15

THE SOLO OPERATING SYSTEM:
A CONCURRENT PASCAL
PROGRAM*

PER BRINCH HANSEN

(1976)

This is a description of the single-user operating system Solo written in the
programming language Concurrent Pascal. It supports the development of
Sequential and Concurrent Pascal programs for the PDP 11/45 computer.
Input/output are handled by concurrent processes. Pascal programs can call
one another recursively and pass arbitrary parameters among themselves. This
makes it possible to use Pascal as a job control language. Solo is the first
major example of a hierarchical concurrent program implemented in terms
of abstract data types (classes, monitors and processes) with compile-time
control of most access rights. It is described here from the user’s point of view

as an introduction to another paper describing its internal structure.

INTRODUCTION

This is a description of the first operating system Solo written in the pro-
gramming language Concurrent Pascal (Brinch Hansen 1975). It is a simple,
but useful single-user operating system for the development and distribution
of Pascal programs for the PDP 11/45 computer. It has been in use since
May 1975.

From the user’s point of view there is nothing unusual about the system.
It supports editing, compilation and storage of Sequential and Concurrent
Pascal programs. These programs can access either console, cards, printer,

*P. Brinch Hansen, The Solo operating system: a Concurrent Pascal program.
Software—Practice and Ezperience 6, 2 (April-June 1976), 141-149. Copyright © 1975,
Per Brinch Hansen.

324



SOLO: A CONCURRENT PASCAL PROGRAM 325

tape or disk at several levels (character by character, page by page, file
by file, or by direct device access). Input, processing, and output of files
are handled by concurrent processes. Pascal programs can call one another
recursively and pass arbitrary parameters among themselves. This makes it
possible to use Pascal as a job control language (Brinch Hansen 1976a).

To the system programmer, however, Solo is quite different from many
other operating systems:

1. Less than 4 per cent of it is written in machine language. The rest is
written in Sequential and Concurrent Pascal.

2. In contrast to machine-oriented languages, Pascal does not contain
low-level programming features, such as registers, addresses and inter-
rupts. These are all handled by the virtual machine on which compiled
programs run.

3. System protection is achieved largely by means of compile-time check-
ing of access rights. Run-time checking is minimal and is not supported
by hardware mechanisms.

4. Solo is the first major example of a hierarchical concurrent program
implemented by means of abstract data types (classes, monitors, and
processes).

5. The complete system consisting of more than 100,000 machine words of
code (including two compilers) was developed by a student and myself
in less than a year.

To appreciate the usefulness of Concurrent Pascal one needs a good un-
derstanding of at least one operating system written in the language. The
purpose of this description is to look at the Solo system from a user’s point
of view before studying its internal structure (Brinch Hansen 1976b). It tells
how the user operates the system, how data flow inside it, how programs call
one another and communicate, how files are stored on disk, and how well
the system performs in typical tasks.

JOB CONTROL

The user controls program execution from a display (or a teletype). He calls
a program by writing its name and its parameters, for example:



326 PER BRINCH HANSEN

move(5)
read(maketemp, seqcode, true)

The first command positions a magnetic tape at file number 5. The second
one inputs the file to disk and stores it as sequential code named maketemp.
The boolean true protects the file against accidental deletion in the future.

Programs try to be helpful to the user when he needs it. If the user
forgets which programs are available, he may for example type:

help

(or anything else). The system responds by writing:

not executable, try
list(catalog, seqcode, console)

The suggested command lists the names of all sequential programs on the
console.

If the user knows that the disk contains a certain program, but is un-
certain about its parameter conventions, he can simply call it as a program
without parameters, for example:

read
The program then gives the necessary information:
try again
read(file: identifier; kind: filekind; protect: boolean)
using

filekind = (scratch, ascii, seqcode, concode)

Still more information can be gained about a program by reading its
manual:

copy(readman, console)

A user session may begin with the input of a new Pascal program from
cards to disk:

copy (cards, sorttext)

followed by a compilation:



SOLO: A CONCURRENT PASCAL PROGRAM 327

pascal(sorttext, printer, sort)

If the compiler reports errors on the program listing:

pascal:
compilation errors

the next step is usually to edit the program text:

edit(sorttext)

and compile it again. After a successful compilation, the user program can
now be called directly:

sort(...)

The system can also read job control commands from other media, for
example:

do(tape)

A task is preempted by pushing the bell key on the console. This causes
the system to reload and initialize itself. The command start can be used to
replace the Solo system with any other concurrent program stored on disk.

DATA FLOW

Figure 1 shows the data flow inside the system when the user is processing
a single text file sequentially by copying, editing, or compiling it.

The input, processing, and output of text take place simultaneously.
Processing is done by a job process that starts input by sending an argument
through a buffer to an input process. The argument is the name of the input
device or disk file.

The input process sends the data through another buffer to the job pro-
cess. At the end of the file the input process sends an argument through
yet another buffer to the job process indicating whether transmission errors
occurred during the input.

Output is handled similarly by means of an output process and another
set of buffers.

In a single-user operating system it is desirable to be able to process a
file continuously at the highest possible speed. So the data are buffered in
core instead of on disk. The capacity of each buffer is 512 characters.



328 PER BRINCH HANSEN

ARG BUFFER ARG BUFFER

OUTPUT
DEVICE

INPUT
DEVICE

INPUT JOB OUTPUT
PROCESS PROCESS PROCESS

Figure 1 Processes and buffers.

CONTROL FLOW

Figure 2 shows what happens when the user types a command such as:
edit(cards, tape)

After system loading the machine executes a Concurrent Pascal program
(Solo) consisting of three processes. Initially the input and output processes
both load and call a sequential program 70 while the job process calls another
sequential program do. The do program reads the user command from the
console and calls the edit program with two parameters, cards and tape.

The editor starts its input by sending the first parameter to the io pro-
gram executed by the input process. This causes the io program to call
another program cards which then begins to read cards and send them to
the job process.

The editor starts its output by sending the second parameter to the io
program executed by the output process. The latter then calls a program
tape which reads data from the job process and puts them on tape.

At the end of the file the cards and tape programs return to the io
programs which then await further instructions from the job process. The
editor returns to the do program which then reads and interprets the next
command from the console.

It is worth observing that the operating system itself has no built-in
drivers for input/output from various devices. Data are simply produced



SOLO: A CONCURRENT PASCAL PROGRAM 329

CARDS TAPE

EDIT

10 10

DO

INPUT JOB OUTPUT
PROCESS PROCESS PROCESS

Figure 2 Concurrent processes and sequential programs.

and consumed by Sequential Pascal programs stored on disk. The operat-
ing system only contains the mechanism to call these. This gives the user
complete freedom to supplement the system with new devices and simulate
complicated input/output such as the merging, splitting and formatting of
files without changing the job programs.

Most important is the ability of Sequential Pascal programs to call one
another recursively with arbitrary parameters. In Fig. 2, for example, the
do program calls the edit program with two identifiers as parameters. This
removes the need for a separate (awkward) job control language. The job
control language is Pascal.

This is illustrated more dramatically in Fig. 3 which shows how the
command:

pascal(sorttext, printer, sort)

causes the do program to call the program pascal. The latter in turn calls
seven compiler passes one at a time, and (if the compiled program is correct)
pascal finally calls the filing system to store the generated code.

A program does not know whether it is being called by another program
or directly from the console. In Fig. 3 the program pascal calls the filing sys-
tem. The user, may, however, also call the file system directly, for example,
to protect his program against accidental deletion:



330 PER BRINCH HANSEN

PASS 1 PASS 2 PASS 7 FILE

PASCAL

DO

JOB PROCESS

Figure 3 Compilation.

file(protect, sort, true)

The Pascal pointer and heap concepts give programs the ability to pass
arbitrarily complicated data structures among each other, such as symbol
tables during compilation (Jensen 1974). In most cases, however, it suffices
to be able to use identifiers, integers, and booleans as program parameters.

STORE ALLOCATION

The run-time environment of Sequential and Concurrent Pascal is a kernel of
4 K words. This is the only program written in machine language. The user
loads the kernel from disk into core by means of the operator’s panel. The
kernel then loads the Solo system and starts it. The Solo system consists
of a fixed number of processes. They occupy fixed amounts of core store
determined by the compiler.

All other programs are written in Sequential Pascal. Each process stores
the code of the currently executed program in a fixed core segment. After
termination of a program called by another, the process reloads the previous
program from disk and returns to it. The data used by a process and the
programs called by it are all stored in a core resident stack of fixed length.



SOLO: A CONCURRENT PASCAL PROGRAM 331

FILE SYSTEM

The backing store is a slow disk with removable packs. Each user has his
own disk pack containing the system and his private files. So there is no
need for a hierarchical file system.

A disk pack contains a catalog of all files stored on it. The catalog
describes itself as a file. A file is described by its name, type, protection and
disk address. Files are looked up by hashing.

All system programs check the types of their input files before operating
on them and associate types with their output files. The Sequential Pascal
compiler, for example, will take input from an ascii file (but not from a
scratch file), and will make its output a sequential code file. The possible
file types are scratch, ascii, seqcode and concode.

Since each user has his own disk pack, files need only be protected against
accidental overwriting or deletion. All files are initially unprotected. To
protect one the user must call the file system from the console as described
in Section 4.

To avoid compacting of files (lasting several minutes), file pages are scat-
tered on disk and addressed indirectly through a page map (Fig. 4). A file is
opened by looking it up in the catalog and bringing its page map into core.

CATALOG PAGE MAP PAGES
TENGTH
FIE — [PAGE1 L]
PAGE N

Figure 4 File system.

The resident part of the Solo system implements only the most frequently
used file operations: lookup, open, close, get and put. A nonresident, sequen-
tial program, called file, handles the more complicated and less frequently
used operations: create, replace, rename, protect, and delete file.



332 PER BRINCH HANSEN

DISK ALLOCATION

The disk always contains a scratch file of 255 pages called next. A program
creates a new file by outputting data to this file. It then calls the file system
to associate the data with a new name, a type, and a length (< 255). Having
done this the file system creates a new instance of next.

This scheme has two advantages:

1. All files are initialized with typed data.

2. A program creating a file need only call the nonresident file system
once (after producing the file). Without the file next the file system
would have to be called at least twice: before output to create the file,
and after output to define its final length.

The disadvantages of having a single file nezt is that a program can only
create one file at a time.

Unused disk pages are defined by a powerset of page indices stored on
the disk.

On a slow disk special care must be taken to make program loading fast.
If program pages were randomly scattered on the disk it would take 16
seconds to load the compiler and its input/output drivers. An algorithm
described in Brinch Hansen (1976¢) reduces this to 5 seconds. When the
system creates the file next it tries to place it on consecutive pages within
neighboring cylinders as far as possible (but will scatter the pages somewhat
if it has to). It then rearranges the page indices within the page map to
minimize the number of disk revolutions and cylinder movements needed to
load the file. Since this is done before a program is compiled and stored on
disk it is called disk scheduling at compile time.

The system uses a different allocation technique for the two temporary
files used during compilation. Each pass of the compiler takes input from
a file produced by its predecessor and delivers output to its successor on
another file. A program maketemp creates these files and interleaves their
page indices (making every second page belong to one file and every second
one to the other). This makes the disk head sweep slowly across both files
during a pass instead of moving wildly back and forth between them.

OPERATOR COMMUNICATION

The user communicates with the system through a console. Since a task
(such as editing) usually involves several programs executed by concurrent



SOLO: A CONCURRENT PASCAL PROGRAM 333

processes these programs must identify themselves to the user before asking
for input or making output:

do:
edit(cards, tape)
edit:

do:

Program identity is only displayed every time the user starts talking to a
different program. A program that communicates several times with the
user without interruption (such as the editor) only identifies itself once.

Normally only one program at a time tries to talk to the user (the current
program executed by the job process). But an input/output error may cause
a message from another process:

tape:
inspect

Since processes rarely compete for the console, it is sufficient to give a process
exclusive access to the user for input or output of a single line. A conversation
of several lines will seldom be interrupted.

A Pascal program only calls the operating system once with its identifi-
cation. The system will then automatically display it when necessary.

SIZE AND PERFORMANCE

The Solo system consists of an operating system written in Concurrent Pas-
cal and a set of system programs written in Sequential Pascal:

Program Pascal Machine

lines words
operating system 1,300 4K
do, io 700 4K
file system 900 5K
concurrent compiler 8,300 42 K
sequential compiler 8,300 42 K
editor 400 2K
input/output programs 600 3K
others 1,300 8 K

21,800 110K




334 PER BRINCH HANSEN

(The two Pascal compilers can be used under different operating systems
written in Concurrent Pascal—mnot just Solo.)
The amount of code written in different programming languages is:

Language %
machine language 4
Concurrent Pascal 4
Sequential Pascal 92

This clearly shows that a good sequential programming language is more
important for operating system design than a concurrent language. But
although a concurrent program may be small it still seems worthwhile to
write it in a high-level language that enables a compiler to do thorough
checking of data types and access rights. Otherwise, it is far too easy to
make time-dependent programming errors that are extremely difficult to
locate.

The kernel written in machine language implements the process and mon-
itor concepts of Concurrent Pascal and responds to interrupts. It is inde-
pendent of the particular operating system running on top of it.

The Solo system requires a core store of 39 K words for programs and
data:

Programs K words
kernel 4
operating system 11
input/output programs 6
job programs 18
core store 39

This amount of space allows the Pascal compiler to compile itself.
The speed of text processing using disk input and tape output is:

Program char /sec
copy 11,600
edit 3,300-6,200
compile 240

All these tasks are 60—100 per cent disk limited. These figures do not distin-
guish between time spent waiting for peripherals and time spent executing
operating system or user code since this distinction is irrelevant to the user.
They illustrate an overall performance of a system written in a high-level
language using straightforward code generation without any optimization.



SOLO: A CONCURRENT PASCAL PROGRAM 335

FINAL REMARKS

The compilers for Sequential and Concurrent Pascal were designed and im-
plemented by Al Hartmann and me in half a year. I wrote the operating
system and its utility programs in 3 months. In machine language this
would have required 20-30 man-years and nobody would have been able
to understand the system fully. The use of an efficient, abstract program-
ming language reduced the development cost to less than 2 man-years and
produced a system that is completely understood by two programmers.

The low cost of programming makes it acceptable to throw away awkward
programs and rewrite them. We did this several times: An early 6-pass com-
piler was never released (although it worked perfectly) because we found its
structure too complicated. The first operating system written in Concurrent
Pascal (called Deamy) was used only to evaluate the expressive power of the
language and was never built (Brinch Hansen 1974). The second one (called
Pilot) was used for several months but was too slow.

From a manufacturer’s point of view it is now realistic and attractive to
replace a huge ineffective “general-purpose” operating system with a range
of small, efficient systems for special purposes.

The kernel, the operating system, and the compilers were tested very
systematically initially and appear to be correct.

Acknowledgements

The work of Bob Deverill and Al Hartmann in implementing the kernel and
compiler of Concurrent Pascal has been essential for this project. I am also
grateful to Gilbert McCann for his encouragement and support.

Stoy and Strachey (1972) recommend that one should learn to build
good operating systems for single-users before trying to satisfy many users
simultaneously. I have found this to be very good advice. I have also tried
to follow the advice of Lampson (1974) and make both high- and low-level
abstractions available to the user programmer.

The Concurrent Pascal project is supported by the National Science
Foundation under grant number DCR74-17331.

References

1. P. Brinch Hansen 1974. Deamy—A structured operating system. Information Sci-
ence, California Institute of Technology, (May), (out of print).

2. P. Brinch Hansen 1975. The programming language Concurrent Pascal. [EFE
Trans. on Software Engineering, 1, 2 (June).



336 PER BRINCH HANSEN

3. P. Brinch Hansen 1976a. The Solo operating system: job interface. Software—
Practice and Experience, 6, 2 (April-June).

4. P. Brinch Hansen 1976b. The Solo operating system: processes, monitors and
classes. Software—Practice and Ezperience, 6, 2 (April-June).

5. P. Brinch Hansen 1976¢c. Disk scheduling at compile-time. Software—Practice and
Experience 6, 2 (April-June), 201-205.

6. K. Jensen and N. Wirth 1974. Pascal-User manual and report. Lecture Notes in
Computer Science, 18, Springer-Verlag, New York.

7. B. W. Lampson 1974. An open operating system for a single-user machine. In
Operating Systems, Lecture Notes in Computer Science, 16, Springer Verlag, 208
217.

8. J. E. Stoy and C. Strachey 1972. OS6—an experimental operating system for a

small computer. Comput. J., 15, 2.



