be loaded into the SS register.

2. Certain segments can be used by instructions only in certain predefined ways; for
" . example:

o No instruction may write into an executable segment.
e No instruction may write into a data segment if the writable bit is not set.
« No instruction may read an executable segment unless the readable bit is set.

6.2.2 Limit Checking

V-

The Limit field of a segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity
bit). For data segments, the limit also depends on the E bit (Expansion Direction bit).
The E bit is a designation for one bit of the Type field, when referring to data segment
descriptors. :

64



intel” PROTECTION

When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor.
In this case, the limit ranges from 0 to OFFFFFH (2% — 1 or 1 megabyte). When the
G bit is set, the processor scales the value in the Limit field by a factor of 2!2, In this case
the limit ranges from OFFFH (2'2 — 1 or 4K bytes) to OFFFFFFFFH (2:"2 - lor
4 gigabytes). Note that when scaling is used, the lower twelve bits of the address are not
checked against the limit; when the G bit is set and the segment limit is 0, valid offsets
within the segment are 0 through 4095.

For all types of segments except expand-down data segments (stack segments), the value
of the limit is one less than the size, in bytes, of the segment The processor causes a
general-protection exception in any of these cases: : :

o Attempt to access a memory byte at an address > limit
. Attefnpt to access a memory word at an address > (limit — 1)

e Attempt to access a memory doubleword at an address > (limit — 3)

For expand-down data segments, the limit has the same function but is mterpreted
differently. In these cases the range of valid offsets is from (limit + 1) to 232 —~1. An
expand- -down segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway subscripts and invalid
pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking; these errors could overwrite critical memory in
another module, and the existence of these errors would not be discovered until the
damaged module crashed, an event which may occur long after the actual error. Protec-
tion can block these errors and report their source.

In addition to limit checking on segments, there is limit checking on the descriptor
tables. The GDTR and IDTR registers contain a 16-bit limit value. It is used by the
processor to prevent programs from selecting a segment descriptor outside the descrip-
tor table. The limit of a descriptor table identifies the last valid byte of the table. Be-
cause each descriptor is eight bytes long, a table which' contains up to N descrlptors
should have a limit of 8N — 1. -

A descriptor may be given a zero value. This refers to the first descriptor in the GDT,
which is not used. Although this descriptor may be loaded into a segment register, any
attempt to reference memory using this descriptor will generate a general -protection
exception. ‘

6.2.3 Privilegé Levels

The protection mechanism recognizes four privilege levels, numbered from 0 to 3. The
greater numbers ‘mean lesser privileges. If all other protection checks are- satisfied, a
general-protection exception is generated if a program attempts to access a segment
using a less privileged level (greater privilege number) than that applied to the segment.
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Although no control register or mode bit is provided for turning off the protection
mechanism, the same effect can be achieved by assigning all privilege levels the value of
0. (The PE bit in the CRO register is not an enabling bit for the protection mechanism
alone; it is used to enable “protected mode,” the mode of program execution in which
the full 32-bit architecture is available. When protected mode is disabled, the processor
operates in “real-address mode,” where it appears as a fast, enhanced 8086 processor.)

Privilege levels can be used to improve the reliability of operating systems. By giving the
operating system the highest privilege level, it is protected from damage by bugs in other
programs. If a program crashes, the operating system has a chance to generate a dlag-
nostic message and attempt recovery procedures.

Another level of privilege can be established for other parts of the system software, such
as the programs which handle peripheral devices, called device drivers. If a device driver
crashes, the operating system should be able to report a diagnostic message, so it makes
sense to protect the operating 'system against bugs in device drivers. A device driver,
however, may service an important peripheral such as a disk drive. If the application
program ‘crashed, the device driver should not corrupt the dlrectory structure of the disk,
so it makes sense to protect device drivers against bugs in appllcatlons Device drlvers
should be given an intermediate privilege level between the operating system and the
application programs. Application programs are given the lowest privilege level.

Figure 6-2 shows how these levels of privilege can be interpreted as rings of protection.
The center is for the segments containing the most critical software, usually the kernel of
an operating system. Outer rings are for less critical software.

The following data structures contain privilege levels:

o The lowest two bits of the CS segment register hold the current privilege level (CPL).
This is the privilege level of the program being run. The lowest two bits of the SS
register also hold a copy of the CPL. Normally, the CPL i is equal to the privilege level
of the code segment from.which instructions are being fetched. The CPL changes
when control is transferred to a code segment with a different privilege level.

. Segment descriptors contain a field called the descriptor privilege level (DPL). The
DPL is the privilege level applied to a segment.

o Segment selectors contain a field called the requested privilege level (RPL). The RPL is
intended to represent the privilege level of the procedure which created the selector.
If the RPL is a less privileged level than the CPL, it overrides the CPL. When a more
privileged program receives a segment selector from a less privileged program the
RPL causes the memory access take place at the less privileged level.

Privilege levels are checked when the selector of a descriptor is loaded into a segment
register. The checks used for.data access differ from those used for transfers of execu-
tion among executable segments; therefore, the two types of access are consrdered sep-
arately in the following sections.
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PROTECTION RINGS

OPERATING SYSTEM KERNAL

OPERATING SYSTEM
SERVICES (DEVICE
DRIVERS, ETC.)

APPLICATIONS

240486i56

Figure 6-2. Protection Rings
6.3 RESTRICTING ACCESS TO DATA

To address operands in memory, a segment selector for a data segment must be loaded
into a data-segment register (the DS, ES, FS, GS, or SS registers). The processor checks
the segment’s privilege levels. The check is performed when the segment selector is
loaded. As Figure 6-3 shows, three different privilege levels enter into this type of priv-
ilege check.

The three privilege levels which are checked are:
- 1. The CPL (current privilege level) of the program. This is held in the two least-

significant bit positions of the CS register.

2. The DPL (descriptor privilege level) of the segment descriptor of the segment con-
taining the operand. . .

3. The RPL (requestor’s privilege level) of the selector used to specify the segment
containing the operand. This is held.in the two lowest bit positions of the segment
register used to access the operand (the SS, DS, ES, FS, or GS registers). If the
operand is in the stack segment, the RPL is the same as the CPL.

6-7



intel® PROTECTION

OPERAND SEGMENT DESCRIPTOR
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CPL
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CPL CURRENT PRIVILEGE LEVEL - - PRIVILEGE
DPL DESCRIPTOR PRIVILEGE LEVEL ) CHECK
RPL REQUESTED PRIVILEGE LEVEL

240486i57

- Figure 6-3. Privilege Check for Data Access

Instructions may load a segment register only if the DPL of the segment is the same or a
less privileged level ‘(greater privilege number) than the less privileged of the CPL and
the selector’s RPL.

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data
segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at
privilege level 3 are accessible. . .

6.3.1 Accessing Data in Code Segments

It may be desirable to store data in.a code segment; for example, when both code and
data are provided in ROM. Code segments may legitimately hold constants; it is not
possible to write to a segment defined as a code segment, unless a data segment is
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mapped to the same address space. The following methods of accessing data in code
segments are possible:

1. Load a data-segment register with a segment selector for a nonconformmg, read-
able, executable segment.

2. Load a data-segment register with a segment selector for a conformmg, readable,
executable segment.

3. Use a code-segment override prefix to read a readable, executable segment whose
selector already is loaded in the CS register.

The same rules for access to data segments apply to case 1. Case 2 is always valid
because the privilege level of a code segment with a set Conforming bit is effectively the
same as the CPL, regardless of its DPL. Case 3 is always valid because the DPL of the
code segment selected by the CS register is the CPL.

6.4 RESTRICTING CONTROL TRANSFERS

With the i486 processor, control transfers are provided by the IMP, CALL, RET, INT,
and IRET instructions, as well as by the exception and interrupt mechanisms. Excep-

tions and interrupts are special cases discussed in-Chapter 9. This chapter discusses only
the JMP, CALL, and RET instructions.

The “near” forms of the JMP, CALL, and RET instructions transfer program control
within the current code segment, and therefore are subject only to limit checking. The
processor checks that the destination of the JMP, CALL, or RET instruction does not
exceed the limit of the current code segment. This limit is cached in the CS register, so
protection checks for near transfers require no performance penalty.

The operands of the “far” forms of the JMP and CALL instruction refer to other seg-
ments, so the processor performs privilege checking. There are two ways a JMP or
CALL instruction can refer to another segment:
1. The operand selects the descriptor of another executable segment.
2. The operand selects a call gate descriptor. This gated form of transfer is discussed in
Chapter 7.

As Figure 6-4 shows, two different privilege levels enter into a privilege check for a
control transfer which does not use a call gate:

1. The CPL (current privilege _ieVel).
2. The DPL of the descriptor of the destination code segment.

Normally the CPL is equal to the DPL of the segment which the processor is currently
executing. The CPL may, however, be greater (less privileged) than the DPL if the
current code segment is a conforming segment (as indicated by the Type field of its
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Figure 6-4. inlege Check for Control Transfer Without Gate

segment descriptor). A conformmg segment runs at the pr1v1lege level of the callmg
procedure. The processor keeps a record of the CPL cached in the CS register; this value
can be different from the DPL in the segment descriptor of the current code segment.

The processor only permlts a JMP or CALL instruction directly into another segment if
one of the following privilege rules is satisfied:

e The DPL of the segment is equal to the current CPL.

e The segmentis a conformlng code segment, and its DPL is less (more pr1v1leged) than
~ the current CPL.

Conforming segments are used for programs, such as math libraries and some kinds of
exception handlers, which support applications but do not require access to protected
system facilities. When control is transferred to a conforming segment, the CPL does not
change, even if the selector used to address the segment has a different RPL. This is the
only condition in which the CPL may be different from the DPL of the current code
segment. ‘

Most code segments are not conforming. For these segments, control can be transferred
without a gate only to other code segments at the same level of privilege. It is sometimes
necessary, however, to transfer control to higher privilege levels. :This is accomplished
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with the CALL instruction using call-gate descriptors, which is explained in Chapter 7.
The JMP instruction may never transfer control to a nonconforming segment whose
DPL does not equal the CPL.

6.5 GATE DESCRIPTORS

To provide protection for control transfers among executable segments at different priv-
ilege levels, the i486 processor uses gate descriptors. There are four kinds of - gate
descriptors:. . «

o Call gates

o Trap gates

o Interrupt gates

o Task gates

Task gates are used for task switching and are discussed in Chapter 7. Chapter 9 explains
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is
concerned only with call gates. Call gates are a form of protected control transfer. They
are used for control transfers between different privilege levels. They only need to be

used in systems in which more than one privilege level is used. Figure 6-5 illustrates the
format of a call gate.

A call gate has two main functions:

" 1. To define an entry point of a procedure.

~ 2. To specify the privilege level required to enter a proceduré.

: 32.BIT CALL GATE
. 1111111
31 65432109876543 0
; D olo DWORD
OFFSET IN SEGMENT 31:16 P E o|1|1]ofofo ol adunt |+
. SEGMENT SELECTOR OFFSET IN SEGMENT 15:00 +0

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT

240486159

Figure 6-5. Call Gate

6-11



intgl® PROTECTION

Call gate descriptors are used by CALL and JUMP instructions in the same manner as
code segment descriptors. When the hardware recognizes that the segment selector for
the destination refers to a gate descriptor, the operation of the instruction is determined
by the contents of the call gate. A call gate descriptor may reside in the GDT or in an
LDT, but not in the interrupt descriptor table (IDT).

The selector and offset fields of a gate form a pointer to the entry point of a procedure.
A call gate guarantees that all control transfers to other segments go to a valid entry
point, rather than to the middle of a procedure (or worse, to the middle of an instruc-
tion). The operand of the control transfer instruction is not the segment selector and
offset within the segment to the procedure’s entry point. Instead, the segment selector
points to a gate descriptor, and the offset is not used. Figure 6-6 shows this form of
addressing. '

| -—————————DESTINATION ADDRESS—>|

15 "o 31 ' A
. SELECTOR OFFSET WITHIN SEGMENT
NOT USED
DESCRIPTOR TABLE
OFFSET peL | count | GaTE
DESCRIPTOR
SELECTOR OFFSET

| |

BASE DPL BASE CODE SEGMENT

DESCRIPTOR
®‘+— BASE )

PROCEDURE ENTRY POINT

240486i60

Figure 6-6. Call Gate Mechanism
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As shown in Figure 6-7, four different privilege levels are used to check the validity of a
control transfer through a call gate.

The privilege levels checked during a transfer of execution through a call gate are:

1. The CPL (current privilege level).

2. The RPL (requestor’s privilege level) of the segment selector used to specify the call
© gate.

3. The DPL (descriptor privilege level) of the gate descriptor.

4. The DPL of the segment descriptor of the destination code segment.
The DPL field of thé gate descriptor determines from which privilege levels the gate may
be used. One code segment can have several procedures which are intended for use from
different privilege levels. For example, an operating system may have some services
which are intended to be used by both the operating system and application software,

such as routines to handle character I/O, while other services may be intended only for
use by operating system, such as routines which initialize device drivers.

Gates can be used for control transfers to more privileged levels or to the same privilege
level (though they are not necessary for transfers to the same level). Only CALL instruc-
tions can use gates to transfer to less privileged levels. A JMP instruction may use a gate
only to transfer control to a code segment with the same privilege level, or to a conform-
ing code segment with the same or a more privileged level.

For a JMP instruction to a nonconforming segment, both of the following privilege rules
must be satisfied; otherwise, a general-protection exception is generated.

MAX (CPL,RPL) = gate DPL
destination code segment DPL. = CPL

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the
following privilege rules must be satisfied; otherwise, a general- protectlon exception is
generated.

MAX (CPL,RPL) =< gate DPL
destination code segment DPL < CPL

6.5.1 Stack Switching
A procedure call to a more privileged level does the following:

1. Changes the CPL.
. 2. Transfers control (execution).

3. Switches stacks.
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Figure 6-7. Privilege Check for Control Transfer with Call Gate
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All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiv-
ing calls from less privileged levels. If the caller were to provide the stack, and the stack
was too small, the called procedure might crash as a result of insufficient stack space.
Instead, less privileged programs are prevented from crashing more privileged programs
by creating a new stack when a call is made to a more privileged level. The new stack is
created, parameters are copied from the old stack, the contents of registers are saved,
and execution proceeds normally. When the procedure returns, the contents of the saved
registers restore the original stack. A complete description of the task switching mecha-
nism is provided in Chapter 7.

The processor finds the space to create new stacks using the task state segment (TSS), as
shown in Figure 6-8. Each task has its own TSS. The TSS contains initial stack pointers
for the inner protection rings. The operating system is responsible for creating each TSS
and initializing its stack pointers. An initial stack pointer consists of a segment selector
and an initial value for the ESP register (an initial offset into the segment). The initial
stack pointers are strictly read-only values. The processor does not change them while
the task runs. These stack pointers are used only to create new stacks when calls -are
made to more privileged levels. These stacks disappear when the called procedure re-
turns. The next time the procedure is called, a new stack is created using the initial stack
pointer.

32.BIT TASK STATE SEGMENT
31 0
64
I §S2 18
ESP2 ‘ : 14
l ss1 10
ESP1 oc
| SS0 ' 8
ESPO 4
0
NOTE: ADDRESSES ARE IN HEXADECIMAL
240486i62

Figure 6-8. Initial Stack Pointers in a TSS
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When a call gate is used to change privilege levels, a new stack is created by loading an
address from the TSS. The processor uses the DPL of the destination code segment (the
new CPL) to select the initial stack pointer for privilege level 0, 1, or 2.

The DPL of the new stack segment must equal the new CPL; if not, a stack-fault excep-
tion is generated. It is the responsibility of the operating system to create stacks and
stack-segment descriptors for all privilege levels which are used. The stacks must be
read/write as specified in the Type field of their segment descriptors. They must contain
enough space, as specified in the Limit field, to hold the contents of the SS and ESP
registers, the return address, and the parameters and temporary variables required by
the called procedure .

As with calls within a privilege level, parameters for- the procedure are placed on the
stack. The parameters are copied to the new stack. The parameters.can be accessed
within the called procedure using the same relative addresses which would have been
used if no stack switching had occurred. The count field of a call gate tells the processor
how many doublewords (up to 31) to copy from the caller’s stack to the stack of the
called procedure If the count is 0, no parameters are copred

If more than 31 doublewords of data need to be passed to the called procedure, one of
the parameters can be a pointer to a data structure, or the saved contents of the SS and
ESP registers may be used to access parameters in the old stack space.

The processor performs the following stack-related steps in executing a procedure call
‘between privilege levels.

1. The stack of the called procedure is checked to make certain it is large enough to
‘ hold the parameters and the saved contents of registers; if not, a stack exception is
generated.

2. The old contents of the SS and ESP registers are pushed onto the stack of the called
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the
zero-extended upper word is Intel reserved; do not use).

3. The parameters are copied from the stack of the caller to the stack of the called
procedure. :

4. A pointer to the instruction after-the CALL instruction (the old contents of the CS
and EIP registers) is pushed onto the new stack. The contents of the SS and ESP
registers after the call point to this return pointer on the stack.

‘Figure 6-9 illustrates the stack frame before, during, and after a successful interlevel
.procedure call and return.

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure
at privilege level 3 cannot be called by a less privileged procedure. The stack for privilege
level 3 is preserved by the contents of the SS and EIP registers which have been saved on
the stack of the privilege level called from level 3. -
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OLD STACK, NEW STACK, OLD STACK,
BEFORE CALL: AFTER CALL, AFTER RETURN:
BEFORE RETURN:

OLD SS

OLD ESP ) «— ESP

PARM 1 PARM 1

PARM 2 PARM 2

PARM 3 [<+— ESP PARM 3

oLD Cs

OLD EIP <«— ESP

240486163

Figure 6-9. Stack Frame During Interlevel Call

A call using a call gate does not check the values of the words copied onto the new stack.
The called procedure should check each parameter for validity. A later section discusses
how the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check
pointer values.

6.5.2 ‘Returning from a Procedure

The “near” forms of the RET instruction only transfer control within the current code
segment, therefore are subject only to limit checking. The offset to the instruction fol-
lowing the CALL instruction is popped from the stack into the EIP register. The proces-
sor checks that this offset does not exceed the limit of the current code segment.

The “far” form of the RET instruction pops the return address which was pushed onto
the stack by an earlier far CALL instruction. Under normal conditions, the return
pointer is valid, because it was generated by a CALL or INT instruction. Nevertheless,
the processor performs privilege checking because of the possibility that the current
procedure altered the pointer or failed to maintain the stack properly. The RPL of the
code-segment selector popped off the stack by the return instruction should have the
privilege level of the calling procedure.
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A return to another segment can change privilege levels, but only toward less privileged
levels. When a RET instruction encounters a saved CS value whose RPL is numerically
greater than the CPL (less privileged level), a return across privilege levels occurs. A

return of this kind performs these steps:

1. The checks shown in Table 6-2 are made, and the CS, EIP, SS, and ESP'registers
are loaded with their former values, which were saved on the stack

2. The old contents of the SS and ESP registers (from the top of the current stack) are
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP

_ Table 6-2. Interlevel Return Checks

Type of Check . Exception Type Error Code

top-of-stack must be within stack segment stack 0
limit ‘
top-of-stack + 7 must be within stack seg- stack 0
ment limit , 4
RPL of return code segment must be , protection Return CS
greater than the CPL
Return code segment selector must be ’ protection Return CS
non-null
Return code segment descriptor must be protection Return CS
within descriptor table limit
Return segment descriptor must be a . protection Return CS
code segment }
Return code segment is present segment not present Return CS
DPL of return non-conforming code seg- protection Return CS
ment must equal RPL of return code seg- . )
ment selector, or DPL of return conforming
code segment must be less than or equal
to RPL of return code segment selector
ESP + N + 15* must be within the stack stack fault Return CS
segment limit
segment selector at ESP + N + 12* must protection Return CS
be non-null

- segment descriptor at ESP + N + 12* protection Return CS
must be within descriptor table limit :
stack segment descnptor must be read/ v protection Return CS
write : :
stack segment must be present stack fault Return CS
old stack segment DPL must be equal to - protection " Return CS
RPL of old code segment ‘

" old stack segment seléctor must havean .| protection Return CS
RPL equal to the DPL of the old stack
segment

*N is the value of the immediate operand supplied with the RET instruction.
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value is not checked against the limit of the stack segment. If the ESP value is
beyond the limit, that fact is not recognized until the next stack operation. (The
contents of the SS and ESP registers for the returning procedure are not preserved;
normally, their values are the same as those contained in the TSS.)

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of
these registers refer to segments whose DPL is less than the new CPL (excluding
conforming code segments), the segment register is loaded with the null selector
(Index = 0, TI = 0). The RET instruction itself does not signal exceptions in these
cases; however, any subsequent memory reference using a segment register contain-
ing the null selector will cause a general-protection exception. This prevents less
privileged code from accessing more privileged segments using selectors left in the
segment registers by a more privileged procedure.

6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM

Instructions which can affect the protection mechanism or influence general system per-
formance can only be executed by trusted procedures. The i486 processor has two classes
of such instructions:

1. Privileged instructions—those used for system control. .

2. Sensitive instructions —those used for I/O and I/O-related activities.

6.6.1 Privileged Instructions

The instructions which affect protected facilities can be executed only when the CPL is 0
(most privileged). If one of these instructions is executed when the CPL is not 0, a
general-protection exception is generated. These instructions include:

CLTS - .. —Clear Task-Switched Flag
HLT A . —Halt Processor

LGDT .~Load GDT Register

LIDT - . - —Load IDT Register

LLDT : —Load LDT Register
LMSW ’ —Load Machine Status Word
LTR : —Load Task Register.
MOV to/from CRO - —Move to Control Register 0
MOV to/from DRn o —Move to Debug Register n

MOV to/from TRn —Move to Test Register n

6.6.2 Sensitive Instructions

Instructions which deal with 1/O need to be protected, but they also need to be used by
procedures executing at privilege levels other than 0 (the most privileged level). The
-mechanisms for protection of I/O operations are covered in detail in Chapter 8.

6-19



intel” PROTECTION

6.7 INSTRUCTIONS FOR POINTER VALIDATION

Pointer validation is necessary for maintaining isolation between pr1v1lege levels. It con-
sists of the following steps:

1. Check if the supplier of the pointer is allowed to access the segment.
2. Check if the segment type is compatible with its use.

3. Check if the pointer offset exceeds the segment limit.

Although the i486 processor automatically performs checks 2 and 3 during instruction
execution, software must assist in performing the first check. The ARPL instruction is
provided for this purpose. Software also can use steps 2 and 3 to check for potential
violations, rather than waiting for an exception to be generated The LAR, LSL, VERR,
and VERW instructions are provided for this purpose.

An additional check, the alignment check, can be applied in user mode. When both the
AM bit in CRO and the AC flag are set, unaligned memory references generate excep-
tions. This is useful for programs which use the low two bits of pointers to identify the
type of data structure they address. For example, a subroutine in a math library may
accept pointers to numeric data structures. If the type of this structure is assigned -a code
of 10 (binary) in the lowest two bits of pointers to this type, math subroutines can correct
for the type code by adding a displacement of —10 (binary). If the subroutine should
ever receive the wrong pointer type, an unaligned reference would be produced, which
would generate an exception. Alignment checking accelerates the processing of pro-
grams written in symbolic-processing (i.e., Artificial Intelligence) languages such as Lisp,
Prolog, Smalltalk, and C+ +. It can be used to speed up pointer tag type checking.

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a
compatible privilege level and type. The LAR instruction has one operand —a segment
selector for a descriptor whose access rights are to be checked. The segment descriptor
must be readable at a privilege level which is numerically greater (less privileged)-than
the CPL and the selector’s RPL. If the descriptor is readable, the LAR instruction gets
the second doubleword of the descriptor, masks this value with 00FxFFOOH, stores the
result into the specified 32-bit destination register, and sets the ZF flag. (The x indicates
that the corresponding four bits of the stored value are undefined.) Once loaded, the
access rights can be tested. All valid descriptor types can be tested by the LAR instruc-
tion. If the RPL or CPL is greater than the DPL, or if the segment selector would exceed
the limit for the descriptor table, no access rights are returned, and the ZF flag is
cleared. Conforming code segments may be accessed from any privilege level.

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If
the descriptor referenced by the segment selector (in memory or a register) is readable
at the CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte
granular limit calculated from the concatenated limit fields and the G bit of the descrip-
tor. This only can be done for descriptors which describe segments (data, code, task
state, and local descriptor tables); gate descriptors are inaccessible. (Table 6-3 lists in
detail which types are valid and which are not.) Interpreting the limit is a function of the
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Table 6-3. Valid Descriptor Types for LSL Instruction

Type Code Descriptor Type Valid?
0 reserved no
1 reserved no
2 LDT yes
3 reserved no
4 reserved no
5 Task Gate no
6 reserved no
7 reserved . no
8 reserved no
9. - Available i486™ CPU TSS v yes
A reserved no
B Busy i486 CPU TSS yes
C i486 CPU Call Gate . no
D reserved no
E i486 CPU Interrupt Gate no
- F i486 CPU Trap Gate no

segmeht type. For example, downward-expandable data segments (stack segments) treat
the limit differently than other kinds of segments. For both the LAR and LSL instruc-
tions, the ZF flag is set if the load was successful; otherwise, the ZF flag is cleared.

6.7.1 Descriptor Validation

The i486 processor has two instructions, VERR and VERW, which determine whether a
segment selector points to a-segment which can be read or written using the CPL. Nei-
ther .instruction causes a protection fault if the segment cannot be accessed.

VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that
segment is readable using the CPL. The VERR instruction checks the following:

¢ The segment selector points to a segment descriptor within the bounds of the GDT or
an LDT. :

o The segment selector indexes to a code or data segment descriptor.
e The segment is readable and has a compatible privilege level.
The privilege check for data segments and nonconforming code segments verifies that

the DPL must be a less privileged level than either the CPL or the selector’s RPL.
Conforming segments are not checked for privilege level.

VERW (Verify for Writing) provides the same capability as the VERR instruction for
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag
if the segment can be written. The instruction verifies the descriptor is within bounds, is
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a segment descriptor, is writable, and has a DPL which is a less privileged level than
either the CPL or the selector’s RPL. Code segments are never writable, whether con-
forming or not.

6.7.2 Pointer Integrity and RPL

The requested privilege level (RPL) can prevent accidental use of pointers which crash
more privileged code from a less privileged level.

‘A common example is a file system procedure, FREAD (file_id, n_bytes, buffer_ptr).
This hypothetical procedure reads data from a disk file into a buffer, overwriting what-
ever is already there. It services requests from programs operating at the application
level, but it must run in a privileged mode in order to read from the system 1/O buffer. If
the application program passed this procedure a bad buffer pointer, one which pointed
at critical code or data in a privileged address space the procedure could cause damage
which would crash the system.

Use of the RPL can avoid this problem. The RPL allows a privilege override to be
assigned to a selector. This privilege override is intended to be the privilege level of the
code segment which generated the segment selector. In the above example, the RPL
would be the CPL of the application program which called the system level procedure.
The 1486 processor automatically checks any segment selector loaded into a segment
register to determine whether its RPL allows access.

To take advantage of the processor’s checking of the RPL, the called procedure need
only check that all segment selectors passed to it have an RPL for the same or a less
privileged level as the original caller’s CPL. This guarantees that the segment selectors
are not more privileged than their source. If a selector is used to access a segment which
the source would not be able to access directly, i.e. the RPL is less privileged than the
segment’s DPL, a general-protection exception is generated when the selector is loaded
into a segment register.

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector to
be the larger (less privileged) of its original value and the value of the RPL field for a
segment selector stored in a general register. The RPL fields are the two least significant
bits of the segment selector and the register. The latter normally is a copy of the caller’s
CS register on the stack. If the adjustment changes the selector’s RPL, the ZF flag is set;
otherwise, the ZF flag is cleared.

6.8 PAGE-LEVEL PROTECTION

Protection applies to both segments and pages. When the flat model for memory seg-
mentation has been used, page-level protection prevents programs from 1nterfer1ng with
each other. , .
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Each memory reference is checked to verify that it satisfies the protection checks. All
checks are made before the memory cycle is started; any violation prevents the cycle
from starting and results in an exception. Because checks are performed in parallel with
address translation, there is no performance penalty. There are two page-level protec-
tion checks:

1. Restriction of addressable domain
2. Type checking

A protection violation results in an exception. See Chapter 9 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

6.8.1 Page-Table Entries Hold Protection Parameters

Figure 6-10 highlights the fields of a page table entry which control access to pages. The
protection checks are applied for both first- and second-level page tables.

6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN

Privilege is interpreted differently for pages and segments. With segments, there are four
privilege levels, ranging from 0 (most privileged) to 3 (least privileged). With pages,
there are two levels of privilege: ’

1. Supervisor level (U/S=0)—for the operating system, other system software (such as
device drivers), and protected system data (such as page tables)

2. User level (U/S=1)—for application code and data.

The privilege levels used for segmentation are mapped into the privilege levels used for
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is
3, the processor is running at user level. When the processor is running at ‘supervisor
level, all pages are accessible. When the processor is running at user level, only pages
from the user level are accessible.

31 12 11 0
[~ P/A/EG/F/RAﬁ%ssm"m &V}{Q/m %E:W/:(:,P

RIW READ/WRITE
uis USER/SUPERVISOR

240486i64

Figure 6-10. Protection Fields of a Page Table Entry
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6.8.1.2 TYPE CHECKING
Only two types of pages are recognized by the protection mechanism:

1. Read-only access (R/W=0)
2. Read/write access (R/W=1)

When the processor is running at supervisor level with the WP bit in the CRO register
clear (its state following reset initialization), all pages are both readable and writable
(write-protection is ignored). When the processor is running at user level, only pages
which belong to user level and are marked for read/write access are writable. User-level
pages which are read/write or read-only are readable. Pages from the supervisor level are
neither readable nor writable from user level. A general-protection exception is gener-
ated on any attempt to violate the protection rules.

Unlike the 386™ DX processor, the i486 processor allows user- -mode pages to be write-
protected against supervisor mode access. Setting the WP bit in the CR0 reglster enables
supervisor-mode sensitivity to user-mode, write-protected pages. This feature is useful
for implementing the copy-on-write strategy used by some operating systems, such as
UNIX, for task creation (also called forking or spawning). :

When a new task is created, it is possible to copy the entire address space of the parent
task. This gives the child task a complete, duplicate set of the parent’s segments and
pages. The copy-on-write strategy saves memory space and time by mapping the child’s
segments and pages to the same segments and pages used by the parent task. A private
copy of a page gets created only when one of the tasks writes to the page.

6.8.2 Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page directory entry (first-level page
table) may differ from those of its second-level page table entry. The i486 processor
checks the protection for a page by examining the protection specified in both the page
directory (first-level page table) and the second-level page table. Table 6-4 shows the
protection provided by the possible combinations of protection attributes when the WP
bit is clear.

6.8.3 Overrides to Page Protection

Certain accesses are checked as if they are privilege-level 0 accesses, for any value

of CPL:

e Access to segment descriptors (LDT, GDT, TSS and IDT).

o Access to inner stack during a CALL instruction, or exceptlons and interrupts, when
a change of privilege level occurs. ,
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Table 6-4. Combined Page Directory and Page Table Protection

Page Directory Entry Page Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only " User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only User Read-Only
User Read-Only Supervisor Read-Write User Read-Only
User Read-Write Supervisor Read-Only User Read-Only
User Read-Write Supervisor Read-Write User Read/Write
Supervisor Read-Only User Read-Only User Read-Only
Supervisor Read-Only User Read-Write User Read-Only
Supervisor Read-Write User Read-Only User Read-Only
Supervisor Read-Write User Read-Write User Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

6.9 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the i486 processor first evaluates segment protection, then
evaluates page protection. If the processor detects a protection violation at either the
segment level or the page level, the operation does not go through; an exception occurs
instead. If an exception is generated by segmentation, no paging exception is generated
for the operation.

For example, it is possible to define a large data segment which has some parts which are
read-only and other parts which are read-write. In this case, the page directory (or page
table) entries for the read-only parts would have the U/S and R/W bits specifying no
write access for all the pages described by that directory entry (or for individual pages
specified in the second-level page tables). This technique might be used, for example, to
define a large data segment, part of which is read-only (for shared data or ROMmed
constants). This defines a “flat” data space as one large segment, with “flat” pointers
used to access this “flat” space, while protecting shared data, shared files mapped into
the virtual space, and supervisor areas.
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CHAPTER 7
MULTITASKING

The i486™ processor provides hardware support for multitasking. A task is a program
which is running, or waiting to run while another program is running. A task is invoked
by an interrupt, exception, jump, or call. When one of these forms of transferring exe-
cution is used with a destination specified by an entry in one of the descriptor tables, this
descriptor can be a type which causes a new task to begin execution after saving the state
of the current task. There are two types of task-related descriptors which can occur in a
descriptor table: task state segment descriptors and task gates. When execution is passed
to either kind of descriptor, a task switch occurs.

A task switch is like a procedure call, but it saves more processor state information. A
procedure call only saves the contents of the general registers, and it might save the
contents of only one register (the EIP register). A procedure call pushes the contents of
the saved registers on the stack, in order that a procedure may call itself. When a
procedure calls itself, it is said to be re-entrant.

A task switch transfers execution to a completely new environment, the environment of a
task. This requires saving the contents of nearly all the processor registers, such as the
EFLAGS register. Unlike procedures, tasks are not re-entrant. A task switch does not
push anything on the stack. The processor state information is saved in a data structure
in memory, called a task state segment.

The registers and data structures which support multitasking are:

o Task state segment

o Task state segment descriptor

o Task register

o Task gate descriptor

With these structures, the i486 processor can switch execution from one task to another,

with the context of the original task saved to allow the task to be restarted. In addition to
the simple task switch, the i486 processor offers two other task-management features:

1. Interrupts and exceptions can cause task switches (if needed in the system design).
The processor not only performs a task switch to handle the interrupt or exception,
but it automatically switches back when the interrupt or exceptlon returns. Inter-
rupts may occur during interrupt tasks.

2. With each switch to another task, the i486 processor also can switch to another
LDT. This can be used to give each task a different logical-to-physical address map-
ping. This is an additional protection feature, because tasks can be isolated and
prevented from interfering with one another. The PDBR register also is reloaded.
This allows the paging mechanism to be used to enforce the isolation between tasks.
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Use of the multitasking mechanism is optional. In some applications, it may not be the
best way to manage program execution. Where extremely fast response to interrupts is
needed, the time required to save the processor state may be too great. A possible
compromise in these situations is to use the task-related data structures, but perform
task switching in software. This allows a smaller processor state to be saved. This tech-
nique can be one of the optimizations used to enhance system performance after the
basic functions of a system have been implemented.

7.1 TASK STATE SEGMENT

The processor state information needed to restore a task is saved in a type of segment,
called a task state segment or TSS. Figure 7-1 shows the format of a TSS for an 1486 CPU
task (compatibility with 80286 tasks is provided by a different kind of TSS; see Chapter
21). The fields of a TSS are divided into two main categorles

1. Dynamic fields the processor updates with each task switch. These fields store:
e The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI).
o The segment registers (ES, CS, SS, DS, FS, and GS).
o The flags register (EFLAGS).
o The instruction pointer (EIP).

o The selector for the TSS of the previous task (updated only when a return is
expected).

2. Static fields the processor reads, but does not change. These fields are set up when
a task is created. These fields store:

e The selector for the task’s LDT.
¢ The logical address of the stacks for privilege levels 0, 1, and 2.

o The T-bit (debug trap bit) which, when set, causes the processor to raise a debug
exception when a task switch occurs. (See Chapter 11 for more information on
debugging).

¢ The base address for the I/O permission bit map. If present, this map is stored in
the TSS at higher addresses. The base address points to the beginning of the
map. (See Chapter 8 for. more information about the I/O permission bit map.)

If paging is used, it is important to avoid placing a page boundary within the part of the
TSS which is read by the processor during a task switch (the first 108 bytes). If a page
boundary is placed within this part of the TSS, the pages on either side of the boundary
must be present at the same time. It is an unrecoverable error to receive a page fault or
general-protection exception after the processor has started to read the TSS.

7.2 TSS DESCRIPTOR

The task state segment, like all other segments is defmed by a descrlptor Flgure 7-2
shows the format of a TSS descriptor.
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31 15 0
10 MAP BASE ADDRESS 000000000000000 |T| 64
0000000000000000 SELECTOR FOR TASK’S LDT 60
0000000000000000 Gs - 5C
0000000000000000 FS 58
0000000000000000 DS 54
0000000000000000 ss 50
0000000000000000 cs ac
0000000000000000 ES 48
EDI 44
ESI 20
EBP 3c
ESP 38
EBX 34
EDX 30
ECX 2¢
EAX 28
EFLAGS 24
EIP 20
RESERVED 1c
0000000000000000 | ss2 18
ESP2 14
0000000000000000 | ss1 10
ESP1 c
0000000000000000 I ) 8
ESPO a
0000000000000000 | LINK (OLD TSS SELECTOR) 0

ADDRESSES ARE SHOWN IN HEXADECIMAL.
NOTE: BITS MARKED AS 0 ARE RESERVED. DO NOT USE.

240486i65

Figure 7-1. Task State Segment

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a
value of 11 (decimal) indicates a busy task. Tasks are not re-entrant. The i486 processor

uses the Busy bit to detect an attempt to call a t
interrupted.
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- TSS DESCRIPTOR

onN

2222211111111411
31 432109876543210987 0
A D TYPE .
BASE 31:24 Glofojv] LIMIT Ip| p BASE 23:16 +4
‘ . | 1916 L
0]1]o|8[1
BASE ADDRESS 15:00 " SEGMENT LIMIT 15:00 +0

AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE
B BUSY BIT

BASE -SEGMENT BASE ADDRESS

DPL DESRIPTOR PRIVILEGE LEVEL

G GRANULARITY

LMt SEGMENT LIMIT

| SEGMENT PRESENT

TYPE SEGMENT TYPE

24048666

Figure 7-2. TSS Descriptor

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions
similar to their use in data-segment descriptors. The Limit field must have a value equal
to or greater than 67H, one byte less than the minimum size of a task state. An attempt
to switch to a task whose TSS descriptor has a limit less than 67H generates an excep-
tion. A larger limit is required if an I/O permission map is used. A larger limit also may
be required for the operating system, if the system stores additional data in the TSS.

A procedure with access to a TSS descriptor can cause a task switch. In most systems
the DPL fields of TSS descriptors should be clear, so only privileged software can per-
form task switching.

Access to a TSS descriptor does not give a procedure the ability to read or modify the
descriptor. Reading and modification only can be done using a data descriptor mapped
to the same location in memory. Loading a TSS descriptor into a segment register gen-
erates an exception. TSS descriptors only may reside in the GDT. An attempt to access

.a TSS using a selector with a set TI bit (which indicates the current LDT) generates an
exception.

73 TASK REGISTER B ,

The task register (TR) is used to find the current TSS. Figure 7-3 shows the path by
which the processor accesses the TSS.
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TASK STATE SEGMENT

&
VISIBLE PART INVISIBLE PART
L SELECTOR BASE ADDRESS SEGMENT LIMIT l TR
GLOBAL

DESCRIPTOR TABLE
| N
|
|
.

TSS DESCRIPTOR -

240486167

Figure 7-3. TR Register

The task register has both a “visible” part (i.e., a part which can be read and changed by
software) and an “invisible” part (i.e., a part maintained by the processor and inaccessi-
ble to software). The selector in the visible portion indexes to a TSS descriptor in the
GDT. The processor uses the invisible portion of the TR register to retain the base and
limit values from the TSS descriptor. Keeping these values in a register makes execution
of the task more efficient, because the processor does not need to fetch these values
from memory to reference the TSS of the current task.
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The LTR and STR instructions are used to modify and read the visible portion of the
task register. Both instructions take one operand, a 16-bit segment selector located in-
memory or a general register.

LTR (Load task register) loads the visible portion of the task register with the operand,
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the
invisible portion with information from the TSS descriptor. The LTR instruction is a
privileged instruction; it may be executed only when the CPL is 0. The LTR instruction
generally is used during system initialization to put an initial value in the task register;
afterwards, the contents of the TR register are changed by events which cause a task
switch. :

STR (Store task register) stores the visible portion of the task register in a general
register or memory. The STR instruction is not privileged.

7.4 TASK GATE DESCRIPTOR

A task gate descrlptor provides an indirect, ‘protected reference to a task Figure 7- 4
illustrates the format of a task gate.

The Selector field of a task gate indexes to a TSS descrlptor The RPL in this selector is
not used.

The DPL of a task gate controls access to the descriptor for a task switch. A procedure
may not select a task gate descriptor unless the selector’s RPL and the CPL of the
procedure are numerically less than or equal to the DPL of the descriptor. This prevents
less privileged procedures from causing a task switch. (Note that when a task gate is
used, the DPL of the destination TSS descrlptor is not used)

TASK GATE DESCﬁIPTOR

1111111
31 6543210987 0
D
RESERVED PlP|0OO0101 RESERVED +4
L
TSS SEGMENT SELECTOR RESERVED +0

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT

240486i68

Figure 7-4. Task Gate Descriptor
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A procedure with access to a task gate can cause a task switch, as can a procedure with
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy
three needs:

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the
TSS descriptor, each task should have only one such descriptor. There may, how-
ever, be several task gates which select a single TSS descriptor.

2. The need to provide selective access to tasks. Task gates fill this need, because they
can reside in an LDT and can have a DPL which is different from the TSS descrip-
tor’s DPL. A procedure which does not have sufficient privilege to use the TSS
descriptor in the GDT (whlch usually has a DPL of 0) can still call another task if it
has access to a task gate in its LDT. With task gates, the operatlng system can limit
task switching to specific tasks..

3. The need for an interrupt or exception to cause a task switch. Task gates also may
reside in the IDT, which allows interrupts and exceptions to cause task switching.
When an interrupt or exception supplies a vector to‘a task gate, the 1486 processor
switches to the indicated task. '

Figure 7-5 illustrates how both a task gate in an LDT and a task gate in the IDT can
identify the same task.

7.5 TASK SWITCHING
The 1486 processor transfers execution to another task in any of four cases:

1. The current task executes a JMP or CALL to a TSS descriptor.
2. The current task executes a JMP or CALL to a task gate.
3. An interrupt or exception indexes to a task gate in the IDT

4. The current task executes an IRET when the NT ﬂag is set.

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all
ordinary mechanisms of the i486 processor which can be used in circumstances in which
no task switch occurs. The descriptor type (when a task is called) or the NT flag (when
the task returns) make the difference between the standard mechanism and the form
which causes a task switch.

To cause a task switch, a JMP or CALL instruction can transfer execution to either a
TSS descriptor or a task gate. The effect is the same in either case: the i486 processor
transfers execution to the specified task. :

]

An exception or interrupt causes a task switch when it indexes to a task gate in the IDT.
If it indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See
Chapter 9 for more information on the interrupt mechanism.
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TASK STATE
SEGMENT
LOCAL : GLOBAL
DESCRIPTOR TABLE DESCRIPTOR TABLE
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1 : T
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1
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DESCRIPTOR TABLE
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—— TASK GATE

|
1
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Figure 7-5. Task Gates Reference Tasks

An interrupt service routine always returns execution to the interrupted procedure,
which may be in another task. If the NT ﬂag is clear, a normal return occurs. If the NT
flag is set, a task switch occurs. The task receiving the task switch is spemfled by the TSS
selector in the TSS of the interrupt service routine.

A task switch has these steps:

1. Check that the current task is allowed to switch to the new task. Data-access privi-
lege rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and
the task gate must be greater than or equal to both the CPL and the RPL of the gate
selector. Exceptions, interrupts, and IRET instructions are permitted to switch tasks
regardless of the DPL of the destination task gate or TSS descriptor.
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2. Check that the TSS descriptor of the new task is marked present and has a valid
limit (greater than or equal to 67H). Any errors up to this point occur in the context
of the current task. These errors restore any changes made in the processor state
when an attempt is made to execute the error-generating instruction. This lets the
return address for the exception handler point to the error-generating instruction,
rather than the instruction following the error-generating instruction. The exception
handler can fix the condition which caused the error, and restart the task. The
intervention of the exception handler can be completely transparent to the applica-
tion program.

3. Save the state of the current task. The processor finds the base address of the
current TSS in the task register. The processor registers are copied into the current
TSS (the EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS SS, DS, FS, GS,
and EFLAGS reglsters) ‘,

4. Load the TR register with the selector to the new task’s TSS deseriptor set the new
task’s Busy bit, and set the TS bit in the CRO register. The selector i is either the
operand of a JMP or CALL instruction, or it is taken from a task gate.

5. Load the new task’s state from its TSS and continue execution. The registers loaded
are the LDTR register; the EFLAGS register; the general registers EIP, EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDI; and the segment registers ES, CS, SS, DS,
FS, and GS. Any errors detected in this step occur in the context of the new task. To
an exception handler, the first instruction of the new task appears not to have
executed.

Note that the state of the old task is always saved when a task switch occurs. If the task
is resumed, execution starts with the instruction which normally would have been next.
The registers are restored to the values they held when the task stopped running.

Every task switch sets the TS (task switched) bit in the CRO register. The TS bit is useful
to system software for coordinating the operations of the integer unit with the floating-
point unit or a coprocessor. The TS bit indicates that the context of the floating-point
unit or coprocessor may be different from that of the current task. Chapter 10 discusses
the TS bit and coprocessors in more detail.

Exception service routines for exceptions caused by task switching (exceptions resulting
from steps 5 through 17 shown in Table 7-1) may be subject to recursive calls if they
attempt to reload the segment selector which generated the exception. The cause of the
exception (or the first of multiple causes) should be fixed before reloading the selector.

The privilege level at which the old task was running has no relation to the privilege level
of the new task. Because the tasks are isolated by their separate address spaces and task
state segments, and because privilege rules control access to a TSS, no privilege checks
are needed to perform a task switch. The new task begins executing at the privilege level
indicated by the RPL of new contents of the CS register, which are loaded from the TSS.
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Table 7-1. Checks Made during a Task Switch

Step " Condition Checked Exception’ Error Code Reference
1 TSS descriptor is presentin- NP New Task's TSS
memory a : .
TSS descriptor is not busy | GP New Task's TSS -
TSS segment limit greater TS . New Task's TSS

than or equal to 103 -

Registers are loaded from the values in the TSS

LDT selector of new task is ' TS . New Task’s TSS
valid? _ v , . .
6 Code segment DPL matches TS New Code Segment
selector RPL
SS selector is valid® GP New Stack Segment
Stack segment is present in ' SF New Stack Segment
memory ' ) . ( _
9 " Stack segment DPL matches ' SF New Stack Segment
CPL o . _
10 ~ LDT of new task is present in S New Task's TSS
memory o : I .
1 CS selector is valid®> . I ' New Code Segment
12 Code segment is present in o "NP New Code Segment
memory ‘
13 Stack segment DPL matches GP New Stack Segment
selector RPL
14 DS, ES, FS, and GS selec- . - GP ; New Data Segment
tors are valid® . v
15 DS, ES, FS, and GS GP New Data Segment
segments are readable
16  DS,ES,FS,andGS NP New Data Segment
" |  segments are present in ‘ '
‘memory
17 DS, ES, FS, and GS segment ' GP New Data Segment

DPL greater than or equal to
CPL (unless these are con-
forming segments)

NOTES: Future Intel® processors may use a different order of checks.

1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS exceptlon.
SF = Stack exception.

2. A selector is valid if it is in a compatible type of table (e.g., an LDT selector may not be in any table
except the GDT), occupies an address within the table’s segment limit, and refers to a compatible type of
descriptor (e.g., a selector in the CS register only is valid when it indexes to a descnptor for a code
segment; the descrlptor type IS specified in its- Type fleld)
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7.6 TASK LINKING

The Link field of the TSS and the NT flag are used to return execution to the previous
task. The NT flag indicates whether the currently executing task is nested within the
execution of another task, and the Link field of the current task’s TSS holds the TSS
selector for the higher-level task, if there is one (see Figure 7-6).

When an interrupt, exception, jump, or call causes a task switch, the i486 processor
copies the segment selector for the current task state segment into the TSS for the new
task and sets the NT flag. The NT flag indicates the Link field of the TSS has been
loaded with a'saved TSS selector. The new task releases control by executing an IRET
instruction. When an IRET instruction is executed, the NT flag is checked. If it is set,
the processor does a task switch to the previous task. Table 7-2 summarizes the uses of
the fields in a TSS which are affected by task switching.

Note that the NT flag may be modified by software executing at any privilege level. It is
possible for a program to set its NT bit and execute an IRET instruction, which would
have the effect of invoking the task specified in the Link field of the current task’s TSS.
To keep spurious task switches from succeeding, the operating system should initialize
the Link field of every TSS it creates.

TOP LEVEL NESTED MORE DEEPLY CURRENTLY
TASK TASK ' NESTED . EXECUTING
TASK TASK
TSS 1SS TSS EFLAGS
NT =1
NT =10 NT =1 NT =1
LINK LINK LINK TR REGISTER

240486i70

Figure 7-6. Nested Tasks
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Table 7-2..

Effect of a Task Switch on Busy, NT, and Link Fields

Field

Etffect of Jump

Effect of CALL
Instruction or -
Interrupt

Effect of IRET.
Instruction

Busy bit of new task
Busy bit of old task

NT flag of new task
NT flag of old task
Link field of new task.

Link field of old task.

Bit is set. Must have
been clear before.

Bit is cleared.

Flag is cleared.
No change.
No change. .

No change.

Bit is set. Must have
been clear before.

No change. Bit is cur-

| rently set.

Flag is set.
No change.

Loaded with selector
for old task’s TSS.

No change.

No change. Must be' .
set.

Bit is cleared.

No change.

'FIag is cleared.

No change.

No change.

7.6.1 Busy Bit Prevents Loops

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one
saved task context, the context saved in the TSS, therefore a task only may be called
once before it terminates. The chain of suspended tasks may grow to any length, due to
multiple mterrupts exceptions, jumps, and calls. The Busy bit prevents a task from being
called if it is in this chain. A re-entrant task switch would overwrite the old TSS for the
task, which would break the chain.

The processbr manages the Busy bit as follows:

1. When switching to a task, the processor sets the Busy bit of the new task.

2. When switching from a task, the processor clears the Busy bit of the old task if that
task is not to be placed in the chain (i.e., the instruction causing the task switch is a
JMP or IRET instruction). If the task is placed in the chain, its Busy bit remains set.

3. When switching to a task, the processor generates a general-prdtection exception if
the Busy bit of the new task already is set.

In this way, the processor prevents a task from switching to itself or to any task in the
chain, which prevents re-entrant task switching.

The Busy bit may be used in multiprocessor configurations, because the processor as-
serts a bus lock when it sets or clears the Busy bit. This keeps two processors from
invoking the same task at the same time. (See Chapter 13 for more information on
multiprocessing.)

7-12



intel® MULTITASKING

7.6.2 Modifying Task Linkages

Modification of the chain of suspended tasks may be needed to resume an interrupted
task before the task which interrupted it. A reliable way to do this is:

1. Disable interrupts.

2. First change the Link field in the TSS of the interrupting task, then clear the Busy
bit in the TSS descriptor of the task being removed from the chain.

3. Re-enable interrupts.

7.7 TASK ADDRESS SPACE

The LDT selector and PDBR (CR3) field of the TSS can be used to give each task its
own LDT and page tables. Because segment descriptors in the LDTs are the connections
between tasks and segments, separate LDTs for each task can be used to set up individ-
ual control over these connections. Access to any particular segment can be given to any
particular task by placing a segment descriptor for that segment in the LDT for that task.
If paging is enabled, each task can have its own set of page tables for mapping linear
addresses to physical addresses.

It also is possible for tasks to have the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping
the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared ‘segments
accessed through segment descriptors in this table.

7.7.1 Task Linear-to-Physical Space Mapping

The choices for arranging the linear-to-physical mappings of tasks fall into two general
classes: '

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled,
this is the only choice. Without paging, all linear addresses map to the same physical
addresses. When paging is enabled, this form of linear-to-physical mapping is ob-
tained by using one page directory for all tasks. The linear space may exceed the
available physical space if demand-paged virtual memory is supported.

2. Independent linear-to-physical mappings for each task. This form of mapping comes
from using a different page directory for each task. Because the PDBR (page direc-
tory base register) is loaded from the TSS with each task switch, each task may have
a different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables and
the page tables point to different pages of physical memory, then the tasks do not share .
any physical addresses.
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The task state segments must lie in a space accessible to all tasks so that the mapping of
TSS addresses does not change while the processor is reading and updating the TSSs
during a task switch. The linear space mapped by the GDT also should be mapped to a
shared physical space; otherwise, the purpose of the GDT is defeated. Figure 7-7 shows
how the linear spaces of two tasks can overlap in the physical space by shanng page
tables.

7.7.2 Task Logical Address Space

By itself, an overlapping linear-to-physical space mapping does not allow sharing of data
among tasks. To share data, tasks must also have a common logical-to-linear space map-
ping; i.e., they also must have access to descriptors which point into-a shared linear
address space There are three ways to create shared loglcal -to-physical address- space
mappmgs : : :

1 Through the segment descriptors in the ‘GDT. All tasks have access to the descnp-
tors in the GDT. If those descriptors point into a linear-address space which is
mapped to a common physical- address space for all tasks then the tasks can share
data and instructions.

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selec-

~ tors in their TSSs select the same LDT for use in address translation. Segment
descriptors in the LDT addressing linear space mapped to overlappmg physical
space provide shared physical memory. This method of sharing is more selective
than sharing by the GDT; the sharing can be limited to specific tasks. Other tasksin
the system may have different LDTs which do not give them access to the shared
areas.

3. Through segment descriptors in the LDTs which map to the same linear address
space. If the linear address space is mapped to the same physical space by the page
mapping of the tasks involved, these descriptors permit-the tasks to:share space.
Such descriptors are commonly called “aliases.” This method of sharing is even
more selective than those listed above; other descriptors in the LDTs may point to
independent linear addresses which are not shared. ‘
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Figure 7-7. Overlapping Linear-to-Physical Mappings
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CHAPTER 8
INPUT/OUTPUT

This chapter explains the input/output architecture of the i486™ processor. Input/output
is accomplished through I/O ports, which are registers connected to peripheral devices.
An I/O port can be an input port, an output port, or a bidirectional port. Some 1/O ports
are used for carrying data, such as the transmit and receive registers of a serial interface.
Other I/O ports are used to control peripheral devices, such as the control registers of a
disk controller.

The i486 processor always synchronizes I/O instruction execution with external bus ac-
tivity. All previous instructions are completed before an I/O operation begins. In partic-
ular, all writes held pending in the i486 CPU write buffers will be completed before an
I/O read or write is performed.

The input/output architecture is the programmer’s model of how these ports are ac-
cessed. The discussion of this model includes:

¢ Methods of addressing I/O ports.
e Instructions which perform I/O operations.
e The I/O protection mechanism.

8.1 1/0 ADDRESSING

The 1486 processor allows I/O ports to be addressed in either of two ways:
o Through a separate I/O address space accessed using I/O instructions.

o Through memory-mapped I/O, where 1/O ports appear in the address space of phys-
ical memory. :

The use of a separate I/O address space is supported by special instructions and a
hardware protection ‘mechanism. When memory-mapped I/O is used, the general-
purpose instruction set can be used to access I/O ports, and protection is provided using
segmentation or paging. Some system designers may prefer to use the I/O facilities built
into the processor, while others may prefer the simplicity of a single physical address
space. :

If segmentation or paging is used for protection of the I/O address space, the AVL fields
in segment descriptors or page table entries may be used to mark pages containing I/O
as unrelocatable and unswappable. The AVL fields are provided for this kind .of use,
where a system programmer needs to make an extension to the address translation and
protection mechanisms. :

Hardware designers use these ways of mapping I/O ports into the address space when
they design the address decoding circuits of a system. I/O ports can be mapped so that
they appear in the I/O address space or the address space of physical memory (or both).
System programmers may need to discuss with hardware designers the kind of I/O ad-
dressing they would like to have. .
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8.1.1 1/O Address Space

The i486 processor provides a separate I/O address space, distinct from the address
space for 6physwal memory, where 1/O ports can be placed. The I/O address space con-
sists of 2'° (64K) individually addressable 8-bit ports; any two consecutive 8-bit ports can
be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. Extra bus
cycles are required if a port crosses the boundary between two doublewords in physical
memory. :

The M/IO# pin on the i486 processor indicates when a bus cycle to the I/O address
space occurs. When a separate 1/O address space is used, it is the responsibility of the
hardware designer to make use of this signal to select I/O ports rather than memory. In
fact, the use of the separate I/O address space simplifies the hardware demgn because
these ports can be selected by a single signal; unlike other processors, it is not necessary
to decode a number of upper address lines in order to set up a separate I/O address
space. ‘ . :

A program can specify the address of a port in two ways With an 1mmed1ate byte